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Abstract

This chapter treats the architecture, which is the fixed structure that provides the frame within which

cognitive processing in the mind takes place. It describes what an architecture is and how it enters into

cognitive theories of the mind. It concentrates on symbolic architectures, the family that includes the

architectures central to computer science. It does not treat foundational matters or connectionist

architectures. After treating in detail the general requirements of a cognitive architecture, it uses Act* and

Soar, two architectures relevant to the study of human cognition, to illustrate matters in dptail. -
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3Symbolic Architectures for Cognition

Allen Newell, Paul S. Rosenbloom, and
John E. Laird

In this chapter we treat the fixed structure that provides the frame
within which cognitive processing in the mind takes place. This struc-

ture is called the architecture. It will be our task to indicate what an

architecture is and how it enters into cognitive theories of the mind.

Some boundaries for this chapter are set by the existence of other
chapters in this book. We will not address the basic foundations of the
computational view of mind that is central to cognitive science, but

assume the view presented by Pylyshyn in chapter 2. In addition to the
groundwork Pylyshyn also deals with several aspects of the architec-

ture. Chapter 1, the overview by Simon and Kaplan, also touches on
the architecture at several points and also in the service of the larger

picture. Both treatments are consistent with ours and provide useful
redundancy

This chapter considers only sni/nhohc architectures and, more particu-
larlv, architectures whose structure is reasonably close to that analvzed

in computer science The space of all architectures is not well under-
stood, and the extent and sense to which all architectures must be

symbolic architectures is a matter of contention. Chapter 4 by Rumelhart

covers nonsvmbolic architectures, or more precisely the particular spe-

cies under investigation by the connectionists.
First, we sketch the role the architecture plays in cognitive science.

Second, we describe the requirements the cognitive architecture must

meet. Third. we treat in detail the nature of the cognitive architecture

Fourth, we illustrate the concepts with two cognitIVe architccture . Act*

and Soar. Fifth, we indicate brietly how theories Ot the architecture

enter into other studies in cognitive -cience. We close % th ,onC Open
questions.

3.1 The Role of the Architecture in Cognitive Science

\Vi,.'W 11.1 tht' 1 trhl,' COntItuted tl ,%%t'hi , m ,hm -,. o,,e 1,01l ot,r

WU_ I ' . - Ja rt , ht t' kO inin conc ptu i l. .'ar t - ,t .IcI"C L'
%V ic .ic \,it III 11C, Cf iitk,-- If LINF SH
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performs a given function in the encompassing system. The term archt-
tecture is used to indicate that the structure in question has iome <ort S.. .
of primary, permanent, or originating character. As such one can talk
about the architecture of the mind or a part of the mind in a general
and descriptive way-the architecture of the visual svst-m, an architec-
ture for the conceptual system, and so on.

In cognitive science the notion of architecture has come to take on a
quite specific and technical meaning, deriving from computer science.
There the term stands for the hardware structure that produces a system
that can be programmed. It is the design of a machine that admits the
distinction between hardware and software.' The concept of an archi-
tecture for cognitive science then is the appropriate generalization and
abstraction ot the concept of computer architecture applied to human
cognition: the fixed system of mechanisms that underlies and produces
cognitive behavior. As such, an appropriate starting place is a descrip-
tion of an ordinary computer architecture.

The Architecture of Computers
Consider a simple (uniprocessor) digital computer. The top of figure 3.1
shows the gross physical configuration of the system. There is a set of
components-a processor, a primary memory, and so on-joined by
communication links (the link connecting almost everything together is
called the bus). Over the links flow streams of bits. A look inside the
processor (the lower-left portion of the figure) reveals more anatomical
detail of components connected by Iinks-a number of register memo-
ries; a data unit for carrying out various operations such as addition,
intersection, shifting, and the like; and an interpreter unit for carrying
out the instructions of the program. The primary memory contains a
few instructions from a program. The address in the program address
register points to one of them which is brought into the program
register and decoded. The left part of the instruction i, used to select
one of the basic operations of the computer, and the right part is used
to address a cell of the primary memory, whose content is retrieved to
become an argument for the operation. The repeated act, of obtaining
the next instruction, interpreting it, and performing the operation on
the argument are called the fetch-c.'ccUtc clcL'.

Figure 3.1 specifies the architecture of a digital cOmputcr tgiven lit-
erarv license). It describes a mechanistic system that behaves in a det-
inite way. The language used to describe it take, much tor granted,
referring to re.isters, links, decoderS, and :o on. Thec component,
and how the% operate require turther specification--to i,,a' hmo theyv
are to be rali/ed in circuit technologv and ultimatel.,v in , It-ctr n ph ,
ics-all ot which Lan be taken to granted here

The behat tor of this machine de.'pendS on the pirao r.wi u1daill -,tilred

in the memor, Indeed the machimn can exhibit C"cnttla lh an v IM',, I LINE S,
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quainted with the amazing variety Ot such prograns--computing sta-
tistics, keeping inventories, playing games, Qditing manuscripts.
running machine tools, and so on-but also converting the machine',, , -

interaction with its environment to occur by a wide variety of languages,
graphic displays, and the like. All this happen., because of three things
taken jointly: the computer architecture, which enables the interpreta-
tion of programs; the flexibility ot programs to specify behavior, both
for external consumption and for creating additional programs to be
used in the future; and lots of memory to hold lots of programs with
their required data so that a wide variety or behavior can occur.

Figure 3. 1 is only the tip of the iceberg of computer architectures. It
contains the essential ideas, however, and serves to introduce them in
concrete form.

The Architecture of Cognition
Figure 3. 1 epitomizes the invention of the computer, a mechanism that
can exhibit indefinitely flexible, complex, responsive, and task-oriented
behavior. We observe in humans flexible and adaptive behavior in
seemingly limitless abundance and variety. A natural hypothesis is that
systems such as that of figure 3.1 reveal the essential mechanisms of
how humans attain their own flexibility and therefore of how the mind
works.

A chief burden of chapter 2 (and a theme in chapter 1) is to show
how this observation has been transformed into a major foundation of
cognitive science. The empirical basis for this transformation has come
from the immense diversity of tasks that have been accomplished by
computers, including, but not limited to. the stream of artificial intelli-
gence (Al) svstems. Compelling force has been added to this transfor-
mation from the theory of computational mechanisms (Hopcroft and
Ullman 1979), which abstracts from much that seems special in figure
3. 1 and shows both the sufficiency and the necessity of computational
mechanisms and how such mechanisms relate to systems having rep-
resentations of their external world (that is, having semantics). The
architectures that arise from this theory are called symbolic
architectures.

As laid out in chapter 2, the human can be described at different
,vstem levels. At the top is the KYwIcd('c itcZT. which describes the
person a, having goals and knowing things about the, world, in which
knowledge is used In the ,ervice of its goals by the principle ot ration-
ality). The per!n n can operate at the knowledge level 0nV because it i,

also a 1/rn/u /ci'c'/ ,Y.,tcn, which i, a ,vtum that opera te, In term,, ,t

represenatMion, and intoriiati n-pr c,'ing operation- on these repre-
sentatioll, 1'he ' v,1bo i lv~cl mtwt also be Ira"'/Cd 0I tN'riv., e0 'oLn

stib-4trate. and the i rclitkeCtIark' i, that .tibS tr,ilt' d nneln d 1n n 11a0ppropri-
ate 1an'g _ tF l a id e Ur t- in.p ter, till- turn, ouit to 1 t tilt' V'I LIN

R

I LI

--JS18 17265SSSS6 U3 04-11-89 09-58-39 Page 96
.EKR. Corpraton, ;2 ".,Cumings Park Woburn. MA 01801 ,671935-8-0O



transfer level, in which bit-vectors are transported from one functional
unit (such as an adder) tu another, subject to gating by control bits For

humans it is the neural-circuit level, which currently seems well de-
scribed as highly parallel interconnected networks ot inhibitorv and
excitatory connections that process a medium of continuous signals.
Below that of course are other levels of desctription-neurons, organ-
elles, macromolecules, and on down.

This arrangement of system levels seems very special-it is after all
the eye of the needle through which systems have to pass to be able to
be intelligent. Nevertheless there is an immense variety of architectures
and an immense variety of physical substrates in which they can be
implemented. No real appreciation exists vet for this full double variety
or its consequences, except that they are exceedingly large and diverse.
It is relatively easy to understand a given architecture when presented,
though there mav be a fair amount of detail to wade through. However,
it is difficult to see the behavioral consequences of an architecture,
because it is so overlaid by the programs it executes. And it is extremely
difficult to compare different architectures, for each presents its own
total framework that can carve up the world in radically different ways.
Despite these difficulties cognitive science needs to determine the ar-
chitecture that underlies and supports human cognition.

The architecture does not by itself determine behavior. The other
main contributors are the goal the person is attempting to attain, the
task environment within which the person is performing, and the
knowledge the person has. The first is not only the knowledge of the
conditions or situation desired, but also the commitment to govern
behavior to obtain such conditions. The second is the objective situation,
along with the objective constraints about how the person can interact
with the situation. The third is the subjective situation of the person in
relation to the task. The knowledge involved in accomplishing any task
is diverse and extensive and derives trom multiple sources. These
sources include the statement or presenting indications of the task, the
immediately prior interaction with the task situation, the long-term
experience with analogous or similar situations. prior education includ-

ing the acquisition ot skills. and the socialization and enlcuLItu ratlon that
provide the background orientation All these ,ources ot kno\ edgt'

make their contribution.
The goal, ta.k, and knowledge tt coUr,: AontItutt. tht. kno'5 . icd.-

level characteriza ti i ot a person rh, archit.cctur prminar\ rol, i, to

make that posIIhlC b' -Upporting the prot..,,,,ic iot the -vit lti c re p-

resentation, that hold the kno%lLdg, It it did 'o p rttcclv, thln h11k

archlitect rk.' 1. iid not appe.tr a,, an ind pen.detlt tal tor I he i.ictt1

mllin titon ol [,,.+ i m~ an\ 101rL thll l \kitlld l,:CtV'tvl_hol I e Ilk' ,o l 0 tt~r
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But the knowledge-level characterization is tar trom perfect .\s the
linguists used to be fond ot saving, there can be a large gap between

competence and performance. The architecture shows through n many
ways, both large and small. Indeed much C .ognitive ps.chology Is
counting these ways-speed of processing, memory errors, linguistic
-lips, perceptual illusions, failures of rationality in decision making,
interterence effects of learned material, and on and on [hese tactors
are grounded in part in the architecture. Aspects ot behavior can also
have their source in mechanisms and structure defined at lower levels-
neural functioning, properties of muscle, imperfections in the corneal
lens, macromolecular structure of drugs, the effects of raised tempera-
ture, and so on. When the architecture fails to support adequately
knowledge-based goal-oriented behavior, however, it gives rise by and
large to characteristics we see as psychological. Viewed this way, much
of psychology Involves the investigation of the architecture.

What the notion of the architecture supplies is the concept of the total
system of mechanisms that are required to attain flexible intelligent
behavior. Normally psychological investigations operate in isolation,
though with a justified sense that the mechanisms investigated (mem-
ory, learning, memory retrieval, whatever) are necessary and important.
The architecture adds the total system context within which such sep-
arate mechanisms operate, providing additional constraints that deter-
mine behavior. The architecture also brings to the fore additional
mechanisms that must be in,,olved and that have received less attention
in experimental psychology, for instance, elementar% operations and
control. Thits requirement ot integration is not just a pleasant condiment.
Every complete human performance invokes most of the psychological
functions we investigate piecemeal-perception, encoding, retrieval,
memory, composition and selection of symbolic responses, decision
making, motor commands, and actual motor responses. Substantial
risks are incurred by psychological theory and experimentation when
they focus on a slice of behavior, leaving all the rest as inarticulated
background.

A theory of the architecture is a proposal for the total cognitive
mechanism, rather than for a single aspect or mechanism A proposed
embodiment of an architecture, Such as a simulation system, purports
to be a complete mechanism tor human cognition. The torm ot its
memory embodies a hypothesis of the torin ot human s% mbohc -peci-

fications tor action; the way its programs are created or :oditied em-
bodies a hypothesis at the %%a% human action specitication- ire created
or modified; and so on (Newell I9S7)

To tllil a r,1'1e, tie role ot the architecture in cogni ti\t, ,clCt.' i' to

be tilt' ctiltrall cIJ ileiit in a thcor\ ot human cognitionl It i, not tlt, .olc
or v cill. tll.,rcdolinailt deterrniilaint ot the behavior ,t thte, r,,ii

hu t I- tilt tci'tCI ii, ,I 01 [.hit IlnakV_ that bt'hl\lior 1 , \ hc ,li c,l 1 LINE S
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edge To have a theory of cognition s ito have i theor, ot h e

architecture.

3.2 Requirements on the Cognitive Architecture

Why. -hould the cogniti~e architecture be one way or the other' All
architecturves provide programmability, which yields indefinitely flexible
behavior, Why wouldn't ufle architecture do as well as another) Wve
need to addre ,, this question as a preliminary to discussing the nature
of the cognitive architecture. We need to understand the requirements
that shape human cognition, especially beyond the need for universal
computation The cogniti-'e ar~hitecture must provide the support nec-
essary for all these requirements. The following is a list of r.oquirements
that could shape the architecture (adapted from Newell 19,*):

1. Behave flexibly, as a function of the environment

1. Exhibit adaptive (rational, goal-oriented) behavior

3. Operate in real time

4. Operate in a rich, complex. detailed environment

a. perceive an immense amount of changing detail

b. use vast amounts of knowl~edge

c. control a motor systemn of many degrees of freedom

; Use symrbols and abstractions

o. Use language, both natural and artificial

7, Learn from the environment and from experience

S. Acquire capabilities through development

Q) Li~ e autonomously within a 5Iocial community

10. Exhibit elt-awareness and a sense ot selt

These requirements express our common though scientiticallv Informed
knowledge ibout human beings in their habitat. There Ino .\,a\ to
know hoil. complete the list is. but many% relevant requlirements Irt.
certain)% Incluided.

(1) W e list first the requirement to behavt- rlexibly ais a t nctionI It Ote
environment. ;ince that is the central capability that irchitcUre, pro-
vide. If a syswtemn cannot make itself rv~pond inI w.hate,, er ,%1 a'1 nceded
it can hard It Le intelligent The w\hole pu rpose kit this l ist Ot I 01.re,
to go be ' ond this first Item (2) Flexkibility, bv itself s link a mnits it

nmust be inI IN k'III (trIc t ,oals and rationa liv related to Hba it-1
thIn~gs and -.0')dItIIIn' that1 let tht, organism ur~i k: and propagt,itv 31~
(_ gItwl i1 1 III:nhI .1- t 'L~ t InI :CA t[imeI [hi1 demand1(It Of thtm .en irknelL'l

(rilrt' I fth \1,lilt ( ' WI !' ' I 1IMPf l tii .- M) ~~t ". t'-,i , c 1 LINE SHORT

I LINE LONG
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bevond just being dynamic: it is combinatoriallv rich and d.tailed.
,:hanging simultaneously on many fronts, but with man,, regularities at
every time scale. This affects the cognitive sy-tem in ,everal way, (a)
There must be multiple perceptual systems to tap the multiple dynamic
aspects; they must all operate concurrently and dynamicallc, and onle
must have high bandwidth. (b) There must be very large memories
because the environment provides the opportunity to know many rel-
evant things, and in an evolutionary, hence competitive, world oppor-
tunitv for some produces requirements for all. ic) For the motor system
to move around and influence a complex world requires continual de-
termination of many degrees of freedom at a rate dictated by the
environment.

(5) Human cognition is able to use symbols and abstractions. (6) It is
also able to use language, both natural and artificial. These two r,'quire-
ments might come to the same thing or they might impose somewhat
distinct demands. Both are intimately related to the requirement for
flexibility and might be redundant with it. But there might be important
additional aspects in each. All this need not be settled for the list, which
ittempts co,'erage rather than parsimony or independence.

(7) Humans must learn from the environment, not occasionally but
continuously and not a little but a lot. This also flows from the multitude
of regularities at diverse time scales available to be learned. (8) Fur-
thermore many of our capabilities are acquired through development.
When the neonate first arrives, it is surely without many capabilities,
but these seem to be exactly the high-level capabilities required to
acquire the additional capabilities it needs. Thus there i,, a chicken-and-
egg constraint, which hints at a significant specialization to make de-
velopment possible. As with the requirements for symbols and lan-
guage, the relation between learning and development is obscure.
Whatever it turns out to be, both requirements belong in the list.

(9) Humans must live autonomouslv within a social community. This
requirement combines two aspects One aspect of autonomy is greater
capability to be free of dependencies on the environment. Relative to
the autonomy of current computers and robots, this implies the need
for substantially increased capabilities. On the other hand much that
we have learned trom ethology and s ocial theory speaks to the depen-
dence of individual, on the communitie- in which the are raised and

reside (von Cranach, Foppa, Lepinie,. and Ploog 1070). Fhe addtiLunal
capabilities tor low-level autonomV d, not negate the eCtent to which
socialization and embedding in a -ut ,rtivt, social StrU,.ti ' C . e,_-
essa rv. It human,S lea\e their co m n tiLtlt- tIe, bc. . nIIt tC ,t .l d

dvsfunctioi al in ma n.\ ways. i [ I he requlirement tor-tli-, v aren,,

is somewvhat ob-cure We ,u rely ha,\e a -en'e ot elt it I- not
evident what tunctiona I role -clt-arene-', plaVs In thL i,a -kchemc

t Ind . , lt.c alt i t, hI- 11adLie ICar the i portainc tr ' i : ,. , i ,, n iantlun 1 LINE SF
coiSaldc rlnil. - t"l' J iV ;llitlt
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ment. But the link from metacognition to the full notion of a sense of
self remains obscure.

Human cognition can be taken to be an information-processing vs-

tern that is a solution to all of the listed requirements plus perhaps
others that we have not learned about. Flexibility, the grounds for
claiming that human cognition is built on an architecture, is certainly a

prominent item, but it is far from the only one. Each of the others plays
some role in making human cognition what it is.

The problem of this chapter is Pzot what shape cognition as a whole
takes in response to these requirements--that is the problem of cogni-
tive science as a whole. Our problem is what is implied by the list for
the shape of the architecture. For each requirement there exists a body

of general and scientific knowledge, more or less well developed. But
cognition is always the resultant of the architecture plus the content of
the memories, combined under the impress of being adaptive. This
tends to conceal the inner structure and reveal only knowledge-level
behavior. Thus extracting the implications for the architecture requires
analvsis.

Several approaches are possible for such analyses, although we can
only touch on them here. The most important one is to get temporally
close to the architecture; if there is little time for programmed behavior
to act, then the architecture has a chance to shine through. A good

example is the exploration of immediate-response behavior that has
established an arena of automatic behavior, distinguished from an arena
of more deliberate controlled behavior (Schneider and Shiffrin 1977, Shif-

frin and Schneider 1977). Another approach is to look for universal
regularities If some regularity shows through despite all sorts of vari-
ation, it may reflect some aspect of the architecture. A good example is
the power law of practice, in which the time to perform repeated tasks,
almost no matter what the task, improves according to a power law of
the number of trials (Newell and Rosenbloom 1981). Architectural mech-

anisms have been hypothesized to account for it (Rosenbloom and
Newell 1%bsf). Yet another approach is to construct experimental archi-
tectures that support a number of the requirements in the list. These
help to ,enerate candidate mechanisms that will meet various require-
ment ,, but also reveal the real nature ot the requirement. lanv ot the
ettorts in Al and in the development of Al sottware tools and environ-

ments tit this mold (a recent conference (VanLehn 19s-) provide, a
good sampling)

Functional requirements are not the only sourcet, ot kno,\ ledge ,abott

the cognitive architecture We know the cognitive architecture i- real-

itzed in neural technology and that it was created by evolutlon. Both oit
thee hac maoi effect- on the architecture. We do not treat either IhL'
11 ilhca ti, ,t tilt., neural ,triicture kt the brain are tre..ated in ,tht'r
h, 0I,.- ,, thIt- , un d ad l t :e irplica tior' , ot e.oluth0 tho u h I LINE SHORT
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3.3 The Nature of the Architecture

We now describe the nature or the cognitive architecture. Flls i-, to be -

given in terms of functions rather than structure,, and mechanisms In
part this is because the architecture is defined in terms ot what it doe,
for cognition. But it is also because, as we have discovered from com-
puter science, an extremely wide variety of structures and mechanisms
havc proved capable or providing the central.functions. F-hus no set ot
structures and mechanisms has emerged at sufficiently necessary to
become the criterial features. The purely functional character of archi-
tectures is especially important when we move from current digital
computers to human cognition. There the underlying system technol-
ogy (neural circuits) and construction technology (evolution) are very
different, so we can expect to see the tunctions realized in ways quite
different from that in current digital technology.

In general the architecture provides support for a given function
rather than the entire function. Because an architecture provides a way
in which software (that is, content) can guide behavior in tlexible ways,
essentially all intellectual or control functions can be provided by soft-
ware. Only in various limiting conditions--of speed, reliability, access
to the architectural mechanisms themselves, and the like-is it necessary
to perform all of the certain functions directly in the architecture. it
may, of course, be efficient to perform functions in the architecture that
could also be provided by software. From either a biological or engi-
neering perspective there is no intrinsic reason to prefer one way of
accomplishing a function rather than another. Issues of efficiency, mod-
ifiability, constructibilitv, resource cost, and resource a adabilitv join to
determine what mechanisms are used to perform a tunction and how
they divide between architectural support, and program and data.

The following list gives known functions of the architecture.

I. Memorv

a. Contains structures that contain symbol token,

b, Independently modifiable at some grain ,ite

c. Sutficient memory

2. Svmbos

a. Patterns that provide acce,,,, to distal Ivmb, ol ,tructur,_'-

b. A symbol token in the occurrence ot a pattern In a -tru,:t1itU

c. Sufficient rinbols

S.Operations

a. Proc s.,e, that takt. ,vnbol (rIc rtII*L'- 1 11 [r, 111t l. 'vk1\11Nlol

,trUcture, a', oLItPU

M11 (.Po upIUtk' 1,,k II I.it I LINE

RE
1 LINE
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4. Interpretation 
em

a. Processes, that ta ke -vmbkol stLctures Is input 1nd Produce behavior
by executing operations

b. Complete interpretaibilitv,

5Interaction with the external world

a. Perceptual and mnotor interfaces

b. Buffering and interrupts

c. Real-time demands for action

c. Continuous acquis;ition of knowledge

We stress that these functions are only what are known currently.
Especially with natural systems such as human cognition, but even with
artificial -;ystems, wve d o not know all the functions that are being
performed.- The basic sources of our knowledge of the functions of the
architecture is exactly what was skipped over in the previous section,
namely the evolution of digital computer architectures and the corre-
sponding abstract theory of machines that has developed in computer
science. We do not ground the list in detail in this background, but
anyone who wants to work seriously in cognitive architectures should
have a fair acquaintance with it (Minsky 1967, Bell and Newell 1971,
Hopcroft and Ullman 1979, Siewiorek, Bell, and Newell 1981, Agrawal
1986, Fernandez and Lang 1986, Gaiski, Milutinovic, Siegel, and Furht
1987). We nowv take tip the itemns of this list.

Symbol Systems
The central function of the architecture is to support a system capable
of universal computation. Thus the initial functions in our list are those
required to provide this capability. We should be able to generate the
list simply by an inalysis of existing universal machines, However,
there are many varieties of universal systems. Indeed a striking feature
of the histor\ .,) investigation ot univ ersal computation has been the
creation of mcmv alternative independent formulations ot universality,
all of wvhich have turned out to be equivalent. Turing machines, %tarkov
algorithms, register machines. recursive function1s. PittS-McIClloch
neural nets, Post productions, ~ ytmpIlus all man ner ot digital
computer organi/ations-all Iinc1ludk kIthInI themn a w%',I ot torm ilatinO
a universal mach iie Thv', i ~ursal machine, are Al equivalent InI
flexibility and can all1 simu1.ldtV ech othe'r. But lik~e architectures (and for
the samne rc'n)each fornuI la"tion1 is: 0 traniework Li ilto it-clt. and they
ottenl presenit ,i quite 'pecIttc .a idlo-vncratic design1.1k.11 a, OIL' tape.
reading heao .i 'nd ti e-tn pke ins truction format of a 1 u ri nc machine.

.\tiu., 110ok itiic mt a certain charm ( special I bUt VeI eiirl .ts
turid- tc div l ctumenviad tunL lctiolls th.cit artu requ ire~ Thc toriulci-

ton ~ ~ ~ ~ A"%(1 1\. ,.~ .. , u~ L '-SO) W111it I' Ck'I1ix~lent I LINE SHORT
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to all the others. The prominent role it gives to symbols has proved MASTER SET
useful in discussions of human cognition, however, and its avoidance 'Reas F
of specific details of operation makes it less idiosyncratic than other
formulations.

The first four items of the list of tunctions provide the capability for
being a symbol system: ntemori, sitbos, openf'r, att, and ,'ah'rpretatio.
However, none of these functions (not even symbols) is the function of
representatio'I of the external world. Symbols do provide an internal

representation tunction, but representation ot the external world is a
function of the computational system as a whole, so that the architecture
supports such representation, but does not itself provide it. (See chapter
2 for how this is possible, and how one moves from the knowledge
level, which is .ibout the external world, to the symbol level, which
contains the mechanisms that provide aboutness.)

Memory and Memory Structures The first requirement is for tnemory,
which is to say, structures that persist over time. In computers there is
a memory hierarchy ranging from working registers within the central
processor (such as the address register) to registers used for temporary
state (such as an accumulator or operand stack), to primary memory
(which is randomly addressed and holds active programs and data), to
secondary memory (disks), to tertiary memory (magnetic tapes). This
hierarchy is characterized by time constants (speed of access, speed of
writing, and expected residency time) and memory capacity, in inverse
relation-the slower the memory the more of it is available. The faster
memory it an integral part of the operational dynamics of the system
and is to be considered in conjunction with it. The larger-capacity,
longer-term memory satisfies the requirement for the large amounts of
memory needed for human cognition.

Memor% is composed of structures, called symbol structures because
they contain simbol tokens. In computers all of the memories hold the
same kind, of structures, namely, vectors of bits (bytes and wordsj,
although occasionally larger multiples of such units occur (blocks and
records). At some sufficiently large grain size the memory structures
must be independently modifiable. There are two reasons for this. First,
the variety of the external world is combinatorial-it comprises many
independent multivalued dimensions located (and iterated) throughout
space and time. Only a combinatorial memory structure can hold infor-
mation about such a world. Second, built-in dependencie, in the mem-
orv structure, while facilitating certain comrputations, rnut ultirtiek
intertere %%ith the ability of the system to compute accord in to the
dictates (it the enmironment Dependenciv's in the memory, bei ng un-
respon-sive t dependencies in the environnwit. then become a drag.
even thoutih it may be.' po,>sible to compenate b\ additional coMpu ta-

tion. Within o t' limits here called the grain ,si/e l t Icotrc-t -t'tLIctUrCe 1 LINE SI
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Symbols and Symbol Tokens Symbol tokens are patterns in symbol
structures that provide access to distal flemorv tructure-,, that is. to

structures elsewhere in memory.- In standard computer architecture, a
symbol is a memory address and a symbol token is a particular string
of bits in a particular word that can be used as an address (by being
shipped to the memory-address register, as in figure 3.1). The need for

symbols' arises because it is not possible for all of the structure involved
in a computation to be assembled ahead of time at the physical site of
the computation. Thus it is necessary to travel out to other (distal) parts
of the memory to obtain the additional structure. In terms of the knowl-
edge level this is what is required to bring all of the system's knowledge
to bear on achieving a goal. It is not possible generally to know in
advance all the knowledge that will be used in a computation (for that
would imply that the computation had already been carried out). Thus
the ingredients for a symbol mechanism are some pattern within the
structures being processed (the token), which can be used to open an
access path to a distal structure (and which may involve search of the
memory) and a retrieval path by means of which the distal structure
can be communicated to inform the local site of the computation.,

Operations The system is capable of performing operations on symbol
structures to compose new symbol structures. There are many varia-
tions on such operations in terms of what they do in building new
structures or modifying old structures and in terms of how they depend
on other symbol structures. The form such operations take in standard
computers is the application ot an operator to a set of operands, as
specified in a fixed instruction format (see figure 3.1). Higher-level
programming languages generalize this to the full scope of an applica-
tive formalism, where (Fx, x, ... x...) commands the system to apply
the function F to operand x ...... .. to produce a new structure.

Interpretation Some structures (not all) have the property ot deter-
mining that a sequence of symbol operations occurs on specific symbol
structures. These structures are called variously codes, pro,ratns, proce-
dures. ,'outines, or plans. The process of applying the operations is called
,mtcrprctn, the symbol -tructure. In standard computers thi- occurs by
the fetch-execute cycle (compare figure 3. 1), whereby each instruction
is accessed, its operands decoded and distributed to various regiters,
and the operation executed. The simplicity III thik scheme ckorre-,ponds
to the simplicity of machine lan1uage and i dictated by' tile complexity
of what can be etticientlv and rcliablk realized directl1 in hardware.
More complex procedural Ihigh-level) langtuage , can be conlpilud Into
an elaborate prora ii In the ,inpler machhine langu.ag' or L'Cti ted on)
tile tlv (that I-. i/terpretivl%) b tht 111it'rocode tt a -impit.1 tl 'Ubcoml-

puter. Other alternati, te artc po-,ible. tnr ,\aiflple, ctil'trtlit.: a Ipe- 1 LINE SHORT
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program and then activating the machine. All these come to the same
thing--the ability to convert from symbol structures to behavior. SE

The Integrated System We nows have all the ingredients ot a symbol
system. These are sufficient to produce indefinitely flexible behavior
(requirement I in the first list). Figure 3.2 gives the essential interaction.
Operations can construct symbol structures that can be interpreted to
specify further operations to construct vet further symbol structures.
This loop provides for the construction of arbitrary behavior as a func-
tion of other demands. The only additional requirements are some
properties of sufficiency and completeness. Without sufficient memory
and sutficient symbols the system will be unable to do tasks demanding
sufficiently voluminous intermediate references and data, just because
it will run out of resources. Without completeness in the loop some

sequences of behavior will not be producible. This has two faces: com-
plete composability, so operators can construct any symbol structure,
and complete interpretability, so interpretable symbols structures are
possible for any arrangement of operations. Under completeness should
also be included reliability-if the mechanisms do not operate as posited
(including memory) then results need not follow.

Universality is a simple and elegant way to state what it takes to be
flexible, by taking flexibility to its limit . Failures of sufficiency and
completeness do not necessarily threaten flexibility in critical ways. In
a finite world all resources are finite, but so is the organism's sojourn
on earth. Failures of completeness are a little harder to assess because
their satisfaction can be extremely devious and indirect (including the
uses of error-detecting and correcting mechanisms to deal with finite
reliabilitv). But in general there is a continuum of effect in real terms
with the severity and extent of the failure. However, no theory is
available to inform us about approximations to universality.

In addition to providing flexibility, symbol systems provide important
support for several of the other requirements in the first list. For adapt-
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ability (requirement 2) they provide the ability to represent goals and
to conditionalize action oft of them. For using vast amounts ot knowvl- MASTER SET
edge (requirement 4.b), they provide symbol ,;tructures in which the ,Se M
knowledge can be encoded and arbitrarily large memories with the

accompanying ability to access distal knowledge as necessary. For sym-

bols, abstractions, and language (requirements 5 and 6) they provide

the'- ability to manipulate representations For learning (requirement 7)
the-y provide the ability to create long-term symbol structures.

Interaction with the External World
Symbol svstems are components of a larger embedding system that
lives in a real dvnamic world, and their overall function is to create

appropriate interactions of this larger system with that world. The
interfaces of the large system to the world are sensory and motor

devices. Exactly where it makes sense to say the architecture ends and

distinct inputoutput subsystems begin depends on the particular sys-
tem. All information processing right up to the energy transducers at

the skin might be constructed on a common design and be part of a
single architecture, multiple peripheral architectures of distinct design
might exist, or multiple specialized systems for transduction and com-

munication might exist that are not architectures according to our def-

inition. Despite all this variability several common functions can be

identified: The first is relatively obvious-the architecture must provide
for the interfaces that connect the sensor" and motor devices to the

symbol system, lust what these interfaces do and where they are located
is a function of how the boundary is drawn between the central cog-

nitive system (the s mbol system) and the peripheral ,vstems.

The second arises from the asvnchronv between the internal and

external worlds. Symbol systems are an interior milieu protected from
the external world, in which information processing in the service of

the organism can proceed. One implication is that the external world

and the internal symbolic world proceed asynchronously. Thus there
must be i,ittering of information between the two in both directions.
How many buffer memories and of what characteristics depends on the

time constant,; and rates of the multiple inputs and outputs. It trans-

Jucers are much slower than internal processing, ot cour,,e the tran.-

ducer itselt becomes a sufficiently accurate memory. In iddition there
must be i'tcrriijt mechanisms to cope with the transter ot proce,inm

between the multiple asynchronolS ,ource, of intornlation
The third function arise., from the real-time demand charactcri,tic- ot

the external world (requirement 3 in the tirst listi Fhe en ironnient

provides a continuallv changing kaleidoscop,. ot opportunitie, and

threats, wvith thtir wn time constants One m plication tor the irchi-

tectu re i, to ,in interrupt capability. ,41 that proce-ing an he %% itchcd

in tinc t, nt, inimAids he mecha nic,, (t iteiruil.'1, hi, AIr'd, I LINE SHORT
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MASTES SeT

for precognitive assessment, that is, for assessment that Occurs before P/eA Rem
assessment by the cognitive system. A demand that is more dirficult to
specify sharply, but is nonetheless real, is that processing be oriented
toward getting answers rapidly. This cannot be an unconditional de-

mand, if we take the time constants of the implementation technology
as fixed (neural circuits for human cognition), because computing some

things faster implies computing others things slower, and more gener-
aliy there are intrinsic computational complexities. Still, architectures

that provide effective time-limited computation are indicated.
The fourth function arises from an implication of a changing environ-

ment-the system cannot know in advance everything it needs to know
about such an environment. Therefore the system must continually
acquire knowledge from the environment (part of requirement 7) and

do so at time constants dictated by the environment (a less obvious
form of requirement 3). Symbol systems have the capability of acquiring
knowledge, so in this respect at least no new architectural function is

involved. The knowledge to be acquired flows in from the environment
in real time, however, and not under the control of the system. It follows

that learning must also occur essentially in real time. In part this is just
the dynamics of the bathtub-on average the inflow to a bathtub (here

encoded experience) must equal the outflow from the bathtub (here
experience processed to become knowledge). But it is coupled with the

fact that the water never stops flowing in, so that there is no opportunity
to process at leisure.

Summary
We have attempted to list the functions of the cognitive architecture,
which is to pro, :he support for human cognition, as characterized
in the list of rec 2ments for shaping the architecture. Together the

symbol-svstem an , real-time functions cover a large part of the primitive

functionality needed for requirements I through 7. They do not ensure
that the requirements are met, but they do provide needed support.

There is little to say for now about architectural support for devel-
opment (requirement 8). The difficulty is our minimal knowledge of the

mechanisms involved in enabling developmental transitions. even at a
psychological level (Klahr 1989). It makes a significant difference
whether development occurs through the type of general learning that

is supported by symbol systems-that is, the creation ot long-term
symbol structures-or by distinct mechanisms. Even it development

were a part of general learning after the first several vear'. it night

require special architectural mechanisms at the beginnin, ot lite Such
requirements might 4-hape the architecture in many other k av,,

Autonomy in a -,ocial environment is another iequireMnnt Inunibcr
L in the li,;t vhcre we cannot vet pin down additional t 1nction,, tor

the architecttirc to upport On the mort' general is sue Ot ono . I LINE
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include protection, resource allocation, and exception handling. Protec-
tion enables multiple components of a system to behave concurrently . . .,STE T
without interfering with each other. Resource allocation enables a sv,- reae RetUM
tern to work within its finite resources of time and memory, recycling
resources as they are freed. Exception handling enables a Vstem to
recover from error situations that would otherwise require intervention

by a programmer (for example, a division by zero or the detection of
an inconsistency in a logic data base).

Issues of self-awareness (requirement 10) have recently been an active
research topic in computer science, under the banner of metalevel ar-
chitecture and reflection (the articles in Maes and Nardi 1988 provide a
good sampling). Functionalities studied include how a system can
model, reason about, control, and modify itself. Techniques for excep-
tion handling turn out to be a special case of the ability of a system to
reason about and modify itself. On the psychological side the work on
metacognition has made us aware of the way knowledge of a person's
own capabilities (or lack of) affects performance (Brown 1978). As yet
this work does not seem to have clear implications for the architecture,
because it is focused on the development and use of adaptive strategies
that do not seem to require special access to the instantaneous running
state of the system, which is the obvious architectural support issue.

3.4 Example Architectures: Act* and Soar

We now have an analvsis of the functions of a cognitive architecture
and the general way it responds to the requirements of our first list. To
make this analysis concrete, we examine two cognitive architectures,
Act* (Anderson 1983) and Soar (Laird, Newell, and Rosenbloom 1987).
Act* is the first theory of the cognitive architecture with sufficient detail
and completeness to be worthy of the name. It represents a long de-
velopment (Anderson and Bower 1973, Anderson 1976), and further
developments have occurred since the definitive book was written (An-
derson 1986, Anderson and Thompson 1988). Soar is a more recent
entry as a cognitive theory (Newell 1987, Polk and Newell 1988, Rosen-
bloom, Laird, and Newell 1988). Its immediate prior history is as an Al
architecture (Laird, Rosenbloom, and Newell 1986, Steir et al. 1987),
but it has roots in earlier psychological work (Newell and Simon 1972.
Newell 1973, Rosenbloom and Newell 1988). Using two architectures
provides some variety to help clarify points and also permits a certain
amount ot comparison. Our purpose I., to make clear the nature of the
cognitive architecture, however, rather than to produce a judgment
between the architectures.

Overview
Let uL- start ,ith , ,uick o\ er\ iev ot the two vtum, and then proceed 1 LINE SHORT
to iterath. t-, it.h ,he' tuHC W R t , IoI I the Secon1d h',t LI-u rI\ 1 the" REGULAR
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Figure 3.3 Overview ot the Act* cognitive architecture (Anderson 1983)

basic structure of Act*. There is a long-term declarative memory in the
form of a semantic net. There is a. long-term procedural memory in the
form of productions. Strengths are associated with each long-term mem-
ory element (both network nodes and productions) as a function of its
use. Each production has a set of conditions that test elements of a
working memory and a set of actions that create new structures in the
working memory. The working memory is activation based; it contains
the activated portion of the declarative memory plus declarative struc-
tures generated by production firings and perception.' Activation
spreads automatically (as a function of node strength) through working
memory and from there to other connected nodes in the declarative
memory. Working memory may contain goals that serve as large sources

of activation. Activation, along with production strength, determines
how fast the matching of productions proceeds. Selection ot productions
to fire is a competitive process between productions matching the ,,ame
data. New productions are created by compiling the effects ot a e-
quence of production firings and retrievals from declarative memory so
that the new productions can move directly from initial ,ituation, to
final results. " ' Whenever a new element is created in working memory
there is a fixed probability it will be stored In declarative mimor\

Figure 3.4 provides a corresponding overview of Soar. There i, a
single long-term memory-a production svsteni-that is used tor bth
declarative and procdural knowledge. There is a working 'iiiorv that
contains a goal hietarch, Information associated with the Ioal hera r-

chv, preterence., a[ 1ut what ,,hLIould bt doI. purceptual I. 1 n1t011t71,11' . 1 LINE SH

,an)d m1otoir C0,uiiui,1undN l.iLteractionl vith th' .1tsiLe ,Wild . ' REGU
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Figure 3.4 Overvie" (it the Soair cognitive architecture

interfaces between working memory and one or more perceptual and
motor systems. All tasks are formulated as searches in problem spaces,
that is, as starting from some initial state in a space and finding a
desired state by the application of the operators t1 !t comprise the space.
Instead of making decisions about what productions to execute-all
productions that successfully match are fired in parallel-decisions are
made about what problem spaces. states, and operators to utilize. These
decisions are based on preferences retrieved from production memory
into working memory. When a decision proves problematic (because of
tncomplete or inconsistent knowledge), a subgoal is automatically cre-
ated by the architecture and problem solving recurses on the task of
resolving the impasse in decision making. This generates a hierarchy
of goals and thus problem spaces. New productions are created contin-
LuouslV from the traces of Soars experience in goal-based problem molv-
ing (a process called C1hunkingj.-

Memory
\lernorv is to be' dentitied (v .itking what persists over tinie that can

be crcated and moditied bv the Bvte~.i3th Act* and Soar have mern-
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temporary memory that cannot hold data over any extended duration. MSTER SU
In Act* this is manifest because working memory is an activated subset 'e4s P,,'
of declarative memory and thus ebbs and flows with the processing of
activation. In Soar working memory appears as a distinct memory. Its
short-term character derives from its being linked with goals and their
problem spaces, so that it disappears automatically as these goals are
resolved.

Beyond working memory both architectures have permanent mem-
ories of unbounded size, as required for universality. Act* has two such
memories--declarative memory and production memory-with
strengths associated with each element in each memory. The normal
path taken by new knowledge in Act* is from working memory to
declarative memory to production memory. Declarative memory comes
before production memory in the hierarchy because it has shorter stor-
age and access times (though it cannot lead directly to action). Soar has
only one permanent memory of unbounded size-production mem-
ory-which is used for both declarative and procedural knowledge.
Soar does not utilize strengths.

The above picture is that Act* has two totaUy distinct memories, and
Soar has one that is similar to one of Act's memories. However, this
conventional surface description conceals some important aspects. One
is that Act* and Soar productions do not function in the same way in
their respective systems (despite having essentially the same condition-
action form). Act* productions correspond to problem-solving opera-
tors. This is essentially the way productions are used throughout the
Al and expert-systems world. Soar productions operate as an associative
memory. The action side of a production contains the symbol structures
that are held in the memory; the condition side provides the access
path to these symbol structures. Firing a Soar production is the act of
retrieval of its symbol structures. Operators in Soar are implemented
by collections of productions (or search in subgoals). Another hidden
feature is that Act's production memory is realized as a network struc-
ture similar in many ways to its semantic net. The main effect is that
activation governs the rate of matching of productions in the same way
that activation spreads through the declarative network. Thus these two
memories are not as distinct as it might seem.

In both Act* and Soar the granularity of long-term memory (the
independently modifiable unit) is relatively fine, being the individual
production and, for Act's declarative memory, the node and link. This
is a much larger unit than the word in conventional computers (by
about two orders of magnitude) but much smaller than the frame or
schema (again by about two orders of magnitude). This is an important
architectural feature. The frame and schema have been introduced on
the hypothesis that the unit of memory organization needs to be rela-
tively large to express the organized character of human thought (Min- I LINE SNO

sky 1975). It is not easy to make size comparisons between units of REGUL
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memory organization because this is one place where the idiosyncratic
world-view character of architectures is most in evidence, and all mem-

ory organization have various larger and smaller hierarchical units.

Nevertheless both Act* and Soar are on the fine-grained side.
The memory structures of both Act* and Soar are the discrete symbolic

structures familiar from systems such as Lisp. There are differences in

detail. Soar has a uniform scheme of objects with sets of attributes and

values. Act* has several primitive data structures: attributes and values
(taken to be the abstract propositional code), strings (taken to be the
temporal code), and metric arrays (taken to be the spatial code). The

primary requirement of a data structure is combinatorial variability, and

all these structures possess it. The secondary considerations are on the
operations that are required to read and manipulate the data structures,
corresponding to what the structures are to represent. Thus standard

computers invariably have multiple data structures, each with associ-
ated primitive operations, for example, for arithmetic or text processing.
Act* here is taking a clue from this standard practice.

Symbols
Symbols are to be identified by finding the mechanisms that provide

distal access to memory structures that are not already involved in

processing. For both Act* and Soar this is the pattern match of the

production system, which is a process that starts with symbolic struc-
tures in working memory and determines that a production anywhere
in the long-term memory will fire. The symbol tokens here are the

combinations of working memory elements that match production con-

ditions. Each production's left-hand side is a symbol.
For Soar this is the only mechanism for distal access (working memory

being essentially local). For Act* there is also a mechanism for distal

access to its declarative memory, in fact a combination of two mecha-

nisms. First, each token brought into working memory by firing a

production (or by perception) makes contact with its corresponding

node in the declarative semantic net. Second, spreading activation then
operates to provide access to associated nodes.

It is useful to identify the pair of features that gives symbolic access
in production systems its particular flavor. The first feature is the con-

text-dependent nature of the production match. Simple machine ad-

dresses act as context-independent symbols. No matter what other

structures exist, the address causes information to be retrieved from

the same location."1 In a production system a pa.rticuiar pattern can be
a symbol that results in context-independent access to memory struc-
tures, or (more typically) it can be conjoined with additional context

patterns to form a more complex symbol that constrains access to occur
only when the context is present.

The second feature is the recognition nature of the production match. I LINE SHORT
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memory locations (random access) or by sequential access to adjacent
locations (large secondary stores). In production systems symbols are
constructed out of the same material that is being processed for the
task, so memory access has a recognition, associative, or content-addressed
nature. All schemes can support universality; however, the recognition
scheme is responsive to two additional cognitive requirements. First,
(approximately) constant-time access to the whole of memory is re-
sponsive to the real-time requirement. This includes random-access and
recognition memories, but excludes sequential access systems such as
Turing machines. But specific task-relevant accessing schemes must be
constructed, or the system is doomed to operate by generate and test
(and might as well be a tape machine). Recognition memories construct
the accessing paths from the ingredients of the task and thus avoid
deliberate acts of construction, which are required by location-pointer
schemes. This may actually be an essential requirement for a learning
system that has to develop entirely on its own. Standard programming
involves intelligent programmers who invent specific accessing schemes
based on deep analysis of a task. 2

Operations
The operations are to be identified by asking how new structures get
built and established in the long-term memory. In standard computer
systems the form in which the operations are given is dictated by the
needs of interpretation, that is, by the structure of the programming
language. Typically everything is fit within an operation-operand struc-
ture, and there is a singlc, heterogeneous set of all primitive operation
codes--load, store, add, subtract, and, or, branch-on-zero, execute, and
so on. Some of these are operations that produce new symbol structures
in memory, but others affect control or deal with input/output.

Production systems, as classically defined, also operate this way. The
right-hand-side actions are operation-operand structures that can spec-
ify general procedures, although a standard set of operations are pre-
defined (make, replace, delete, write ... ). In some it is possible to
execute a specified production or production system on the right-hand
side, thus providing substantial right-hand-side control. But Act* and
Soar use a quite different scheme.

The right-hand-side action becomes essentially just the operation of
creating structures in working memory. This operation combines focus-
ing, modifying, and creating-it brings existing structures into working
memory, it creates working memory structures that relate existing struc-
tures, and it creates new structures if they do not exist. This operation
is coextensive with the retrieval of knowledge from long-term memory
(production firing). The dependence of the operation on existing struc-
tures (that is. its inputs) occurs by the matching of the production
conditions It is this matching against what is already in working mer- I LINE S'
or' that permit,-, the multiple tunctions ot tocusing, modifving. and REG
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creating to be distinguished and to occur in the appropriate circum-
stances, automatically, so to speak. Along with this the act of retrieval
from long-term memory (into working memory) does not happen as a
distinct operation that reproduces the content of long-term memory in
working memory. Rather each retrieval is an act of computation (indeed
computation takes place only in concert with such retrievals), so that
working memory is never the same as stored memory and is always to
some extent an adaptation of the past to the present.

In Act* and Soar storing information in long-term memory is sepa-
rated from the act of computation in working memory. It is incorporated
as learning new productions, called production compilation in Act* and
chunking in Soar, but similar operations nonetheless. The context of
production acquisition is the occasion of goal satisfaction or termination,
and the constructed production spans from the conditions holding be-
fore the goal to the actions that caused the final resolution. The pro-
duction is simply added to the long-term production memory and
becomes indistinguishable from any other production. Such a produc-
tion is functional, producing in one step what took many steps origi-
nally. It also constitutes an implicit form of generalization in that its
conditions are extracted from the total context of working memory at
learning time, and so can be evoked in situations that can be arbitrarily
different in ways that are irrelevant to these conditions. Production
compilation and chunking go considerably beyond the minimal support
for experiential learning provided by a standard symbol system. With-
out deliberate effort or choice they automatically acquire new knowl-
edge that is a function of their experiences.

Act* has other forms of memory aside from the productions and
necessarily must have operations for storing in each of them. They are
all automatic operations that do not occur under deliberate control of
the system. One is the strength of productions, which governs how
fast they are processed and hence whether they become active in an
actual situation. Every successful firing of a production raises its
strength a little and hence increases the likelihood that if satisfied it will
actually fire (another form of experiential learning). The second is stor-
age in declarative memory. Here there is simply a constant probability
that a newly created element will become a permanent part of decla-
rative memory. Declarative learning is responsive to the requirement of
learning fro-n the environment. In Soar chunking performs this function
in addition to its function of learning from experience.

Interpretation
Interpretation is to be identified by finding where a system makes its
behavior dependent on the symbolic structures in its long-term memory,
in particular, on structures that it itself created earlier. A seemingly
equivalent way is to find what memory structures correspond to the I LINE SHORT
program in typical computer svstems, namely. the symbol structures REGULAR
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that specify a sequence of operations: do this, then do that, then do
this, although also admitting conditionals and calls to subprocedures. '-
Namely, one seeks compact symbol structures that control behavior
over an extended interval.

One looks in vain for such symbol structures in the basic descriptions
of the Act* and Soar architectures. (Program structures can exist of
course, but they require software interpreters.) Memory-dependent be-
havior clearly occurs, however, and is derived from multiple sources-
production systems, problem-solving control knowledge, and goal
structures.

The first source in both systems is the form of interpretation inherent
in production systems. A production system shreds control out into
independent fragments (the individual productions) spread out all over
production memory, with data elements in working memory entering
in at every cycle. This control regime is often referred to as data directed,
in contrast to goal directed, but this characterization misses some impor-
tant aspects. Another way to look at it is as a recognize-act cycle in contrast
to the classical fetch-execute cycle that characterizes standard computers.
According to this view, an important dimension of interpretation is the
amount of decision making that goes on between steps. The fetch-
execute cycle essentially has only a pointer into a plan and has to take
deliberate steps (doing tests and branches) to obtain any conditionality
at all. The recognize-act cycle opens up the interpretation at every point
to anything that the present working memory can suggest. This puts
the production match inside the interpretation cycle.

The second source is the control knowledge used to select problem-
solving operators. In Act* the productions are the problem-solving op-
erators. As described in the previous paragraph, production selection
is a function of the match between working memory elements and
production conditions. Several additional factors, however, also come
into play in determining the rate of matching and thus whether a
production is selected for execution. One factor is the activation of the
working memory elements being matched. A second factor is the
strength of the production being matched. A third factor is the com-
petition between productions that match the same working memory
elements in different ways.

In Soar problem-solving operators are selected through a two-phase
decision cycle. First, during the elaboration phase the long-term produc-
tion memory is accessed repeatedly-initial retrievals may evoke addi-
tional retrievals-in parallel (there is no conflict resolution) until
quiescence. Any elements can be retrieved, but among these are pref-
erences that state which of the operators are acceptable, rejectable, or
preferable to others. When all the information possible has been accu-
mulated, the decision procedure winnows the available preferences and
makes the next decision, which then moves the system to the next I LINE SHO
cycle, REGUL
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In fact Soar uses this same basic interpreter for more than just se-
lecting what operator to execute. It is always trying to make the deci-
sions required to operate in a problem space: to decide what problem
space to use, what state to use in that problem space, what operator to
use at that state, and what state to use as the result of the operator.
This is what forces all activity to take place in problem spaces. This
contrasts with the standard computer, which assumes all activity occurs
by following an arbitrary program.

The third source of memory-dependent behavior is the use of goal
structures. Act* provides special architectural support for a goal hier-
archy in its working memory. The current goal is a high source of
activation, which therefore operates to focus attention by giving prom-
inence to productions that have it as one of their conditions. The ar-
chitecture takes care of the tasks of popping successful subgoals and
moving the focus to subsequent subgoals, providing a depth-first trav-
ersal of the goal hierarchy. Thus the characterization of data- versus
goal-directed processing is somewhat wide of the mark. Act* is a para-
digm example of an Al system that uses goals and methods to achieve
adaptability (requirement 2 in the first fist). Complex tasks are controlled
by productions that build up the goal hierarchy by adding conjunctions
of goals to be achieved in the future.

Soar uses a much less deliberate strategy for the generation of goals.
When the decision procedure cannot produce a single decision from
the collection of preferences that happen to accumulate-because, for
example, no options remain acceptable or several indistinguishable op-
tions remain-an impasse is reached. Soar assumes this indicates lack
of knowledge-given additional knowledge of its preferences, a deci-
sion could have been reached. It thus creates a subgoal to resolve this
impasse. An impasse is resolved just when preferences are generated,

of whatever nature, that lead to a decision at the higher level. Thus
Soar generates its own subgoals out of the impasses the architecture
can detect, in contrast to Act*, which generates its subgoals by deliberate
action on the part of its productions. The effect of deliberate subgoals
is achieved in Soar by the combination of an operator, which is delib-
erately generated and selected, and an impasse that occurs if produc-
tions do not exist that implement the operator. In the subgoal for this
impasse the operator acts as the specification of a goal to be achieved.

Interaction with the External World
Act*, as is typical of many theories of cognition, focuses on the central
architecture. Perception and motor behavior are assumed to take place
in additional processing systems off stage. Input arrives in working,
which thus acts as a buffer between the unpredictable stream of envi-
ronmental events and the cognitive system. Beyond this, however, the
architecture has simply not been elaborated on in these directions. I LINE SHORT
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the central architecture within a structure for interacting with the ex-
ternal world. As shown in figure 3.4, Soar is taken as a controller of a
dynamic system interacting with a dynamic external environment (lo-
cated across the bottom of the figure). There are processes that trans-
duce the energies in the environment into signals for the system.
Collectively they are called perception, although they are tied down only
on the sensory side (transduction from the environment). Similarly
there are processes that affect the environment. Collectively they are
called the motor system, although they are tied down only on the physical
action side. As in Act* working memory serves as the buffer between
the environment and central cognition.

The total system consists of more than perception to central cognition
to the motor system. There are productions, called encoding productions
and decoding prcductions. These are identical in form and structure to
the productions of central cognition. They differ only in being indepen-
dent of the decision cycle-they just run free. On the input side, as
elements arrive autonomously from the perceptual system, encoding
productions provide what could be termed perceptual parsing, putting
the elements into a form to be considered by central cognition. On the
output side decoding productions provide what could be called motor-
program decoding of commands produced by the cognitive system into
the form used by the motor system. The motor system itself may pro-
duce elements back into the working memory (possibly parsed by en-
coding productions), permitting monitoring and adjustment.

All this activity is not under control; these productions recognize and
execute at will, concurrently with each other and central cognition.
Control is exercised by central cognition, which can now be seen to
consist essentially of just the architecture of the decision mechanism,
from which flows the decision cycle, impasses, the goal stack, and the
problem-space organization. Further, central cognition operates essen-
tially as a form of localized supervisory control over autonomous and
continuing acti.i ties in working memory generated by the perception
systems, the motor systems, and their coupled encoding and decoding
productions.

This permits an understanding of an architectural question that has
consumed a lot of attention, namely, wherein lies the serial character
of cognition? Central cognition is indeed serial, which is what the
decision mechanism enforces, and so it can consider only some of what
goes on in the working memory. The serial system is imposed on a sea
of autonomous parallel activity to attain control, that is, for the system
to be able to prevent from occurring actions that are not in its interests.
Thus serialitv is a designed feature of the system. Seriality can occur
for other reasons as well, which can be summarized generally as re-
source constraints or bottlenecks. Such bottlenecks can arise from the
nature of the underlying technology and thus b' a limitation on the 1 LINE SI
svstem. REGU
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Interrupt capabilities are to be identified by finding where behavior
can switch from one course to another that is radically different. For
Act* switching occurs by the basic maximum-selecting property of an
activation mechanism-whatever process can manage the highest acti-
vation can take over the control of behavior. For Soar switching occurs
by the decision cycle-whatever can marshal the right preferences com-
pared with competing alternatives can control behavior. Switching can
thus occur at a fine grain. For both Act* and Soar their basic switching
mechanism is also an interrupt mechanism, because alternatives from
throughout the system compete on an equal basis. This arises from the
open character of production systems that contact all of memory at each
cycle. Thus radical changes of course can occur at any instant. This
contrasts with standard computers. Although arbitrary switching is
possible at each instruction (for example, branch on zero to an arbitrary
program), such shifts must be determined deliberately and by the (pre-
constructed) program that already has control. Thus the issue for the
standard computer is how to be interrupted, whereas the issue for Soar
and Act* (and presumably for human cognition) is how to keep focused.

Learning from the environment involves the long-term storage of
structures that are based on inputs to the system. Act* stores new inputs
into declarative memory with a fixed probability, from which inputs can
get into production memory via compilation, a process that should be
able to keep pace with the demands of a changing environment. Soar
stores new inputs in production memory via chunking. This implies
that an input must be used in a subgoal for it to be stored, and that the
bandwidth from the environment into long-term memory will be a
function of the rate at which environmental inputs can be used.

Summary
We have now instantiated the functions of the cognitive architecture
for two architectures, Soar and Act*, using their commonalities and
differences to make evident how their structures realize these functions.
The communalities of Act* and Soar are appreciable, mostly because
both are built around production systems. We have seen that produc-
tion systems, or more generally, recognition-based architectures, are a
species of architecture that is responsive to the real-time requirement,
which is clearly one of the most powerful shapers of the architecture
beyond the basic need for symbolic computation.

The move to production systems, however, is only the first of three
major steps that have moved Act* and Soar jointly into a very different
part of the architecture space from all of the classical computers. The
second step is the abandonment of the application formalism of apply-
ing operations.to operands. This abandonment is not an intrinsic part
of production systems, as evidenced by the almost universal use of
application on the action side of productions. This second step locks I LINE"SHORT
the operations on symbolic structures into the acts of memory retrieval. -REGULAR
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The third step is the separation of the act of storing symbolic structures
in long-term memory-the learning mechanisms of Act* and Soar-
from the deliberate acts of performing tasks.

There are some architectural differences between Act* and Soar,
though not all appear to be major differences when examined carefully.
One example is the dual declarative and procedural memory of Act*
versus the single production memory of Soar. Another is the use of
activation in Act* versus the use of accumulated production executions
(the elaboration phase) in Soar. A third is the commitment to multiple
problem spaces and the impasse mechanism in Soar versus the single-
space environment with deliberate subgoals in Act*. Thus these archi-
tectures differ enough to explore a region of the architecture space.

The downside of using two closely related architectures for the ex-
position is that we fail to convey an appreciation of how varied and
rich in alternatives the space of architecture is. With a slight stretch we
might contend we have touched three points in the architecture space:
classical (von Neumann) architectures, classical production systems,
and Act* and Soar. But we could have profitably examined applicative
languages (for example, Lisp; see Steele 1984), logic programming lan-
guages (for example, Prolog; see Clocksin and Mellish 1984), frame (or

schema) systems (for example, KLONE; see Brachman 1979), blackboard
architectures (for example, BB1; see Hayes-Roth 1985), and others as
well. Also we could have explored the effect of parallelism, which itself
has many architectural dimensions. This was excluded because it is
primarily driven by the need to exploit or compensate for implemen-
tation technology, although (as has been pointed out many times) it

can also serve as a response to the real-time requirement.

3.5 The Uses of the Architecture

Given that the architecture is a component of the human cognitive
system, it requires no justification to spend scientific effort on it. Un-

derstanding the architecture is a scientific project in its own right. The
architecture, however, as the frame in terms of which all processing is
done and the locus of the structural constraints on human cognition,
would appear to be the central element in a general theory of cognition.
This would seem to imply that the architecture enters into all aspects
of cognition. What keeps this implication at bay is the fact (oft noted,
by now) that architectures hide themselves beneath the knowledge
level. For many aspects of human cognitive life, what counts are the
goals, the task situation, and the background knowledge (including
education, socialization, and enculturation). So the architecture may be
critical for cognition, just as biochemistry is, but with only circumscribed
consequence6 for ongoing behavior and its study.

How then is a detailed theory of the architecture to be used in cog- I LINE SH
nitive science, other than simplY filling in its own part of the picture? REGU
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There are four partial answers to this question, which we take up in
turn.

Establishing Gross Parameters
The first answer presupposes that the architecture has large effects on
cognition, but that these effects can be summarized in a small set of
gross parameters. The following list assembles one set of such param-
eters, which are familiar to all cognitive scientists--the size of short-
term memory, the time for an elementary operation, the time to make
a move in a problem space, and the rate of acquisition into long-term
memory:

1. Memory Unit: 1 chunk composed of 3 subchunks
2. Short-term memory size: 3 chunks plus 4 chunks from long-term
memory

3. Time per elementary operation: 100 ms
4. Time per step in a problem space: 2 s
5. Time to learn new material: I chunk per 2 s

It is not possible to reason from parameters*alone. Parameters always
imply a background model. Even to fill in the list it is necessary to
define a unit of memory (the chunk), which then already implies a
hierarchical memory structure. Likewise to put a sequence of elemen-
tary operations together and sum their times is already to define a
functionally serial processing structure.

The block diagrams that have been a standard feature in cognitive
psychology since the mid-1950s (Broadbent 1954) express the sort of
minimal architectural structure involved. Mostly they are too sketchy,
in particular, providing only a picture of the memories and their transfer
paths. A somewhat more complete version, called the model human
processor (Card, Moran, and Newell 1983), is shown in figure 3.5, which
indicates not only the memories but a processor structure of three
parallel processors-perceptual, cognitive, and motor. Perception and
motor systems involve multiple concurrent processors for different mo-
dalities and muscle systems, but there is only a single cognitive proces-
sor. The parameters of the two figures have much in common. Figure
3.5 is of course a static picture. By its very lack of detail it implies the
simplest of processing structures. In fact it can be supplemented by
some moderately explicit general principles of operations (Card, Moran,
and Newell 1983), such as that uncertainty always increases processing
time. These principles provide some help in using it, but are a long
way from making the scheme into a complete architecture. In particular
the elementary operations and the details of interpretation remain es-
sentially undefined.

If the way the architecture influences behavior can be sumrnarized 1 LINE SHORT
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then the contribution from studying the architecture is twofold. First,
given an established scheme such as figure 3.5, the parameters need to
be pinned down, their variability understood, their mutability discov-
ered, their limits of use assessed, and so on. Second, the gross pro-
cessing model can be wrong, not in being a gross approximation (which
is presumed) but in being the wrong sort of formulation. If it were
replaced with a quite different formulation, then inferences might be-
come easier, a broader set of inferences might be possible, and so forth.
One such example from the mid-1970s is the replacement of the multi-
store model of memory with a model containing only a single memory
within which information is distinguished only by the depth to which

it has been processed (Craik and Lockhart 1972).

The Form of Simple Cognitive Behavior
To perform a complex task involves doing a sequence of basic operations
in an arrangement conditional on the input data. Much of psychological
interest depends on knowing the sequence of operations that humans
perform for a given task, and much psychological effort, both experi-
mental and theoretical, is focused on finding such sequences. This is
especially true for tasks that are primarily cognitive, in which perceptual
and motor operations play only a small role in the total sequence.

The architecture dictates both the basic operations and the form in
which arrangements of operations are specified, namely, the way be-
havior specifications are encoded symbolically. Thus the architecture
plays some role in determining such sequences. For tasks of any com-
plexity, however, successful behavior can be realized in many different
ways. At bottom this is simply the .brute fact that different methods or
algorithms exist for a given task, as when a space can be searched depth
first, breadth first, or best first, or a column of numbers can be added
from the top or the bottom. Thus writing down the sequence of oper-
ations followed by a subject for a complex task, given just the architec-
ture and the task, is nearly impossible. It is far too underdetermined,
and the other factors, which we summarize as the subject's knowledge,
are all important.

As the time to perform the task gets shorter, however, the options
get fewer for what sequences could perform a task. Indeed suppose the
time constant of the primitive data operations of the architecture is
about 100 ms, and we ask for a task to be performed in about 0.1 ms,
then the answer is clear without further ado: it cannot be done. It makes
no difference how simple the task is (for example, are two names the
same?). Suppose the task is to be performed in about 100 ms. Then a
scan of the architecture's basic processes will reveal what can be done
in a single operation time. If the performance is possible at all, it is
likely to be unique-there is only one way to test for name equality in
a single basic operation, though conceivably an architecture might offer 1 LINE SHORT
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what can be accomplished grows and the number of ways of accom-
plishing a given task grow. If 100 s is available, then there are probably
several ways to determine whether two names are the same. The con-
straint comes back, however, if the demands of the performance grow
apace.

Thus there is a region in which knowing the architecture makes
possible plausible guesses about what operation sequences humans will
use on a task. Consider the memory-scanning task explored by Stern-
berg and discussed by Bower and Clapper in chapter 7 in connection
with the additive-factors methodology. The subject first sees a set of
items H, P, Z and then a probe item Q and must say as quickly as
possible whether the probe was one of the sequence. Three regularities
made this experiment famous. First, the time to answer is linear in the
size of the test set (response time = 400 + 3 • 40 = 520 ms for the case
above), strongly suggesting the use of a serial scan (and test) at 40 ms
per item. Second, the same linear relation with the same slope of 40
ms per item holds whether the probe is or is not in the list. This
contradicts the obvious strategy of terminating the scan when an item
is found that matches the probe, which would lead to an apparent
average search rate for positive probes that is half as large as that for
negative probes-on average only half of the list would be scanned for
a positive probe before the item is found. Third, the scan rate (40 ms
per item) is very fast-humans take more than 100 ms per letter to say
the alphabet to themselves.

As Bower and Clapper (chapter 7) report, this experimental situation
has been explored in many different ways and has given rise to an
important experimental method (additive factors) to assess how different
factors entered into the phenomena. For us the focus is on the speed
with which things seem to happen. Speeded reaction times of about
400 ms already get close to the architecture, and phenomena that hap-
pen an order of magnitude faster (40 ms per item) must be getting close
to the architecture floor. This is especially true when one considers that
neurons are essentially 1-ms devices, so that neural circuits are 10-ms
devices.

Just given the Sternberg phenomena, including these tight bounds,
one cannot infer the mechanisms that perform it. In fact the Sternberg
situation has been studied to show that one cannot even infer whether
the "search" is going on in series or in parallel. Given an architecture,
however, the picture becomes quite different. For instance, given Act*,
the time constants imply that productions take a relatively long time to
fire, on the order of 100 ms. Thus the Sternberg effect cannot be due
to multiple production firings. Hence it must be a spreading activation
phenomenon. Indeed the explanation that Anderson offers for the
Sternberg effect is based on spreading activation (Anderson 1983, pp.
119-120). Two productions, one to say yes if the probe is there and one 1 LINE.SiO
to say no if the probe is not, define the subject's way of doing the task. REGULA

I LINE LON

124 f l,1nf(?f.

JS18 17265S$$7 U3 1 04-11-89 10-00-42 Pae124



and then a calculation based on the flow of activation shows that it
approximates the effect. The important point for us is that the two
productions are the obvious way to specify the task in Act*, and there
are few if any alternatives.

If we turn to Soar, there is an analogous analysis. First, general timing
" constraints imply that productions must be 10-ms mechanisms, so that

the decision cycle is essentially a 100-ms mechanism, although speeded
tasks would force it down (Newell 1987). Thus selecting and executing
operators will take too long to be used to search and process the items
of the set (at 40 ms each). Thus the Sternberg effect must be occurring
within a single decision cycle, and processing the set must occur by
executing a small number of productions (one to three) on each item.
The fact that the decision cycle runs to quiescence would seem to be
related to all items of the set being processed, whether the probe
matches or not. These constraints do not pin down the exact program
for the memory-scanning task as completely as in Act*, but they do
specify many features of it. Again the important point here is that the
closer the task is to the architecture, the more the actual program used
by humans can be predicted from the structure of the architecture.

Hidden Connections
An architecture provides a form of unification for cognitive science,
which arises, as we have seen, from all humans accomplishing all
activities by means of the same set of mechanisms. As we have also
seen, these common mechanisms work through content (that is, knowl-
edge), which varies over persons, tasks, occasions, and history. Thus
there is immense variability in behavior, and many phenomena of cog-
nitive life are due to these other sources.

One important potential role for studies of the architecture is to reveal
hidden connections between activities that on the basis of content and
situation seem quite distant from each other. The connections arise, of
course, because of the grounding in the same mechanisms of the ar-
chitecture, so that, given the architecture, they may be neither subtle
nor obscure. One such example is the way chunking has turned out to
play a central role in many different forms of learning-such as the
acquisition of macrooperators, the acquisition of search-control heuris-
tics, the acquisition of new knowledge, constraint compilation, learning
from external advice, and so on-and even in such traditionally non(t
learning behaviors as the creation of abstract plans (Steier et al. 1987).
Previously, special-purpose mechanisms were developed for these var-
ious activities.

* In addition to the joy that comes directly from discovering the cause
of any scientific regularity, revealing distal connections is useful in
adding to the constraint that is available in discovering the explanation
for phenomena. An example-again from the domain of Soar-is how I LINE SHORT
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has provided the beginnings of a highly constrained model of verbal
learning (Rosenbloom, Laird, and Newell 1988). Using chunking as the
basis for verbal learning forces it to proceed in a reconstructive fashion-
learning to recall a presented item requires the construction of an in-
ternal representation of the item from structures that can already be
recalled-and is driving the model, for functional reasons, to where it
has many similarities to the EPAM model of verbal learning (Feigen-
baum and Simon 1984).

Removing Theoretical Degrees of Freedom
One of the itches of cognitive scientists ever since the early days of
computer simulation of cognition is that to get a simulation to run, it is
necessary to specify many procedures and data structures that have no
psychological justification. There is nothing in the structure of the sim-
ulation program that indicates which procedures (or more generally
which aspects) make psychological claims and which do not.

One small but real result of complete architectures is to provide relief
for this itch. A proposal for an architecture is a proposal for a complete
operational system. No additional processes are required or indeed even
possible. Thus when a simulation occurs within such an architecture,
all aspects of the system represent empirical claims. This can be seen
in the case of Soar-the decision cycle is claimed to be how humans
make choices about what to do, and impasses are claimed to be real
and to lead to chunking. Each production is claimed to be psychologi-
cally real and to correspond to an accessible bit of knowledge of the
human. And the claims go on. A similar set of claims can be made for
Act*. Many of these claims (for Act* or Soar) can be, and indeed no
doubt are, false. That is simply the fate of inadequate and wrong the-
ories that fail to correspond to reality. But there is no special status of
aspects that are not supposed to represent what goes on in the mind.

All this does is remove the somewhat peculiar special status of sim-
ulation-based theory and return such theories to the arena occupied by
all other scientific theories. Aspects of architectures are often unknown
and are covered by explicit assumptions, which are subject to analysis.
Important aspects of a total theory are often simply posited, such as
the initial contents of the mind resulting from prior learning and exter-
nal conditions, and behavior is invariably extremely sensitive to this.
Analysis copes as best it can with such uncertainties, and the issue is
not different with architectures.

3.6 Conclusions

An appropriate way to end this chapter is by raising some issues that
reveal addinonal major steps required to pursue an adequate theory of 1 LINE S
the cognitive architecture. These questions have their roots in more REG
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general issues of cognitive science, but our attention is on the implica-
tions for the cognitive architecture.

The list of requirements that could shape the architecture contains a
number of items whose effects on the architecture we do not yet know,
in particular the issues of acquiring capabilities through development,
of living autonomously in a social community, and of exhibiting self-
awareness and a sense of self (requirements 8 through 10).

Another issue is the effect on the architecture of its being a creation
of biological evolution that grew out of prior structures shaped by the
requirements of prior function. Thus we would expect the architecture
to be shaped strongly by the structure of the perceptual and motor
systems. Indeed we know from anatomical and physiological studies
that vast amounts of the brain and spinal cord are devoted to these
aspects. The question is what sort of architecture develops if it evolves
out of the mammalian perceptual and motor systems, existing as so-
phisticated controllers but not yet fully capable of the flexibility that
comes from full programmability. Beneath the level of the organization
of the perceptual and motor systems, of course, is their realization in
large, highly connected neural circuits. Here with the connectionist
efforts (chapter 4) there is a vigorous attempt to understand what the
implications are for the architecture.

An analogous issue is the relationship of emotion, feeling, and affect
to cognition. Despite recent stirrings and a long history within psy-
chology (Frijda 1986), no satisfactory integration yet exists of these
phenomena into cognitive science. But the mammalian system is clearly
constructed as an emotional system, and we need to understand in
what way this shapes the architecture, if indeed it does so at all. 13

We close by noting that the largest open issue with respect to the
architecture in cognitive science is not all these phenomena whose
impact on the architecture remains obscure. Rather it is our almost total
lack of experience in working with complete cognitive architectures.
Our quantitative and reasonably precise theories have been narrow; our
general theories have been broad and vague. Even where we have
approached a reasonably comprehensive architecture (Act* being the
principal existing example), working with it has been sufficiently arcane
and difficult that communities of scientists skilled in its art have not
emerged. Thus we know little about what features of an architecture
account for what phenomena, what aspects of an architecture connect
what phenomena with others, and how sensitive various explanations
are to variations in the architecture. About the only experience we have
with the uses for architectures described in section 3.5 is analysis using

U

gross parameters.
Such understandings do not emerge by a single study or by many

studies bv a single investigator. They come from many people exploring
and tuning the architecture for many different purposes until deriva- I LINE SHORT
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understood. They come, as with so many aspects of life, from living
them.

Notes

1. This technical use ot the term is often extended to include combinations of soitware
and hardware that produce a system that can be programmed. This broad usage is
encournged by the fact that software systems often present a structure that is meant to
be fixed, so that the computer plus software operates lust as if it were cast in hardware
In this chapter, however, we always take architecture in the narrow technical sense.

2. In part this is because functions are conceptual elements in an analysis of natural
systems, and so what tunctions exist depends on the scheme of analysis.

3. They have been called physical symbol systems (Newell and Simon 1976) to emphasize
that their notion of symbol denves from computer science and artificial intelligence, in
contradistinction to the notion of symbol in the arts and humanities, which may or may
not prove to be the same. The shorter phrase will do here.

4. Note, however, that it has proved functional in existing computers to drive the inde-
pendence down as far as possible, to the bit.

5. Access structures can be (and are in plenitude) built up within the software of a system;
we discuss the basic capability in the architecture that supports all such software
mechanisms.

6. Note that the term sYnbol is used here tot a type of structure and mechanism within
a symbol system and not, as in to sYmbolize, as a synonym for something that represents.
This notion ot symbol, however, does at least require internal representation-addresses
designate memory structures, input stimuli must map to fixed internal structures, and
operator codes designate operations.

7. Conceivably this could be extended toinclude the external world as a distal level in
the system's memory hierarchy tbeyond the tertiar level). Symbol tokens would specify
addresses in the external world, and the access and retneval paths would involve per-

ceptual and motor act5.

8. As the famous results of Tunng, Church, and others have shown, this limit does not
include all possible functional dependencies but only a large subclass of them. called the
comipdable fun-tioiis.

9. Another way to view the relationship of working memory to the long-term declarative
memory is as two manifestations of a single underlying declarative memory Each element
in this underlying memory has two independently settable bits asso.iated % ith it whvther

the element is active tdetermines whether it is in working memory), ind %%ht.ther it is

permanent (determines whether it is in long-term declarative memorvy

10 In Anderson 1-03 Act is described as having two additional method' tor ,reating
new prLductitons--.,,nerahlzatiin and discrrminitri n-but they %%ere later ..ho vn to hv

unnecessary I.Andursn 144s,)

II V irt al Oiii-m " a niechanism that intriiducc i .imall ti ed a ,t It tVt. 1 LINE SH
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12. As always, however, there is a trade-off. Recognition schemes are less flexible com-
pared with location-pointer schemes, which are a genuinely task-independent medium
for constructing accessing schemes, and hence can be completely adapted to the task at

* hand.

13. Feelings and emotions can be treated as analogous to sensations so they could affect
* the content of the cognitive system. even to including insistent signals, but still not atfect

the shape of the architecture.
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