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Introduction

Centrifugal impellers are used in a wide variety of applications. One of the

primary advantages of centrifugal impellers is the high pressure ratios that can

be achieved from a small sized machine. Compactness and lightweight design (by

comparison with axial machines) enables vehicles in certain applications of

interest to the Army, for instance in some automotive and helicopter applications,

to deliver additional payload and/or to extend their range. However, losses and

flow distortions in these machines are higher compared to an equivalent axial

machine. Improvements in the efficiency of centrifugal impellers could come from

a better understanding of the flow mechanisms in the impeller passage that are

sources of losses and flow distortion.

State-of-the-art in centrifugal impeller design is a combination of

experience, simple analyses with empiricism to estimate overall performance, and

input from a database generated by experiments. In support of this approach the

acquisition of experimental data from actual machines has been quite extensive.

However, few fundamental experiments designed to isolate various effects inside

the machines have been performed mainly because of the experimental difficulties

and the high cost of making such measurements. Consequently the understanding of

the fundamental fluid mechanics of centrifugal impellers has been rather poor.

Computational approaches are an effective means of gaining this understanding of

the physics of impeller flow fields. The development and utilization of

computational tools to study impeller flow fields were pursued under the present

contract.

Scope of the Study

The scope of the present study was to address the development and

implementation of computational procedures for analysis and prediction of flows in

centrifugal impellers. Two approaches have been investigated: (a) solution of

the Navier-Stokes equations, and (b) solution of an approximate set of viscous

primary/secondary flow equations by an efficient spatial marching algorithm.

Solution of the Navier-Stokes equations has been directed towards computing

the flow field in a rotating centrifugal impeller passage. The advantage of using

the Navier-Stokes equations is that they do not contain any approximations other

than those associated with the use of a turbulence model. Flow in Eckardt's
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impeller [1] was used as a test case for the Navier Stokes solution procedure.

The centrifugal compressor consisted of an impeller/vaneless diffuser combination.

This set-up was advantageous for the present study, since the flow in the impeller

could be computed and analyzed in isolation and compared with experimental data,

without the additional complications caused by a vaned diffuser.

The spatial marching approach has been directed towards derivation of

approximate flow equations and development of an efficient solution algorithm

suitable for computing impeller flow fields. The primary advantage of the spatial

marching procedure is that detailed resolution of the complex flow structure could

be obtained economically utilizing very high density grids. For example, using

106 grid points, a spatial marching solution requires only about 20 minutes of

CRAY-XMP run time, whereas a state-of-the-art Navier-Stokes code would typically

require more than 10 hours of run time. Flow in a rotating 90-degree bend was

used as a test case to develop approximate equations for impeller flow fields.

This test case was also useful to study the effects of rotation and curvature on

flow distortion in impellers.

An important element in the utilization of computational procedures for the

impeller flow field is the ability to describe the geometry of the impeller and

generate a suitable computational grid. A simple, effective algebraic grid

generation procedure was developed to generate suitable computational grids to

compute viscous flow fields in centrifugal impellers. Computational grids

generated by the procedure could be utilized by both the Navier-Stokes and the

spatial marching solution procedures.

The remainder of this report describes the development of generalized

primary/secondary flow analysis for the study of flows in rotating passages and

application of the Navier-Stokes solution procedure for the flow in a centrifugal

impeller passage. Results obtained from the two solution procedures are

discussed.

Generalized Primary/Secondary Flow Analysis

A unique spatial-marching solution procedure has been developed for computing

three-dimensional viscous flows with a dominant flow direction, such as impeller

passage flows. The procedure is based on solution of the generalized

primary/secondary flow equations which are an approximation to the Navier-Stokes

equations. Reference 2 contains a description of the generalized
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primary/secondary flow equations and an efficient solution procedure to solve

these equations. Validation of the procedure for internal flow in a 90-degree

bend duct is also described.

In the primary/secondary flow equations a small velocity vector is identified

by velocity decomposition which provides a basis for approximating flows with

large streamwise vorticity and secondary velocity. Two features of the

primary/secondary flow equations central to identifying a small velocity vector

for approximation are a locally specified primary-flow direction and a

decomposition of the secondary velocity field. The local flow field velocity

vector is expressed as a primary flow component in the primary-flow direction and

a secondary flow component normal to this direction. The secondary velocity

component is decomposed into components defined from a scalar-potential and a

vector-potential. The vector-potential defines the streamwise vorticity and the

secondary velocity component associated with the streamwise vorticity. The

remaining scalar-potential component contribution can be assumed small in the

transverse momentum equations, but is not otherwise neglected. This small

scalar-potential approximation along with the viscous approximation neglecting

streamwise diffusion is sufficient to establish a well-posed initial value

problem, which can be solved far more economically than the Navier-Stokes

equations. No approximations are introduced for pressure, the pressure field is

computed in this approach. Typical run times for the method are on the order of

20 minutes for a computational grid of 106 points. These short run times allow

refined grid solutions that resolve complex flow structures in three-dimensional

viscous flows. The trade-offs for this advantage are that the approximations

limit the range of flow problems that can be addressed relative to the

Navier-Stokes equations because of factors such as flow separation, stagnation

points, and transonic flow effects. Nevertheless, this approach is well-suited

for a number of flows arising in practical situations and can provide a large

number of detailed flow calculations at moderate cost for use in design

optimization studies.

Flow in a rotating 90-degree bend was used as a model of a centrifugal

impeller flow field and a test case for the spatial marching procedure. Figure 1

shnws the geometry of the bend. A Reynolds number of 50,000 based on the passage

width and a rotation number of 1 based on the tip radius anO the inlet velociLj

were chosen as flow parameters. Potential flow streamlines through the

non-rotating 90-degree bend were chosen as the local primary flow direction in the
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primary/secondary flow equations. Figure 2 shows the computed flow field at the

exit of the bend. The vector plot of the secondary velocity field shows a complex

flow pattern of interacting vortices. Associated with these vortices is

distortion of the primary velocity field shown by contours of primary velocity.

These contours show regions of high and low velocity, corresponding to vortex core

locations, which contribute to the 'jet-wake' structure of the exit flow field;

such exit flow structure is typical of rotating passages. Contours of the

computed pressure field show a large pressure gradient across the passage which

would correspond to blade loading in an impeller. The pressure field also shows

distortion on the suction side of the passage due to the secondary flow vortices.

The dominant effect of rotation of the passage on the exit flow field is evident

when the computed exit flow field in Figure 2 in compared with the exit flow field

from the same passage with no rotation (Reference 2, Figure 9).

Figures 3, 4, and 5 show the development of the flow field in the rotating

passage. Unlike the non-rotating passage (Reference 2, Figures 5-10), there is no

flow symmetry in the rotating passage. In the non-rotating passage the pressure

gradients are due to the curvature of the bend whereas in the rotating passage

Coriolis and centrifugal forces are the dominant effect on the pressure field.

Note that this dominant effect of rotation on the pressure field is computed from

the generalized primary/secondary flow equations even though the approximations

are based on potential flow streamline directions in the non-rotating passage.

Further, the computed pressure field is utilized in the flow computations without

approximation. Vector plots of the secondary velocity field show the development

of strong secondary flow vortices in the passage. The vortices are strongest at

the exit of the passage where the effects of rotation are the largest. This

contrasts with flow development in the non-rotating passage where the secondary

flow vortices begin to decay at the exit of the passage. Associated with the

development of the secondary flow and pressure fields is distortion of the primary

velocity field. Interaction of the secondary flow vortices produces regions of

high and low primary velocity. Primary velocity development in the rotating and

non-rotating passages are different corresponding to the effects of rotation on

the pressure and secondary velocity fields. Figure 6 compares the development of

the primary velocity field in the rotating 90-degree bend with the measured

meridional velocity development in Eckardt's impeller [I]. The computed primary

velocity development in the rotating bend shows all the flow features of the

measured meridional velocity development in the centrifugal impeller. This would
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indicate that the character of the flow field in the impeller is dominated by

primary/secondary flow interaction generated by the effects of rotation and

curvature. Further, these effects are correctly predicted by the generalized

primary/secondary flow equations.

Figure 7 compares the exit flow field computed with the generalized

primary/secondary flow equations with that obtained by pressure approximations

[3]. In spatial marching methods based on pressure approximations, the streamwise

pressure gradient is specified in the streamwise monentum equation. For the flow

in the rotating bend, the streamwise pressure gradient was computed from the

potential flow pressure distribution in the non-rotating bend. The computed flow

fields at the exit of the passage are very different, as seen in Figure 7. Some

of the differences could be attributed to utilizing streamwise pressure gradients

from the non-rotating bend in the pressure approximation. Utilizing streamwise

pressure gradients obtained from inviscid rotational flow in the rotating bend

would require solution of the Euler equations. Such computations are expensive

and would nullify the run time advantages of spatial marching methods over

solution of the Navier-Stokes equations. Approximations in the generalized

primary/secondary flow equations are based on a local primary flow direction. For

the flow in the rotating bend, potential flow streamline directions in the

non-rotating bend are an appropriate choice for the local primary flow direction

and were shown in Figure 6 to predict a flow structure in qualitative agreement

with that in Eckardt's impeller. These results demonstrate the important effect

that different spatial marching approximations have on predicted flow behaviour.

Impeller Geometry and Grid Generation

The impeller under consideration is "rotor o" described by Eckardt [1]. This

impeller has 20 blades, with blade camber lines that have ellipsoidal shapes in

cylindrical sections. In terms of a cylindrical-polar coordinate system, n, e, z
(with z being the coordinate along the impeller axis), the blade camber lines can

be described by a relation of the form e = O(z). Hence, the intersection of an

impeller blade with a plane normal to the impeller axis is a radial line. As a

consequence, the impeller outflow angle is 90 (i.e. the impeller does not have

any "backsweep").

The definition of the impeller is completed by a description of the hub and

shroud contours. Given relations of the form f(n, z) = 0 for these contours, and
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e = e(z) for the blade camber lines, blade-hub and blade-shroud intersection lines
can be constructed easily. If the blade thickness is neglected, then the passage

between two adjacent blades forms a "duct" whose four corner lines are two sets of

blade-hub and blade-shroud intersection lines. For the purpose of flow field

computations, this blade passage duct is extended by a helical section upstream of

the impeller inlet and a radial section downstream of the impeller exit.

The computational grid is now generated as follows. First, a "center-line" is

defined as the "average" of the four corner lines of the impeller passage. A mesh

point distribution is specified along this center-line (in the actual

calculations, a uniform distribution has been used). At each mesh point on the

center-line, a transverse plane is defined normal to the center-line. The

intersection of this plane with the four corner lines of the impeller passage

determines the four corners of a quadrilateral, which is used to approximate the

shape of the cross-section of the duct. A mesh is then generated on this

quadrilateral by constructing mesh point distributions on each of its four sides

and connecting mesh points on opposite sides by straight lines. In the actual

flow field calculations, the mesh points on the sides of the quadrilateral are

clustered near the corners using Oh's technique [4]; the clustering is allowed to

change with the cross-sections to properly resolve the boundary layers everywhere

in the impeller passage.

Figure 8 shows the impeller geometry constructed as described above (without

upstream and downstream extensions), and a set of 7 transverse plane grids in a

blade passage (with extensions). For illustration purposes, the grids shown are

coarse (14 x 14), but have mesh point clusterings near the corners similar to

those in the fine grids used in the actual flow field calculations. Computational

grids generated by the above technique could be utilized with the spatial marching

and the Navier-Stokes solvers.

Navier-Stokes Analysis of Centrifugal Impeller Flow Fields

Solution of the flow field in Eckardt's impeller/vaneless diffuser [1] has

been computed with the Reynolds averaged compressible Navier-Stokes equations.

For the impeller, the governing equations are written in a rotating cylindrical

coordinate system fixed to the impeller axis. The continuity equation is written

as
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at
+ V.- (P U) =0()

The momentum conservation equation is

8 (pU) + V. (pUU) + 2wxU + wxwxr = - Vp + VOr (2)
at

where r is the stress tensor (molecular and turbulence) given by

Tij = 2 Peffeij - 2 / 3 Peff VGU6ij (3)

where the rate of the strain eij is given by

eij = 1/2 r + 7 ] (4)
L1xj axj

The effective viscosity Peff is the sum of the molecular and turbulent viscosities

Peff = 9 + PT (5)

The turbulent viscosity PT is obtained from the turbulence model.

The energy conservation equation is written as

a(ph) + V. (pUh) = Dp V.q + 0 (6)

at Dt

where 4 is the viscous dissipation per unit volume and q the heat flux vector.

The dissipation rate 0 is expressed as

= Peff [ 2 Sijeij - 2/3(V.U)2 ]  (7)

and the heat flux vector q is given by

q =-(c + KT) VT (8)

where K and KT are molecular and turbulent thermal conductivities, respectively.

In the present analysis, K and KcT are obtained assuming constant molecular and

turbulent Prandtl number Pr and PrT, i.e.,
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1C Cp
Pr (9a)

K _ETSP (9b)
PrT

A general non-orthogonal coordinate transformation to a body fitted grid is

used to handle the complex geometry in the solution procedure. The governing

equations are solved by a linearized Block Implicit (LBI) scheme [5]. The

numerical scheme is implicit and computationally efficient. In the present

application, three-point central differences are used in the transformed

coordinate system, and artificial dissipation terms of the form

a [(a4art) -] (10)a-xj (Prt j xji

are added to the governing equations for each coordinate direction J. The

variable p denotes the velocity component Ui for the xi-direction momentum

equation, the density p for the continuity equation, and the enthalpy h for the

energy equation. The coefficient (Part)j is obtained from

pUjVxj 5 (i/ad) [1A + (Part) j] (1)

where Vxj is the grid spacing at the point in question. The quantity P-denotes

the effective viscosity (Peff) for the momemtum equations, (Peff/Pr) for the

energy equation, (Peff/oa) for the turbulence kinetic-energy equation, (Peff/oe)

for the turbulence dissipation equation, and is zero for the continuity equation.

Od was chosen to be 0.5 for the present computations.

Figure 8 illustrates the impeller geometry and computational grid system. The

previously described algebraic grid generation procedure was used to construct the

computational grid. For clarity, only a few of the transverse planes and grid

points are shown in Figure 8. A computational grid of 40 x 40 points in

transverse planes and 120 streamwise stations was used for the solution. Grid

points were clustered towards the hub, shroud and blade surfaces to resolve

viscous shear layers.

-8-



Flow Parameters, Boundary Conditions. and Initial Conditions

Flow parameters were chosen to correspond to the design point of the impeller.

No-slip wall conditions were prescribed on hub, shroud and blade surfaces.

Further, the normal gradient of the temperature and reduced pressure were set to

zero on the solid surfaces. At the inflow boundary, total temperature and flow

angle were specified; total pressure was specified in the core inviscid region of

the flow. Turbulent velocity profiles of prescribed boundary layer thickness, but

normalized by a local freestream velocity were specified instead of total pressure

within the shear layers. The normalizing freestream velocity was updated after

each time step to reflect transient variation of mass flow rate. Static pressure

was specified at the outflow boundary based on design point conditions. Other

variables (pressure at inflow, velocity and temperature at outflow) were

extrapolated. Circumferential periodicity of the flow was specified in the

vaneless diffuser section. The shroud was assumed fixed to the blades and the

relative motion between the shroud and the blades was not included in the present

computation. This effect was expected to be confined to a very thin region in the

vicinity of the shroud.

To start the solution procedure, initial values of flow variables were

obtained from a simple one-dimensional isentropic flow analysis. Flow was assumed

to be along streamwise grid lines and the one-dimensional analysis was carried out

for each of the streamwise grid lines. Near solid surfaces the velocity field was

scaled by a specified turbulent boundary layer profile.

Turbulence Model

A simple mixing length type eddy viscosity model was used in the computations.

Distributions normalized by a local freestream mixing length and modified to

account for near-wall damping were specified. The local freestream mixing length

is proportional to a local shear layer thickness distribution which was specified.

Distances were computed from the grid point under consideration to the nearest

wall. All of the boundary layers were assumed to be turbulent from the initial

station.
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Results

Figure 9 shows contours of the computed streamwise velocity in the impeller.

The streamwise velocity component is nominally aligned with the impeller passage

and in the rotating coordinate system fixed to the impeller. The velocity

contours at the inlet show helical inflow to the impeller. This helical inflow

corresponds to uniform axial velocity at the impeller inlet in the absolute

coordinate system. Flowfield development shows the formation of a vortex (low

velocity region) in the shroud/blade suction surface corner. Th flow field also

shows a second vortex with a high velocity core at the blade suction surface/hub

corner. Similar flow development was described previously for tne rotating bend.

Such secondary flows are typical of impeller flow fields and is caused by "otation

and curvature of the impeller passage. The distortion of the flow field by the

secondary flow vortices is often referred to as the 'jet-wake' structure of thp

exit flow and is a source of high losses. Figure 10 compares the computed

streamwise velocity development with measurements [1]. Computational grid planes

closest to the experimental measurement stations were chosen for the comparison .

The structure of the computed flow field compares well with measurements, showing

correctly the regions of low and high velocities corresponding to the secondary

flow development in the impeller passage.

Figure 11 and 12 show particle traces in the computed flow field to provide a

visualization of the nature of impeller flows. Figure 12 is an enlargement of

Figure 11. Particle traces which start in the blade pressure surface boundary

layer show flow riding up the pressure surface towards the shroud, due to

centrifugal forces. On reaching the shroud, the flow crosses the shroud and moves

towards the suction surface due to the passage pressure gradient, and rolls up

into a vortex at the shroud/suction surface corner. Flow in the shroud boundary

layer merges with the flow from the pressure surface and rolls up into the same

vortex. Some of the flow in the suction surface boundary layer rides up the

suction surface in a manner similar to the pressure surface and rolls up into the

vortex on the shroui/suction surface corner. Flow in suction surface boundary

layer close to the hub rolls up into a vortex at the hub / suction surface corner

along with hub boundary layer flow migrating from the pressure surface towards the

suction surface. Fluid in the hub/pressure surface corner remains in the hub/

pressure surface corner at the exit of the impeller.
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Figure 13 shows contours of the computed pressure field on the hub, mid-span,

and shroud surfaces. The overall pressure field shows pressure rise through the

impeller due to the work done by the impeller on the fluid. For this particular

impeller design most of the pressure rise occurs in the latter half of the

passage. Contours of the pressure field show pressure gradients across the width

of the impeller passage corresponding to the blade loading. The blade loading is

similar at all three sections shown in Figure 13. Figure 14 compares contours of

the computed pressure on the shroud surface with measurements. The overall

pressure distribution and loading at the shroud is well predicted by the

computations.

Summary and Conclusions

Two computational procedures have been developed for analysis and prediction

of flows in centrifugal impellers: (a) solution of the Navier-Stokes equations,

and (b) solution of the generalized primary/secondary flow equations by an

efficient spatial marching algorithm. Solutions obtained from the two procedures

have provided useful insight into the structure of the three-dimensional viscous

flow impellers.

Generalized primary/secondary flow equations have been derived which are

applicable to flow in rotating passages. A spatial marching algorithm has been

developed to solve the primary/secondary flow equations to obtain run time

advantages over solution of the Navier-Stokes equations. Turbulent flow in a

rotating 90-degree bend has been computed with the generalized primary/secondary

flow equations. The computed flow field development in the bend is similar to the

measured flow field development in Eckardt's impeller. The computed results also

show the dominant effort of rotation on secondary flow development and flow

distortion in the rotating passage.

A simple algebraic grid generation procedure has been developed to describe

impeller geometries and generate suitable computational grids for viscous flows.

The computational grids generated could be utilized by both the spatial marching

and Navier-Stokes solution procedures.

The flow field in Eckardt's impeller has been computed by solution of the

Navier-Stokes equations. Computed flow field development in the impeller compares

well with measurements. These results also provide insight into the origins and

development of the secondary flow structure in the impeller and the consequent
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flow field distortion at the exit of the impeller. Computed pressure on the

shroud also compares well with measurements.

The computational procedures developed here would be very useful as tools in

the analysis and design of centrifugal impellers. The procedures could be

utilized in the analysis of the flow field in a impeller so as to suggest design

modifications that would improve performance. The spatial marching procedure

could be utilized in parametric studies of the effect of design parameters on the

flow field in impellers. These studies could be carried out in simplified

geometries (if necessary) that retain the essential features of the design.
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Figure 14 . Comparison of Computed and Measured Pressure in the Shroud . 
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