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Introduction

Centrifugal impellers are used in a wide variety of applications. One of the
primary advantages of centrifugal impellers is the high pressure ratios that can
be achieved from a small sized machine. Compactness and lightweight design (by
comparison with axial machines) enables vehicles in certain applications of
interest to the Army, for instance in some automotive and helicopter applications,
to deliver additional payload and/or to extend their range. However, losses and
flow distortions in these machines are higher compared to an equivalent axial
machine. Improvements in the efficiency of centrifugal impellers could come from
a better understanding of the flow mechanisms in the impeller passage that are
sources of losses and flow distortion.

State-of-the-art in centrifugal impeller design is a combination of
experience, simple analyses with empiricism to estimate overall performance, and
input from a database generated by experiments. In support of this approach the
acquisition of experimental data from actual machines has been quite extensive.
However, few fundamental experiments designed to isolate various effects inside
the machines have been performed mainly because of the experimental difficulties
and the high cost of making such measurements. Consequently the understanding of
the fundamental fluid mechanics of centrifugal impellers has been rather poor.
Computational approaches are an effective means of gaining this understanding of
the physics of impeller flow fields. The development and utilization of
computational tools to study impeller flow fields were pursued under the present

contract.

Scope of the Stud

The scope of the present study was to address the development and
implementation of computational procedures for analysis and prediction of flows in
centrifugal impellers. Two approaches have been investigated: (a) solution of
the Navier-Stokes equations, and (b) solution of an approximate set of viscous
primary/secondary flow equations by an efficient spatial marching algorithm.

Solution of the Navier-Stokes equations has been directed towards computing
the flow field in a rotating centrifugal impeller passage. The advantage of using
the Navier-Stokes equations is that they do not contain any approximations other

than those associated with the use of a turbulence model. Flow in Eckardt's




impeller [1] was used as a test case for the Navier Stokes solution procedure.

The centrifugal compressor consisted of an impeller/vaneless diffuser combination.
This set-up was advantageous for the present study, since the flow in the impeller
could be computed and analyzed in isolation and compared with experimental data,
without the additional complications caused by a vaned diffuser.

The spatial marching approach has been directed towards derivation of
approximate flow equations and development of an efficient solution algorithm
suitable for computing impeller flow fields. The primary advantage of the spatial
marching procedure is that detailed resolution of the complex flow structure could
be obtained economically utilizing very high density grids. For example, using
106 grid points, a spatial marching solution requires only about 20 minutes of
CRAY-XMP run time, whereas a state-of-the-art Navier-Stokes code would typically
require more than 10 hours of run time. Flow in a rotating 90-degree bend was
used as a test case to develop approximate equations for impeller flow fields.
This test case was also useful to study the effects of rotation and curvature on
flow distortion in impellers.

An important element in the utilization of computational procedures for the
impeller flow field is the ability to describe the geometry of the impeller and
generate a suitable computational grid. A simple, effective algebraic grid
generation procedure was developed to generate suitable computational grids to
compute viscous flow fields in centrifugal impellers. Computational grids
generated by the procedure could be utilized by both the Navier-Stokes and the
spatial marching solution procedures.

The remainder of this report describes the development of generalized
primary/secondary flow analysis for the study of flows in rotating passages and
application of the Navier-Stokes solution procedure for the flow in a centrifugal
impeller passage. Results obtained from the two solution procedures are

discussed.

Generalized Primary/Secondary Flow Analysis

A unique spatial-marching solution procedure has been developed for computing
three-dimensional viscous flows with a dominant flow direction, such as impeller
passage flows. The procedure is based on solution of the generalized
primary/secondary fiow equations which are an approximation to the Navier-Stokes

equations. Reference 2 contains a description of the generalized




primary/secondary flow equations and an efficient solution procedure to solve
these equations. Validation of the procedure for internal flow in a 90-degree
bend duct is also described.

Tun the primary/secondary flow equations a small velocity vector is identified
by velocity decomposition which provides a basis for approximating flows with
large streamwise vorticity and secondary velocity. Two features of the
primary/secondary flow equations central to identifying a small velocity vector
for approximation are a locally specified primary-flow direction and a
decomposition of the secondary velocity field. The local flow field velocity
vector is expressed as a primary flow component in the primary-flow direction and
a secondary flow component normal to this direction. The secondary velocity
component is decomposed into components defined from a scalar-potential and a
vector-potential. The vector-potential defines the streamwise vorticity and the
secondary velocity component associated with the streamwise vorticity. The
remaining scalar-potential component contribution can be assumed small in the
transverse momentum equations, but is not otherwise neglected. This small
scalar-potential approximation along with the viscous approximation neglecting
streamwise diffusion is sufficient to establish a well-posed initial value
problem, which can be solved far more economically than the Navier-Stokes
equations. No approximations are introduced for pressure, the pressure field is
computed in this approach. Typical run times for the method are on the order of
20 minutes for a computational grid of 106 points. These short run times allow
refined grid solutions that resolve complex flow structures in three-dimensional
viscous flows. The trade-offs for this advantage are that the approximations
limit the range of flow problems that can be addressed relative to the
Navier-Stokes equations because of factors such as flow separation, stagnation
points, and transonic flow effects. Nevertheless, this approach is well-suited
for a number of flows arising in practical situations and can provide a large
number of detailed flow calculations at moderate cost for use in design
optimization studies.

Flow in a rotating 90-degree bend was used as a model of a centrifugal
impeller flow field and a test case for the spatial marching procedure. Figure 1
shows the geometry of the bend. A Reynolds number of 50,000 based on the passage
width and a rotation number of 1 based on the tip radius and the inlet velocit,
were chosen as flow parameters. Potential flow streamlines through the

non-rotating 90-degree bend were chosen as the local primary flow direction in the




primary/secondary flow equations. Figure 2 shows the computed flow field at the
exit of the bend. The vector plot of the secondary velocity field shows a complex
flow pattern of interacting vortices. Associated with these vortices is
distortion of the primary velocity field shown by contours of primary velocity.
These contours show regions of high and low velocity, corresponding to vortex core
locations, which contribute to the ’'jet-wake’ structure of the exit flow field;
such exit flow structure is typical of rotating passages. Contours of the
computed pressure field show a large pressure gradient across the passage which
would correspond to blade loading in an impeller. The pressure field also shows
distortion on the suction side of the passage due to the secondary flow vortices.
The dominant effect of rotation of the passage on the exit flow field is evident
when the computed exit flow field in Figure 2 in compared with the exit flow field
from the same passage with no rotation (Reference 2, Figure 9).

Figures 3, 4, and 5 show the development of the flow field in the rotating
passage. Unlike the non-rotating passage (Reference 2, Figures 5-10), there is no
flow symmetry in the rotating passage. In the non-rotating passage the pressure
gradients are due to the curvature of the bend whereas in the rotating passage
Coriolis and centrifugal forces are the dominant effect on the pressure field.
Note that this dominant effect of rotation on the pressure field is computed from
the generalized primary/secondary flow equations even though the approximations
are based on potential flow streamline directions in the non-rotating passage.
Further, the computed pressure field is utilized in the flow computations without
approximation. Vector plots of the secondary velocity field show the development
of strong secondary flow vortices in the passage. The vortices are strongest at
the exit of the passage where the effects of rotation are the largest. This
contrasts with flow development in the non-rotating passage where the secondary
flow vortices begin to decay at the exit of the passage. Associated with the
development of the secondary flow and pressure fields is distortion of the primary
velocity field. Interaction of the secondary flow vortices produces regions of
high and low primary velocity. Primary velocity development in the rotating and
non-rotating passages are different corresponding to the effects of rotation on
the pressure and secondary velocity fields. Figure 6 compares the development of
the primary velocity field in the rotating 90-degree bend with the measured
meridional velocity development in Eckardt’s impeller {1]. The computed primary
velocity development in the rotating bend shows all the flow features of the

measured meridional velocity development in the centrifugal impeller. This would




indicate that the character of the flow field in the impeller is dominated by
primary/secondary flow interaction generated by the effects of rotation and
curvature. Further, these effects are correctly predicted by the generalized
primary/secondary flow equations.

Figure 7 compares the exit flow field computed with the generalized
primary/secondary flow equations with that obtained by pressure approximations
{3]. In spatial marching methods based on pressure approximations, the streamwise
pressure gradient is specified in the streamwise momantum equation. For the flow
in the rotating bend, the streamwise pressure gradient was computed from the
potential flow pressure distribution in the non-rotating bend. The computed flow
fields at the exit of the passage are very different, as seen in Figure 7. Some
of the differences could be attributed to utilizing streamwise pressure.gradients
from the non-rotating bend in the pressure approximation. Utilizing streamwise
pressure gradients obtained from inviscid rotational flow in the rotating bend
would require solution of the Euler equations. Such computations are expensive
and would nullify the run time advantages of spatial marching methods over
solution of the Navier-Stokes equations. Approximations in the generalized
primary/secondary flow equations are based on a local primary flow direction. For
the flow in the rotating bend, potential flow streamline directions in the
non-rotating bend are an appropriate choice for the local primary flow direction
and were shown in Figure 6 to predict a flow structure in qualitative agreement
with that in Eckardt’s impeller. These results demonstrate the important effect

that different spatial marching approximations have on predicted flow behaviour.

Impeller Geometry and Grid Generation

The impeller under consideration is "rotor o" described by Eckardt {1]. This
impeller has 20 blades, with blade camber lines that have ellipsoidal shapes in
cylindrical sections. 1In terms of a cylindrical-polar coordinate system, n, 6, 2z
(with z being the coordinate along the impeller axis), the blade camber lines can
be described by a relation of the form 8 = 6(z). Hence, the intersection of an
impeller blade with a plane normal to the impeller axis is a radial line. As a
consequence, the impeller outflow angle is 90° (i.e. the impeller does not have
any "backsweep").

The definition of the impeller is completed by a description of the hub and

shroud contours. Given relations of the form f(n, z) = 0 for these contours, and




©® = 8(z) for the blade camber lines, blade-hub and blade-shroud intersection lines
can be constructed easily. If the blade thickness is neglected, then the passage
between two adjacent blades forms a "duct" whose four corner lines are two sets of
blade-hub and blade-shroud intersection lines. For the purpose of flow field
computations, this blade passage duct is extended by a helical section upstream of
the impeller inlet and a radial section downstream of the impeller exit,

The computational grid is now generated as follows. First, a "center-line" is
defined as the "average" of the four corner lines of the impeller passage. A mesh
point distribution is specified along this center-line (in the actual
calculations, a uniform distribution has been used). At each mesh point on the
center-line, a transverse plane is defined normal to the center-line. The
intersection of this plane with the four cornmer lines of the impeller passage
determines the four corners of a quadrilateral, which is used to approximate the
shape of the cross-section of the duct. A mesh is then generated on this
quadrilateral by constructing mesh point distributions on each of its four sides
and connecting mesh points on opposite sides by straight lines. 1In the actual
flow field calculations, the mesh points on the sides of the quadrilateral are
clustered near the corners using Oh's technique [4]; the clustering is allowed to
change with the cross-sections to properly resolve the boundary layers everywhere
in the impeller passage.

Figure 8 shows the impeller geometry constructed as described above (without
upstream and downstream extensions), and a set of 7 transverse plane grids in a
blade passage (with extensions). For illustration purposes, the grids shown are
coarse (14 x 14), but have mesh point clusterings near the corners similar to
those in the fine grids used in the actual flow field calculations. Computational
grids generated by the above technique could be utilized with the spatial marching

and the Navier-Stokes solvers.

Navier-Stokes Analysis of Centrifugal Impeller Flow Fields

Solution of the flow field in Eckardt’s impeller/vaneless diffuser [1l] has
been computed with the Reynolds averaged compressible Navier-Stokes equations.
For the impeller, the governing equations are written in a rotating cylindrical
coordinate system fixed to the impeller axis. The continuity equation is written

as
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where T is the stress tensor (molecular and turbulence) given by
Tij = 2Beffeij — 2/3beff V*USij (3)

where the rate of the strain eij is given by
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The effective viscosity p gr is the sum of the molecular and turbulent viscosities
Beff = B + pr (5)

The turbulent viscosity pr is obtained from the turbulence model.

The energy conservation equation is written as
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where ® is the viscous dissipation per unit volume and q the heat flux vector.

The dissipation rate ® is expressed as
® = perr (2e55@54 — 2/3(Ve0)2) (7)

and the heat flux vector q is given by

q=—(x + kp) VT (8)

where k¥ and Kp are molecular and turbulent thermal conductivities, respectively.
In the present analysis, k and Kk are obtained assuming constant molecular and

turbulent Prandtl number Pr and Prp, i.e.,




_“%

Pr (9a)
_ k1€
Ky = —P%p (9b)

A general non-orthogonal coordinate transformation to a body fitted grid is
used to handle the complex geometry in the solution procedure. The governing
equations are solved by a linearized Block Implicit (LBI) scheme [5]. The
numerical scheme is implicit and computationally efficient. In the present
application, three-point central differences are used in the transformed

coordinate system, and artificial dissipation terms of the form

Y
x|

[(”art)j %%5 ] (10)

are added to the governing equations for each coordinate direction j. The
variable ¢ denotes the velocity component Uj; for the xj-direction momentum
equation, the density p for the continuity equation, and the enthalpy h for the
energy equation. The coefficient (#art)j is obtained from

PUVX§ S(1/0q) [k + (Hart)j] (11)

where ij is the grid spacing at the point in question. The quantity ﬁ_denotes
the effective viscosity (U ¢f) for the momemtum equations, (U ¢g/Pr) for the
energy equation, (Ugogg/0,) for the turbulence kinetic-energy equation, (Ugfg/0¢)
for the turbulence dissipation equation, and is zero for the continuity equation.
04 was chosen to be 0.5 for the present computations.

Figure 8 illustrates the impeller geometry and computational grid system. The
previously described algebraic grid generation procedure was used to construct the
computational grid. For clarity, only a few of the transverse planes and grid
points are shown in Figure 8. A computational grid of 40 x 40 points in
transverse planes and 120 streamwise stations was used for the solution. Grid
points were clustered towards the hub, shroud and blade surfaces to resolve

viscous shear layers.




Flow Parameters, Boundary Conditions, and Initial Conditjons

Flow parameters were chosen to correspond to the design point of the impeller.
No-slip wall conditions were prescribed on hub, shroud and blade surfaces.
Further, the normal gradient of the temperature and reduced pressure were set to
zero on the solid surfaces. At the inflow boundary, total temperature and flow
angle were specified; total pressure was specified in the core inviscid region of
the flow. Turbulent velocity profiles of prescribed boundary layer thickness, but
normalized by a local freestream velocity were specified instead of total pressure
within the shear layers. The normalizing freestream velocity was updated after
each time step to reflect transient variation of mass flow rate. Static pressure
was specified at the outflow boundary based on design point conditions. Other
variables (pressure at inflow, velocity and temperature at outflow) were
extrapolated. Circumferential periodicity of the flow was specified in the
vaneless diffuser section. The shroud was assumed fixed to the blades and the
relative motion between the shroud and the blades was not included in the present
computation. This effect was expected to be confined to a very thin region in the
vicinity of the shroud.

To start the solution procedure, initial values of flow variables were
obtained from a simple one-dimensional isentropic flow analysis. Flow was assumed
to be along streamwise grid lines and the one-dimensional analysis was carried out
for each of the streamwise grid lines. Near solid surfaces the velocity field was

scaled by a specified turbulent boundary layer profile.

Turbulence Model

A simple mixing length type eddy viscosity model was used in the computations.
Distributions normalized by a local freestream mixing length and modified to
account for near-wall damping were specified. The local freestream mixing length
is proportional to a local shear layer thickness distribution which was specified.
Distances were computed from the grid point under consideration to the nearest
wall. All of the boundary layers were assumed to be turbulent from the initial

station.




Results

Figure 9 shows contours of the computed streamwise velocity in the impeller.
The streamwise velocity component is nominally aligned with the impeller passage
and in the rotating coordinate system fixed to the impeller. The velocity
contours at the inlet show helical inflow to the impeller. This helical inflow
corresponds to uniform axial velocity at the impeller inlet in the absolute
coordinate system. Flowfield development shows the formation of a vortex (low
velocity region) in the shroud/blade suction surface corner. Tk~ flow field also
shows a second vortex with a high velocity core at the blade suction surface/hub
corner. Similar flow development was described previously for tne rotating bend.
Such secondary flows are typical of impeller flow fields and is caused by -otation
and curvature of the impeller passage. The distortion of the flow field by the
secondary flow vortices is often referred to as the 'jet-wake’ structure of the
exit flow and is a source of high losses. Figure 10 compares the computed
streamwise velocity development with measurements [l1]. Computational grid planes
closest to the experimental measurement stations were chosen for the comparison .
The structure of the computed flow field compares well with measurements, showing
correctly the regions of low and high velocities corresponding to the secondary
flow development in the impeller passage.

Figure 11 and 12 show particle traces in the computed flow field to provide a
visualization of the nature of impeller flows. Figure 12 is an enlargement of
Figure 11. Particle traces which start in the blade pressure surface boundary
layer show flow riding up the pressure surface towards the shroud, due to
centrifugal forces. On reaching the shroud, the flow crosses the shroud and moves
towards the suction surface due to the passage pressure gradient, and rolls up
into a vortex at the shroud/suction surface corner. Flow in the shroud boundary
layer merges with the flow from the pressure surface and rolis up into the same
vortex. Some of the flow in the suction surface boundary layer rides up the
suction surface in a manner similar to the pressure surface and rolls up into the
vortex on the shroui/suction surface corner. Flow in suction surface boundary
layer close to the hub rolls up into a vortex at the hub / suction surface corner
along with hub boundary layer flow migrating from the pressure surface towards the
suction surface. Fluid in the hub/pressure surface corner remains in the hub/

pressure surface corner at the exit of the impeller.
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Figure 13 shows contours of the computed pressure field on the hub, mid-span,
and shroud surfaces. The overall pressure field shows pressure rise through the
impeller due to the work done by the impeller on the fluid. For this particular
impeller design most of the pressure rise occurs in the latter half of the
passage. Contours of the pressure field show pressure gradients across the width
of the impeller passage corresponding to the blade loading. The blade loading is
similar at all three sections shown in Figure 13. Figure 14 compares contours of
the computed pressure on the shroud surface with measurements. The overall
pressure distribution and loading at the shroud is well predicted by the

computations.

Summary and Conclusions

Two computational procedures have been developed for analysis and prediction
of flows in centrifugal impellers: (a) solution of the Navier-Stokes equations,
and (b) solution of the generalized primary/secondary flow equations by an
efficient spatial marching algorithm. Solutions obtained from the two procedures
have provided useful insight into the structure of the three-dimensional viscous
flow impellers.

Generalized primary/secondary flow equations have been derived which are
applicable to flow in rotating passages. A spatial marching algorithm has been
developed to solve the primary/secondary flow equations to obtain run time
advantages over solution of the Navier-Stokes equations. Turbulent flow in a
rotating 90-degree bend has been computed with the generalized primary/secondary
flow equations. The computed flow field development in the bend is similar to the
measured flow field development in Eckardt’s impeller. The computed results also
show the dominant effort of rotation on secondary flow development and flow
distortion in the rotating passage.

A simple algebraic grid generation procedure has been developed to describe
impeller geometries and generate suitable computational grids for viscous flows.
The computational grids generated could be utilized by both the spatial marching
and Navier-Stokes solution procedures.

The flow field in Eckardt’s impeller has been computed by solution of the
Navier-Stokes equations. Computed flow field development in the impeller compares
well with measurements. These results also provide insight into the origins and

development of the secondary flow structure in the impeller and the consequent
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flow field distortion at the exit of the impeller. Computed pressure on the
shroud also compares well with measurements.

The computational procedures developed here would be very useful as tools in
the analysis and design of centrifugal impellers. The procedures could be
utilized in the analysis of the flow field in a impeller so as to suggest design
modifications that would improve performance. The spatial marching procedure
could be utilized in parametric studies of the effect of design parameters on the
flow field in impellers. These studies could be carried out in simplified

geometries (if necessary) that retain the essential features of the design.
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