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MARK CHARLES DAVIS. A Computer for Low Context-Switch Time (Under the

direction of Frederick P. Brooks, Jr.)

ABSTRACT

A context switch is the suspension of one running process and the activation of an-

other in a multitasking environment. Many applications, such as process control,

require frequent context switches among many processes. A context switch requires

a substantial amount of time: about 1000 microseconds on a VAX 11/780 and about

500 microseconds on Sun 4/280. Recently introduced computer architectures, such

as the Sun 4, have not improved context-switch performance as much as they have

improved throughput. A computer architecture with appropriate memory hierarchy

can give better support to context switching. The Computer for Low Context-Switch

Time (CLOCS) is a computer with such an architecture. Because the architecture

has minimum state inside the Central Processing Unit, CLOCS can switch context in

less than the time required to execute one instruction. The CLOCS Memory Manage-

ment Unit provides virtual memory without degrading context-switch time as long

as the new process is located in physical memory. Analyses of the architecture show
Vthat CLOCS throughput performance approaches the performance of contemporary

RISC workstations and that it is well suited for real-time applications. Because these

analyses showed promise for the CLOCS architecture, a register-transfer level imple-

mentation was designed and simulated to estimate more accurately the performance !
of a feasible CLOCS computer system. Although many standard implementation

techniques were not useful, a technique called short-circuiting reduced memory ref-

erences by 15%. On the Dhrystone integer benchmark program, CLOCS performed

at least 30% as fast as contemporary workstations constructed from the same elec-

tronics technologies, and further significant improvement of CLOCS performance is

possible. By using this lower bound on CLOCS throughput performance, the proper El

architecture can be identified for an application with challenging context-switch re- 1"

quirements.
SBy_
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Chapter I

Introduction

The computer for low context-switch time, CLOCS, is a computer architecture de-

signed to reduce context-switch time by using an unconventional memory hierarchy.

This chapter presents the CLOCS thesis. Then sections define context switching

and detail relevant applications. The chapter concludes with an interpretation of the

thesis and a description of the resulting architectural features.

1.1 Context-Switch Time May Be Reduced by Ar-

chitecture

Many computer applications require rapid switching between independent tasks; how-

ever, most recent computer architecture research has emphasized throughput more

than context-switch performance. As a result, the new computer designs have worse

relative context-switch performance: the time needed to switch contexts has not de-

creased as much as the time to run programs. Much of the relative performance loss

has come as larger register sets are added to the Central Processing Units (CPU).

Other features of architectures and implementations (for example, caches) improve

throughput at the expense of context-switch time. My thesis runs contrary to this

trend:

For applications with sufficiently high occurrence of context switching

among large numbers of tasks, best performance may be attained from a

computer with fewer, broader levels of memory hierarchy.

Two developments in the last few years have increased the credibility of this thesis:

* Real-time operating systems and process-control applications have increased

the frequency of context switching. Faster computers can support more coin-

plicated applications; this results in more context switches. Even general putr-



pose operating systems such as UNIX have much higher frequency of context

switching than is commonly assumed.

9 Advances in Very Large Scale Integrated Circuit (VLSI) technology have re-

duced the speed differential between different sizes of memory. For example,

an eight kilobyte on-chip cache may be accessed almost as rapidly as a 64 byte

register file.

Section 1.6 details the architecture features suggested by the thesis, but the most

important characteristics are that such a computer has no registers and has no cache.

The main question of this study is: How seriously is throughput performance im-

paired by this approach to computer architecture? Reasonable estimates are possible

only through the detailed design of a computer system, including support software

and implementation specification. But, first, let us examine context switching in

more detail.

1.2 Context Switching

A context switch is the suspension of a running program and the activation of an-

other. It differs from a subroutine call in that the running program does not know

specifics about the task to be activated next, and the new program may have different

ownership or other characteristics.

In many operating systems, system service requests use a trap instruction that

effectively changes the context. The ownership and permission of the operating sys-

tem are assumed as the trap occurs. Sometimes this type of context switch is called

a system call and may be less expensive than activating another separate task. For

example, UNIX minimizes the expense of system calls by the having the kernel share

the virtual address space with all application programs, so no adjustments to the

virtual memory system are required. Although the CLOCS operating system does

system calls by full context switching, when I refer to context switches on existing

computers, I will exclude system calls.

1.2.1 Context Switching on Existing Computer Systems

Switching context requires hundreds of microseconds. Lefler [27] reports that. a Dig-

ital Equipment Company (DEC) VAX 11/780 running 4.2BSD UNIX requires 280

2



Computer Context Switch Time
Type (in milliseconds)VAX 11/780 1.0

VAX 11/750 2.0

Sun 2/50 1.7 - 6.0
Sun 3/75 0.80 - 2.5

Sun 4/280 0.5 - 1.9
DECStation 3100 0.25

Note: The range of context-switch times for the Sun computers represents the range
of performance when two (shorter time to switch) to 32 (longer time) processes are

active[8].

Table 1.1: Measured Context-Switch Time

microseconds for a system call and 4.4 milliseconds for a context switch. Feder [14]

reports context-switch times for the 780 of 700 microseconds for UNIX 4.0 and of 400

microseconds when running system V on a VAX 780. He also reports context-switch

times of about 500 microseconds for a 3b20S. Our measurements of context-switch

time confirm these figures.

In more recent measurements done at the University of North Carolina[8], a Sun 4

context switch required about 500 microseconds. Less than 100 microseconds were

required to save the hardware state; the remainder was consumed by scheduling and

related activities of the operating system. However, the Sun 4 context-switch time

may increase to over 1250 microseconds due to required adjustments to the memory

management system if more than 16 processes are frequently active. This computer

has room for 16 different virtual memory contexts. When a process is activated

that does use one of the stored contexts, activation takes much longer. If the longer

activations occur frequently, the average context-switch time becomes longer. If each

newly activated process requires a new memory management context, then an extra

750 microseconds are added to each context switch, making the average time 12.50

microseconds. The increased speed of the Sun 4 barely compensates for the much

larger amount of CPU state (represented in part by 192 registers) that must be saved

on a context switch. The context-switch time for several types of computers at the

University of North Carolina Computer Science Department is shown in Table 1.1.

Table 1.2 contains representative values for the number of processes and context

switches per second of the department's computers.

3



Computer Type [Number of Proceses I Switches per Sec

Shared VAX 250 40-100
Utility VAX 50 35
Workstation 25-50 50 - 600
File Server 35 100- 500

Table 1.2: Representative Processes and Context-Switch Rates

1.3 Why Does Context Switching Take So Long?

Context switching is time consuming because several things must be accomplished:

1. Save general purpose registers.

2. Save floating-point registers and related state.

3. Save program counter and other CPU state.

4. Adjust memory management (if required).

5. Select next task to run.

6. Restore new task's state (same as saved in 1, 2, and 3).

7.. After the context switch, some performance degradation may occur as cache

fills, adding to the effective time required.

The time required for item 5 depends on the operating system. As mentioned

above, about 80% of the time spent on a context switch goes to task scheduling.

How the remainder of the time is allocated depends on the computer architecture.

For example, a computer without a memory cache does not experience item 7. A

computer with 192 registers will spend more time saving and restoring them than a

computer with 32.

Other operating system approaches(17] may reduce the time required for schedul-

ing during a context switch to as few as one hundred instructions (about 10 microsec-

onds). Reducing the time required for the other items requires a new architecture

based on principles different from the ones used for the VAX, the Sun 4, and other con-

ventional architectures. To find such a better architecture is the purpose of CLOCS

research.

4



1.4 Why Is Context Switching Important?

Although context switching is quite common, it does not significantly affect general

purpose computers. At the University of North Carolina Computer Science Depart-

ment, the main time-sharing computer in the worst case spends only 10% of its time

on context switching. A radical new architecture to improve performance by elim-

inating that 10% would likely lose 10% performance elsewhere. So what types of

applications need fast context switching? Here are some examples:

1. The Microelectronics System Laboratory, a computer-prototype building group

at the University of North Carolina, has invested considerable programming re-

sources in developing a UNIX compatible real-time operating system. UNIX is

desirable on process-control machines to provide a reasonable program devel-

opment environment.

2. The MegaOne, a state-of-the-art integrated circuit tester has two microproces-

sors: one runs UNIX to provide a good user interface and program development

system; the other processor runs custom software to control the tester. In this

case, additional hardware has been added to handle general purpose and real-

time functions.

3. When the Andrew system[30] file manager, VICE, was originally designed, the

file server assigned each client a separate process. Later, significant reprogram-

ming was required because this elegant design spent too much time on context

switching.

4. A six-legged walking machine has been built at Ohio State University[35] that

relies on sixty processes to control the legs. The controller is constructed of a

large amount of specialized computing equipment, and the software was difficult

to write.

Each of these applications can benefit from a computer system that handles many

independent processes and frequent switching between the processes. More aggressive

applications will require even more processes and faster context-switch rates. For

example, a bipod walking machine with arms will require more processes than the

six legged model because of higher articulation is required for a bipod, and faster

context-switch time because of the dynamic requirements to maintain balance. Such

a system may require several hundred independent tasks and thousands of context

5



Conventional Architecture

PC/Status
Pipeline
Registers
MMU
Cache
Memory
Disk

CLOCS

PC/Status
MMU
Memory
Disk

Figure 1.1: Memory Hierarchies

switches per second. Also notable, each of the applications listed above requires a

general purpose operating system to support development or provide services such

as protection.

Perhaps most notable are the criteria used by the Army/Navy Computer Fam-

ily Architecture Committee in its study of computer architectures[161. The criteria

clearly emphasized fast context switching; several criteria valued low memory traffic

for context switches and short interrupt latency. However, other criteria included

features such as virtual memory, protection, and large address spaces to support

sophisticated operating systems. The computers they sought had to run powerful

operating systems and switch context quickly.

1.5 The Impact of Memory Hierarchy on Context

Switching

Most recently designed computer architectures have several levels of memory hier-

archy. Figure 1.1 shows the levels of memory hierarchy in a generic, modern computer

system. In general, the items at the top of the hierarchy are smaller and faster to

access than lower items.

The diagram at the top of the figure shows a memory hierarchy for a conventional

6



architecture. At the very highest point on the memory hierarchy is the program

counter and status. Normally, this is only one or two words long and indicates the

current instruction location, permissions of the running process, and status flags

such as the result of the last comparison. If the computer is highly pipelined, several

instructions may be held in the CPU. The third level of hierarchy is the set of reg-

isters. The Memory Management Unit (MMU) contains virtual memory addressing

and protection information for one or more processes. The cache contains some of

the most recently referenced instructions and data. The main memory is the next

level of hierarchy and is much larger than the cache. Finally, the disk storage (which

also represents the virtual memory) is the foundation of the hierarchy. This diagram

describes a generic computer; actual designs will differ. For example, some architec-

tures may not have visible instruction pipelines or support instruction continuation,

so the pipeline level would not exist. Some cache memories contain only information

for one process and move higher on the hierarchy than the MMU. However, these mi-

nor differences in architectural approaches do not directly bear on the context-switch

discussion.

The memory hierarchy at the bottom of Figure 1.1 represents an architecture

based on the CLOCS principles. Several of the levels of the hierarchy have been

removed, and the MMU has expanded to be the same width as the memory.

The conventional architectures have very successfully used memory hierarchy be-

cause of the locality of reference of programs. Most programs use the same data

objects repeatedly .and execute the same instructions several times. This locality

in time and space results in efficient use of smaller, faster memories, supported by

larger, slower (and cheaper) memory systems. Thus a program can run with most

of its instructions in cache and most of its data in registers or in cache. Transfers

from the larger, slower main memory to the faster ones are rare, so the improved

performance from using the faster memory dominates.

When context switching occurs frequently, many programs are using information

instead of just one. Even though each program may have good locality of reference.

the combination of all of the programs references more information than can be held

by the upper levels of the hierarchy. In this case, the time to transfer information

between the levels of hierarchy may dominate performance. With several programs

switching context frequently, the higher levels of hierarchy impede performance, and

fewer levels would give higher performance.
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1.6 How CLOCS Meets the Thesis Goals

CLOCS is a computer architecture that reduces memory hierarchy. This computer

architecture meets the requirements of the thesis and is otherwise simple enough for

easy implementation so realistic comparisons may be made with existing machines.

The CLOCS CPU has the minimum possible state; a single word contains a

program counter and other program information. To switch context, the CPU simply

stores that status word and loads another. As a result, there are no other registers

in the CPU, and all operations must have operands in memory. A large instruction

size allows addresses to be fully specified in the instruction.

In order to support a general purpose operating system, a MMU is required. The

guiding principle for the MMU is that if information (data or program) is in main

storage, the MMU must support access to it without delay. This means that the

MMU must be able to address any memory location, and that all locations must be

treated equally. Thus, fetching the contents of a memory location always takes the

same amount of time regardless of the preceding events. We adopted this principle

to prevent the undesirable slow downs we had observcd on the Sun 4's with more

than 16 active tasks, but this approach does require a very powerful (and therefore

expensive) MMU.

As stated before, cache memory adds to the context that must be switched, and

is therefore omitted. Another argument against using cache is that it makes perfor-

mance less predictable. Many real-time applications place as much importance on

predictability as on performance. The combined factors of increased context-switch

time and lack of predictability excluded most cache designs.

CLOCS is designed to be a complete computer architecture. Simpler computer

architectures can handle multiple tasks by combining them into a single program-

embedded systems frequently use techniques such as polling to complete several tasks

with a single program. However, such systems are expensive to build and maintain.

and are often not robust. On the other hand, the CLOCS design includes all of

the facilities to run a sophisticated operating system because such capable operating

systems are valuable to program development and maintenance. As a result, CLOCS

meets the requirement in Fuller's study that a computer must be able to test a new

program without endangering any other running programs. CLOCS is an architecture

that can support a general purpose operating system.
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1.7 The Tradeoff: Throughput vs. Context Switch-

ing

CLOCS cannot support faster context switching without compromising elsewhere.

For a computer system of the same cost, it is reasonable to expect that CLOCS will

have lower throughput performance than an architecture optimized for throughput.

The central question is: How big is the degradation? How long must a program

run during each activation before the lower throughput of CLOCS overcomes the

advantage gained by a faster context switch? If CLOCS has slower throughput but

faster context switching than a conventional computer, as long as the tasks run for a

long time during each activation, the conventional architecture will activate and run

the application in less time, therefore providing more activations per second. But

when the application runs for a sufficiently short time, CLOCS will perform better.

Figure 1.2 shows this tradeoff. When the work done by activation of a process is

small, CLOCS takes less total time to activate it and do the work. But as the ap-

plication run time each activation increases, the total time for CLOCS will increase

at a steeper rate because the throughput performance of the conventional design is

better. At the point indicated by the dashed line, CLOCS and conventional archi-

tectures perform the activation and work of the task in the same amount of time.

To the right of this line, the conventional architecture is faster. To the left, CLOCS

is superior. The point of this study is to find this crossover point. To calibrate Fig-

ure 1.2 with numbers requires estimates of CLOCS throughput and context-switch

performance. This study provides those estimates. It may be used to evaluate the

best kind of architecture for a given application.

Recent advances in integrated-circuit technology may have improved the perfor-

mance compromise. VLSI implementations allow for large, fast memories to be closer

than ever before to the CPU. Although the trench capacitors used in dynamic memory

integrated circuits are not commonly used on logic chips such as microprocessors, the

most of the other components are the same for all types of digital integrated circuits.

Since the memory and CPU fabrication processes are identical or very similar, we can

expect little additional relative change in the speed of CPU logic and memory. As a

result, today it is more economical than ever before to build computer systems with

low latency, high bandwidth memory systems. Although conventional designs also

benefit from such memory systems, this implementation technology makes CLOCS
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Figure 1.2: Comparison of CLOCS and Conventional Architectures
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potentially more competitive. For example, CLOCS with a dual ported, zero wait

state memory system could attain one instruction every two memory access times.

This compares favorably with the one instruction every 1.2 to 1.4 memory access

time of a contemporary Reduced Instruction Set Computer (RISC)[26].

However, finding reasonable tradeoff points confidently requires more than defin-

ing an architecture. Estimates of performance must be based on computers that

can be designed and built. To get better estimates of performance, the CLOCS ar-

chitecture has been defined, and an implementation designed and simulated. The

implementation is a register transfer model, giving some estimate of the complex-

ity and expense of required components. The execution of programs written in the

C language[25] are simulated to determine the number of implementation clock cy-

cles required for the program to run. Performance estimates may then be made by

estimating clock rates for a realization of this implementation.

1.8 Summary and Layout of Research

A computer with reduced memory hierarchy will be best for certain applications

requiring frequent context switching. Bill Gallmeister and I started this research by

reviewing the previous work that is summarized in Chapter 2. Next, we identified

the features not directly related to context switching that a computer architecture

should include. Those features are described in Chapter 3. Then we designed the

CLOCS architecture, and Chapter 4 contains details on that architecture. During

the design, we found that a complicated MMU was needed, and it is described in

Chapter 5. Also in that chapter is a description of alternate MMU designs that

we considered but rejected. Once the architecture was designed, I performed the

quantitative analyses of the architecture that are reported in Chapter 6. To obtain

better estimates of real-system performance, I designed the implementation described

in Chapter 7. This chapter also contains discussion of implementation designs that

I discarded. After the chosen implementation design was completed. I simulated

benchmark programs on it as reported in Chapter 8. My observations, coiwlisions-

and ideas for future work are in Chapter 9.
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Chapter II
Previous Work

Computer architects have been designing microprocessors and other general purpose

central processing units (CPU) for many years. This chapter summarizes the previ-

ous work most closely related to the development of the CLOCS architecture. The

RISC approach to computer architecture design has heavily influenced the design of

CLOCS. Early RISC work includes the design of the 801 by IBM and the RISC by

the University of California at Berkeley. These early designs specified the principles

of RISC, but did not develop into commercial products. The RISC principles affected

the design of later architectures, many of which became commercial products. This

chapter will also examine the Mips Company R2000, the SPARC from Sun Nticrosys-

tems, and the CRISP from AT&T. Some very recent commercial products are also

summarized.

CLOCS also has some similarities to older architectures. Particularly notable are

the Atlas from Manchester University for its virtual memory and the Texas Instru-

ments 9900 for its memory-to-memory architecture.

For each of these architectures I will address major contributions and identify

problems with context switching or general purpose operating system support.

2.1 IBM 801

Radin reported on the IBM 801[34], a research machine designed and prototyped at

the Thomas J. Watson Research Center in the late 1970's. This machine was based

on principles that have become important if not essential to the definition of RISC.

The IBM 801 was the first RISC and defined the class. The objectives of the design

were the following:

e Every effort was made to move hardware functions to software.

e Each feature was evaluated for frequency of use versus cost.
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* If possible, actions were moved from run time to compile time.

* The instruction set was chosen to supported the needs of compiler writers.

The 801 had 32 general purpose registers. This computer used a fixed 32-bit in-

struction format with room for two operand register number and one target register

number. All numeric operations used this instruction format, so data had to be

loaded from memory before each operation, and the result had to be stored after

calculations. This approach to operands was frequently used by later RISC designs

and has come to be called a load/store architecture. The 801's optimizing compiler

used the then newly developed register-coloring[6, 5] algorithm to assign values (ex-

pressions or variables) to registers and took advantage of this relatively large number

of registers.

The 801 was highly dependent on separate instruction and data caches for high

performance. It used a

"store-in-cache" strategy (instead of "storing through" ... )

and the cache was architecturally visible to allow software to manage the cache as

much as possible. (The 801 also had some of the data bus control exposed architec-

turally, but that is not really germane to this research.)

The 801 was designed for rapid interrupt handling. The designers observed that

suitability for real time applications depends both on cycle time and on interrupt

handling time. Radin's paper noted that IBM did not have any multiuser data and

this architecture did not provide extensive support for multiuser operating systems.

The 801 was clearly designed for high throughput. It was not clear that a multiuser

operating system would run well on an 801. In any event, high context-switch rates

would have been very inefficiently processed because saving all 32 registers would

be time consuming. Also the time required to flush the write back cache, would

significantly delay context switch because all changed values would have to have

been written to main memory.

2.2 Berkeley RISC

Patterson, Sequin, and Katevenis designed the Berkeley RISC[32, 33, 23] with the

major objective that an entire microprocessor could be implemented on one chip. This

was accomplished by keeping the instruction set and arithmetic logic unit (A L) as
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simple as possible. Like the 801, this was also a load/store architecture. To meet

a design goal of fast context switching, the Berkeley RISC used registers files. The

large number of registers in the CPU might have been divided between processes, and

this allowed state for several processes to be in the CPU at one time. The register file

may have contained data for up to eight processes, but that was too small a number

for a general purpose operating system like UNIX.

Perhaps of greater importance to the designers was the paradigm of the register

files used as register windows for subroutine calls. During a subroutine call, the

registers visible to programs were shifted in the register file. This allowed some

registers to be used for parameter passing, and others to be automatically available for

local use. No register savings was required during subroutine calls, so inter-subroutine

register allocation is not necessary. Register windows simplified the register allocation

task of the compiler by automating it in hardware and requiring the operating system

to handle the case that the hardware has used all available register sets.

Using the register files for both context switches and procedure calls would more

rapidly exhaust the register file, so the significant contribution of the register files in

the Berkeley RISC was the concept of register windows. If the registers were used for

register windows, a larger number registers must be saved and reloaded on a context

switch. Using register files to support different contexts reduced the average context-

switch time, but it did not reduce the maximum switch time because the context for

the process that needs to be serviced next (and rapidly) may not be one of the ones

in the CPU.

In summary, the large number of registers provided register windows that simpli-

fied register allocation during subroutine calls, resulting in better throughput. but

increased context-switch time.

2.3 AT&T CRISP

The CRISP machine[10] is an implementation of the C Machine [11] architecture.

The architecture is designed to optimize execution of programs produced by the

C compiler. The architecture is mostly memory-to-memory, but it does have an

accumulator and a stack.

The implementation introduces much additional state into the CPU. For example.

there is a stack cache of 32 words. This cache greatly speeds throughput, but can be a

major liability during context switching. During context switching, the context of the
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process in the stack cache must be saved. Additional performance will be lost as the

new process loads values into the stack cache. The implementation also has about 10

pipeline stages. This large number of stages greatly complicates interrupt handling

and increases external interrupt latency, thus delaying context switch. Furthermore

this long pipeline challenges the designers when solving data dependency problems

(trying to fetch a value before it is computed), but they found a solution.

This architecture was not optimized for low context-switch time. The necessity to

save the stack cache and the long pipeline make saving state almost as cumbersome as

for the Berkeley RISC. This architecture does demonstrate that memory-to-memory

architectures support language processors very well.

2.4 MIPS Company R2000

The MIPS company designed and markets a RISC microprocessor called the R2000[221

(and its successors the R3000 and R6000) based on the Stanford MIPS[18, 19, 7] de-

sign. This CPU has only one set of 32 registers. Like the 801 and the Berkeley

RISC, this is a load/store architecture. The context-switch time required to save and

restore these registers is increased by the presence of an architecturally visible (and

thus mandatory) cache memory, which is a crucial component of the machine's high

performance. A the active processes overflow the cache, poor memory system per-

formance will result. The MMU also has provision for a hardware process identifier,

but only six bits are allocated to this field, limiting the number of active processes

to 64.

This processor is used in the DECStation 3100. I have used it for comparison
with a similar CLOCS implementation in Chapter 8.

2.5 Sun Microsystems SPARC

SPARC[1.5] (for Scalable Process ARChitecture) is a RISC with many similarities to

the Berkeley RISC. The machine has much CPU state: the first announced model

had 192 registers. Like most of the other RISC designs, it is a load/store architecture.

Following the Berkeley RISC, the processor has a large number of overlapping reg-

ister files to optimize procedure calls. The number of files is realization-dependent.

and the first version has seven files. These files mrny be used only as register windows

for subroutine calls; there is no ability to split the register file between different pro-
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cesses. This large amount of state seriously slows context switching. SPARC is used

in the Sun 4 computer, and that computer uses a MMU that has a limited number

(16) of user contexts of addressing. If a processes that does not have it addressing

context in the MMU is activated, context-switch time will be almost three times

longer to complete adjustments to the MMU. Under normal circumstance when just

few processes (five is the highest we have observed under normal conditions) are ac-

tive, this method is very efficient. The large number of registers to be saved/restored

and the MMU design of the SPARC/Sun 4 result in context-switch performance only

slightly better (two times) than a VAX 780, while its throughput performance is at

least seven times better than the VAX 780. This makes context switch marginally

acceptable until more that 16 processes are active, then the system performance is

greatly degraded as was discussed in Chapter 1. With a sufficiently high number

of active processes (about 64) almost all of the CPU time is consumed by context

switching.

2.6 Other New Architectures

Other companies have recently released RISC architectures. These architectures do

not include any features not discussed above.

The Hewlett-Packard Precision architecture seems to be roughly equivalent to

the MIPS R2000, with added support for specific data types (such as decimal for

COBOL support). I have no information on how its cache works. In their product

information they mention that context switching is adversely affected by the number

of registers to be saved (32, as with the R2000). This architecture appears to have

similar throughput strengths and context-switch weaknesses as the R2000.

The Motorola 88000 is another new architecture. It also has 32 registers. The

on-chip floating-point support uses separate registers that also add to processor state.

This microcomputer must use custom designed cache memory chips to form separate

Instruction and Data caches. Fast context-switch was not a priority in this design.

and, based on the design of the caches, the context-switch performance of this ma-

chine is likely to be poor.

The AMD 29000 is a RISC architecture with performance similar to that of the

architectures cited above. It has a large register file, with 192 registers that must

be saved for a context switch. The saving is speeded by an instruction that saves

multiple registers, but still requires a significant time to store all of the registers. This
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appears to be the only commercial RISC that retains the Berkeley RISC capability to

share the register file among several contexts. This feature is useful in the medium-

size controller market that AMD is supporting with this chip, but, like the Berkeley

RISC, supports too few contexts for a general purpose operating system.

2.7 Texas Instruments 9900

The Texas Instruments (TI) 9900[21] is a microprocessor designed in the mid 1970's

based on the architecture of the TI 900 series minicomputers. This architecture is

important to CLOCS because it was a memory-to-memory architecture. The TI

9900 uses the concept of registers as an addjess abbreviation method, with a pointer

in the CPU that located the base of this address space. Programs may address 16

registers (that are actually located in main memory) using this method. CPU state

consists of only three words: a program counter, a workspace pointer, and processor

stattis. This machine is very strong on task switching. For example, the three words

of CPU state are automatically stored when servicing an interrupt.

This machine suffers from the technology available at the time it was designed.

The word size is 16 bits, and only 16 bits are available to form a memory address, lim-

iting total memory size to 64Kbytes. The small word and instruction size made the

registers-in-memory paradigm mandatory, but 16 registers are probably not enough

for good compiler utilization, particularly since several are used by the CPU hard-

ware. (For example, on interrupt, the three words of CPU state are stored in register

13, 14, and 15. Call and r turn instructions also use two of these registers.)

Also, there is no support for virtual memory or protection. Although this ar-

chitecture has great task-switching performance, it cannot support modern virtual

memory operating systems or software.

2.8 Atlas

The Atlas[13, 36] (designed at Manchester University in the late 1950s) could perform

about 500,000 instructions per second. The memory accesses were for 48-bit words

or 24-bit half words and some operations dealt with 6-bit characters. The memory

system included 16,000 words of core memory, 96,000 words of drum memory and

revolutionary virtual memory hardware and software. The Atlas computer divided

the core memory into 32 pages of 512 words each. A page address register was as-
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sociated with each page of core memory. During memory operations, the contents

of each of these 32 equivalence registers was compared with the high order address

bits to determine equivalence. Equivalence meant that the desired page was in core

memory and could be directly accessed using a page number provided by the equiv-

alence registers. These page address registers also maintained a use bit, and every

1024 instructions, special hardware used that bit to calculate the time since loading

and time since last access for each page of core memory. A lock bit for each page

indicated the page reference was invalid. This was used to prevent access to a page

while data was being rolled in from the drum or during other Input/Output. Some

consideration for an operating system was included, but this was not really designed

to be a multiuser machine. The address space had to be shared between all programs

and subroutines and the only provision for protection was the lock bit.

This virtual memory system meets the requirements set forth for the CLOCS

MMU. The CLOCS MMU must contain registers similar to the equivalence registers.

2.9 Conclusions

Previous work in microprocessor design has advanced the art of RISC to produce high

throughput. Studies have shown that increasing state will improve throughput but

reduce context-switch performance[12]. Although designs such as the TI 9900 have
shown that memory-to-memory architectures are possible, these architectures have

not been investigated recently. Thus, CLOCS explores a potentially fruitful area.
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Chapter III

Design Considerations Other Than Context
Switching

The principal design objective for CLOCS was fast context-switch time. The impor-

tant tradeoff was execution speed for context-switch time. Chapter 1 sets forth the

strategy, principally the flattening of the memory hierarchy, by which the objective

is pursued.

Fast context switching is not enough. For example, the Texas Instruments 9900

is a machine that switches context rapidly, but the architecture has a limited address

space (by today's standards) and does not support sophisticated operating systems.

This architecture does not support with hardware the virtual memory and protec-

tion features that powerful operating systems require. What one needs today is a

computer that can support the fast context-switching requirements of real-time appli-

cations such as process-control and at the same time serve as a base for development

of those applications.

Combining a general purpose operating system with real-time, process-control ap-

plications has normally been done with two different architectures: a controller and

a host system. The objective of this research was to determine if a single architec-

ture, optimized for context switching, would provide an integrated platform to make

development easier and supply adequate throughput price/performance. Simplifying

the architecture to apply to only part of this environment (for example, process-

control) would merely repeat previous research. The purpose of CLOCS research

was to investigate a computer architecture to support new applications.

Thus, the applications for CLOCS added some requirements to the architecture.

CLOCS must support challenging real-time applications that have frequent context
switching among large numbers (hundreds or thousands) of processes. The CLOCS

system must provide a development environment with a sophisticated general purpose

operating system, compilers, editors, and debuggers. Even when these requirements

were recognized, many design choices remained. Whenever possible, we opted for
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the simplest hardware-software system that would allow the central thesis to be

tested. We considered this approach to computer design to be in keeping with the

RISC design philosophy even though the resulting architecture does not resemble

other current RISC architectures. Hence machine properties that would substantially

reduce the software requirements without compromising the principle that is under

investigation were chosen, whether or not they might have been best in some absolute

sense. Additionally. we assumed many architectural requirements or support software

capabilities to aid in decision making concerning the design. These assumptions fell

into four categories:

* Features needed to support general purpose computing

* Operating system support features

9 Compiler support features

* Compiler properties to support the architecture

The remainder of this chapter describes these four categories.

3.1 Features Needed to Support General Purpose

Computing

To properly execute applications and systems programs, CLOCS must provide an

adequate address space, sufficient numeric precision, and an adequate variety of data

types. CLOCS must provide a regular (symmetric and orthogonal) instruction set.

but each implementation may require the emulation of some instructions.

3.1.1 Adequate Address Space

The amount of memory that computer programs require increases each year [1, 20].

We decided that to anticipate safely memory requirements of the next decade, sig-

nificantly more than one gigaword (one billion 64-bit words) would be required. \Ve

selected that size as a starting point because the address space of the VAX series

of computers (one gigabyte) was adequate at the time we did the design, and en-

larging the memory by a factor greater than eight seemed adequately conservative.

CLOCS provides enough address space for each process to access one terabyte or 12S

gigawords of main storage.
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In order to provide this large address space without registers, CLOCS uses a form

of address abbreviation. Since the largest common program that either designer was

familiar with was less than two megabytes, limiting direct addressing modes to 16

megabytes was an acceptable compromise. To abbreviate addresses, CLOCS uses a

24-bit offset in the instruction and a 16-bit segment identifier. Default instruction

and data segment identifiers are provided for each process. For indirect addressing,

the abbrevXation is not required, but the default segment may be used if desired. As

a consequence, a CLOCS program may address 16 megabytes directly or one terabyte

using indirect addressing. This address abbreviation and memory segmentation does

not affect the efficiency of C language programs because the compiler used indirect

addressing frequently. Because variables are dynamically allocated, their addresses

must be calculated during program execution. As a result, C language programs use

indirect addressing for data accesses, and the segmentation scheme does not limit

the data space available to programs. Consequently, the C language program only

sees the segmentation of the address space as a limit on program size. For example,

a program could specify an array of one million by one million characters without

causing addressing problems.

3.1.2 Adequate Calculation Precision

For most real-time problems, 64-bit integers and floating-point numbers are suffi-

ciently large. There are no significant architectural reasons to prevent adding dec-

imal or larger floating-point arithmetic, although such features would violate the

RISC propriety of the architecture.

3.1.3 Adequate Variety of Data-Object Sizes

During design of the computer architecture, we highly valued simplicity so having

only one data-object size (a full-word fixed-point number) was attractive. This re-

striction permitted a simpler arithmetic logic unit and memory system. However, the

benchmark applications to be run on the machine required additional sizes of data

objects.

The initial design for the architecture provided only 64-bit data objects, with

some small support for 8-bit characters. Analysis of code produced by a prototype

compiler revealed that performance on the benchmark programs would be unsatis-

factory. In this case, the simplicity of a single data-object size directly affected the
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evaluation of the principle under investigation, so the architecture had to be modified.

Consequently, we incorporated full, regular support for several sizes of data objects

in the design. The most obvious different-sized object was the 8-bit character. The

benchmark programs also used 16-bit and 32-bit integers.

Data-object size is indicated in manner orthogonal to operation specification.

Since a field is reserved in the instruction for the data-object size, all operations

apply to all data-objects sizes. For example, a conditional branch may examine an

8-bit, 16-bit, 32-bit or 64-bit quantity.

3.1.4 Expensive Operations to Be Cheaply Emulated

A regular instruction set was an important design goal. As a result, all the usual

arithmetic operations were included in the architecture, even though their implemen-

tation would be expensive. Consider the example of divide. The divide operation

was included for all sizes of integer data. Implementing this feature in hardware in a

microprocessor would be very expensive in area on the chip. However, an implemen-

tation may not incorporate the hardware. Instead, executing the divide instruction

causes the interrupt for undefined instruction, and the operating system runs a sub-

routine to produce the quotient. Because this form of emulation works through con-

text switching on CLOCS, very little overhead is required! Divide is a good example

because the divide instruction is infrequently used by most programs[20. Therefore,

most programs will not run much slower, and the silicon area or other resources nec-

essary for divide may be allocated to other purposes. Note, in this case, that the

combination of the microprocessor chip and the operating-system emulation routine

satisfy the requirements of the architecture.

The design excludes unsigned arithmetic and comparisons. Porting a C compiler

would have been much easier with them, but we believed that such an addition would

violate the propriety of the design. The unsigned instructions are quite irregular

because many of them are the same as signed instructions. Also, we believed that we

had already added enough data types and were reluctant to add more.

Floating-point arithmetic is a similar example. Having floating-point hardware

might be worthwhile, but may not be feasible in all implementations. However. re-

serving four operation codes for floating point operations was inexpensive and main-

tained architectural regularity. Floating-point representation and arithmetic follow

the IEEE 754 standard. Since this standard does not conveniently support S-bit and
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16-bit floating-point quantities, floating-point instructions specifying these smaller

data-object sizes cause undefined-instruction exceptions.

3.1.5 Predictable Worst Case Performance

An important issue to many real-time applications is the worst-case performance.

For these applications, the average time a program takes to run is inconsequential;

the maximum time required to run is the only parameter that matters. The system

must be designed to get the task completed in a specified time in every instance,

or catastrophic failure may result[28]. As a result, architecture or implementation

features that improve average performance at the expense of worst-case performance

are unacceptable. This consideration eliminated architecturally-visible cache, and

influenced the use of pipelining in the implementations.

3.2 Operating System Support Features

Supporting a powerful general purpose operating system is an important goal of

the CLOCS architecture. We, the architects, had experience with several operating

systems. Our experience ranged from writing UNIX device drivers, to using low-

level system calls on MS/DOS systems, to simply using CMS on a VM system. We

were prejudiced: we believed that UNIX offered necessary and sufficient features

to support a development system, so our definition of a powerful and sophisticated

operating systems includes many of the features found in recent versions of UNIX. Of

course, current implementations UNIX do not have the required context switch-time

performance and most do not support real-time applications at all, but UNIX does

supply a list of interesting features. Other facilities for interprocess communication

and multiprocessing were also considered to be important operating-system services.

To support such an operating system, the architecture had to perform certain memory

system and control facilities efficiently.

3.2.1 Virtual-Memory Support

Virtual memory is perhaps the most crucial requirement for running a powerful op-

erating system. A good operating system for a computer system for program devel-

opment must offer the large address space and the protection that virtual memory

affords. Processes must be able to address more data than can be loaded into the
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physical memory currently available for that process. Also, the memory space of each

process requires protection from the actions of other processes. For virtual memory

to run efficiently, the architecture must provide certain services, such as address

translation.

3.2.2 Shared-Memory Support

As we examined real-time systems and implementations of real time systems on

UNIX computers, we noted that shared memory was considered important or critical

to many real-time applications. Since these applications are important to CLOCS,

the memory management scheme includes a shared memory facility, so that the same

physical memory may be read and modified by different processes.

3.2.3 Classes of Main-Storage Areas

Closely related to virtual-memory support is the support of different classes of main-

storage areas. For example, a program deserves protection from itself, so that a

program cannot inadvertently modify itself or inappropriate portions of its data space.

Also, reserving a part of the address space for communication improves the efficiency

of operating system service requests.

3.2.4 Semaphores

The best way for an architecture to support multiprocessor synchronization and ef-

ficient interprocess communication is with an atomic operation such as test and set.

Although supporting semaphores and other synchronization techniques was not a

high priority, it was a factor in some decisions, such as the inclusion of conditional

skips.

3.3 Compiler Support Features

In modern computer systems, almost all programs are generated by a compiler. Only

a few specialized subroutines, such as character-string move subroutines or operating-

system memory-management operations, are coded in assembler or machine language.

As a result, the compiler must be able to produce efficient machine language programs

from the input programs, written in the C language in this case. As we designed the
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architecture and ported two C language compilers to the architecture, we identified

several important features, notably multiple data object sizes and addressing mode

capabilities.

3.3.1 Data-Object Size

As described above, regular, efficient support for multiple sizes of data objects no-

ticeably affects performance of the benchmark programs. Having this size flexibility

is important for the compiler also. The compiler is greatly simplified if it can treat

different-sized objects similarly for both operations and addressing.

Consider the example of operating on two 8-bit characters. If the characters must

£rst be extracted from a 64-bit word, complexity will be added:

1. Instructions must be generated to extract the character.

2. Temporary storage must be allocated to hold the characters.

3. The operation must be completed.

4. The result must be stored back into some word.

More serious than the extra work is the problem of addressing. If the characters

have a two-part address, the address of the word and the address of the character

within the word, the address is a different type from the addresses of a full-word

integer. Multiple address types adds great complexity to the compiler.

These problems can be solved. The C language compilers for the Data General MV

series and the CRAY 1S are good examples of solutions. However, the increased dif-

ficulty in compiler writing makes the two part address approach inferior for CLOCS.

Also, this approach imposes a performance degradation which is amplified by the

nature of the programs we selected for benchmarks. As a result, we added the design

consideration of multiple data-object sizes with consistent addressing based on the

size of the smallest object, the 8-bit byte.

3.3.2 Addressing Mode Expectations

Compilers require the ability to modify operand addresses. In the C language, ar-

rays, pointers, subroutine calls and automatic allocation of variables all require the

calculation of addresses at program run time. This capability is provided through

indirect addressing.
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Although both of the compilers used with the CLOCS architecture [24, 37] assume

the ability to add small constant offsets to calculated addresses, this useful feature is

too expensive of instruction address bits to incorporate into the CLOCS architecture.

3.4 Compiler Properties Required to Support the

Architecture

A major part of the CLOCS design was based on the assumption that the C language

compiler would generate machine language programs that took advantage of the

architecture and were well optimized. That is, the compiler would efficiently use the

instructions that CLOCS provides and it would not generate unneeded or inefficient

instruction sequences. We assumed that as long as the instruction set was regular

and consistent, the compiler would be able to produce near-optimal machine code.

Some features of modern compilers, such as a high-quality register allocator, were not

required. This architecture does demand some important compiler features, though.

3.4.1 Compiler Optimization

Indirect addressing results in many explicit calculations of addresses, which in turn

results in much opportunity for common expression elimination. These common

expressions may span several basic blocks. For example, an automatic variable may

be fetched several times during a program, and each reference involves calculating the

address. The compiler must be intelligent enough to eliminate a significant fraction

of the redundant address calculations.

3.4.2 Support Different Data-Object Sizes

The compiler for CLOCS also needs to support 64-bit integers and 64-bit word sizes.

The size of other data types must be independent of word size. For example, if the

compiler assumes that four characters could be placed in each word when actually

eight will fit, significant problems arise. Many of the portable compilers we examined

or used had such a limitation. The GNU C language compiler, even though it claims

to support only a 32-bit word size, is relatively easy to modify to add the (4-bit

word operations. The compiler must understand the alignment restrictions of the

architecture, and the GNU C compiler had this feature.
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Chapter IV

Description of the Architecture

This chapter presents the architecture of CLOCS. It begins with a survey of the

architecture highlights, then covers instruction formats, programming model, data

formats, and operations. A section on implementation concludes the chapter.

4.1 Highlights

The CLOCS architecture aims to reduce the effort of switching execution from one

task to another by removing the highest layers of memory hierarchy. As a result, the

CLOCS architecture is a very simple one, with only memory-to-memory instructions.

The program context includes a single status register containing a program counter,

a process identification number and various flags.

This machine was designed using applicable RISC concepts. For example, all

instructions are 64-bits long. Data objects of eight, 16, 32 and 64-bits are supported,

but these objects must be strictly aligned (e.g., a 32-bit object must start on a 32-

bit boundary), and all instructions start on 64-bit boundaries. These definitions of

length and alignment permit the memory system implementation to deal only with

64-bit words. This simplification greatly improves memory system performance[32].

4.1.1 Noteworthy

The machine can switch context in less than the time required for the processor to

execute one instruction, since only the time for one store to memory and one fetch

is required for the switch. The result is much higher performance in programming

environments with frequent context switching; the requirements of many applications

for very fast context switching are satisfied.
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5 4 2 5 24 24

1 OP IOF IM AM I Operandi Operand 2

OP Operation Code

OF Operation Flags for skip and branch

M Mode (size of operands)

AM Address Mode for Operand 1 and Operand 2

Figure 4.1: CLOCS Instruction Format

4.1.2 Peculiarities

The only state inside the central processing unit (CPU) is a program status word. All

operations access data in main memory. One consequence of this is that all parameter

passing must be through memory.

4.1.3 History

The CLOCS architecture was conceived in May of 1987 by Mark Davis as an idea of

how he would design a RISC computer. The architecture was designed by Mark C.

Davis and Bill 0. Gallmeister in the fall of 1987. In this dissertation, "we" refers to

Bill and me.

The architecture was revised in December of 1988 and February 1989 to improve

performance on common integer-benchmark programs. The changes did not affect

context switching, but did add complexity to the architecture.

In August 1989, I made some additions to the architecture to ease implemen-

tation and simulation. These extra operations are discussed in the Chapter 7 on

implementation.

4.2 Instruction Formats

There is one instruction format; it is always one word long (Figure 4.1). There are two

operand fields. Most commonly, data addressed by Operand 1 and data addressed

by Operand 2 are combined using the specified operation, and the result is stored in

the location specified in Operand 2.
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4.2.1 Address Specification

The 24-bit operand in the instruction may be used as immediate data or may be

combined with a 16-bit segment identifier (SID) to form a 40-bit virtual address.

Each process has a primary instruction SID (OSID) and a primary operand SID

(OSID) assigned. Indirect addressing is also supported. During indirect addressing,

the default OSID or ISID may be overridden to access any byte in the terabyte (240)

address space.

4.2.2 Variations of Field Use

Although all instructions have the same format, the meaning of some of the fields are

different for some classes of instructions.

Operation Flags

The four bits in the Operation Flags (OF) field have the following meanings:

LT The result of the operation is less than zero.

GT The result of the operation is greater than zero.

EQ The result of the operation is equal to zero.

NO The result of the operation did not result in an arithmetic exception.

For the Branch and Trap operations, the first three flags are used to determine

whether the trap will occur by evaluation of Operand 2. Since Operand 2 is only

fetched for the comparison, no arithmetic exception is possible. For all other op-

erations, the flags are used with the result of the operation (that will be stored in

Operand 2) to do a conditional skip of the next instruction.

Operation Modes (Object Size)

The Operation Mode field (M) specifies the size of the operand objects. Sizes of

eight, 16, 32, and 64-bits may be specified. In general, this field specifies the size

of both Operand 1 and Operand 2. However, for branches, the size of Operand 1

(the destination of the branch) is always 64, so the Operation Mode applies only

to Operand 2. To simplify compiler construction, the distance of shifts is always

specified by a 64-bit number. As a result, for shifts, the size specified by the OM

only applies to the size of Operand 2.
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Fetch and Store of Operand 2

The execution of instructions does not always result in the fetcring of Operand 2

nor in the storing of Operand 2. Some control instructions (Branch, Trap, and Load

Operand Segment) do not change the contents of Operand 2. When those same

iistructions arc unconditional, Operaud 2 is not referenced, so need not be fetched.

4.2.3 Spaces and Addressing

The only numbered address space is main memory. The CPU deals with virtual

addresses, and these are converted to physical addresses by the Memory Management

Unit (MMU). A virtual address has 40 bits, yielding an address space of one terabyte.

There are 30 bits in a physical address, for a space of one gigabyte.

4.3 Programming Model

The programming model is pretty simple. All operations are memory-to-memory.

There is no working storage (registers). Everything is kept in main memory. The

memory name-space is a linear sequence of 240 8-bit bytes, and it contains spe-

cial locations for items such as interrupt vectors and MMU control registers. Even

the program counter (Status Word) may be accessed using a memory address. Pe-

ripheral devices are also memory-mapped, and so it is important that the memory

system properly handles these special addresses. The CPU intercepts reference to

the program counter, and the MMU handles references to its own registers. It is

the responsibility of the operating system to make sure that other memory-mapped

addresses are handled properly by the MMU.

4.3.1 Control Storage

A Status Word, MMU register, and other Input/Output registers constitute the con-

trol storage for CLOCS. The Status Word, which is the only task-dependent data

kept in the CPU, is a single 64-bit word and is shown in Fig 4.2. It contains a 24-bit

Program Counter, a 14-bit Process Identifier (PID) used to identify ownership of

system resources, interrupt mask flags, and reserved bits. The interrupt mask flag

bits have the following meanings if set:

1. Do not interrupt for arithmetic exceptions.
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4 6 16 14 24

IuNI INT j SID PID PC

UNS Unused, Reserved Bits

INT Interrupt Mask Flags

SID Segment Identifier

PID Process Indentifier

PC Program Counter

Figure 4.2: CLOCS Status Word Format

2. Do not allow group Zero Interrupts.

3. Do not allow group One Interrupts.

4. Do not allow group Two Interrupts.

5. Do not allow group Three Interrupts.

6. Reserved

The MMU contains an implementation-dependent number of one-word registers.

These registers provide sufficient information to transform virtual addresses to phys-

ical addresses. These registers and the operation of the MMU is discussed in more

detail in Chapter 5.

CLOCS reduces the variety of required instructions by mapping all state informa-

tion of the machine into the memory space of the processor. Thus, the State Word

may be found at location FFFF-FFFFFF (This is segment FFFF, address FFFFFF

in hexadecimal). Other memory locations reserved for special functions include:

@ The (131,071) MMU registers begin at FFFF-FOOOOO.

* Location FFFF-FEFFF8 contains the number of MMU registers installed on

this CPU.

e Input/output devices are mapped into the 7680 memory locations from FFFF-

FF0000 to FFFF-FFEFF8.
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e The 511 trap and interrupt vectors, likewise, can be found in the this segment,

at addresses FFFF-FFFOOO to FFFF-FFFFFO. New status word to be loaded

on interrupt start at FFFF-FFFOOO, and are in four groups of 64 each. The

status words for traps follow them.

These special locations are virtual addresses. The CPU is responsible for in-

tercepting references to the status word, providing data for read operations, and

preventing write operations if the current PID is not zero. The MMU is responsible

for handling references to the MMU registers. The other locations are translated to

physical memory addresses by the MMU, so the operating system must assure that

the correct physical locations are specified, and the page swapping routines do not

try to swap out a memory device. By allowing virtual input/output device addresses

and interrupt vectors, CLOCS supports simulating virtual machines.

4.3.2 Address Calculation and Addressing Modes

Because the CLOCS design does not include registers for use with memory addressing,

the architecture includes more unconventional methods to access memory. Below are

descriptions of the formation of virtual addresses, the transformation from virtual to

physical addresses, and the addressing modes available to programs.

Virtual-Address Formation

A virtual address is 40 bits long, and it may formed in two ways. First, it may

be fetched from the low-order 40 bits of a memory word by indirect addressing.

More usually, a 16-bit segment identifier (SID) and a 24-bit offset (Operand Offset)

are combined to form the address. Each process has a default segment assigned for

instructions and another for data. The MMU stores these segment identifiers and uses

the process identifier to find the correct segment identifier. The 24-bit offsets appear

in the instructions or may be fetched from main memory by indirect addressing.

Physical-Address Formation

The MMU can calculate a physical address in one of two ways. In the first case,

the CPU provides a process identification number and a 24-bit offset. The MMU

associatively looks up the physical page corresponding to the default segment for the

given process and the 12 high order bits of the offset. In the second case, the CPU
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provides the entire 40-bit address. Then MMU the associatively looks up the physical

page corresponding to the 28 high-order bits (16 SID + 12 from offset). After the

physical page has been identified, the MMU verifies that the requested operation

(read or write) is authorized for this process. If it is, the 30-bit physical address

is formed from the 18-bit physical page address and the 12 low-order bits from the

virtual address.

Addressing Mode Overview

Seven addressing modes apply to Operand 1, and four of these also apply to Operand 2.
All modes used for Operand 2 have a high-order bit of zero, so only the two low-order

bits appear in the instruction. Listed below are the addressing modes, with the ab-

breviations used by the CLOCS assembler following in quotation marks, applicability

to operands, and a description. In these descriptions, "+" means "concatenate the

two values," "FETCH" means "obtain the contents of main memory at the specified

address," and ":=" indicates the assignment of the value for later use by the CPU.

Direct "Opnd"

Applicable to Operandl and Operand2.

Operand:= FETCH (OSID + Opnd)

OSID, the operand SID, is concatenated to the high-order end of Opnd to provide

a full 40-bit virtual operand address from which the operand is fetched. This is the

direct addressing mode used by CLOCS to obtain an operand.

Indirect "@Opnd"

Applicable to Operandl and Operand2.

Operand:= FETCH (OSID + FETCH (OSID + Opnd))

OSID is concatenated to Opnd to form a virtual address. From this address a
24-bit offset is fetched. This offset is concatenated with OSID to form the virtual

operand address. This is the indirect-addressing mode used by CLOCS to obtain an

operand.

Zero Page "%Opnd"

Applicable to Operandi and Operand2.

Operand := FETCH (0 Segment + Opnd)
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The operand is concatenated to a SID of zero to arrive at the virtual operand

address. This provides rapid zero-page addressing, but otherwise is identical to direct

addressing. This is the zero page-addressing mode used by CLOCS to obtain an

operand.

Absolute Indirect " %cOpnd"

Applicable to Operandl and Operand2.

Operand:= FETCH (FETCH (OSID + Opnd))

OSID is concatenated to Opnd to form a virtual address; from this address a

word containing a 40-bit address is fetched to form a virtual address into any page.

This is indirect addressing from the default page into any page. This is the absolute

indirect-addressing mode used by CLOCS to obtain an operand.

Zero Page Absolute Indirect "%U%Opnd"

Applicable to Operandl Only.

Operand:= FETCH (FETCH (0 Segment + Opnd))

Opnd is concatenated with the zero-page SID to form a virtual address; from this

address in the zero page a word containing a 40-bit address is fetched. This virtual

address is used to fetch data in any page. This is indirect addressing FROM the zero

page, INTO any page. This is the zero-page absolute-indirect addressing mode used

by CLOCS to obtain an operand.

Zero Page Indirect "@%Opnd"

Applicable to Operandl Only.

Operand:= FETCH (OSID + FETCH (0 Segment + Opnd))

Opnd is concatenated with the zero page SID to form an virtual address. From

that address, a 24-bit offset is fetched. This offset is concatenated with the OSID

to form the virtual operand address. This is indirect addressing from the zero page

into the default page. We do not see a great need for this instruction, however we

put it in for symmetry. It may be of some future use for providing operating system

services. This is the zero-page indirect-addressing mode used by CLOCS to obtain an

operand.
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Immediate "<Opnd"

Applicable to Operandi Only.

Operand := Opnd

Opnd is a 24-bit immediate operand. For all operations except floating point

arithmetic, the 24 bits represent a two's complement integer. For floating point,

the immediate operand may only be zero; all other values are reserved. This is the

immediate addressing mode used by CLOCS to obtain an operand.

4.3.3 Addressing Mode Summary

Table 4.1 summarizes the types of memory access that occur for each addressing

mode. All memory transactions are for 64-bit words. Therefore, the data object size

of the instruction is not pertinent during a fetch. The indirect-addressing modes use

the low-order 24 or 40 bits (as appropriate) of the 64-bit word retrieved by the first

fetch. This is true no matter what the instruction operand size.

The first memory fetch during any indirect-addressing mode always uses the de-

fault Operand Segment Identifier (OSID). This is necessary so that programs can

easily store and move branch addresses; the MMU will not permit writing to the

memory space addressed by the default Instruction Segment Identifier (ISID). Also,

the immediate-address mode does not apply to the instruction space, and a branch

with an immediate Operand 1 causes an exception.

4.4 Data Formats

4.4.1 Fixed Point

Integer data are represented as eight, 16, 32, and 64-bit two's- complement numbers.

4.4.2 Floating Point

Floating-point numbers are represented as 32 and 64-bit numbers, conforming to

IEEE 754 formats.
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Addressing Type of Memory Access
Mode First Fetch Second Fetch
Direct Relative
Indirect Relative Relative
Zero Page Zero
Absolute Indirect Relative Absolute
Zero Page Absolute Indirect Zero Absolute
Zero Page Indirect Zero Relative
Immediate II

Relative means use the default SID.
Absolute means use the SID provided (0 or from indirect address).
Zero means use zero for the SID.
A blank column means memory access is not required.

Table 4.1: Summary of Addressing Modes

4.4.3 Character

An 8-bit integer may represent a character. There are no other architectural limita-

tions on the character set used.

4.5 Operations

The CLOCS architecture has 20 operations. There are one movement, five fixed arith-

metic, four floating-point arithmetic, three logical, four shifts, one sequencing and
two supervisory. For ease of compiler writing and simulation, some additional pseudo

instructions were invented (such as conversion from fixed- to floating-point formats),

but these are not considered part of the architecture. The compiler produced the

instructions as if they were supported by the architecture and the implementation-

level simulator simulated their execution. Two alternate, more realistic approaches

were for the compiler to generate subroutine calls instead of these instructions or

for the operating system to emulated the instructions. I did not use either of those

approaches because they were more time consuming to implement and would not

have improved the accuracy of simulation timings.
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4.5.1 Decision

CLOCS has no specific decision operations. Instead, a conditional branch is provided,

and all arithmetic and boolean logical operations incorporate conditional skip. The

behavior of this sequencing will be discussed with each category of operation.

4.5.2 Data Operations

Data operations are partitioned into fixed- and floating-point arithmetic, boolean

logic operations, and shifts.

Arithmetic Operations

CLOCS supports 8, 16, 32, and 64-bit two's complement fixed-point arithmetic. Op-

erations require operands of the same length. For operations such as multiply, with

larger results than sources, the high-order bits are lost. Similarly, the fractional part

of a divide result is lost. Indication of multiply overflow is available to the program-

mer in the form of a conditional skip. The program may use the remainder instruction

to detect and manipulate fractional divide results.

Operation codes have been set aside in CLOCS for floating-point arithmetic. Early

implementations of CLOCS would not include floating-point hardware: floating-point

instructions would cause unknown operation faults, and the operating system would

then perform the floating-point operations. Later implementations could then add

floating-point hardware, and unchanged programs would automatically take advan-

tage of the improved performance.

As discussed above, the Flags field of the instruction governs a conditional skip.

For both fixed-point and floating-point arithmetic, the following instruction is skipped

if one or more of four conditions is flagged in the instruction and that condition is

true. These conditions are:

LT The result of the operation is less than zero.

GT The result of the operation is greater than zero.

EQ The result of the operation is equal to zero.

NO The result of the operation did NOT overflow, did NOT underflow, or NOT a

divide-by-zero, as appropriate for the operation.
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Boolean-Logic Operations

CLOCS provides And, Or, and Xor logical operations.

Skips for boolean-logical operations occur for three possible conditions:

LT The result of the operation is less than zero.

GT The result of the operation is greater than zero.

EQ The result of the operation is equal to zero.

Note that Operand 2 is evaluated as a two's-complement number for the conditional

skip; however, the sign and equivalence to zero of 4-byte and 8-byte floating-point

numbers are also interpreted correctly.

Shifts

CLOCS provides Shift Left, Shift Right, Shift Right Arithmetic (extends two's-complement

sign), and Rotate Left. The number of bits to be shifted (from zero to the size of

Operand 2) is specified in Operand 1. The following instruction is skipped using the

same conditions as the logical operations above.

4.5.3 Sequencing

The sequence of instructions is controlled by the branch instruction, supervisor calls,

and interrupts.

Branches

The branch instruction is conditional, based on the contents of the second operand

(evaluated as a fixed-point number):

LT Operand 2 is less than zero.

GT Operand 2 is greater than zero.

EQ Operand 2 is equal to zero.

Interrupt and Supervisor Call

As described in the section above on Control Storage, CLOCS has a large number

of interrupt vectors. On a Supervisor Call (Trap) or an interrupt, the old status
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word is saved and the new status word for that supervisor call or interrupt is loaded.

Interrupts are grouped into four maskable levels. Each interrupt status word should

mask its group of interrupts long enough to move the saved status word out of the

way. Then it may re-enable that group of interrupts. In this way, if the same interrupt

occurs before processing of the first interrupt is complete, the first interrupt will not

be lost.

The Trap instruction is the form of supervisor call on CLOCS. Operand 1 specifies

the number of the trap which is then used as an index into the trap vector beginning

at FFFF-FFFF800. The corresponding trap status word it loaded into the CPU and

the old Status word is saved.

The trap instruction execution is conditional. If one of the flags in the instruction

is set then Operand 2 is fetched and examined. The Trap instruction uses the same

conditions as the branch instruction; if the corresponding condition is true, then the

Trap occurs and the CPU stores the Status Word and loads the new Status Word

specified by the Trap. Otherwise, the following instruction is executed.

4.5.4 Supervisory

Two supervisory instructions are provided. The Trap instruction conditionally causes

the execution of a supervisor call at a trap vector location as described above.

This qualifies as a supervisory instruction because the status word is directly loaded

from the trap vector, allowing the machine to change to operating system process-

identification number. Condition flags for this instruction are the same as for the

branch.

The Load Operand Segment instruction allows a program to use a different default

data segment. If any of the flags are set, then Operand 2 is fetched and examined. If a

flagged condition is satisfied, the next instruction is skipped. The Load Operand Seg-

ment instruction is always executed. If the identified segment is not available to the

process, the CPU will cause a fault.

Although not specifically allocated as a supervisory instruction, moving data to

certain addresses from FFFF-FFOOOO to FFFF-FFFFFF causes changes to the com-

puter system. For example, writing to FFFF-FFFFFF changes the Status Word. In

the case of the Status Word, the CPU enforces writing only by process number zero.

For other memory location, the operating system must use the MMU registers to

prevent unauthorized modifications.
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4.5.5 Input and Output

Input and output devices are memory-mapped, so no special operations are provided

to manage them. The memory-mapping is in the memory-address range FFFF-

FF0000 to FFFF-FFEFFF. A special set of addresses is provided to standardize

virtual memory and cache algorithms, so they will not interfere with proper device

operation.

4.6 Implementation Notes

The architecture leaves two major hooks to permit single chip implementations with

a reasonable numbers of transistors. First, operations are defined for floating point,

but no hardware support is required. Under normal circumstances, floating-point

will be emulated by operating-system routines. The second hook concerns the size of

the MMU. Although memory addresses have been set aside for a very large number

of MMU Registers, a machine could be built with very few registers, perhaps with as

few as four. Although economizing on the MMU will save chip area, it will have a

major impact on context-switching performance; therefore, we recommend having at

least one MMU register for each page of physical memory installed in the machine.

The implementations of CLOCS can be heavily pipelined. A four-stage pipeline

with interlocks or a seven-stage pipeline without interlocks seems reasonable. Note

that pipelining will increase context-switch latency, which may be significant if a

real-time task has to be serviced in less than 20 cycles. It is not clear how one writes

a scheduler for such a demanding environment, but the increased latency is a con-

sideration. Also, caching inside the CPU may effectively improve performance. One

type of caching is already available with a pipeline design; the result of the previous

calculation is available for use by the current instruction. I expect instructions using

the result of the previous instruction to be common (compute address followed by

fetch data), so this may be important for good performance.
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Chapter V

Description of the Memory Management
Unit

This chapter begins with a description of the organization of the Memory Manage-

ment Unit (MMU). The details of the MMU design and descriptions of operations

follow. The fourth section shows how the MMU supports common virtual-memory

algorithms. The chapter concludes by describing two MMU designs that were dis-

carded.

5.1 Organization of the Memory Management Unit

5.1.1 Requirements

The CLOCS MMU must support virtual memory for large numbers of active pro-

cesses without seriously affecting context-switch performance. The guiding princi-

ple for MMU performance is: "If information for a process is in main memory, it

must be accessed with no context-switch penalty." To support general purpose op-

erating systems adequately, the MMU must provide each process a unique address

space. Processes that have their own address space are sometimes called heavyweight

processes[9]. Another design requirement is that the MMU must support lightweight

processes. This means that the MMU must provide a sharable address space with

protection for the space owned by each process. Provision for protected sharing of

memory between two processes is also an important requirement for real-time appli-

cations.

5.1.2 What the MMU Does

The purpose of the MMU is to support virtual memory for the CLOCS computer

system. For each memory system reference, the MMU does the following:
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The Virtual Address Referenced By a Process

Process Segment Ofe
Identifier Identifier

Physical

Address

Figure 5.1: What the CLOCS MMU Does

* It accepts an address specification from the CPU.

* It determines the corresponding physical address.

e It verifies permission for the requested memory operation.

* It maintains information of use to the operating system.

To specify an address, the program provides a 24-bit Offset and a 16-bit Segment

Identifier (SID) which form a 40-bit virtual address. The Offset may come from

either one of the operand fields of an instruction or from memory during an indirect

address. The SID may be a default Segment Identifier for the process, zero, or a SID

obtained from memory during an indirect address. Because each process must have

its own address space available, the process identifier (PID) is also part of the address

specification. This address translation function of the MMU is shown in Figure 5.1.

Although it is very similar to the scheme used in the Atlas computers [36], the Atlas

scheme did not have the extensive support of permissions and status that the CLOCS

MMU provides.

Not every bit of an address is translated. In CLOCS, a memory page is 4K bytes

of either virtual or physical memory. The real work of address translation is done at

the page level; the low-order 12 bits of the virtual address are used as the low-order
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bits of the physical address. The 28 high-order bits of the virtual address form the

virtual page.

The CLOCS MMU supports three types of operations: read, write, and execute.

It allows the operation only if the addressed virtual page has the appropriate autho-

rizations for the current process. Authorizations for a virtual page may be one of the

following:

* No operations authorized for this page

* Read operation only

e Read or write operations

* Fetch instruction operations only

The MMU also keeps records of access and writing to physical pages. It records if

a physical page has been read and written, a state called USED, so the operating

system can later determine the best page to swap out using a well known algorithm

for virtual memory[9]. The MMU also records if a read or write type physical page has

been changed, a state called DIRTY, so the operating system can avoid unnecessary

saving of pages to backing store. The encoding and manipulation of this information

is discussed later in this chapter.

5.1.3 External Appearance of the MMU

All the information to do the above - determine physical addresses, check permis-

sion, and remember physical memory status - is kept in 64-bit registers in the MMU.

Each register relates one PID and virtual page to one physical page. These MMU

registers are memory-mapped, beginning at location FFFF-800000, and are specially

protected from user processes. Only the superuser, PID = zero, may change them. To

support the guiding principle of equal time access for all data in memory, the MIMU

must contain at least as many registers as the computer system contains physical

pages. More registers must be provided, because one extra MMU register is required

for each page of memory shared between two processes. In the absence of data for

specific applications, we estimate that an additional 10% of MMU registers over the

maximum number of expected physical pages is sufficient. CLOCS (an address up

to 256K physical pages (218), but since this corresponds to one gigabyte of memory,

most machines will have less physical memory and need many fewer MM!,7 registers.
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Memory address FFFF-FEfFF8 is reserved for a 64-bit fix-point integer represent-

ing the number of MMU registers installed. When this location is read, the MMU

responds with the number of MMU registers installed. This same memory location

is also used as a command register. Writing to this location causes special MMU

operations such as resetting the USED flags for all pages, as described later in this

chapter.

5.1.4 Physical Page Status

One function of the MMU is to maintain status information on the memory pages, so

a part of each MMU register contains bits indicating the status of the corresponding

virtual and physical page. The statuses are not orthogonal, so an encoding scheme

reduces the number of bits needed to indicate the status. The USED and DIRTY

statuses are maintained for the physical page. More than one MMU register may

refer to a physical page; this allows memory to be shared. In this case, the MMU

must provide the correct status for a physical page when any MMU register referring

to that physical page is read. For example, suppose MMU register FFFF-FOO010 and

FFFF-F00090 both point to physical page four. A write is made using the entry at

FFFF-F00090. If the register at FFFF-FOO010 is subsequently read, its status will

indicate that the page is DIRTY even though no write was made using that MMU

entry.

The implementer may use any means to accomplish this subtle updating of physical-

page status, but one solution is suggested. An auxiliary memory with a 2-bit word

for each physical page stores the correct status of each physical page. During routine

memory operations, the status of a page is updated concurrently parallel with the

memory operation. When an MMU register is read, the physical-page address in

the MMU register is used to access the auxiliary memory. The USED and DIRTY

bits from the auxiliary memory are used to update the MMU register before it is

provided to the CPU. As long as the page status is fetched and the MMU register

status updated in the time of a main memory fetch, the MMU organization does not

affect performance.
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5.2 Contents of the MMU Word

Before we examine the MMU registers, here is a quick review of terms describing

CLOCS memory addressing and MMU register fields. Each abbreviation is followed

by the number of bits allocated in this system.

VA (40) Virtual address

PA (30) Physical address

PID (14) Process identifier

SID (16) Segment identifier

OSID (16) the primary (or default) SID for operands

ISID (16) the primary (or default) SID for instructions

VO (24) Virtual Offset (the address contained in instructions)

PC (24) Program Counter, a VO

OPND (24) Operand address in an instruction, a VO

VP (12) Virtual-page address, the high order bits of the VO

PP (18) Physical-page address

PO (12) Physical Offset, the low-order bits of VO

FLG (4) Flags, indicating permissions and status of a virtual page

The MMU takes the VA (made up of a SID and a VO) and the PID and produces

a PA that is 30 bits long. The translation process is shown graphically in Figure 5.2.

Each MMU register (or entry) is a 64-bit word. The MMU registers are divided

into six fields. The MMU may store the information for each entry in any convenient

format, but it must appear as a 64-bit memory word with the format shown in

Figure 5.3 when read by the CPU.

5.2.1 Sizing Considerations for Fields

We determined the size of each of the fields in the MMU registers in two iterations

through the design process. First, we determined the most desirable size for each
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14 16 24

PID SID V

Optionally

LC MMU

18 12

PP PO

Figure 5.2: CLOCS MMU Address Translation (Detailing of Figure 5.1)

14 4 16 12 18

PID JF'Lf SID VP PP

PID 14 bits - Process Identifier

FLG 4 bits - Permissions and Physical Page State

SID 16 bits - Segment Identifier

VP 12 bits - Virtual Page

PP 18 bits - Physical Page

Figure 5.3: CLOCS MMU Word Format
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field. As frequently happens, there were not enough bits available to satisfy all us,

so we made some compromises and solved some simple inequalities to make the field

size assignments. We started from some quantities fixed by previous architecture

design decisions, then adjusted the other fields using the considerations mentioned

as guidelines in Chapter 3.

As we began the process of setting desirable field sizes, we had one fixed starting

point: the size of the virtual address offset (VO), which occupied 24 bits in the

instruction. In order to make the address space sufficiently large, we set the size

of the SID to 16 bits. We wanted at least one gigabyte of physical storage, so the

physical address required 30 bits. FLG required about four bits. We wanted 16 bits

for PID adequate to support 64K processes, a number that was more than sufficient

for the UNIX systems we had studied. We set the physical page size to 1024 bytes

based on our opinions concerning data object sizes. This size represents 128 words,

a quantity small enough to allow very complete use of available physical memory.

Since the VO was 24 bits, this physical page size would have required the VP to be

14 bits and the PP to be 20 bits. The 34 bits for VP and PP plus the 16 bits for SID

leaves only 14 bits for FLG and PID. We estimated that at least four bits would be

required for FLG, leaving only 10 bits for PID.

Now it was time for us to compromise. Since the 64K processes limit available

under UNIX was much larger than needed, the PID was a good place to start looking

for some additional bits. A 10-bit PID, allowing only 1024 active processes, was too

small to meet the design consideration of handling thousands of processes. Instead

we accepted a 14-bit PID, allowing 16K processes. This total of 34 bits for the PID,

SID, and FLG left 30 bits. Then solving the constraints:

VP + PP = 30 bits

PP + PO = 30 bits

VP + PO = 24 bits

we obtained the final values listed in Figure 5.3. The 12 bits allocated to the physical

offset resulted in a physical page size of 4K, which was larger than we desired, but a

size commonly used for UNIX virtual memory systems. This compromise increased

the importance of maintaining the FLG field no larger than four bits, so we minimized

the number of bits required, as discussed below.
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P P P P Reason
D D D D for

U U U U Elimination
T 0 0 0 1 * * * Unallocated cannot be P,D,U

X 2 3 e 0 4 5 * * Executable cannot be DIRTY
W 0 0 0 0 * * No Write only pages
W X 0 * * . * No X and (R or W)

R 6 7 . . o o o NoDandPwithoutW
R W 8 9 10 11 12 13 14 15
R X e• * .0 * * * 1 No X and (R or W)
R W X ceo * 0 * 0 * 1 NoXand (RorW)

Table 5.1: All Possible MMU Page Conditions

5.2.2 Mapping of Word Use to FLG

The MMU has to maintain much permission information and status for each physical

page. Here are the conditions (with the FLG abbreviations that represent them) that

naturally suggested themselves:

R The page is readable by the process.

W The page may be written by the process.

X The page may be executed by the process.

P The SID is the default SID for this type of page (program or data) for this process.

U This page has been USED (executed, read or written).

D This page has been written, DIRTY

If one bit was used to represent each of these conditions, the flag field would

require six bits instead of the allotted four.

Many of the combinations do not make sense or represent conditions not allowed

by the design considerations of Chapter 3. To see these nonsensical combinations,

we constructed a truth table (Table 5.1). A bullet (o) in this table indicates that the

entity is not a viable alternative. A number indicates that this entity represents a

useful combination of attributes and should be represented in the MMU registers.

With only 15 usable states to represent, only four bits of state will be recquired.

We reorganized the states as shown in Table 5.2. The numbers at the left of the table

are the two high-order bits of the flag field in the MMU word. The numbers at the
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Primary Primary
USED USED

FLG 00 01 10 11
Executable 00 2 3 4 5
Read Only 01 6 7 1 1 1

Read or Write 10 8 9 12 13
(Read or Write) and Dirty 11 10 11 14 15

Table 5.2: MMU Condition Assignments

top of the table are the low-order bits of the flag field. The numbers inside the table

correspond to numbers in the first table.

With this bit assignment, the third bit becomes the USED bit, the fourth bit is

the Primary bit, and the first and second bit must be taken together to interpret the

permissions. The combination 0110 represents an unassigned physical page.

5.3 MMU Operations and Exceptions

The MMU must perform several operations. The operations may not work properly;

they may cause exceptions that result in execution of an interrupt handler on the

CPU. The operations and related excep-tions are described below.

5.3.1 Normal Read and Write

The MMU registers can be read and written by the superuser process, PID = 0. The

MMU registers are addressed as normal memory, so the MMU must recognize virtual

addresses startir, -t FIFFF-800000 and rcspond to them with the MMU registers

rather than trying to calculate a physical address.

Possible exceptions:

" Memory not present

(Addressing MMU register not installed)

" Memory permissions incorrect

(PID# 0)

* Flag 0111 not permitted

(Unassigned Flag combination)
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5.3.2 From PID, VP Get PP for an Operand and Check Per-

missions

When presented with a PID, a VP, and a signal that this fetch is for an operand, the

MMU must supply the default OSID, determine the correct PP, and check permis-

sions.

Possible exceptions:

* PID, SID, VP not in MMU

e Memory permissions incorrect

5.3.3 From PID, VP Get PP for Text and Check Permissions

When presented with a PID, a VP, and a signal that this fetch is for an instruc-

tion, the MMU must supply the default OSID, determine the correct PP, and check

permissions.

Possible exceptions:

* PID, SID, VP not in MMU

9 Memory permissions incorrect

5.3.4 From PID, OSID, VP Get PP, and Check Permissions

When presented with a PID, an SID, a VP, and a signal that this is an operand fetch,

the MMU must determine the correct PP and check permissions.

Possible exceptions:

* PID, SID, VP not in MMU

* Memory permissions incorrect

5.3.5 From PID, ISID, VP Get PP, and Check Permissions

When presented with a PID, an SID, a VP, and a signal that this is an instruction

fetch, the MMU must determine the correct PP and check permissions.

Possible exceptions:

e PID, SID, VP not in MMU

* Memory permissions incorrect
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5.3.6 Change Primary OSID

When directed by the CPU, change the primary OSID to the SID provided on the

low-order 16 bits on the data bus. This update requires setting the Primary flag on

all entries with the PID and new OSID and resetting the Primary flag in all MMU

registers with the PID and the old OSID.

Possible exceptions:

9 PID, SID not in MMU

(An authorized page has been paged out.)

(This PID is not authorized to share this page.)

e Memory permissions incorrect

(The new segment identified by SID is not writable. The primary operand page

must be writable. This is not strictly required, but is the proper thing to do.)

5.3.7 Change Primary ISID

Branch instructions may specify addresses in segments other than the primary seg-

ment by using appropriate indirect addressing modes. When such a branch is taken,

the MMU must update the primary ISID for this process. This update requires set-

ting the Primary flag on all entries with the PID and new SID and resetting the

Primary flag in all MMU registers with the PID and the old ISID. The implementa-

tion of the CLOCS architecture must provide communication between the CPU and

the MMU to update correctly the ISID in this situation.

Possible exceptions: none

The exception PID, SID, VP not in MMU cannot occur for this operation, because

the MMU must first fetch the new instruction using one of the above operations.

If there is an interrupt, the branch instruction will be restarted, so at the time

the branch is taken the physical page is available. Furthermore, the instruction

fetch operation will verify that this page contains executable code, so no Memory

Permissions Incorrect exception may occur.

Some implementations may not specifically use this MMU operation. If the CPU

does not fetch the instruction until it decides to take a branch, then the MMU may

automatically change the default ISID during the fetch. This possibility is left open

to the irplementers.
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5.3.8 Reset USED for All Physical Pages

When the operating system selects a page to swap out of main memory it may

reference the USED bit as described below. Frequently, the operating system will

want to set all USED bits to zero. To set the USED bit for all physical pages to

zero, a program writes a word with the low-order bit set to the memory location

FFFF-FEFFF8. The MMU intercepts the reference to that special memory location

and interprets the low order bit set to one as a command to reset the USED status

for all installed MMU registers. That location when read contains the number of

MMU registers installed.

Possible exceptions: none

CLOCS explicitly supports this operation with hardware because it would be

very time consuming for a program to update each individual MMU register. Many

algorithms call for updating all USED bits each time a page fault occurs, so this

clearing operation would be frequent. On the other hand, the DIRTY bit only need

be reset when a page was written to the backing store. Consequently, it is reset by

the operating system writing to the MMU register.

5.4 Implementing Common Virtual-Memory Oper-

ations

We decided that the CLOCS architecture should support the three of the most com-

mon virtual memory algorithms described in Dietel [9]: write-back virtual memory,

copy-on-write, and not-recently-used replacement.

5.4.1 Write-Back Virtual Memory

Before a page may be removed from physical memory, the DIRTY status should be

checked for any MMU register referring to that physical page. Saving the page on

disk before reusing the page is required only when the DIRTY status is set. This

method significantly reduces memory traffic because much data memory is read, but

not changed before it is paged out.

52



5.4.2 Copy-on-Write

Copy-on-write is an algorithm frequently used by UNIX operating systems and VAX

computers. A process is assigned a block of memory containing information or code.

As long as it does not change this memory, it shares the memory with another process.

As soon as the process attempts to change the memory, the operating system must

intervene to make a separate copy for this process, and then allow the change to

happen. This facility is very useful for the "fork" system call in UNIX. Copy-on-

write may be simulated by assigning the page as a shared, read-only page. In this

case shared simply means that the page has more than one MMU register pointing

to it. When the process tries to write to the copy on write page, the MMU causes

an exception. The operating system exception handler then copies the page to an

unused physical page. It then corrects the MMU register to point to the new physical

page and restarts the user process with the instruction that caused the fault.

5.4.3 Not-Used-Recently Page Replacement

One popular page replacement algorithm is not-used-recently. This technique is de-

scribed in detail in Deitel [9]. Briefly, when a page fault occurs, the operating system

selects a page that does not have the USED bit set to swap out. It then can use

the vacated page to load the needed page that caused the page fault. Deitel points

out that a USED bit and a DIRTY bit must be maintained for each page. CLOCS

maintains this information in the MMU.

5.5 The MMU Designs We Discarded

During MMU design, we considered several schemes. Some of the alternate design

were interesting to us or involved important design decisions. Some of the designs

we threw away are described here.

5.5.1 Alternate A - Virtual and Physical Tables

In the alternate A design, the MMU contained two tables instead of one. One table,

Tablel, contained a PID, a FLG, and a SID for each entry. The other table, Table2.

held a Dirty bit, a SID and a VP for each entry. Table2 had one entry for each physical

memory page, so the PP did not have to be included in the table. The advantage
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of the alternate A scheme was that it was more proper for support of lightweight

processes. The PID, SID, FLG relationship was unique. The chosen scheme was

better in that it could support heavyweight as well as lightweight processes and

also could resolve the permissions down to the physical-page level. With the chosen

scheme, one segment could hold both code and data space on separate pages, so

small processes need not take up two segments of address space. The other difference

between the schemes was the, implicity of the data structure (only one type of MMU

register) and duplication of PID's for the chosen scheme and duplication of SID's in

the alternate A scheme.

The final decision of which scheme to use was based (,n the projected silicon area

of the two schemes. We assumed field sizes to be the same for the two schemes

except that the alternate A scheme needed one extra DIRTY bit. PID, FLG, SID,

and Virtual Page fields were all associative memory. The fact that these fields were

associative was important because associative bits would require at least 25% more

silicon area to implement. Most associative-bit implementations would require about

50% more area than a non-associative bit.

To compare the ',wo schemes, we specified a computer system with 4000 pages

of physical memory and capable of running 1000 processes. This machine was a

representative system for using the power of the CLOCS architecture and supporting

large applications. For a machine of this size, the chosen scheme required 4500 table

entries (one for each physical page plus 500 for memory sharing). Each entry was 64

bits long, 44 of which were associative. The Alternate A scheme required Tablel with

2500 entries, two for each processes (one data, one code) and 500 extra for memory

sharing. Each entry in this table was 34 bits long, and all were associative. The

second table, Table2, contained 4000 entries, one for each physical page. Each entry

was 29 bits long, and 28 of them where associative. Table 5.3 shows the bits and the

relative area for the two schemes. The column labeled "Total Relative Area" is the

total area of the table in non-associative bits, assuming that associative bits are 50%

larger than non-associative ones.

The small additional cost of associative bits and the increased function of the

chosen scheme, particularly since the chosen scheme supported heavyweight processes

(a concept used by many available operating systems) tipped the scales in favor of

the primary scheme.
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MMU Scheme Associative Total Total Relative
and Table Bits Bits Area

Alternate A Tablel 80,000 85,000 125,000
Alternate A Table2 112,000 116,000 172,000
Alternate A Total 192,000 201,000 297,000

Chosen Total 198,000 288,000 387,000

Table 5.3: Comparison of Chosen and Alternate A MMU Designs

5.5.2 Alternate B - Some Registers Permanently Mapped

The alternate B MMU design attempted to reduce the number of bits of memory

in the MMU and to make some operating-system functions more efficient by perma-

nently assigning some of the MMU registers to physical pages. In this scheme, mem-

ory locations FFFF-800000 through FFFF-FOOOOO were assigned to physical pages

zero through 262,144. These memory locations always returned the corresponding

physical page number when read, and the physical page was ignored during writes to

these MMU registers. In other words, these MMU registers appeared like the other

chosen scheme MMU registers except tha' the PP could not be changed. The mem-

ory from FFFF-F40000 through FFFF-FEFFFE could be assigned to any physical

page.

The advantages of this alternate B scheme were fewer memory bits in the NIMU

and a possible improvement in operating-system speed. If a computer system had

N physical pages and allowed for an additional M pages to be shared, then N + M

MMU registers would be required. We estimated that the alternate B scheme could

have saved N * 18 bits of memory over the primary scheme. Another advantage

for this scheme was improved performance during a naive search for a page to swap

out. With alternate B, a search for a potentially shared page would have required

only O(M) steps while the chosen scheme takes O(N + M). As estimated above,

M would be only 10% of N, so the new scheme would hae yielded an order of

magnitude performance improvement. This advantage disappeared, though, when

Bill Gallmeister suggested a O(log M) software algorithm. The data structures and

algorithm to attain this superior level of performance are well understood[38, 9, 17].

With one major advantage of this scheme eliminated, the disadvantages became

more persuasive. Having two classes of MMU registers lacked propriety. Although

the same operations could be performed on the two types of MMU registers, different
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actions resulted. If the systems programmer made an error and tried to set the

physical page number of one of the permanently assigned MMU registers, the action

would be ignored and the programmer would receive no warning of his error. An

additional disadvantage of the alternate B scheme was that the number of shared

pages was limited to M. With the chosen scheme, all MMU's registers may be used

for shared pages, with the only disadvantage that some physical pages may not be

accessible, a much more graceful degradation of performance.

Since the only advantage to alternate B was the saving of some memory in the

MMU and it introduced such serious impropriety, we selected the chosen scheme over

it.
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Chapter VI
Quantitative Analysis of CLOCS

This research would not have been worth the trouble without some indication that

the CLOCS computer would perform reasonably well. When we began the study we

estimated that gains in context switch performance could compensate for a through-

put performance loss of 75%. That is, if CLOCS took less than four times longer to

run a program as a conventional computer architecture, then its improved context-

switch performance would compensate, and CLOCS would be the better architecture

for enough applications to warrant further study.

To estimate the relative performance of CLOCS to conventional architectures, I
performed several analyses that are reported in this chapter. A small exercise checks

that the architecture does not have any flaws that prohibit efficient programming.

CLOCS performance is estimated using expected bandwidth requirements and a com-
parison to the MIPS R2000. A final check of the CLOCS architecture's potential is

the application of Fuller's evaluation techniques. These analyses all show good po-

tential for CLOCS.

6.1 Programming a Small Problem on CLOCS

In an attempt to reveal major flaws in the CLOCS architecture, I examined a few

small problems to identify inconvenient features of the architecture. It was easy to

write CLOCS assembler code for small programs involving pointers, subroutine calls

and Input/Output.

As an example of these small programs, I present the solution to Exercise 9-2 in
the computer architecture book by Blaauw and Brooks[3]. They suggest a character

translation exercise to be programmed on different computer architectures. The

problem statement is below, and the solution is in Figure 6.1.

9-2 In a stream of 1000 characters of running text, characters are to

be replaced according to the following table:
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Program Translate
.data

input: ; Input data
.ascii "Some text of length 1000"

output: ; Output data
.space 1000 ; Reserve space for 1000 characters

table: ; 256 character translation table
.ascii "ZBCDEFGHI6KLMNOPQRSTUVWXYZ1294567890:,,:\" ... "

table-pointer: ; pointer to the translation table
.P table

inputptr: ; pointer to input data
.P input

output-ptr: ; pointer to output data

.P output
count: ; counter for characters remaining

.di 1000

.text ; Begin the program.
start: ; Zap last 8 bits of table pointer.

movqi Ginput.ptr,table-pointer+7

; Move the selected character.
movqi Otable-pointeroutput.ptr

; Increment the pointers.
adddi <1,output.ptr

adddi <1,input.ptr

; Decrement the count and loop.
subdi <1,count

bne start,count

Return to main program
.end

Figure 6.1: Solution to Exercise 9-2 from Blaauw and Brooks
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3 9

A Z

J 6

Any invalid character blank

All valid characters are to remain unaltered. The character set has 48

characters. Write a program, assuming input and output are in memory.

Although CLOCS has no special character handling operations or looping instruc-

tions, the availability of all operations for all data type sizes allows a simple inner

loop. This program does not reveal any weaknesses in the CLOCS architecture.

Note that the loop ending instructions calculate a new value for count then use it

in the following instruction. This is a common construct in CLOCS assembler code

produced both by humans and compilers.

6.2 Expected Memory-Bandwidth Requirements

CLOCS requires higher CPU-to-main-memory bandwidth than many contemporary

computer systems because of the flattened memory hierarchy. There are two main

causes for this higher bandwidth requirement: all of the data is stored in memory

(there are no registers to store intermediate results), and instructions and data may

not be cached.

I estimate that CLOCS uses three data references for each instruction. For an

instruction that uses direct addresses, the three memory references are:

1. Fetch Operand 1.

2. Fetch Operand 2.

3. Store the result at the address Operand 2.

This estimate of three data memory reference per instruction on average is based

on the assumption that the number of instructions requiring less than three references

compensates for the instructions requiring more than three. For example, instructions

that use immediate data do not have to reference memory to obtain Operand 1, so

they use less than three operand memory references. Full-word moves do not have
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to fetch Operand 2 from memory, so they also require one less memory reference.

The conditional-branch instruction requires only one data-memory reference, and

unconditional branches require no data-memory references. On the other hand, and

instruction with one indirect addressed operand uses four memory references, and

instructions with indirect addresses for both operands use five references to obtain

and store the operands. Assuming that the average CLOGS instruction requires three

data-memory references and one instruction-memory reference, I estimate that the

average instruction will reference memory four times. This estimate is conservative;

the Dhrystone benchmark program requires 3.29 references per instruction, and an

implementation feature further reduces to below 3.0. See Chapter 8 for the specifics.

Other common computer architectures reference data memory much less fre-

quently, about two memory references per instruction. Most IBM System/360 in-

structions reference one data memory location; these instructions require two memory

references. RISC architectures frequently have separate load and store instructions

constituting about 30% of all instructions executed[34, 20]. Therefore, seven instruc-

tions operate on the data referenced in three load/stores. To execute 10 instructions,

13 memory references are required: 10 for instruction fetches and three for data

fetches. However, only 10 of those instructions really do work (not counting loads

and stores as computation), so the memory references per instr'iction doing real work

is 13/7 = 1.85. These two examples show that conventional and RISC architectures

use about two memory references per instruction.

Because CLOCS requires about twice the memory access of RISC architectures,

a CLOCS computer system needs twice the bandwidth. Higher bandwidth may

be obtained by using faster memory at greater cost or implementation techniques

such as dual-ported memory systems. However, even with the best technology avail-

able, the CLOCS cumputer would likely run slower than a contemporary RISC-based

computer. The calculations above show that the expected degradation from mem-

ory bandwidth is approximate 50%, well about the 25% estimate mentioned in the

introduction to this chapter.

Most modern microprocessor-based computer systems use caches to improve per-

formance. In 1989, many microprocessors introduced from major vendors featured

cache memory on the microprocessor chip (e.g., the Intel 80860 and S0486 and Mo-

torola 68040). However, using a cache adds hierarchy that violates the major design

goal of CLOCS. As a consequence, CLOCS must fetch all instructions and data from

memory, rather than from an on-chip cache. To compensate for the lack of cache
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R2000 CLOCS
Type Instruction Memory Weighted Memory Weighted

Instruction Frequency Operations Operations Operations Operations
Calculation 30 1 0.30 4 1.20

Branch (Cond) 12 1 0.12 2 0.24
Branch 8 1 0.08 1 0.08

No Operation 20 1 0.20 0 0.00
Load or Store 30 2 0.60 0 0.00

Total 1.30 1.52

Table 6.1: Comparison of CLOCS and R2000 Memory Use

memory, CLOCS must use a higher-performance memory system than contemporary

designs or suffer another performance degradation. This degradation is difficult to

estimate without implementation details, but I assume it will not reduce CLOCS

performance by more than another 50%. Therefore, CLOCS estimated performance

is sufficient to warrant more detailed simulations to obtain better estimates of per-

formance.

6.3 Favorable Comparison with MIPS R2000

To investigate the effect of our two-operand, memory-to-memory architecture, we

compare CLOCS to a MIPS R2000. The purpose of this comparison is to find an

upper bound on the CLOCS performance relative to the R2000, so assumptions are

made in favor of better performance for CLOCS. Data from runs of the CAD tool

Timberwolf [26] show that the R2000 dynamic-instruction utilization is about 30%

loads or stores, 20% branches, 20% no operations, and 30% computation. These are

typical values for contemporary RISC processors.

Table 6.1 shows the dynamic-instruction execution percentages along with the

number of memory operations required for the R2000 and for CLOCS. By weight-

ing the number of memory operations with the fraction of instructions executed and

totaling them, the average number of memory accesses per R2000 instruction is cal-

culated to be 1.30. Similar weightings for CLOCS give 1.52, which represents the

average number of memory ferences to do the same work as the R2000 instructions.

The CLOCS value is only 17% higher, showing only a small architectural advantage

for the R2000. This difference can be reduced to only 11% using the short-circuit

61



implementation feature discussed in Chapter 7.

This small comparison does not prove that CLOCS is potentially as fast as a MIPS

R2000, but the result does provides some insight concerning the relative performance

of the two approaches. As mentioned above, the effect of cache is difficult to estimate

without detailed simulation data. Since the R2000 cache runs faster than the CLOCS

memory and the R2000 main memory runs slower that CLOCS memory, I assumed no

average difference in memory reference time. This assumption also ignores the effect

of large numbers of tasks overflowing the R2000 cache, eliminating its advantage.

Overall, because the analysis neglects cache and memory-latency effects, CLOCS has

probably been given an unwarranted advantage. Another favorable assumption I

make is that the R2000 is really not able to take advantage of the data stored in its

32 registers and its three operand instructions, so CLOCS can perform as well with

the same number of operations. In spite of the advantages given to CLOCS, the close

result gives hope that CLOCS throughput performance will not be much worse than

the R2000, and certainly will be within the factor of four mentioned above.

6.4 Using the "Measurement and Evaluation of Al-

ternative Computer Architectures" Technique

In the mid 1970's, Samuel H. Fuller, while working with the Army/Navy Computer

Family Architecture (CFA) Committee, developed an approach for quantifying the

relative performance of alternative computer architectures. The committee's method-

ology and their evaluation of nine computer architectures was published in 1977[16].

The criteria the CFA committee used placed great importance on servicing inter-

rupts and exceptions. The analysis method used memory transactions measured in

bits to assess costs of these operations, and they used the resulting cost as part of

a final weighting of each architecture's merit. This approach has been criticized by

advocates of RISC architectures because it did not directly measure throughput per-

formance for calculations and consequently rates modern RISC machines poorly[20].

The analysis did not directly measure the memory bandwidth required for typical

calculations. As a result, performance improvements from the use of cache memory

and large numbers of registers do not help an architecture's score for this analysis.

Instead, since the registers would have to be saved at context-switch time, the large

number of registers in a typical RISC design would unfavorably affect the context-
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switch measures and ultimately degrade the final score. However, the CFA committee

was looking for computers for ruggedized military use. By ruggedized, they implied

computers for embedded applications such as combat information computers on ships

or navigation and target tracking computers on aircraft. Most of the applications

would involve real-time or near-real-time tasks. The criteria were based on their

expected applications.

The sections that follow explain the criteria that Fuller defined and explain how I

assigned values for CLOCS. The last section reports the results a Fuller-type analysis

of CLOCS and the machines considered by Fuller.

6.4.1 Fuller's Criteria

Fuller specified both absolute and quantitative criteria. The absolute criteria had

to be satisfied for the architecture to be acceptable for further evaluation. The

quantitative criteria were combined to give a relative rating. In his study, the three

architectures with the highest composite score were further studied by programming

and running several sample problems.

Candidate architecters had to meet nine absolute criteria. Apparently some of

the criteria were sufficiently vague that the CFA committee disagreed on whether

machines met them. In the published report, two cases were unresolved, and sev-

eral were marked as questionable. The criteria are listed below, some with brief

definitions.

1. Virtual memory support - address translation

2. Protection - experimental applications do not endanger other programs

3. Floating-point support

4. Interrupts and traps

5. Subsetability - working computers may be built with certain subsets of fea-

tures

6. Multiprocessor support - a test and set instruction or equivalent

7. Controllability of I/O - a criterion vague enough that all architectures appear

to satisfy it

8. Extensibility - at least one spare operation code
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9. Read-only code -- programs must be able to reside in read-only memory while

they are executed

CLOCS meets all of these criteria. Of the nine architectures that Fuller investi-

gated, only two met all the criteria without question. However, most new micropro-

cessor designs meet all of the criteria, reflecting progress in the field that has been

incorporated in the CLOCS architecture.

Fuller specified 17 quantitative criteria. Groups of criteria are discussed in para-

graphs below:

Four criteria concern address-space sizes. V1 is the number of bits that can be

addressed using virtual addresses. V2 is the number of bits that can actually be

accessed using virtual addresses. For CLOCS, both values are 257: 14 bits from the

PID, 16 from the SID, 24 from the offset, and three for the eight bits per addressed

byte. Similarly, P1 and P2 concern the physical memory. Both P1 and P2 are 235:

32 for the physical address and three for the eight bits per address.

Uis the fraction of the operation unassigned codes; it is 24/32 = 0.25 for CLOCS.

CPU state size is measured by four criteria. CS1 and CS2 are the size of state for

full and subsetted architectures. Both values are 64 bits for CLOCS. CA1 and CM2

are the number of bits transferred between the CPU and main memory on a context

switch for full and subsetted architectures. This value is 128 for CLOCS, since the

machine automatically writes the old status word to memory and fetches a new one

upon interrupt or trap.

K is assigned the value one for computer architectures that may be virtualized,

zero otherwise. CLOCS meets this criterion.

B1 and B2 are the usage base prior to June 1, 1976. CLOCS has no delivered

computers.

The number of bits of memory traffic to start an input/output(I/O) operation is

L From the numbers assigned for the other computer architectures, I inferred that

no error checking is required. Therefore, to start an I/O operation, CLOCS uses 128

bits: one 64-bit word is fetched to get the instruction, then one 64-bit word is written

to the memory address associated with the I/O device.

D is the number of bits that each instruction can directly address using only one

base register. For CLOCS, this is 227, representing 24 bits of address offset and three

bits for the eight bit byte.

L is the interrupt latency, expressed in bits transferred between memory and

64



processor. This is the same as a context switch for CLOCS (128 bits).

Subroutine linkage efficiency is measured by J1 and J2, the number of bits required

for a subroutine call with no parameters with and without floating point, respectively.

6.4.2 CLOCS and Other Architectures

To obtain a composite quantitative score, the CFA committee assigned weights to

each category. To calculate final quantitative scores for each architecture, all values

were normalized. Criteria concerning address space were further adjusted to obtain

a standard deviation of 1.00. The CFA committee added this normalization of the

standard deviation for address space measures because they did not feel that several

orders of magnitude of address space represented several orders of magnitude of merit.

The resulting total scores had an average of 1.00.

I added the values for CLOCS to this calculation. This extra architecture required

recalculating all the averages and standard deviations for each of the criteria. This

recalculation changed the absolute values, but not the relative order of the composite

scores. Table 6.2 presents the criteria values and final composite scores for CLOCS

and the top three scoring original architectures. The Interdata 8/32 had the highest

original score, followed by the IBM S/370 and the PDP 11. CLOCS scores consid-

erably better than the other architectures because of significantly better values for

address space size and context-switch metrics. The advantage in these areas was

partially offset by the large word size since all of these metrics were based on the

number of bits transferred between the CPU and main memory. The only areas

where CLOCS scored poorly were I/O and installed base. The I/O score was not too

bad, and the weights for installed base were relatively low.

All in all, this analysis shows CLOCS to be a good potential architecture for

military computers.

6.5 Summary

The quantitative analyses of CLOCS show good potential. The machine is not dif-

ficult to program. Memory utilization is high, but not worse than about two times

that of other machines. The simple comparison of CLOCS with the R2000 running

Timberwolf shows that CLOCS may perform competitively under some conditions.

Finally, a detailed evaluation method (the Fuller-type analysis) shows CLOCS to
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Quantitative Criteria Interdata DEC
Criteria Weights IBM 370 8/32 PDP-11 CLOCS

VI** 0.0433 27 27 20 57
V2** 0.0529 27 27 19 57
PI** 0.0612 27 27 25 35
P2** 0.0554 27 27 24 35

U 0.060 0.371 0.355 0.043 0.250
CS1 0.0466 1344 1632 1168 64
CS2 0.0371 576 576 144 64
CM1 0.0596 3168 1120 736 128
CM2 0.0450 1312 32 480 128
K 0.0558 1 0 1 1
B1 0.0313 17300 185 14700 0
B2 0.0254 16000 14 311 0
I 0.1238 64 16 16 128

D** 0.1025 15 27 19 27
L 0.0917 6192 560 112 128
Ji 0.0629 1904 2368 1040 1024
J2 0.0475 1136 1280 400 1024

New Score 1.00 1.30 1.28 2.39

Old Score 1.36 1.68 1.43
These values are of the form 2x where X is the indicated data.

Note: Data for the ROLM AN/UYK-28, UNIVAC AN/UYK-7, SEL 32, Burroughs
B6700, UNIVAC AN/UYK-20 and Litton AN/GYK-12 were used for the

computation but the results are not shown here to conserve space.

Table 6.2: Results of a Fuller-Type Analysis
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have excellent potential for applications such as those run on military computers. The

next chapter addresses implementation designs to assess whether a CLOCS computer

could be feasibly built.
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Chapter VII
Implementation of the CLOCS Architecture

During my research, I investigated several different implementations of the CLOCS

architecture. This chapter begins by differentiating architecture and implementa-

tion and presenting common implementation techniques. As with Chapter 5 on the

MMU, this chapter will describe the chosen implementation design, and some of the

discarded designs.

I attempted to design implementations reasonable for a microprocessor realized in

a technology that could place one million transistors of random logic on a single chip.

The major assumption was that the CPU could accomplish just about anything in

the time required for a memory operation. This assumption is not completely valid;

for example, a floating-point multiply in one cycle is quite challenging. However, for

the purposes of this research, these assumptions will give sufficiently accurate timing

results, because long operations are infrequent.

This chapter begins with an explanation of the purpose for spending the research

time to create implementations. A tutorial on Central Processing Unit (CPU) im-

plementations follows. The next section presents the chosen implementation and

defines the operations added to ease the task of implementation and simulation. The

remainder of the chapter deals with discarded implementation designs.

7.1 Why Implement CLOCS?

Since we are dealing with computer architecture research, one might ask "Why im-

plement the CLOCS machine?" (By implement I mean design a computer system in

enough detail to estimate the time required to execute a program.) A radically different

architecture must perform well in the real world in order to be useful. The archi-

tecture does not specify any timing information, so a more detailed definition of the

machine is required that allows reasonably accurate estimates of program-execution

performance.
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An implementation is a specification of a computer at a lower level than architec-

ture, but at a higher level than a realization. Architectures give no timing information

at all: they simply describe the way the machine will function, i.e. what programs

will run and what answers they will produce. An architectural diagram consists of

functional units selected for ease of understanding and with no regard for the actual

possibility building a system. An implementation breaks the functions up enough

that reasonable relative-timing estimates may be made for each part. The realization

will specify the physical layout and the types of the parts well enough for precise

timing to be determined. Blaauw defines these three levels in [2] thus:

The design of digital systems can be viewed from three levels. The highest

level concerns the architecture, which specifies the functional behavior of

a system. The lowest level concerns the realization, and deals with the

components from which a system may be constructed. The middle level

of systems design concerns the implementation, or the logic structure that

embodies the architecture and utilizes the logic of the components of the

realization.

In a sense, even the highest level architectural (or functional) simulator can rep-

resent an implementation. However, such an implementation may not be economical

or buildable. If an implementation requires the memory system to complete three

reads and one write each cycle, the realization (the actual building of the system)

will be very expensive and probably Yery slow. Multiported memory systems with

four or more ports have been implemented, particularly to support multiprocessor-.

mainframe-class machines[l], but memory system of this kind would not be appro-

priate for a single microprocessor. When more than two memory ports are used.

handling collisions efficiently becomes much more complicated, and I estimate that it

would add too much cost to a CLOCS system to justify the anticipated performance

improvement.

The implementation of CLOCS must represent a machine that can be built at

reasonable cost. The desired implementation must strike a balance between economy

of potential realizations and performance. We want to compare CLOCS to real-world.

successful, commercial computers that are realized from an implementation resulting

from such a balance.
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7.2 What Does an Implementation Look Like?

To reduce the number of objects that the designer must handle, the most basic logic

components are grouped to form functional units. The designer may then connect

(describe the interaction among) instances of these units to p~erform the functions

required iby the architecture description. Since the functional units are formed from

basic logic components, the implementation describes how a machine may be realizedl

(built).

What are commtron imp~lementationl functional units? The functional units have

well defined inputs and outputs. The functions they perform are easily undlerstoodl

or are commonly required, and the time required for eacti of them to comphIlete its

function is easy to determine. In summary, the blocks are big enough thlat. the

designer may describe the machine using them but small enough to perillit ea;sy

timing estimates and realization.

Common functional units are:

* Registers

# Register files

* Read-only nwniorieIs

* Stiall read/write miemories

e Adders

* Multipliers

* D~ata pat ii for arildinietic/logic tin i ts

0 hi ri itv-stat. m~achi i ies

* ( ortibi nationlal logiC

'1 huese devices call I)e tea I iied l ii several dIifferent ways. Also, somte ofi Ili *e viceIS

call be comtpos('( of oters. For vxhttiplv, art adder miay be mjiae ripI of pieccs of

COrnbiriatioltal logic. AlIso, Ithe designer rmay inivenit new futtct oiora untits cnrr~'

of 'xistig onevs to Iiitiiiirinize Hie~ niumbter (of objects lie roust liidle.
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7.3 What Implementation Techniques May Be Used?

There are some very well understood and frequently used techniques of implementa-

tion. These ideas certainly help the implementation of CLOCS.

7.3.1 Pipelining

Pipelining describes a type of concurrency with serial restrictions. In this case, it

means that more than one instruction or operation is in progress. The different

operations must be at different stages of completion. For example, a CPU may have

a four-stage pipeline:

Stage Function

First Decode Instruction i + 3.

Second Fetch Operands for Instruction i + 2.

Third Calculate Result for Instruction i.

Fourth Store Result for Instruction i.

Pipelining is a common way of obtaining parallelism in computing because it has

fewer problems than other types of concurrency. One disadvantage of pipelining is

that the system will not attain theoretical performance because unpredictable discon-

tinuities in the instruction sequence will require the pipeline to be (at least partially)

refilled. The most common form of discontinuity of the instruction sequence is a

conditional branch, which occurs approximately every eighth instruction during the

execution of most programs. If the pipeline does not handle unconditional branches

efficiently, the discontinuities occur more frequently, since branches make up 20% of

all instructions[26, 34, 20]. Another source of discontinuity is a context switch, but

that occurs at a considerably lower rate for most applications. More importantly, to

execute programs correctly this technique must work around two significant difficul-

ties: control of the pipeline and data dependencies.

First, advancement of instructions through the pipeline must be appropriately

controlled. If all stages can always complete their tasks in a constant amount of

time, then the pipeline may be advanced at that rate. However. if the amount of

time a stage needs to complete its work depends on the instruction it is processing,

communications will be necessary to determine when to move the instructions down

the pipeline. Providing the interlocks to control the pipeline in this circ'mstnce

may addil much complexity to the CPI and slow down execution.
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The second problem is caused by data dependencies. In the pipeline hypothesized

above, consider what happens if the first instruction calculates a value, and the second

instruction then uses it? The second instruction will try to fetch the value at the same

time as it is being calculated, and the first instruction will not get around to storing it

until later. The data-dependence problem is sometimes made a visible feature of the

architecture; in such a case it is up to the programmer or the compiler to avoid data

dependency problems. Implementations of architectures that conceal the problem

commonly use one of two solutions: scoreboarding (make the fetch stall until the

data is written) and shortstopping (taking the answer directly from the calculation

step to the fetch step). Note that scoreboarding leads to pipeline interlock problems,

and shortstopping adds considerable complexity to the CPU[36, 3, 31].

In spite of the difficulties, pipelining is effective. If the architecture avoids or min-

imizes the difficulties, a good four-stage pipeline can approach a four-fold increase

in peak throughput performance. Most RISC computer designers carefully consid-

ered pipelining as they selected features for their architectures; perhaps the greatest

contribution of the RISC design methodology was easing of pipelining.

7.3.2 Data Caching

Frequently a program will access the same piece of data more than once, with very

little intervening time, as in x - x2 . The data dependencies discussed in the pipeline

section above occur often. If this frequently used data happens to be inside the CPU

when it is needed, deiays from accessing the memory system may be avoided.

Keeping data in the CPU is a technique dating back to von Neumann[4]. Registers

are the most frequently used example of that technique. Unfortunately, the use of

registers is the main architectural feature that CLOCS eliminates.

Other related caching techniques are possible, though. For example, several data
values could be stored in the CPU as they are calculated. When the value is needed, a

memory reference would be avoided. The space of temporary data could be managed

using approximations to Least-Recently-Used discarding algorithms that are used in

virtual-memory systems. Unfortunately, this approach would add to complexity and

increase CPU size. Also important, the running time of a program depends on the

state of this temporary data area. Accurately predicting the time for a program to

run is important to many real-time applications, so they would not be able to use

the improved performance from this technique.
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It may be acceptable to use data that is already in the CPU. Shortstopping solves

the data-dependency problem and eliminates a memory reference. Since shortstop-

ping normally refers to using the data as it comes out of the execution unit, I use

the term short-circuiting to describe the very similar process of using data in a CPU

register to avoid a memory reference. This technique may be successfully used in

implementations of CLOCS if it can be accomplished without too much added com-

plexity and if there is little variability of program performance. For example, if only

the output of the Alu is used for short-circuiting, only the result from one instruction

is lost when a program interruption occurs. The difference in performance is a max-

imum of one memory reference for each interruption, so performance differs greatly

only if a program is interrupted after every instruction (which is an unlikely event).

7.3.3 Multiported Memory

One way for an implementation to improve performance is to allow more than one

access to memory at a time. For example, two operands may be needed. The imple-

mentation could include two memory-address busses and two memory-data busses.

Several designs exist to allow simultaneous access to different memory locations.

Dual-ported memory chips exist. Also, the memory system may be made up of

several banks of memory. As long as the accesses go to different banks, such a sys-

tem can easily handle two simultaneous accesses. The more banks, the lower the

chances of the same bank is being accessed by both busses. Very little added com-

plexity is required to handle the case of both busses, accessing the same bank, so

an interleaved, two-ported memory system may be a very economical performance-

improvement technique.

7.3.4 Posted Write

One technique of improving memory system performance is posted write[22]. With
this technique, the memory system is responsible for completing a write operation;

the CPU assumes that the write has completed correctly and immediately continues

with the next instruction. This technique is very effective in systems with latency

in the memory system, because completing the write does not interfere with instruc-

tion execution. However, handling exceptions can be quite complicated, because if

the write fails some time after an instruction completes, the effects of subsequent

instructions may have to be undone. However, if it does not take too long to iden-
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Figure 7.1: CLOCS Implementation Overview

tify exceptions or the CPU does not perform many operations that must be undone,

posted write is an inexpensive way to make the memory appear much faster to the

CPU than it really is.

7.4 Chosen Implementation

The chosen implementation used to produce the reported simulation results reflects

the lessons learned from the previous attempts (discussed later in this chapter). The

chosen implementation resembles a hard-wired CISC (Complex Instruction Set Com-

puter) more than a pipelined RISC. The CPU processes only one instruction at a

time. Combinational logic units perform each minor required function and the units

communicate asynchronously. The state of the instruction resides in four sets of reg-

isters that are connected by the logic units. The assumption that activities inside

the CPU are relatively fast compared to memory operations justifies our expectation

that this implementation accurately estimates the performance of a buildable system.

7.4.1 Implementation Overview

Figure 7.1 is a top-level diagram of the chosen implementation. Four sets of

registers are in the CPU, and they contain the instruction, the two operands, and

the result of the operation. The CPU communicates through the register sets with

the MMU, and the MMU in turn communicates with the memory system.

Each register set in the CPU contains data, but the address associated with the

data. For example, the address part of the instruction register is actually the status

word (which includes the program counter). Also in each register set are the MMU

command and the status of the last MMU command.

The registers are connected by functional units composed of combinational logic.
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These units read fields in the instruction and the MMU status, and they modify the

MMU command and data fields. These functional units also communicate directly

with each other. Because the functional units are stateless and communications are

asynchronous, several functions might be accomplished in a single cycle. For example,

an immediate value can be assigned to a full word in one clock cycle. The Operand 1

immediate conversion, Operand 2 address calculation, and Alu action (a simple copy

in this case) all follow rapidly from instruction decode because no memory access is

required.

The registers sets are

e Status word (with program counter) and instruction

* Operand 1 address and operand

* Operand 2 address and operand

* Alu result address and result

The address registers are larger than an address, because they hold other information.

This information includes all of the data normally in the status word, such as the

Process Identification (PID), and flags identifying the type and validity of the address.

These registers are read and written by nine functional units:

Directl Get Operand 1 immediate, or first memory fetch.

Direct2 Get Operand 2, first memory fetch.

Indirectl Get Operand 1, second memory fetch.

Indirect2 Get Operand 2, second memory fetch.

Alu Calculate results and write to memory.

Check Check for exceptions and cause interrupts.

Mmu Handle memory and memory management operations.

Short-circuitl Short-circuit Operand 1 memory fetches.

Short-circuit2 Short-circuit Operand 2 memory fetches.
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Figure 7.2: Operand and Alu Portion of Chosen Implementation
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These functional units (including Alu and mmu) do not have any state. The terms

ALU and MMU refer to higher level components which in some implementations have

state. For example, the MMU contains the MMU registers.

The interrelationship between the registers and functional units for the CPU side

of the registers is shown by Figure 7.2. In this figure, the register sets are shown as

two rectangles: the address and the data. The registers both contain data visible

to the architecture, such as operands and addresses, and they also hold the status

and commands for the MMU. The memory and exception handling portions of this

implementation are shown in Figure 7.3. The same registers appear, but the figure

shows their relationship with the MMU, memory, and short-circuit functional units.

Each of the short-circuit functional units continuously compares the address for

their operand to the address for the ALU result. If during operand fetching the ad-

dresses are the same, the short-circuit unit transfers the data to the operand register.

It also cancels the MMU command, which is some form of read operation, and in-

dicates in the operand status field that the MMU has successfully fetched the data.

This method of short-circuiting does not require any special logic in the get-operand

units (Direct1, Direct2, Indirect1, and Indirect2).

7.4.2 Practicality of this Implementation

This implementation is somewhat more aggressive that the Two-Instruction Pipeline

model. For the move instruction example mentioned above, about 15 gate delays
would be required per clock cycle. Given the assumed realization technology, thio

would be attainable and would not seriously imbalance the CPU and memory system

speeds.

7.4.3 Performance Assessment

This implementation attains an average of 2.7 cycles per instruction, a reasonable

number for CLOCS. This instruction issue rate uses every memory cycle and is able

to avoid another 20% of potential memory accesses through short-circuiting. The

implementation is robust and provides for the addition of features. For example,

experimental addressing modes and multiport memory were easily added to this

implementation.
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7.4.4 Implementation Feature Additions

The compiler that was used as part of the simulation system (see Chapter 8) as-

sumed the availability of certain operations that were not likely to be supported by

most implementations or were not part of the CLOCS architecture. The general

design philosophy had been that such cases would be handled by operating-system

routines. For example, operation codes were reserved for floating-point arithmetic.

If the CPU did not support these operations, it would generate an invalid instruction

interruption, which the operating system could catch. The operating system then

could call a subroutine to emulate the unimplemented instruction. This approach

was justified because typical programs infrequently used these operations. For ex-

ample, no floating-point instructions appear in the timed portion of the Dhrystone

benchmark program. However, writing and debugging the operating-system han-

dling and emulation routines would not be an easy task. The value of producing

these routines would be very low to this research effort because these operations are

relatively unusual and the technique of emulating unimplemented instructions is well

understood[3]. Instead, I simulated all operations of the architecture and added some

new ones using spare operations codes.

Floating-Point Operations

Although the important benchmark programs are integer programs, they call sys-

tem subroutines that contain floating-point operations. Rather than attempt to port

IEEE floating-point routines to CLOCS, I just support all of the floating-point in-

structions in the simulator. I consider implementing floating-point arithmetic in one

memory cycle to be unreasonable, especially for divide, but my simulator does this.

This unreasonable feature does not affect the benchmark performance, though. It

only simplifies the research effort.

Conversion Operations

The GNU C compiler expected size conversion instructions and instructions to con-

vert between integer and floating point. Size conversions for integer numbers were

easily emulated in CLOCS assembler (and will affect final benchmark performance).

However, size conversions for IEEE floating point are more complicated, as are con-

versions between IEEE floating point and fixed point. Since these operations would

not affect benchmark performance, and were infrequently used, spare opcodes were
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assigned and the simulator modified to handle the new instructions. This saved the

time otherwise necessary to write subroutines in CLOCS assembler to accomplish

these functions and to modify the compiler to call the subroutines.

7.5 Discarded Designs

As soon as architecture definition neared completion, I considered several imple-

mentation designs. These implementations were educational, but did not satisfy

the requirements. They were discarded because they did not provide timing esti-

mates for systems that could be built economically. Either the individual functional

units were too complicated and expensive, or the designs were too wasteful of sys-

tem resources (some expensive functional units were underutilized). One design, the

Two-Instruction Pipeline, was more promising, so a simulator was created for this

implementation design; however, it too was discarded because it was too inefficient.

7.5.1 Functional

The first and most obvious design was a functional (or architectural) simulator. Part

of an architectural simulator was actually built to support C language compiler work.

It only simulated CPU operation. A complete simulator, able to run the designated

benchmark programs, could have been provided by adding memo.y management and

instrumenting the design. Such a simulator could have provided data on the number

of instructions executed. The biggest flaw with this approach is the implicit assump-

tion that processing each instruction is the most important and time-consuming task,

and that counting the number of instructions executed accurately estimates the time

required to run the program. This approach explicitly assumes that the number

of memory accesses does not affect the running time of a program, clearly a false

assumption. In reality, the memory accesses drive performance on this memory-to-

memory machine. Even with further additions to the simulator to count memory

accesses, this enhanced simulator could not be used to investigate realistic memory

systems or describe a system that could actually be built. As a result, the functional

design was scrapped in favor of an implementation centered around memory access.
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7.5.2 Seven-Instruction Pipeline

To more effectively attack the memory-system performance problems, the next imple-

mentation design isolated each type of memory access. An instruction pipeline would

hold different instructions, and one type of memory operation (or ALU operation)

would be accomplished at each stage.

The pipeline stages were:

Stage Function

First Instruction Fetch for instruction i + 6.

Second Operand One Address Fetch for instruction i + 5.

Third Operand One Data Fetch for instruction i + 4.

Fourth Operand Two Address Fetch for instruction i + 3.

Fifth Operand Two Data Fetch for instruction i + 2.

Sixth ALU Operation for instruction i + 1.

Seventh ALU Result Operand Store for instruction i.

In the second and fourth stages addresses were fetched during indirect addressing.

Ideally, there would have been work to do in each of the seven stages. However, many

CLOCS instructions do not use indirect addressing for both operands, and some use

immediate operands or only one operand. As a result, in several stages there was

nothing to do.

The idea of this design was that the Memory Management Unit would have six

ports, one for each of the pipeline stages that access memory. The MMU would then

service all of the ports that had active requests. If the MMU could not perform

all required operations, it would stall the pipeline and take any required additional

cycles to satisfy the remaining memory-operation requests.

This design better supported memory as the limiting component. Also, because

it had a stage for each function and accessing memory once would complete each

stage's work, no interstage interlocks were required. Note that I again assumed that

the ALU could complete its work in one memory cycle.

The design had three major deficiencies. First, this design did not benefit much

from the very long pipeline because of frequent flush and refill of the pipeline.

Branches could be expected every four or five instructions, and, because the CLOCS

architecture contains no special operation code for unconditional branch, even un-

conditional branches would cause some pipeline difficulties. As a result, keeping the

pipeline full would have been difficult. The expense of all the pipeline stages would
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have been hard to justify, since, for a typical set of seven instructions, many of the

stages were idle. For example, if the first operand was an immediate constant, the

second and third stages had no work to do. The third problem was the worst: the

data dependencies caused serious problems in this implementation. If, for exam-

ple, the pipeline stage that was processing instruction i + 6 required a data address

calculated by instruction i + 5, the result would not be available for four more ad-

vances of the pipeline. Although techniques exist to solve these problems, in general

those solutions violate the premises of the CLOCS architecture and are extremely

expensive. For example, CRISP has a deep instruction pipeline and stores decoded

instructions. However, when control transfers to another section of code as the result

of an unconditional branch, significant delays occur as the pipeline is refilled[1O].

Although this implementation scheme was discarded becauoe the pipeline was too

long, instruction pipelining has been a very successful technique for other computer

architectures. Consequently, that technique could not be totally ignored, and the

next design was also pipelined, but with fewer stages.

7.5.3 Two-Instruction Pipeline Overview

Since memory accesses were expected to limit CLOCS performance, I wanted to en-

sure that there was always memory traffic waiting. One way to make this more likely

was to have two instructions in the CPU, both of which were being processed continu-

ously. I called this the Two-Instruction Pipeline Implementation. An implementation

level simulator was written, and small test programs were run on this simulator.

I broke up the tasks for instruction processing and assigned them to finite-state

machines. The two instructions in the CPU were labeled a and b. Stored with each

instruction were the status word (which includes the program counter) and each of

the two operands and the address for each of the two operands. I referred to the

combination of status word, instruction, operands, and addresses as a line. This was

a two-stage pipeline, so there were two lines: a line and b line.

The finite-state machines were autonomous and communicated via clocked cont rol

signals. The machines and their functions were:

Nextpc Calculate the next instruction address.

Geti Fetch the next instruction.

Opndl Get Operand one.
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Opnd2 Get Operand two.

Alu Calculate the result, including branches and store results.

Mmu simulate MMU function

In this design the Memory Management Unit had four ports, and these ports

connected to the finite-state machines of the same name in the CPU:

Geti Fetching instructions

Opndl Fetching Operand 1 or its address

Opnd2 Fetching Operand 2 or its address

Alu Storing calculated results

The Memory Management Unit serviced the pcrts in the order listed above. It

completed only one memory operation per cycle.

Neztpc calculated the program counter, then activated Geti to fetch the instruc-

tion. Geti then signaled the operand-fetching units (Opndl and Opnd2)

Opndl and Opnd2 filled in the operand registers in the a line. During an indirect-

addressing-mode memory reference, the operand-fetching unit deposited the address

temporarily in the operand register whle it conducted the second memory fetch to get

the actual operand. Before attempting to get an operand from memory, these func-

tional units checked the operand address for each operand in the b line. If either of the

b line operands had tb -tme address, the fetching unit copied the corresponding data

instead of generating a memory reference. One additional complication arose if the

b line Operand 2 contained the desired data. In that case, the operand-fetching unit

had to check that the Alu had completed its calculations, and that the correct data

was actually in the register. Using the data already in the CPU instead of fetching

it from memory was called Short-Circuiting since it short-circuited the memory-fetch

requirements. I suspected the memory savings was valuable, because many times a

calculated result would be used in the next instruction, and occasionally the same
value for Operand 1 would be reused.

The Alu Unit performed the operation specified by the instruction in the b line

instruction register, using the b line operands as inputs, placing the result in the b

line Operand 2 register, and requesting the Memory Management t'nit to write out

the data if required.
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Figure 7.4: Two-Instruction Pipeline Implementation
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Figure 7.4 shows the organization of the two-stage pipeline implementation. The

memory system is not shown in this diagram because of the numerous connections.

With short-circuiting and the MM U, there were eight additional connections.

This design was a conservative implementation. The utilization of the memory

management ports was reasonable, and the realization of each of the finite-state

machines would have been easy.

7.5.4 Simulation Results and Conclusions

When the simulation program was written, I ran small test programs through it.

The simulation had a clock that ran at the memory system access rate; one memory

access could be completed in one clock cycle. I was appalled at the poor performance.

Instructions' execution times averaged over ten clock cycles. The poor performance

was the result of interlock propagation delays. Because the units were simulated

as state machines, communications had to wait for clock boundaries. Consider the

example of a fetch of Operand 1. The MMU fetched the operand and signaled that the

data was ready. Then the Operand 1 Unit signaled to the Geti Unit that the operand

was now ready. Then the Geti Unit signaled the Alu Unit-to begin work. As a result,

the data sat around for two extra clock cycles without any work accomplished on it.

To improve performance, a different control scheme would have been required.

Short-circuiting was frequently used for Operand 2; the value calculated in one

instruction was used in the next instruction. On the other hand, none of the programs

I simulated had instructions that used Operand 1 from the previous instruction. From

this, I concluded that Short-circuiting was useful only for Operand 2, the result of

the previous instructions calculations.



Chapter VIII

Simulation Programs and Results

To find out how an implementation performs, we use a set of programs that make

up a simulation system. These programs compile C language programs into CLOCS

assembly language, assemble programs into CLOCS object modules, and simulate

running the modules on an implementation. Other parts of the simulation system

are scaffolding programs such as ,3ebuggers, and library routines for common tasks

such as printing. This simulation system is described in the following section. To

obtain interesting results from the simulations, we need some test programs. Short

programs are interesting because they can be easily understood, but a better indicator

of throughput performance is the Dhrystones benchmark program. The second sec-

tion of this chapter describes these benchmark programs. The third section analyses

the results of the simulations. The final section uses the results to compare a 16Mhz

CLOCS computer to a DECStation 3100, and from that characterizes applications

better suited to CLOCS.

8.1 Simulation System Description

All of the simulation programs are written on a Sun 3/60 running SunOS. Programs

are written in C language, Flex (a Lex-compatible regular-expression language), or

AWK. These programs are described in more detail in Appendix A, but following

are brief descriptions of the compiler, the assembler, the simulator, scaffolding, and

library routines.

8.1.1 GNU C Compiler

Version 1.35 of the GNU C language compiler has been ported to generate code for

CLOCS. The GNU C Compiler(GCC) is a modern and flexible compiler that perforns

several different types of optimization. I selected it because of its high reputation and
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the fact that many people within the research community were working to improve

it. The compiler is available free from the Free Software Foundation and may be

freely distributed.

The major part of the compiler unique to CLOCS is contained in the files "md"

and "tm.h." The "md" file is a machine description written in a Lisp-like notation

describing the architecture. Each entry describes an operation and the operand

specifications, and the entry includes a template for the corresponding assembler

instruction. Functions not supported by the target architecture may be simulated

by entries defining expansions into two or more operations that are supported. For

example, CLOCS does not bave a compare instruction. Instczd, -uaipare is .xpaadcd

into move and subtract instructions. Peephole optimization may also be specified

to combine multiple operations into another that is supported by the architecture.

Although the description language is powerful, it is aided by the ability to use C

language subroutines in the file "aux-output.c." For CLOCS, this file is only 48 lines,

but it contains a subroutine that greatly simplifies the "md" file. The"tm.h" file

is a C language header file containing machine-dependent macro definitions. This

file describes the machine's registers and provides C language code for tasks such

as checking address validity and producing assembly language for function prologues

and epilogues.

Other than the configuration files described above, other portions of the compiler

required modification. The support for 64-bit integers is not always correct. The

compiler also makes some incorrect assumptions about the addressing capabilities of

the target machine. Also, version 1.35 of GCC has several unnecessary restrictions

concerning data-object sizes. For example, the type short int must be one-half the

word size. I provided the corrections for these problems to the maintainers of GCC,

and version 1.36 of the compiler includes the corrections.

Another facet of the compiler work is noteworthy. The vast majority of data

references are to dynamically assigned storage locations on the stack. In order to ad-

dress those locations, the programs require storage locations whose address is known

at compile time. I solve this need by reserving about 64 words in the data space

for address and scratch space calculations. I then specify to the compiler that these

are registers and let the GCC register allocator manage them. Some locations are

reserved for parameters and system pointers. Unfortunately, because C is a recur-

sive language, these registers (really fixed memory locations) cannot be allocated

globally to avoid saving them on subroutine calls. Instead, the prologue for each
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function copies the contents of fixed locations that are needed onto the stack. At

return, these values are restored so the calling program will execute properly. This

adds significant overhead to procedure calls. For hand-optimized, assembler-language

subroutines that do not call other subroutines, such as "strcpy," this extra overhead

may be avoided. Adding optimization to GCC to use fixed-storage locations more

efficiently is possible, but potentially very difficult.

The compiler includes a macro-language preprocessor that is used without modifi-

cation. The compiler produces assembler code, but does not include an assembler. A

working versions of GAS, the GNU Assembler, was not available in time to support

CLOCS research.

8.1.2 Assembler

The CLOCS Assembler (CASM) is a combination Flex and C language program. Flex

is a regular-expression language translator compatible with the UNIX lex program.

It was written by Vern Paxson and contributed to the University of California at

Berkeley. Flex extends the capability of lex, it translates programs faster, and the

resulting programs run faster. CASM contains about 400 lines of regular expression

rules and about 1150 lines of supporting C code and header files.

The assembler takes input from all of the specified files and produces a CLOCS

load module. The CLOCS assembler is limited in that all symbols are global. GCC

reuses data and branch address symbols, so the assembler cannot handle more than

one GCC-produced assembler-source file. In order to avoid writing a linker, and still

compile subroutines separately using GCC, an extra processing step was added to

make the GCC-produced labels unique to each assembler file.

8.1.3 Implementation-Level Simulator

The CLOCS implementation-level simulator (CAS) is a C language program with

2000 lines of code and 800 lines of supporting header files. The program consists of

a top-level main program and several subroutines.

The main program calls memory and memory-management-unit initialization rou-

tines, which in turn call a program to load the object module to be simulated. The

main program then loops, calling modules that simulate each of the functional units

of the implementation, a subroutine to simulate the MMU, and a statistics-gathering

routine. After the simulated program terminates or encounters an error condition.
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the main program calls a statistics-printing routine and then exits.

A separate subroutine simulates each of the functional units shown in Figure 7.2.

Static variables in the main routine simulate communication between the functional

units. The order in which the main program evaluates the variables and calls the

subroutines simulates the way in which asynchronous signals propagate through the

functional units within one machine cycle.

At the beginning of a cycle, if the instruction register is newly updated from

memory, modules simulating direct-addressing for operands one and two are acti-

vated. The direct addressing modules will set a flag if indirect addressing is required.

If indirect addressing is required and the operand register has been updated, then

modules simulating indirect addressing are activated. When the operands are read;,.

a module simulating the arithmetic-logic unit (ALU) is activated.

When CAS runs, several parameters govern the simulation. The MMU uses some

of these parameters to set the number of commands that may be executed each cycle

(equivalent to the number of memory-system ports), and the latency for read and

write operations. CAS also has a debug level that can be set to select: no instruction

tracing (just end-of-run statistics), minimal instruction tracing, complete instruction

tracing, or maximum information (only useful for debugging the simulator).

The Sun 3/60 is efficient at running these simulations. A simulation of 5000 cycles

without producing trace output only takes about 5 seconds.

8.1.4 Scaffolding

The simulation system includes several small programs to accomplish mundane tasks.

I refer to these programs as scaffolding because they are useful for getting the job

done, but have little use after everything is put together.

CLOCS Module-Dumping Routine

The CLOCS Module-Dumping Routine, CDUMP, loads a CLOCS program into mem-

ory, then displays the symbol table, data area, and a disassembled version of the

program text. Initially this program was used for debugging the assembler, but it

proved most useful for producing the symbol table to analyze simulation traces.
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Address Generation

To aid in debugging from simulation traces, a seven-line AWK program reads CLOCS

assembler code and writes it out with a hexadecimal address printed at the beginning

of the line. This can easily be done by the assembler, but there is no other reason

for the assembler to produce listings, and the AWK program is faster to write and

debug.

Symbol Reference Debugger

A similar debugging aid is post hoc symbol identification in the simulation traces.

A two-line AWK program takes the symbol-table dump produced by CDUMP and

generates a new AWK program to identify and print symbols in simulation traces.

This works best when the output of the simulator is piped directly to the label-adding

AWK program, which then writes it to disk for later analysis. This procedure greatly

slows down simulation, extending the time to simulate 5000 cycles to about two

minutes. However, two minutes is an acceptable run time for a simulation (hardly

time to get a cup of coffee).

8.1.5 Library Routines

The Dhrystone benchmark program expects several standard library routines to be

available. Some programs are written in C and compiled to CLOCS assembler lan-

guage, then hand optimized; others were directly written in CLOCS assembler lan-

guage. The C and CLOCS assembler source language programs are listed in Ap-

pendix B.

Important to the Dhrystone performance were the subroutines "strcpy" and "str-

cmp." These routines copy and compare character strings, respectively. They opti-

mize well to a few lines of assembler.

The routine "malloc" allocates dynamic storage. The CAS simulator initializes

a fixed storage location (default operand segment, offset FFFEOO) with a pointer to

an area of free storage, and the "malloc" subroutine that was written in CLOCS

assembler language maintains the pointer and returns the appropriate value to the

calling routine.

The routines "times," "printf," and "scanf" are null or very simple routines. Their

functions are not required to obtain results.
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8.2 Benchmark Programs

8.2.1 Short Test Programs

A group of very short test programs proved to be useful during simulation-system

development, so their performance is reported in Appendix A. "Assign.c" is a simple

assignment of a 32-bit integer. "Lloop.c" is a simple loop executed 50 times. "Sub.c"

is a single subroutine call. These programs contain common constructs, and they are

useful to evaluate memory-system performance.

8.2.2 Dhrystone 2.1

The Dhrystone benchmark is a synthetic benchmark program that measures integer

performance of computer systems. The number of times that the measured portion of

the benchmark program may be executed per second is the Dhrystones the architec-

ture may produce. First published in 1984[39], it has been revised by the author to

prevent unfair optimizations. For this study, I used version 2.1, dated May 25, 1988.

This version consists of two files of C code (dhry-l.c and dhry.2.c) and a header file

dhry.h.

Although I do not modify those files, I do modify the behavior of the program by

writing specialized library functions for "scanf." My "scanf" routine always returns

a value of one. Thus the program always runs through the timed loop only one time.

The library routines "times" and "printf" do not do anything either. I measure

the performance of CLOCS using the Dhrystone benchmark program by measuring

the number of cycles between calls to "times," then dividing that number into the

estimated clock rate for CLOCS of 16 megacycles per second.

8.3 Simulation Results

Detailed simulation results are presented in the tables in Appendix A. Usually be-

tween 2.7 and 3.0 memory references per instruction are required.

8.3.1 Instruction Mix

As shown in Table 8.1, the Dhrystone program uses only 10 of the available 2.1

instructions. The unused instructions are mostly floating-point and system-control
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Operations Couit Percentage
ADD 489 27.27
SUB 183 10.21
MUL 4 0.21
DIV 1 0.06

OR 1 0.06
LEFT 11 0.61

RIGHT 2 0.11
RIGHTA 12 0.67

MOVE 787 43.89

B 303 16.90

Total 1793 100.00
The Dhrystone program did not use the following operations:

REM, AND, XOR, ROTATE, TRP, LOB,
FADD, FSUB, FMUL, FDIV, FIX, FLOAT, or SIZE.

Table 8.1: Percentage of Operations for Dhrystone Benchmark Program

instructions. The unused arithmetic or logical instructions are not commonly used

operations in any event. The high percentage of move instructions is surprising. Most

of these moves are associated with subroutine calls. The called program is moving

the contents of some commonly used addresses to the stack so it may use them as

temporary storage locations. Using these locations as registers incurs some procedure-

call overhead, but greatly reduces address computation and indirect addressing.

The performance of CLOCS benefited from the short-circuiting feature in the

implementation. By using the value remaining in the ALU output register instead of

fetching it from memory, the program saved 13% of memory operations. Table 8.2

provides specifics on Dhrystone memory operations. Some programs ("lloop.c" and
"quicksort.c") realized savings of 30% with short-circuiting.

With the best appropriate compiler optimizations, the Dhrystone benchmark pro-

gram required 768 instructions in the timed portion of the program. With a simple

memory system, those instructions completed in 2220 cycles. At 16Mhz, 2220 cycles

per Dhrystone is 7207 Dhrystones/sec.

8.3.2 Effect of Memory System Design

The 7207 Dhrystones/sec quoted above is for a one-port memory system with no

read or write delay. This is the simplest system, but an exr)ensive one to build.
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Value Count Percent
Instruction Fetchs 1793 30.83

Data Fetchs 2533 43.55
Data Stores 1490 25.62

Total Memory 5816 100.00

Actual Memory 5045 86.74
Short Circuits 771 13.26

Table 8.2: Effect of Short Circuits on Memory Access

1 Port Memory
Write Delay 0 1 2 3

Read Delay 0 100.00 92.93 75.82 62.86
Read Delay 1 73.06 69.22 65.75 56.70
Read Delay 2 49.17 49.17 47.40 45.75
Read Delay 3 37.05 37.05 37.05 36.04

2 Port Memory
Write Delay 0 1 2 3

Read Delay 0 150.24 134.83 100.32 77.40
Read Delay 1 75.15 75.15 71.09 67.44
Read Delay 2 50.11 50.11 50.11 48.27
Read Delay 3 37.58 37.58 37.58 37.58

Table 8.3: Memory-Design Effect on Dhrystone Performance

Table 8.3 shows the relative performance of CLOCS on the Dhrystone program for

many configurations of memory systems.

Because read operations (data or instruction fetches) far oiitrmmber writes, read-

operation speed has a greater effect on performance than write speed. In single-

ported, multiple-cycle-delay memory systems, writes only have to be one cycle faster

than reads to be totally hidden from the system performance. This is because data

is ready to be written at the same time that instruction fetch begins. As a result.

the write is always delayed one cycle, and if the write takes one fewer cycle than the

instruction fetch, it will complete at the same time as the instruction fetch. Only

after the instruction is in the instruction registers will further memory operations for

operand fctch begin.

Jrn the two-port memory systems, the write will not impact performance as long as

it completes in the same time as the read. In this case the writes are hidden behind t lie
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';xt instruction fetch, so no improvement is observed by making write delay less than

read delay. This observatio: is disappointing, because it shows that posted writes do

not help the performance of a CLOCS two-ported memory system. As discussed in

Chapter 7, the technique of posted writes is an inexpensive implementation technique

to improve performance. It also has the advantage of being reliable. The performance

advantage is not affected by bank-interleaving alignment or other hazards of dual-

ported memory systems. Also, posted write does not require double performance

from the MMU.

The two-ported memory-system performance is also disappointing for the delayed

cases when compared to one-ported systems. For one cycle delays, the more complex

memory design yields only a 6% difference in performance. Using posted writes with

the simpler design reduced this difference to just 2%.

Consequently, the best tradeoff of price-performance is the one-port, one-cycle

delay for read and a posted (zero-cycle delay) write. That design achieves a cycles-

per-instruction ratio of 3.90 and runs 5342 Dhrystones per second at 16Mhz.

8.3.3 Effect of GCC Optimizations

Tahle A.5 shows the relative performance of different GCC optimizations. kAeicker

states that using inline functions is not an appropriate optimization for Dhrystones.

so the performance listed above is for "-0 -fcombine-regs" only. Using the "-0" option

improves performance by 45%, but adding "-fcombine-regs" only adds another 7 to

performance.

8.4 Findings: When CLOCS Pays

From the results of the simulations, I can estimate the performance of a real CLOCS

computer system. I selected a commercial computer system, the DECStation 3100.
for comparison. The 3100 is based on the same MIPS R2000 microprocesso used for

comparison in Chapter 6 and operates with a clock frequency of 16 MHz. I'sing the

technology available at the same time that the 3100 was introduced in early 1989. a 16

Mlhz CLOCS machine could be built with the one-wait state, posted-write memory

system desc-ibed above. Relative manufacturing costs of CLOCS and the 3100 arv

dificult to estimate, but the integrated circuits for CLOCS memory would be more

expensive than the main memory chips used in the 3100. On the other hand. ('lO(S
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is a simpler design and does not have cache, so the total component count is lower.

I estimate that manufacturing costs for CLOCS would be higher, but not more than

twice those of the DECStation 3100.

A DECStation 3100 attains approximately 18,000 Dhrystones/sec (slight vari-

ations are due to the compiler used and optimizations available). Therefore, the

DECStation is 18000/5342 = 3.4 times faster than a CLOCS. Using techniques we

developed[8, 17], we measure the context-switch time of 250 microseconds for a DEC-

Station 3100. Based on estimates from Gallmeister's research[17, CLOCS will switch

context in 100 CLOCS instructions, which will take 100*3.90/16 = 25 microseconds.

Now if a task takes X microseconds to run on a DECStation 3100. then it will

take 3.4 - X to run on a CLOCS. The task will be activated and run in the same

time on a CLOCS or a DECStation 3100 if

3.4 * X + 25 = X + 250

or if X is 95 microseconds. An application must run in less than 95 microseconds

after a context switch for it to perform better on CLOCS. In those 95 microseconds,

a DECStation 3100 will execute about 1300 machine instructions. This corresponds

to a context-switch rate on the DECStation of 1,000,000/(95 + 250) = 2898. In

other words, applications that require context switches more often than 3000 times

per second can benefit from the CLOCS architecture.

Consider the example of an ethernet RPC transaction. Our studies[S] indicate

that 30% of network overhead is context-switch time. For each context switch, the

application needs more than 500 microseconds of CPU processing time on a Sun 4. a

computer with approximately the same throughput performance as the DECStation

3100. In this case, the DECStation 3100 can switch context and do the processing

in 250 + 500 = 750 microseconds, and a CLOCS would require 3.4 - 500 + 25 = 1700

microseconds.

However, if servicing an interrupt takes only 40 instructions, the calculation time is

three microseconds. The DECStation requires 253 microseconds and CLOCS requires

only 3 * 3.4 + 25 = 35 microseconds. In this case, the CLOCS architecture provides

much better performance.

Figure 8.1 graphically represents this tradeoff. As with Figure 1.2, applicat ions to

the left of the dashed line, that is, applications that run in less than 95 microseconds

on a [)ECStation 3100, are activated and run faster on CLOCS.

Thus, from the results of CLOCS throughput performance on simulated belich-
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Figure 8.1: Comparison of CLOCS and a DECStation 3100
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marks, given an application and the processing time it requires for each activation of
a process, we can determine if the application benefits from the CLOCS architecture.
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Chapter IX

Conclusions and Future Work

This study revealed much about the issues of context switching. A candidate ar-

chitecture meeting the main design goals was designed and simulated. Quantitative

analyses showed that the architecture has good potential performance. Simulation

of an implementation produced estimates of the performance of a feasible CLOCS

computer system relative to a commercial workstation. Armed with simulation data,

it is possible to evaluate if a given application would run faster on CLOCS than on a

computer of conventional design. The study also revealed other observations about

context switching and fewer levels in computer memory hierarchy. These observations

identified future work.

9.1 CLOCS Potential Performance Is Close to Con-

temporary RISC

The comparison of CLOCS to a R2000 in Chapter 6 showed that by using assumptions

moderately favorable to CLOCS, the new architecture performed 85% as well as the

R2000.

9.2 CLOCS Fuller-Type Analysis Score Is High

The score for the CLOCS architecture (using Fuller's quantitative criteria) was much

higher than the architectures evaluated by the original study. This indicates that

CLOCS has high potential for real-time applications similar to those run on military

computers.
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9.3 CLOCS Uses 3.2 Memory References per In-

struction

Simulation results indicate that programs will average 3.2 memory references per in-

struction (including fetch of the instruction). This is better than initial bandwidth

estimates and indicates potential performance better than 50% of conventional ar-

chitectures.

9.4 Short-Circuiting Saves 15% of Memory Refer-

ences

The implementation technique of short-circuiting, using the result of one instruction

as an operand and avoiding an unnecessary fetch of the data from memory, saves

15% of the memory references. This savings is realized in most reasonable-cases. but

could not be considered for worst case analysis.

9.5 Feasible CLOCS System Performance Is Good

The implementation of CLOCS that I designed, supported by the GNU C compiler

and other software, performs about 30% as fast as a DECStation 3100. This CLOCS

design is conservative, and better performance is possible.

9.6 When Is a New Architecture Indicated?

As discussed in Chapter 8, it is possible to estimate from these results when such an

architecture will provide better performance than conventional RISC architectures.

The inequality to verify is:

CLOCS Application Time + CLOCS Context-Switch Time

Less Than

Conventional Application Time + Conventional Context-Switch Time

For the example implementation, CLOCS performs better for applications requir-

ing fewer than 1266 instructions per activation on a DECStation 3100. I expect that

comparisons with other contemporary computer systems, such as the Sun 4, would
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have produced substantially the same results. This proves the original thesis that a

flat memory hierarchy provides better performance for applications that switch con-

text often. This study conservatively defines the nature of applications for which this

design approach is superior.

9.7 When a Conventional Architecture Is Indicated

Because conventional architectures perform better when more than approximately

1000 machine instructions are executed per task activation, many common applica-

tions do not perform better on CLOCS. Most general purpose time-sharing, commu-

nications, and file-serving functions run better on conventional machines. Therefore,

a specialized architecture like CLOCS does not make sense for these applications.

Even with small work per activation and many context switches per second, more

conventional architectures may still perform better than CLOCS if only a few tasks

are activated repeatedly. If the application is known well enough in advance for the

designer to estimate the number of desired active processes, it is possible to design a

hierarchical memory system that can run more efficiently than CLOCS. For example,

the six-legged walking machine[35 requires 66 processes. To support this application

a computer only has to handle that many processes to run efficiently. Three designs

that can take advantage of known context-switch requirements are shared register

files, a special register backing store, and trickle register refill.

9.8 Register File Sharing

If the number of tasks is very small (eight or fewer), then the sharing of the register

file by the tasks as is done on the Berkeley RISC and AMD 29000 will perform well.

In this approach, the register file is divided into groups of registers, and each group

may contain the information for one task. Then each task is assigned one group of

registers when it is activated. If the register file is divided into eight groups, eight

different tasks can be activated very rapidly. For this approach to be effective, the

memory system must also support the same number of active tasks, but since the

number of tasks is small, no novel techniques are required. For example, the Sun 4

MMU stores context for 16 processes and would be quite suitable for use with register

file sharing.

Registers and the data paths to them consume significant area on integrated
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circuits[29. For larger numbers of processes, more sets of registers would be required

and there would not be room to put all of them on a single chip. To keep the state

for more processes on a single chip a more compact type of memory could be used as

is described next.

9.8.1 Register Backing Store

For larger numbers of tasks, a special backing store for the registers can be added. An

example of this is the Intel 80960CA, which implements register windows by having

a backing store on the chip connected to the actual register set by two 128-bit wide

busses. When a subroutine call is made, these busses are used to save and restore

simultaneously sixteen 32-bit registers in only four cycles. During each cycle, four

words move from the registers to the backing store, and four move from the backing

store to the registers. In this implementation, the backing store contains 16 sets of

registers.

Similar techniques could be used to design a machine for fast context switching.

A machine with only 16 registers could have a backing store of 192 sets of registers:

microprocessors introduced in 1989 commonly have an on-chip cache of that size. As

long as fewer than 192 active processes are expected, this design could switch context

only slightly more slowly than CLOCS, but throughput would be much higher.

As with register file sharing, the memory system for a machine with fast context

switching would have to support all of the active processes. When a process is

activated, it would have to use instructions and data in memory, and no extra delay

could be added as a result of switching context. With 192 processes, a bigger, more

capable MMU than the Sun 4 design would be required. To support virtual memory

efficiently, an MMU design like the CLOCS design would be required.

The register backing-store design limits the number of processes based on the area

of one integrated circuit. For an unlimited number of active processes, program state

must be moved off of the chip. However, fast context-switch performance may be

obtained by not reloading all program state at once, as I describe next.

9.8.2 Register Trickle Refill

With trickle register refill the CPU keeps track of the registers that have not been

restored every time a context switch occurs. Only when the new program uses a

register are its contents fetched from memory. The old value (from the pre-switch
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program) could be saved by extra hardware when memory bandwidth is available.

As a result, the context switch is very rapid, and a potentially smaller degradation

occurs because values are saved and fetched only when required.

High bandwidth to memory is not required, but there are two disadvantages to

this scheme. Much complexity must be added to the CPU to keep track of register

status and to interlock affected operations. Another disadvantage is that performance

is not predictable. A program will run much slower if it is interrupted frequently.

Even the first few instructions after activation will run at different rates depending

on the status of the register file during execution of the previous program.

It is difficult to predict the context-switch time of this design, because the delay
from context switching is spread out over several instructions, and the number of

registers referenced between context switches will determine the average context-

switch time. Obviously, the average context-switch time depends on the switching

rate and the nature of register references for each application. In any event, delay

associated with a context switch will always be greater for a register refill design than

for CLOCS. In the worst case (every register reference causes a refill) it would also

require twice as many data references as CLOCS (save old and fetch new data), so

its throughput performance would be almost twice as slow as CLOCS.

The register trickle-refill scheme supports any number of tasks, but, as with reg-

ister backing store, the MMU must also handle larger numbers of context. It is likely

that a CLOCS-style MMU and memory system would be necessary.

Each of the above approaches requires a detailed knowledge of the application

set. For register-file sharing and register backing-store designs, a computer designed

to run N applications may not be able to handle N * 2 applications, even if the

context-switch rate remains the same. The register trickle-refill scheme provides

lower context-switch performance.

9.9 Programming Language Observations

During compiler porting and simulation runs, I observed two features of the C lan-

guage that did not work well with the CLOCS architecture: recursion and dynamic

memory allocation. Both of these features are used in many but not all languages.
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9.9.1 Dynamic Allocation Inefficient

Since the C language assigns variables to dynamic storage by default, CLOCS must

use indirect addressing for most of the variables. This reduces the efficiency of the

architecture. The estimates made in Chapter 6 assumed that indirect addressing

could be avoided in many cases. However, since addresses must be determined at

run time, the compiler generates instructions at the beginning of each procedure to

calculate the address of each variable. Then, as the subroutine does its computation,

it must use these calculated addresses with an indirect-addressing mode to access the

variables.

9.9.2 Recursion Works Poorly

Recursion is very inefficient on CLOCS because all of the scratch space for inter-

mediate values and the space necessary for dynamic storage allocation must be in

fixed-storage locations. These locations must be copied to the stack for each subrou-

tine call to prevent a corruption of the data during recursive calls.

From examination of the CLOCS assembler-language source produced by the GCC

compiler, I estimate that the supporting dynamic variables and recursion added 50%

more instructions to the instructions that did the computation.

9.10 Future Work

The interaction of the architecture with programming-language features had a greater

effect than expected. The experience obtained in this study revealed several invit-

ing new avenues of research. Although expected improvements would still leave

CLOCS with less throughput performance than that of a conventional architecture.

any improvement would widen the range of appropriate applications. Three different

approaches could improve CLOCS performance by as much as 50%: the existing C

language compiler could be improved, the architecture could be improved to rin C

language programs, or another language could be used that is better suited to the

CLOCS architecture.
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9.11 Improve the C Language Compiler

Although the GCC compiler does many optimizations, it does not make any attempt

to avoid register saving and restoration during subroutine calls. Instead, it relies

on machine-dependent routines to implement callee saves during subroutine calls.

Also, GCC does not allocate registers between subroutines. Instead it uses the same

registers in all routines. These features affect CLOCS because the register-allocation

routine manages fixed storage-locations used for addresses and scratch space. By

enhancing the register allocation function of the C language compiler, these fixed

locations could be allocated between subroutines. If only one subroutine uses a

storage location it need not be saved unless the procedure is called recursively. This

leads to three possible optimizations:

1. The most complete but difficult optimization is to trace the program call tree

to determine if a subroutine may be in a recursive chain, and to insert save and

restore instructions only in case recursion is possible.

2. One case of non-recursive behavior is easy to identify: if the subroutine is a leaf

(does not call other subroutines). In that case, saving of locally used values is

never required.

3. Another possible approach is to save the status as to whether a recursive call

is in progress. If the program determines that the current call is part of a

recursive chain of calls, it may save the fixed locations; otherwise no saving is

required.

Determining possible recursion is difficult because the compiler does not necessar-

ily process all subroutines at one time. If two subroutines in separate source files call

each other, recursion may be possible, but may undetectable to the compiler since it

processes only one file at a time. Also, the compiler must consider more details than

just the location of subroutine calls, because the logic of the subroutines may prevent

recursion. Thus the first optimization is difficult and potentially too conservative.

The second and third optimizations would be easier to implement using GCC and

the combination of the two would likely provide the same performance improvement

as the combination of the first and the third optimizations. I estimate that these and

other optimizations discovered by further research could provide a 40% imlprovement

in performance.
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9.11.1 Improve the CLOCS Architecture for the C Language

The dynamic storage-allocation feature of the C language is not well supported by

CLOCS. Additional addressing modes might make CLOCS much more efficient. Some

efficiency could be obtained by adding addressing modes that are stack-pointer or

frame-pointer based. This addition would eliminate many of the calculations at sub-

routine activation. I did not put these into the architecture because of propriety

considerations, but their incorporation might improve performance up to 50% by

eliminating the instructions added to handle dynamic variables and recursion. Ad-

dress calculations for dynamic variables could be avoided by placing the variables in a

space easily addressed by the new modes. Also, all register save and restore overhead

would be removed because the fixed-storage locations for address calculation would

no longer be required. These modifications would have to be carefully evaluated;

the savings during subroutine initialization may be offset by the larger number of

memory references during subroutine execution.

9.11.2 Try Another Language: FORTRAN

It may be that the best performance may be obtained simply by using a language

that does not use recursion or dynamic memory. Although such a language is more

difficult to use for operating-system work, most real-time applications could easily

use one.

If any combination of these improvements resulted in a 50% improvement in

CLOCS performance, the crossover point would move by a factor of two to 190

microseconds, as shown by Figure 9.1.
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Appendix A

Detailed Simulation Results

A. 1 General Performance

The general performance for Dhrystones, Assign, Lloop, Sub, and Quicksort are

shown in Table A.1. These statistics were printed by the CAS simulation program.

A.2 Various Memory Designs

Table A.2 contains the number of cycles for each of the programs to run using different

memory systems. The Dhrystone portion of this data is presented in normalized form

in Table 8.3. Table A.3 contains the cycles per instruction for each case.

A.3 Effect of GCC Optimizations

The effects of various optimizations provided by GCC are displayed in Table A.4.

A more compact presentation is given in Table A.5. Keep in mind that the author

of the Dhystone benchmark program states that procedure inlining is not an appro-

priate optimization when comparing systems. When comparing CLOCS with the

DECStation 3100, I use values obtained without use of "-finline-functions."

As expected, the standard GCC optimizations provide the greatest incremental

improvement. The combine-regs option looks for the special case of a register copied

to another register. This generally adds an incremental improvement of 3% by fixing

redundancies introduced by address calculations.
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Compiled with gccc -O dhrystone assign Iloop sub quicksort

General Counts
Total Cycles 5046 26 498 85 99999

Total Operations 1793 9 218 30 38003

Cycles Per Instruction 2.8142 2.8889 2.8440 2.8333 2.6313
Total MMU Operations 5046 26 498 85 99999

Total Memory Ops 5046 26 498 85 99999

Operations (Number of Occurrences)
ADD 489 1 52 5 9441
SUB 183 2 54 6 4785
MUL 4 0 0 0 0
DIV 1 0 0 0 0
OR 1 0 0 0 0

LEFT 11 0 0 0 4693
RIGHT 2 0 0 0 0

RIGHTA 12 0 0 0 4694
MOVE 787 0 59 16 9661

B 303 1 53 3 4728

Operand 1 Address Modes (Number of Occurrences)
RELATIVE 570 3 107 10 18983
INDIRECT 288 2 3 5 4759

ZERO 83 0 0 1 12
ABS-INDIRECT 84 1 1 2 11

IMMEDIATE 768 3 107 12 14238

Operand 2 Address Modes (Number of Occurrences)
RELATIVE 1340 8 216 25 37881
INDIRECT 453 1 2 5 122

Short Circuits (Number of Occurrences)
psw to MMUA 83 0 0 1 12
alu to MMUJ 197 3 54 7 9407
alu to MMU.2 574 1 105 6 23572

Table A.1: General Performance Results of CLOCS
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Write Delay 0 1 2
Ports 1 2 1 1 2 1 2 1 [

Dhrystones

0 Read Delay 5048 3360 5432 3744 6658 5032 8030 6522
1 Read Delay 6909 6717 7293 6717 7677 7101 8903 7485
2 Read Delay 10266 10074 10266 10074 10650 10074 11034 10458
3 Read Delay 13623 13431 13623 113431 13623 13431 14007 13431

assign
0 Read Delay 47 32 51 36 65 50 80 65
1 Read Delay 61 61 65 61 69 65 83 69
2 Read Delay 90 90 90 90 94 90 98 94

3 Read Delay 119 119 119 119 119 119 123 119

Iloop
0 Read Delay 933 656 1089 812 1366 1089 1643 1366
1 Read Delay 1309 1309 1465 1309 1621 1465 1898 1621
2 Read Delay 1962 1962 1962 1962 2118 1962 2274 2118

3 Read Delay 2615 2615 2615 2615 2615 2615 2771 2615

sub
0 Read Delay 128 85 138 95 178 135 220 177
1 Read Delay 168 167 178 167 188 177 228 187

2 Read Delay 250 249 250 249 260 249 270 259
3 Read Delay 332 331 332 331 332 331 3421331

quicksort
0 Read Delay 32284 20745 36667 25128 43753 33281 52985 42600
1 Read Delay 43686 41487 48069 41487 52452 45870 59538 50253
2 Read Delay 64428 62229 64428 62229 68811 62229 73194 66612

3 Read Delay 85170 82971 85170 82971 85170 82971 89553 82971

Table A.2: Cycle Counts for Various Programs and Memory Systems
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1 Port Memory
Write Delay 0 1 2 3

Read Delay 0 2.90 3.12 3.83 4.62
Read Delay 1 3.97 4.19 4.41 5.12
Read Delay 2 5.90 5.90 6.12 6.35
Read Delay 3 7.83 7.83 7.83 8.05

2 Port Memory
Write Delay 0 1 2 3

Read Delay 0 1.93 2.15 2.89 3.75
Read Delay 1 3.86 3.86 4.08 4.30
Read Delay 2 5.79 5.79 5.79 6.01
Read Delay 3 7.72 7.72 7.72 7.72

Table A.3: Memory Design Effect on Dhrystone Cycles per Instruction

113



None
Memory System Start Stop Diff Dhrystones
Instruction Count 438 1551 1113
1 Port, 0 Delay 1304 4620 3316 4825
1 Port Posted 1843 6299 4456 3590
I Port, 1 Delay 1900 6588 4688 3413
2 Ports, 0 Delay 889 3051 2162 7401
2 Ports, 1 Delay 1777 6101 4324 3700

gccc -0
Memory System Start Stop Diff Dhrystones
Instruction Count 423 1211 798
1 Port, 0 Delay 1266 3552 2286 6999
1 Port Posted 1798 4882 3084 5188
1 Port, 1 Delay 1848 5089 3241 4936
2 Ports, 0 Delay 866 2356 1490 10738
2 Ports, 1 Delay 1731 4711 2980 5369

gccc -O -fcombine-regs
Memory System Start Stop Diff Dhrystones
Instruction Count 423 1191 768
1 Port, 0 Delay 1266 3496 2230 7207
1 Port Posted 1798 4793 2295 5342
1 Port, 1 Delay 1848 5003 3155 5071
2 Ports, 0 Delay 866 2313 1447 11057
2 Ports, 1 Delay 1731 4625 2894 5528

gccc -0 -fcombine-regs -finline-functions
Memory System Start Stop Diff Dhrystones
Instruction Count 423 1161 738
1 Port, 0 Delay 1266 3401 2135 7494
i Port Posted 1798 4683 2885 5545
1 Port, 1 Delay 1848 4884 3036 5270
2 Ports, 0 Delay 866 2260 1394 11477
2 Ports, 1 Delay 1731 4519 2788 5738

Note: -fstrength-reduce had no effect
on the timed portion of Dhrystones.

Table A.4: GCC Optimizations for Dhrystones
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1 Port 1 Port 1 Port 2 Ports 2 Ports
Optimizations 0 Delay Posted 1 Delay 0 Delay 1 Delay

Write
None 100.00% 100.00% 100.00% 100.00% 100.00%
Add -O 145.05% 144.49% 144.62% 145.10% 145.10%
Add combine-regs 149.37% 148.78% 148.58% 149.41% 149.39%
Add inline-functions 155.31% 154.45% 154.419c 155.08% 155.07%

The results from Table A.4 are shown here normalized
to the no optimization cases and expressed as percentages.

Table A.5: Effect of GCC Optimizations (Percentages)
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Appendix B

Source Listings

B.1 Arrangement of Support Software

The CLOCS architecture was simulated using several pieces of software. These in-

cluded:

CCC The C language compiler produced CLOCS assembler code.

GCCC The Gnu C language compiler also produced CLOCS assembler code.

CASM The CLOCS assembler produced a CLOCS object module.

CLOADER The CLOCS loader reads an object module into memory.

CDUMP This simple dumping program reads and disassembles object modules.

CAS The CLOCS implementation-level simulator produces a trace of the simulated

execution of object modules.

Each of these programs had to work with the next one; writing the programs for

reliable communications was challenging.

B.1.1 CCC (C Language Compiler for CLOCS)

The C language compiler was initially written by three graduate students taking

an advanced compiler course. They produced the compiler as their class project.

They used the Amsterdam Compiler Kit (ACK)[24] to facilitate the creation of the

compiler. Unfortunately, a CLOCS assembler and simulator were not available by

the time the project had to be presented to the instructor. A small test program was

run through the compiler, hand assembled and run on a very high-level architectural

simulator. The tediousness of hand-assembly limited the testing and debugging done

by the class-project participants. Several bugs and undesirable features were later
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corrected as the assembler began operations and a comprehensive C library was

compiled.

As C library functions were compiled and output from benchmark and other test

programs was examined, it became clear that ACK would not be a satisfactory tool

for this research. Much work remained before it could support multiple data types,

and the output was poorly optimized, preventing a good assessment of the capabilities

of the CLOCS architecture from the results of benchmark-program performance.

B.1.2 GCCC (GNU C Language Compiler for CLOCS)

The Gnu C compiler[371 was also examined. This high-quality compiler had the

advantages of containing more optimizations and being available in C language source

form with good documentation. This compiler was also well supported. Although

the compiler was in development at the time, it was relatively free of bugs, and only

one bug ever impeded progress. Several very helpful people were available locally and

via electronic mail to give advice and offer solutions to the more difficult problems

of porting this compiler.

B.1.3 CASM (CLOCS Assembler)

CASM, the CLOCS Assembler, was written using lex. The lex program and its C

language support routines produce an object module in main memory and then write

a CLOCS object module.

B.1.4 CLOADER (CLOCS Loader) and CDUMP (CLOCS

Object Module Dumper)

CLOADER is a subroutine that loads a CLOCS object module into main memory.

CDUMP produces human readable output of CLOCS object modules. It. tested

CLOADER and provided data for the debugging of CASM.

B.1.5 CAS

The CLOCS Architectural Simulator (CAS) is a large C language program to simulate

implementations of the CLOCS architecture. The program was initially written to

simulhtc the two-instruction pipeline implementation. However, minor modifications
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adapted it to the final implementation. The simulator supports several different

models of main memory; the number of ports and the delay of reads or writes are set

as the simulation begins. CAS uses CLOADER to get the object module loaded, does

some MMU initialization and then simulates the program, producing trace results and

summaries of instruction use and address modes.

B.2 Arrangement of Application Software

For the purposes of this appendix, application software consists of the programs that

run on the CLOGS machine.

B.2.1 C Library Routines

The C language supports many data manipulations and all operating-system services

with calls to standard subroutines[25]. The most important data manipulations rou-

tines for this research are the character string compare "strcmp" and character string

move "strcpy" routines. These routines are called in the timed portion of the Dhrys-

tone benchmark program, so they have to be reasonably efficient. The Dhrystone also

uses the operating service call to obtain memory "malloc" because some of the vari-

ables it uses are dynamically allocated. The Dhrystone program also calls "scanf"

to ask the number times to run the timed loop, "printf" for printing results, and

"times" to calculate the elapsed time. I supplied dummy subroutines for the complex

functions because I could obtain results without writing complicated subroutines to

be called only once.

"strcmp"

Figure B.1 shows the C language source[25] for the "strcmp" routine. After it was

compiled by GCC, I hand optimized it to remove unnecessary saving of parameters

on the stack. The CLOCS assembler source code is in Figure B.2.

"strcpy"

The routine "strcpy" was generated the same way as "strcmp." Figure B.3 con-

tains the C language source, and Figure B.4 contains the CLOCS assembler source

code.
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* STRCOMP from K&R version 2
* page 106
*/

/* strcmp: return <0 if s<t, 0 if s==t, >0 if s>t */
int strcmp(char *s, char *t)

{
for ( ; *s == *t; s++, t++)
if (*s == 1\01 )

return 0;
return *s - *t;
}

Figure B.1: Strcmp.c Source

"malloc"

The CLOCS simulator establishes several extra pages of virtual memory and stores

the location of this data space in a standard location in the user's data segment.

The "malloc" subroutine may use this pointer and the corresponding data pages

to provide dynamic memory to the running program. By adding this capability

to the simulator, I avoided the necessity of writing a program to do this virtual-

memory allocation dynamically. Writing such a program is not difficult, but it is

time-consuming. The simple "malloc" program source is listed in Figure B.5.

"scanf"

The Dhrystone benchmark program calls the "scanf" routine to get the user's

input of the number of iterations of the timed loop. I replaced the standard routine

with a C program that just sets the value to one. The source is shown in Figure B.6.

I also hand optimized this subroutine into the assembler language program shown in

Figure B.7.

"printf" and "times"

The standard C language subroutines "printf" and "times" are called by the

Dhrystone Benchmark program. Since data collection does not require these routines

to work, null subroutines are substituted. Figures B.8 and B.9 list these programs.
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Camp iled-y-.GCCC.:
.text
.align 8
.globl -.strcmp

..strcmp:
;BEGIN NEW FUNCTION.

b STRCMP..L2
STRCMP.L6:
bqine STRCMP-.L4,Q~R48
movsi <O,RTN
b STRCMP..L1
STRCMPL4:
adddi <1,R_48
adddi <1,R_4A9

STRCMP-L2:
movqi OR-48,RTN
subqi OR-49,RTN
bqieq STRCMP-.L6,RTN

;Sign extension is a drag. At least it only has to be done once
leftsi <24,RTN
rghtasi <24,RTN

STRCMPLl:
movdi GSTACKYTR, BRANCHTGT
b %QBRANCH-TGT

END THIS FUNCTION.

Figure B.2: Strcmp.s Source

120



* STRCPY from K&R version 2
* page 106

/* copy t to s; pointer version 3 */
void strcpy(char *s, char *t)
{
while(*s++ = *t++)

}

Figure B.3: Strcpy.c Source

CompiledByGCCC.:

From K&R, version 2, page 106, then hand optimized.

Changed to jump into middle to lower loop overhead
.text

.align 8

.globl _strcpy

;_strcpy:

BEGIN NEW FUNCTION.

b STRCPYSTART
STRCPYL2:
adddi <1,R-49
adddi <1,R-48
_strcpy:
STRCPY-START:
movqi OR_49,CR.48
bqine STRCPYL2,QR_48

movdi QSTACKPTR,BRANCH_TGT
b %QBRANCHTGT

END THIS FUNCTION.

Figure B.4: Strcpy.s Source
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Hand assemble by Mark C. Davis
1/16/90

.text

.align 8

.globl _malloc
_malloc:
BEGIN NEW FUNCTION.
Register 48 (first parameter) contains size of desired storage.

normalize SI to DI for addition
rghtdi <32,R_48
movdi OXFFFEOO,RTN
adddi R_48,OXFFFEOO
movdi QSTACKPTR,BRANCHTGT
b %QBRANCHTGT

END THIS FUNCTION.

Figure B.5: Malloc.s Source

/* A Dummy scanf subroutine to set the drystone to one
/* iteration. */

/* Mark Davis 1/25/90 */

void scanf( char *fmt, int *n)
{ *n = 1;}

Figure B.6: Scanf.c Source
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; CompiledByGCCC.:
Then Hand Optimized by Mark Davis

1/25/90

.text

.align 8

.globl _scanf

_scanf:
; BEGIN NEW FUNCTION.

movsi <1,CR_49
movdi @STACKPTR,BRANCHTGT
b %QBRANCHTGT

END THIS FUNCTION.

Figure B.7: Scanf.s Source

Hand assemble by Mark C. Davis
1/16/90

.text

.align 8

.globl _printf
_printf:
BEGIN NEW FUNCTION.

Don't Do anything except set RTN code to zero
movdi <O,RTN
movdi QSTACKPTR,BRANCHTGT

b %QBRANCHTGT
END THIS FUNCTION.

Figure B.8: Printf.s Source
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Hand assemble by Mark C. Davis
1/16/90

.text

.align 8

.globl _times
-times:
BEGIN NEW FUNCTION.
Don't Do anything except set RTN code to zero

movdi <0,RTN
movdi OSTACKPTR, BRANCHTGT
b %QBRANCHTGT

END THIS FUNCTION.

Figure B.9: Times.s Source

void main() {
long i =1;
}

Figure B.10: Assign.c Source

B.2.2 Test Programs

During the writing and debugging of the simulation system, I wrote many small C

language programs to test various features. Four of the programs provide interesting

simulations results, so I include their performance statistics in Appendix A and their

source here. The source for "assign," a simple assignment program, is shown in

Figure B.10. Figure B.11 presents the source for a small looping program call "lloop.'

To test and evaluate performance of subroutine calls I wrote "sub," the program in

Figure B.12. The "quicksort" program is a minor modification of a test program used

by a group of students who wrote a CLOCS C language compiler for a course. The

program is listed in Figures B.13 and B.14. Many other programs were written and

run, but are not of sufficient interest to include here.
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main()

int i,j;

for (i=0; i < 50; i++) j += 3;

Figure B.11: Lloop.c Source

int spo;

void main()
int i-i;

int sp(ip)
int ip;

return ip;

Figure B.12: Sub.c Source
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iut a[100);

void swap(int x,int y)

f
jut temp;
temp = a~x);

aXI] = a.Cy];
ajy] = temp;

I

void sort(int bottom,int top)

f
jut low - bottom,high = top;
jut mid = (low + high)/2;
jut pivot = a~mid];
while (low < high)

f
while (aflow) < pivot)
low = low + 1;
while (a~high] > pivot)
high a high - 1;

if (low < high)

swap(low,high);
low++;
high--;

if (bottom < top)

sort (bottom,mid);
sort (mid+1 ,top);

Figure B.13: Quicksort.c Source (Subroutines)
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main 0

int bottom = 0, top;
int num;
long long int i;
num=8;
a [0] =12;
a[11=63;
a[2)=3;
a[31=13;

* aC4]=ST;
a[5]=31;
a [61=61;
a [7] =11;
sort (bottom, num-1);
for (i=0;i < num;i++)
top=a[i);

Figure B.14: Quicksort.c Source (Main Program)
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B.2.3 Dhrystones Version 2.1

I used the Dhrystone source as distributed. However, the null "printf" and "times"

library routines described prevent the program from determining and printing the

results. Simulator timings are used instead to determine Dhrystone performance.

I obtained the source from a Usenet posting by Rick Richardson (return electronic

mail address ... !seismo!uunet!pcrat!rick) dated 4 Dec 88. The source is available from

PC Research, Inc, at 94 Apple Orchard Drive, Tinton Falls, NJ 07724 and from the

server at netlib@mcs.anl.gov.
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