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Introduction

N\

~"Dihedral groups describe the symmeliy of bounded figures in the planc.
They are also the fundamental structures used to analyze the symmetry of more
complicated objects like frieze palterns, wallpaper patlerns, and
three-dimensional crystals. This report investigates the subgroup structure
of dihedral groups from a number theory point of view. The prerequisites
needed to understand the material are modest. It is assumed that the reader
is familiar with group theory and number theory at the undergraduate level.
The report presents the authors’ research findings from August 1989 to
March 1990. During that period, two papers were submitted for publication;
they are reproduced here in chapters one and two. Footnotes have been added
to clarify and expand the topics covered. Also, for those wishing to pursue
the subject further, a section on open questions has been included, as well as
an extended bibliography. The footnotes, open questions, and extended
o)
bibliography unify what otherwise might appear to be two disjoint papers.(ik\ﬁi J (&f’
As a final note, the authors would like to thank Mr Tim Whalen for
superbly typing the original manuscript, and then persevering through several

revisions.




Divisor Functions and Subgroups of Dihedral Groups

A picture can really be worth a thousand words. For example, consider
Figure 1 which depicts the number of subgroups of every order for dihedral
group Dn' n=1, 2, 3, ..., 20.1 The tolal number ol subgroup: of Dn' denoted
T(n), 1s also shown. The most striking feature of Llhe table 15 1ts numerous
patterns and symmetries. Taken together, these patterns highlight the rich
structure of dihedral groups in a way that would be hard to duplicate using
wordea.,  Thig article looks at the subproup stracture of dihedral groups, aaing
Figure 1 to gulde the discussion. Several famillar facts are reviewed, and a

n

new expression for I ¢l(k), where o(k) ts (he sum of Lhe positive divisors of
k=1

k, is presented. Figure 1 comes from a computer program the authors created
to 1list elements, subgroups, and varlous properties for cerlaln classes of
finite groups.2

Dihedral groups are easy to define, and they are familiar to most
undergraduate math majors. Less well-known, however, 1s the extent to which
they iliustrate the beautiful iaterplay between abetract algebra and number
theory. Before gleaning what Figure 1 has to offer, let’s review a few simple
farts that will be needed in the sequel. A dihedral group Dn has order 2n,
and is most easily understooa as tie group of symmetries of a regular n-gon.
In this context Dn contains Cn, the cyclic group of n rotations. Since Cn is
isomorphic to Zn' Cn has t(n) subgroups, where t(n) is the number of positive
divisors of n. All the other subgroups of Dn’ including Dn itself, consist of
an equal number of reflections and rotations, and they therefore have even
order. Finally, for every divisor t of n, there are exactly n/t subgroups of

order 2t that contain both reflections and rotations.3
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Note that Fipure 1 supports the following important fact:
", The total number of subgroups of a dihedral group Dn is given by

the summatory function {1]:

T(n) = § (m+1) = o(n) + v(n).
m|n

With a little extra probing, Figure 1 also puints to other fascinating
results. In particular, note the way the sequence ai=1, 3, 3, 5,5, 7, 7,
repeats itself vertically at every even order. This sequence lies at the
heart of our main theorem. To get to it we first need several short lemmas,

each of which is Interesting in its own right.

Lemma 1. In a dihedral group, there never exists more than one subgroup of
order k when k is odd.

Proof: Let Dn be a dihedral group. Only the odd ordered subgroups of Cn need
be considered since all other subgroups of “n have even order. The result
follows by simply noting that Cn is isomorphic to Zn, and Zn never has more

than one subgroup of any given order.

Lemma 2. The number of subgroups m of a given order k in a dihedral group is
either zero or odd.
Proof: Lemma 1 takes care of the case when k is odd. If k is even and m = O,
then k{2n, and moreover, k/2[n. Therefore, there are exactly 2n/k subgroups
of order k that contain both reflections and rotations.

- Case 1. If 2n/k is even, then kln and there is also a cyclic subgroup

of order k. Therefore m = (2n/k) + 1 is odd.




- Case 2. If 2n/k is odd, then k } n and there is no cyclic subgroup of

order k. Then m = 2n/k is again odd. [

Lemma 3. Assume m is a positive odd integer and k is a positive even integer.
Then dihedral group Dn contains precisely m subgroups of order k if and only
if n = mk/2 or n = {m-1)k/2.
Proof: Assume first that Dn contains precisely m subgroups with even order k.
We arrive at the desired conclusion by noting that the procf{ of Lemma 2
implies m = 2n/k + 1 or m = Zn/k.

If we start by assuming n = (m-1)k/2, then (k/2)}|n and there are 2n/k =
m-1 subgroups of order k that have both reflections and rotations. Since m-1
is even, Lemma 2 1implies a cyclic subgroup of order k must also exist.
Therefore, the total number of subgroups of order k must be m. Using similar

arguments, n = mk/2 also implies there are m subgroups of order k. 0

Several corollaries follow immediately from Lemma 3.4 For example, if m

z 3, then the smallest dihedi:l group having precisely m subgroups of order
kl' and m subgroups of order kz, k1 * k2, is D(mz_m). Figure 1 nicely
illustrates this fact for m = 3 and m = 5. lLemma 3 is also useful in
establishing our main theorem. In what follows, let Te(n) and To(n) denote

the number of even and odd ordered subgroups contained in Dn' respectively.
Also assume [x] represents the largest integer not exceeding x, and a, is the

sequence previously mentioned, that lis

i , 1 odd
a, = 4. .
i i+l, 1 even.




n n
Lemma 4. ¥ To(k) = ¥ [n/k]
k=1 k odd

Proof: From Lemma 1 we know a dihedral group Dn can have at most one cyclic
subgroup of odd order k. Moreover, a cyclic subgroup of order k exists if and
only if kln. Thus the number of subgroups of odd order k embedded in the
dihedral groups with order = 2n equals the number of times it is true that k
divides r for r = 1, 2, 3,..., n. This in turn equals [n/k]. Therefore, the

total number of subgroups of odd order embedded in the dihedral groups with

n
order =2n is ¥  [n/k].
k odd
n n
Lemma 5. JElTe(J) = JEl A[n/j] , where Ai is the sequence of

partial sums of a;.

Proof: Let k be an even integer. From Lemma 3, there is only one dihedral

group that contains exactly one subgroup of order Kk, namely Dk/2' For m = 3,

5, 7,... , the dihedral groups that contain precisely m subgroups of order k

are Dmk and D Therefore all the dihedral groups that contain

/2 (m-1)k/2°

subgroups with order k are given by D.1 i=1, 2, 3, .... Moreover, the

(k/2)’

number of subgroups of order k in D is a,. This implies that the number

i(kr2) i

of subgroups of even order k embedded in the dihedral groups with order = 2n

{2n/k] n
is ) a,. We conclude that ) Te(J) , the total number of even ordered
1=1 j=1
subgroups embedded in the dihedral groups with order = 2n, equals
2n  [2n/k] 2n [2n/k] n [nsk] n
) Y a,. Then ¥ Ya = Y Y a. = T A
k even i=1 k even 1=1 I k=1 =1 ' k=t (VKL

where A1 is the sequence of partial sums of a;. g




Theorem. X (k) = Z (A - [n/Zk]).s

Z L sk

n n
Proof: From (1) we have } T(k) = J}(eo(k) + t(k)), and from Lemmas 4 and S

k=1 k=1
n n n
we have ¥ T(k) = ¥} A[n/k] + ¥ [ns/k]. It is also true that
k=1 k=1 k odd
n n 6
Y t(k) = ¥ [ns/k]l , [2].7 We therefore conclude that
k=1 k=1
n n n n n n
Tolk) = T A + ¥ [kl - ¥ (k) ): T (oK)
k=1 k=1 VKl "oad k=1 k=1 %) T cven
n n n
= YA - Y [n/2k] = § (A - [n/2k]).
vkl T Ly k]
As an example of how the theorem works, let n = 5.
S
Then ¥ oa(k) = (1) + (1+42) + (143) + (1+42+44) + (1+45) =
k=1
S
and kz (A[S/k] - [S5/2k]) = (A5 tA, H AL A Al) - (2+1)

= (17 +4+1+1+1) - (3) =




Footnotes Lo Chaptler 1

1. Figure 2 on page 9 extends Figure 1 by depicting the number of subgroups
of each order for dlhedral group D“, 21 = n < 40. As in the top half of
Figure 1, the trivial subgroup consisting of Dn itself is included in T{(n),
but not shown on the graph.
2. A detalled description of the computer program used to generate Figures 1
and 2 will be published as a separate US Alr Force Academy Technical Report.
3. The simple facts about dihedral groups referenced on page 2 can be
verified in references [1]1 and [3] of the extended bibliography.
4. The following corollaries also follow immediately from Lemma 3:

Corollary 1 Assume m 1Is a positive odd integer, m 2 3. Thaen ﬂ

a dlhedral group with exactly m subgroups of order k., m subgroups

1'

of order k and m subgroups of order k where k k., and k} are

2’ 3 |

distinct.

Sketch of Proof Refer to Lemma 3 and note that for n and m fixed, the

equations n = m [;] and n = (m - 1)[;] yleld at most two distincl

solutions.

Corollary 2 Assume m is a positive odd integer, m z 3. Let Kn be the

number of dihedral groups of order s 2n, cach of which has precisely m

. =~ (P n _ n
subgroups of the same order. Then Kn [m] + [m — 1] [m(m — 17].

Sketch of Proof: The only time we can gel m subgroups of a glven order

in dihedral group Dt ts when m ot (m - 1) divides L. For t =+ 1,2,...,n,

the number of times m divides t iIs given by [%], and thc number of times
n n

m 1 divides t is gliven by [a-:~1]. The term [h?ﬁ“:—TT] takes care of

the "overlap”, where both m and m - 1 divide t.

-8 -
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5. It is well-known that the sequence of positive odd integers C, = (21 -~ 1)

i
n
yields § C1 = n2. Using this it is easy to show that A.1 can be expressed as
i=1
follows:
12 * 1 i even
2 *
A= 2
1 +2i -1 44 .

2 ’
With this expression for Ai' different formulations of the main theorem are

possible. However, none are as concise as the one given.

n n
6. In addition to the fact that ¥ t(k) =} [;], it is also common knowledge
k=1 k=1
n

n n
that ¥ o(k) =} k[E]' A good reference for these, as well as hundreds of
k=1 k=1

other statements about arithmetic functions, is Dickson’s "History of the

Theory of Numbers," [2].

_10_




Introducing Large Primes via Subgroups of Dihedral Groups

For both the novice and the seasoned mathematician, Fermat primes and

Mersenne primes are an endless source of enjoyment and speculation. Fermat
m
primes1 are primes of the form Fm = 22 + 1 where m is a nonnegative integer,

and Mersenne prime52 are primes of the form Mp = 2P - 1 where p is itself a

prime number. This paper shows that similar large primes are also important

for understanding the structure of dihedral groups. In particular, simple

examples are given where large primes, primes of the form 2k+1 + k and primes
+

of the form 2k 1 + 2k + 1, relate nicely to the number of subgroups of

dihedral groups.
Stephen Cavior has shown that the number of subgroups of dihedral group

Dn’ denoted T(n), is given by T(n) =Y (m + 1) = o(n) + t(n), where T(n) is
m|n

the number of positive divisors of n and o(n) is the sum of those divisors
(1].3 For example, for n = 6 we have T(n}) = (1 + 2 + 3 + 6} + 4 = 16. Three
questions about T(n) naturally arise:

- When is T(n) odd?

- When is T(n) prime?

- When does T(n) = 2n?
The first question is easily answered by our Lemma 1. The second and third
questions give rise to the search for large primes of the kind alluded to
earlier. The question of when T(n) equals 2n is especially appealing. In
terms of Group Theory, it is equivalent to asking when the order of a dihedral
group equals the number of its subgroups. From a Number Theory perspective,
it is a fascinating extension to the search for perfect numbers, numbers which
satisfy ¢(n) = 2n. In the sequel we shall refer to the following well-known

k1 k k

facts for n = p, p22....pmm in standard form [21:4

-11-




m
(1) z(n) = (k;, + 1)

i=1
ki+1
m p, -1 m k1 k1 -1
(2) o(n) = - =n (p,” +p + +p, +1)
g=1 Py "1 qmp d 1 1
k1 k2 k3 km
Lemma 1. T(n) is odd if and only if n is of the form n = 2 P, Py .- P
where k1 is odd and k2 through km are even.
k, k k

Proof: It follows easily from (1) and (2) that for n = pl1 p22...p m

(3) T(n) is odd # n has only even powers of primes.

(4) o(n) is odd & n has only even powers of odd primes.
Notice that (3) and (4) imply that if T(n) is odd, then o(n) must also be odd.
Therefore we may conclude that T(n) = ¢(n) + t(n) is odd if and only if ¢(n)
is odd and t(n) is even. Again using (3) and (4), this can only happen when
is odd, and k

Py =2, k through k are even. o

1 2

Lemma 1 points us in the right direction when we consider our second question.
That is, which dihedral groups have a prime number of subgroups? Note that
for n = 1 we have T(n) = T(1) = 2, a prime. All other T(n) prime are odd
numbers, and for each one, n must be of the form given in Lemma 1. Therefore
the easiest place to look for T(n) to be prime is among n of the form n = Zk.
k odd. Using (1) and (2), T(Zk) is prime if and only if o(Zk) + t(Zk) = (2k+1

-1} + (k + 1) = 2k+1 + k is prime. We therefore have the following theorem:

_12_




Theorem 2. If k is a positive integer, then
k+1

T(Zk) is prime & 2 + k 1is prime.

Of course, the real fun begins in trying to actually find the odd positive
integers k for which 2k+1 + k is prime. Using a computer package like
"Derive,"” it is easy to show that the cnly values of k less than 200 for which
2k+1 + k is prime are k =1, 3, 7, 9, 15, and 85. It is interesting to note

that k = 85 ylelds the behemoth T(285) = 77371252455336267181195349, a prime!

k
It is also true that T(n) may be prime for n in the more general form n = 2 !
ky k3 Ky
p2 p3 ...pm , Where k2 through km can be nonzero even integers. As a quick

example, it follows from (1) and (2) that n = 2'34 = 162 yields the prime

T(162) = o(162) + t(162) = 373.

We now turn our attention to the third question posed at the outset.
Namely, which n yield T(n) = 2n? We shall call such numbers “dihedral
perfect," and we can make several immediate observations. Since T(p) =
o(p) + T(p) = (p + 1) + 2 = p + 3 whenever p is prime, it is clear that the

only dlhedral perfect prime is p = 3. Using (1) and (2), it is also clear

that for n = 25 we have T(n) = T(2X) = (@) + z2X) = "1 - 1) +  + 1) =
2X*1 L k. Thus n = 2° is dihedral perfect, that is T(2X) = 2*!, if and only
if k = 0. A logical next step is to ask if there are dihedral perfect numbers

of the form n = ka , Which brings us to our final theorenm.

Theorem 3. If n = ka where k is a positive integer and p is an odd prime,

then

Tm) =2nep=2°%"142¢ 41,

Proof: The proof is simple and we again use (1) and (2) to establish:

-.13_




2
n = ka is dihedral perfect ¢ (2k * 1. 1)[g : :] + (k + 1)(2) =2k+1p
e 2T+ 1) v 2k + 1) = 2K
ep=2*Tliok+1. o

| Therefore asking when n = ka is dihedral perfect 1is equivalent to

|
searching for primes of the form 2k+1 + 2k + 1. The values of k, 1 s k s 200,

for which 25*! & 2k + 1 is prime are k = 1,2,3,4,7,10,13,14,26,40, 49,50, 110,

142, and 170. For k = 170, the dihedral perfect number n = 2%p = 2¥(2X*1l+
2k + 1) has 103 digits! As a final note, there exist dihedral perfect

numbers besides the ones mentioned above, a simple example being n =2 « S5 »

i3 - 130.°

-14-~




Footnotes to Chapter II
m

1. Numbers of the form Fm = 22 + 1 are called Fermat numbers. The first

0= 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537 are all

prime. Although Fermat conjectured that this trend would continue, Leonard

five Fermet numbers, F

Euler showed that FS is composite. Indeed, at present no other Fermat primes
have been discovered. The smallest Fermat number whose primality status
remains unknown is F14 (16].
2. Perfect numbers and Mersenne primes are closely linked as follows:
n is an even perfect number if and only if n = ZP_IMP
where Mp is a Mersenne prime.

(The "if" portion of the statement was known by Euclid; the “only if"“ part

was established by Euler.)
There are only 31 known Mersenne primes. Therefore there are only 31 known
even perfect numbers. The existence of odd perfect numbers is still an open
question. Table 1 on page 17 1lists the known Mersenne primes and |is
reproduced from Rosen’s text.[15].
3. Table 2 on page 18 gives the values of t(n), ¢(n), and T(n) for 1 = n =
100. It was created using information from Rosen’s book [15].
4. The Fundamental Theorem of Arithmetic states that each integer greater
than 1 can be written as a product of primes, and, except for the order in
which these are written, this can be done in only one way [3]. By arranging
the prime factors of n in increasing order, we obtain the unique standard form
of n:

k1 k k

2 m
n= pl p2 . pm where p1 < p2 < .,.. ¥ pm,

5. Two more results concerning dihedral perfect numbers are given below:
Lemma 1 There are no dihedral perfect numbers of the form n = pz. where p

i1s prime.




Sketch of Proof: The lemma is true if p = 2. Therefore assume p is odd.

2 p2- 1 2 3 2
If n=p, then n is dihedral perfect o p =1 +3=2p ep-2p -3p + 4=0,

We conclude n cannot be dihedral perfect since a rational root (and therefore
a prime root) of the above polynomial must divide 4.
Lemma 2 There are no dihedral perfect numbers of the form n = PyP,. where

Py and p, are odd primes.

Sketch of Proof: 1If n = P,p, was dihedral perfect we would have
(p1 + 1)(p2 + 1) + 4 = 2p1p2, which implies PP, = P, * P, ¥ 5. No odd

primes can satisfy this last expression.




Date of Discovery

P Number of decimal
digits in M,

2 1
3 1
5 2
7 3
13 4
17 6
15 6
31 10
61 19
89 27
107 33
127 39
521 157
607 183
1279 386
2203 664
2281 687
3217 969
4253 1281
4423 1332
9689 2917
9941 2993
11213 3376
19937 6002
21701 ~ 6533
23209 6987
44497 13395
86243 25962
132049 39751
110503 33265
216091 65050

ancient times
ancient times
ancient times
ancient times
Mid 15th century
1603
1603
1772
1883
1911
1914
1876
1952
1952
1952
1952
1952
1957
1961
1961
1963
1963
1963
1971
1978
1979
1979
1983
1983
1988
1985

Table 1. The Known Mersenne Primes.
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n T(n) co(n) Ti(n)
1 1 1 2
2 2 3 S
3 2 4 6
4 3 7 10
S 2 6 8
6 4 12 16
7 2 8 10
8 4 15 19
9 3 13 16
10 4 18 22
11 2 12 14
12 6 28 34
13 2 14 16
14 q 24 28
15 4 24 28
16 S 31 36
17 2 18 20
18 6 39 45
19 2 20 22
20 6 42 48
21 4 32 36
22 4 36 40
23 2 24 26
24 8 60 68
25 3 31 34
26 4 42 46
27 4 40 44
28 6 S6 62
29 2 30 32
30 8 72 80
31 2 32 34
32 6 63 8]
33 4 48 52
34 4 54 58
35 4 48 52
36 9 91 100
37 2 38 40
38 4 60 64
39 4 56 60
40 8 90 98
41 2 42 44
42 8 96 104
43 2 44 46
44 6 84 90
45 6 78 84
46 q 72 76
47 2 48 50
48 10 124 134
49 3 57 60
50 6 93 99

Table 2
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n {n) e(n) T(n)
51 4 72 76
52 6 98 104
S3 2 54 S6
54 8 120 128
55 4 72 76
56 8 120 128
57 4 80 84
58 4 90 94
59 2 60 62
60 12 168 180
61 2 62 64
62 4 96 100
63 6 104 110
64 7 127 134
65 4 84 88
66 8 144 152
67 2 68 70
68 6 126 132
69 4 96 100
70 8 144 152
71 2 T2 74
72 12 195 207
73 2 74 76
74 4 114 118
75 6 124 130
76 6 140 146
77 4 96 100
78 8 168 176
79 2 80 82
80 10 186 196
81 S 121 126
82 4 126 130
83 4 84 86
84 12 224 236
85 4 108 112
86 4 132 136
87 4 120 124
88 8 180 188
89 2 90 92
90 12 234 246
91 q 112 116
92 6 168 174
93 4 128 132
94 4 144 148
95 4 120 124
96 12 252 264
97 2 98 100
98 6 171 177
99 6 156 162
100 9 217 226




Open Questions

1. Do there exist odd dihedral perfect numbers other than 1 and 37

2. Do there exist dihedral perfect numbers of the form n = pk, where p is an

odd prime and k is greater than 27

3. Do there exist dihedral perfect numbers of the form n = plp2 o Py where
all the pi's are odd primes and k z 37
4. Under what circumstances do we get T(n) = T(m), n # m? (It first occurs

for T(4) = T(7) = 10. An early stunning example is T(36) = T(62) = T(69)

T(77) = T(97) = 100.)

5. Do there exist positive integers n and m, n # m, such that T(n) = T(m)

an odd Integer?

6. Under what circumstances do we get "amicable" dihedral numbers; that is,

when do distinct positive integers satisfy T(n) = T(m) = n + m?

7. How rare are dlhedral triperfect numbers; that is, when does n satisfy

T(n) = 3n? (The first dihedral triperfect number is n = 60.)

8. The Erdos-Sierplinski Conjecture suggests there are an infinite number of

gsolutions to ¢(n) = ¢(n + 1). Are there an infinite number of soclutions to

T(n) = T(n + 1)? (It first occurs for T(14) = T(15) = 28.)
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