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Introduction

-"Dihedral groups describe the symmetry of bounded figure!; in the plane.

They are also the fundamental structures used to analyze the symmetry of more

complicated objects like frieze patterns, wallpaper patterns, and

three-dimensional crystals. This report investigates the subgroup structure

of dihedral groups from a number theory point of view. The prerequisites

needed to understand the material are modest. It is assumed that the reader

is familiar with group theory and number theory at the undergraduate level.

The report presents the authors' research findings from August 1989 to

March 1990. During that period, two papers were submitted for publication;

they are reproduced here in chapters one and two. Footnotes have been added

to clarify and expand the topics covered. Also, for those wishing to pursue

the subject further, a section on open questions has been included, as well as

an extended bibliography. The footnotes, open questions, and extended

bibliography unify what otherwise might appear to be two disjoint papers.

As a final note, the authors would like to thank Mr Tim Whalen for

superbly typing the original manuscript, and then persevering through several

revisions.



Divisor Functions and Subgroups of Dihedral Groups

A picture can really be worth a thousand words. For example, consider

Figure 1 which depicts the number of subgroups of every order for dihedral

I
group D , n = 1, 2, 3, ..., 20. The o.l ntumler ot subgroup; At ) , dml.,wdn I]

T(n), I!; also shown. The most. striking lealuie oF Ihe table IN Its nimero uT;

patterns and symmetries. Taken together, these patterns highlight the rich

structure of dihedral groups in a way that would be hard to duplicate using

WOidn. T ilshi U. M l 1ooks al t the sulgiorIp si;tl titll ,of dlhodi 'l grotlm:N. I l. l,

Figure 1 to guide the discussion. Several familiar tart.s are reviewed, and a
n

new expression for Z e(k), where w(k) Is the sum of thu posit, ive dlvlsors of
kW

k, Is presented. Figure 1 comes from a computer program the authors created

to list elements, subgroups, and various properties for certaln classes of

2
finite groups.

Dihedral groups are easy to define, and they are familiar to most

undergraduate math majors. Less well-known, howevwe , Is the xtent to which

they Iliustrate the beautiful interplay between abutract algebra and number

theory. Before gleaning what Figure 1 has to offer, let's review a few simple

facts that will be needed in the sequel. A dihedral group D has order 2n,n

and is most easily understooa as the group of symmetrieF of a regular n-gon.

In this context Dn contains Cno the cyclic group of n rotations. Since Cn is

isomorphic to Zn, Cn has T(n) subgroups, where T(n) is the number of positive

divisors of n. All the other subgroups of D, including Dn itself, consist of

an equal number of reflections and rotations, and they therefore have even

order. Finally, for every divisor t of n, there are exactly n/t subgroups of

order 2t that contain both reflections and 
rotations.

3
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The Number of Subgroups of D(n)

-------------------------- --------------------. ....----. .....--... .............................................--
DIM0 48 1 1 I 15 5

D(19) 22 19

D(18) 45 1 9 1 7 3

D(17) 20 1 17

D(16) 36 1 17 9 5 3

D(M5I 28 1 9 1 1 3

DM14) 28 15 7 3

D(13) 16 1 13

D(12) 34 1 :3 1 7 5 3 3

D(11} 14 1 :i !

D(10) 22 1 2I 5 1 3

D(9) 16 i 9 1 3

D(8) 19 1 9 5 3

D7) 10 1 7

DA1) 16 1 7 1 3 3

:15) 8 I 5

9C 10 1 5 3

D3) 6 i 3 !

D(2) 5 1 3 i

DI) 2 1 1

T(n)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C'der cf Subgroups

FIGURE 1
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Note that Figire I supports the following important fact:

The total number of subgroups of a dihedral group D is given byn

the summatory function [1]:

T(n) = E (m+1) = a(n) + T(n).
min

With a little extra probing, Figure I also points to other fascinating

results. In particular, note the way the sequence a.=l, 3, 3, 5, 5, 7, 7,1

repeats itself vertically at every even order. This sequence lies at the

heart of our main theorem. To get to it we first need several short lemmas,

each of which is interesting in its own right.

Lemma 1. In a dihedral group, there never exists more than one subgroup of

order k when k is odd.

Proof: Let D be a dihedral group. Only the odd ordered subgroups of C needn n

be considered since all other subgroups of I) have even order. The resultn

follows by simply noting that C is isomorphic to Z , and Z never has moren n n

than one subgroup of any given order. E1

Lemma 2. The number of subgroups m of a given order k in a dihedral group is

either zero or odd.

Proof: Lemma I takes care of the case when k is odd. If k Is even and m * 0,

then kj2n, and moreover, k/21n. Therefore, there are exactly 2n/k subgroups

of order k that contain both reflections and rotations.

- Case 1. If 2n/k is even, then kin and there is also a cyclic subgroup

of order k. Therefore m = (2n/k) + I is odd.

-4-



- Case 2. If 2n/k is odd, then k t n and there is no cyclic subgroup of

order k. Then m = 2n/k is again odd. 0

Lemma 3. Assume m is a positive odd integer and k Is a positive even integer.

Then dihedral group D contains precisely m subgroups of order k if and onlyn

if n = mk/2 or n = (m-1)k/2.

Proof: Assume first that D contains precisely m subgroups with even order k.n

We arrive at the desired conclusion by noting that the proof of Lemma 2

implies m = 2n/k + I or m = Zn/k.

If we start by assuming n = (m-I)k/2, then (k/2)ln and there are 2n/k =

m-1 subgroups of order k that have both reflections and rotations. Since m-I

is even, Lemma 2 implies a cyclic subgroup of order k must also exist.

Therefore, the total number of subgroups of order k must be m. Using similar

arguments, n = mk/2 also implies there are m subgroups of order k. 0

4

Several corollaries follow immediately from Lemma 3. For example, if m

2 3, then the smallest dihedi.3l group having precisely m subgroups of order

ki, and m subgroups of order k , k I k is D (m2_ Figure 1 nicely

illustrates this fact for m = 3 and m = 5. Lemma 3 is also useful in

establishing our main theorem. In what follows, let T (n) and T (n) denotee o

the number of even and odd ordeied subgroups contained in D , respectively.n

Also assume Ix] represents the largest Integer not exceeding x, and a. Is the1

sequence previously mentioned, that is

ji I odd
i~l, 1 even.

-5-



n n
Lemma 4. E T (k) E [n/k]

k=1 k odd

Proof: From Lemma 1 we know a dihedral group D can have at most one cyclicn

subgroup of odd order k. Moreover, a cyclic subgroup of order k exists if and

only If kin. Thus the number of subgroups of odd order k embedded in the

dihedral groups with order S 2n equals the number of times it is true that k

divides r for r = 1, 2, 3,..., n. This in turn equals [n/k]. Therefore, the

total number of subgroups of odd order embedded in the dihedral groups with
n

order s2n is [ [n/k]. 0
k odd

n n
Lemma 5. E T (j) = A ( where A. is the sequence of

j=l J=l [

partial sums of a1.

Proof: Let k be an even integer. From Lemma 3, there is only one dihedral

group that contains exactly one subgroup of order k, namely D k/2 For m = 3,

5, 7 ..... the dihedral groups that contain precisely m subgroups of order k

are Dmk/2 and D(m-1)k/2. Therefore all the dihedral groups that contain

subgroups with order k are given by Di(k/2 ), I = 1, 2, 3 ..... Moreover, the

number of subgroups of order k in Di(k/2) is a This implies that the number

of subgroups of even order k embedded in the dihedral groups with order 5 2n

(2n/k] n
is E ai. We conclude that E T (j) , the total number of even ordered

1=1 J= e

subgroups embedded in the dihedral groups with order s 2n, equals

2n [2n/k] 2n [2n/k] n En/k] n

E a i  Then E E a i = E a= E A[n/k
k even i=1 k even i=I k=l i=1 k=1

where AI is the sequence of partial sums of a,. [

-6-



n n

Theorem. T o(k) = E CA [n/k- [n/2k]).
k=1 k=1

n n
Proof: From (1) we have E T(k) = E(T(k) + T(k)), and from Lemmas 4 and 5

k=1 k=1

n n n
we have E T(k) = E A n/k] + E [n/k]. It Is also true that

k=1 k=1 k odd

n 
6

E T(k) = [ In/k] , (2]. We therefore conclude that
k=1 k=1

n n n n n n
E a-(k) = E A 1[n/k] + E [n/k] - E [n/k] = E An/k] - E [n/k]

k=1 k=1 k odd k=1 k=1 k even

n n n
S A [n/k - E [n/2k] = E (A [n/k - [n/2k]). C

k=1 k=1 k=1

As an example of how the theorem works, let n = 5.

5
Then E o(k) = (1) + (1+2) + (1+3) + (1+2+4) + (1+5) = 21,

k=1

5
and E (A[5/k] - [5/2k]) (A + A2 + A + A1 + A1) - (2+1)

k=5

= (17 + 4 + 1 + 1 + 1) - (3) = 21.

-7-



Footnotes to Chapter I

1. Figure 2 on page 9 extends Figure I by depicting the number of subgroups

of each order for dihedral group D , ?21 -5 n - 40. As In the top half of

Figure 1, the trivial subgroup consisting of ) Itself Is Included in T(n),

butr not shown on the giaph.

2. A detailed description of the computer program used to generate Figures 1

and 2 will be published as a separate US Air Force Academy Technical Report.

3. The simple facts about dihedral groups referenced on page 2 can be

verified in references [i1 and [31 of the (!xtended bibliography.

4. The following corollaries also follow immediately from Lemma 3:

Corollary 1 Assume m Is a positive odd lotrege, , m a 3. 'hio

a dihedral group with exactly m subgroups of order k 1 , m subgroups

of order k2 , and m subgroups of ordoi k. , Wheri, k , k *.nd k I are

distinct.

Sketch of Proof Refer to Lemma 3 and note that for n and m fixed, the

equations n =m and n = (m - 1)k) yield at most two distinct.

solutions.

Corollary 2 Assume m is a positive odd Integer, m 3. Let K be then

number of dihedral groups of order !5 2n, each of which has precisely m

subgroups of the same order. Then Kn -:,1  - I "

Sketch of Proof: The only time we can get m subgroups of a given order

In dilhedr-ai group 1)t s when m ot (m - 1- ) (IIvIde; . l.ot I - 1, .... . ,

the number of times m divides t is given by [ and the number of times

m - I divides t Is given by i The term takes care of

the "overlap", where both m and m - I divide t.

-8-
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5. It is well-known that the sequence of positive odd integers C, = (2i - I)
n 2

yields C = n . Using this it is easy to show that A. can be expressed as
1

i=l

follows:
i2+i

, even
Ai={ 2 2

i2 + 2i - 1 I d
2 , iodd .2

With this expression for A., different formulations of the main theorem are1

possible. However, none are as concise as the one given.

n n
6. In addition to the fact that E T(k) = , It is also common knowledge

k=1 i
n n

that E a(k) = k I!. A good reference for these, as well as hundreds of
k=l k=l

other statements about arithmetic functions, is Dickson's "History of the

Theory of Numbers," [2].

-10-



Introducing Large Primes via Subgroups of Dihedral Groups

For both the novice and the seasoned mathematician, Fermat primes and

Mersenne primes are an endless source of enjoyment and speculation. Fermat

primes I are primes of the form F = 22  + 1 where m is a nonnegative integer,m

and Mersenne primes2 are primes of the form M = 2p - 1 where p is itself aP

prime number. This paper shows that similar large primes are also important

for understanding the structure of dihedral groups. In particular, simple

examples are given where large primes, primes of the form 2k + 1 + k and primes

of the form 2 k +  + 2k + 1, relate nicely to the number of subgroups of

dihedral groups.

Stephen Cavior has shown that the number of subgroups of dihedral group

Dn , denoted T(n), is given by T(n) = E (m + 1) = r(n) + T(n), where T(n) is
mjn

the number of positive divisors of n and a-(n) Is the sum of those divisors

3
(1]. For example, for n = 6 we have T(n) = (1 + 2 + 3 + 6) + 4 = 16. Three

questions about T(n) naturally arise:

- When is T(n) odd?

- When is T(n) prime?

- When does T(n) = 2n?

The first question is easily answered by our Lemma 1. The second and third

questions give rise to the search for large primes of the kind alluded to

earlier. The question of when T(n) equals 2n is especially appealing. In

terms of Group Theory, it is equivalent to asking when the order of a dihedral

group equals the number of Its subgroups. From a Number Theory perspective,

it is a fascinating extension to the search for perfect numbers, numbers which

satisfy o(n) = 2n. In the sequel we shall refer to the following well-known

1 k2 km 4

facts for n = p 1 P2 .. m..P in standard form [2]:

-11-



m
(1) T(n) = (k1 + 1)

1=1

m P -I1 m k k -1
(2) o 1(n) = IT (Pl + pi + .... + p1 + 1)i=1 1i 1t=1

k k2 k3  km

Lemma 1. T(n) is odd If and only if n is of the form n =2 1 P2 P3 m
p2 p3 -p

where k1 is odd and k2 through km are even.

kI k2  km

Proof: It follows easily from (1) and (2) that for n = p 1 P2 m

(3) T(n) is odd * n has only even powers of primes.

(4) o-(n) is odd o n has only even powers of odd primes.

Notice that (3) and (4) imply that If T(n) is odd, then o-(n) must also be odd.

Therefore we may conclude that T(n) = o(n) + T(n) is odd if and only if o(n)

is odd and T(n) is even. Again using (3) and (4), this can only happen when

p I = 2, k is odd, and k2 through km are even. u

Lemma 1 points us In the right direction when we consider our second question.

That is, which dihedral groups have a prime number of subgroups? Note that

for n = 1 we have T(n) = T(1) = 2, a prime. All other T(n) prime are odd

numbers, and for each one, n must be of the form given in Lemma 1. Therefore

kthe easiest place to look for T(n) to be prime is among n of the form n = 2

k odd. Using (1) and (2), T(2 k ) is prime If and only if or(2 k ) + T(2 k ) = (2k + 1

-1) + (k + 1) = 2k+1 + k is prime. We therefore have the following theorem:

-12-



Theorem 2. If k is a positive integer, thenk 2k+1

T(2 k ) is prime * 2 + k is prime.

Of course, the real fun begins in trying to actually find the odd positive

integers k for which 2k + l + k is prime. Using a computer package like

"Derive," it is easy to show that the only values of k less than 200 for which

2 k +  + k is prime are k = 1, 3, 7, 9, 15, and 85. It is interesting to note

that k = 85 yields the behemoth T(2 85) = 77371252455336267181195349, a prime!
kI

It is also true that T(n) may be prime for n in the more general form n = 2
k2  k3  km

P2 P3 3 'Pm where k2 through km can be nonzero even integers. As a quick

example, it follows from (I) and (2) that n = 2.34 = 162 yields the prime

T(162) = a(162) + T(162) = 373.

We now turn our attention to the third question posed at the outset.

Namely, which n yield T(n) = 2n? We shall call such numbers "dihedral

perfect," and we can make several immediate observations. Since T(p) =

o(p) + T(p) = (p + 1) + 2 = p + 3 whenever p is prime, it is clear that the

only dihedral perfect prime is p = 3. Using (1) and (2), it is also clear

that for n = 2k we have T(n) = T(2k ) = r(2 k ) + T(2k ) = (2k + l - 1) + (k + 1) =

k+1 k k k+l
2 + k. Thus n = 2 is dihedral perfect, that is T(2k ) = , if and only

if k = 0. A logical next step is to ask if there are dihedral perfect numbers

of the form n = 2kp , which brings us to our final theorem.

Theorem 3. If n = 2 kp where k is a positive integer and p is an odd prime,

then
2k+ 1

T(n) = 2n * p = + 2k + 1.

Proof: The proof is simple and we again use (1) and (2) to establish:

-13-



k k+ 1 (p2 _) 1/
n = 2 kp is dihedral perfect * (2k + 1 _____ + (k + 1)(2) =2k1 p

(2k + I - l)(p + 1) + 2(k + 1) = 2 k+1p

2k+ 1
*p=2 +2k+1. 1

Therefore asking when n = 2kp is dihedral perfect is equivalent to

searching for primes of the form 2k + 1 + 2k + 1. The values of k, 1 s k s 200,

for which 2k+1 + 2k + I is prime are k - 1,2,3,4,7,10,13,14,26,40,49,50,110,

142, and 170. For k = 170, the dihedral perfect number n = 2kp = 2k (2k+1 +

2k + 1) has 103 digits! As a final note, there exist dihedral perfect

numbers besides the ones mentioned above, a simple example being n = 2 • 5

13 - 130.

-14-



Footnotes to Chapter II

1. Numbers of the form F = 22 + I are called Fermat numbers. The first
m

five Fermet numbers, F0 = 3, F, = 5, F2 = 17, F3 = 257, and F4 = 65537 are all

prime. Although Fermat conjectured that this trend would continue, Leonard

Euler showed that F5 is composite. Indeed, at present no other Fermat primes

have been discovered. The smallest Fermat number whose primality status

remains unknown is F14 [16].

2. Perfect numbers and Mersenne primes are closely linked as follows:

n is an even perfect number if and only if n = 2P- Mp

where M is a Mersenne prime.p

(The "if" portion of the statement was known by Euclid; the "only if" part

was established by Euler.)

There are only 31 known Mersenne primes. Therefore there are only 31 known

even perfect numbers. The existence of odd perfect numbers is still an open

question. Table I on page 17 lists the known Mersenne primes and is

reproduced from Rosen's text. [15].

3. Table 2 on page 18 gives the values of T(n), a-(n), and T(n) for 1 s n s

100. It was created using information from Rosen's book [15].

4. The Fundamental Theorem of Arithmetic states that each integer greater

than I can be written as a product of primes, and, except for the order in

which these are written, this can be done in only one way [3]. By arranging

the prime factors of n in increasing order, we obtain the unique standard form

of n:
k1 k2  km

n = p1 P2 . .Pm where p, < p2 <  ... <  Pm"

5. Two more results concerning dihedral perfect numbers are given below:

2Lemma 1 There are no dihedral perfect numbers of the form n = p , where p

is prime.

- is-



Sketch of Proof: The lemma is true if p = 2. Therefore assume p Is odd.
22 1- 2 3 2If n = p, then n is dihedral perfect * p p1 + 3 2p 3p+4=.

We conclude n cannot be dihedral perfect since a rational root (and therefore

a prime root) of the above polynomial must divide 4.

Lemma 2 There are no dihedral perfect numbers of the form n = p1p2, where

p1 and p2 are odd primes.

Sketch of Proof: If n = p1P2 was dihedral perfect we would have

(p1 + 1)(p 2 + 1) + 4 = 2p1P2, which implies p1P2 = P1 + P2 + 5. No odd

primes can satisfy this last expression.

-16-



p Number of decimal Date of Discovery
digits in M.

2 1 ancient times

3 1 ancient times
5 2 ancient times

7 3 ancient times

13 4 Mid 15th century
17 6 1603

19 6 1603

31 10 1772

61 19 1883

89 27 1911
107 33 1914

127 39 1876

521 157 1952

607 183 1952

1279 386 1952

2203 664 1952

2281 687 1952

3217 969 1957

4253 1281 1961

4423 1332 1961

9689 2917 1963

9941 2993 1963

11213 3376 1963

19937 6002 1971

21701 6533 1978

23209 6987 1979

44497 13395 1979

86243 25962 1983

132049 39751 1983

110503 33265 1988

216091 65050 1985

Tal 1. The Known Mersenne Primes.

-17-



n T(n) a-(n) T(n) n t(n) a(n) T(n)

1 1 1 2 51 4 72 76
2 2 3 5 52 6 98 104
3 2 4 6 53 2 54 56
4 3 7 10 54 8 120 128
5 2 6 8 55 4 72 76
6 4 12 16 56 8 120 128
7 2 8 10 57 4 80 84
8 4 15 19 58 4 90 94
9 3 13 16 59 2 60 62
10 4 18 22 60 12 168 180
11 2 12 14 61 2 62 64
12 6 28 34 62 4 96 100
13 2 14 16 63 6 104 110
14 4 24 28 64 7 127 134
15 4 24 28 65 4 84 88
16 5 31 36 66 8 144 152
17 2 18 20 67 2 68 70
18 6 39 45 68 6 126 132
19 2 20 22 69 4 96 100
20 6 42 48 70 8 144 152
21 4 32 36 71 2 72 74
22 4 36 40 7Z 12 195 207
23 2 24 26 73 2 74 76
24 8 60 68 74 4 114 118
25 3 31 34 75 6 124 130
26 4 42 46 76 6 140 146
27 4 40 44 77 4 96 100
28 6 56 62 78 8 168 176
29 2 30 32 79 2 80 82
30 8 72 80 80 10 186 196
31 2 32 34 81 5 121 126
32 6 63 82 4 126 130
33 4 48 52 83 4 84 86
34 4 54 58 84 12 224 236
35 4 48 52 85 4 108 112
36 9 91 100 86 4 132 136
37 2 38 40 87 4 120 124
38 4 60 64 88 8 180 188
39 4 56 60 89 2 90 92
40 8 90 98 90 12 234 246
41 2 42 44 91 4 112 116
42 8 96 104 92 6 168 174
43 2 44 46 93 4 128 132
44 6 84 90 94 4 144 148
45 6 78 84 95 4 120 124
46 4 72 76 96 12 252 264
47 2 48 50 97 2 98 100
48 10 124 134 98 6 171 177
49 3 57 60 99 6 156 162
50 6 93 99 100 9 217 226

Table 2
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Open Questions

1. Do there exist odd dihedral perfect numbers other than 1 and 3?

k2. Do there exist dihedral perfect numbers of the form n = p . where p is an

odd prime and k is greater than 2?

3. Do there exist dihedral perfect numbers of the form n = plp 2  . Pk where

all the pi s are odd primes and k a 3?

4. Under what circumstances do we get T(n) = T(m), n # m? (It first occurs

for T(4) = T(7) = 10. An early stunning example is T(36) = T(62) = T(69) =

T(77) = T(97) = 100.)

5. Do there exist positive integers n and m, n * m, such that T(n) = T(m) =

an odd integer?

6. Under what circumstances do we get "amicable" dihedral numbers; that is,

when do distinct positive integers satisfy T(n) = T(m) = n + m?

7. How rare are dihedral triperfect numbers; that is, when does n satisfy

T(n) = 3n? (The first dihedral triperfect number is n = 60.)

8. The Erdos-Sierpinski Conjecture suggests there are an infinite number of

solutions to o(n) = o'(n + 1). Are there an infinite number of solutions to

T(n) = T(n + )? (It first occurs for T(14) = T(15) = 28.)
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