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Section 1. Introduction and Summary.

For an ergodic Markov chain in discrete or continuous time, we will

be interested in situations in which there exists an initial distribution

709 and a state j, such that 7 t (j) = P 0(X(t)=j) is increasing in t.

Also of interest are states, j, for which p t(j,j) = Pr(X(t)=jfX(0)=j)

is decreasing in t. We will examine the implications of such monotonicity,

as well as conditions for it to hold.

Let r denote the stationary distribution and T T,j the waiting

time, starting in steady state, to reach state j, with T = 0 if

X(0) = j. Similarly define T 7 .0 In Section 2 it is shown that if

t (j) = P (X(t)=j) is increasing, then:
0

(1.1) T 9 Y+TI

7T(j)

where Pr(Y> t) = 1 and Y and T are indepeadent. One

consequence of (1.1) is that T T,j is stochastically larger than T,,j;

another is that if T ,j is approximately exponential and EY is small

compared to ET 1 j, then T 10,j is also approximately exponential. Approxi-

mate exponentiality is discussed in Section 7.

A tempting heuristic interpretation of (1.1) is that Y represents

"the waiting time from r0 to steady state." That is, if there were a random

variable Y with X(Y) ".'i, X(Y) independent of Y, and Pr(X(t) = j, for

some t <Y) = 0, then T0TT9 would equal Y (the waiting time to steady

state) plus T 79i (the waiting time from steady state to j), and Y and
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T would be independent. This suggests that the distribution of Y

(given above) is that of a strong stationary time, in the sense of Aldous

and Diaconis (1987). This interpretation holds precisely in a large class

of situations described in Section 4. However, in general, rt (j) increasing

does not imply that the distribution of Y is that of a strong stationery

time.

If p t(j,j) is decreasing, in discrete or continuous time, for a

state j, then T can be represented as a geometric convolution.

Specifically:

N
(1.2) T ,j W.

where {Wi,i=l,2,...} are i.i.d., N is independent of {Wi} with Pr(N=k)=

(i-7(j))k 7(j), k=O,l,..., and

p t(j,j)-T(j)

(1.3) Pr(W> t) = 0() "

This representation has two uses. Firstly, geometric convolutions with

small p (in this case p=7(j)) are approximately exponential. Error bounds

can be obtained from the first two moments of T 7T,j. Secondly, the moments

of T are easily related to those of W, which in turn can be expressed in

terms of the eigenvalues. Tn the case of time reversible chains in continuous

time this leads to:
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-t/a. T /(.
(1.4) supIPr(T . > t)-e 31 <  ITr ~ (T/C(ji)+I

where a = ET and T is the relaxation time, defined as XI, whereJ Tt,j1

0 = X >-'i > -X > '.. > - m  are the eigenvalues of the infinitesimal matrix.
0 "1- 2 - m

This provides a quantification and generalization of Propositon 7 of Aldous

(1989), who showed that T/a. was a key parameter in approximate exponentiality
J

for random walks on vertex transitive graphs.

We now describe the class of situations for t (j) monotonicity previouslyt

alluded to. Consider ergodic Markov chains in discrete or continuous time,

taking values in a partially ordered set S, possessing a unique maximum

state M(i<M for all icS). Further, assume that the time reversed process

is stochastically monotone relative to the partial ordering, and that

7T 0 (k)/7(k) is decreasing in ksS relative to the partial ordering. Then

rt (M) is increasing in t, and:

t(k)- 1t (M)
(1.5) s(t) = max(l - (k) = 1 (M

k ik) ) I M

The quantity s(t) is the separation between it and i, as studiedt

by Aldous and Diaconis (1987), and Diaconis and Fill (1989). It yields an

upper bound for total variation distance, which is the main quantity of

interest in the study of how rapidly a Markov chain approaches ergodicity.

Expression (1.5) tells us that for all t, the separation is achieved at

state M, which we call a separating state. This greatly simplifies the

computation of s(t) nnd eapls are prcsantt2 to illustrAte this plint.
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In the case where S is totally ordered, the above conditions coincide

with those of Theorem 4.6 of Diaconis and Fill (1989), under which a dual

process with convenient properties is constructed, and then employed to study

s(t). The current approach offers an alternative to duality, and allows for

the flexibility of choice of partial ordering of S. Examples are given to

show that for the same Markov chain, different partial orderings can be used

for different initial conditions, resulting in a wide array of 7t (j) monoto-

nicity and convenient computation of s(t).

Another class of processes considered are discrete time ergodic

Markov chains with state space {O,...,M}, satisfying P(i1 ,jl)P(i2,j2) >
m

1(il,J2)P(i2,l) for all il < i2' J1 < J29 where P(i,j) = E P(i,k).

For such a chain, if o(i)/7(i) is decreasing, then IT (M) is increasing
n nn

in n, and (1.5) holds.
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Section 2. Derivation of (1.1).

Consider, first, a continuous time chain. Let T,,' denote the first

passage time to j under X 0 i, with T j= 0 if X(0) = j; similarly

define T 7 . Now:T0,j"

(2.1) 7. = P.(X(t)=j) J ptJJ)dF(X)

where F j is the distribution of T. . Take Laplace transforms in (2.1)

to obtain:

(s) eStd (t) =T

(2.2) ,j e tdF, = S
(P(s)
ii

where 4.. is the Laplace transform of ptji).

Assume that it (j) = P (X(t)=j) is increasing in t. Sincet iT0 I
lim ii =(j)=Tj), t(j) < 7(j) for all t, thus 7r (j)/iT(j) is a cdF. Let

Y denote a random variable with this cdf, and let *y denote the Laplace

transform of Y, 1t the Laplace transform of 7t (j), and 4 ,j  the

Laplace transform of T 0. Then:

(2.3) qy(s) = se- StPr(Y < t)dt = s t(s)- ~i(j) t "

Analogous to (2.1) we have:

(2.4) 7T(j) p(OI3dF (x)
0 t-x 0,j
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From (2.1), (2.3) and (2.4):

S (s) s (s) (S) (s)
(2.5) y( (~(0, j  (s) s S) 7. t ) =Y

Thus T *jY+T, and (1.1) is proved.

In the discrete time case Y is a discrete random variable with cdf

7 n(j)
F(n) = n(j) . The above argument holds using probability generating functions

in place of Laplace transforms.
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Section 3. Conditions for Monotonicity of 7t(j).

First we present some elementary facts about stochastically monotone

Markov chains, with finite partially ordered state spaces.

,

Let S be a finite set with partial ordering denoted by < . Define

A to be an upper set if xcA and y > x implies yeA. Similarly, define

lower sets. Define a discrete time Markov chain with state space S and

probability transition matrix P to be stochastically monotone relative to

< if:

P(x,A) = P(x,y) < P(y,A)
ycA

for all x < y and upper sets A. Define a real-valued function h on S

to be increasing relative to < if x < y implies h(x) < h(y). If h is

increasing then the elements of S can be labeled as dl,...,d n, in such a

way that i< j implies h(di) < h(d.), and that d. is not greater than d.
i- Ji J

under the partial ordering (Brown and Chaganty (1983) p. 1007). If follows

that A. = {dj,d.+ 1 ,...,dn} is an upper set, j=l,...,n. Defining h(d0) =0

(d is not in S) we have:

Eih(X) = E(h(X1 )IXO=i) = P(i,j)h(j)
J

d.
n dj n

j- P(idj) rl r )-h(dr-l) I (h(d r)-h(dr-1))P(iqAr)

1 r~lr=l

If follows that if P is stochastically monotone and h is increasing,

then E.h(X) is increasing (all relative to <). Since:1
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Pn+l (iA) = Pr(Xn+lF AIX 0 =i) = EiPn(XA)

it follows by induction that stochastic monotonicity implies that p n(i,A)

is increasing in i, for all n and upper sets A. Similarly Eih(X n )

is increasing in i for all increasing h, and all n.

In the continuous time case, let {X(t),t > 0) be a Markov chain with

state space S and infinitesimal matrix Q. Define {X(t),t > 01 to be

stochastically monotone, relative to <, if both of the following hold:

(i) Q(x,A) = q(x,y) < Q(y,A)
ycA

fo'r all x < y, and upper sets A not containing y.

(ii) Q(x,B) > Q(y,B) for all x < y

and lower sets B not containing x.

If (i) and (ii) hold, choose c > 2max Z qik, and define P = I+c-IQ.
i kji

Then P is stochastically monotone as is seen in the three possible cases:
*

1) If x < y and A is an upper set not containing y then:

P(x,A) = c- Q(x,A) < c- Q(y,A) = P(y,A)

2) If x < y and A is an upper set containing x:

P(x,A) = 1-c- Q(x,A) < 1-c- Q(y,A) = P(y,A)

where A, the complement of A, is a lower set.
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3)If x < y and A is an upper set containing y but not x, then:

P(x,A) = c- Q(x,A)

P(y,A) = l-c-iQ(y,A)

thus,

P(y,A)-P(x,A) = 1-c- [Q(x,A)+Q(y,A)] > 1 - Q(x,A)+Q(y,A) > 0
- (2max qi) -

i k~i

Using stochastic monotonicity )f P, we find that for x < y, and

upper sets A:

P(, ) = (tne-ct n-ct

p (xA) ? (ct)n en P n(xA) < I (ct)n e n = p (yA)
t n' n! Pn(yA) t

Thus P.(X(t)EA) is increasing in i for all t and upper sets A. Similarly1

if h is increasing then E.(h(X(t))) is increasing in i for all t. We1

summarize the above:

Lemma 3.1. Let {Xt,t=O,l ,....} or {X(t),t > O} be a Markov chain with

finite state space S, stochastically monotone relative to < . Then:

(i) Pt (x,A) is increasing in x for all t and upper sets A.

(ii) E ih(X t) is increasing in i for all t and increasing h.

If {X ,n=O,l,...} is ergodic with stationary distribution r, the
n

time reversed chain is the Markov chain with transition matrix P(i,j) =

Tr(j) P(ji). Similarly for continuous time ergodic chains, the reversed
T(i)

chain has infinitesimal matrix, Q(i,j) = -- Q(j,i).
7Ti
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Time reversible chains satisfy P=P, in discrete time, and Q= Q in

continuous time.

Theorem 3.2, below, derives conditions for t(j) increasing in t.

Theorem 3.2. Le'- {X ,t=O,l,... or {X(t),t > 0} be an ergodic Markov

chain taking values in S, where S is a finite partially ordered set with

partial ordering < . Assume that S contains a unique maximal element M,

so that x M for all xeS. Then if the time reversed process, X, is

stochastically monotone, and 7 0 (x)/7(x) is decreasing in xES (both with

respect to < ), then 7 t (M) is increasing in t.

Proof. We first show that t(M)/7(M) minimizes 7t (j)/ T(j), over jcS.

This follows since:

St ( M) 70 ( i ) 0 M (Mi)
7T)(M = T 0 (M) (iMt 7(i) Pt

T"0 t(J)

E - (R )]I < E I-= M[ - - (Xt] t 71(j)

the last inequality holding since - is decreasing and X is stochastically

monotone.

To show that (3.3) implies that r t(M) is increasing in t, consider

the hypothesis testing problem, H0 :X0 ',7 vs H1 :Xn %, based on the data

(XsXt). The densities under H and H are given by f(xy) = ' (TX)Pty)
5' .0 1 0 , s t -x s

and f1 (x,y) =(x)pt(x . The test which has smallest type 1 error among= t-s "

all tests with type 2 error < 1-7(M), rejects H0 if X(s) = M (Neyman-Pearson

Lemma). The type 1 error of this test is ii (M). A less efficient competing

test with type 2 error 1-7(M), rejects H 0  if X(t) = M , and has larger type 1

error, qt(M. Thus 7 (M) < ' (M) for s < t.
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Section 4. Separation Distance and Strong Stationary Times.

Separation distance and its connection to strong stationary times is

an elegant contribution of Aldous and Diaconis (1987), with important recent

developments by Diaconis and Fill (1989).

For an ergodic Markov chain with finite state space, and initial distri-

bution 709 the seperation at t is defined by:

7 (k)
s(t) = max(l - )

k '(k)

Separation provides an upper bound for the total variation norm:

(4.1) d(t) = maxr t(B)-7(B) I = I (7(k)-rt (k))
Bcs n (k)>t (k)

IT

=E ( -7t (X))+ < P (1(X) > 7T (X))s(t) < s(t)

Call the Markov chain separable with separating state M, under n0'

t ( M

if s(t) = 1 for all t.
T (M)

A strong stationary time is a stopping time, T, with X(T) ur and

X(T) independent of T. For any strong stationary time, s(t) > Pr(T> t)

(Aldous and Diaconis (1987) ?. 72). When equality holds for all t, T is

called a minimal strong stationary time. Aldous and Diaconis (1987) construct

a minimal strong stationary time for a general ergodic, finite state, discrete

time Markov chain.

Corollary 4.1. Under the conditions of Theorem 3.2 the Markov chain is

separable with separating state M. Furthermore there exists a minimal strong

stationary time, Y, satisfying:
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T (M)
(i)Pr(~t) 1- (M) = s(t), for all t.

(ii) Pr(X(t)=M, for some t < Y) = 0

Define Z = (min{t>Y:X(t)=j}-Y]. Then Z is independent of Y

and distributed as T7,M. Thus T oM = Y+Z with Y and Z independent,

(M)
Pr(Y>t) = 1-7 = s(t), and Z n T7,M o

,(M) T,

Proof. By the proof of Theorem 3.2:

7t (M) IT (j)
r(M) < (j) for all jeS

7 (M)

thus s(t) = I and the Markov chain is separable with separating7T(M)'

state M.

In discrete time, the Aldous-Diaconis construction produces a minimal

strong stationary time, Y, which by the details of their construction

satisfies (ii). Since Y is a minimal strong stationary time, and the process

7n(M)

is separable, Pr(Y> n) = s(n) = ()

For a continuous time chain, by choosing c = 2max Z q we obtain a
-1i k#i

discrete time skeleton, P = I+c Q, which satisfies the above conditions.

Denoting the embedded Markov chain by {X',n=O,1,...}, we can represent
n

{X(t),t> _ where {N(t),t> is a Poisson process

of rate c, independent of {Xnn=O,l,...}. Denote the event epochs from
n

the Poisson process as {S n n>1), and define:

Y = Sy, ,

where Y' is a minimal strong stationary time for {X'}.
n
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Clearly, Y is a strong stationary time for the continuous time

process and:

(ct1 n -tne-Ct ~ M
Pr(Y>t) = (ct, e P(0'))n eCt) (1- Tn(M)

n! >0 n n! r(M)n=O n= 0  (M

T (M) Wt-(M- = s(t).

Thus Y is a minimal strong stationary time. Furthermore:

Pr(X(t)=M, for some t<Y) = Pr(X'=M, for some n<Y') = 0
n

Thus (i) and (ii) hold in continuous time.

In view of (ii), T = Y+Z. Define {X *(t),t=0,l,...}({X *(t),t> 0}oM

in continuous time) by X*(t) =X(Y+t). Since Y is a strong stationary

time, {X *(t)} is independent of Y. Since Z is the first passage time

to M for the X* process, Z is also independent of Y. Since

X (0) = X(Y).Ii, it follows that ZT ,M. Thus T ,M = Y+Z, with Y
0,

and Z independent, Pr(Y> t) = s(t), and ZT ,M .

(4.2) Remark. Define the chain distance from state x to state y, d(x,y),

to be the minimal n such that p n(X,y) > 0. If = (one point distri-

bution at {x}) then a necessary condition for M to be a separating state

is that d(x,y) < d(x,M) for all yeS. This is true since if M is a

separating state and Pk(xM) > 0, then:

I M P k(x,M) Pk(x,y)

t(M) - - 71(y)

thus Pk(X,y) > 0.
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In applications there is often only one potential separating state.

The problem then reduces to producing a partial ordering under which M is

the unique maximal state, x is a minimal state, and P is stochastically

monotone. In section 5, this point is illustrated by examples. 0

Under the conditions of Corollary 4.1, 7t (j)/T(j) is decreasing in

j and thus assumes its minimum at M. Of course monotonicity of t(j)/(j)

is considerably stronger than 7t (j)/7r(j) > Tr t(M)/7(M). For a totally ordered

state space, say {O,...,M} with 0< 1< 2 < ... <M, a weaker condition than

M
i (j)/,r(j) decreasing, is t(j)/7(j) decreasing, where =t (j) 7T t (k),t tjtt

M
7(j) = Z 7(k). This is true since:

J

(j) M it(k) Tr(k) 7T

(4.2) = J (- ) =-- )=E [- (X) IX >j]

Since 7t /7 is decreasing and XJX>j stochastically increasing (where

X % r), it follows that it (j)/ii(j) is decreasing.

Furthermore, 7t(j)/rr(j) decreasing implies t (j)/iT(j) > 7t(N)/iT(M)

t t t
Tr (k)

for j =0,...,M. To see this define yj - min{ (k),k> j=0,...,M.

Note that by (4.2), for j=O,...,M-I:

t(J)'T ((J) - ) + (i-

T(j 0 T(j 0 T(j 7 7(j +I)

(4.3)
t(j) Tr tt (X) XTjr]

-- +  (E [-- X > +
T(j 0 r(j)

iT|

_____
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Since t /T is decreasing, it follows from (4.3) that:t

TT (j) > E [ 7 t(X) Ix>j+I] > Yj+I' j--O,...,M-I7(j) - T 7T

Thus

7 (k) 71 (j)

for j=0,...,M-. Thus:

7 t(k) m (M)
(4.4) Y0 =min--7(k 0''''M} = Y = (M)

It follows from (4.4) that if for all t, ht/7 is decreasing, then

the process is separable with separating state M, and:

7f (M)
s(t) = 1 -1M

We now need to find conditions under which 7- /7- is decreasing for

all t.

Define a discrete time Markov chain on {O,...,M} to be failure rate

monotone if i1 < i2' Jl 
< J2  implies:

(4.5) P(ilj 1 )P(i 2 ,J 2 ) > P(ij 2 )P(i 2,j I)

M

where P(i,j) = E P(i,k). This condition is equivalent to i1 < 12  implies
k=j
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P(ilj)/(P(i2,j) decreasing in j, for j such that P(i2,j) > 0.

It is also equivalent to P(i,j)/P(i,j) decreasing in i for each j,

where P(i,j)/P(i,j) is defined to be 1 if P(i,j) =0. Shantikumar [(1988),

Lemma 2.1, p. 399] proves that if (4.5) is satisfied for P, then it is

also satisfied for Pn for n > 2.

Gathering together the above observations we derive:

Lemma 4.2. Let {X ,n=0,1,...} be an ergodic Markov chain with staten

space {O,1,...,M}, which is failure rate monotone. Then T0 (j)/7T(j)

decreasing implies that in (M) is increasing in n, and that

iT(M)

s(n) = 1 - ( for all n.

Proof. It follows by the above remarks that we just need prove that

T (j)/:(j) is decreasing in j, equivalently that 7n(j)/ (j) <

7(j)/W(j) for all j. Define

p~j P(i ' j)

(j) = and h (k) TT(k) then
n,i n (i,j) T -(k) h

(j)

(j) r Tr 0 (i)n(i, j)h (J)
(j 0 n n l c n n,i

i = ((JJ) j

E T(i)p n(ij) n -~

where cn, i  and d are probability distributions on {0,...,M}. Nown,i

by failure rate monotonicity of P, h(j )  is decreasing in i. Moreover
n,i
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c(J)/d (j ) = L(To(i)/r(i)) with a a constant, thus d is largern,i n,i 0n,i

than cn, i under monotone likelihood ratio ordering, and thus under

stochastic ordering. Thus h_ (j) >h (j) so that In (j)/7(j) is decreasing,
71 n

(M)and therefore (by (4.4)), s(n) = 1 nM icb h losDaoi

construction, s(n) is decreasing, it follows that "n (M) is increasing.

Example. Consider the following Markov chain on {0,1,2)

1/4 1/2 1/4

P = l/8 1/8 3/4

1/8 1/8 3/4 J
The time reversed chain is given by :

f 1/4 5/32 19/32

(2/5 1/8 19/40.

1/19 15/76 3/4

Since P(1,O) > P(O,O), P is not stochastically monotone, and

Corollary 4.1 does not apply. However, P is failure rate monotone

(ho(0) =1 > 1=hl(0) = h 2 (0),h O (1 )  h >  h l(1 ) =h (1),h (2) =h l (2) =h 2 (2) 1).
0 4 .~= 1( h 2(O 0(l 3 7 1~ 2 0 1 2

pn (0 ,2 )  96 1n
We conclude that pn(0,2) is increasing, and that s0 (n) =1 1 (2) =

(j)
n > 1. We further remark that n is not decreasing in j:

Pn(0,O) 1 n Pn(O' )  72 1 n pn( 0 , 2 )  96 1 n(0 :1+6 )< +.[ 5 (T- i) > "79 T -- g , n! >

I have not worked on extending Lemma 4.2 to continuous time, or to

partially ordered spaces.
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Section 5. Examples.

5.1. Non-symmetric walk on the unit cube.

Consider a discrete time Markov chain, {X nn=0,l,...}. with state

space, {0,1} d , the 2d d-tuples of O's and l's. The chain evolves by

changing at most one coordinate at a time. Thus if 5. is a d-vector
1

(1 j=i
with 5Q(j)= then:

1
(0 j~i

P(x,x+5 i) = ai(x) for x. =0

P(x,x-6 i) = 8i(x) for x. =

P(x,x) = 1- a i(x) - (x)
x.=0 1 x1 1=
1 1

Assume that a.(x) , 8i(x) are such that the chain is ergodic. Let

70 = 6.' a point distribution at x. By Remark (4.2), the only potential

separating state is x+l, where (x+l)i  +l(mod 2). This suggests partial

ordering by chain distance (see Remark (4.2)), i.e. y < z if and only

d(x,y) < d(xz). Under this ordering, x is the unique minimal state, and

x+l the unique maximal state. The problem then reduces to finding conditions

for stochastic monotonicity of P.

Consider a special case of the above with a i(x) = ai' i(x) = Bi'

independent of x, with:

(i) a > 0, 6. > 0, i=l,...,d

(ii) a, + 5. < 1 for some ACl,2,...,d}
A A
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d d
(iii) max( ai +max 1 + m a x a  < 1

Condition (i) is necessary and sufficient for irreducibility, and

(ii) for aperiodicity. The chain is then easily shown to be time reversible.

Condition (iii) insures that the chain is stochastically monotone, with

respect to the above partial ordering.

It then follows from Corollary 4.1 that:

max( - Pn(x,y) 
Pn (X,x+l)

Sx n = m - (y) ) = 1 - (x+l)
Y

To compute s (n), consider the continuous time chain with Q = I-P.

The continuous time process is composed of d independent 0-1 processes.

ihus:

(. i(c ti)t

(5.1) p (X,x+l) = E f (l-e 1) (l-e
x.=O 0.i i x.=l i i
1 11

d -(ai.+Bi)t n k -s t
T- (x+l) R (1-e 11 = (x+l) (-) e y

1 k=0 YEAk

where Ak consists of the (d) subsets of size k from {l,...,d}, and

s = ) (ci+4i), for y a subset of {l,...,d}. From the above expression
Y icy

for Pt (x,x+l), and the spectral representation, Pt (X,x+l) =

__x___ -X jt
7T(x+l) +w q (x) I .j(x)ji(x+l)e J (Keilson (1979)p. 34), we see that the

eigenvalues of Q are {-s yc{l ..... ,d}) and thus the eigenvalues of
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P = I-Q are {l-s yc{l,...,d}}. From the spectral representation, since

p xxl rxl (x'l w~'i l(l-Xj' x xl
Pn(X,x+l) = (x+l) + L(x) I uj xW j(x+l) where vjj.x) , vi (x+l)

are the same terms as in Pt (x,x+l), it follows from (5.1) that:

Pn(x,x+l) n k-i )n

(5.2) Sx(n) 1 (x+l) I (-) Y (-s
k=1 yAk

d
In the case (ai+Si) < 1, we recognize (5.2) as an inclusion-exclusion

1

formula. Specifically, consider n multinomial trials with cell probabilities,
d

pi =i+Si, i=l,...,d, and Pd+l = i- (ai+ i) Let An be the event that
1 nd

at least one of the cells l,...,d are empty. Then A = Ci. where

C. = {cell i is empty}, and (5.2) represents the inclusion-exclusion formula
d

for Pr(J Ci). Thus if we let T denote the waiting time for all of cells
1

l,...,d to each be occupied, then:

Pr(T> n) = Pr(A n ) = sx (n)

By using a construction of the author (Brown (1975), p. 379, (1984)

p. 608) we can construct a minimal strong stationary time for the continuous

time process, which when applied to the embedded discrete time process is

indeed the waiting time for cells l,...,d to be occupied. Adapting the

construction to discrete time, requires Z (a +Yi) < 1. When E (ai+ai) > 1
i i - i i i

(with (i), (ii), (iii) still holding), I have no simplifying explanation for

(5.2). It is pleasantly surprising that sx (n) is independent of x.
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The symmetric walk ai = 3i d I has been considered by Diaconis

(1988), and Diaconis and Fill (1989). In this case (i) is satisfied for

r < 1, (ii) for r > 0, and (iii) for r > -!-. Diaconis and Fill utilize
n+l

the symmetry to reduce the problem to a birth and death process on

{0, ...,d}. We discuss birth and death processes in Section 5.2.

5.2. Skip free to the right Markov chains.

A Markov chain on {O,...,d} is defined to be skip free to the right

if P(i,j) = 0 for j-i > 2. An important special case is a birth and death

process, which is skip free to both the left and right, i.e. P(i,j) = 0

for jj-il > 1.

A birth and death chain on {0,...,d! is irreducible if

P(i,i+l)P(i+l,i) > 0 for i=0,...,d-l. It is aperiodic if P(i,i) > 0 for

some i. An ergodic birth and death chain is time reversible. It is

stochastically monotone if and only if P(i,i+l)+P(i+l,i) < 1 for i=0,...,d-l.

An ergodic birth and death process in continuous time is necessarily stochasti-

cally monotone.

It follows from Corollary 4.1 that if a skip free to the right Markov

chain is ergodic and P is stochastically monotone, then under 70 = 60

the chain is separable with separating state d thus:

Pn(0,d)

(5.3) 
s0 (n) = 1 r(d) "

In the Appendix we show that for an ergodic skip free to the right chain

on [0,d], with distinct eigenvalues II..,d that;



22

d 1-S

Pn( 0 ,d) = 7(d)[1 - r n( T)
(5.4)Pn Lj 4. .-Sj=1 rj j r

From (5.3) and (5.4) we derive:

Lemma 5.1. (i) Let {X nn=0,1,...} be an ergodic skip free to the right

Markov chain on [0,....,d], with P processing distinct eigenvalues

1,BI, ..., .  Assume that P is stochastically monotone. Then:

d i-S
7 n( r)s 0(n) I .

j=1 i rij j- r

In particular this will hold for an ergodiz stochastically monotone

birth and death chain on [0,...,d]. When i >0, i=l,...,ds 0 (n) =Pr(T> n),

where T is the convolution of d independent geometric distributions with

parameters

(ii) Let {X(t),t > 0) be an ergodic skip free to the right Markov

chain on [0,...,d] with Q processing distinct eigenvalues 0 , l,...,-%d*

Assume that Q is stochastically monotone. Then:

d X. -X.t
s 0(t) F X ( I J)e I

j=l r~j j r

In particular this will hold for an ergodic birth and death process on

[0,...,d]. When ).. > 0, j=1,...,n, s0 (t) = Pr(T> t), where T is the

convolution of d independent exponential distributions with parameters

19 ..., d This is always the case for birth and death chains.
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Proof. (i) The expression for s (n) follows from (5.3) and (5.4). It

holds for ergodic stochastically monotone birth and death chains, because

such chains necessarily have distinct eigenvalues (Keilson (1979)p. 59).

The convolution result follows from an argument, given for the continuous

time case, in Brown and Shao (1987), p. 72.

(ii) For c sufficiently large, the discrete time embedded chain,

P=I+c- Q, will satisfy the conditions in (i). The eigenvalues of P are

1, B. =1-c- ,i=l,,d. Note that, (1-Br)I(B-Br) = MB /r (Xr-). Thui:i, r i "r r rj

c ne-ct k k N -Ct(l-B.)
) jct)j e - ) n = r

0 n! - jn=O j=l rijr j j=l r~j r j

k -X.t

j=l r#j r j

The convolution interpretation of s0 (t) follows from Brown and Shao

(1987) p. 72. Finally an ergodic birth and death process on [0,...,d] has

distinct eigenvalues d,- - d  with Xi > 0 i=l, ..,d (Keilson (1979)l'" d i

p. 59). It thus satisfies the above conditions, and moreover, the convolution

interpretation of s0 (t) holds. ]

Diaconis and Fill (1989) derived the above expression for s (n) in

the case of ergodic stochastically monotone birth and death chains. Their

method was based on a construction under which s (n) is a first passage

time distribution for a dual birth and death chain. The expression for

s 0 (n) then follows from the same Brown-Shao approach as used here. Several

exampes are presented in their paper in which the eigenvalues are known and

s0 (n) explicitly computed. This includes the symmetric random walk on the

cube, where they derive a special case of (5.2).
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An example of a skip free to the right, non birth and death chain,

satisfying the conditions of Lemma 5.1 is now given:

2 3 0 2 2 1

122 3 2 i
3- 5 5 TO 1051
1311 11

Here E --0303
1 20 .3308, 82 20

s0 (n) =28575(.3308)n-1.8575(.0303)
n

in Section 5.3.2 we consider another partial ordering which applies to

birth and death chains.

5.3. Other partial orderings.

In Section 5.1 we used chain distance partial ordering, and in 5.2

the usual total ordering. We now discuss two partial orderings. Undoubtedly

there are many others that can conveniently apply in specific cases.

5.3.1. Consider the following Markov transition matrix, with states

0,1,2,3:

.2 .3 .5 0

P .3 .4 .2 .1

.5 .2 .15 .15

0 .1 .15 .75
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P is not stochastically monotone with respect to any total ordering

on {0,1,2,3}. However, consider the partial ordering (0,1,2) < 3, with

0,1,2 not comparable to one another. A general upper set consists of

{3}uA, where A is any subset (perhaps empty) of {0,1,2). P is stochas-

tically monotone, with respect to this partial ordering if and only if

P(3,j) < P(i,j) for i,j =0,1,2. This is satisfied for the above chain,

which is symmetric, thus P = P is stochastically monotone with respect to

< . Moreover P is also doubly stochastic, thus 7 is uniform. An

initial distribution no, satisfies r0 /7 monotone decreasing with respect

to the above partial ordering if and only if 0 ( ) > Tr 0 (3) for i=0,1,2.

It follows from Corollary 4.1 that for every such 70' s(n) = 1-47n (3), in

particular si(n)= l-4p n(i,3) for i=0,1,2o

5.3.2. Consider the following birth and death chain, with states {0,1,2,3}:

1 1 0 0
2 2

3 1

I0 1 1 1
42 4

0 0 1 1

2 2

P is not stochastically monotone with respect to 0 < 1 < 2 < 3, because

P(1,0) > P(0,0), but otherwise it would be. To salvage stochastic monotonicity

define a partial order by (0,1) < 2 < 3, with 0 and 1 not comparable.

Then stochastic monotonicity, with respect to < is easily shown to be

equivalent to:
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P(0,1) > P(2,1)

P(O,l) > P(2,1)

P(2,3) < P(3,3)

The above birth and death chain satisfies these contraints and is thus
,

stochastically monotone with respect to < . It follows that s0 (n) =

l-4pn(0,3), to which (5.4) applies. This is the result we would have

obtained if the chain were monotone with respect to the usual ordering.

As a bonus, we also conclude that s1 (n) = l-4p n(1,3), which by

(8.9) in the Appendix reduces to:

3 1-B .-P(O,0)
sl(n) = I ( r -r)( Ip(01)1 j=l r~j J- r POl

where 81, 2,'3 are the non-zero eigenvalues of P.

Next, consider the following birth and death matrix:

1/2 1/2 0 0
P 1/2 1/4 1/4 0

0 1/4 1/2 1/4

0 0 1/2 1/21

Note that P is stochastically monotone relative to (0,1) < 2< 3,

as was P. It is also stochastically monotone relative to (2,3) < 1< 0,

since P(3,2) > P(1,2), P(2,2) > P(1,2) and P(1,0) < P(0,0). As a result

we have:
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3
sO(n) : s 3 (n) I ( jr

0 rj=l r j j-r )

3 1- r .- P (0,0 O)

sr(n) I ( (n.

j=l rjj r

Generalizing the above to general d, we obtain:

Lemma 5.2. (M) Consider a discrete time ergodic birth and death Markov

chain on {O,...,d}, with eigenvalues 1 ,13 , ...,3d, satisfying:

P(i,l) > P(2,1), i=O,l

P(i,i+l)+P(i+l,i) < 1, i=2,...,d-i

Then:

d 1-a
sO(n) I ( 1 r Bn

j=l r#j j-r

d 1-6 B.-P(O,O)

sl (n) = I ( T I ) P(O'l) )j=l rij ij-r (

(ii) Consider a continuous time ergodic birth and death Markov

chain on {O,...,d}, with eignevalues Od and satisfying

q 0 1
> q21" Then:
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d
s(t sdt r )eI

0 1 r~j r j

d r 1- ~ XJt

s 1 (t) X 1 ojr
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Section 6. Derivation of (1.2).

First, consider a continuous time chain with p t(j,j) decreasing in

t, for a state j. Let W be a random variable with:

Pt (Q ,j)-IT(Q)
(6.1) Pr(W >t) = Pt j) .

1-1T(j)

Letting Y.W denote the Laplace transform of W, we have:

C

(6.2) Ys(S) = 1-s J e-St Pr(W>t)dt .

Furthermore, with 14 .. the Laplace transform of p t(j,j):

(s) " -I

(6.3) e-StPr(W > t)dt =
l-ir(j)

Thus, from (6.2) and (6.3):

(6.4) s =', (s)

Substitute (6.4) into (2.2) to obtain:

(6.5) s = j,j i- (l ) (s) "

N
The right side of (6.5) is the Laplace transform of Z Wi, which proves

1

(1.2).
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In the discrete time case with p n(j,j) decreasing, define W to be
Pn (j j ) -n(j)

an integer valued random variable with Pr(W> n) = .-Qj) . Then

apply the above argument, using probability generating functions in place

N
of Laplace transforms. Again, T E W..

TrJ 1 1

(6.6) Remark. For time reversible continuous time Markov chains with finite

state space, p t(j,j) is stochastically monotone and thus decreasing for

all j (Keilson (1979) p. 34). The discrete time analogue requires that all

the eigenvalues be non-negative.

For ergodic Markov chains in discrete or continuous time, taking values

in a finite partially ordered set (S,<), with either P or P stochastically

monotone relative to <, we now argue that p t(j,j) is decreasing, where j

is a unique maximal or unique minimal state.

Suppose that j is a unique maximal (minimal) state and that P is

stochastically monotone. Then {j} is an upper (lower) set and

Pt~jii) > Pt (k,j) for all kcS, and t. Then for t1 < t2

(jj) = (k,j) < P t0 j)t2 kcS 211 1

Thus pt j,j) is decreasing in t.

If P is stochastically monotone, then by the same argument Pt(j,j)

is decreasing in t, but Pt(j,j) = pt(j,j), thus pt(j,J) is decreasing.
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Section 7. Approximate Exponentiality.

N
The representation T E W. is useful in studying approximate

exponentiality.

First we record a result of the author (Brown (1987)) dealing with

geometric convolutions:

N
Lemma 7.1. Suppose that Y = Z Xi, where {X.} is an i.i.d. sequence of

1 1

nonnegative random variables and N is independent of {Xi} with

k
Pr(N=k) = q p, k=O,1,.... Then:

supIPr(Y> t)-e-t/EY I < p(=EX2 2qp
t -- (EX) 2'

where , = EY
2

2(EY)

Applying Lemma 7.1 and (1.2) we find that:

(7.1) supjPr(T > t)-e -t/aJ< EW2 2 2
t (EW) 7,

ET
2

where cy =ET and p =-
ij Tr'J 2a 2

~i

Inequality (7.1) tells us that if the first two moments of T

behave similarly to those of an exponential distribution, then T. is

approximately exponential.

For time reversible continuous time chains T is completely monotone

(Keilson (1979) p. 11). It follows from Brown (1983) p. 422 that:

(7.2) supIPr(T > t)-e < Tj

t I7,J -- i,+1
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(7.3) sup I Pr (T t)-(l-TT Q)e -t (17 <  .+ ' f Tt ,JT P 7Tj+

Expression (7.3) is used to bound the error of a modified exponential

exproximation which takes into account the atom of size 7(j) at 0. Both

(7.2) and (7.3) hold for first passage times to arbitrary (rather than just

singleton) sets. The reason for our restricting attention to singleton sets

is that (1.2) will provide the means of expressing the bound in terms of

T/O., where T is the relaxation time. In applications T is easier toJ

numerically approximate, and to bound, than is ET2
T , j

We now focus on the moments of T ,j. First recall (Keilson (1979)

p. 34) the spectral representation of transition probabilities in continuous

time, time reversible chains:

m 2 -Xkt
(7.4) pt(j,j) = (j) + I Lkje

k=l

where 0 > -X 1 > -A2 > ... > -X are the eigenvalues of the infinitesimal

matrix.

It follows from (7.4) and (6.1) that W n, UE with U and E indepen-

2

dent, E exponential with mean 1, and Pr(U=j) k' k-l,...,m. Thus,

2 2
EW=EU, and EW = 2EU 2

. Thus:

(7.5) a. = E - ( ) EU = 1 2 -1
3 7,J 7T (j) r(J kJ k

(7.6) Var[E(T ,IN)] = Var(NEU) = 1-)2 (EU)2

T (j)
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(7.7) E[Var(T IN)] = E[NVarW] = 1- (J) [2EU 2-(EU)2

IT,j 7 ) Q

From (7.5)-(7.7):

(7.8) VarT = 2. 2 < a +2a.

S,J 7 (j) kj k-j

eT =max(X-l the relaxation time. From (7.8):where ma( ),terlxtotme Frm(8:

k k

P 2a 2. "/n.
(7.9) T = E- . < I.+i - (T/a )+l

TP ,3 ET2 IT1T,,J

We now summarize:

Theorem 7.1. Let {X(t),t> 0} be a continuous time, time reversible Markov

chain, with finite state space. Then:

Mi supIPr(T > t)-e-_t/aOL < /at

t 7T,j J/a )+l

-(i- (j))t/ j t/n.

(ii) supIPr(T , > t)-(l- 7T())e (-j))j < (r/.)+l- T(J)"

t 7rJ,

The difficulty in dealing with discrete time, time reversible chains,

is that due to possibly negative eigenvalues T need not be a mixture

of geometric distributions. Thus (7.2) and (7.3) are not applicable.

Nevertheless, if pn(JJ )  is decreasing then (7.1) applies. Moreover, as

follows from an argument of Aldous ((1989) p. 183):

(7.10) (discrete) = (continuous)_ (2aj)-.
7 7T IT j
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Combining (7.1), (7.9) and (7.10) we easily derive:

Corollary 7.1. Let {X nn=O,l,...} be a time reversible Markov chain with

pn (j,j) decreasing. Then:

supjPr(T, > t) < (l- ()) 2 T I 
Q

t T I .
J

where 1> 3 2> -> ...>d are the eigenvalues of P, and T = (l-l)-.

In the case of a discrete time, time reversible Markov chain, with all

nonnegative eigenvalues, the methodology of Brown (1983), p. 422, can be

applied to derive:
(T-1)

a. n a.

(7.11) supIPr(T, > n)- (I) I
n Tr C(+1)+

J3

Finally we remark that it follows from an argument of Brown (1987)

p. 15, and (1.1), that if t(j) is increasing then:

--t/ET 7 EY -t/a.
(7.12) supIPr(T o > t)-e O'j i < -- + suplPr(T . > t)-e 31

t - c t  TJ

Thus, when EY is small compared to a., approximate exponentiality

of T ,j also yields approximate exponentiality of T o,j.

d
Example. Consider a continuous time random walk on the cube, {0,1} , with:

q(x'x+6 i) = ji > 0, x i  0

q(x,x-6 i) = ni > O, x 1

The key quantities are:
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(7.13) T =

-1 T1.

c~. = s (Tl) i 1

(7.14) = Y IT -i Y I
Y ¥'f "Bj ii 'YE.P

.3

where y ranges through non-empty subsets of {l,...,d}, s = Z( i+qi ) ,

Y 1

and B. = {i:ji=O}, the zero components of the vector j.

(7.15) = s2( S_ 2 i ( fl /2
y7$ YB. qi Y . i 3

d .k1 .1d

(7.16) EY I (-I) k-I s -

k=l Ak Y

where A k is the collection of subsets of size k from {l,...,d}.

Now, we simplify by letting i. = Ti c > 0, obtaining the symmetric

walk. In Table 1 below we consider the cases d=10 and d=20.

In column 1 of Table 1 we compute the error bound (7.2) for exponential

ET2

approximation of T In column 2, we replace p = ( J-1) by
T'j a 2e

its upper bound T/aj., obtaining the approximation (i) of Theorem (7.1).

We see that the exponential approximation is quite accurate, and the relaxation

time simplification gives a usable though quite conservative upper bound.

In column 3 we compute the refined error bound, (7.3), which adjusts

the approximating distribution to mimic the known probability, Pr(T ,j=0).

In column 4 the p based bound is replaced by the corresponding relaxation

time expression (Theorem 7.1, (ii)). It is seen that this approximation is

remarkably accurate. Much is lost in using the relaxation time upper bound,
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with the error bound over 100 times too large with d=20. However, even

the conservative bound is quite small.

In column 5 we table the error bound in exponential approximation of

T by use of (7.2) and the column 1 error bound for T ,x+I (note that

in the symmetric case the error bound for T is independent of j). In

column 6, we look at the analogous quantity when the column 2 error bound is

used with (7.12). Here, since EY/a is the dominant contribution to error,

little is lost in the relaxation time simplification.
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Section 8. Comments and Additions.

1) Corollary 4.1 justifies the heuristic interpretation of (1.1)

given in Section 1, under appropriate conditions. In general, t(ji)

IT(j)

increasing does not imply that s(t) = 1 - J . The following example,

which illustrates this point was suggested to me by David Aldous.

Consider a birth and death process on {0,1,2} with q0 1 =q 2 1 
= 2,

ql0= q 12= 1. Then:

Pt (0,1) = (1 - e - 4 t)

which is increasing. But .om Lemma 5.1:

Pt (0,2) -2t 2 -4t 2t
s(t) = 1 7(2)- l-(l-e ) = e (2e -1)

I have found that in some cases (1.1) can be explained in the following

way. There exists a distribution 7' such that T 7,j - T7,j, and a stopping

time Y with X(Y) 7 r', X(Y) independent of Y, Pr(X(t) =j for some t < Y) = 0,

(j)tand Pr(Y > t) =1- .~) If this holds we can interpret Y as the waiting

time from 70 to 71. I do not know for how wide a class of situations this

interpretation applies.

2) From (4.1):

(8.1) d(t) < (1- P ((X) < 7 (X)))s(t)
7- t

Suppose that the conditions of Theorem 3.2 hold and in addition

10 = 6i, where i is the unique minimal state (i<k for all kES). Then by
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Remark (6.6), Pt (i,i) is decreasing, and thus Pt (i,i) > 7(i) for all t.

Thus:

(8.2) P (Tr(X) < t (X)) > I)

and from (8.1) and (8.2):

pt(i,M)
d(t) < (1-7(i:))(1 t ()

Tr (M)

This inequality applies to ergodic stochastically monotone birth and

death chains on {0,...,d} with i=O and M=d. It also applies to the

non-symmetric walk on the cube discussed in Section (5.1). Here:

dx(n) < (l-7(x))Sx(n)

where sx (n) is given by (5.2), and:

d -1
r(x) = [T (i+Bi)] ( +a S.)( i ) 

C.)

1 x i=0 xi
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Appendix.

We will derive the expressions for transition probabilities that were

used in Sections 5.2 and 5.3. These are special cases of more general

results I plan to present in a forthcoming paper. The theme, began in

Brown-Shao (1987), is that one can develop expressions for transition

probabilities and first passage time distributions, which depend on eigen-

values, but not explicitly on eigenvectors. Nor are eigenvectors needed to

dervive these expressions.

-l
Suppose that P, an mxm matrix, is diagonalizable, so that P=ADA ,

where D is diagonal with diagonal entries dl...,d m, which are necessarily

the eigenvalues of P. Since pn = AD nA-I for all n=0,1,..., it follows

that f(P) = Af(D)A-  for polynomials, f, where f(D) is a diagonal matrix

with diagonal entires f(dl),...,f(dm). Let I.,k denote the

1 < k < m distinct eigenvalues of P. It follows that for polynomials,

f and g, f(P) = g(P) if and only if f(8i) = g(Bi), i=l,...,k. Now, let

k x-B
f(x) = xn and g(x) Z [ rU . The polynomial g(x) is the well

i=l ri r
known Lagrange interpolation polynomial (Birkhoff and Rota (1969), p. 215).

It is a polynomial of degree k-1, with g(8.) f( i) . n  i=l,...,k. It

follows that g(P) = f(P), thus:

n k P-ar 1

(8.1) pn =iy (ri r ),n

i=l r~i a1- r

This result, (8.1), is discussed in Gantmacher (1960) p. 101, and in

Dunford and Schwartz (1958) p. 562.
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Assume that we have a skip free to the right Markov chain on {0,1,...,d}

with d+l distinct eigenvalues 1 ,',...,'d, and transition matrix P.

Distinctness of the eigenvalues implies that P is diagonalizable, and thus

that (8.1) holds. Noting that p n(O,d) 0, n=O,...,d-l, and

d-l

Pd(Od) =iE P(i,i+l), we have from (8.1):

d d 1 n
(8.2) Pn(Od) Pd(O,d)[ 1 - I i I ) n]i=l l-Bi i=l r~i $i- r

Letting n -- in (8.2), we see that if the Markov chain is ergodic then

k

Pd(O,d) 7(d) R (I-8i), thus:
i--

d r- n
(8.3) Pn(Od) = 7T(d)[l- ) (ri i

Pni(O,d) d -. n
(8.4) 1 (d) = = Ir) 5n

r(d i=l r#i 1- i

Next, consider pn(ld), noting that pn(l,d)=0, n=O,...,d-2,

pd l(l,d) = (P(0,1)) -pd(O,d), and Pd(l,d) = (P(0,1))-(T P(i,i))Pd(O,d).
d d 1

Furthermore Z P(i,i) = tr(P)-P(0,0) = Z ai+P(0,1). Thus:
1 1 i

-1d
(8.5) Pd-l(l,d) = 7T(d)(P(0,1)) TI (1-.)

1

From ( 8.1)
(8.6) Pd~ld =()(P(0,1))- [Bi+P(0,1)] R (I-ai )

1 1

From (8.1) :
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d 1d 1 n

p (l,d) 1 Pd(-d)i d1_)

(8.7)
d d
E( (-) n

_ Pd-l(l,d)d i [ 1 1 1
TI (1-) i1 r#i r i
1

Substituting (8.5) and (8.6) into (8.7) and collecting terms we obtain:

di- r  8i-P (0, O) n(8.8) p (l,d) = i(d)[l- (rfi - )( ' P(O,1)

n i=1 r i ir P01

Pn(ld) d 1-8 r .-P(O,O)=___ r) i )n
8(d) i=l r#i 6i- r  P(O,1) "

Similar expressions can be derived for pn (j,d), j=2,...,d-l.
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