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Abstract

A target is moving along a straight line path. Random portions of the path might
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1. Introduction.

T4-peerM study is focused on the problem of determining the survival probability of

a moving target., which is under attack by a hunter. The target (vehicle, tank, etc.) is

moving along a straight line path, which is partially obscured. from the hunter by randomly

distributed objects (trees, clouds, terrain objects, etc.). The target can be destroyed by the

hunter only along the visible segments of the path. Visibility contact between the hunter
t, .5- vb 0

and the target is needed for-- time units for a shooting trial to occar. In any given shooting

trial the probability that the target is destroyed is fixed. If the target survives a shooting

trial, another identical trial may be attempted if continuous visibility for -r0 time units is

possible. If the target enters an obscured segment of the path, the shooting trials terminate,

until visibility contact is reestablished. Under the above assumptions, if the target has to

cross a visible segment of length L, its survival probability can be approximated by the

negative exponential function exp{-qL}, for suitably chosen constant q, 0 < q < .- e

problem is t the number of visible segments on the moving path, between two specified

points P( and Pt, and their lengths are random variables, whose distributions depend

on the characteristics of the random field.)

T ~~sa~t study is based on the model of a random Poisson field of obscuring elements.

This model is presented in Section 2. Under the assumptions of this model, it is relatively

simple to derive the conditional distribution of the length of a visible segment on the right

hand side (r.h.s.) of a point, P,, on the path, given that the point P, is visible. This

distribution is given in Section 3.1. On the other hand, it is more complicated to determine

the distribution of the length of a segment which is obscured (in shadow). In Section 3.2

we present the methodology for determining the distribution of the length of shadows.

This methodology is based on a theory given by Chernoff and Daly (1957). For a given

point P. on the moving path, Chernoff and Daly (C-D) define the functional T(x), which

is the right hand limit of the shadow to the r.h.s. of P , cast by obscuring elements in

the field which intersect the ray R. from the origin 0 through P.. Employing functions



K±(x, y which are defined in Section 2 and derived explicitly for the standard-uniform

case in the Appendix, we express the cumulative distribution function (c.d.f.) of T(x)

explicitly. The right hand limit of a shadow to the r.h.s. of P., is U(x) = lir T'(x),
n-o

where Tn+l(x) = T(T"(x)), for n = 0,1,-., T°(x) = x. The relationship between

the c.d.f. of Tn+'(x) to that of Tn(x), n = 0,1,..- is discussed in Section 3.2. The

distribution of U(x) is obtained as a limit of that of Tn(X). From the distribution of U(x)

we obtain the conditional distribution of the right end limit of a shadow to the r.h.s. of

P,, given that P_ is the first point in the shadow.

In Section 4 we employ the results of Section 3 to approximate the survival probability

function S(x, y) along the moving path between the points Px and P., x < y. The

function S(x, y) is given by the integral equation

(1.1) S(xy) = A(x, y) + j B(x, w)S(w, y)dw

where A(x, y) and B(x, y) are defined in terms of the distributions of the lengths of

visible and non-visible random segments, as shown in Section 4. An algorithm for the

discrete approximation of the solution of (1.1) is given in Section 5. Numerical solutions

based on this algorithm are provided there too. A Quick Basic program (version 4.5) for

computations can be obtained upon request.

In a previous Technical Report [71 we approximated the survival probabilities by deriving

lower and upper bounds to the distribution of the number of shooting trials, N, along

the path. The present study provides the method of computing the survival probability

function S(x, y), which is required for various applications. W1.i1 the new algorithms for

determining distributions of shadows and survival functions we - tackle problems like

the Hunter-Escort problem, which will be discussed in another paper.
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2. The Random Field Model And The Determination Of Visibility Probabilities.

In the present paper we consider a two dimensional physical model. A generalization to

a three dimensional model can be done in a similar fashion to that of Yadin and Zacks [5].

The moving path of the target is a straight line C. The Hunter is located at a point 0 (the

origin), at distance r from C. Let U and 1W be two straight lines parallel to C, located

betw,-en 0 and C, at distances u and w from 0, respectively; 0 < u < w < r. The

obscuring objects are modeled by a countable number of disks of random size. which are

centered at random points in the strip S, bounded by U and W. We consider a cartesian

coordinate system in which the y-axis is a straight line through 0, perpendicular to C.,

which intersects U, W and C at the point (0, u), (0, w) and (0, r), respectively. A point

P, on C has coordinates (x, r).

A random disk is represented by the random vector (X, Y, Z), where (X, Y") are the

random coordinates of the center of the disk, and Z is its random radius. Without loss of

generality, assume that the sample space of (X, Y, Z) is S* = S x [a, b], where 0 < a <

b < oc. Let S* be the Borel a-field on S*. Let {(Xi,Y,Z), i = 1,2,.-. } represent a

sequence of countable random disks measurable w.r.t. the same space (S*, B*, P). It is

assumed that the random vectors are independent and identically distributed (i.i.d.), and

have a common distribution H(x, y, z). Let F(z I x, y) denote the conditional c.d.f. of the

radius Z, given the center (X,Y) is at (x,y). Let h(x,y) be the joint p.d.f. of (X,Y),

such that h(x, y) = 0 for all (x, y) i S. We further assume that the probability that a

random disk intersects either 0 or C is zero. Let B be any Borel set in S*. Let N{B}

designate the number of random disks with coordinates in B.

If {B 1 ,' ,Bm} is any finite partition of S", m = 1,2,..-, it is assumed that the

random variables N{Bi}, i = 1,..., m are independent, having Poisson distributions

with expected values

(2.1) jBi}= A fdH(x,y,z), i 1,... ,m, les
JJ or
Bi
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0 < A < o. Such a random field is called a Poisson field. The Poisson field is called

standard- uniform if dH(x, y,.z) = hIc(x, y)f(z)dxdydz, where 0 < h < 00, C is a subset

of S which represents the field of view of the Hunter, and Ic(x, y) is the indicator function

of C. A point P, on C is said to be visible from 0, if the ray R-, from 0 through P" is not

intersected by random disks. In a similar manner we can define the notion of simultaneous

visibility of several points on C. In our previous papers [2,3,4] we have introduced the

functions K+(x, t) azid K_(x, t) for 0 < t < oc; where AK±(x, t) is the expected number

of disks centered in S between the rays R, and R,±t, which do not intersect Rx. Explicit

formulae for K±(x, t), for the standard-uniform case, with a uniform distribution of radii

on [a, b], 0 < a < b. is given in the appendix.

Let [L, U] be an interval of the x -coordinates of the point on C belonging to a segment

of interest. Let L* < L and U* > U be properly chosen, and C* the set in S (trapez)

between the rays RL. and Ru.. One can verify that the probability that P, is visible,

for some L <x < U, is

(2.2) = exp{-[p{C*} - AK._(x, x - L*) - AK+(x, U* - x)]}

For a formula of the simultaneous visibility of n points in [L, U], see Yadin and Zacks [4].

3. Distributions Of Length Of Visible And Of Shadowed Segments.

3.1. Distributions Of The Length Of Visible Segments.

In the present section we derive a formula for the conditional c.d.f. of the length of a

visible segment to the r.h.s. of P , given that P, is visible.

Let I(x) be an indicator function which assumes the value 1 if P, is visible, and the

value zero otherwise.

Let L(x) be the length of the visible segment of C to the r.h.s. of P,, i.e.,

(3.1) L(x) = inf{y : y > x, II I(u) = 1} - x.
x<u:y
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We derive here the formula for

V(l I x) = P{L(x) < 11 I(x) = 1}.
(3.2)

= 1 - P{L(x) > I II(x) = 1}.

Let C* be the set of (x, y) points in S, which was defined in the previous section. We

derive the formula of V(l I x), for L < x < U, and 0 < 1 < u - x.

Let C_(x) be the set bounded by U, W and the rays RL- and R. Let C(x,l) be

the set bounded by U, V and the rays R., RN+I; and C+(l + x) the set bounded by U.

VV, Rj+, and Ru.. Notice that C* = C_(x) U C(x, 1) U C+(l + x). As before, we denote

by yj{C} the expected number of disks having centers at the set C, as given by (2.1.

Accordingly,

(3.3)
P{L(x) > 1,I(x) = 1} = exp{-[p {C_(x)} - AK_(x, x - L*)] - pI{C(x, l)}

- [i{C+( + x)} - -K 4 (l + x, U* - I- x)]}

= exp{ -I,{C*} + \[K(x, x - L*) + K+(l + x, u* - - X)J}.

Dividing (3.3) by (2.2) we obtain

(3.4) P{L(x) > I (x) = 1} = exp{-A[K+(x, U* - x) - K+(l + x, U* - -x).

3.2. The Distribution of Shadow Length.

We have denoted by U(x) the right hand limit of the shadow on C to the r.h.s. of P .

Let D(u I x) denote the conditional c.d.f. of U(x), given that the shadow starts at Px.

Consider the rays Rx and RY for y > x. Let N(x, y) denote the number of disks

centered in S, which intersect both R. and R.. Define the functional

(3.5) T(x) = sup{y: N(x,y) > 1}.

Furthermore, let T+l(x) = T(T'(x)), i = 0, 1,..- where TO(x) = x. Obviously, T'+l(x) >

P(x), for all i > 0, and therefore U(x) = lim T'(x). U(x) - x is the length of the shadow
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to the r.h.s. of P . We derive first the c.d.f. of T(x). Clearly, {T(s) > t} {V(x, t) > 1).

Thus.,

(3.6) P{T(x) < t} = P{N(x, t) = 0} = exp{-p(x, t)},

where p(x, t) = Ef{ N(x, t)}. Furthermore,

(3.7) p(x, t) = pfC*} - AK+(x, U* - x) - AK-(t,t - L*) + AK+(x,'- x) + AK_(t,t- ,,

where i is the coordinate of the bisector between R. and Rt. Notice that, since K+(x, 0)

K- (x, 0) = 0 for all x,

P(x,x) = lim P(x,t)
(3.S)tlx

= f{C*} - AK+(x, u* - x) - AK- (x, x - L*).

Hence,

(3.9) limP{T(x) __ t} = O(x),tiz

which is the probability that P, is visible. Thus, the c.d.f. of T(x), H(t; x) is zero for

t < x, it has a jump point at x, H(x; x) = ¢T(x), and is absolutely continuous at t > x.

This property is inherited by the c.d.f. of Tn(x), Ha(t; x). We provide now the recursive

relationship between H,(t; x) and H,-l (t; x). Introduce the bivariate distribution

G.(tl,t 2 ;x) = P{T"-1(x) !_ ti,T"(x) < t2

Since {Tn(x) _< t} C {T"-1(x) < t},

Hn(t; x) = P{T"(x) t}
(3.10)

= G,(t*, t; x), all t* > t.

For x < z < y < t,

(3.11) P{T"(x) <_ t I T"- 2(x) = z, Tn-(x) = y} = exp{- (y, t) - M(z. t)]}.
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Indeed, given that {T 2 (x) z, T'(x) = y}, {T-(x) > t} if and only if, there exists

at least one disk which intersects RY and Rt, but does not intersect R.. Hence,

(3.12) G,(tI, t 2 ; X) = exp{-[/(u, t 2 ) - 11(z, t2 )]}dGn-I(z, U;x).

These bivariate c.d.f. can be determined recursively, starting with Gi(tl1 t2 ; x) = H(t 2 ; x)

for all tl < t 2 . Moreover,

(3.13) G 2 (ti,t2 ;x) = ] e -
('
( t  ])  e U(Zt2)dz) dH(u;x).

Finally, since Hn+l(t; x) _ Hn(t; x) for each t > x and all n = 1. 2,.. the c.d.f. of U(x)

is

(3.14) P{U(x) < t} = lim Hn(t; x).

Thus. P{U(x) < t} = 0 for all t < x, and lim P{U(x) < t} = O(x). The conditional
tjX

c.d.f. of U(x), given {I(x) = 01 is

P{U(x) _ t} - O(x) for t > x

(3.15) P{U(x) < t I (X) = 0}= 1 - (x) f -
10, for t < x.

We are interested, however, in the conditional c.d.f. D(u I x), where Px is the first point

(the left hand limit) of the random segment in shadow.

Simple geometric considerations yield that the length of a random shadow cast by a

single disk, having left hand limit at Px, with center on a line parallel to U at distance h

from 0, and disk radius Z, is

(3.16) U(x,h,Z) = r tan 2sin- ( +h2 tan- +t

where (x,., h) are the coordinates of the center of the disk, with

(3.17) xC = h+Z 1+(X)2)1/2
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Thus, if a < Z < b w.p. 1, the minimal length of shadow starting at x is

(3.18)

ilm(x) = r tan 2 sin- 1  (a/w) / + tan- () .

(1+ (x + ( + (X)2) 1/2) 2)1/r

Finally, since a shadow starting at P, ends at point U(x) _ iim(x) + x,

(3.19) D(u x) =P{U(x) __ u} - P{U(x) <ii .(x) + X}1 - P{U(x) < iim(X) + X} for u > x.

In Section 5 we provide computing algorithms for the numerical determination of the

c.d.f.'s V(l I x) and D(u I x), and illustrate them with a numerical example.

4. The Survival Probability Function.

In the present section we establish the integral equation (1.1). Let P, and Py be a

visible point on C and a point to its right, L* < x < y < U*. The Hunter starts shooting

trials when the target is at Px. The attack terminates when the target reaches PY, if

it has not been destroyed before. Let S(x, y) designate the survival probability function.

We recognize three exclusive and exhaustive events.

(i) The visible segment to the r.h.s. of P, terminates at a point to the right of Py;

(ii) The visible segment on the r.h.s. of P, terminates at a point Pt, t < y, and the

length of the shadow starting at Pt is greater than y - t.

(iii) The visible segment on the r.h.s. of P, terminates at a point Pt, t < y, and the

length of the shadow to the r.h.s. of Pt is smaller than y - t.

As mentioned in Section 1, the conditional survival probability of a target moving on a
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visible segment of length L is exp{-q, L}, for some 0 < q < 0c. Accordingly,

S(X, Y) = e(-qY,-)(1 - V(y - X I X))

(4.1) + j e-q(t-)(I - D(y I t))dV(t - x x)

+ P -q(t-x) S(z, y)D'(z It)dz~ dV(t -xx)
- ii,(t)+t

where D'(z I t) ID(, It) is the p.d.f. of D(z I t). Notice that D'(z I t) = 0 for all
Z

t < : <am(t) + t. Let Zm(t) i= Ur(t) + t. Zm(t) is the first term on the r.h.s. of (3.18)

with x = t. Let t,(z) be the inverse of zm(t) then, by changing the order of integration

we obtain

(4.2) 
- i  S(z, y)D'(z I t)dz dV(t - x x)

- S(z, y) { e-qt D'(z I t + x)dV(t I x) dz.

Accordingly, define

(4.3) A(x,y) = e-(Y') (1 - V(y - x I x)) + e-(l -- D(y I t + x))dV(t x),

and

t n(-)-X)

(4.4) B(x, z) = e-tD'(z It + x)dV(t I x).

Thus, the integral equation (4.1) can be written as in (1.1).

5. Algorithms For Discrete Approximations And Numerical Examples.

In the present section we consider discrete approximations to the functions H,(t; x),

G.(t 1 , t2; x), n > 2 and S(x, y).

For a given integer, N, partition the interval (x, y) to N subintervals. Accordingly, let

6 = (y - x)/N, to = x and ti = to +jS, j = 0,1,... ,N.
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Fori=0,..- ,N, let

(3.1) /1f(i) = H(ti; to) = exp{-j(to, ti)}.

We compute next the function j 2(i, J), i, j = 0,... ,N; which is a discrete approximation

to (3.13). For i =0,-.- ,N and j =11- ,N,
i

(5.2) G2(i,j) = Eexp{-(L(tk, t j ) ft(to, tj))} [f1l(k) - 1 (k - 1)],

k=O

where H 1 (-1) 0. Notice that 6 2 (0, j) =/ I/(0) for all j = 0,1,- ,N; and for i > 1,

(5.3) G2(i,j) = k 1 (O) + exp{I(to,tj)} " exp{ -L(tktj)'[H1(k) - H1  (k - 1)].

k 1

Moreover,

(5.4) G2(i,j) = U2(j,j) for all i > j.

We compute afterwards recursively, for every n > 3, i = 1,... , N, j i,-- . N

1 i

Gn(i,j) = E E exp{-(p (ti, tj) - A(tk, tj))}[.- 1(k, 1) - (k- 1,1)
(5.5) 0 k

- _ (k,I- 1) + G!,-l(k - 1,1 - 1)],

and for i > j

(5.6) G.(i,j) = G,(j,j).

For i = 0, G(0,j) = G .- (0,j) = H1 (0), j 0,.-" ,N. After computing these functions

we determine H(j) = d ,j), J = 0,1,... ,N. H!(j) is the discrete approximation to

the c.d.f, of T (x), namely Hn(t;x); i.e., H,(tj;x) fl H(j).

In Table 5.1 we present numerical results obtained by applying this algorithm to the

following special case.
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We consider a standard-uniform Poisson field, with uniform distribution for the disk

radius on the interval (a, b). In the appendix we present the functions K+(x, t), t > 0, for

this case. We compute the numerical example for Table 5.1 with the following geometrical

parameters: r = 100[m], u = 40[m], w = 60[m], a = 1[m], b = 2.5[m], x = 10[m),

L' = -100[m]. U* = 100[m]. We present in the tables the values of H,(j), n = 1,2.3,

j=0,'" ,20, when 6= l[mI.

Table 5.1. Values of H,,(j) for two values of A.

A H 1 = 0.02 [1/n2 ] A = 0.2 [1/m 2 ]

0.,1 / 2 (j) j: (j) Hi(j) II2(j) f13 (j)

0 0.4914 0.4914 0.4914 0.0000 0.0000 0.0000

1 0.54 4 0.5434 0.5434 0.0000 0.0000 0.0000

2 0.6009 0.6008 0.6008 0.0000 0.0000 0.0000

3 0.6645 0.6642 0.6442 0.0003 0.0003 0.0003

4 0.7342 0.7336 0.7336 0.0021 0.0020 0.0020

5 0.8039 0.8030 0.8030 0.0130 0.0119 0.0119

6 0.8664 0.8652 0.8652 0.0576 0.0522 0.0522

7 0.9182 0.9170 0.9170 0.1828 0.1663 0.1663

8 0.9569 0.9559 0.9559 0.4164 0.3843 0.3842

9 0.9811 0.9804 0.9804 0.6842 0.6484 0.6482

10 0.9934 0.9930 0.9930 0.8763 0.8507 0.8505

11 0.9985 0.9984 0.9984 0.9707 0.9590 0.9588

12 0.9999 0.9999 0.9999 0.9981 0.9958 0.9957

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

As seen in Table 5.1, the convergence of HI,(j) to the c.d.f. of U(x) is quite rapid. We

have therefore approximated the c.d.f. D(u I x) by the sequence D(j I i) = D(tj I ti),

i = 0,1,... ,N, j = + 1... The function A(x,y) was computed for the arguments
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ti, tj. by the approximation

A(N, N) = 1

A(N, - 1, N) = e-q(l - (1 N - 1)) + (1 - b(N IN - 1))

(5.7) .4(N - j,.N) = e -jq'(Z - lj N -j)

+ e-q(t-1) 6 (V(l N - J)- V(l- 1 I N - j)).
1=1

• 1!(N I N- J+/1)), =2,.. ,g

where

(5.S) (NI N - i) =((NN - i) + b(NI N -i+ 1)),

for ali = 1.2...N. Recall that D(fV IN) = 0 =.D(N N + 1).

Similarly, we define

b(N,N) = 0

(5.9,B( _ 1,N) -1 e-q/2Y(1 I N - 1)b!(N I N- 1),
2

and for j= 2,-.. ,N, l= 1,... *,j wecompute

I

((N - j,N -j + 1) = I - j) - I( I N - j)].(5.10) l

[Ib(N-j+ I N-j + i)- b (N-j + l- 1 N-j+i)],

where b(N -j+1-1 I N-J*+l) = 0.

Using these sequences, we compute

S(N,N) = 1

S(N- 1,N) =A(N- 1,N)

and. for j =2, ,N

N-i

(5.11) S(NV-j,N)= A(N-j,N)+B(N-j,N)+ S B(N-j,i)S(i,N).
i=N-j+l

12



The function S(x, y) is approximated by S(0, N). In Table 5.2 we present the values of

A- j N), for the geometrical parameters of Table 5.1, with a = 2[m], b = 3.5[m] and

several values of A. Also here 5 = 1[m]. The value of q is -ln(0.8). This corresponds to

the situation in which one shooting trial takes as long as the target travels 1[m], and the

probability of destroying the target in one trial is 0.8.

Table 5.2. Survival Probabilities S(N - j, N), for A = 0.02(0.01)0.03.

N=20; a=2, b=3.5, r = 100, u=40, w=60.

j\" 0.02 0.03 0.04 0.05

0 1.00000 1.00000 1.00000 1.00000

1 0.81711 0.82447 0.83112 0.83715

2 0.69730 0.72040 0.74052 0.75808

3 0.61877 0.65867 0.69187 0.71965

4 0.56729 0.62203 0.66572 0.70094

5 0.53352 0.60025 0.65163 0.69179

6 0.51135 0.58728 0.64401 0.68729

7 0.49677 0.57954 0.63987 0.68505

8 0.48718 0.57489 0.63759 0.68390

9 0.47460 0.56551 0.63027 0.67817

10 0.45820 0.55111 0.61788 0.66784

11 0.43776 0.53154 0.60001 0.65204

12 0.41376 0.50726 0.57671 0.63029

13 0.38732 0.47959 0.54917 0.60348

14 0.36009 0.45064 0.51979 0.57418

15 0.33382 0.42283 0.49155 0.54589

16 0.30991 0.39803 0.46678 0.52137

17 0.28902 0.37709 0.44652 0.50189

18 0.27122 0.35999 0.43073 0.48741

19 0.25614 0.34607 0.41851 0.47687

20 0.24309 0.33427 0.40849 0.46864
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Appendix

The Functions K+(x,t) in the Standard- Uniform Case, With Uniform Distribution of

radii on (a, b).

Let K+(x,t,z) denote the area of the set bounded by the line £t, the ray I.+t, t > 0,

and the lines U1 and W; £+ is the line parallel to R., on its r.h.s., of distance z from

it. This is the set of all disk centers between R. and R,+t, of radius Z = z, which

do not intersect R,. In order to simplify notation, we assume that w = r. In actual

computations we substitute xw/r and tw/r for x and t in the formulae given below. Let
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d = (x! + w2)1/2. Simple geometrical considerations yield:

IK +(x t z I <d u 2 _ U2 2 - -z -
(A.1) f d

+ U<d < W (tw - zd)2

+I~u tK I 2tw .

where I{A} is the indicator set function, which assumes the value 1 if .4 is true, and the

value 0 otherwise.

Notice that K+(x, t, z) depends on x only via x2 .Symmetry implies that K_(-x, t., z)

K +(xt,z) = K+(-x~t.z) for all -cc < x < cc. Hence, K+(x,t) = I7_(x,t) and we

delete the ± subscript of K. Finally, K(x, t) = E{K(x, t, Z)} with respect to the uni-

form distribution of Z over (a, b). Let x, = tu/d and x 2 = tw/d. The function K(x. t)

assumes the following forms:

(i) If b < x,

(A.2) K(x,t) = W2_U2 (t- d (a+b)2w U +W

(ii) If a < x1 <b < x2

K(x,t) = W 2 U2  t -x-a d + b 1aX2 a2)

(A.3) 
b-a u+w

+ w (t 2 b2 b-xi tb.d ( d2  3_+ (b3 )+ (tw - twb-(b 2 - x ) + (b - x1 )j.
2w b - a b -a 3(b -a)

(iii) If a < x, <X2 < b

K(xt) = W2  U2 (txl -a d 1(x2 _a2))_(A.4, b) a U +-- W b- a 2

(.t.) 1 X2 - Xl d ( 2 2 3 d(3a3)
+2t~w b-a a)b-a (b-a

(iv) Ifx, < a<b<x 2 ,

15



(A.5) K(x,t) = tw d(a+ b)_+d2(a 2 + ab+b 2 )

2 2 Glw

(v) If x, a <x 2 < b

(A.6) K(x, t) = tw x 2 -a d a2 ) d2

2 b-a 2(b -a )( 6tw(b -a) (2

(vi) If X2 < a

(A.7) K(x,t) =0.
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