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Abstract

It is proved that any protocol that constructs a reliable data link service using a physical
channel service necessarily includes in the packets some header information that enables the
protocol to treat different packets differently. The physical channel considered is permitted to
lose, but not reorder or duplicate packets. The formal framework used for the proof is the I/O
automaton model.

Keywords: data link protocol, communication protocol, headers, impossibility proof

1 Introduction

Formal models of concurrent programming have been advanced as a suitable foundation for pro-
viding rigorous verification of protocols against specifications. A very different use is to give proofs
of impossibility results: showing that no protocol can possibly solve a particular problem. The
features of a formal model that are necessary to support impossibility proofs are not necessarily
the same as those that make verification easy. A discussion of these features can be found in [11].
In this paper, we use the I/O automaton formal model (see [101 for a general exposition of the
model) to provide a proof that any protocol that provides a data link service by using a physical
channel service, nec-essarily includes in the packets some header information that enables the pro-
tocol to treat different packets differently. The interest of this work, we believe, is not so much in

the result (no one ever suggested using a protocol without header information) but rather in the
way this formal model (which has proved successful in verifying quite complicated protocols, as in

(9, 15, 3, 4, 6, 141) can be used to show the nonexistence of protocols with certain properties.

The authors were supported in part by the National Science Foundation under grant CCR-86-11442, by the Office
of Naval Research under contract N00014-85-K-0168 and by the Defense Advanced Research Projects Agency under
contracts N00014-83-K-0125 and N00014-89-J-1988.



There has recently been a lot of research in the distributed computing theory research commu-
nity into the possibility of constructing a reliable message transmission service using an underlying
unreliable packet transmission service (see [8, 1, 16, 12], for example). Most of this work has
addressed the case where the physical channel is especially unreliable, in that it can lose packets
and also deliver packets out of order. In these cases the natural protocol, due to Stenning ([131)
places each message into a packet with a sequence number as header, and repeatedly sends the
packet until its receipt has been acknowledged. The difficulty with this protocol is that the se-
quence numbers increase without bound, and the papers mentioned above explore the possibility of
using a fixed size header. By contrast, in this paper we consider using a FIFO (but possibly lossy)
physical channel. There axe many protocols known for this situation, most being variants on the
Alternating Bit protocol [2], in which packets and acknowledgments contain a single bit header.
We show that this header is needed, in that there is no protocol that solves the same problem
without using some header to distinguish between packets. A key modeling issue is how to measure
the existence of a header in an arbitrary protocol, without assuming a particular structure (such as
[sequence-number,message]) for the packets. The definitions we use are adapted (and simplified)
from those in [8, 5].

In Sections 2-4, we show how we model the different service specifications and the construction
of an arbitrary protocol to provide a data link service using two physical channels. In Section 5 we
define the specific physical channels we will use in the main result. In Section 6 we prove a result
that includes much of what we want, while avoiding the more subtle modeling issues: we show
the impossibility of implementing a data link service using identical packets in each direction. In
Section 7 we discuss how to define the headers used by an arbitrary protocol, and finally we present
the impossibility result. A summary of the I/O Automaton model is given in the Appendices.

2 The Physical Layer

The physical layer is the lowest layer in the OSI Reference Model hierarchy, and is implemented
directly in terms of the physical transmission media. A standard interface to the physical layer
permits implementation of the higher layers independently of the transmission media.

In a typical setting, a physical layer interacts with higher layers at two endpoints, a "transmit-
ting station" and a "receiving station". The physical layer receives messages called "packets" from
the higher layer at the transmitting station, and delivers some of the packets to the higher layer at
the receiving station. The physical layer can lose packets. While it is also possible for packets to
be corrupted by the transmission medium, we assume th. - ,a physical layer masks such corrupted
packets using error-detecting codes. Thus, the only fault., l,<.avior we consider is loss of packets.

In this section, we give a specification for physical layL. behavior; in particular, we specify a
channel that ensures FIFO delivery of packets. It is convenient to parameterize the specification by
an ordered pair (t, r) of names for the transmitting and receiving stations, and by an alphabet P
of legal packet8. The specification will be given by a schedule module, denoted by PL - FIFOt ,r,P.

PL - FIFOt,r,P has the action signature illustrated in Figure 1 and given formally as follows.

Input actions:
send-pkttr(p), p E P

Output actions:
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There are no internal actions. The send-pkttr(p) action represents the sending of packet p on
the physical channel by the transmitting station, and the receive.pkttr(p) represents the receipt of
packet p by the receiving station. We will refer to the actions in acts(PL - FIFOI, ,P) as physical
layer actions (for (t, r) and P).

In order to define the sets of schedules for the schedule module scheds(PL - FIFOtrP), we
define first a collection of properties, reflecting the operation of a "good" physical channel. The
properties are defined with respect to /3 = 7r72... a (finite or infinite) sequence of physical layer
actions, and a correspondence relation, a binary relation between the sendpktt r events and the
receive-pkttr events in /3. The correspondence relation is intended to model the association that
can be set up between the event modeling the sending of a packet, and the event modeling the
receipt of the same packet. Complications are caused by the fact that the same data might be sent
repeatedly, and so the sending of two such identical packets is modeled by two occurrences of the
same action send pkttr(p).

(PLI) 1. If an event Ti = receive-pkt r(p) corresponds to an event i = 8endpktLr(q), then
p = q, and also j < i, that is, the event wr precedes ri in /3.

2. Each receive.pktt r(p) event corresponds to exactly one send.pkttr(p) event.

3. Each send-pktt ,r(p) event corresponds to at most one receivepkttr(p) event.

Thus, when (PL1) is satisfied, any receive.pktt ,r(p) in /3 will have a corresponding sfnd-pkt t,r

event.
The next property we define is the FIFO property. It says that those packets that are delivered

have their receive.pkt events occurring in the same order as their sendpkt events. Note that (PL2)
may be true even if a packet is delivered and some packet sent earlier is not delivered; there can be
gaps in the sequence of delivered packets representing lost packets.

(PL2) (FIFO) Suppose that the event 7ri = send-pktt'r(p) in /3 corresponds to the event ir,
receive.pktt r(p), and 7rk = send-pkt t'r(p) corresponds to 7i -- receive-pkttr(pI). Then i < k
if and only if j < I.

3



So far, the properties listed have been safety properties, that is, when they hold for a sequence
they also hold for any prefix of that sequence. The final property is a liveness property. It says
that if repeated send events occur, then eventually some packet is delivered.

(PL3) If infinitely many send-pkt t r actions occur inf/, then infinitely many receivepkt1,r actions
occur in P3.

Now we define the schedule module PL-FIFO4,r,P. We have already defined sig(PL-FIFP,0,P).
Let scheds(PL-FIFOP,' ,P ) be the set of sequences /3 of physical layer actions for which there exists
a correspondence such that (PL1), the FIFO condition (PL2), and (PL3), are all satisfied for /
and that correspondence. A FIFO physical channel from t to r is any I/O automaton that solves
PLFIFtr,P.

In a "real-world" implementation of a physical channel using a physical transmission medium,
(PL3) would not be guaranteed with absolutely certainty, but rather with extremely high probabil-
ity. In practice, this probability is usually sufficiently high to justify our decision to ignore in the
formal model the small likelihood that no packets ever get delivered on an active channel, just as
we have neglected the small probability of "real-world" channels corrupting a packet undetectably.

3 The Data Link Layer

The data link layer is the second lowest layer in the hierarchy, and is implemented using the services
of the physical layer. Generally, it is implemented in terms of two physical channels, one in each
direction. It provides a reliable one-hop message delivery service, which can in turn be used by the
next higher layer.

We again assume that there are two endpoints, a "transmitting station" and a "receiving sta-
tion". The data link layer receives messages from the higher layer at the transmitting station, and
delivers them at the receiving station. The data link layer guarantees that every message that is
sent is eventually received. Furthermore, the order of the messages is preserved.

In this section, we give a specification for data link layer behavior, as a parameterized schedule
module DLt,r,M, where M is an alphabet of legal messages. The development is very similar to
that for the physical layer; in fact, the only significant difference is between the liveness conditions
(DL3) and (PL3). The action signature sig(DLrM) is illustrated in Figure 2, and is given formally
as follows.

Input actions:
send.msgt,r(m), m E M

Output actions:
receive.msgt,r(m), m E M

There are no internal actions. The sendmsg1,r(m) action represents the sending of message m
on the data link by the transmitting station, and the receivemsgt1'(m) represents the receipt of
message m by the receiving station. We will refer to the actions in acts(DLrM) as data link layer
actions.

4
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Figure 2: The Data Link Layer

In order to define the set scheds(DLt,r,M), we again define a collection of auxiliary properties.
They are defined for a sequence /0 = 7r, r2... of data link layer actions and a correspondence
relationship, a binary relation between the send msgt,r events and the receive.-agi.r events in /0.
The first property is analogous to (PL1) and gives elementary requirements on the correspondence.

(DL1) 1. If an event ri = receive-msgtir(m) corresponds to an event irj = send.msgt'r(n), then

m = n, and also j < i, that is, the event 7ri precedes 7ri in /.

2. Each receivemsgt r(m) event corresponds to exactly one send.msgtr(m) event.

3. Each sendmsgt,r(m) event corresponds to at most one receivemsgt,r(m) event.

The next property is the FIFO property; it guarantees that the messages sent are received in
the same order.

(DL2) (FIFO) Suppose that the event 7ri = send.msgt ,r(m) in /P corresponds to
Tj = reeeive.msgt'r(m), and Trk = sendmsgtr(mI) corresponds to 7rl = receiveamsgt ,r(m').
Then i < k if and only if j < 1.

Finally, we have the data link layer liveness property. It says that all messages that are sent
are eventually delivered. This property expresses the reliability of the message delivery guaranteed
by the data link layer.

(DL3) If r is a sendmsgtr(m) event occurring in fl, then there is a receivemsgt'r(m) event in
P corresponding to r.

Note that in combination with (DL1), (DL3) implies that there is exactly one receive.msgt.r(m)
event corresponding to each sendmsg",r(m) event. Now we can define the schedule module DLt,r,M.

We have already defined sig(DLI,rM). Let scheds(DLt,r,M) be the set of sequences / of data link
layer actions for which there exists a correspondence relation such that (DL1), (DL2), and (DL3)
are all satisfied for P and the correspondence relation.

Although the schedule module DLt,rM represents the behavior one would require from an inter-
esting data link layer, it is useful for us to define another schedule module WDLt,r,M representing
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weaker requirements on data link behavior, in which the layer is required to eventually deliver each
message that is sent, but not necessarily in FIFO order. Thus, let sig(WDLtr,M) = sig(DLt,r,M),
and let scheds(WDLt r M) be the set of sequences 0 of data link layer actions for which there exists
a correspondence relation such that (DL1) and (DL3) are satisfied for f and the correspondence.

Although this weaker specification is less interesting than DLt,r,M for describing properties of
a useful data link layer, it is adequate for proving our impossibility result. It is easy to see that
WDL t 'r M is a weaker specification than DLt'7 'M, i.e., that scheds(DLt ,r ,M) 9 sch. .,s(WDLt,r,M).
Thus, any automaton that solves DLt,r,M also solves scheds(WDLt,r,M), so that the impossibility
results we obtain for solving WDLt,r,M immediately imply corresponding impossibility results for
solving DLt,,M.

We have the following immediate consequence of the definition:

Lemma 3.1 If /3 is in scheds(WDLt ,r ,M) then the number of send-msgtr events in / is equal to
the number of receivemsgt r events in f.

4 Data Link Implementation

In this section, we define a "data link protocol", which is intended to be used to implement the
data link layer using the services provided by the physical layer. A data link protocol consists
of two automata, one at the transmitting station and one at the receiving station. These au-
tomata communicate with each other using two physical channels, one in each direction. They also
communicate with the outside world, through the data link layer actions we defined in Section 3.

Figure 3 shows how two protocol automata and two physical channels should be connected, in
a data link implementation.

4.1 Data Link Protocols

Let t and r again be names (for the transmitting and receiving station respectively). Let M, P1
and P2 be alphabets (of messages, forward packets and backwards packets, respectively). Then
a transmitting automaton for (t,r) and (M, P1,P 2) is any I/O automaton having the following
external action signature.

Input actions:
send.msgt r(m), m E M
receive-pkt"'t(p), p E P>2

Output actions:
send-pkt t'r(p), p E P

In addition, there can be any number of internal actions. That is, a transmitting automaton receives
requests from the environment of the data link layer to send messages to the receiving station r. It
sends packets to r over the physical channel to r. It also receives packets over the physical channel
from r.

Similarly, a receiving automaton for (t, r) and (M, P1, P2) is any I/0 automaton having the
following external signature.

6
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Figure 3: A Data Link Implementation

Input actions:
receive-pktt' (p), p E PI

Output actions:
send-pkt1' t(p), p E P2
receive.msgt ,1(m), m E M

Again, there can also be any number of internal actions. That is, a receiving automaton receives
packets over the physical channel from t. It sends packets to t over the physical channel to t, and
it delivers messages to the environment of the data link layer.

A data link protocol for (t,r) and (M, P1,P2 ) is a pair (At,A"), where A' is a transmitting
automaton for (t, r) and (M, P1, P2), and A is a receiving automaton for (t, r) and (M, P1, P2).
(Often we will omit mention of the station names and the alphabets, if these are clear from context.)

4.2 Correctness of Data Link Protocols

Now we are ready to define correctness of data link protocols. Informally, we say that a data
link protocol is "correct" provided that when it is composed with any "correct physical layer"
(i.e. a pair of FIFO physical channels from t to r and from r to t, respectively), the resulting
system yields correct data link layer behavior. This reflects the fundamental idea of layering, that
the implementation of one layer should not depend on the details of the implementation of other
layers, so that each layer can be implemented and maintained independently. Formally, suppose
(At, Ar) is a data link protocol for (t, r) and (M, P1, P2). We say that (At, A T) is correct provided

7



that the following is true. For all C1 and C 2 such that C1 is a FIFO physical channel from t to
r with alphabet P1, and C 2 is a FIFO physical channel from r to t with alphabet P2, hideo(D)
solves DLt,r,M, where D is the composition of At, A r , C1 and C2, and 4 is the subset of acts(D)
consisting of sendpkt and receive.pkt actions.

As mentioned earlier, our impossibility results can be proved for weaker data link requirements.
Thus we also define weak correctness for data link protocols. This is defined exactly as for cor-
rectness, except that hideo(D) is required to solve WDLt,r,M instead of DLt,r ,M. Obviously, any
correct data link protocol is also weakly correct.

Note that the definition of "solves" upon which these correctness definitions axe based appears
in Appendix A.4. Examination of that definition shows that these correctness definitions require
that the fair behaviors of hideo(D) are all among the schedules of the schedule module DLt,r,M or
WDLt,r,M.

5 Permissive Physical Channels

Since the correctness of a data link protocol requires that it work when composed with any FIFO
physical channels with appropriate alphabets, we are able to prove the impossibility of a correct
protocol satisfying certain requirements by merely demonstrating that no such protocol works when
combined with a specific pair of FIFO physical channels. In this section we introduce the channels
we will use.

5.1 Definitions

We define a physical channel that is parameterized by end stations t and r and a packet alphabet P.
It can be considered to be a "very permissive" physical channel. In fact, it can even be considered
to be a "universal FIFO physical channel", in the sense of Lemma 5.2 below.

First, we define a set S of ordered pairs (ij) of positive integers to be a delivery set provided
that it satisfies the following two conditions: for each positive integer j, S includes a unique element
(i,j), and for each positive integer i, it includes at most one element (i,j). We say that a delivery
set is monotone provided there are no pairs (i1 ,j) and (i 2 ,j 2) in S with il < i2 and ji _ j2.

The state of the physical channel C&,r,P has two counters, counter1 and counter2, an infinite
monotone delivery set S of pairs of positive integers, and a partial mapping packet from the set
of positive integers to P. The counter counter1 represents the number of send-pkt actions, and
counter2 represents the number of receive.pkt actions, that have occurred so far. The set S
determines which packets are delivered, and in what order - it contains pairs (i, j) that correlate
the j-th receive.pkt event with the i-th send-pkt event. Thus the restrictions in the definition of
a delivery set correspond to the conditions (DL1). The mapping packet associates with an integer
i the packet that was sent in the i-th sendpkt event. Initially counter1 and counter2 are zero and
packet is undefined everywhere. In a particular execution, the set S is initialized to an arbitrary
monotone delivery set and remains fixed.

The transition relation for the automaton Ot,r,P consists of all triples (s', 7r, s) described by the
following code. 1

'This style of describing I/O Automata by giving preconditions (that is, conditions on s') and effects (that is,

8



send-pktt,r(p)
Effect: counter1 *-- counter1 + 1

packet(counterl) *- p

receivepktt,r(p)
Precondition: packet(i) = p and (i, counter2 + 1) E S, for some i
Effect: counter2 *- counter2 + 1

The partition puts all the output actions of 0t,r,P (that is, all the receive.pktt,r(p) actions, for

all p E P) in a single class.

Lemma 5.1 The automaton Ot,*,P is a FIFO physical channel.

Proof: We must show that fairbehs(ot , rP) C scheds(PL - FIFOt,rP). Let /3 be a fair behavior
of ot,r,P. We must show that there exists a correspondence relation that makes (PL1), (PL2) and
(PL3) true. Since /3 is a fair behavior of Ct,"P, there is a fair execution a of C&,r,P with /3 as its
behavior. Let So be the value of the monotone delivery set S in the execution a. We construct
a correspondence relation from So as follows: if 7r is the i-th send.pkt t r event in /3, and 4) is the
j-th receivepktt r event in /3, then let ir correspond to 4 exactly if (ij) E So. The fact that (PL1)
and (PL2) hold for this choice of correspondence relation folows from the properties of monotone
delivery sets.

To prove that (PL3) holds, we suppose that on the contrary # contains a finite number N of
receive.pkttl, events and infinitely many sendpkttr events. Thus in ce all the states after the last
receivepkttr event have counter2 = N. Now since So is a monotone delivery set, So contains
(i, N + 1) for some positive integer i. Let the i-th send-pktt r event in 3 be send-pkt t.r(p). Then
in every state of a after this event packet(i) = p. The code for the automaton shows that in every
state of a after the later of the last receive-pktt,r event and the i-th sendpkttr event, the action
receivepktt ,(p) is enabled. This contradicts the assumption that a is a fair execution.

0

The following converse (which is proved by reversing the construction of the previous proof)
shows that 6t,r,P has among its fair behaviors all of the schedules of the specification PL -
FIFOt,r,P.

Lemma 5.2 Suppose P3 is in .cheds(PL - FIFOO*,P). Then /3 E fairbehs(i'rP).

We can combine the permissive physical channels with an arbitrary data link protocol, as follows.
If A is a data link protocol for (t, r) and (M, P1, P2), then let 15(A) be the composition of A', A',
6t,r,P and 6r,t,P2. Also let P'(A) = hide,*(b(A)), where -t is the subset of acts(b(A)) consisting
of send.pkt and receivepkt actions. By virtue of Lemmas 5.1 and 5.2, we have the following result:

Proposition 5.3 A data link protocol A is correct (respectively, weakly correct) if and only if IY1(A)
solves the specification module DLt,r,M (respectively, WD LtrM).

imperatives to be executed sequentially to transform a' to give a) is used in [10]. It is not fundamental to the model,
but is rather a notational convenience for describing sets of triples.
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The following corollary will be used in our subsequent proofs.

Corollary 5.4 Suppose that A is a wes a weakly correct data link protocol. Then in every fair
behavior of &r(A), the number of sendmsgt ,' events is equal to the number of receive-msgt ,'
events.

Proc!: By Proposition 5.3, it must be that b(A) solves the specification module WDLt,,M, i.e.,
every fair behavior of b'(A) is a schedule of WDLt,' ,M. The conclusion follows from Lemma 3.1.

0

6 Impossibility of Having All Packets Identical

We show here the impossibility of constructing a weakly correct data link protocol that uses only a
single type of packet (and so needs no header) to transmit a sequence of identical messages. This
result seems weaker than the result we want (that it is impossible to construct a weakly correct
data link protocol where all packets contain the same header) but in the next section we will show
that in fact the desired result follows from this. By making this simplification we postpone some of
the difficult modeling issues, and allow the reader to see the style of impossibility proof in a simpler
setting. The technique, of measuring the number of headers by the size of the packet alphabet
when the message alphabet has size one, was used earlier without formal proof of a reduction result
in [12].

The proof takes the following form: we assume that A is a weakly ccrect data link protocol
in which, in each direction, all packets are identical. Then Corollary 5.4 implies that, in every
fair behavior of D'(A), the number of send-msgt,r events is equal to the number of receivemsgt,r

events. We deduce a series of facts about the states of the end stations during executions of &'(A),
by showing that the failure of one of these facts, coupled with the previously derived facts, would
enable us to construct a fair behavior in which the number of sendmsclt, r events is unequal to the
number of receivemsgt, events. Finally, we use these facts to construct two fair executions of
b'(A) with identical projections at the receiving automaton, but in one of which two messages are
sent while in the other only one message is sent.2 Since the projections at the receiver are equal,
the two executions contain the same number of receive.msgtr events. Thus one of them will have
the number of send-msgt ,r events unequal to the number of receivemsgt ,r events. This yields a
contradiction to the original assumption that the protocol was weakly correct.

Now, we will restrict our attention to the situation where each of At and A is deterministic,
that is, at most one locally controlled action is enabled in each state, and at most one new state
can be reached by applying an action in a state. As we will see later, this involves no lobs of
generality. Given a state of an end station (i.e., At or Ar) in such a protocol, there is a unique
maximal execution fragment of that automaton that commences with the given state and includes
no input actions. (This execution corresponds to running the automaton from the given state in
such a way that it receives no inputs, for as long as :t can keep taking steps.) We will say that the
given state is quiescing if this fragment contains only finitely many send-pktt ,r (or sendpktr ,'t , as
appropriate) events.

2That is, in these situations the receiver does not know how many messages were sent.
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Our first lemma says that from any state in any execution, if the transmitting automaton is run
without receiving any inputs (that is, with no send.rnsgtr or receiveopkt t 'r events) then it must
send only finitely many packets to the receiver.

Lemma 6.1 If A is a weakly correct data link protocol for (t,r) and (M, P1,P 2) with IPII = IP21
1, At and Ar are deterministic, and a is a finite execution of P'(A), then At is quiescing in the
final state of a.

Proof: The idea of the proof is as follows. If At sends infinitely many packets with no response
then A r has no hope of determining how many send.msgt,r events have happened. In particular, we
show that A' cannot tell the difference between the situation in which one additional send.mnsg t r

event occurs after the given finite execution and the situation in which no such events occur.
More precisely, suppose that At is not quiescing in the final state of a. Let # = sched(a).

Then consider the schedule #send.msgtr(m) where m' is some arbitrary message in the message
alphabet of A. This schedule has an extension that is fair and contains no extra sendmsgtIr events
(by Lemma A.1). By Corollary 5.4, there is a finite prefix of this extension, say /3sendmsgt 'r(m')/
which contains as many receive.msgt ,r events as there are sendmsgt,r events in Psendmsgt'r(m),
namely, one more than the number of sendmsgt 'r events in a.

Let k be the number of receive.pkttr events in /0. Since we assumed that a ended with At not
quiescing, we can find a schedule of At that is an extension of OJAt, say (/PlA t )7, with 7 containing
only output actions of At, including k sendpktt'r events (but no send-rsgt,r or receivepktr't

events).
Now we consider the sequence /y(OlA 1 ) of actions of r(A). We show that this sequence

is a (not necessarily fair) schedule of P'(A), by showing that its projection on each of the four
components of the system is a schedule of that component.

1. This sequence has projection on At equal to (O3IAt)-v, which is a schedule of At by construction.

2. It has projection on Ar equal to (/P')JAr (since 7 involves only actions of At), and this is a

schedule of Ar since it is equal to (Psendmsgt ,(m)#/)IAr.

3. It has projection on 6t,r,P equal to (f3ItT,P1)(7 I t,r,P1)((f3IAr)I~t,rP1), which is a schedule
of Ot,r,P since 7 1 t,r,Pl is a sequence of k sendpktt,r(p) events, and (/3IAr)Jft'rP 1 is a
sequence of k receive.pkttr(p) events, where p is the unique element of the packet alphabet

A .

4. It has projection on or,t,P2 equal to (3ICrtP2)((PIAr)1CrtP2) (since 7 involves only output
actions of At, and thus no actions of or,t^P2) and this is a schedule of Or,tI^ since (#'I Ar)I 0 'tJ

consists only of send.pktr t events, which are inputs to or,t,P (and 1/0 automata must be
input-enabled).

Since its projection on each component is a schedule of that component, the sequence /37(#'tAr) is
a schedule of b(A), by Lemma A.4.

Now consider the two schedules 37(fOIAr) and (f3)sendmsg0r(m')O' . They both have the same
projection on Ar and hence contain the same number of receivemsgtr events. By the argument

at the beginning of this proof, this number is exactly one more than the number of send-msgtr
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events in 3. On the other hand, the number of stnd-msgt,r events in /0-(/0[AT) is the same as the
number of sendomsgt ,r events in /0- (the two schedules having the same projection on At), and this
is the same as the number of sendmsgt r events in /f, which we just showed is one fewer than the
number of receivemsgt,r events in same schedule 7-/(0VIAr).

Now when we consider a fair extension of I37(#3JAT) that contains no further sendmsgt,r events,
we find that it contains more receive.msgt r events than send-msgt t events. This contradicts
Corollary 5.4. Thus our assumption (that the lemma was false) must be invalid. 01

Our second lemma says that from any state in any execution, if the receiving automaton is run
without receiving any inputs, then it must send infinitely many packets to the transmitter.

Lemma 6.2 If A is a weakly correct data link protocol for (t, r) and (M, P1, P2) with IP1 = I P21 =
1, At and Ar are deterministic, and a is a finite execution of D(A), then Ar is not quiescing in
the final state of a.

Proof: Suppose the contrary: that A' is quiescing in the final state. Once again, we reach a
contradiction by constructing two fair schedules of bf(A) with the same number of receiveomsgt,r

events, but different numbers of send-msgt,r events. Let a, be the maximal execution fragment
of At containing no inputs and starting from the state of At at the end of a. Similarly let a 2 be
the maximal execution fragment of Ar containing no inputs and starting from the state of AT at
the end of a. By definition, the projection of a 1 on At is a fair execution of At, and likewise the
projection of aa 2 on AT is a fair execution of Ar. By Lemma 6.1 a, contains only finitely many
sendpktt r events, and by assumption a2 contains only finitely many send.pktr,t events. Now we
consider any sequence of actions 7 formed by interleaving the sequences sched(al) and sched(a 2).

We claim that sched(a)7 is a fair schedule of Pr(A). We show this by showing that its projection
on each of the four components of the system is a fair schedule of that component.

1. Its projection on At is just (sched(alAt ))sched(al), which is a fair schedule of At by the
definition of al.

2. Its projection on AT is (sched(alAr))sched(a2) which is a fair schedule of Ar.

3. Its projection on ,t,rP^ is just the projection of sched(a) on that channel followed by a finite
number of sendpkttr events. This is of course a schedule of 'tr,P, and is fair because the
delivery set could specify the loss of all of the finite number of packets sent but not delivered.

4. Similarly the projection on Or,t, is a fair schedule of Cr,t,^2.

Since its projection on each component is a fair schedule of that component, Lemma A.4 implies
that sched(a)-y is a fair schedule of P(A). By Corollary 5.4 the number of receive.msgt ,r events
in sched(a)-y equals the number of sendmsgt,r events.

Now we construct another fair schedule, sched(a)sendmsgt r(m)y' , which contains the same
number of receive-msgt r events in sched(a)7 but one fewer send-msg t ,r event, which yields a
contradiction. More specifically, consider asendmsgt r(m), where m is an arbitrary element of the
message alphabet.

Let a 3 be the maximal execution fragment of At containing no inputs and starting from the state
of At at the end of asendmsgtr(m). By Lemma 6.1, a3 contains only finitely many send-pkt t,r
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events. Now we consider the sequence of actions -' formed by interleaving (in any fashion) the
sequences sched(a3) and sched(a2 ). Just as above, sched(a)sendmsg t,r(m)7' is a fair schedule of
b'(A), and so by Corollary 5.4, the number of receive.msgt ,r events in sched(c)send.msgt,(m)7'
is equal to the number of sendmsgt ," events. However, since sched(a)sendmsgt'r(m)7[Ar and
sched(a)7jA r are both equal to sched(caIAr)sched(a2 ), we see that the number of receivemsgt r

events in sched(a)sendmsgt,(m)7' is the same as the number of receive.msgt,r events in sched(a)7.
By the equalities proved above, this implies that sched(a)7 and sched(a)sendmsgt r(m)7' contain
the same number of sendmsgt ,r events, which is false. Thus our assumption (that the lemma was
false) is invalid. 10

The next lemma further characterizes the behavior of a weakly correct data link protocol by
showing that the transmitter must both send and receive infinitely many packets.

Lemma 6.3 If A is a weakly correct data link protocol for (t, r) and (M, P1 , P2) with IP11 = IP21 =
1, At and A' are deterministic, and a is a fair execution of fY(A) that contains a finite non-zero
number of sendmsgt r actions, then alAt contains infinitely many send-pktt r actions and infinitely
many receivepktrt actions.

Proof: We show that every other possibility leads to a contradiction.

1. Suppose atAt contains infinitely many sendpktir actions and finitely many receive-pkt' ,t

actions. Then there is a suffix of alAt that contains no input actions (neither send msgt,r

nor receivepktr ,t actions) but contains infinitely many sendpktt,r actions. The state of At
at the start of this suffix must be not quiescing, which contradicts Lemma 6.1.

2. Suppose alAt contains finitely many sendpktt, actions and finitely many receivepktr t ac-
tions. Then aAl contains finitely many receive..pktt , actions (since the channel Ct,rP1

delivers at most as many packets as were sent) and contains finitely many sendpktrt actions
(since a fair execution of er,t,^ would contain an infinite number of receive.pktr't events if
it contained an infinite number of sendpktr t events). Thus there is a suffix of alAr that
contains no input events and only a finite number of send-pkt*,t events. The state of A7 at
the start of this suffix is quiescing, which contradicts Lemma 6.2.

3. Suppose alAt contains finitely many sendpkttr actions and infinitely many receive.pkt ,t

actions. First consider the maximal execution of Ar starting from the initial state of A7 and
containing no input actions. This execution is a fair execution of Ar. Let 0 be the schedule of
this execution. By Lemma 6.2, /3 contains infinitely many sendpktr t actions. Let 7 be the se-
quence of actions obtained by interleaving # and sched(a lAt) in such a way that for each i the
i-th receive.pktr t action is immediately preceded by the i-th send-pktrt action. We claim that
7 is a fair schedule of D'(A). Its projections on At and Ar are fair schedules by construction.
Its projection on or,t,P is just sendpktrt(p)receivepktrt(p)send-pktr't(p)receive-pktr't(p)...
(where P2 = {p}) which is a fair schedule, and its projection on Ot,r^,P is a fair schedule since
it consists of the sending of a finite number of packets and the delivery of none (as 6 contains
no inputs to A", in particular no receivepktt, actions) and this can be achieved by a suitable
delivery set.
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We observe that P (and hence -y) cannot contain any receivemsgtl, action. (Otherwise, take
the prefix of P3 up to and including the first receivemsgtr event, regard it as a schedule of
b'(A) where all the actions take place at Ar, and extend it to a fair schedule of P'(A) which
contains no inputs to bf(A), that is, no sendmsgt, actions. This contradicts Corollary 5.4.)
However, y contains a non-zero number of send-msgt,r events (the same ones as in a). Thus
-y is a fair schedule of bl(A) which does not contain the same number of receivemsgt ,l events
as of sendmsgtT events, contradicting Corollary 5.4.

0
The final lemma allows us to construct two executions that look identical to the receiver, but

have different numbers of messages sent at the transmitting end.

Lemma 6.4 Let A be a weakly correct data link protocol for (t, r) and (M, P1, P2) with I1>I =
IP2 1 = 1, such that At and A are deterministic. Let a, and a2 be two fair executions of fr(A)
such that sched(al) begins with send-msgtr(m) and contains no other sendmsgt r event, and
sched(a 2) begins with send-msgtl,(m)send-msgt,r(m) and contains no other send-msgt,r event.
There exist fair executions &1 and 62 of fr(A) such that &iIAt = ailA t for i = 1, 2, and such that
&i1Ar = 621A.

Proof: Applying Lemma 6.3 to the execution a,, we see that we may express sched(allAt ) as
t,r(Mp_~2I#

send-msg 11(m) 1 1 ...

where 13 consists only of internal or sendpkttr actions, -i consists only of internal or receivepktr,t

actions, and where each Of (except possibly 1) and each yl contains a finite, non-zero number of
sendpktt ,'r or receivepktr,t events.3 Let ai denote the number of receivepktr,t events in 7i.

Similarly, we see that we may express sched(a2 [A1 ) as

sedmg,r ( m ) s e n d -m s g t'r ( m ) l -y7  2B3 ...

where Pi consists only of internal or sendpkttr actions, y consists only of internal or receivepktrt
actions, and where each /O (except possibly /31) and each -Ii contains a finite, non-zero number of
send-pktt ,r or receivepktrt events. Let aI2 denote the number of receivepktrt events in 7y.

We construct inductively finite schedules R and 62 of P'(A) such that

63lAt = send_msgt,r(m)#i31 .. ~j- j

b2IjAt = sendmsg ,1m)send-msg m 2,l

6-7 A r = 6 1 Ar, and P is an extension of 6f- 1 for i = 1,2.

The base case of the construction is straightforward, as we put 61 = send.msgtr(m)pl3 and
S= send-msgt(m)sendmsgtT(m)3. Suppose bi - ' and -1 have been constructed. By Lemma

6.2, the (uniquely defined, by determinism) state of AT at the end of 61 is not quiescing, and
therefore there is an execution fragment of Ar starting from that state containing max(a -1 , a2 - )

'The exception is due to the fact that we do not know whether the first packet sent by At precedes or follows the
first packet received by At.
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sendpktlt events and (possibly) internal events and receivemsgt ,r events, but no input events,
(i.e., no receive-pktt ,r events). Let the schedule of this execution fragment be qji. We set b, =

6 1fl 1-l-y77lf receivepktt,r(p), where P = {p}. We show that M is a schedule of b'(A) by showing
that its projection at each component is a schedule of that component:

1. The projection on At is (6 lAt)71 l, which is a prefix of sched(cei)lA t and so is a schedule
of At.

2. The projection on Ar is ( -JlAr)i)jreceivepktt,r(p), which is a schedule of A' because 71J

can occur starting from the state after b-' JAI and receivepktt r is an input action of Ar.

3. Its projection on Ct,r,P is a schedule of Ot,r,P1 because fl contains at least one sendpktt ,'(p)
event. (The rest may be "lost".)

4. Its projection on Ot,r, is a schedule of 0,,r,P2 because 73 contains at least al- sendpktr,t(p,)
actions, so that there are enough packets sent in 63 to account for those received.

We now set () = . The same argument as for 6 shows that 6b is
a schedule of fr(A). The fact that 6lJAI = 6' IAr follows easily using the inductive hypothesis that

-1 IAr = 6'-1IAr.

Thus, it is clear that R and 6 have the properties claimed for them. Now let b, denote the
limit of the successively extended schedules b3. Similarly let 62 denote the limit of bj. Thus 6i is a
schedule of b(A), for i = 1, 2. We claim that in fact 6i is a fair schedule of b'(A). To show this
we consider the projection on each component. Each of the projections bilAt and 6ilAr contains
infinitely many locally controlled events by construction, and so is fair (using determinism). Each
of the projections on a physical channel contains infinitely many packet deliveries, and so is fair by
the definition of the permissive channels. Let &i be a fair execution of '(A) with schedule 6i for
i = 1, 2. This completes the construction. 0

Proposition 6.5 There is no weakly correct data link protocol for (t, r) and (M, 1, P2) with IPiI =

IP21 = 1.

Proof: Assume that A is a weakly correct data link protocol with IP1 I = IP21 = 1.
First, we deal with the potential non-determinism of the end-stations. By a result of Goldman

and Lynch [7], there is a deterministic automaton Bt (respectively, BI) with fair behaviors that are
a subset of the fair behaviors of At (respectively, Ar). 4 Put B = (Bt, BI), which is also a data link
protocol with P1I = IP21 = 1. Now by Lemmas A.2 and A.4, fairbehs(Di(B)) g fairbehs(b'(A)),
and so B is weakly correct (using Lemma 5.3 and the fact that A is weakly correct).

Now, let m be an arbitrary element of the message alphabet. By Lemma A.1, there are fair
executions a, and a2 of fr(B) such that sched(al) begins with sendmsgt r(m) and contains no
other sendmsgt ,r event, and sched(a2) begins with send_msgt,r(m)sendmsgir(m) and contains
no other send-msgt,' event. Consider the fair executions &I and &2 whose existence is shown
in Lemma 6.4. Since the protocol B is weakly correct, each &i satisfies Corollary 5.4 (that is,

4The proof is actually left as an exercise in [7]. However, the idea is not hard: given an I/O automaton that is not
necessarily deterministic, one first removes all except one step (s, o, s) for each given s' and partition class. Then
one simulates the resulting machines with a single-class machine that gives fair turns to all the classes.
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the number of receivemsgT,r events in &i equals the number of send.msgt,r events in &i). Now
the number of send msgt ,r events in &i is just the number of send.msg'O events in CxilBf nhich
equals the number of send.msgt,r events in ailBt by the properties of &i. Since ailBt contains i
send msgt,r events, we deduce that &i contains i receivemsgtr events, contradicting the fact that
& lBr and &2JBr are equal, and so contain the same number of receivemsgt ,r events. 0

7 Defining Headers in Protocols with Infinite Packet Alphabet

Most data link protocols in the literature use a finite packet alphabet in each direction, since packets
are required to be of limited size. However, it is normally the case that the packets axe treated as
having two separate parts: a header (which determines what is to be done with the packet) and an
encapsulated message (treated as an uninterpreted bit string). Indeed, one can envisage protocols
that allow packets of unbounded size because the included messages may have unbounded size, and
yet use only a fixed size of header (and thus a finite number of headers). Here we sketch one way in
which one can model the existence of headers in a protocol, without assuming that the packets are
necessarily structured explicitly with two parts, one a control field and the other an uninterpreted
message.

We model the "headers" used by a protocol as follows. Let A = (At , Ar) be a data link protocol
for (t,r) and (M, P1, P2). Let - be an equivalence relation on the domain MUP1 UP 2 Ustates(At )U
states(Ar) U acts(At ) U acts(At). Then = is said to be a header relation for A provided that the
following conditions hold.

1. - only relates elements of the same kind, i.e., elements of M, or P1, or states(At ), etc. Also,
a start state cannot be related to a non-staxt state. Moreover, if a - a for two actions a
and a', then a and a' are identical except possibly for a difference in their message or packet
parameter. Further, every pair a and a' of locally controlled events of At (respectively, of Ar)
such that a = a', a and a' axe in the same class of part(At ) (respectively, of part(AT )).

2. For each pair m, m' of messages in M, sendmsgt r(m) = sendmsgt r(mI) if and only if
m =- m, and receivemsgt'r(m) = receive.msgt,r(mI) if and only if m '- m.

3. For each pair pp' of packets in P1, send-pkt t'r(p) =- send-pktt'r(pI) if and only if p p', and
receivepktt r(p) =- receive.pktt ,r(p') if and only if p - p.

4. For each pair pp' of packets in P2, send-pkt1' t (p) =- send-pktr' t (pI) if and only if p p', and
receive-pktr t(p) E receive.pktr t(p) if and only if p - P.

5. For every two states q and q' of At (respectively, of A T) with q = q', if action a is enabled in
q then there is an action a' with a - a', such that a' is enabled in q'.

6. For every two states q and q' of At (respectively, of AT) and every two actions a and a' of At
(respectively, of Ar) such that q = q' and a - a', if r is a state such that (q, a, r) is a step of
At (respectively, of Ar) and action a' is enabled in state q', then there exists a state r' such
that r =- r' and (q', a', r') is a step of At (respectively, of At).

For a data link protocol A for (t, r) and (M, P1, P2) with a header relation =-, we define the set
headers(A, t, r, =) to be the set of equivalence classes of packets in P1. Similarly headers(A, r, t, =)
is the set of equivalence classes of packets in P2 . We think of each equivalence class of packets as
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being those (in one direction) with the same pattern of bits in the header. Informally, the way a

packet is processed must depend only on the header - for example, if receiving a packet takes the
protocol to a state where release of a message to the higher layer is possible, then receiving any
other packet containing the same header will also take the protocol to a state where release of a

message to the higher layer is possible (however, it may be a different message that is released!)

We note that for a data link protocol A, the diagonal relation, where each message, action etc. is

equivalent only to itself, is a header relation for A. We say that A has no header under - if each
of headers(A, t, r, =) and headers(A, r, t, -) is a singleton set, that is, all packets in P are related

by =-, as axe all packets in P2. We say that A has no header if there exists a header relation = for
A such that A has no header under -.

In order to prove that headers are necessary for a data link protocol, we show how to reduce

the question of the existence of a protocol with sets of header equivalence classes of a given size,
to the question of the existence of a protocol using packet alphabets of that size. This will allow

us to show that there is no weakly correct data link protocol that has no header using our earlier
result that there is no weakly correct data link protocol with packet alphabets of size one.

Proposition 7.1 Suppose A = (At , A r) is a weakly correct data link protocolfor (t, r) and (M, P1 , P 2).

If = is a header relation for A such that Iheaders(A, t, r, -)I = hi and Iheaders(A, r, t, -)I = h2 ,

then there are alphabets M', P{ and P2 with IM'I = 1, 1PII = hi and IP2I = h2 and a weakly correct
data link protocol B = (Bt,B?) for (t,r) and (M',P ,P2).

Proof: Choose m to be an arbitrary element of M and put M' = {m}, P{ = headers(A, t, r,=-)

and P2 = headers(A, r, t, =) These alphabets clearly have the correct cardinalities. Now let Bt

be the transmitting automaton for (t, r) and (MI, P1, P1) defined as follows. The input actions of

Bt are send-msgt',(m) and receive.pktr't (p') where p' is an element of P2, the output actions are

send.pktt,r(p') where p' is an element of P1, and the internal actions are the internal actions of At.

We say that an action ir of At is represented by an action ir' of Bt exactly when one of the following

conditions holds:

" 7r' is either send.msgt r(m) or an internal action of At and 7r = 7r'

" W' is sendpktt r(p') and ir = send-pktt'r(p) for some p which is an element of p'

" 7r' is receivepktrtt(pl) and r = receive.pkt",t (p) for some p which is an element of p1 .

The states and start states of Bt axe the same as those of At. The transition relation of Bt includes

(s', ', s) exactly when there exists some ir that is represented by 7r' for which (S', r, s) E steps(At ).

The partition part(Bt ) relates locally controlled actions 7r' and ?r' exactly when pt rt(At) relates

some (and hence all) pairs 7r, and W2 such that 7r, is represented by 7r' and 7r2 is represented by '.
Similarly let B r be the receiving automaton for (t, r) and (M', P1, P2) defined as follows. The

input actions of Br are receivepktt ,(p') where p' is an element of P1, the output actions are

receive.msgt,r(m) and send-pktr't(pl) where p' is an element of P2, and the internal actions are the

internal actions of Ar . We say that an action 7r of A" is represented by an action 7r' of BI exactly
when one of the following conditions holds:

5Thus each packet name in the alphabet P' is a set of packet names from the alphabet Pi.
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Sr' is either receivemsgt ,r(m) or an internal action of A" and r = r'

0 7r' is send-pktrt (p) and 7r = sendpktr,t (p) for some p which is an element of P'

0 r' is receivepktt r(p) and r = receivepktt r(p) for some p which is an element of P.

The states and start states of B" are the same as those of Ar. The transition relation of Br includes
(a', r', s) exactly when there exists some r that is represented by 7r' for which (s', 7r, 8) E steps(Ar).
The partition part(Br) relates locally controlled actions 7r' and ir' exactly when part(Ar) relates
some (and hence all) pairs 7r, and 1r2 such that r, is represented by r' and r2 is represented by ir'.

It is easy to check that (Bt, B r ) is a data link protocol for (t, r) and (M', P{, P2). We claim that
it is weakly correct, proving the proposition. To prove the claim we will consider an arbitrary fair
execution 1 s, 7r, s , of b(B). From this we can construct an execution 8 0 , 1r, 81, 2 , s2 ,...
of b(A) such that 7ri is represented by ;' for each i, the state of At (respectively, of A") in si is
the same as the state of Bt (respectively, of B") in s , and the state of OtrP 1 (respectively, of
er,t,^P) in s, is related tc the state of "t,rP (respectively, of Cr,tP'2 ) in si in the natural way: the
values for the variables S, counter1 and counter2 are the same in (t,r,P (respectively, in (r~tP 2 )
as in et,r,Pl (respectively, in Cr,t,Pi), and for each n the value of packet(n) in 6t,t,Pi (respectively,
in 07 ~J,2) is one element of its value in 6t,t,P, (respectively, in r tP ) except when both values
are undefined. 6 This execution is in fact a fair execution of b(A), as is seen by observing that
no action receive-magt r(m') for m' 5 m is enabled in any state si (using the weak correctness
of A and the fact that no action iri is send_msgt r(m')), and that therefore if a locally controlled
action of b(A) is enabled in si then it is represented by a locally controlled action of 19(B) that
is enabled in s. Since this execution is fair, its behavior is a schedule of WDLt,rM. However the
two executions have identical behavior (the actions differ only for send-pkt and receive.pkt events,
which are hidden). Thus there is a correspondence between sendmsgt r and receivemsgt , events
that satisfies (DL1) and (DL3). Thus D(B) satisfies WDLt,r,M', and so by Proposition 5.3, B is
weakly correct. 0

Theorem 7.2 There is no weakly correct data link protocol that has no header.

Proof: Immediate from Proposition 6.5 and Proposition 7.1. 3
Acknowledgements: We thank Yishay Mansour for his help in our initial discussions about
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presentation.
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A The I/O Automaton Model

The input/output automaton model was defined in [9] as a tool for modeling concurrent and dis-
tributed systems. We refer the reader to [9] and to the expository paper [10] for a complete
development of the model, plus motivation and examples. Here, we provide a brief summary of
those aspects of the model that are needed for our results.

A.1 Actions and Action Signatures

We assume a universal set of actions, and we refer to a particular occurrence of an action in a
sequence as an event.

An action signature S is an ordered triple consisting of three pairwise-disjoint sets of actions.
We write in(S), out(S) and int(S) for the three components of S, and refer to the actions in
the three sets as the input actions, output actions and internal actions of S, respectively. We let
ext(S) = in(S) U out(S) and refer to the actions in ext(S) as the external actions of S. Also, we
let local(S) = out(S) U int(S), and refer to the actions in local(S) as the locally-controlled actions
of S. Finally, we let acts(S) = in(S) U out(S) U int(S), and refer to the actions in acts(S) as the
actions of S. An external action signature is an action signature consisting entirely of external
actions, that is, having no internal actions.

A.2 Input/Output Automata

An input/output automaton A (also called an I/0 automaton or simply an automaton) consists of
five components:

1. an action signature sig(A),

2. a set states(A) of states,

3. a nonempty set start(A) _ states(A) of start states,

4. a transition relation steps(A) _ (states(A) x acts(sig(A)) x states(A)), with the property
that for every state s' and input action 7r there is a transition (s', 7r, s) in steps(A), and

5. an equivalence relation part(A) on local(sig(A)), having at most countably many equivalence
classes.

We refer to an element (' Or, s) of steps(A) as a step of A. The step (s', 7r, s) is called an input
step of A if 7r is an input action. Output steps, internal steps, external steps and locally-controlled
steps are defined analogously. If (s', 7r, s) is a step of A, then 7r is said to be enabled in s'. Since
every input action is enabled in every state, automata are said to be input-enabled. The partition
part(A) is an abstract description of the underlying components of the automaton, and is used to
define fairness.
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An execution fragment of A is a finite sequence SOl812 ... •7rnn or an infinite sequence
s0Irl 1 7r2 ... rns,... of alternating states and actions of A such that (si, 7ri+lsi+) is a step of A
for every i. An execution fragment beginning with a start state is called an execution. We denote
the set of executions of A by execs(A). A state is said to be reachable in A if it is the final state
of a finite execution of A.

A fair execution of an automaton A is defined to be an execution a of A such that the following
condition holds for each class C of part(A): if a is finite, then no action of C is enabled in the
final state of a, while if a is infinite, then either a contains infinitely many events from C, or else
a contains infinitely many occurrences of states in which no action of C is enabled. Thus, a fair
execution gives "fair turns" to each class of part(A). Informally, one class of part(A) typically
consists of all the actions that are controlled by a single subsystem within the system modeled by
the automaton A, and so fairness means giving each such subsystem regular opportunities to take a
step under its control, if any is enabled. In the common case that there is no lower level of structure
to the system modeled by A (when all locally-controlled actions are in a single class of part(A)),
a fair execution is an execution in which infinitely often the automaton is given an opportunity
to take a locally controlled action if any is enabled. We denote the set of fair executions of A by
fairexecs(A).

The schedule of an execution fragment a of A is the subsequence of a consisting of actions, and
is denoted by sched(a). We say that /3 is a schedule of A if / is the schedule of an execution of A.
We denote the set of schedules of A by scheds(A). We say that /3 is a fair schedule of A if / is the
schedule of a fair execution of A and we denote the set of fair schedules of A by fairscheds(A).

The behavior of an execution or schedule a of A is the subsequence of a consisting of external
actions, and is denoted by beh(a). We say that / is a behavior of A if / is the behavior of an
execution of A. We denote the set of behaviors of A by behs(A). We say that /3 is a fair behavior
of A if P is the behavior of a fair execution of A and we denote the set of fair behaviors of A by
fairbehs(A). When an algorithm is modeled as an I/O automaton, it is the set of fair behaviors of
the automaton that reflect the activity of the algorithm that is important to users. An important
operation on schedules or other sequences is projection. If a is a sequence (of elements of any
alphabet) and t is a set of elements, we write a[i for the subsequence of a consisting of the
occurrences of those elements in the set . Thus if a is an execution or schedule of A, then
beh(a) = alext(A).

We say that a finite behavior or schedule P3 of A can leave A in state s if there is a finitL
execution a with P as its behavior or schedule, such that the final state in a is s.

The following lemma says that no matter what has happened in any finite execution, and no
matter what inputs continue to arrive from the environment, an automaton can continue to take
steps to give a fair execution.

Lemma A.1 Let A be an I/0 automaton and let -y be a sequence of input actions of A.

1. Suppose that a is a finite execution of A. Then there exists a fair execution a' of A such that
a' is an extension of a and beh(a')lin(A) = (beh(ct)Iin(A))-y.

2. Suppose that # is a finite schedule of A. Then there exists a fair schedule 0' of A such that
/3 is an extension of P and P'in(A) = (/31in(A))y.
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A.3 Schedule Modules

In line with our approach, where the facts about an algorithm that are important to its users are
modeled by the set of fair behaviors of an automaton, we also give a formal model for a problem
specification by a set of sequences of actions. More precisely, a problem will be specified by a pair
consisting of an action signature and a set of sequences over the actions in that signature. (In most
interesting cases, the action signature will be an external action signature.) The mathematical
object used to describe a problem is called a "schedule module".

A schedule module H consists of two components:

1. an action signature sig(H), and

2. a set scheds(H) of schedules.

Each schedule in scheds(H) is a finite or infinite sequence of actions of H.
The behavior of a schedule P3 of H is the subsequence of #3 consisting of external actioms, and

is denoted by beh(/3). We say that / is a behavior of H if fl is the behavior of an execution of
H. We denote the set of behaviors of H by behs(H). We extend the definitions of fair schedules
and fair behaviors to schedule modules in a trivial way, letting fairscheds(H) = scheds(H) and
fairbehs(H) = behs(H).

We use the term module to designate either an automaton or schedule module. If M is a module,
we sometimes write acts(M) as shorthand for acts(sig(M)), and likewise for in(M), out(M), etc.
If /3 is any sequence of actions and M is a module, we write PIM for /3acts(M).

A.4 Solving Problems

Now we are ready to define our notion of "solving". This notion is intended for describing the
way in which particular algorithms (formalized as automata) solve particular problems (formalized
as schedule modules). Let A be an automaton and H a schedule module with the same external
action signature as A. Then we say that A solves H if fairbehs(A) : behs(H).

A.5 Composition

The most useful way of combining I/O automata is by means of a composition operator, as defined
in this subsection. This models the way algorithms interact, as for example when the pieces of a
communication protocol at different nodes and a lower-level protocol all work together to provide
a higher-level service.

A.5.1 Composition of Action Signatures

Let I be an index set that is at most countable. A collection {S}iEI of action signatures is said to
be strongly compatible if for all i,j E I, we have

1. out(S,) n out(Sj) = 0,

2. int(Si) n acts(Si) = 0, and

3. no action is in acts(Si) for infinitely many i.
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Thus, no action is an output of more than one signature in the collection, and internal actions
of any signature do not appear in any other signature in the collection.

The composition S = HiEiSi of a collection of strongly compatible action signatures {Si}ilEI is
defined to be the action signature with in(S) = Ui~iin(Si) \ UiElout(Si), out(S) = UiEout(Si),
and int(S) = Ui~uint(Si). Thus, output actions are those that are outputs of any of the component
signatures, and similarly for internal actions. Input actions are any actions that are inputs to any
of the component signatures, but outputs of no component signature.

A.5.2 Composition of Automata

A collection {Ai},EI of automata is said to be strongly compatible if their action signatures are
strongly compatible. The composition A = IliEIAi of a strongly compatible collection of automata
AiiEl has the following components:

1. sig(A) = Iitsig(Ai),

2. states(A) = IEistates(Ai)7

3. start(A) = Ilitstart(Ai)

4. steps(A) is the set of triples (s1, r, S2) such that for all i E I, if r E acts(Ai) then (si[i], r, s 2[i]) _
steps(A,), and if r € acts(Ai) then sj[i] = s2[i]8, and

5. part(A) = Ui~tpart(Ai).

Since the automata Ai are input-enabled, so is their composition, and hence their composition is
an automaton. Each step of the composition automaton consists of all the automata that have
a particular action in their signatures performing that action concurrently, while the automata
that do not have that action in their signatures do nothing. TER partition for the composition is
formed by taking the union of the partitions for the components. Thus, a fair execution of the
composition gives fair turns to all of the classes within all of the component automata. In other
words, all component automata in a composition continue to act autonomously. If a = soirisl... is
an execution of A, let alAi be the sequence obtained by deleting irjsj when iri is not an action of
Ai, and replacing the remaining s3 by sj[i].

The following basic results relate executions, schedules and behaviors of a composition to those
of the automata being composed. The first result says that the projections of executions of a
composition onto the components are executions of the components, and similarly for schedules,
etc. The parts of this result dealing with fairness depend on the fact that at most one component
automaton can impose preconditions on each action.

Lemma A.2 Let {Ai},i6  be a strongly compatible collection of automata, and let A = IIi6 1 Ai. If
a E ezeci(A) then clAi E ezecs(Ai) for all i E I. Moreover, the same result holds for fairexecs,
scheds, fairscheds, behs and fairbehs in place of execs.

7Note that the second and third components listed are just ordinary Cartesian products, while the first component
uses a previous definition.

"We use the notation s] to denote the i-th component of the state vector s
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Certain converses ,f the preceding lemma are also true. The following lemma says that execu-
tions of component automata can be patched together to form an execution of the composition

Lemma A.3 Let {A}iEI be a strongly compatible collection of automata, and let A = ILEIAj.
For all i E I, let ai be an execution of Ai. Suppose 3 is a sequence of actions in ext(A) such
that P3IA, = beh(ai) for every i. Then there is an execution a of A such that 3 = beh(a) and
ai = aIAi for all i. Moreover, if ai is a fair execution of Ai for all i, then a may be taken to be a
fair execution of A.

Similarly, schedules or behaviors of component automata can be patched together to form
schedules or behaviors of the composition.

Lemma A.4 Let {Ai}iEI be a strongly compatible collection of automata, and let A = RiEjAi. Let
3 be a sequence of actions in acts(A). If P3jAi E scheds(Ai) for all i E I, then '3 E scheds(A).
Moreover, the same result holds for fairscheds, behs and fairbehs in place of scheds.

A.6 Hiding Output Actions

We now define an operator that hides a designated set of output actions in a given automaton to
produce a new automaton in which the given actions are internal. Namely, suppose A is an I/0 au-
tomaton and 0 C out(A) is any subset of the output actions of A. Then we define a new automaton,
hideo(A) to be exactly the same as A except for its signature component. For the signature compo-
nent, we have in(hideo(A)) = in(A), out(hidet(A)) = out(A) \ 4, and int(hideo(A)) = int(A)U,1.
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