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CHAPTER I

INTRODUCTION

The Need for Apolications in a Linear Algebra
Service Course

Linear algebra is an area of mathematics which can be applied to a

wide variety of other disciplines with both scientific and non-scientific

orientations. Each year new applications are being discovered for this very

versatile subject. Because linear algebra and its applications are used in

many disciplines other than mathematics, it has, in many instances, become a

requirement for non-mathematics majors to take a course in linear algebra.

Theory developed in other fields of study may require the use of only a very

limited selection of concepts from linear algebra, and the faculty in these

fields usually prefer to teach the theory involving the concepts from linear

algebra as an integrated part of one of their own courses. However, it is

important that students understand the basics of linear algebra before

applying the specialized concepts in linear algebra to their particular field of

study. A strong background can be obtained by taking a service course in

linear algebra which will provide students with the concepts necessary to

understand the specific applications found in their chosen fields and

subsequently apply this knowledge to real world situations. This conclusion

is supported by the PRIME-80 Conference (1978) which strongly

recommended that an appropriate balance between applications and

1
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fundamental principles be maintained in any course in mathematics. Also,

the conference concluded that the structure provided by the fundamental

principles will endure beyond any changes that a particular application may

undergo (p. 12).

The purpose of this study is to develop those applications which can

be used to supplement an undergraduate course in linear algebra for non-

mathematics majors. One of the serious difficufties in teaching this

particular type of undergraduate course is the students' lack of ability to see

the "big picture." They simply have not had enough experience in their

major course of study to see how and where linear algebra can be applied.

They also lack an appreciation of the value, in their discipline, of having a

solid background in linear algebra.

A linear algebra service course provides the necessary mathematical

skills to understand an application involving linear algebra. In addition, Bell

(1980) claims that a course with greater emphasis on applications would

give the students a better appreciation for the role of mathematics in our

civilization as a whole. He maintains that

... without this emphasis, it is as if we were spending long
years explaining the inner workings of an intricate and
powerful machine without ever showing how to use it. (p. vi)

It has been recommended (CUPM, 1983, p. 5) that mathematics courses be

taught in a manner so as to create interest and enthusiasm for mathematics

by students who are not mathematics majors. This is a tall order, because

maijy times students view the required linear algebra course as "just another

math course that has to be taken." In an earlier work, the CUPM (1972)



3
panel on applied mathematics stated that

... many students lose their enthusiasm for mathematics even
as a tool because their mathematics courses seem unrelated to
their own discipline .... the best way to demonstrate the
power and utility of mathematical ideas to these students and
thereby to sustain their interest is to introduce applications to
other fields. (p. 11)

It is, indeed, the rare student who can be told that linear algebra will be

valuable in future course work, and then works hard to understand the

concepts without being given examples of how and where it will be used.

On the other hand, because of difficulties in scheduling classes, many

students take the linear algebra service course out of sequence and

subsequently realize how valuable it would have been to have mastered the

skills from linear algebra before the applications were discussed in their

major courses. Thus, the students taking a linear algebra service course

come from many diverse fields of study, and their motivations toward linear

algebra are just as varied. Most students find it is easier to understand

algebraic concepts when concrete applications are used to illustrate and

motivate these concepts (Dornhoff & Hohn, 1978, p. v). Keeping this in

mind, it is imperative to assemble as many applied problems as possible,

from different fields of study which can be solved using linear algebra.

These applications could then be introduced throughout the course to

motivate students and to give them a taste of where they will find uses for

linear algebra in their fields of study as well as subsequent employment.

The abundance of applications will also make students aware that seemingly

unusable theoretical ideas from the classroom can readily be applied to a



4

broad spectrum of real world situations.

Ames (1980) describes the changes which take place when

applications are introduced into the classroom situation:

Bringing the real world into my mathematics classes has been
at times dangerous or troublesome. Dangerous because it
raises the expectations of the students (and myself), creates
emotional as well as intellectual involvement, demands
conceptual understanding while also demanding computational
skill .... draws on mathematical skills not "in this unit,' puts us
on unsure ground, leads to murky waters, creates tangential
interests, and devours time. Troublesome because it makes us
ask for more, desire deeper understandings, see the world
differently, ask increasingly more difficult questions about the
world, and realize what a long way we've got to go to "get
educated." So why try to deal with applications of
mathematics within my classroom? Because it's exciting and
invigorating; it develops mathematical power ... ; it seems to
create real intellectual growth; it has a high immediate impact
on students and a long term residual effect; it makes one want
to understand and look for "whys" as well as "hows." (p. 10)

Thus Ames feels that it is possible to create excitement and interest towards

mathematics through the use of applications. This is the goal which this

study endeavors to accomplish.

Use of Applications in the Classroom

Applications of topics in the form of modules are very flexible in that

they can be used to enhance the students' understanding and enrich their

appreciation of the subject. They provide a means by which the student can

see the steps that are necessary to transform a real-life situation into a

mathematical problem which can be solved by using techniques from linear

algebra. This is especially important for students who do not view
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mathematics as being a subject which can be directly applied to problems in

everyday lire. The following paragraphs describe ways in which these

applications might be effectively used by an instructor.

The first rew days of a course are critical. This is the time to initiate

the students' interest in linear algebra. Once the instructor has been able to

establish in the students' minds that linear algebra is an important subject

which can be applied to many other fields in addition to mathematics, the

students won't be so inclined to dismiss the theory as having no practical

value. One way to reinforce the theory is to have a large selection of

applications so that it is possible to present those which best match the

interests of the students in the course. Even though it is essential for

students to see a variety of applications, it is also important that some

applications be selected for in-depth study (CUPM, 1983, p. 49). In any

basic linear algebra course, the first topic which is usually discussed is

systems of linear equations. Thus, any set of applications should include

ones which are basic enough to be presented during the first few days of

class. The general ideas found in the student's first application would show

how a real-life situation is interpreted, and then transformed into a linear

algebra problem which is easily solvable using a linear system of equations.

Subsequent applications should be developed to integrate skills and topics

that the students learn as they progress through a course in linear algebra.

These applications need to cover a wide variety or topics and incorporate

various levels of skills as they are learned.

Applications can be incorporated into the course by having students

work individually or in small groups on a particular application. After the

individual or group has finished studying the application, it could be
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presented to the class for discussion. This would help build student

involvement, a basic goal of presenting applications in the classroom (Ames,

1980, p. 12). An advantage of group and individual presentations of

problems is that more intricate applications could be used. Since each

application is presented to the class, students will be exposed to a more

diverse variety of applications. Also, an instructor may present an

application as part or class and assign homework from the lecture material.

Alternatively, an instructor may present the first part of the application and

allow the students to complete the remainder of the presentation as

homework. In addition, applications may also be assigned as enrichment-

type homework, allowing students to work through the application at their

own pace. No matter how applications are introduced to students, it is

important to have an extensive collection available to allow students to

choose ones which will both interest and challenge them.

Design of the A1olications

This study encompasses the development and field testing of three

applications designed for implementation in a variety of ways by an

instructor of a linear algebra course for non-mathematics majors. Each

application module was developed to be completed as an independent

project by the student. Each application contains a list of required

prerequisite knowledge in linear algebra which should be covered in class

prior to beginning the application, as well as any background information

needed from the particular field of study. The three applications in this

study are from the fields of biology, graph theory, and physics. The biology

application examines how a system of linear equations is used to determine
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the concentration of substances dissolved in a colored liquid. In the graph

theory application, linear algebra is used to analyze properties of spanning

trees and illustrate how they are employed to solve transportation problems.

The third application shows how linear algebra is used to solve systems of

second order linear differential equations which can be used to model small

vibrations in molecules.

Chapter I provides information about the field testing of the three

applications. The applications were field tested using students who

voluntarily elected to take an independent study course during the spring

semester of 1990 at Illinois State University. Chapter 11 also includes

academic background information on the participating students, their

comments on each application and the resulting revisions. Chapter III

summarizes the approach used to create these applications and the

subsequent field testing, as well as the process used to revise them. The

three applications are found in the appendices.



CHAPTER II

ANALYSIS OF DATA FROM THE
USE OF THE APPLICATIONS

Background of Particioating Students

Following their development, three linear algebra applications were

field tested to insure both student comprehension and educational value.

Before field testing began, volunteers were sought in the fall semester of

1990 to participate in an independent study course. These volunteers were

solicited from courses with students who had already completed

Mathematics 175 (Linear Algebra), a sophomore level course offered by the

Mathematics Department at Illinois State University. By drawing from a

wide range of courses, it was hoped to obtain a broad cross section of

students, especially those who were not majoring in mathematics. Although

Illinois State University does not offer a linear algebra service course

specifically designed for non-mathematics majors, Mathematics 175 is the

course which is most similar to a linear algebra service course. Since these

applications were designed to supplement a linear algebra service course, it

was desired that Mathematics 175 be completed by some students during

the previous semester while the remainder of the students had completed it

at an earlier time.

The eight students in the course consisted of three graduate students

and five undergraduates. Of the three graduate students, two were in

8
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mathematics and the third in chemistry. The undergraduate group consisted

of two students in mathematics, one student with a double major in

mathematics and finance, one in mathematics education, and one in

chemistry. One of the mathematics graduate student had already completed

Mathematics 337 (Linear Algebra), an upper level course. Mathematics 175

had just been completed by rour of the students. The remaining three

students, two graduate and one undergraduate, had completed Mathematics

175 more than a year earlier. Table 2 summarizes the pertinent information

obtained from the Student Background Survey (Table 1) which the students

completed on the first day or class.
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TABLE I

STUDENT BACKGROUND SURVEY

Name

Year in college (circle one)

Freshman Sophomore Junior Senior Graduate Student

What is your major field of study?

What mathematics courses have you taken at Illinois State University?

What semester and year did you take Math 175 (Linear Algebra)?

Semester Year _

Did you see any applications in your linear algebra course?

In other mathematics courses?

If so, do you remember what they were?

Have you ever taken an Independent Study course before?
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TABLE 2

SUMMARY OF THE STUDENT BACKGROUND SURVEY INFORMATION

Year in College/ Semester Year Previous Mathematics Courses taken
Field of Study of Math 175 at Illinois State University (ISU)
Graduate/ Spring 1987 BS from ISU

Mathematics Math 363 (Graph Theory)
Math 368 (Numerical Matrix Methods)

Graduate/ Fall 1987 BS from ISU
Mathematics Math 368 (Numerical Matrix Methods)

Math 337 (Linear Algebra)

Graduate/ Fall 1987 Math 350 (Mathematical Statistics I)
Chemistry Math 340 (Differential Equations I)

Math 260 (Introduction to Discrete
Mathematics)

Math 390 (Independent Study in
Graph Theory)

Senior/ Fall 1988 Math 120-121 (Finite Mathematics for
Mathematics Business and Social
and Finance Sciences)

Math 145-147 (Calculus I. II and III)
Math 340 (Differential Equations I)
Math 350 (Mathematical Statistics I)

Senior/ Fall 1989 Math 210 (Symbolic Logic I)
Mathematics Math 236 (Introduction to Abstract

Algebra I)

Senior/ Fall 1989 Math 147 (Calculus III)
Chemistry

Junior/ Fall 1989 Math 146-147 (Calculus II and III)
Mathematics
Education

Junior/ Fall 1989 Math 145-147 (Calculus I. II and III)
Mathematics Math 164 (FORTRAN Programming)

Math 385.01 (Actuarial Examination
Preparation I)
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Course Description

A syllabus, describing the material to be completed by each lesson

along with homework assignments, was given to the students during the

first class period. Class participation was required for all students except the

two mathematics graduate students. These two students were directed to

attempt each application without any interaction with the instructor or other

students. This served as an independent evaluation of the application to see

if the material would be interpreted as intended. The students who attended

class either received a lecture on prerequisite material for the application or

participated in a question and answer period. These lectures did not cover

the material from the application but only reviewed linear algebra

techniques which students had seen in Mathematics 175. This was

especially helpful to those students who had completed this course more

than a semester earlier, since some of the techniques had been forgotten.

However, if a student asked a question concerning a particular concept from

an application, the concept along with related ideas and techniques were

openly discussed during class.

One of the goals of field testing is to insure that exercises are of the

right length and difficulty. Field testing should also verify that the exercises

reinforce the theory found in each application. Thus, it was important that

etch student correctly complete all exercises. To this end, the students were

allowed to resubmit their homework until each exercise was correct. In

actuality, relatively few exercises had to be resubmitted by the students.
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Student Evaluation of Apolications

A personal interview to discuss the essentials of the application was

required after each student had completed all the exercises in the

application. This interview also covered the student's feelings on the

suitability and content of the applications in applying their linear algebra

skills to the three specific situations. The form, shown in Table 3, was the

one used to collect information from each student during their personal

interviews.
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TABLE 3

STUDENT INTERVIEW FORM

Application I, II, I1. Name of Student

A. Application Content
1. Was the application readable?

2. Did you feel the material was too difficult? If so, which section?

3. Did you find the application challenging?

4. Did you enjoy this application?
What did you like about it?
What did you dislike about it?

B. Application Clarity and Comprehension

1. Were there any typographical errors?

2. What sections were unclear or difficult to understand?

3. Did the reading provide enough background information in the
biology, graph theory, and small vibration theory to properly
understand the material? If not, where does extra material need
to be added?

4. Were there technical terms which need additional explanation?

5. Did the exercises help you understand the theory?

6. Did you read the material more than once before understanding
the subject matter?

C. Exercise Content
1. Did you read the material before starting the exercises?

2. Were the exercises too easy? difficult? short? long?

D. Would you find this application beneficial as part of a linear algebra
course?



15

We begin by summarizing the comments from the students obtained

after they had completed the application of linear algebra to biology. All the

students responded that they felt the application was readable and not

difficult. The first application was designed to be presented at the

beginning of a linear algebra service course. Since the students

participating in the field testing had already completed a linear algebra

course, they felt the application was not significantly challenging. Thus, the

students found the exercises relatively easy to complete. In fact, all the

students said they enjoyed the content of this application for they could

easily see where the concepts of linear algebra were employed. The

students also felt that none of the sections were too difficult nor unclear.

They indicated that adequate background information was contained in the

application for them to comprehend the material. Everyone felt that this

application on biology would benefit students in a linear algebra course such

as Mathematics 175.

Next, we summarize the students' comments from the graph theory

application. All students indicated that the application was easily readable

and mildly challenging. The linear algebra skills required for this

application were not difficult. Since all students had mastered the use of

these skills, they enjoyed graph theory and its real world application. The

one area that students found challenging was the Improvement Method.

This was understandable since the Improvement Method was the heart of

the application and the primary technique used to solve transportation

problems. The exercises were found to be of adequate length and quantity

while being sufficient to clarify the theory. The students unanimously

concluded that this application would be beneficial for students studying
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linear algebra.

Finally, we look at the students' comments on the application

involving small vibration theory. This application was designed to be the

most challenging as well as the one that required the most skill in linear

algebra. In a course like Mathematics 175, many of the required skills are

taught at the end of the course. Thus, these skills are usually the weakest

and most easily forgotten by the student. That is why many of the students

found this application to be the most difficult. Additionally, a course in

differential equations would be helpful, but it is not required since the

application contains an appendix showing how to solve the basic differential

equations which were found in the application. Two of the students had not

taken a course in differential equations and one student was taking it

concurrently. These particular students required an extra amount of work

and guidance in order to understand and successfully complete this

application. From the Student Interview Form, all students described this

application as challenging. Each student required various degrees of

assistance in different areas due to their varied backgrounds in mathematics

and diverse exposures to physics. The students felt that the clarity of the

application and its comprehension were sufficient to provide adequate

insight into the subject matter. The students indicated that thz area in

Section 2 which described vibrational modes needed to be supplemented.

Because the material in the application was new to many of the students, the

first two sections had to be read several times to insure proper

understanding. However, because of this extra effort, it was much easier for

the students to understand the third section, which was the primary

objective of this application. A few of the students felt that some of the
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exercises were too long, but they also said that they needed to be of

sufficient length as there was no way the exercises could be made shorter

and still adequately convey the theory. The majority of the students

indicated that this application might be more applicable to students who are

taking Mathematics 337 rather than students in Mathematics 175. However,

if it were included in Mathematics 175, students suggested that the

application should be supplemented with class lectures discussing the

material.

Revisions Made to the Agolications

Following the field testing of these applications and in conjunction

with inputs from the students, typographical errors were corrected, minor

grammatical inconsistencies were remedied and some phrases were

rearranged to improve clarity. As field testing progressed, it was found that

supplemental information was needed. This information has now been

included in tne applications and is summarized below. (The revised

applications appear in the appendices.)

Application I Linear Algebra applied to Biology

No significant changes were made to this application.

Ap.plication11 Linear Algebra applied to Graph Theory

1. All diagrams which illustrate transportation problems (Figures 6.3-

6.10 and A.10-A.27) were redrawn and supplemented to more

clearly depict the information from the problem.

2. In Exercise 6.2 and 6.3 a statement was added requiring the

students to include the objective function and constraint equations

as part of their solution.
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3. More details and diagrams were added to the solution or Exercise

6.3 to assist the instructor in correcting the student's homework.

Application Ill Linear Algebra applied to Physics

1. Figure 2.3 in Section 2 illustrates a spring-weight system with two

blocks. This spring-weight system is modeled by the system of

differential equations =-E A X. The theory that describes how

to solve this system of differential equations was originally written

using the system X = A X, and then the constant m was

reintroduced just before the final solution was found. Initially, an

exercise was provided to have students verify the reintroduction of
k
m . This method was very confusing to the students and as a

consequence this section was rewritten showing how the theory

could just have easily been done with the coefficient k
m

remaining. As a result, the exercise was deleted.

2. As indicated earlier in the Student Evaluation of the Applications

section, the description of the modes of vibration with two blocks

was difficult for students to understand. As a result, this section

was rewritten to improve the conceptualization and to clarify the

technique used to determine the vibrational modes.



CHAPTER III

SUMMARY

Summary of Findings

The purpose of this study was to develop several applications which

could be used to supplement an undergraduate course in linear algebra for

non-mathematics majors. These applications were drawn from the fields of

biology, graph theory, and physics. The biology application examined how a

system of linear equations could be used to determine the concentration of

substances dissolved in a colored liquid. In the graph theory application,

linear algebra was applied to analyze properties of spanning trees and to

illustrate how they would be employed to solve transportation problems.

The third application showed how linear algebra is used to solve systems of

second order linear differential equations, which could be used to model

small vibrations in molecules.

Each application was designed so that and instructor of linear algebra

could use it either as an independent study project or as an integrated part

of the course. These three applications are arranged by degree of difficulty

and sequenced as they would be introduced in a linear algebra course.

As a result of field testing these applications, it was found that

students gained a better appreciation for the fact that linear algebra could be

used to model wreal world" problems outside the field of mathematics. Of

particular note, the chemistry graduate student who participated in the field

19
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testing indicated that the applications provided a better appreciation or

linear algebra. The student also indicated that these applications provided a

better insight into areas they had previously studied.

On the whole, the students participating in the testing or these

applications felt that exposure to examples such as these during their

Mathematics 175 course would have increased their understanding and

enjoyment or linear algebra. This rinding supports the overall goal or this

study.
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Application I

Linear Algebra Applied to Biology

The Use of the Spectrophotometer to Determine the

Concentration of a Colored Liquid

Linear Algebra Prerequisites: Being able to solve systems of linear

equations using matrices.

Prerequisite Knowledge in Biology: None.
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Section I Concentration of a Colored Liquid

The color of an object in white light is determined by the amount of

light or visible electromagnetic radiation that it absorbs. White light is

used, because it contains wavelengths from the entire spectrum. The

visible range of the electromagnetic spectrum lies between 400 and 750

nanometers (nm). Thus, to see a color with the naked eye, the object must

absorb light within this range. Many liquids are naturally colored and some

clear liquids can be colored by adding certain reagents which do not change

the concentration of the substance. The intensity of color depends on the

amount of the substance present in the liquid which absorbs light. The

more light at a particular wavelength which is absorbed by the liquid, the

more intense the color becomes. To understand how the intensity of color

can be measured, let us consider the following example. Suppose we have a

vial of colored liquid illuminated by a beam of light. At a given wavelength

some of the light that enters the vial will be absorbed and some will leave

the vial. The component that leaves the vial is what we are considering to

be "reflectedo. The spectra of the liquid is a graph of either the reflection or

the absorption by the liquid compared to the wavelengths of white light.

The spectra of the liquid describing the amount of radiation reflected is a

graph with wavelength along the x-axis and a scale to show the reflection

on the y-axis. Figure 1.1 shows an example of this type of spectra.
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Figure 1.1

The graph of the spectra of the liquid describing the amount of radiation

absorbed is very similar except the y-axis contains a scale to show the

absorption or the amount of light that does not get through the liquid.

Figure 1.2 shows an example of this type of spectra.
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Figure 1.2

If the graphs in Figures 1. 1 and 1.2 are spectra of the same liquid, they

would be compliments of each other. For the remainder of this study, we

will use the absorption type of spectra.

Colorimetry is an optical method used to determine the

concentration of a colored liquid by comparing the intensity of its color with

the intensity of a sample of the same liquid whose concentration is known.

We call the sample of known concentration a standard. Thus, we will limit

our investigation to liquids which are colored or can be colored by adding a

reagent which reacts with the substance dissolved in the liquid, but does

not affect the concentration and which forms a colored compound whose

concentration can be determined colorimetrically. Additionally, we will

only be interested in liquids whose intensity of color is linearly proportional
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to the concentration of the liquid. This means there is a constant of

proportionality k, such that

(1.1) k * concentration - intensity.

The constant of proportionality depends on the substance in the liquid.

The most simplistic colorimetric method uses the naked eye to

compare the intensity of color of a sample to the intensity of color of a

standard while both are sitting side-by-side. This method is accurate only

if both the sample and the standard are identical substances except for

concentrations. That is, there are the same impurities in one solution as in

the other. Also, the human eye interprets light which does not contain all of

the wavelengths of the spectrum as white light. This causes distortions in

color, because the eye can not compare two spectra which have gaps of

missing wavelengths in the region where absorption occurs. We need to be

very careful to avoid these situations so errors are not introduced into our

measurement techniques when using this colorimetric method. According

to Snell and Snell (1958, p. 1), this method was first used on iron and cobalt

solutions (which are naturally colored) more than a century ago. Since

then, there has been a tremendous improvement in the accuracy with

which we are able to measure the intensity of colors. These advances are

largely due to the invention of the photoelectric cell. This instrument

interprets variations in intensity as changes in an electric current. A

colorimeter measures the intensity of color of a liquid by shining a beam

of white light through a filter that eliminates all but a specific band of

wavelengths which then passes through the colored liquid. The amount of
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light not absorbed by the liquid (the light which passes through) is

measured by a photoelectric cell. Using a filter to separate the spectrum

causes the bands of wavelengths to be relatively wide which can easily

cause an error in calculations. Also, if a change in wavelength is desired, a

different filter must be used. Although there are more sophisticated devices

now available, colorimeters are relatively portable and can be used for

testing liquids in non-laboratory situations.

Many liquids appear clear to the naked eye, but when viewed in the

ultraviolet or infrared spectrum (neither of which the human eye can see)

have very distinctive absorptions. Thus, we are interested in an apparatus

called a Spectrophotometer, which is capable of determining the changes

in intensity of light of different wavelengths in the visible spectrum as well

as in the ultraviolet and infrared spectrums. The spectrophotometer can be

used to determine the concentration of liquids whose absorption

wavelength falls in a wider range than liquids which can be measured by a

colorimeter. Another advantage of using the spectrophotometric method

compared to chemical analysis is that the procedure requires only a small

quantity of solution to be tested. This can be important if the substance is

expensive or difficult to obtain in a large quantity. Also, the solution often

remains unchanged by the procedure, and subsequently can be used for

other purposes. If the substance as well as the concentration is unknown, a

spectrophotometer can be used to first determine the substance in the

liquid, and then used to determine the concentration. To do this we first

dissolve the unknown substance in a liquid and determine its absorption

wavelengths. Then we compare these values to the absorption wavelengths

of the liquid in which the unknown substance was dissolved, which is called
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a blank. A blank's concentration value is always zero. From this

comparison we obtain the absorption wavelengths of the unknown

substance which can be used to identify the substance. The

spectrophotometer then uses a narrow band of the spectrum around the

wavelength where the colored liquid absorbs radiation, to find its

concentration. To understand how we can use the amount of radiation

absorbed by the liquid to determine the concentration of the substance, we

need to understand the physical laws that govern the absorpticn uf light.

The fundamental equation we will use is the combination of two

laws, Beer's law (the light absorbed by a layer of solution is directly

proportional to the concentration of the colored substance) and Lambert's

law (the light absorbed is directly proportional to the thickness of the

solution). The equation which expresses the Lambert-Beer law is

10
(1.2) optical densityN - log 1 0 T - k c I,

where N - the absorbing wavelength of the substance,

units: nanometers (1 nm- 10-7cm)

1o - intensity of the light at wavelength N, entering the sample.

(This is the same as the intensity of the light passing through

the blank, where the concentration is zero.)

I - intensity of the light at wavelength N exiting the colored liquid

of unknown concentration.
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k - specific extinction coefficient of the absorbing substance at ?.

This constant comes from the characteristic absorption

coefficient for the liquid whose concentration we are trying to

find.
liters

mole cm

c - concentration of liquid
moles

units: lerliter

I - the width of the solution that the transmitted light must pass

through.

units: centimeters (cm)

10
Since the values for 10 and I are measured in the same units, the ratio I is

dimensionless, which allows us to take the logarithm of the ratio. Most

10
spectrophotometers are designed so that log 10 T' or the optical density

at N, can be read directly off a scale on the machine. When the

concentration (c) is measured in moles per liter and the thickness (I) of the

absorbing solution is one centimeter, we use the symbol FcN to represent the

molar extinction coefficient of the substance at the wavelength ?. Theliters cm liters
units of are mole cm - mole" Thus, the equation for optical density at N

becomes

10
(1.3) optical density, - log 10 1 - tNc.
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Since the optical density at ? is a dimensionless quantity, it is a good idea to

check to make sure the units on the right side of the Equation (1.3) cancel

out. Substituting in the appropriate units, we obtain

liters moles
(1.4) optical density - ek c - le mles

Our check is complete since all of the units on the right side cancel.

Figure 1.3 shows the basic set up of a spectrophotometer.

White monoc2hromator

sourcephteeri
adjw wavelength phto0ti

________cell Vj"r zate

Figure 1.3

The monochromator allows us to select a narrow band of wavelengths

around X. the absorbing wavelength of the liquid, from the beam of white

light. The narrow band of light can then be directed at either of two

cuvettes. The cuvettes are a pair of matched glass vials whose front and

back pieces are carefully constructed to be flat, parallel, and have the same

thickness throughout. The two clear glass sides of the cuvettes must be

kept clean and free of finger prints so the beam of light is not distorted. To

remind the experimenter which of the sides are made out of the special

glass, the other sides are frosted. The thickness of the cuvette is exactly

one centimeter. Figure 1.4 shows an example of one type of cuvette.
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Figure 1.4

One of the two cuvettes placed in the spectrophotometer contains the liquid

of unknown concentration and the other contains the blank. The beam of

light from the monochromator alternates between the two cuvettes and the

intensity of light which passes through each of the two solutions can be

measured by the photoelectric cell. The optical density can be read directly

off a meter on the spectrophotometer.

The following procedure is designed to find the concentration of a

colored liquid containing only one known substance. Related steps have

been grouped into sections.

A.I Fill the cuvette with water (this is the blank) and place it in the

spectrophotometer.

A.2 Adjust the spectrophotometer until the optical density

reads zero.

B.I Replace the cuvette containing water with one

containing the standard dissolved in water.

B.2 Record the optical density of the standard.
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C.1 Place the sample of liquid of unknown concentration

in the spectrophotometer.

C.2 Record the optical density of the unknown.

Substitute the values found in B.2 and C.2 and the concentration of the

standard into Equation (1.5) which is derived from Beers law, to obtain the

concentration of the sample.

(concentration

(1.5) concentration = of the standard × optical density
of the sample optical density of the sample

, of the standard

To create a spectra for a colored liquid, sections A and B of the procedure

above are repeated for a whole series of values of N.

Exercise 1.1

We are given a vial of red liquid of unknown concentration and are told it

contains reduced cytochrome c dissolved in water. We begin the analysis of

this liquid by preparing a blank. After filling a cuvette with water and

adjusting the spectrophotometer until the optical density read zero (steps

A.1 and A.2), we prepare our standard by dissolving enough of the reduced

cytochrome c in water to obtain a concentration of 1.99 x 10- moes Weliter

next insert the cuvette containing the standard into the spectrophotometer

and record an optical density of 0.559 at a wavelength of 550 nm. Finally,

we are ready to place the cuvette filled with the sample of reduced

cytochrome c which has unknown concentration into the spectrophotometer



37

(step CM). An optical density of 0.662 at a wavelength of 550 nm is

recorded (step C.2). Determine the concentration of the sample of reduced

cytochrome c that was originally distributed.

Section 2 Concentration or Two Substances in a Colored Liquid

When using the procedure from Section 1 to determine the

concentration of a substance, it was important to use a narrow band of

wavelengths around the absorbing wavelength ?,, because we were trying

to closely approximate the conditions under which Beer's law holds and

hence, when Equation (1.5) is valid. Also, when reading the optical density,

the use of a narrow band of wavelengths around N helps prevent the

inclusion of other light absorbing substances which may be present in the

solution. These considerations are especially important when two or more

substances are present in the liquid. Figure 2.1 shows a set of hypothetical

absorption curves for substances R and S in a solution at a given

concentration.
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Figure 2.1

If the peak of each curve in Figure 2.1 did not overlap the tail of the other

curve, then the optical density of each substance could be read directly

from the graph by carefully selecting narrow bands around the peak

wavelength. However, since the two curves do overlap (but do not

coincide), we realize the optical density read off the spectrophotometer at

440 nm includes both the optical density of substance S and the optical

density of substance R. Similarly, we can say the optical density reading

taken from the spectrophotometer at 520 nm is made up of both the optical

density of substance S at 520 nm and the optical density of substance R at

520 nm.

For colored liquids containing two substances, we will use the

following technique to determine the concentration of each of the
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substances. This technique is valid when the absorption curves overlap, but

do not coincide. We will denote the two substances as m and n, whose

molar extinction coefficients are Em I and enMI at wavelength ?\I and em 2

and EnN,2 at wavelength X2, Recall when we use Ei, we are measuring the

conenratoninmoles
concentration in liter and the thickness of the solution (that is, the width

of" the cuvette) is I cm. If we apply Beer's law, we obtain

(2.1) D = m cm and D, =E n
1X M 1n% X1

(2.2) D = Em Cm and D = c n

where D i and D A I represent the light absorbed by the compounds m

and n in the solution at wavelength ? 1. Here DfX 2 and Dn%,2 represent

the light absorbed by the compounds m and n in the solution at wavelength

N2, and cm and cn are the concentrations of compound m and n

respectively. Since there are two substances in the solution, they both

contribute to the optical densities D X and D ,2' measured at the
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wavelengths j and A2 , respectively. Thus, the equations for Dmx and

D n, are summed together, as are D and DnX, producing

Equations (2.3) and (2.4).

(2.3) D m=E cm + En

(2.4) = E mxC m + Cn
2 2  2

We observe that if the two curves do not overlap, then in Equation (2.3)

either mr or is equal to zero at N, and Equation (2.3) reduces to

Equation (1.3). which is a form or the Lambert-Beer equation. Under

similar conditions, Equation (2.4) will also reduce to such a form.

Now, we have two equation in two unknowns, cm and cn.

We consider two methods which can be used to solve this system

of equations and hence, determine the concentrations of the two substances.
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Method I

Solve Equation (2.3) for cn

D- E Cm

(2.5) cn =

Now substitute this into Equation (2.4).

(2 .6 ) D E c2 C +D x ] Mn Cl

When we solve this equation for cmi we obtain

En 1 D ,-e D ,

(2.7) C= E 1n,2 Ix 2 1 E n 2
m E 2 E -E xIE x2

Since all the terms on the right of Equation (2.7) are known quantities, we

know cm, Again, we observe that if the two curves do not overlap, then in

the equation above, either En, or CnE2 is equal to zero and the equation

reduces to the form of the Lambert-Beer equation at N, found in Section 1.

To see this, suppose En l 0. Then, Equation (2.7) reduces to
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Cm= -
2  

which can be simplified to obtain the desired equation.

(2.9) D =E cmX XI

Exercise 2.1.

(a) Use a similar procedure to find the following expression for cn.

EmX I D X2 - EmX,2 D XI
(2.10) *n e, 1 D -e~D

n 1 nX2 mX,2 1 n I

(b) Show that if ml - 0, then the equation for cn reduces to the
Im

Lambert-Beer equation at ,I.

(c) Show that if Em2 0, then the equation for cn reduces to the

Lambert-Beer equation at N2.
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Method 2

Equations (2.3) and (2.4) can be written as an augmented matrix.

E M X E AD X

(2.11)

EmX2 E n,2 D X2

This matrix can be row reduced to the following augmented matrix.

E n ,1 D 2- EnX, 2 D X1

E X 12 n X -  E  X I n X 2

EmX I  - EmX 2

EmX1 E nX2 - EmX 2 E n2,1

From this augmented matrix, we can determine the concentrations of m and

n by using

E n AI D X - E nX, 2 D X,1

(2.12)

E E -E Em n m n

1a2d
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EmX.I D%,2 - E M% 2 D %,I
(2.14) c n  . .. . . . . . . . . .D

n E I E n X,2 - E E n , I

As expected, these formulas for cm and c. are exactly the same as the ones

found by using Method 1 (Equation 2.7 and 2.10).

Exercise 2.2.

Verify the reduction of the matrix

(2.15)

e M 2 n 2 D 2

Exercise 2.3

This exercise is adapted from a laboratory study by Arnon (1949) where he

determined the concentration of chlorophyll a and chlorophyll 1 which

were both dissolved in the same liquid. The two absorption peaks, where

the spectrophotometer was set during this experiment, are:

Chlorophyll a- at wavelength 663 nm exhibits an extinction

coefficient of 82.04 liters and at wavelength 645 nm
mole

exhibits an extinction coefficient of 16.45 liters andmole
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Chlorophyll b- at wavelength 663 nm exhibits an extinction

coefficient of 9.27 liters and at wavelength 645 nmmole
exhibits an extinction coefficient of 45.6 liters

mole"

The optical density measured at wavelength 663 nm is 0.506 and the

optical density measured at 645 nm is 0.187. Using this information,

determine the concentration of chlorophyll a and chlorophyll b dissolved in

the same liquid. (Be sure to indicate the value of each variable.)

Exercise 2.4

Suppose we have three substances a, b, and p, dissolved in a single solution

and their spectra overlap, but none coincide. By using a similar procedure

to the one used to find the optical density of a liquid containing two

substances, find the three equations for optical density (they are similar to

Equations (2.3) and (2.4)). Use the following variables to create these

equations.

Let: NI, N2, \ 3 represent the absorbing wavelength of each of the three

substances,

EaN l'bNI E PI represent the extinction coefficients for each

substance at wavelength Nl,

aN2' c 2 EPN 2 represent the extinction coefficients for each

substance at wavelength X2,
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Ea 3 ' %b EP e3 represent the extinction coefficients for each

substance at wavelength N\3'

Ca -Cb , Cp represent the concentrations of the three substances, and

DN,1 DN2 , DN3 represent the optical densities measured at each

wavelength.

The system of three equations found in Exercise 2.4 can be written as an

augmented matrix and reduced. From this reduced augmented matrix we

can obtain the formulas needed to determine the individual concentrations

of the three substances. This task is not hard but becomes very

cumbersome because there are so many variables involved. The augmented

matrix is reduced until the coefficient matrix is in upper triangular form.

E bX1  C PX.._1 D XI
baI  a.1  Ia,

(2.16) E a 1 E pX 2- E a 2 E pa.I E a 1  ADX2  D X,
0 i E -E - 2 1z

1 2 aX 06 1 A 2 2 XI
0 0 1
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where 91 A I BandA =(E D - E D V Ee ~
C+D (aX. I)X3 A I 3 Xj bX2  aX ~2 bX1)

='= ,a PX - aX ,)(=a ,b X3 ' a X3

Exercise 2.5

A vial of green liquid is brought in for analysis which contains three

substances, chlorophyll a (denoted by a), chlorophyll b (denoted by b) and

protochlorophyll (denoted by p) dissolved in it. Optical density readings

from the spectrophotometer are taken at the following wavelengths:

X = 660 nm, 1'2 = 640 nm, and X3 = 620 nm. During analysis the optical

densities are found to be: D =0.21, D 0.72. and D 0.53.

Extinction coefficients for the three substances at their respective

wavelengths are-

liters liters .liters.

wavelenit (nm) amole l ( m) _

660 96 5 1

640 15 58 1

620 14 10 40
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Determine the concentration of each substance in the vial. Hint: first find

Cp and then use back substitution and the information in the augmented

matrix in Equation (2.16).

Exercise 2.6

Discuss the conditions under which the technique to find the concentration

of three substances dissolved in one liquid can be generalized to find the

concentration of n substances dissolved in a single liquid.

Exercise 2.7

Discuss some of the advantages in using matrices to find the concentration

of substances dissolved in a liquid.
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Application I Appendix: Solutions to Exercises

ExrisL1L

concentration of 1.99x 10- 5 x0662236x10 - moles
reduced cytochrome c = 0.559 10 liter

Exrise2.
(a) Solve Equation (2.4) for cm

D.,2- EnX, cn

(A.I) cm= 2 2

Now substitute this into Equation (2.3).

-A.2) D =E 2 2 Cn E cXA2 = m X I EmX2 +EnX, c n

When we solve this equation for cn, we obtain

Em. rn2 ?E 2 D 'i

(A .3 ) c = E I I_
1, n2,2 2EnX

(b) Letting Em = 0, the equation for cn reduces to
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- Emx2 Dx,1 Dx I(A,4) c n = _ 7EmX EnX En X

which can be simplified to obtain the desired equation.

(A.5) D = E Cn

(c) Letting cm 2 - 0, the equation for cn reduces to

(A.6) C r=eMxI Dx 2 -  nx2

which can be simplified to obtain the desired equation.

(A.7) D x2= EnX2 Cn

Exercis 21

Multiply the first row by rffl ,1
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(A.8)mm

E %2 E X2D x 2

Multiply row one by - E A,2and add it to row two.

IA.91

0 EmxI 1n 2 E x2 E n 1 mI 2-Ex 2 1

Multiply row two by 1 m to obtain
E x I E n - E m % 2 E n
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I nx1  D x

(A, IO) me D - D).0112 E D

eMX 1 E nX2 - rm X2 EnX

Multiply row two by and add it to row one.

Mutil row Iw by2 E mX Dx

mx2 1 XI-m IEn

0n I D x2 - EmX2 DxI

0 122

Emx I E n x 2 - E mx,2 E nx,1

This is Equation (2.12).

Exrci .3

We define the following variables which we will use in Equations (2.13)

and (2.14).
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Let m - chlorophyll a n - chlorophyll b

X1 
= 663 nm x2 = 645 nm

E = 82.04 liters E = 6.45 liters
MxImole Mx2mole

-97liters ml
mole= 9.27 l e = 45.6 liters

D 0.506 D =0.187

(A.12) cm= 1m2 2 n

E ne -e EIEnX2

-(9.27X0.187) - (45.6)(0. 506) - 21.340
(16.45X9.27) -(82.04)(45.6) -3588.533

5.95 x 10-3molesliter

EmX1 Dx2 - mX2 D In =  I E n X2 - Emx2 EnXI

(82.04X0. 187) - (16.45)(0. 506) 7.018
(82.04X45.6) - (16.45)(9.27) - 3588.533

1.96 x 10-3 moles
liter
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(A. 14) D '=Ea 'ca+Eb'Cb+ E~ cp

(A.15)D, 2 -- Ea 2 Ca+E bX2 Cb+ EPX cp

(A.16) D X3= E a,3Ca + b X,3 Cb+ rpX,3CP

A + B 263334.42 + 58713.3 322047.72 15 x 10- 2 moles
C+D 21016218+72090 21088308 liter

65.97- 81(.015) 64.755 = 1.2x 10- 2 moles
b 5493 - 5493 liter

= 21- 5(012)- 1(.015) .135 1.4 x 10- 3 moles
a 96 96 liter

The main condition under which the technique to find the concentration of

substances dissolved in a liquid can be generalized, is that the absorption

curves of the n substances do not coincide. However, some or all may

overlap. Theoretically then, it appears that we could generalize this

technique. From the practical aspect, the value of n would be determined

by the accuracy of the spectrophotometer. Also, the more substances

present the harder it will become to determine the equations to find the

concentration of each substance in the solution. (This is not a factor if a

computer is used. See the solution to Exercise 2.7)
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When we tried to reduce the augmented matrix for n-3, we found the task

very cumbersome. It was mainly because we were trying to find a formula

so the concentration could be obtained by simply substituting in the known

values. However, if a computer is used to reduce the system, a general

formula is not needed because the computer can reduce a matrix as easily

as it can substitute values into a formula and calculate the result. Thus, the

values for each variable can be substituted directly into the augmented

matrix and the system reduced, from which the values of the concentrations

can be determined.
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Application II

Linear Algebra Applied to Graph Theory

A New Look at Solving the Transportation Problem

Linear Algebra Prerequisites: The knowledge of definitions and

theorems involving linear independence, linear dependence, spanning, and

basis.

Graph Theory Prerequisites: None.
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Section I Introduction

The famous Mr. Potatohead Potato Chip Company of Mountain Home,

Idaho, recently developed a new line of crunchy style chips called West

Coast Krunchers. To promote their new chips in the western United States,

Mr. Potatohead is negotiating with SuperFoods, a big food store chain, to

sell their chips. Mr. Potatohead has two warehouses: one in Boise, Idaho,

which has 1900 cases filled with bags of West Coast Krunchers ready to

ship, and one in Modesto, California which has 1200 cases of chips.

SuperFoods has 3 central warehouses which supply all their local stores;

they are located in Colorado Springs, Colorado, and in San Francisco and

San Diego, California. The Boise warehouse can ship West Coast Krunchers

to Colorado Springs for $.17 a case, to San Francisco for $.18 a case, and to

San Diego for $.23 a case. The warehouse in Modesto can ship Krunchers to

Colorado Springs for $.25 a case, to San Francisco for $.15 a case, and to San

Diego for $.21 a case. The SuperFood warehouse in Colorado Springs has

ordered 1000 cases, while San Francisco needs 1200 cases, and San Diego

only wants 900 cases. To determine how much profit SuperFoods can

make on the West Coast Krunchers, the buying agent needs to know the

least expensive way to get the chips from the two Mr. Potatohead

warehouses to their own warehouses.

This shipping problem is an example of a transportation problem; the

shipping routes in this problem can be represented by the diagram in

Figure 1.1. We will be able to solve transportation problems using the

techniques from Graph Theory, a subject which we are about to study.
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Graph Theory is an area of mathematics which deals with properties of

structures such as the one illustrated in Figure L.1.

Colorado Springs, CO

Boise, ID

San Francisco, CA

M e , ASan Diego, CA

Figure 1.1

Before beginning to explore a new subject such as Graph Theory, it is

important to understand and be able to use the fundamental definitions

which comprise Graph Theory. The following definitions will provide us

with the language necessary to discuss problems such as the transportation

problem above.

A graph G consists of a finite nonempty set V, whose members are

called vertices, together with a finite (possibly empty) set E of edges,

where each edge in the set E consists of a two-element subset of V. We

often depict a graph by a diagram in which a dot represents a vertex and a

line connecting two dots represents the edge consisting of the subset which

contains the two corresponding vertices. In the graph G in Figure 1.2, the

set of vertices is V - (v 1 v2, v3, v4 , v5) and the set of edges is

E - ( (v1 , v2 ), (v ,Pv 3 ), (v1 , v4 ), (v2 , v3), v3 , v4 ), v3 , v 5), v4 , v5 ) ). As you
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can see, the notation for edges can be quite cumbersome at times, so that

often we use notation such as eI to represent the edge (vI , v2 ) and we say

that the edge e, joins the vertices vI and v2 . Using this shorthand

notation, the set of edges E in Figure 1.2 can be written as

E - e, e2, e3, e4 , e5, e6, e7 ).

V5

e7

V eV

2 3

Figure 1.2

If edge ei joins two vertices vm and vn, then vm and ei are said to be

incident, as are vn and e. Furthermore, the vertices vm and vn are said to

be adjacent vertices. In Figure 1.2, the three edges which are incident to

vI are el, e2 and e3 . If vm is a vertex of a graph G, then the degree of vm

is the number of edges that are incident to vm. For example, in Figure 1.2,

the degree of vI is 3, while the degree of v 2 is 2.
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The following concepts will help us understand the structure or

graphs. A walk from vertex v, to vertex vk in a graph G is an alternating

sequence of vertices and edges of the form
v ,' el' v2, e2 .... -Vk-1' ek- 1, Vk

where each ei is incident to vi and vi+ 1 and k . 1. We sometimes denote a

walk by listing only the sequence of vertices; for example, the walk above

would be written as v1, v 2, ... vkl, vk. A path from v, to vk in a graph

G is a walk in which no vertex or edge is repeated. Thus, one path from v,

to v3 in Figure 1.2 would be v 1, v4 , v3 . A cycle is a walk vl , v2 ... vk_ 1,

vk where k _ 3 in which all vertices and edges are distinct except that

v I - vk. For example, v1, v2 , v3 , v I is a cycle in Figure 1.2. A graph G is

connected if there is a walk between any two vertices, otherwise G is said

to be disconnected. Therefore, we see that the graph G in Figure 1.2 is

connected. Also, any graph in which every pair of distinct vertices is joined

by an edge is called complete. Notice that the graph in Figure 1.2 is not

complete, since there is no edge joining the pairs of vertices vI and v5 , v2

and v4 , or v2 and v5.
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Exercise 1.1

Use Figure 1.2 to find each of the following.

(a) What is the degree of v3 ? v4 ? v 5 ?

(b) Find a walk which is not a path from v2 to v 5 .

(c) Create a path from the walk in (b) above.

(d) Find a cycle with 3 distinct vertices and one with 4 vertices.

Exercise 1.2

(a) Draw a connected graph.

(b) Draw a disconnected graph.

(c) Draw a complete graph with 4 vertices.

(d) Is it possible to draw a complete disconnected graph?

Exercise 1.3

Prove that if G is a connected graph, then there is a path between any two

distinct vertices of G.

Sometimes we are interested in a graph which is contained within a

larger graph. A graph H is a subgraph of a graph G if the vertex and edge

sets of H are contained in the vertex and edge sets of G. By examining the

graph in Figure 1.2, we see that one example of a subgraph of G would

consist of the set of vertices ( v1 , v 2 , v3 , v4 ) and the set of edges

( e 1 e2, e3, e4 )" If a subgraph H of a graph G has the same set of vertices
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as G, then H is called a spanning subgraph of G. If we consider the graph

in Figure 1.2, an example of a spanning subgraph would consist of the set of

vertices I. v,, v2 , v3 , v4 , v5 ) and the set of edges ( e3 , e4 , e5, e6 . e7 ).

Exercise 1.4

(a) Draw a subgraph of the graph in Figure 1.2 which is not a spanning

subgraph.

(b) Draw a spanning subgraph of the graph in Figure 1.2.

Section 2 Trees and Counting the Number of Spanning Trees in
a Graph

A graph which is connected and has no cycles is called a tree. Trees

are the simplest, yet most important, class of connected graphs. A spanning

subgraph of a graph G which is also a tree is called a spanning tree of G.

The two graphs in Figure 2.1 are spanning trees of the graph G of Figure

1.2. We will spend much of the remainder of this study investigating the

idea of spanning trees and see how they can be used to solve transportation

problems like the Mr. Potatohead potato chip problem of Section 1.
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v 5  v 5

v ' V 4  v I -e 3  7 vI

eea6

V2  V3 V2 3

Figure 2.1

Exercise 2.1

(a) Using the graph in Figure 1.2, draw a tree which is not a spanning tree.

(b) Are all trees necessarily spanning trees?

(c) Are all spanning trees necessarily trees?

Exercise 2.2

For the graph G in Figure 2.2 find as many spanning trees for G as you can.

4 3

Figure 2.2
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From the above exercise we see that employing the definition to find

all the spanning trees for a graph raises an important question. How do we

know when we have found all the spanning trees of a graph? We can

answer this question by looking at an application of determinants The

concept of determinants is introduced in linear algebra and involves the use

of matrices. The following algorithm will help us construct the matrix

which is used in this surprisingly simple technique to count the number of

spanning trees in a graph. A proof that this algorithm counts the number of

spanning trees can be found in Harary (1969, pp.152-153).

Algorithm To Find the Number of Spanning Trees in a Gragh G:

1. Label the vertices ofG as 1, 2,..., n+1.

2. Construct an (n+ I )x(n+ 1) matrix A as follows:

(i) for the diagonal entry Aii, for i- 1,2,...,n+ l, let

Aii be the degree of vertex i in G.

(ii) for each off-diagonal entry Aij, let

0 if vertices i and j are not adjacent in G

I if vertices i and j are adjacent in G

3. Let D be the n x n matrix obtained by deleting row n+l

and column n+I from A.

4. The number of spanning trees of G is given by IDI, the

determinant of D.
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Example

Recall the graph G in Figure 2.2. Use the four steps in the algorithm above

to count the number of spanning trees in the graph G.

I - "2

2 -1 0 -1

2 . A1 3 1 1

0 -1 2 -1
- -1 - 1 3 )

2 -1 0
3. D= -1 3 -1I

0 -1 2

4. The number of spanning trees of G is IDI - 8.

Compare the eight spanning trees given in Figure 2.3 with the spanning

trees that you found in Exercise 2.1. Were you able to find all the spanning

trees?
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1 21 ,2 1 2 11 2

4 34 3 4- 3 4 3

1 21 2 1 2 1- 2

4 3 4 3 4 3 4 3

Figure 2.3

Exercise 2.3

Using the determinant method described above, find the number of

spanning trees for the graph G, in Figure 2.4. Draw all the spanning trees

of G.

1 2

Figure 2.4
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Exercise 2.4

Find the number of spanning trees for the graph G, in Figure 2.5. Draw all

the spanning trees of G.

3

2 
4

5
Figure 2.5

As a point of interest, the graph in Figure 2.5 is called a complete

bipartite graph and is the type of graph which was used to represent the
Mr. Potatohead potato chip transportation problem in Section 1. In general,

a graph G is a bipartite graph if the set of vertices V can be grouped into

two sets, V 1 and V2 . such that V - V1 u V2 and where

1) V1 and V2 are not empty,

2) V1 r V2 - 0, and

3) each edge in G joins a vertex of V 1 with a

vertex of V2.
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Such a bipartite graph is a complete bipartite graph if each vertex in V I

is adjacent to each vertex in V2 .

Example

To show that the graph in Figure 2.5 is a complete bipartite graph, we must

first show that it is a bipartite graph. If we let the set V 1 consist of the

vertices I and 2 and let V2 be the set of vertices 3, 4, and 5, then V I and V2

satisfy the definition of a bipartite graph. We also see that each vertex in

V1 is adjacent to each vertex in V2 . Hence the graph in Figure 2.5 is a

complete bipartite graph.

In a later section we will study techniques which will allow us to

solve transportation problems by looking at the spanning trees of complete

bipartite graphs.
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Example

Figure 2.6 shows a bipartite graph which is not a complete bipartite graph.

3

I

4

2

5

Figure 2.6

Section 3 Properties of Spanning Trees

We will now establish some basic properties of spanning trees by

proving a series of four theorems and two accompanying lemmas. It is

important to keep in mind the statement of these theorems, as we will be

using them later to determine some very interesting relationships. The

proofs of these theorems have been expressly written in a non-rigorous tone

to enhance their readability.

Lemma I

Let G be a connected graph. If an edge e of G lies on a cycle of G, then

G - e (which denotes the graph G without the edge e) is connected.
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Proof

Let G be a connected graph with at least one cycle. Let e - (v1, v2 ) be an

edge on a cycle of G, and let that cycle consist of the edge e and a path P

between v, and v2 . In order to show that G - e is connected we must show

that there is a walk in G - e between any two vertices. Choose any two

vertices u and v. Because G is connected, we know there exists a walk in G

from u to v. If e is not an edge on this walk, then the walk from u to v is

still a walk in the graph G - e. If e is an edge on the walk, then replacing

each appearance of e, in the walk, by the path P, yields a new walk from u

to v that does not contain e. In either case, we have found a walk in G - e

from u to v. Since the two vertices u and v were chosen arbitrarily, the

graph G - e is connected. 0

Theorem I

Every connected graph G contains a spanning tree.

Prof,
Let G be any connected graph. If G has any cycles, then by Lemma 1,

removing any edge in a cycle yields a connected graph with fewer edges.

Repeating this procedure eventually yields a connected subgraph G* of G

that has no cycles. Thus, G* is a spanning tree of G. 0

Lemma 2

In any tree S with two or more vertices, there is at least one vertex of

degree 1.
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Proof

We will prove this theorem using the technique of proof by contradiction.

Let S be a tree with two or more vertices. Because S is connected, no

vertex has degree 0, so every vertex has degree at least one. Su;ppose that

no vertex of S has degree one, that is, the degree of every vertex of S is

greater than one. Choose any vertex v in S, and construct a walk starting

from v as follows. Since the degree of v is at least 2, we may choose one of

the edges incident with v, call it e l , and proceed to a new vertex v1.

Because the degree of v I is also at least 2, there is at least one other edge

e2  e 1 incident with v1 which we may choose to continue the walk.

However, if we continue on in this manner, since the number of vertices is

finite we must eventually return to some vertex which was previously

made part of the walk, thus creating a cycle. But this contradicts the

assumption that S is a tree. Therefore there must be at least one vertex of

degree 1. 0

Theorem 2

Let S be a tree with n+ I vertices. Then S has n edges.

We will prove this theorem by induction:

(1) Show that the statement is true for n-0.

(2) Assume the statement is true for n-k (induction hypothesis).

(3) Show that the statement is true for n-k+1.
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To show (1), let S have I vertex, then S has n-0 edges. Assume the

statement is true for n-k and show (3). Let S be a tree with k+1 vertices.

We must show that S has k edges. By Lemma 2, there is a vertex v with

degree 1. Then the graph obtained by deleting the vertex v and the

incident edge from S is a tree with k vertices and by the induction

hypothesis, must have k-I edges. Since this graph was obtained by deleting

one vertex and edge from S, S must have k edges. 0

Theorem 3

Any pair of vertices in a tree is joined by exactly one path.

Proof
Let S be any tree. Then S is connected and so by Exercise 1.1, there is a

path between any two vertices. To show that there is exactly one path, we

will use the method of proof by contradiction. Let u and v be two vertices

in S, and suppose there are two distinct paths, P1 and P2, from u to v.

Because P1 I P2, there must be a vertex w 1 (possibly w1 - u) lying in both

P1 and P2, such that the next vertex in P1 is not in P2. That is, the two

paths separate at the vertex w I . We continue along the path P1 until we

reach the first vertex w 2 (possibly w 2 - v) which is on both paths. Now

consider the part of the path P1 between w I and w2 and the part of the

path P2 between w and w2 . These parts form a cycle. But this
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contradicts the fact that S is a tree and hence has no cycles. Therefore any

two vertices in a tree are joined by exactly one path. 0

Theorem 4

Let G be a connected graph wiih n+ I vertices and S be a spanning subgraph

of G. If S has two of the following properties, then it also has the third, thus

making S a spanning tree.

(a) S has n edges

(b) S is connected

(c) S has no cycles

Podr

To prove this theorem we must assume any two of the properties are true

and prove that the third property is true. Thus, we have three parts to

prove:

Part 1. Assume (a) and (b), show (c).

To do this we will use the method of proof by contradiction. Let S be a

connected spanning subgraph with n+1 vertices and n edges. Suppose S has

one or more cycles. Because S is connected, by Theorem 1, we know we

can find a spanning tree T of S. In doing so, we will delete at least one

edge, so T must have less than n edges. But this contradicts Theorem 2,

therefore, S has no cycles.

Part 2. Assume (b) and (c), show (a).

Let S be a connected spanning subgraph with n, 1 vertices and no cycles.

By definition, S is a spanning tree. So by Theorem 2, S has n edges.
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Part 3. Assume (a) and (c), show (b).

Let S be a spanning subgraph with n+ 1 vertices, n edges and no cycles.

Show that S is connected. We will use the method of proof by

contradiction. Suppose S is not connected. Then S can be viewed as a

series of connected subgraphs of S denoted by S1V S2 , - Sk where k > 1.

Let n1 , n 2, .... nk , represent the number of vertices in S I , S2 , 'S k ,

k

respectively. Then ni = n+I. Since S has no cycles, each Si for I < i < k

has nocycles. By Theorem 2, S11 2' .Sk have nI-1, n2 -1 I... ,nk -I edges,

respectively. Thus, the number of edges in S is
k k k k

(the number of edges in Sd) -(n 1 - 1) - n1 - I - (n+1)-k

where k > 1. However, this contradicts the assumption that S has n edges.

Therefore, S is connected. 0

Section 4 Relationships Between Graph Theory and Linear
Algebra

Many concepts in Linear Algebra are very general in nature. When

studying other areas of mathematics, such as Graph Theory, we sometimes

come across concepts which are very similar to concepts in Linear Algebra.

If we can take a general concept in Linear Algebra and tailor it to fit a
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situation in Graph Theory, then we can gain new insights into the concepts.

Thus, we will be able to get a richer understanding of Graph Theory, by

viewing properties of graphs in terms of Linear Algebra. To better see this,

recall the definition of a spanning tree and the statements of Theorems 2-4;

we will compare these to their counterparts in Linear Algebra.

Linear Algebra Graph Theory

Definition Definition

A basis for a vector space V is a A spanning tree of a graph G is a

set of vectors which spanning subgraph of G which

1. are linearly independent and 1. has no cycles and

2. span the vector space. 2. is connected.

Theorem Theorem 2

Let V be a vector space with Let G be a graph with n+ I vertices.

dimension n. Then every basis Then every spanning tree of G has

of V has n elements. n edges.

Theorem Theorem 3

Each vector in a vector space Every two vertices in a graph are

is a unique linear combination joined by exactly one path in any

of vectors in any basis. spanning tree.
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Theorem Theorem 4

Let V be a vector space of Let G be a connected graph with

dimension n and S be a set of n+ 1 vertices and S be a spanning

vectors in V. If S has any two subgraph of G. If S has two of the

of the following properties, then following properties, then it also

it also has the third, and thus has the third, and thus is a

forms a basis for V. spanning tree.

(a) S contains n vectors. (a) S has n edges.

(b) S spans V. (b) S is connected.

(c) The vectors in S are (c) S has no cycles.

linearly independent.

It is not a coincidence, of course, that we can make this comparison.

We have been working with a new form of a vector space, where:

an edge represents a vector,

a spanning tree represents a basis,

a connected spanning subgraph represents a spanning set and

a subgraph with no cycles represents a linearly independent set.

(At this point, it may be helpful to review the previous definition and

theorems from Graph Theory and their Linear Algebra counterparts.)

To get an indication of how this works (a full explanation is beyond the

scope of this study), we must first develop notation to describe a vector in

this vector space. We will only be interested in vector spaces which

correspond to complete graphs. We will use the same symbol G to denote

both the vector space and the corresponding graph.
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Select a complete graph G with n+ 1 vertices, and label the vertices

v1, v 2 ,... vn+l. A vector in the "vector space" G which corresponds to the

complete graph G will be described by an (n+ 1 )-tuple all of whose entries

are zero or one, with there being an even number of ones in each tuple. To

visualize the relationship between the vectors in the vector space G and the

edges of the graph G consider the complete graph in Figure 4.1.

V

Z A,

e2  e 3

Figure 4.1

Since there are five vertices in the graph, we know that n-4, thus the

vectors are 5-tuples. An edge joining vertices i and j in the graph, is

represented by the vector which has a '1' for its ith and jth entries, and '0'

elsewhere. To remind us that a vector in the vector space corresponds to a

certain edge in the graph, we will use the same notation to denote the

vector which we use for the edge in the graph. For example, the edge

e which joins the vertices the v1 and v4 in the graph corresponds to the
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1 0

0 1
5-tuple e1 = 0 ,while e5 = 0 represents the edge, which joins the

I I
0 0

vertices v 2 and v4 .

In any vector space, it is necessary to be able to add vectors together.

How can we interpret the addition of two vectors (which correspond to two

edges) in a vector space (which corresponds to a graph)? If we refer back

to Theorem 3 and its Linear Algebra counterpart, we see that any path in a

graph corresponds to a linear combination of vectors. Thus, following a

certain path corresponds to adding together the vectors which represent

the edges in the path. To visualize this type of vector addition, we will

refer to the graph in Figure 4.1. If we follow the path v I, v4 , v2 by way of

the edges e, and e5 , we start with vertex v I and end with vertex v2 . Since

the graph is complete, this is the same as using the path vI, v2 along the

edge e3. If we view this relationship, using vectors from the vector space

which correspond to the graph, we would expect that moving along a path

would be equivalent to adding the vectors that correspond to the edges in

the path. Thus, if we add the vectors representing the edges e 1 and e5 , we

should get e3 . Since the addition of two vectors or (n+ I )-tuples is
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performed by adding the vectors component-wise, we need the following

rules in order to be able to add the components so that vector addition

corresponds to moving along the edges of a path.

0+0-0

0+ 1-1I

1+0-1

1 + 1 -0

The last rule is the only one which differs from traditional addition, but we

will soon see its importance.

Let us pause for a moment and look at a physical application of these

rules for addition. Suppose that last night as you entered your garage

through the door leading from the house, your little brother enters through

the side door. Since the garage is completely dark, you both instinctively

reach for the light switch which is located beside each door. The four

addition rules represent the four possibilities of whether or not the garage

light will come on. Since each rule is an equation, we can think of the

numbers one and zero representing these actions.

(whether or not you whether or not your little (light is on /
turn on your switch +brother turns on his switch = result Jor it is off

" " or" "0" " or "0")

Thus, the equation 0 + 0 - 0 tells us that neither one of you moved your

light switch; therefore, the garage light did not come on. Suppose that you

heard your little brother come in and assumed that he would turn the light

on. This represents the equation 0 + 1 - 1 and the garage light comes on.

However, it could have been the other way, your little brother could have
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heard you come in and expected you to turn on the light, thus the resulting

equation would be I + 0 - 1. Now, what if both of you moved your switches

to turn the light on? As you moved your switch to turn on the light your

little brother moved his switch which caused the garage to remain in

darkness. This equation is written as 1 + 1 - 0.

We now return to the idea of vector addition. An example of how the

rules for adding components enables us to add vectors is seen when we add

the vectors e , and es

1 0 1+0 1

0 1 0+1 1
e I+e 5 = 0 + 0 = 0+0 = 0 =e 3

I 1 1+1 0
0 0 , 0+0 0

Graphically this means that if we follow the path v l, v4 , v2 (using the

edges e, and e5 ) in Figure 4.1, we will end up in the same place as we

would have if we had taken the path v1, v2 along the edge e3 . Let us look

at another example of vector addition.

1 0) 0) 1
I 1 0 0

e 3 +e6+e 8 = 0 + I + 1I= 0 =e

0 0 1 1
0 0 0 0
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This vector equation can be interpreted as saying that following the path

v V v2 , v3, v 4 (using the edges e1 , e6 and e8 ), is "equivalent" to going

directly from vertex v1 to vertex v4 along edge e .

Now that we have a description of a vector in a vector space which

represents a graph and know how vector addition works, we need to

understand some of the other vector space properties. The zero vector,

which is the 5-tuple whose entries are all zero, is a vector in this vector

space, since it contains only an even number of ones.

To understand what the zero vector corresponds to in the graph we

look at the following vector addition. We will let e0 represent the zero

vector.

1 0 1 0 1
I 1 0 0

e 3 +e 5 +e = 0 + 0 + 0 = 0 =e
o 1 1 0
0 0 0 0

If we look at how these three edges are related in the graph, we see that

they form the cycle v1 , v2 , v 5 , v 1. Thus, we can see that the zero vector

represents a cycle in the graph. Therefore, vectors which ;epresent the

edges of any cycle are linearly dependent. From our experience in linear

algebra these vectors are linearly dependent, because there is a finite linear

combination of edges whose sum is the zero vector and whose coefficients
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are not all zero. The linear combination can be written as

Ie3 + Ie5 + Ie1 - e0 . Since the coefficients are not all zero, the vectors

which represent the edges e3 , e5 and el must be linearly dependent (as are

any edges that form a cycle).

To determine the number of vectors in this vector space we recall

that the entries in each 5-tuple consists of only the numbers zero and one.

We know that there is only a finite number of ways that we can arrange the

numbers zero and one in a 5-tuple so there will be an even number of ones

in each tuple. The vector space corresponding to the graph G in Figure 4.1,

consists of the vectors in the following set:

01 10 1 1 0' 0 I1
0 101 0 0 11 10 0 10 11 1
0 0 1/ 0 0 1 0 0 1 1 !1 1 1
0001010 1j 11.0 0).01).00) 0 1 .0 1 1 1 10)

It is important to notice that not all vectors in the vector space can be

thought of as edges, since not all vectors contain exactly two ones. To see

how these vectors are related to the vectors which represent edges,

consider the following example of vector addition:



86
1 0 ) (1)
o o 0

eI+ e 7 = 0 + I= I

1 0 1
0 1 1

The resulting vector does not represent just a single edge, but the sum of

two edges which are not incident to the same vertex.

An important property of any vector space is that it is closed with

respect to the operations defined on it. Vector addition is closed, if given

any two vectors in the vector space, their sum is again a vector in the

vector space. The following exercise illustrates this idea.

Exercise 4.1

Prove that vector addition, in a vector space which corresponds to a graph,

is closed. That is, using the rules of component-wise addition, prove that

when adding any two vectors, each having an even number of ones, the

resulting vector also has an even number of ones in the (n+ I )-tuple.

The other operation in a vector space besides vector addition, called

scalar multiplication, involves multiplying a vector by a scalar For most

purposes scalars are simply real or complex numbers. For the vector space

corresponding to a graph, the scalars are either zero or one. Scalar

multiplication involves multiplying the scalar by each component in the

(n+ l)-tuple (vector), using the usual multiplication rules for zero and one.

Scalar multiplication is closed if, multiplying any given vector in the vector

space by any scalar (zero or one), it is again a vector in the vector space.
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Exercise 4.2

Prove that scalar multiplication, in a vector space which corresponds to a

graph, is closed. That is, if any (n+ l)-tuple, having an even number of ones,

is multiplied by a scalar (either zero or one), the resulting vector has an

even number of ones.

It can be shown that the requirements for a set to be a vector space

(for example, commutativity of vector addition) are easily satisfied. Hence,

G is indeed a vector space.

Unlike other non-trivial vector spaces that we have previously

studied in linear algebra, the vector space corresponding to a graph

contains only a finite number of vectors. Thus, there can only be a finite

number of bases for the vector space. An understanding of how vector

addition and scalar multiplication works, gives the necessary insight into

how the vectors which represent the edges in a spanning tree form a basis

for the vector space. For the vectors in a spanning tree to be a basis, we

must show that these vectors span the vector space and are linearly

independent.

To show that the vectors in a spanning tree span the vector space, we

need to be able to represent every vector in the vector space using only

these vectors. We will look at three cases.

Case 1

Consider any vector e in the vector space which represents an edge which

joins two vertices vi and vj. Recall from the statement of Theorem 3 in
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Section 3 that a spanning tree contains a unique path between any two

vertices. Thus, there exists a unique path in the spanning tree between vi

and vi and if we sum the vectors that represent the edges in this path, we

will get the vector which represents the edge e.

Case 2

Consider any vector e in the vector space which has more than two ones.

Recall that e can be thought of as representing the sum of edges which are

not incident. For each of the edges in the sum which e represents, we apply

Case 1 which gives a set of vectors from the spanning tree. When we sum

these sets of vectors, we get the vector which represents e.

Case 3

The zero vector can be obtained by adding any vector, which represents an

edge, in a spanning tree, to itself.

Moreover, the spanning tree contains no cycles, so it is impossible to

find a linear combination of vectors which represent the edges of a

spanning tree, with coefficients that are not all zero and whose sum is the

zero vector. Therefore, the vectors corresponding to edges of the spanning

tree are linearly independent. Because the vectors which represent the

edges of the spanning tree are linearly independent and span the vector

space, these vectors form a basis for the vector space. We will call a basis

for a vector space corresponding to a graph an edge basis, if it consists

entirely of vectors with only two ones in each n. 1 -tuple. These edge bases

correspond to spanning trees. An example of a basis which is not an edge

basis would be:
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01 1 10

00 1 1

0, 0,0 . 1

A natural question to ask is exactly how may edge bases are there for

a vector space that represents a given graph. Because an edge basis

consists of the edges of a spanning tree, this question can be answered

using the technique which was described in Section 2. which shows how to

count the number of spanning trees in a graph. To calculate the number of

spanning trees of the graph in Figure 4.1, we must first find the associated

matrix. Since the graph G is complete, the matrix has no zeros and all of the

diagonal entries are the same.

4 -1 -1 -1 -1

-1 4 -1 -1 -1
A= -1 -1 4 -1 -1

-1 -1 -1 4 -1
-1 -1 -1 -1 4

4 - I - I -1I
D= 1 4 -1 -1

-I -1 4 -1
I -1 -1 4

and IDI-125

Since the number of edge bases is the same as the number of spanning

trees, we know that the graph G in Figure 4.1 has 125 edge bases.
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Exercise 4.3

Given the graph G in Figure 4.2:

4: "3

Figure 4.2

(a) Find all the vectors in the vector space corresponding to the graph G.

(b) Determine the number of edge bases in this vector space.

(c) Draw the spanning trees which correspond to the edge bases for this

vector space.

Exercise 4.4

For each of the two Linear Algebra theorems listed below, write the

statements of their Graph Theory counterparts.

(a) If S is a set which spans a finite dimensional vector space V, then there

is a subset of S that is a basis for V.

(b) If S is a linearly independent set in a finite dimensional vector space V,

then there is a basis for 1" ,'hich contains S.
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Section 5 Transportation and Linear Programming Problems

To better show how to apply the knowledge we have gained about

spanning trees to solve transportation problems, we first discuss a more

general type of problem called a linearprogramm/ng problem Linear

programming is a relatively new area in applied mathematics which arose

in response to logistical problems which developed during World War 11.

Bland (1981) defines problems in linear programming as ones which are

concerned with the distribution of scarce resources. To the government

and corporate planner, linear programming has become a valuable tool in

the decision making process and long-range planning. Linear programming

covers a very broad range of problems. The Mr. Potatohead potato chip

transportation problem of Section I is an example of the specific type of

linear programming problem which we want to solve. Transportation

problems like the Mr. Potatohead problem, are concerned with minimizing

the cost of shipping a product from supply centers to demand centers. In

this section we will investigate a technique to solve basic linear

programming problems. Then in Section 6 we will build on this technique

to create an efficient method to solve transportation problems.

It will be easier to understand the technique used to solve a basic

linear programing problem if we first work an example. Consider the

following problem: Momma Jane's is a small privately owned (by Jane)

chocolate company which produces chocolate and almond snacks for a local

airline company. During the winter months, Jane works alone and produces

only two types of snacks; one type is a small box of candies made of milk
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chocolate with large whole almonds, and the other is a packet of specially

seasoned almonds.

These airline snacks contain two main raw ingredients: milk chocolate

and almonds. To ease her supply problems, Jane has recently negotiated a

new contract with a bulk commodities co-operative to supply her with the

needed raw ingredients. According to her new contract, Jane receives 80

ounces of milk chocolate and 128 ounces of whole almonds each day. To

produce one box of the chocolates, 3 ounces of milk chocolate are needed

along with 2 ounces of almonds. Jane puts 4 ounces of specially seasoned

almonds in each almond packet. Through years of experience, Jane has

found that it is always best to start with fresh chocolate and nuts each day.

Not wishing to throw away her leftovers, she sells them to a nearby

restaurant. She gets $. 10 per ounce for both the leftover milk chocolate and

the seasoned almonds. Jane receives $.54 for each box of the chocolates and

$.42 for each packet of almonds. Jane needs to know how many of each of

these two snacks she should produce each day to maximize her revenue.

From experience, it has been found that writing a linear programming

problem in a standard format will help to sort through and organize the

great quantity of information found in each problem. We begin by

identifying each of the variables in the problem.

Let: x- number of boxes of milk chocolate with almonds that Jane

will make

x2 - number of packets of seasoned almonds that Jane will make

x3 = ounces of leftover chocolate that Jane will sell
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x4 - ounces of leftover almonds that Jane will sell

Next, we create the objective function. .54x I + "42x2 + -10x 3 + .10 4 , by

summing the revenue generated by each variable. The objective function

gives Jane's total revenue, determined in dollars. Jane's objective is to

maximize this revenue:

Maximize Revenue: .54x +.42x 2+- 1 0x 3 +. 1 Ox4.

To determine the number of snacks which Jane can produce each day, we

must consider the constraint on each of the two ingredients (milk chocolate

and almonds). Beginning with the ingredient milk chocolate, we must first

determine the total amount available each day. We are told that each day

Jane has available 80 ounces of milk chocolate. Next we consider where the

chocolate is used: 3 ounces of chocolate is used per box (for a total of 3xI

ounces used for this type snack), and no chocolate is required in the packet

of seasoned almonds (for a total of 0x2 ounces used in this type). Also, the

amount of chocolate leftover at the end of the day is sold to the restaurant

(for a total of x3 ounces). The sum of these three quantities must equal the

80 ounces of available chocolate. In a similar way, the constraint equation

for almonds can be found. Thus, we obtain the following constraint

equations.
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Chocolate constraint: 3x I + Ox2 + x3  - 80

Almond constraint: 2x, + 4x2  + x4 - 128

In addition, it is important to notice that each of the variables that we are

working with only makes sense if its value is positive, that is, xi  0

(i- 1,2,3,4).

Recall that the goal of this problem is to maximize Jane's revenue.

When we find the right combination of values which satisfy all the

constraints and gives the maximum revenue possible, we say that this set of

values is an optimal solution. We will use the following systematic

procedure to determine values which satisfy the constraint equations. First,

we need to find the column dimension of the matrix of constraint

coefficients. In any matrix the row dimension and column dimension will

always be equal. Thus, we need only determine one of these values.

Suppose that the matrix of constraint coefficients has column dimension

equal to m. Each column of the matrix of constraint coefficients contains

coefficients for a specific variable and there is one column in the matrix for

each variable. If we choose m linearly independent columns, set the

variables not corresponding to these columns equal to zero, then solve for

the remaining variables using the constraint equations, we will get a unique

solution, called a basic solution in the m variables which correspond to

the m columns that were chosen. When the value of each variable is

greater than or equal to zero, the basic solution is called a feasible basic

solution. With this in mind, we will need the following very important
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theorem from the theory of linear programming. A proof of this theorem

can be round in Thie (1979, p. 99).

Theorem: If a linear programming problem has an optimal solution, then it

has a feasible basic solution which is optimal.

The Theorem tells us that we can find the optimal solution by looking

at feasible basic solutions. We may have to consider many solutions before

we find the optimal solution. How will we know when we have found the

optimal solution? We will look at two methods that can be used to

determine which feasible basic solution is the optimal solution.

Method I The Exhaustive Search Method

Find all basic solutions by trying every combination or m columns that

form a basis for the column space. Consider only feasible basic solutions,

that is, solutions in which all values of the variables are greater than or

equal to zero. Choose the feasible basic solution which gives the maximum

or minimum (depending on the problem) value of the objective function.

This will be the optimal solution.

This is a very straight-forward method, but not necessarily the

quickest. Even with a small number of variables this method becomes quite

cumbersome. Let us apply the Exhaustive Search Method to the Momma

Jane's linear programming problem. The matrix of constraint coefficients is:
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Since the column space has dimension 2, we may choose any two linearly

independent columns of this matrix to find our first basic solution. Let us

choose columns I and 2. This means that x3 and 4 are set equal to zero

and the constraint equations become:

Chocolate constraint: 3 x, + 0 x2 = 80

Almond constraint: 2 x I + 4 x2 - 128.

80 56
Solving this system of equations, we obtain A - T' 12 = "3" 3 0 and

x4 - 0. Using these values, we find that Jane's revenue corresponding to

this feasible basic solution is:

80 56)+.00+.00.54x + .42x2+ + 10x + 1 Ox4 -. 4 (-3)+ 3 .10(0 .10(0)

- $14.40 + $7.84 - $22.24

All feasible basic solutions for this problem are summarized below.
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Columns Chosen Solution Profit

I and 2 80 56
'2I = 3- x 2 "3- 13 = 0, x4 -0 $22.24

land3 xI -64, x2=0 , x3 =-112, x4 -0

(not a feasible basic solution)

land4 x -80 -74 .67  $21.87
1- 3 ,A x- 0, x3 0, X4746

2 and 3 xi = O, x2 = 32, x3 80, x4 -0 $21.44

2 and 4 not a basis for the column space

3and4 x I -0, x2 =0, x3 - 80, x4 -128 $20.80

We see that the optimal solution is found by using columns I and 2, giving a

maximum profit of $22.24. It is interesting to note that even though

columns I and 3 are linearly independent, and thus form a basis for the

column space, the solution of x3 - -112 is negative so we do not have a

feasible basic solution. It is also possible for two or more sets of columns to

produce feasible basic solutions that when substituted into the objective

function give the same optimal objective function value. In this case any of

these feasible basic solutions is accepted as the optimal solution.
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Exercises 5.1

Use the Exhaustive Search Method to solve the following linear

programming problem: The Aloha Outerwear Company of Maui makes

matching muumuus for ladies and traditional aloha style shirts for men.

Each day they use a different pattern of material and must buy thread

which matches. The pattern they will be sewing tomorrow, requires I

spool of white, 3 spools of yellow and 4 spools of blue thread to sew a

muumuu and 2 spools of both white and blue thread for each of the men's

aloha shirts. The company makes a profit of $10 on each muumuu and $6

on each aloha shirt. They have available to use: 18 spools of white thread,

12 spools of yellow, and 24 spools of blue. Since they will not be sewing

this pattern again for some time, they do not wish to store the leftover

thread. They are able to sell it to a local retail store for $1 per spool for

both white and yellow thread and $2 per spool for the blue. The president

of Aloha Outerwear wishes to know how many muumuus and men's shirts

need to be sewn to maximize tomorrow's profit. Hint: The following steps

will help you solve the problem.

1) Define each of the variables.

Let: x, - number of muumuus sewn

x2 - number of aloha shirts sewn

x3 - boxes of leftover white thread sold

x4 - boxes of leftover yellow thread sold

x5 - boxes of leftover blue thread sold

2) Determine the objective function.
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3) Write the constraint equation for each color of thread.

4) Summarize the information found by using the Exhaustive Search

Method.

5) Pick out the optimal solution from the summary.

When using the Exhaustive Search Method, we must substitute every

feasible basic solution into the objective function before we can find the

optimal solution. As we have seen, this can become quite a long process.

Thus, we are interested in finding another method which can be used to

solve linear programming problems that does not require as many

computations. The idea behind one such method is stated below:

Method II The Improvement Method

To use this method, first find a set of m linearly independent columns

that yields a feasible basic solution. Then gradually "improve" on this set by

systematically replacing one column in the set with another column, in such

a manner that each new basic solution has a bet ter objective function value.

We continue this process until no improvement is possible, signifying that

we have reached the optimal solution.

The statement of Method II is very general and it is not obvious at this point

how to implement it. Actually there are several ways to accomplish the

Improvement Method; one of these is the simplex method, which was

introduced by George Dantzig in 1947. This efficient and versatile

algorithm is largely responsible for the economic importance of linear
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programming. We will adapt some of the ideas behind the simplex method

to solve transportation problems.

Section 6 Solving Transportation Problems

In this section we combine our knowledge of spanning trees and their

relationship to edge bases with the insights that we have gained through

the Exhaustive Search Method, to solve transportation problems using the

Improvement Method.

To begin our study of transportation problems we consider the

following transportation problem: The Pequot Lakes Wild Rice Company in

central Minnesota recently merged with the Red Lake Rice Company in

northern Minnesota and now has two warehouses. They sell most of their

wild rice to a gourmet food chain with three outlets located in Fargo, North

Dakota, and St. Paul and Duluth, Minnesota. Because of the especially early

harvest this year, the warehouse in northern Minnesota has 10 cases of wild

rice ready to be shipped and the central Minnesota warehouse has 15 cases.

The shipping agent for the gourmet food company has ordered 4 cases of

rice for the Fargo store, 14 cases for the St. Paul store and 7 cases for

Duluth. She wants to know how many cases to request from each

warehouse so that her company pays the lowest shipping cost. The

shipping routes in Figure 6.1 are labeled to reflect the shipping costs in

dollars per case.
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Demand I
Fargo, ND

Supply 1 $ 4 4
Northern MN Warehouse

10 cases Demand 2

Supply 2 St. Paul, MNSupply42cas1 s

Central MN Warehouse t4
15 cases Demand 3

Duluth, MN
7 cases

Figure 6.1

We will use the following convenient notation to represent the shipment
quantities. Let xij be the amount shipped from supply i to demand j, where

i- 1, 2 and j- l, 2, 3. The standard format of objective function and

constraint equations which was used to write linear programming problems

is given below.

Minimize Cost: I x , I + 2x 12 + 4x 13 + 4x2 1
+ 3x 2 2 + 6x 2 3

Subject to: x I 1 
+ x 12 + x 13  -10 Supply I

x2 1 + x22 + x23  -15 Supply2

xI1 + x21  -4 Demand I

x12 + x22 -14 Demand 2

x13 +x2 3  -7 Demand3

and all xij > 0.
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If we were to use the Exhaustive Search Method, we would need to

consider the column space for the coefficient matrix of the constraint

equations shown below.

1 11 000
000 1 1 1
1 0O0 1 O00
0 1 0O0 1 0
0O0 1 0O0 1

Taking a careful look at this matrix, we see that each column has exactly

two ones. This will always be true when we are dealing with a

transportation problem. In this matrix, each column relates to an edge in

the bipartite graph which represents one particular shipping route, and

each edge of this graph is represented by a column in the matrix. To

confirm this observation, the graph representing the transportation problem

is given in Figure 6.2, with the vertices numbered to reflect supply as

vertices I and 2 and demand as vertices 3, 4 and 5.

3

2 
4

5

Figure 6.2
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The Exhaustive Search Method requires that we choose a basis for

the column space. Because each column corresponds to an edge of the

complete bipartite graph, doing so is equivalent to choosing a spanning tree

of that graph. (Actually we have shown this only when we use the rules

given on page 82. It remains true when we allow use of real coefficients

other than 0/1 and the usual real arithmetic operations for linear

combinations; using alternating coefficients of - I and + I for the edges in a

cycle shows that these edges are linearly dependent.) However, some

spanning trees require a negative amount to be shipped, similar to the

situation in the Momma Jane's chocolate problem when columns I and 3

were chosen. To understand how this can happen we will consider two

spanning trees.

Spanning Tree I All amounts shipped are positive.

Figure 6.3 displays a spanning tree with the number of cases of wild rice

shipped written on each edge.

Demand I
supply 1Fargo, ND

Northern MN Warehousee-
10 cases Demand 2

Supply 2 14.0 St, Paul, MN
14 cases

Central MN Warehouse
15 cases 1 Demand 3

Duluth, MN
7 cases

Figure 6.3
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We will consider three different methods to determine the number of

cases of wild rice which should be shipped from each warehouse.

Method I1

The edges in the graph of Figure 6.3 represent the variables x , 1' x 13' x2 2 ,

x23- If we choose the corresponding columns from the coefficient matrix,

the augmented matrix becomes

x11 x13 I22 x23
1 1 0 0 10
0 0 1 1 15
1 0 0 0 4
0 0 1 0 14
0 1 0 1 7

Reducing this matrix so the coefficient matrix of the reduced system

becomes the identity matrix, we get

xll 1 x3 x22 x 23

1 0 0 0 4
0 1 0 0 6
00 1 0 14
0 0 0 1 1
0 0 0 0 0

We see that the solution to this system, x ,1" 4, x13- 6, x22- 14, x23- I, is

exactly the number of cases of rice indicated on each edge in Figure 6.3.
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The original system in Method I was very easy to solve. In fact, if we

looked at the system carefully we would be able to determine several

values without doing any work. We could then substitute these values into

other equations and find the rest of the solution values. This procedure

should remind us of the technique used to solve systems of linear equations

in upper triangular form, called back substitution. If we start again with

the matrix

Xll x 13 x22 x23

1 1 0 0 10
0 0 1 1I 15
1 0 0 01 4
0 0 1 0 14
0 1 0 I 7

which has more equations than unknowns, we will end up with a row of

zeros when the matrix is reduced (as seen in Method 1). Thus, we may

delete any row in the augmented matrix which is a linear combination of

other rows in the matrix, before we start the row reduction process. We

choose to delete the last row in this matrix, since it can be shown that it is a

linear combination of the other rows. If we rearrange the columns of the

new matrix, being careful to keep track of the variables which correspond

to the column, we can create the upper triangular coefficient matrix given

below.
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x13 x23 xIt x22

o I o 1 15
0 0 1 0 4
0 0 0 1 14

Using back substitution to solve for the variables, we find that xI jl 4,

x13- 6, x22- 14, and 123- 1, which are the number of cases of wild rice that

need to be shipped from the warehouses to the respective stores.

Method 3

The final method describes in words what was being done in Methods 1 and

2 using Linear Algebra. Recall that by Lemma 2 of Section 3, every

spanning tree has at least one vertex that has degree 1. For example, the

vertex representing the gourmet store in Fargo, ND that requires 4 cases of

wild rice, has degree 1. Since the northern warehouse is the lone supplier

to Fargo, this forces 4 of the 10 cases or rice at the northern warehouse to

be shipped to Fargo. This is the physical interpretation of the third line in

the matrix equation from Method 2 which is repeated below.

x13 x23 x11 X22

I 0 1 0 10
I 1115

0 0 1 0 4

0 0 0 1 14

There are 6 cases remaining at the warehouse and they can be either

shipped to St. Paul or Duluth. However, since the shipping route
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connecting the northern warehouse to St. Paul has been excluded, all 6

cases are shipped to Duluth. This is the same as using back substitution in

the first equation of the augmented matrix above. The Duluth store needs I

more case of rice to fulfill their requirement of 7 and it must come from the

central Minnesota warehouse. This is how we interpret the second equation

in the matrix above. St. Paul requires 14 cases and since the central

warehouse has 14 cases left, they are all shipped to St. Paul. In the above

matrix, this can be seen using the last equation.

Spanning Tree 2 All amounts shipped are negative.

Figure 6.4 displays a spanning tree with the number of cases of wild rice

shipped from the warehouse written on each edge. Note that one edge has

a negative amount to be shipped.

Demand 1
Supply 1 4 . Fargo, ND

Northern MN Warehouse
10 cawe14 Demand 2

Supply 2 -8 St Paul, MN
1cases

Central MN Warehouse 0
15 Cases 1 5 \ Demand 3

Duluth, MN
7 cases

Figure 6.4
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Exercise 6.1

(a) Use the technique of Method I in Spanning Tree I to confirm the

number of cases of rice to be shipped from the warehouses to the respective

stores as indicated in Figure 6.4.

(b) Use the technique of Method 2 in Spanning Tree 1 to confirm the

answers you found in part (a).

Method 3

Again we apply Lemma 2 of Section 3, (every spanning tree has at least one

vertex that has degree 1) to the graph in Figure 6.4 and begin by

considering where the central warehouse can ship its cases of rice. Since

there is only one shipping route available, all 15 cases must be shipped to

Duluth. However, only 7 cases are needed at the store in Duluth, so the

remaining 8 cases must be shipped on to the northern warehouse. The

additional time required to ship the 8 cases from the central warehouse to

the northern warehouse through Duluth would eliminate this as a possible

shipping route. This is the physical interpretation of -8 in Figure 6.4. Since

the solution will contain a negative number, we do not have a feasible basic

solution and there is no need to find the other values in this solution.

If we were going to use the Exhaustive Search Method to minimize the

shipping cost, we would have to check both the spanning trees in Figures

6.3 and 6.4 as part of the solution technique. However, we plan on using

the Improvement Method to solve this transportation problem. We need to

be able to select a spanning tree, which does not contain any negative

shipping quantities, from the graph representing the transportation

problem. Even though we have already found such a spanning tree for this
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problem (Figure 6.3), we need a procedure to find one in general. We begin

by drawing the graph of a transportation problem in the following standard

format.

Demand 1

Supply 1

Demand 2

Supply 2

Demand 3

Demand m-I

Supply n

Demand m

Figure 6.5

Northwest Rule

Given a complete bipartite graph drawn using the standard format of

Figure 6.5, begin with the northwest supply center (Supply 1) and if

possible, fill the order of Demand 1. Indicate the quantity shipped on the

line connecting the supply center with the demand center. Then, continue

filling demand centers orders until the product at Supply 1 has been

depleted. Repeat this process with Supply 2. If Supply I was not able to

fill the order of Demand 1, then Supply 2 continues to fill the order. This
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procedure continues until all supply centers have been depleted and all

demand centers requests have been filled.

If we use the Northwest Rule, the resulting spanning tree will only

have positive quantities designated to be shipped from supply centers to

demand centers. Figure 6.6 shows the steps involved in applying the

Northwest Rule to the Pequot Lakes Wild Rice problem. Notice that in this

problem the total supply equals the total demand, so all items are shipped.

We consider this condition to be true for all our transportation problems.

Demand I Demand 1
Fargo Fargo

supply -04supplSupply 1 4 cum
1thern Demand 2 N0 Demand 210 Casa eSt. Paul 6 ..,ASt. Paul
Supply 2 0 14 Cuggg Supply 20 14 cases
Central * Demad 3 Cenal *Demand 3
15 cDluh 15 CueS Duh

(a) (b) 7

Demnd I Demand 1

Supply I Fargo supply 1 Fego
Norther I* 4 cam Northern _-4

10 cues Demand 2 10 ces ma -.o.t,., Demad 2
'Paul 5 St. Paul

Suly 2 e-- 14 -e- Supply 2 14 cesCenralcenale * :7,-,,.4 Demand315Cstl s Demnd 3 15 cus
Duluth Duluth

7 caes 7 cuzes(c) (d)

Figure 6.6

We will apply the Improvement Method to the spanning tree in Figure

6.6(d). The cost that we will try to improve (minimize) is:
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Ill1 + 2 x12 + 4x 1 3 + 4x2 1 + 3x 2 2 + 6x 2 3

-1 (4) +2 (6) + 4 (0) + 4 (0) + 3 (8) + 6 (7)

- $82.

The general goal of the Improvement Method is to find an alternative

spanning tree which will give a cost less than $82. To do this we will

attempt to add an edge to the spanning tree which will create a cycle, then

take away an edge on the cycle, leaving a different spanning tree with a

cost less than $82. From the spanning tree in Figure 6.6(d) we notice that

there are only two possible edges that we can add. They are the ones

representing the shipping routes from the northern warehouse (Supply 1) to

Duluth (Demand 3) and from the central warehouse (Supply 2) to Fargo

(Demand 1).

First. we determine if adding the shi2oing route from the central

warehouse to Fargo will lower (improve) the shi2ning cost.

From Figure 6.1, we see that the cost to ship a case of wild rice from the

central warehouse directly to Fargo is $4. Since Figure 6.6(d) is a spanning

tree, Theorem 3 of Section 3 (any pair of vertices in a tree is joined by

exactly one path) tells us that the path from the central warehouse to Fargo

is unique. We want to check to see if shipping a case of rice along the

unique path in Figure 6.6(d) is more cost effective than shipping it directly

from the central warehouse to Fargo. The unique shipping route from

Figure 6.6(d) which is used to move one case of rice from the central

warehouse to Fargo starts at the central warehouse, goes to St. Paul, back to

the northern warehouse, and then on to Fargo. The equivalent cost is
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c2 2 -c 12 +c 1 1 -3-2+ I-2,

where cij is the cost to ship one unit along the edge xi. The cost of c 12 is

-2 because it is equivalent to shipping one less unit from Supply 1 to

Demand 2, thus decreasing the cost. That is, we are saving $2. Since the

cost is less to ship a case from the central warehouse to Fargo, in the

spanning tree of Figure 6.6(d), than it is to ship it directly, we decide not to

add this shipping route to our tree. We now consider adding the only other

possible shipping route.

Determine if adding the shiooing route from the northern warehouse to

Duluth will lower (imorove) the shigoing cost.

From Figure 6. 1, the cost to ship a case of wild rice from the northern

warehouse directly to Duluth is $4. The equivalent shipping route in the

spanning tree of Figure 6.6(d) would be to ship the case from the northern

warehouse to St. Paul, back to the central warehouse, and then to Duluth.

The cost is:

C12 - c2 2 + c2 3 - 2 - 3 + 6 - $5.

Since the cost of shipping direct is cheaper, we add the edge which

represents the shipping route from the northern warehouse to Duluth. The

newly added edge is indicated in Figure 6.7 by the bold line.
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Demand 1

Supply 1 4" Fargo, NDSuppl ! _ 41Jr4 came

Northern MN Warelouse
10 cases 6 Demand 2

Supply 2 St. Paul, MN
Supply4 2lcases

Central MN Warehouse :
15 cases 7 Demand 3

Duluth, MN
7 cases

Figures 6.7

Since the unique path from the northern warehouse to Duluth or Figure

6.6(d) and the newly added edge that goes directly from the northern

warehouse to Duluth are both included in Figure 6.7, we now have a cycle.

Therefore, we must decide which edge of the cycle is to be removed so that

we once again have a spanning tree. Since it is cheaper to ship directly

from the northern warehouse to Dulu,.h, we want to determine how many

cases of rice can be rerouted. Figures 6.8(a)-(f) shows what happens as we

reroute one case at a time along the newly added shipping route.
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Demand I Demad I
Fargo Fargo

Norplern 40 4em supply 1 4*icaeNorthern D--  "  210 ce e . _ Demn d 2 10 nu em- -- , Demnd 2

Supply2 St. Paul Su"pl- , S. Paid

cenra 6 14 cur ulY 14 cuwa
15 cree Ded 3 15 cue: Deamnd 3

Duluth Duluth
7cue 7caem

(a) (b)

Demad 1 Demad 1Fargto Fargto

supply 1 Farg supply 1 FeriocuNoten-Northern a1Nte8 n Demad2 10 cue: 2 Demand2
1- cu:! St. Paul S 2"$2St. Paul

Sup~2~~ 14 1ue Suppl
cnrlcentral 4 ceies l Ded 3 i5 3 .N Deand 3

Duluth Dulueh

(C) (d)

Demand 1 Demand Isupply 1 Fei Farto

Northern _d
0o--ern Demand 2 10 ce:mm Demand 2St.pai S. Paul

central 2 Z ono 15 c
1uIth Duluth
7 cue:7

(e) (r)

Figure 6.8

From Figure 6.8(f) we see that the maximum number of cases which can be

rerouted is six. This constraint is determined by the shipping route from

the northern warehouse to St. Paul because it is the first route in the cycle

that becomes zero. As a result this is the edge that is dropped. When this is

done, we have the spanning tree in Figure 6.9.
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Demand I

supply 1 4 -Fargo, ND
4 cases

Northern MN Warehouse* _
10 cases K6 Demand 2

Supply 2 4 14 caumN
Central MN Warehouse

15 cases I Demand 3
Duluth, MN
7 cases

Figure 6.9

Have we found the optimal solution? To determine if we have found the

optimal solution, we must repeat the procedure above. That is, we must

-heck all the possibilities for new shipping routes. The only two shipping

routes that we can consider adding, would be the one from the central

warehouse to Fargo and the one from the northern warehouse to St. Paul.

Shipping a case of wild rice from the central warehouse to Fargo, costs $4 a

case. The equivalent cost to ship one case of wild rice from the central

warehouse to Fargo in the spanning tree of Figure 6.9 would be to ship the

case from the central warehouse to Duluth, back to the northern warehouse,

and then to Fargo. The cost would be:

c2 3 -c 2 2 +c 1 1  6-4+1-$3.

Since it is cheaper to ship a case from the central warehouse to Fargo, in

the spanning tree of Figure 6.9, than it is to ship it directly, we decide not to

add this shipping route to the spanning tree. Shipping a case of wild rice

from the northern warehouse to St. Paul, costs $2 a case. The equivalent

cost to ship one case of wild rice from the northern warehouse to St. Paul in
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the spanning tree of Figure 6.9, would be to ship the case from the northern

warehouse to Duluth, back to the central warehouse, and then to St. Paul.

The cost would be:

c1 3 - c2 3 + c2 2 - 4- 6+3 - $1.

Since the cost is less to ship a case from the northern warehouse to St. Paul,

in the spanning tree of Figure 6.9, than it is to ship it directly, we decide not

to add this shipping route to the spanning tree. We conclude that the

optimal solution is represented by the graph in Figure 6.9. The minimum

cost is:

Ill +2x 12 +4x 13 +4x 21 +3x 2 2 +6x 2 3

- 1 (4) + 2 (0) + 4 (6) + 4 (0) + 3 (14) + 6 (1)

- $76.

Exercise 6.2

The graph in Figure 6.10 represents a transportation problem where the

shipping cost per item is indicated on each edge in the graph.

(a) Write the objective function and constraint equations for this problem.

(b) Use the Northwest Rule to find a spanning tree which represents a

feasible basic solution.

(c) Use the Improvement Method to find the optimal solution and show

that no matter which edge you consider adding to the graph first, both give

the same optimal solution.
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Supply 1 ., o d
4 units

Demand 16 units
Supply 2
4 units $14

$2 Demand 2

-6 units
4 units

Figure 6.10

Exercise 6.3

Use the Improvement Method to solve the Mr. Potatohead Potato Chip

Company transportation problem of Section 1. (Be sure to include the

objective function and constraint equations for this problem.)

Section 7 Summary

The overall goal of this module was to illustrate how to take advantage

of interrelationships between Graph Theory and Linear Algebra to solve a

transportation problem. However, we had a lot of preliminary work to do

before we could consider this type of problem. First we needed to

understand what a graph was, so we began by introducing some basic

definitions and ideas of Graph Theory. This led us to the concept of a

spanning tree and an algorithm to determine the number of spanning trees

in a graph. Before we could use this new information about Graph Theory,
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we needed to study theorems to show us how these ideas were related to

each other. Next we looked at how this new information paralleled

definitions and theorems we had already studied in Linear Algebra. Of

particular interest was the relationship between a graph and the vector

space which represents it. We also saw how a linear programming problem

could be solved by finding all of the basic feasible solutions, then choosing

an optimal solution from among them. Although this technique required

many calculations, we were able to modify it by considering a basic feasible

solution and improving upon it until an optimal solution was reached.

Finally, we were able to use this knowledge to solve a transportation

problem.
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Application II Appendix: Solutions to Exercises

(a) The degree of v3 is 4.

The degree of v4 is 3.

The degree of v5 is 2.

(b) One possible walk that is not a path is

v 2 , v 3 , v I, v4 , v 3 , v4 , v5.

(c) The path created from the above walk is

v2 , v 3, v I , v4. v5 or v 2 , v3 , v5 or v 2 , v I, v3 , v4 , v 5 or v2 , v 3 , v 4 , v5

(d) One possible cycle with 3 distinct vertices is

v 3 , v5 , v4 , v 3

One possible cycle with 4 distinct vertices is

v 1 , v2 , v3 , v4 , v 1 •

Exercis 1.2

(a) Figure A.I is a connected graph.
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AA
Figure A.1

(b) Figure A.2 is a disconnected graph.

Figure A.2

(c) Figure A.3 is a complete graph with 4 vertices.

Figure A.3

(d) No, it is not possible to have a complete disconnected graph.

Since G is connected, we know that between any two vertices in G there is

a walk. We will use that walk to find a path between the vertices. Choose
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any two distinct vertices, for example, u and v in G. Then there exists a

walk from u to v. If this walk is a path, then we are done. If not, let w be

the first vertex which is repeated in the walk. Delete from the walk all

vertices and edges which immediately follows the first time that w occurs,

up to and including the second time w occurs. We notice that this is still a

walk from u to v in the graph G. If this new walk is a path, then we are

done. If not, then we continue to use the procedure above until no vertex is

repeated. This yields a walk from u to v which is a path. Because the

starting and ending vertices were chosen arbitrarily, we have shown that

there is a path between every two distinct vertices. 0

(a) A subgraph of the graph in Figure 1.2, which is not a spanning

subgraph, is given in Figure A.4.

V
3  v 4

2 
3

Figure A.4

(b) A spanning subgraph of the graph in Figure 1.2 is given in Figure A.5.
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V5

V I e3 e7 V
16

2 
\

V 2 V 3

Figure A.5

(a) A tree of the -raph in Figure 1.2, which is not a spanning tree, is given

in Figure A "

05V2 e4 3

Figure A.6

(b) No, not all trees are spanning trees.

(c) Yes, all spanning trees are trees.

E x g 2a (.

The graph G has eight spanning trees. They are given in Figure 2.3.
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Observe that n-3.

1 0 0 -1

0 2 -1 -10 1 2 -1

1 1 -1 3

D= 0 2-1
0 -1 2

The number of spanning trees is IDI - 3.

The three spanning trees of G are given in Figure A.7.

Figure A.7

Observe that n-4.

3 0 -1 -1 -1
0 3 -1 -1 -1

A= -1 -1 2 0 0
-1 -1 0 2 0
-1-1 0 0 2
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3 0 -1 -1

D 0 3 -1 -1
-1 -1 2 0
-I -1 0 2,

The number of spanning trees is IDI - 12.

The twelve spanning trees of G are given in Figure A.8.

Figure A.8

We must show that if we add any two vectors which have an even number

of entries that are ones, we will get another vector which has an even

number of ones as entries.

Let x and y be two vectors with an even number of ones in their tuples.
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Case x-y.

Then the resulting vector x~y is the zero vector (all of whom entries are

zero), which has and even number of ones.

Case2 Either x or y is the zero vector, but not both.

If x were the zero vector, then x+y - y, which has an even number of ones.

If y were the zero vector, then x+y - x, which has an even number of ones.

Case3 Neither x nor y are zero, nor are they equal.

Subcas I x and y do not have a one in the same position in each

vector.

Then x+y will have (number of ones in x).(number of ones in y) and the

sum of two even numbers in an even number.

Subas 2 There is an odd number of corresponding positions in x and

y that contain ones.

Then there is an odd number of ones in x that do not have a one in the

corresponding position in y. Similarly, there is an odd number of ones

in y that do not have a one in the corresponding position in x. Thus,

there is (odd number of ones in x),(odd number of ones in y) or an even

number of ones in x+y.

Subcase There is an even number of corresponding positions in x

and y that contain ones.

Then there is an even number of ones in x that do not have a one in the

corresponding position in y. Similarly, there is an even number of ones

in y that do not have a one in the corresponding position in x. Thus,

there is (even number of ones in x),(even number of ones in y) or an

even number of ones in x+y.

Therefore vector addition is closed.
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ExercisQe4

We must show that if we multiply a vector with an even number of entries

that are one by any scalar, then we will again have a vector with an even

number of ones.

Let x be any vector with an even number of entries that are one.

C Multiply x by the scalar 0.

When we multiply by the scalar 0, we multiply each entry in the tuple by

zero. The resulting vector is the zero vector, which has an even number of

ones.

Cas2 Multiply x by the scalar 1.

When we multiply by the scalar 1, we multiply each entry in the tuple by

one. The resulting vector is x, the vector we started with, which has and

even number of ones.

Therefore scalar multiplication is closed.

(1) To find the vectors in the vector space corresponding to the graph G in

Figure 4.2, we notice that n-3, so the vectors will be 4-tuples, all of whose

entries are zeros and ones, and only an even number of ones in each tuple.

Thus, the vector space is:

1 0 0 1 1 0 1 0

0 1 0 10 1 1
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(2) We can calculate the number of spanning trees by using the algorithm

found in Section 2. Since we are dealing with a complete graph, the

associated matrix has no zeros and all of the diagonal entries are the same.

r 3 1- -I - I

A= 3 -1 -1
-I - I 3 - 1

-1 -1 -1 3

3 -1I - 1

D= - 1 3 -1
-1 -I1 3

and IDI-16

Because the number of edge bases is the same as the number of spanning

trees, we know that the graph G has 16 edge bases. The spanning trees,

which are the graphs corresponding to these edge bases, are given in

Figure A.9.
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12 21 2 12

4- -3 4 43 4 3 4 3

4 3 4 43 4 -3 4- 3

2 / 1 2 1,. .2 1 2

4E13
4w  43 4 3 4 3 4

12 21 2 12

4 X 3 4 X 3 4 X34 X

Figure A.9

(a) If G is a connected graph, then there exists a spanning tree for G.

(b) If S is a set of edges from a connected graph G, such that S has no

cycles, then there is a spanning tree of G which contains S.
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Maximize Profit: 10 x 1 +6x 2 +1x 3 + x4 + 2x 5

Subject to: Ix l +2x 2  +x3  =18

3 x I + 0 x2  + x 4  - 12

4 x I, +2 x2  + x5 - 24

The column space has dimension 3. All basic solutions for this problem are

summarized below.
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Columns S nProfit

1, 2, 3 xi=4, x2 -4, x3=6, x4 -O, x5 -0 $70

1,2,4 xi=2, x2-8, x3-0, x4=6, x5-0 $74

1, 2, 5 x -4, x2 -7, x3=0, X4=0, x5=-6 impossible

1, 3, 4 x1 -6, x2=0, x3=12, x4=-6, x5=0 impossible

1,3,5 Xl-4, x2-0, x3=14, x4=0, x5-8 $70

1,4,5 XI =18, x2=0, x3=0, x4--42, x5--48 impossible

2, 3, 4 xI=0, x2= 12, x3-6, x4. 12, x50 impossible

2, 3, 5 not a basis for the column space

2,4,5 X1=O, x2=9, x3-0, x4=12, x5=6 $78

3,4,5 x10, x2=0, x3-18 , 4-12 , x5-24 $78

By examining these feasible basic solutions, we see that there are two

feasible basic solutions which produce the same optimal solution. Thus, the

maximum profit is $78.
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Exrcis-.
(a) The edges in the graph of Figure 6.4 represent the variables x I, x 13'

x2 2 , x23. If we choose the corresponding columns from the coefficient

matrix, the augmented matrix becomes

X11 x12 x13 x23
I I 1 0 101
0 0 0 1I 15
1 0 0 0 4
0 1 0 0 14
0 0 1 1 7

Reducing this matrix, we get

Xl I 12 x 13 X23

1 0 0 0 4
0 1 0 0 14
0 0 1 0 -8
0 0 0 1I 15
0 0 0 0 0

We see that the solutions to this matrix, xI I= 4, x12- 14, x13= -8, X23= 15,

are exactly the number of cases of rice indicated on each edge in Figure 6.4.

(b) Since the augmented matrix used in part (a) has more equations than

unknowns, we will end up with a row of zeros when the matrix is reduced

(as seen in part (a)). Thus, we may delete any row in the augmented matrix

which is a linear combination of other rows in the matrix, before we start
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the row reduction process. We choose to delete the last row in the

augmented matrix, because it can be shown to be a linear combination of

the other rows. If we carefully rearrange the columns of the new matrix,

we can create the upper triangular coefficient matrix given below.

x13 x23 11 x12

1 0 1 1 10
0 1 0 0 15
0 0 1 0 4
0 0 0 1 14,

Using back substitution to solve for the variables, we find that x, - 4,

x12= 14, x13= -8, and x23= 15, which are the number of cases of wild rice

that need to be shipped from the warehouses to the respective stores.

Exerie 6.
(a) Before we can use the Improvement Method, we need the objective

function and the system of constraint equations for the transportation

problem.



134

Minimize: lOx 11+3x12 +12x 21 
+ 14x 2 2+2x 31 +8x 3 2

Subject to: x H + x 12  -4 Supply I

x2 1 +x2 2  -4 Supply 2

X3 1 + x3 2 -4 Supply 3

X I I + x21 -6 Demand I

x22 + x32 -6 Demand 2

and all xi > 0.

(b) Using the Northwest Rule, we find the spanning tree in Figure A.10

which represents a basic feasible solution.

Supply I
4 units

Demand 1

2. 6 units
Supply 2

4 units

Figure A.1O

(c) The amount that we will try to improve (minimize) is



135

1Ox I I 3x 12 + 12x 2 1
+ 14x 2 2 + 2x 3 1+ 8x32

-10(4)+3(0)+12(2)+ 14(2)+2(0)+8(4)

- $124

From the spanning tree we see that there are only two possible edges that

we can consider adding that may improve on the cost of $124. They are the

route from Supply 1 to Demand 2 and the route from Supply 3 to Demand 1.

Determine if adding the shiooing route from Supoly 1 to Demand 2 will

lower (improve) the shi2oing cost.

From Figure 6.10, we see that the cost to ship from Supply I to Demand 2

is $3. The cost to ship along the route in the spanning tree in Figure A.10 is:

c1 1 -c 21 +c 2 2 - 10- 12+ 14=$12

Since the cost of shipping direct is cheaper, we add the edge which

represents the shipping route from Supply 1 to Demand 2. However, we

now have a cycle, so we must decide which edge of the cycle is to be

removed. To help us decide, we must determine how many items can be

rerouted using the newly added shipping route. Figure A. 11 shows that the

maximum number of items which can be rerouted is 2 and the edge to be

removed is the one from Supply 2 to Demand 2. The newly added edge is

indicated with a bold line.
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Supply4uts 2
4~~~ ~ units 0DmnI

Supply 2 4 6un

4 units
Demand 2

4 6 units
Supply3
4 units

Figure A.]1

When this edge is dropped, we have the spanning tree in Figure A. 12.

nisupply 1
Suply units Demand I

6 units
Supply 2 * 4 \
4 units

Demand 2
Suppy .4 6 unitsSupply3

4 units

Figure A.12

To determine if we have found the optimal solution, we must repeat the

above procedure. That is, we must check all the possibilities for new

shipping routes. The only two shipping routes that we could consider

adding are from Supply 2 to Demand 2 and from Supply 3 to Demand 1.

The shipping cost for one item from Supply 2 to Demand 2 is $14. The

equivalent cost to ship one item in the spanning tree of Figure A. 12 is
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c21 - cl I + C12 - 12 - 10 + 3 - $5.

Since it is cheaper to ship an item from Supply 2 to Demand 2, in the

spanning tree of Figure A. 12, than it is to ship it directly, we decide not to

add this shipping route to the spanning tree. Shipping an item from Supply

3 to Demand I costs $2. The equivalent cost to ship an item in the spanning

tree of Figure A. 12 is

c3 2 -c 12 +CII -8-3+10-$15.

Since the cost of shipping direct is cheaper, we add the edge that represents

the shipping route from Supply 3 to Demand 1. However, we now have a

cycle, so we must decide which edge of the cycle is to be removed. To help

us decide, we must determine how many items can be rerouted using the

newly added shipping route. Figure A.13 shows that the maximum number

of items which can be rerouted is 2 and the edge to be removed is the one

from Supply 1 to Demand 1. The newly added edge is indicated with a bold

line.

Supply I
4 units0dI

4 Demand 1
. 6 units

Supply 2 OA
4 units

FiurDemand 2
Supply3 23 nt

4 units

Figure A-13
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When this edge is dropped, we have the spanning tree in Figure A.14.

Supply 1
4 units 

14
6 units

Supply 2 *4
4 units 2

Demand 2
6 units

Supply3
4 units

Figure A.14

To determine if we have found the optimal solution, we must repeat the

above procedure. That is, we must check all the possibilities for new

shipping routes. The only two shipping routes that we need consider

adding are from Supply I to Demand I and from Supply 2 to Demand 2.

The shipping cost for one item from Supply 1 to Demand 1 is $10. The

equivalent cost to ship one item in the spanning tree of Figure A.14 is

c 12 -c 3 2 +c 3 1 -3-8+2--$3.

Since it is cheaper to ship an item from Supply I to Demand 1, in the

spanning tree of Figure A.14, than it is to ship it directly, we decide not to

add this shipping route to the spanning tree. Shipping an item from Supply

2 to Demand 2 costs $14. The equivalent cost to ship an item in the

spanning tree of Figure A.14 is

c21- c31 +c 32 - 12 -2 + 8- $18.
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Since the cost of shipping direct is cheaper, we add the edge that represents

the shipping route from Supply 2 to Demand 2. However, we now have a

cycle, so we must decide which edge of the cycle is to be removed. To help

us decide, we must determine how many items can be rerouted using the

newly added shipping route. Figure A.1 5 shows that the maximum number

of items that can be rerouted is 2 and the edge to be removed is the one

from Supply 3 to Demand 2. The newly added edge is indicated with a bold

line.

Supply 1
4 

Demand 1
6 units

Supply 2
4 units

4 Demand 2

Supply3
4 units

Figure A.15

When this edge is dropped, we have the spanning tree in Figure A.16.
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Supply 
4 units \4 Demand 1

6 units
Supply 2
4 units

Demand 
2

4 6 unitsSupply 3/
4 units

Figure A.16

To determine if we have found the optimal solution, we must repeat the

procedure above. That is, we must check all the possibilities for new

shipping routes. The only two shipping routes that we could consider

adding would be from Supply 1 to Demand I and from Supply 3 to Demand

2. The shipping cost for one item from Supply I to Demand 1 is $10. The

equivalent cost to ship one item in the spanning tree of Figure A.16 is

c 12 - c2 2 c2 1 - 3 - 14 + 12 = $1.

Since it is cheaper to ship an item from Supply 1 to Demand 1 in the

spanning tree of Figure A.1 6, than it is to ship it directly, we decide not to

add this shipping route to the spanning tree. Shipping an item from Supply

3 to Demand 2 costs $8. The equivalent cost to ship an item in the spanning

tree of Figure A. 16 is

c3 1 -c 2 1 +c 22 -2- 12+ 14-$4.

Since it is cheaper to ship an item from Supply 3 to Demand 2, in the

spanning tree of Figure A. 16, than it is to ship it directly, we decide not to
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add this shipping route to the spanning tree. Therefore, we have found tWe

optimal solution and the minimum cost is

lOx I 1 3xl2 + 12x21* 14x22 + 2x31 + 8x32

-10(0)+3(4)+ 12 (2)+ 14 (2),2(4)+8(0)

= $72.

Determine if adding the shioping route from Supply 3 to Demand 1 will

lower (improve) the shipping cost.

From Figure 6.10, we see that the cost to ship from Supply 3 to Demand 1

is $2. The cost to ship along the route in the spanning tree in Figure A. 10 is

c3 2 - c2 2 + c2 1 - 8 - 14 + 12 =$6.

Since the cost of shipping direct is cheaper, we add the edge which

represents the shipping route from Supply 3 to Demand 1. However, we

now have a cycle, so we must decide which edge of the cycle is to be

removed. To help us decide, we must determine how many items can be

rerouted using the newly added shipping route. Figure A. 17 shows that the

maximuI number of items which can be rerouted is 2 and the edge to be

removed is the one from Supply 2 to Demand 1. The newly added edge is

indicated with a bold line.
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Supply I
4 units

Demand 1
6 units

Supply 2
4 units

Demand 2
6 units

Supply 3
4 units

Figure A.17

When this edge is dropped, we have the spanning tree in Figure A.18.

Supply I
4 units

Demand 1
6 units

Supply 2
4 units

Demand 2
2 6 units

Supply 3
4 units

Figure A.18

To determine if we have found the optimal solution, we must repeat the

procedure above. That is, we must check all the possibilities for new

shipping routes. The only two shipping routes that we could consider

adding are from Supply I to Demand 2 and from Supply 2 to Demand 1.

The shipping cost for one item from Supply I to Demand 2 is $3. The

equivalent cost to ship one item in the spanning tree of Figure A. 18 is
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clI-C 3 1 +c 3 2 - 10-2+8-$16.

Since the cost of shipping direct is cheaper, we add the edge which

represents the shipping route from Supply I to Demand 2. However, we

now have a cycle, so we must decide which edge of the cycle is to be

removed. To help us decide, we must determine how many items can be

rerouted using the newly added shipping route. Figure A.1 9 shows that the

maximum number of items which can be rerouted is 2 and the edge to be

removed is the one from Supply 3 to Demand 2. The newly added edge is

indicated with a bold line.

Supply 1
4 units 2

Demand 1
6 units

Supply 2
4 units

Demand 2
04~ 6 units

Supply 3
4 units

Figure A.19

When this edge is dropped, we have the spanning tree in Figure A.20.
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Supply 1
4 units 2 Dmn2... Demand 1

6 units
Supply 2
4 units

Demand 2

Supply3
4 units

Figure A.20

To determine if we have found the optimal solution, we must repeat the

procedure above. That is, we must check all the possibilities for new

shipping routes. The only two shipping routes that we could consider

adding would be from Supply 2 to Demand 1 and from Supply 3 to Demand

2. The shipping cost for one item from Supply 2 to Demand I is $12. The

equivalent cost to ship one item in the spanning tree of Figure A.20 is

c23 - c13 + cl 1 - 14 - 3 + 10 - $21.

Since the cost of shipping direct is cheaper, we add the edge that represents

the shipping route from Supply 2 to Demand 1. However, we now have a

cycle, so we must decide which edge of the cycle is to be removed. To help

us decide, we must determine how many items can be rerouted using the

newly added shipping route. Figure A.21 shows that the maximum number

of items which can be rerouted is 2 and the edge to be removed is the one

from Supply 3 to Demand 2. The newly added edge is indicated with a bold

line.
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Supply I
4 units 4 Demand I

6 units
Supply 2

4units -
Demand 2

units6 units
Supply 

3

4 units

Figure A.21

When this edge is dropped, we have the spanning tree in Figure A.22.

Supply I
4 unts 4 \ Demand 1

2' 6 units
Supply 2 < 

4 units 2 Demrand 2
4 6 units

Supply 3 6ui
4 units

Figure A.22

To determine if v - have found the optimal solution, we must repeat the

procedure above. That is, we must check all the possibilities for new

shipping routes. The only two shipping routes that we need consider

adding are from Supply I to Demand I and from Supply 3 to Demand 2.

The shipping cost for one item from Supply I to Demand 1 is $10. The

equivalent cost to ship one item in the spanning tree of Figure A.22 is
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c12- c2 2 + c2 1 -3- 14 + 12- $1.

Since it is cheaper to ship an item from Supply I to Demand I in the

spanning tree of Figure A.22 than it is to ship it directly, we decide not to

add this shipping route to the spanning tree. Shipping an item from Supply

3 to Demand 2 costs $8. The equivalent cost to ship an item in the spanning

tree of Figure A.22 is

c3- c2 1 + c2 2  2 - 12 +14 =$4.

Since it is cheaper to ship an item from Supply 1 to Demand 1, in the

spanning tree of Figure A.22, than it is to ship it directly, we decide not to

add this shipping route to the spanning tree. Therefore we have found the

optimal solution and the minimum cost is

10x I+ 3x1 2 + 12x21+ 14x 2 2 + 2x 3 1
+ 8x 3 2

- 10 (0) + 3(4) + 12 (2) +14 (2) + 2(4) +8 (0)

- $72.

Notice that Figures A.16 and A.22 are identical. Thus, it did not

matter which edge we considered adding first since both give the

same optimal solution.

Figure A.23 illustrates the Mr. Potatohead transportation problem.
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Demand 1
Colorado Springs, CO

Supply 1 $.l7.--< , 1000 cae
Boise Warehouse S.25

1900cases Demand 2
1San Francisco, CA

Supply 2 S.15 1200 cases
Modesto Warehouse ,. $.231200 cases S.2 1.... i:emand 3

San Diego, CA
900 cases

Figure A.23

Let xij be the amount shipped from supply i to demand j, where i- I, 2 and

j-l , 2, 3. The transportation problem written in standard format is:

Minimize Cost:

.17x I +.18x 1 2+.23x 1 3 +.25x2 l+.151 2 2+.2 1x2 3

Subjectto: xI + x 12 +113 =1900 (Supply 1)

121 + x22 + X23 -1200 (Supply 2)

xll + x2l -1000 (Demand 1)

x12 + x22 -1200 (Demand 2)

X13 + X23 -900 (Demand 3)

and all xi L. 0.

Using the Northwest Rule, we get the spanning tree in Figure A.24.
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Demand I
Sp 1Colorado Springs, CO

Supply 1 1000 1000 cases

Boise Warehouse
1900 cases oo0, Demand 2

San Francisco, CA
Supply 2 .,,300 1200 cases

Modesto Warehouse *go o-
1200 cases '--.*Demand 3

San Diego, CA
900 cases

Figure A.24

The cost that we will try to improve (minimize) is:

.17x I+ .1 8x 12+ .23x 13+ .25x2 1+ .15x22+ .21 x23

-. 7(000) + .18(900) + .23(0) + .25(0) + .15(300) + .21(900)

- $566.

The two shipping routes that we need to check to determine if either should

be added to the spanning tree are from Boise to San Diego and from

Modesto to Colorado Springs.

Solution 1: Determine if adding the shipping route from Boise to San

Diego will lower (improve) the shipping cost.

From Figure A.23, we see that the cost of shipping a case of chips from

Boise to San Diego is $.23. The cost to ship along the route in the spanning

tree in Figure A.24 is

cII - c2 2 c23= 18 -. 15+.21 - $.24.



149

Since the cost of shipping direct is cheaper, we add the edge which

represents the shipping route from Boise to San Diego. However, we now

have a cycle, so we must decide which edge of the cycle is to be removed.

To help us decide, we must determine how many items can be rerouted

using the newly added shipping route. Figure A.25 shows that the

maximum number of items which can be rerouted is 900. Since we have

two edges that become zero, either edge can be removed. The newly added

edge is indicated with a bold line.

Demand 1
_Colorado Springs, CO

Supply 1 1000" 1000cases
Boise Warehouse

1900 cases - Demand 2
00 12 O San Francisco, CA

Supply 2 1200 cases
Modes-to Warehouse G ,, ,, "

1200 cases L""* ,Deand3

San Diego, CA
900 cases

Figure A.25

We can drop only one of these edges, otherwise we would not end up with a

spanning tree. Figures A.26 and A.27 show the two resulting spanning

trees.
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Demand 1
_Colorado Springs, CO

Supply 1 1000 1000 cases

Boise Warehouse190cae Demand 2
90 m900- 12 San Francisco, CA

Supply 20 l20cr 12 0 0cases
Modesto Warehouse ee,,,..d^

1200 cases Dmand

San Diego, CA
900 cases

Figure A.26

To determine if the spanning tree in Figure A.26 will give us the optimal

solution, we must check all the possibilities for new shipping routes. The

only two shipping routes that we need consider adding are from Boise to

San Francisco and from Modesto to Colorado Springs. The shipping cost for

one item from Boise to San Francisco is $.18. The equivalent cost to ship

one item in the spanning tree of Figure A.26 is

c 13 - c2 3 + c 22 -. 23 -. 21 +.15 - $.17.

Since it is cheaper to ship an item from Boise to San Francisco in the

spanning tree of Figure A.26 than it is to ship it directly, we decide not to

add this shipping route to the spanning tree. Shipping an item from

Modesto to Colorado Springs costs $.25. The equivalent cost to ship an item

in the spanning tree of Figure A.26 is

c22 - c 12 + cl - ' 15 -. 18 +.17 - $.14.



151

Since it is cheaper to ship an item from Modesto to Colorado Springs, in the

spanning tree of Figure A.26, than it is to ship it directly, we decide not to

add this shipping route to the spanning tree. Therefore we have found the

optimal solution and the minimum cost is

.17x, 1 18x12+ .23x13+ .25x21+ .15x22+ .21x23

-. 17(1000) + .18(0) + .23(900) + .25(0) + .15(1200) + .21(0)

-$557.

Demand I
Colorado Springs, CO

Supply 1 1000 1000 ca
Boise Warehouse

1900 cases 0K -0. Demand 2
900 12Z( San Francisco, CA

Supply 2 1200 cases
Modesto Warehouse

1200 cases Demand 3

San Diego, CA
900 cases

Figure A.27

We now show that the spanning tree in Figure A.27 will also give us the

optimal solution. We begin by checking all the possibilities for new

shipping routes. The only two shipping routes that we need consider

adding are from Modesto to Colorado Springs and from Modesto to San

Diego. The shipping cost for one item from Modesto to Colorado Springs is

$.25. The equivalent cost to ship one item in the spanning tree of Figure

A.27 is
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c22 - c12 ' Cll 15 - .18, .17 - $.14.

Since it is cheaper to ship an item from Modesto to Colorado Springs in the

spanning tree of Figure A.27 than it is to ship it directly, we decide not to

add this shipping route to the spanning tree. Shipping an item from

Modesto to San Diego costs $.2 1. The equivalent cost to ship an item in the

spanning tree of Figure A.27 is

c2 2 - c1 2 ' c 13 -. 15 -. 18 +.23 - $.20.

Since it is cheaper to ship an item from Modesto to Colorado Springs, in the

spanning tree of Figure A.26. than it is to ship it directly, we decide not to

add this shipping route to the spanning tree. Therefore we have found the

optimal solution and the minimum cost is

1 7x I '18x 12+ .23x 1 3 + .25x21+.15x22+ .21x 2 3

-. 17(1000) + .18(0) + .23(900) + .25(0) + .15(1200) ,.21(0)

- $557.

Therefore, both the spanning trees in Figures A.26 and A.27 give us the

same optimal solution of $557.

Solution 2: Determine if adding the shipping route from Modesto to

Colorado Springs will lower (improve) the shipping cost.

From Figure A.23 we see that the cost of shipping a case of chips from

Modesto to Colorado Springs is $.25. The equivalent cost using the

spanning tree in Figure A.24 is

c22 "c12 + c "-.15 -. 18 +.17- $.14.



153

Since the cost is greater if we were to ship directly from Modesto to

Colorado Springs, we will not consider adding this route. We must now

check adding the shipping route from Boise to San Diego, but this is

Solution 1 above.
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Application III

Linear Algebra Applied to Physics

Determining Small Vibrations in Conservative Elastic Systems

Linear Algebra Prerequisites: Being able use eigenvalues and

eigenvector to diagonalize a symmetric matrix.

Prerequisite Knowledge in Physics: None.

Other Prerequisite Knowledge: A background in solving basic

differential equations would be helpful. However, Appendix A contains this

basic information.
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Section 1 Introduction

In this study we will look at small vibrations. In particular, the small

vibrations which we will study are in a system with an equilibrium

configuration which is a position where the system remains at rest. An

example of a system in its equilibrium configuration is the simple pendulum

as seen in Figure 1.1. The simple pendulum consists of a ball attached to a

taut wire, anchored above, which can swing in the vertical plane. The

weight of the wire is negligible compared to the weight of the ball.

4

Figure 1.1

We say that a system has a stable equilibrium configuration if after a

small displacement, the system tends to return to its equilibrium

configuration. There are different types of equilibrium depending on the

nature of the system. We are interested in the type of equilibrium found in

an elastic system. This is a system which has the following two

characteristics: 1 ) the system has a stable equilibrium configuration and 2)

a small displacement from equilibrium creates forces which tend to restore

the system to its stable equilibrium configuration. A displacement from

equilibrium is called strain and the force which restores the system to
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equilibrium is called stress. Thus, stress is a function of strain. The simple

pendulum in Figure 1. 1 is also an example of an elastic system in its stable

equilibrium configuration.

The total energy in an elastic system is composed of two types of

energy, kinetic and potential. We will begin by considering the intuitive

definitions of these terms and then discuss their formulas. Kinetic energy

is the energy a body possesses because it is in motion. Before we can write

the formula for kinetic energy, we must be able to describe the system

mathematically. In any system there is a minimum number of coordinates

that are required to fully describe the configuration of the system. In

general, the number of coordinates is equal to the number of "particles" in

the system times the dimension of the system. In the case of the simple

pendulum, the ball is the only particle in the system. The dimension of the

system is one, because the position of the ball can be described using the

angle made by the pendulum compared to the position of the pendulum in

its equilibrium configuration, as seen in Figure 1.1. Therefore, the number

of coordinates needed to describe the simple pendulum is one. The velocity

of the system can also be written in terms of the coordinates which describe

the configuration of the system. To be able to do this, we must specialize

our notation. If n coordinates (x1, x2, .... xn) are required to describe the

system, then each xi represents a Cartesian coordinate of one of the

particles in the system. For example, if we have two particles moving in

the xy-plane, which has dimension two, we will need four coordinates to

describe the system. The four coordinates (x1, x2 , x3 , x4 ) represent the
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Cartesian coordinates of the particles in the system; that is, x I and x2

represent x- and y-coordinates of the first particle, and x3 and x4 represent

the x- and y-coordinates of the second particle. From this we see that the

velocity of the system can be expressed in terms of the velocity of each

coordinate. The velocity vector for a system with n coordinates can be

written in terms of its velocity components

(dxI dx_2 dxn

dt' dt dt )

The kinetic energy of the system is equal to the sum of one half the square

of each velocity component times the mass of the particle which the

coordinate describes. If we let T represent kinetic energy and mi the mass

of the particle which is described using the Cartesian coordinate xi , then our

formula becomes

2
(dxi)

To have a conservative system, there must exist a function whose partial

derivative with respect to any coordinate, say xi, is equal to the negative

value of the force in the direction represented by that coordinate. This

function is called the potential energy function. We can describe the
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relationship between this function and the forces in the system by the

equation

a (potential energy function) (force in the x. direction)
ax.I

From now on, we will assume that we are always in a conservative system.

In addition, if the potential energy function is not time dependent

( L(potential energy function)= 0), then in our conservative elastic

system the total energy of the system is constant and is the sum of the

kinetic and potential energies. Also, when the strain of the system is zero

(the system is in its equilibrium configuration, so xi-O for all i), then the

partial derivative of the potential energy function with respect to any

variable must equal zero. This statement can be interpreted in the

following two ways: 1) in the equilibrium configuration the potentidl energy

function is at a minimum and 2) the restoring forces are equal in magnitude

and of opposite sign to the forces that created the displacement. This

statement also tells us that the potential energy function can not contain

linear terms which have nonzero constant coefficients in any of the xi. To

see why this is true, let us assume the potential energy function contains a

nonzero linear term cx i (c is a nonzero constant). Then take the partial

derivative of it with respect to xi. Setting xi equal to zero, we find the

nonzero constant c is equal to zero, which is a contradiction. Therefore, we

conclude that c must be zero and the potential energy function does not
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contain a nonzero linear term cx i . Also, it does not matter if the potential

energy function has a constant term or not, because when we differentiate

the function with respect to any xi (i- 12, ... , n), the constant becomes zero.

Thus, if we write the potential energy function in its Taylor series

expansion, the non-constant part starts with quadratic and terms of higher

powers (which may also contain a constant term). When we differentiate

the potential energy function with respect to xi (for i-1, 2, ... , n), we obtain

a linear combination of the variables xI, x2, ...- xn plus higher order or

mixed terms (for example xlxn or xlX2xn). If we ignore the higher order

terms, then the linear part which remains gives us the specific relationship

or stress to strain, which is known as Hooke's Law. In general, Hooke's Law

states that "stress is a linear transformation operating on strain." Intuitively,

we would say, restoring forces are linearly proportional to the displacement

of the mass from equilibrium. If the non-constant potential energy function

starts with a power greater than two, it is possible to use an approximation

to find the relationship between stress and strain in which the still higher

power terms in the partial derivative of the potential energy function have

been ignored However, this is no longer a linear function.

We will consider two approaches to the formulation of a differential

equation which models a system. The first approach is developed using

Newton's second and third laws of motion, which are stated below for

convenience.
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Second Law The mass of the body times the acceleration of

the body is equal to the force acting on the

body.

Third Law For every action there is an opposite and equal

reaction.

From these laws we derive the differential equation which models a

conservative elastic system

d (displacment)
mass x d restoring forcedt 2

or

(1.1) mass x d2(strain)= stress.dt 2

In the second approach, instead of using the direct application of

Newton's laws, we will consider a method developed by Joseph Lagrange, a

French mathematician. This very elegant and sophisticated method can be

applied to systems which are more general than the ones we are

considering here. Since our system is conservative and elastic, the energy

is constant and equal to the sum of the kinetic and potential energies. If we

let V represent potential energy and E represent the total energy in an n

coordinate system, then we have
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E=T+V I m.(i +v
t.1

To make it easier to express this differential equation, we will introduce a
dx

type of notation you may not have used before. The derivative A will be

written as x, where the single dot above the variable x indicates that one

derivative of x, with respect to time, has been taken. This idea can be

extended so that i indicates that two derivatives of x with respect to time

have been taken. This notation is used to rewrite the equation for total

energy.

..2) E=T+V= n x.i2 +V
2i

We wish to derive the equations of motion which can be used to model

conservative elastic systems. Our first step is to find the partial derivative

of Equation (1.2) with respect to each of the coordinates. Since the

procedure is the same when taking the partial derivative with respect to

each coordinate, we will only find the partial derivative of the function for

total energy (a constant) with respect to the xi th coordinate, We obtain

0 T + V
ax. ax.

I I

or
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(1.3) - aV aT
ax. ax."

I I

Since the mass of each particle is known, the partial derivative of the

kinetic energy with respect to the coordinate xi is

FT _ 2[ i 1 ax. ax. a .aT = 1 m[2xi  I]=m I . I = m I = M=imax 2 X a a. i at i '

Substituting this into Equation (1.3), we obtain the restoring force of the xi

coordinate.

(1.4) _ m.i.
ax. a

aT
Since the kinetic energy is expressed in terms of x., we can find ax..

T 12 m i[ i[.

We now differentiate this equation with respect to time to obtain

d aT M di t-m.i.
idt I
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We see that the right side of this equation is the same as the right side of

Equation (1.4). Equating the two, we obtain the equation of motion for the

xi th coordinate.

d [a8T1.6V
d t-a. ax.

Therefore, the equations of motion which model our conservative elastic

system with n coordinates are

(. [5T) aV d ra ] aV d[_aT av[) ax1  ax dt [ j . dtaL a2aj ax

We will model the simple pendulum of Figure 1.1 using both the

method which applies Newton's laws directly and the equations of motion

formulated by Lagrange. Since we are only interested in small vibrations of

a system, let us discuss the conditions under which the vibrations in the

pendulum system remain small. In a conservative elastic system the total

energy of the system is constant and is the sum of the kinetic and potential

energies. The potential energy of the pendulum system is determined by

the displacement of the ball from its equilibrium position. Imagine the

pendulum in Figure 1.1 being placed very close to its equilibrium position

and released as in Figure 1.2.
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Equilibrium 6 L
position

6 L m

Figure 1.2

Since the potential energy is small to start with (the displacement from

equilibrium is small) and we are in a conservative system, we know that it

will remain small. Because the displacement stays small, the angle 0 will

always be small. Thus, the vibrations of this system can only be small

vibrations.

Let us model the simple pendulum system using the method which

applies Newton's laws directly. To keep this example simple we will only

consider the positive region which is to the right of the equilibrium

configuration in Figure 1.3(a). Let L represent the length of the pendulum,

m be the mass of the ball at the end of the pendulum, 0 the angle the

pendulum makes with respect to the equilibrium configuration, and s

represent the length of the arc the ball travels. The force pulling the ball

down is the mass of the ball times the gravitational constant g.
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Equilibrium L Equilibrium 8  L L
posion psition

Im 6., m mgslne m

Restoring
force

mg mg mg

(a) (b) (c)

Figure 1.3

We will apply Newton's laws of motion to model the pendulum system by

using Equation (1.1). Thus, we need to determine the stress and the strain

of the system. Since stress or restoring force is the force trying to return

the ball to its equilibrium configuration, we must resolve the force on the

ball (mg) into its component forces. Figure 1.3(b) shows the restoring force

is the component of force on the ball along the arc length. Since
sine = opposite

hypotenuse the magnitude of the restoring force is mg sine as seen

in Figure 1.3(c). We will need a minus sign to indicate that the restoring

force is opposite in direction to the force which originally moved the ball

from its equilibrium configuration. Thus, the restoring force or stress is

equal to - mg sine. The strain is the displacement of the ball from the

equilibrium position. This distance is the arc length s, which can also be

described using the equation s-Le. Substituting these values for stress and

strain into equation (1.1) gives
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m -4-- L j=mgsin
dt2 L = m

Taking the second derivative of Le with respect to time, this equation

becomes

m L6= - mg sinB

Simplifying and moving all terms to the left side of the equation, we get the

second order differential equation that models our conservative elastic

system.

+ r sinO =0

We now model the simple pendulum system using the equations of

motion formulated by Lagrange. Since 0 is the only coordinate needed to

describe the system, we will only need to use one of the equations of motion

found in Equation (1.5).

FaTI= aV

dta -]- a

Thus, we need to find both the kinetic energy and potential energy of the

system. The kinetic energy is one half the mass of the ball times the square

of the velocity. The velocity is the first derivative of the distance with

respect to time.
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velocity = [ distance d L.l L = L6
dtac CU I dt

Therefore, the equation describing the kinetic energy becomes

T=Im[LB 1= ImL 2

Since potential energy is the energy needed to restore the system to

equilibrium, it is equal to weight of the ball (mass of the ball times the

gravitational constant g) times the height of the ball above the reference

point. Since the ball is below the reference point, V is negative. Using the

racttha co8 =adjacent

fact that cos = ahypotenuse .we determine the distance of the ball below

the reference point to be LcosO as seen in Figure 1.4.

/// /en//mt

L cos e L
L~~ M i

Figure 1.4

Thus, the potential energy is

V - -mgL cosO.
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Now, we substitute the appropriate partial derivatives of the kinetic and

potential energy equations into the equation of motion. First, we find the

left side of the equation of motion by differentiating the kinetic energy

equation with respect to 8.

aT 1mL() L%

Then differentiating with respect to time, we obtain

d [ T ]F 1 
2

Second, the right side of the equation of motion is

- a- m gL IO-I -m g L(-sin e )]=-m gLsin O

ae ~ ae -

Equating the two sides, the equation of motion becomes

2-
m 8 =- m g LsinO

Simplifying and moving all terms to the left side of the equation, we obtain

the second order differential equation that models our conservative elastic

system. As expected, this is the same equation which we found by applying

Newton's laws.
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(1.6) + !sine= 0
L

Let us pause for a moment and discuss the relationship between the

potential energy function and the component of force tangent to the path

the ball travels (that is, in the direction of arc length). Recall that in a

conservative system, the partial derivative of the potential energy function

with respect to any direction, gives the negative of the force in that

direction. That is, _V F where F is the force in the direction of the

arc length s. First, we need to write the potential energy function in terms

of arc length s. We will use the fact that s-LO.

V=- mgL cos(f)

We continue by differentiating this with respect to s to obtain

av-f = =  m g L  I sin ( -]= m g sine ,

Thus, F, =- - mg sine is the restoring force, since the simple

oendulum is described using only one coordinate. (Recall the discussion

following Figure 1.3.)

So far we have found the second order differential equation which

models the simple pendulum system using two different methods. Now, we

are ready to consider how Equation (1.6) can be sol,, ed. Since thiL equation

involves sine, we know it is a nonlinear differential equation. (See
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Appendix A for definition.) One technique used to find the exact solution (if

that is possible) of a second order nonlinear differential equation is to first

reduce it to a first order differential equation. Recall that, the equation of

motion was derived from Equation (1.7). Since Equation (1.6) was found by

using the equation of motion, we can use Equation (1.7) as our first order

differential equation.

(1.7) E=T+V=!mL (dl) 2 -mgLcosO2 dt -gcs

2
We begin by solving for the squared derivative dO in Equation (1.7).

dt)

(1. (de)2 2(E + mgL cos0)
£dt) mL 2

Let us pause for a moment to assure ourselves that we could legitimately

use Equation (1.7) as our first order differential equation. We will

differentiate Equation (1.8) with respect to time and see that we get

Equation (1.6).

288= m22 0 + mgL(- 6 sine)

When simplified, we see this is Equation (1.6).
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+ 1sine=0
L

Taking the square root of both sides of Equation (1.8) and recalling that we

are only considering the positive region to the right of the equilibrium

configuration, we obtain

de = 2(E + mg Lcose)
dt mL

One way to solve the differential equation above for t, is to isolate dt on one

side of the equation and dO on the other. This technique is sometimes called

separation of variables.

dt mL2

d=2(E+mgLcose) dG

Integrating both sides of the above equation, we obtain

m d9

J 2(E, m gL cose)

This is an elliptic integral which can not be expressed in terms of

elementary functions. Thus, to get any information about the solution to

Equation (1.6), we must resort to numerical approximations or use the fact

that we are dealing with a system involving small vibrations. We also note

that the question of finding the inverse function 0 = e(t) of the function



174

above is, at best, a numerical approximation problem and is not even useful

in predicting values of 0 at a given time t, since we are dealing with small

vibrations. As a point of interest, if we were not considering small

vibrations, then the function t= t(e) and its inverse function 0 = e(t) would

be the only tools with which we could obtain information about the system.

Using the fact that we are dealing only with small vibrations, we

consider the factor sin@, which makes Equation (1.6) a nonlinear

differential equation. We can write sin0 as a Taylor series expanded about

zero.

Co n 3 5
sin 0 + I) +

Since we are considering only small values of 0, the terms in the expansion

above which contain powers of 0 are, in practice, ignored (a very small

number raised to a power greater than one becomes even smaller). Any

time terms are ignored we expect a certain amount of error. To determine

the exact amount of error would require the same type of calculation that it

would take to solve the original equation. However, since we are

considering only small vibrations, we are assured the amount of error will

not affect the resulting solution. Thus, using the Taylor series expansion for

sin 0 we see that sin 0 can be replaced by 0, for small values of 0. This

substitution is only valid when we are dealing with small vibrations. Using

this substitution, the second order differential equation (Equation (1.6)

becomes
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8+g=0

This is a second order linear differential equation whose solution is found

using basic techniques from differential equations. (Basic solution

techniques are found in Appendix A.) We obtain

=c I Cos rug t + c sin (j-c" t,

In summary, we have investigated two different ways to model a

conservative elastic system. One method applies Newton's second and third

laws directly to the system to create the differential equation. The other

method uses a technique developed by Lagrange, which was much easier to

generalize and could be applied to many different types of systems. The

derived equations of motion, greatly simplify the amount of work necessary

to model a conservative elastic system. From these techniques, we found

the second order nonlinear differential equation that models the simple

pendulum. Since we considered only small vibrations, we found that the

equation could be represented by a second order linear differential equation

which has an elementary solution.

Section 2 Linear Spring-Weight Systems

In the last section we considered a system which only needed one

coordinate to completely describe the system. We now look at higher
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dimensional systems, such as spring-weight systems in which more than

one coordinate is required to specify the state of the system. A spring-

weight system is a conservative elastic system with a stable equilibrium

position occurring when all of the coordinates are set equal to zero. To

become familiar with spring-weight systems, we will first consider the one

dimensional case. Figure 2.1 shows the system in its equilibrium

configuration (the spring is not being stretched or compressed) where m is

the mass of the block and L is the natural length of the spring. We are

considering the spring-weight system moving along a horizontal track

rather than hanging vertically so that we do not have the added

complication of describing how gravity affects the system.

-L-I

Figure 2.1

To determine the number of coordinates we need to describe this system,

recall the formula given in Section 1. (The number of coordinates -

(number- of particles) times (dimension of the system). ) The only particle

in the system is the block and since the block is moving along a horizontal

track, the dimension of the system is one. Thus, we need only one

coordinate x, to describe the system. Imagine the block being moved to the

right causing the spring to be stretched x units. This is shown in

Figure 2.2.
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Figure 2.2

To describe the energy of this system we again need to find both the kinetic

energy and potential energy. The kinetic energy is one half the mass or the

block times the velocity squared. The equation describing the kinetic

energy is

T=I d (x )2 = .L x
2 dt 2T=imkt,) =l mx

The energy stored in the spring or the potential energy of the spring is one

half the spring constant times the square of the distance that the spring is

stretched. From the laws of physics we know that the external force acting

on the spring is proportional to the increase in length of the spring. We call

the constant of proportionality that allows us to write this relationship as an

equation, the spring constant or the stiffness of the spring and each spring

has its own specific spring constant. If we let k represent the spring

constant and x the displacement of the spring from equilibrium, then the

equation for potential energy is

V= kx

Since x is the only coordinate needed to describe the system, we will only

need to use one of the equations of motion found in Equation (1.5).
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d F T1 -  --
dt L ~x J ax

To find the left side, we first differentiate the kinetic energy function with

respect to x.

aTm
ax

Now differentiate this equation with respect to time.

dt L ai J

To find the right side of the equation of motion, we differentiate the

potential energy function with respect to x.

ax

Equating these two, the equation of motion becomes

mx = - k x.

Simplifying and rearranging terms, the differential equation which models

this system is

+ n1--- x=0
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This is a second order linear differential equation whose solution is found

using basic tWhniques from differential equations. (See Appendix A.) Note,

the similarity between this differential equation and the one that models the

simple pendulum.

x = CICos (JmkI t ) + c 2sin (Ji t)

To be able to model higher dimensional spring-weight systems, we

need to study the theory which describes the energy of the system in

general terms. In the one dimensional spring-weight system there was only

one coordinate which we labeled as x and it was expressed in terms of time.

The kinetic energy of the system was described using the first derivative of

this coordinate with respect to time, while the potential energy was

expressed in terms of the coordinate. If we are working with a higher

dimensional system which has n coordinates, say x1, x2, ... , xn , then the

kinetic energy will be described using the first derivative wittb respect to

time of each of the coordinates and the potential energy will be expressed in

terms of these n coordinates. In general we have
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2

Kinetic Energy T=~ m-d.) =. im.jul ij-u) il

S

Potential Energy V = V. where V is the potential

energy of each spring and

s is the number cf springs.

Since stable equilibrium occurs when x l -x2 - ... -Xn-0, we may

assume that the energy of the system is at a minimum in stable equilibrium.

This means the derivative with respect to any variable must be zero when

that variable equals zero. Thus, if we have a function which we wish to

expand using its Taylor's series expansion, as we did with sin 0 in Section 1,

the expansion can not have a nonzero linear term. For if it did and we took

the derivative of it, we would end up with a nonzero constant.

Subsequently, when all variables are set equal to zero, the constant would

remain, indicating that we do not have stable equilibrium, a contradiction.

Therefore, the Taylor series expansion for the potential energy does not

have linear terms. However, this expansion may have constant terms.

Let us return to the spring-weight system. Figure 2.3 shows a

system in equilibrium with two blocks having the same mass m and three

springs possessing the same length and spring constant. To determine the

number of coordinates needed to describe this system, we need to recall the

formula given in Section 1. (The number of coordinates - (number of

particles) times (dimension of system). ) The two particles in the system
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are the two blocks and since both blocks are moving along a horizontal

track, the dimension of the system is one. Thus, we will need two

coordinates, x I and x2 , to describe the system.

Spring I m Spring 2 m Spring 3

Figure 2.3

Imagine the two masses are moved to the right causing the first two springs

to stretch by oifferent amounts and causing the third spring to be

compressed. This is depicted in Figure 2.4.

m m

I-x1- t-x2-j

Figure 2.4

Now we determine the second order differential equation that models

this system. Thus, we need to find the kinetic energy and the potential

energy of the system. The equation below describes the kinetic energy of

the system shown in Figure 2.4.

rd 2 2

T= m -f m-=-/ h=mx.+Xr=-~ in-•dXI r 2
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The potential energy of the system is the sum of the potential energies of

each spring. Spring 1 is stretched from its equilibrium position by the

12
amount x1 , so the potential energy for spring I is V1 = kxl. Spring 2 is

stretched from its equilibrium position by the amount x2 -x 1 , so that

2
V = lk x2 -Xl) is the potential energy for spring 2. Spring 3 is

compressed from its equilibrium position by the amount x2 . Thus, the

1 2
potential energy for spring 3 is V3 = kx 2 . Therefore, the potential energy

of the system is

3 F x ,i 2  2_r 21
V= V -k x4x 1 +Xj=k 2x -2x x + 2i I

Since this system is described using two variables, x and x2 , our two

equations of motion are

d[aT 1  aVY a d [4 aT 1 
_ -

,l d2J ax

First, we determine the left side of each equation of motion by

differentiating the kinetic energy with respect to i and X2 .
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aT
-i I m[2 + 02x = mx1

ai2 L2 m

Then, differentiating each of these equations with respect to time, we have

d[ .i d.mxl__ mi,
taxJ dt L

dt M T =h '[m'21=m'2
dtL~z dt Lj 2i

To determine the right side of each equation of motion, we differentiate the

potential energy with respect to xI and x2.

ax 2 1-2x2 + 0]=k[-2x +x2]

av
- 2-- [O-2x, +4xj=k[x1 -2x 2]

Substituting this information into the equations of motion, we obtain

d F T 1 _
dt ai ax1,

which becomes

mia=k[-2x1 +x 2] or YIj[-2x,+x2 ]

and
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~aT1
dt 8 X 2

which becomes

mf 2=k[x -2x] or i [I-2

We now have a system of second order differential equations which can be

written as the following matrix equation, where A is a symmetric matrix.

= i( LL - 2 )( i) XL

Since A is a symmetric matrix, all of its eigenvalues are real and A is

diagonalizable. We begin the determination of the eigenvalues of the matrix

A by

det(A -11) =det - 2 1-X- 'I X =-2 -X)2-l=X.+4k.+3=(X+3)(X.+ 1).

If we set det(A -XI) equal to zero and solve for , we find the eigenvalues

are ,--3 and N=--1. Since A is diagonalizable there exists an invertible
-1

(orthogonal) matrix P such that P AP - D. The matrix D is the diagonal

matrix whose entries along the main diagonal consist of the eigenvalues of A

and the columns of P are corresponding eigenvectors associated with these

eigenvalues. To find P we need to find an eigenvector associated with N--3

and one associated with N--1. For N--3 we have the following matrix

equation.
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( -2+3 -21+)(XlJ(1 1)(X I =(0) SO

If we let x I - 1, then x2 = -1, and it follows that an eigenvector associated

with the eigenvalue N,-3 is - To find an eigenvector associated with

N-- 1, we use the following matrix equation.

21 - 2 +1 x 1= I I )2) J 0 ) so X= x2

If we let x I - 1, then x2 - 1. Thus, an eigenvector associated with the

eigenvalue N--1 is (1 )' Therefore, these two eigenvectors are the columns

of the invertible matrix P= ( 1 "

Recall that our goal is to solve the second order differential equation

-+ -1
X. If we multiply both sides of this equation by P and use the

-1
identity P P 1 12, the 2 x 2 identity matrix, we obtain

(2.1) p' -X - -ffP -'
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We want to get Equation (2.1) into a simpler form to make it easier to solve.

To do this we will let U = P X. This matrix equation can be easily
-1

differentiated with respect to time, since P is a constant matrix. The first

-1~
derivative with respect to time is U = P X. Since Equation (2.1) is a

second order differential equation, taking a second derivative with respect
-+ -+ -+

to time yields U = P -X. We introduce the vector variable U into Equation

(2.1) by substituting U = P 1  into the left side of this equation. Then, if

we substitute P AP = D and U =P X into the right side, Equation (2.1)

becomes - D U. This system of second order differential equations is

easier to solve than = A X.

Exercise 2.1

Show why the system U =is easier to
solve than

i =k 2 1 =2 L - =-=AX"

-4)

Recall that we are trying to sol,. I or the vector X. Rearranging

U =P X , we get X = P U, which tells us that instead of finding X we

need only find P U. Since we already know the matrix P. we must find the
vecr U-4vector U,~ If we multiply both sides of the matrix equation U= =-D U) by
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the matrix P, we get P U = -EP D U. Rewriting the left side of

"9 -+ (i)
PU = -EP D U, using the notation where P represents the i th column

(0 -1 and 2) of the matrix P, we obtain

(p(I02))( 
=P()1 + V 0 2

Rewriting the right side of P U = -EP D U, we obtain

k--
Thus PU= IFP D U can be written as

P1C i+ P (2PaX u+ P Xu
1 U2  1 1 2z

k
We can simplify this equation by multiplying through by m' gathering

terms and moving all terms to the left side.

(1) (2)
Factoring out P and P2, we have
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Since the columns of P are eigenvectors of A which correspond to distinct

eigenvalues, we know they are linearly independent (in fact they are

orthogonal). The equation produces a finite linear combination of linearly

independent vectors which equals zero, thus the coefficients of

P(1) and P(2) must be zero. If we set each of the coefficients in the

equation above equal to zero, we obtain

a1-I k u j 1 U1 =0 and 0- k u 0

These are both second order linear differential equations which can be

solved using basic techniques. (See Appendix A.) If we let r. = - .i

where i-1i 2, then these equations become

Ul+rIuI=0 and 2 + r2 u 2 =0

Using the following formulas, we can solve for the vector U. (Note: To

determine whether ri is zero, negative or positive, substitute Ni into

r, k - - I.
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If r.= 0, then u =c i t + c

r.t -r.t
I I

If ri < 0, then ui =c il e +ci 2 e

If r >O, then u = c cos (1jir- t) + ci2sin (VTrj, t)

The solution to the original system of differential equations X = A X is

found by substituting the values for both the matrix P and the vector U

into the equation X = P U.

Exercise 2.2

Using the above technique, solve the following system of differential

equations X= A X. Where X A= and i ,= )

That is, find the two equations which describe x I and x2.

Exercise 2.3

Given a horizontal spring-weight system similar to Figure 2.3 with n blocks,

the following equations would express the kinetic and potential energies of

the system.
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in .2

Kinetic Energy T=-LmX i.

2k x2 +,.bX
Potential Energy V = b- 1 + 22+ +bnn n

+2b12 x x +2 b x1 x 3 + "x+ 2 Inx l x n

+2 23 x 2x + 2b 24x2x4 + ...+2b 2nx 2x

+2b.. 1 x x41 + "+2b. x.xl~i+~i:i~l '" ,n

+2b n-xn-lx n-2x n-I + 2 bn-Znx n-2x n

+2bn-I, n xni x n

Use the equations of motion to find the system of differential equations

which model the spring-weight system with n blocks. To solve this system,

generalize the procedure used to solve the system of differential equations

which model the spring-weight system with two blocks. (Hint: Some of the

material that has been discussed can be used directly, while other portions

will need some modifications.)

Another aspect of the spring-weight system that we want to consider

is the oscillations of the system as a whole. From our work above, we know
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-- ) k
the solution to the second order differential equation X - A X can be

-=. .

found by using X = P U. In Exercise 2.2 we found

xI .u+u 2 and x2 -- ul+u2.

This is a system of two linear equations which we can solve for uI and U2 .

Thus we have the equations

1l-2 12+

(2.2) u = 2 and u2 = 2

each of which gives a relationship between the variables x , and x2. It is

important to note that we could have found these equations directly from
-4 -1-+ -1I

the matrix equation U = P X, but this would involve finding P . Using

Figure 2.5, we can recall the configuration of this spring-weight system.

Since the springs were stretched by differing amounts, a different

frequency (the number of vibrations per unit time) is associated with each

of the variables x, and x2 .
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X 2-I
Frequency I Frequency 2

Figure 2.5

This spring-weight system has two separate modes in which it vibrates.
1I - 2 1I - 2

In the first mode u= 2 and u2 -0. Since 2 represents the

how the distance between the two blocks is changing, the first mode of

vibration describes how the distance between the two blocks is changing.

For instance if x2 is greater than x 1 then the change in distance between

the blocks is smaller than the distance between the blocks when the spring-

weight system is in equilibrium. However, if x , is greater than x2 , then the

change in distance between the blocks is larger than the distance between

the blocks when the spring-weight system is in equilibrium. Thus, the

oscillation of the system in this mode is described by how the distance

between the two blocks is changing which corresponds to the frequency

associated with the second eigenvalue N2. To visualize this, consider the

series of "snapshots" of the spring-weight system in motion in Figure 2.6,

where the banner is made of an elastic material and indicates the distance

between the two blocks in the system. When this system vibrates, we

would see the banner contracting and stretching with a frequency

associated with N2.
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Figure 2.6

___+_ 2  X1 +X2

In the second mode ul-0 and u2 = 2 Since 2 represents

how the center of gravity of the system has changed, the second mode of

vibrations describes the displacement of the center of gravity. Thus the

oscillation of the system in this mode is where the center of gravity of the

system vibrates at the frequency associated with the first eigenvalue Nl"

To visualize this, consider the series of diagrams in Figure 2.7, where the

flag indicates the center of gravity of the system. When this system

vibrates, we see the flag moving back and forth with a frequency associated
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with A. This is indicated by the following series of "snapshots" of the

spring-weight system in motion.

AV

Figure 2.7

Exercise 2.4

Suppose the spring-weight system we have been studying was lying free in

the xy-plane, that is, the ends of the springs are not anchored. Figure 2.8

can help us visualize this.
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y-ams

x-axis

Figure 2.8

Using the information we have gained by studying the stationary spring-

weight system, describe the motion (including the vibrations) that can

occur. Note, there is no need to find the frequencies to complete this

exercise. (Hint: consider other types of motion, besides vibrations.)

Exercise 2.5

(a) Determine the system of differential equations that model the motions

of the spring-weight system given in Figure 2.9.

(b) Solve the system of differential equations.

(c) Describe the possible configurations in which it vibrates.

Sping 1 m Spring 2 m Spring 3 m Spring 4

S 2 3 4

Figure 2.9

Exercise 2.6

Suppose the spring-weight system of Exercise 2.5 was lying free in the xy-

plane, that is, the ends of the springs are not anchored. Describe the motion
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(including vibrations) that can occur for this system. Compare these

motions with the motions found in Exercise 2.4.

Section 3 A Closed Spring-Weight System

In this section we will discuss how to mathematically model the

spring-weight system in Figure 3.1 and determine the possible motions of

the system. This system lies in the xy-plane with none of its blocks

anchored. The mass of each of the three blocks is the same and is denoted

by m. L is the length of each spring when the system is in its equilibrium

configuration and k is the spring constant, which is the same for each

spring.

Y2

( 2 2

Fiur) 3.1

Figure 3.1
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This system is in stable equilibrium when x i -yI-x 2-y 2-x 3 "y3- 0. To find

the energy of the system in Figure 3.1 we need to find the kinetic and

potential energies of the system. Recall that the kinetic energy of the

system is one half the mass times the sum of the square of the first

derivative of each of the six variables with respect to time. Thus, the

kinetic energy is

T= im 2 2 .Y2 .2 .2)2T1 2 XlX~ 3+l+y2+y3.

Finding the potential energy requires more work. Since the potential

energy of the system is the sum of the potential energies of the springs, we

first need to find the potential energy of each spring. We will consider each

side of the triangle individually.

The first side that we look at is given in Figure 3.2.
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X2 2

where d - LX1 2 [,(f 7)

d
Y1 (4L+z1, Y1)

Figure 3.2

The potential energy of this spring is one half the spring constant k times

the square of the distance that the spring is stretched. If we let d represent

the length of the spring after it has been stretched, then the displacement of

the spring from its equilibrium position (the distance that the spring is
stretched) is Id-LI. Expressing the potential energy for the spring in terms

of Id-LI. we have

V - kid-LI2
1z 2

where the subscript 12 of V indicates that we are finding the potential

energy of the spring that is stretched between the block with coordinates

x, and y, to the block with coordinates x2 and Y2. Now, we want to
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rewrite V 12 using the variables x 1, y P x2, and Y2 . To do this, we must first

simplify the expression for the distance d.

1d= [[.~ + 1) -x,] +[y1 - (1?iL+y2 j]2

12 2

2 22

2

We want to rewrite the quantity

1

using its Taylor series expansion. The terms of higher powers have been

grouped together for convenience.
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eL rms of higher

Exercise 3.1

Verify that the expression above is indeed the Taylor series expansion for

the quantity f (iL) (shown below). Hint: write f ( i) in its Taylor series

expanded about zero. Recall that L is the length of the spring in

equilibrium, thus L,,0. (Hint: To make it easier to take the derivative of

f (1), let r= I and find the derivative of f(r).)

I

X XX 2 2 2

The expression preceding Exercise 3.1 can be simplified by multiplying

through by L and then moving L to the left side. The resulting quantity is

what we want.

d - L = [x 1 x)- /( 1 -2)1 terms of higher powers

This quantity can now be substituted into the formula for the potential

energy V12 .
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V12 = 2kd-LI2

- -~- x -~) ~y 1 - +terms of higher powersj

k I_{[ (x, x - ,r3(Y, Y2)] 2+ terms of higher powers}

Recall from an earlier discussion that the Taylor series expansion for

potential energy can not have any nonzero linear terms because we are in a

system which has an equilibrium configuration. Also, we are only

considering small vibrations so we ignore the terms of higher powers. The

formula for potential energy V12 is

E I,,- YZ) l]

2 2 2
=zk _YI+ x - 3 + 3Y

4 4 4 4 2 1x 2-- x I 2 2 yiy
+ .3E x -yN==-x zy, I 3y yz

Exercise 3.2

Using Figure 3.3, find V2 3 . Hint: the procedure is similar to the one used to

find V12 .
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Y2

K3

Figure 3.3

Exercise 3.3

Using Figure 3.4, find V1 3,

Y3  x1

Figure 3.4

As stated before, the potential energy of the system is the sum of the

potential energy of each spring. Thus we have
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V - V1 2 +V2 3 + V13

k f=5 21 2 +52 3 2 3 23 2 I2 x 2x3
2 2 4" 3 4 1Yl 2"Y :f"Y3 2  2

2 X3y2  -2 X2y 3 + 2 3Y3J

We recall that the kinetic energy is given by

T=i (i 2., 2+x2 2. .2)
T= m 2 3+Yl+Y2+Y3

Since this system requires six coordinates to fully describe it, we know we

must have six equations of motion. These are

d [ aJ aV L_2]_ aV 2 dax=1 ax3

d jTi IV' ['Tj. 'V a n'd -4 T _ '
dt [a 4] ax ' Lax5] a x5 ' dt a 6] ax

First, we find the left side of each equation of motion, then find the right

side and equate the two. Thus, we have the following six equations.
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This~- sytm fsx +qain can + e wrte asIL a matrix eqain2Ire
4k

M r 1 -4 1 4 3 ~4 1- 4 J

thi sysinte fsqactions can bhe waritten fasto a- matriec equation,ore
kk

which results in - being factored out of the coefficient matrix A.

ki -5 1 4 +oL- .L3 0v1i-2 I -Vxo 0 - X

X3k 4 1 -5 I3-L0 x 3 k.

_L Ji -V3-v*,*+ -3 3 y1  4m

Y2 -V 4v 3-6 3 y2

Y3 0 3 -X3 0 3 -3
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The generalized theory developed in Exercise 2.3 describes the situation

when n=6. Thus, we begin by finding the eigenvalues and eigenvectors of

the symmetric matrix A. One way we could proceed would be to use the

sixth degree characteristic polynomial to find the eigenvalues directly.

However, this would require finding the determinant of a 6 x 6 matrix.

Using the cofactor expansion method would require 61 or 720 calculations

to find the value of the determinant. We could also use a computer

program. For example, the user's guide to the computer program LINPACK

(Dongarra, Bunch and Stewart, 1979) describes how the program can be

used to approximate the eigenvalues and eigenvectors of the characteristic

polynomial. This would be quicker, but would not give us any insight into

the possible types of vibrations of the system. Instead, let us consider the

symmetric matrix A and see if we can use our knowledge of matrices to

reduce the amount of work required to find the eigenvalues. In general, the

coefficient matrix which represents an application is much larger than a

6 Y- 6 matrix, but is still a symmetric matrix. The approach used by applied

mathematicians working on large systems would be to: 1) manually work

through the theory of a smaller, related, and less complicated system, 2)

enlarge the system and use a computer to find the eigenvalues and

eigenvectors, 3) interpret the physical meaning of the information from the

computer by comparing the results with the results found in step 1, and

finally, 4) change the model so that it reflects the desired system as closely

as possible. For example, in a more complicated system not all of the blocks

may be of the same mass, nor the springs be of the same length or have the

same spring constant. Step I may be to consider a system where all of the
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blocks have the same mass, the springs are all of the same length, and each

spring has the same spring constant.

Therefore, we will start our work by finding the determinant of the

matrix A-M

-5- X 1 4 0 - 0
1 -2-)' 1 -V-,r3 0 r3

det(A - X.I) 4 1 -5-1 0 v'3 - vf3"

t( I 3 3- 0 -3- X 3 0

- 0 3 -6-A' 3
0 v13 -Vr 0 3 -3-;L

Next, we replace the first row by the sum the first three rows and replace

the last row by the sum of the last three rows to obtain the following

interesting matrix.

-x -. - X 0 0 0

1 -2-XI -v'3 0
4 1 -5-k. 0 V' -'3 =IA'I

Ni -v-3 0 -3-X' 3 0
- 0 V 3 -6-k' 3

0 0 0 -X' - X - X

If N were set equal to zero, the matrix A', defined above, would have two

rows of zeros indicating that h-0 is an eigenvalue of A with multiplicity k 2.

We pause for a moment in our pursuit of eigenvalues to find the

eigenvectors associated with N-0. To begin, N-0 is substituted into A' so
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that the matrix equation A' X = 0, which has been written in augmented

form, can be solved.

0 0 0 0 0 0 0
1 -2 1 -Vi o V 1o
4 1 -5 0 4" -V' o

-% -3 0 -3 3 0 0
3 0 vAf 3 -6 3 0
0 0 0 0 0 0 0

Using Gaussian elimination, we reduce this system to a form that can easily

be solved.

1 0 -1 0 0 0 0
0 1 -1 0 N13 -v3 0

(3.1) 0 0 0 1 -2 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

From this augmented system of equations, with three rows of zeros, we

know three of the variables (x3 , Y2 and y3 ) can take on any value, forcing

the remaining three variable (x 1, x2 and y 1 ) to take on specific values given

by the following equations, obtained from the augmented matrix in

Equation (3.1)..
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x I x31l=3

(3.2) x 2 x3- "v/Y2 + v/3y 3

Y1  2Y- Y3

Thus, by letting x3, Y2 and Y3 take on specific values, we will have three

linearly independent eigenvectors. This means the eigenvalue N,-0 must

have multiplicity three.

Before we actually determine the values of the eigenvectors, let us

pause for a moment to see how we can rewrite the potential energy

function in a slightly different format which will help us to determine its

value under certain conditions. Recall, the potential energy of the system is

the sum of the potential energy of each spring. Thus we have
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V - V1 2 +V2 3 + V13

k _ x2 1x2 + 3Yy2 32 XX ~ 3.

2 4 f 2 - 3 -1f2 4 y 3-4 o2

-2 yy-l L x Y+ x

1~ 3- 12 2 2-¢ 3oN v -v 0 -3 + 3 23 3 2/3 3 3

-5 1 4 o/ 3 -3
1 -2 1 -V f 0 13 X

~('X2 X3Y 2Y)k 4 1 -5 0 i/*-V%( 3
8 XY1YYr3- - -- (3 0 -3 3 0 Y

--"- 0 Af 3 -6 3 Y
k 0 -%f3 -V-j3 0 3 -3)

We are able to rewrite the potential energy in this format because A is a

symmetric matrix. We define a function which can be rewritten in this

fashion as a quadratic form. Thus, Equation (3.3) is the potential energy

expressed as a quadratic form.

(3.3) V(X)= X - A X
8m

By the definition of an eigenvector X, which is associated with the

eigenvalue , of the matrix A, we know that A X = k X. If we let the three
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eigenvectors, associated with the eigenvalue ,-0, be represented by

X , X ,and X ,then

f- _+T T _+TX j0 k X~j0-k -j= X j0-k - =
VXu = o A X j=..0= . O= F 0 X. .0! =S0

for j-1, 2 or 3. This tells us that the potential energy is zero. We now

examine the physical interpretation of zero potential energy.

To have zero potential energy in the system, all the springs must

remain the same length L as in equilibrium. Thus, the only type of motion

possible occurs when the entire system moves as a unit. This is called a

rigid motion. Since the spring-weight system lies in the xy-plane, there

are only two types of rigid motion: translations (movement in the x- or y-

direction only) and rotations (the system pivots around its center of mass).

These two motions can also be combined.

If we consider the vector X, as a translation in the x-direction only,

then the variables x 1, x2 and x3 must all change by the same value and the

variables y 1, Y2 and Y3 can not change. We can express this vector as
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C

c
c If we let c- i, an eigenvector associated with the eigenvalue N-0 is
0
01
0

X X 0 0 The graphical interpretation of X A 0 can be seen in

0
0

Figure 3.5.

System Motion: 0
Translation along Y2 2 0  Resultig
the x-axs K 2  vector

Center
of

mass

30 .0v '  Y, = -0°
vector

Figure 3.5

If the translation is to the right (in the positive x-direction), then c>0 and if

it is to the left (in the negative x-direction), then c<0.
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Exercise 3.4

(1
I

Verify that X I is a solution to
V 0

00

T' kV X X .0= X Z MA X =0v ..o-- .0 8mZA  =

The other type of translational motion we wish to consider occurs

when the system moves in the y-direction only. The variables x1, x2 and x3

do not change while the variables y 1, Y2 and Y3 must all change by the

0)
0
0

same value. We can express this vector as 0 If we let c- 1, an

c
c
)c,
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0)
0

eigenvector associated with the eigenvalue N-0 is X0x2 o  I The

:1

graphical interpretation of X can be seen in

Figure 3.6.

Resulting
System Motion: vector
Translation along Y2 " 1
the y-axis

Resulting Center Resulting
vector of vector

y3 =  mass yl =

Figure 3.6

If the translation is upward (in the positive y-direction), then c>O and if the

translation is downward (in the negative y-direction), then c<O.
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Exercise 3.5

(0

0

Verify that X isasolution to V X - A X 0.

Taking a careful look at the vectors X Xl..0 and X X27 0, we see they

are orthogonal. That is, their dot product is zero. Since the eigenspace

associated with the eigenvalue ,.0 has dimension at least three, we know

there is a third linearly independent eigenvector associated with the

eigenvalue -O. There are two ways we could proceed at this point. The

first is to use the three equations in (3.2) and choose values for

x3, Y2 and Y3. For example, let x3 -0, Y2 -l and Y3 -0, then use the Gram-

Schmidt process to find a vector which is orthogonal to both X Xi130and

-=
X X 2.0 . The other way is to replace two of the rows of zeros in the

T T

coefficient matrix in Equation (3.1) by the eigenvectors X 1.0 and X 2 0 .
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The solution to this new augmented matrix must satisfy all the equations

which form the augmented matrix. Hence, the solution to the augmented

system will satisfy both x 1 +x2 +x3-0 (from X XI=0) and y +y2 y3=0 (from

-4

X ). A vector whose entries satisfy both of these equations is
,20

orthogonal to the eigenvectors X and XX 0 Also, from these two

equations, we see in the solution to the equations associated with the

augmented matrix, the xi values must sum to zero. Therefore, there is no

translational motion in the x-direction. Similarly, there is no translational

motion in the y-direction. Thus, the center of mass does not move. Since

this motion is a rigid motion (N,-0) and the center of mass of the system does

not move, the rigid motion must be a rotation. Reducing the following

augmented matrix which is Equation(3.1 ) with two of its rows of zeros

T T
replaced by X XI=0 oand X 20

1 0 -1 0 0 0o 0

0 1 -1 0 ./ -. /i o
0 0 0 1 -21 0

1 1 1 0 0 0 0
0 0 0 1 1 1 0
0 0 0 0 0 010)

we obtain
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101 0 0 0 -3 03
0 1 0 0 0 2a JS o

3

3

0 0 0 1 0 11 0

0 0 0 0 1 010

This augmented matrix above, can be interpreted as the following

equations.
1=

1 3 3

x 2N/3 y 3

2 3 3

x3=-* -3

3 3 y 3

Y1 =-Y 3

Y2 =0
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2 V3

If we let y3 -3, then the resulting eigenvector is X -V3 The
30 -3

0
3

graphical interpretation of X can be seen in Figure 3.7.x3-

SystemI Motion: 72" 0
y2 -2.f ResultingRotatIon I- -2'/ vector

Center
of

ecutonr 73 = 3 mass

Resulting U3
vector

Figure 3.7
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Exercise 3.6

2Vi

Verify that X isa solution to

0
3

3 = T ZXAX =0

u.O 8m X=

-4 - T.k

Also, verify that X is orthogonal to both X and X

So far we have round only three eigenvalues and their associated

eigenvectors. The remaining three eigenvalues can be found using the
determinant of the matrix A-M which can be reduced to IA'l. For

convenience, I A' has been repeated below.

-X -X -X 0 0 0
1 -2-X -v3 0 ,3

4 5-X 0 V S - I - l

vr- -- 3 0 -3-X 3 0

-%13" 0 v'3 3 -6-k 3
0 0 0 -X -X -X

Using Gaussian elimination, we will reduce the matrix to a form which will

make the determinant easier to find. We will use only row (or column)
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operations that do not change the value of the determinant. After several

row operations, we obtain

I 1 1 0 0 0

0 -3-X 0 -2V3 -Vq 0
0 -3 -9-X v' 2v' 0
0 -2-/ -3V3" -3-X 3 0

0 -3"V'3 0 -6- 2X - 3- 0
0 0 0 1 1 1

At this point, we could find the determinant using the cofactor expansion

method. However, if we do one column operation we will greatly reduce

the number of calculations needed. We add -2 times the fifth column to the

fourth column producing a new fourth column.

I I 1 0 0 0
0 -3-X 0 0 -V3 0
0 -3 -9-k - 3V3 2V3 0

0 -2-.- -V -9-; 3 0

0 -3"V3 0 0 -3-X 0
0 0 0 1 1 1

We are now ready to use the cofactor expansion method to find the

determinant of the matrix A'. Expanding by the first column we have

-3-. 0 0 -VAf 0

-3 -9-k. -3V3 2V3 0
jA' =1(-1) -zVf -V/3 -9-;L 3 0

03v3 0 0 -3- X 0
0 0 1 1 1,
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Now, expand the resulting cofactor by the fifth columnand obtain

-3-X 0 0 v
55 -3 -9-X - 3V 2 "V

-2-3 -v'- -9-;L 3

- 3 "  0 0 -3-k

Next expand the resulting cofactor by the first row.and obtain

1 -9-k - 3-%/3 2 vr3

A'I= -31 3-.)(- 1) ' -N/3 -9-4 3
0 0 -3 -X

1+4 -3-- -3 1
-3V 0 0

[9 -;)'-9][(3-X)2-91.

To find the eigenvalues of the original matrix, we set each factor equal to

zero and solve for N,.

(-9-X)2_ 9=0 (-3-X) 2 _ 9= 0

(-9-)2 =9 (-3-X) =9

-9-X_3 -3-X=±3

X=-12, -6 X=-6, 0
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Since we have already determined that the eigenvalue N-0 has multiplicity

of at least three, the fact N-0 occurs above should be no surprise. The

remaining eigenvalues for the matrix A are ,--12 and ,--6, the latter with

multiplicity 2.

To help us find the associated eigenvectors for the remaining three

-+ -4

eigenvaiues, we recall the equation A X = X X from the definition of an

-+ ftX=-+T -k -
eigenvector X and Equation 3.3 V X , = 8=m AX which

describes the potential energy as a quadratic form using eigenvectors. As

we saw earlier, these two equations can be combined as

V("X)= T -k X ). We observe that the only way this equation can
8m X

equal zero is if N=0 or X is the zero vector. However, since we are only

.-4

looking at \--12 or N--6, which are nonzero values, we must have that X

'--

happen because X is an eigenvector which by definition is never equal to

the zero vector. This indicates that the potential energy of the system is not

zero. Hence, the potential energy of each spring is not zero, 3o the length of

at least one of the springs must change. Thus, we do not have a rigid

motion. Also, we recall that the determinant of the matrix A-Ni can be

reduced by summing the first three rows and the last three rows to give
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-2 - -2 0 0 0

1 -2- I -Y. 0 -f
4 1 -5-1 0 v - -- JA'
3 - 0 -3-1 3 0

-- / o 3 -6-1 3
0 0 0 -X -X -X

If we substitute in \--12 or ?--6, the first row will contain constant values

for x1 , x2 , and x3 and the last row will contain constant values for y 1, Y2,

and Y3 - From an earlier discussion (following Exercise 3.5) this indicates

there is no translational motion in either the x- or y-directions, so we know

the center of mass does not move. Thus the motion associated with the last

three eigenvectors can be thought of as vibrations of the blocks (but not a

translation or rotation) with the center of mass remaining fixed.

First, we find the two linearly independent eigenvectors associated

with the eigenvalue N,--6. Since ,--6 has multiplicity two, the solution

space of the augmented matrix, (A - XI) X = 0 or (A + 6 1) X = 0 will have

dimension four. That is, when the augmented system is reduced, we will

have two rows of zeros. Thus, four of the variables can be written in terms

of two of the other variables. These two variables can be assigned values

which will produce two linearly independent eigenvectors. If we let x2 and

Y2 be these two variables, then x1, y 1, x3 and Y3 can be written in terms of

x2 and Y2. One way to assign values to x2 and Y2 and be assured of getting
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a linearly independent eigenvector, is to first let x2-0 and y 2- 1, and then let

X2- 1 and Y2 -0. Let us consider the geometric interpretation of these cases.

CASE 1. x2 =0 and Y2 =1

Since the center of mass for this configuration remains fixed, the Y2

component must be balanced by the sum of the y , and the Y3 components.

Because x2-0, we know the components x, and x3 must be equal in

magnitude and of opposite sign. These components can be seen in Figure

3.8.

System Motion: Resulting
Stationary Vibration vector

32 1

X 2= 0

Center
of

mass

Resutlting v Resulting
vector Y3s=  YJ 2 = vector

Figure 3.8



224

1
0

-1

Letting c-I, one eigenvector associated with ,--6 is X _
2

1I

CASE 2. x2 -1 and Y2 -0

Since the center of mass does not move, the x2 component is balanced by

the sum of the x , and x3 components. Because Y2-0, we know the

components y , and Y3 must be equal in magnitude and of opposite sign.

These components can be seen in Figure 3.9.

System Motion: Y2
= 0

Stationary Vibration x- Resulting
vector

Center
ofmass Resulting Yl =

Resulting v -vector y3 -

Figure 3.9
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[1
Letting c- 1, a second eigenvector associated with K--6 is X

_______ ______ 26 ~ I
0

Exercise 3.7

Show that X and X are orthogonal (their dot product is zero).
1 2

Therefore, ( X X ) is a set of orthogonal eigenvectors associated

with the eigenvalue N--6.

It remains for us to find the single eigenvector associated with the

eigenvalue \--12. To do this we will substitute -12 for N in IA'j and solve

the matrix equation A'X = 0. When we do this, we get the following

augmented matrix.

1 0 0 0 0 3 o

0 1 0 0 0 0 0

0 0 1 0 0 -V'3 0
0 0 0 1 0 - 0
0 0 0 0 1 2 0

0 0 0 0 0 0 1
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This augmented matrix above, can be interpreted as the following

equations.

x =0
2

x3 = " 3

yI= Y3

y 2 =- 2Y3

-*F3
0

If we let y 3 - 1, then the resulting eigenvector is X r3 The
aI-12~ 1

-2

graphical interpretation of X Xz-12 can be seen in Figure 3.10.
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System Motion:
Stationary Vibration

| 2O

Y2 -- 2 Resulting
vector

Y I Resulting j Resulting y 1  I

x 3n/ mas x r-I

Figure 3.10

1 0 -v 1 - 1/2 - f1 o0 2-j3 0 1 0

Thus, 0 o -/3 -- 1 I/3 is an orthogonalTu, 0 1 -3 -I12 1

o 1 0 1 0 -2
0.1, 3 -1/2 -I).

set of eigenvectors of A associated with the eigenvalues 0,0,0,-6,-6 and - 12,

respectively. We normalize these orthogonal vectors to get the following

orthonormal set of eigenvectors.
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3 0 6 2 4 2

-v3- 0 _%3 0(T 40
3 6 2 1

.v4- 0 _F -4

0 3 2 4 2
o -- 2 -T

r- 14
0 3o 2 0 3

_ 1- N '1 -N/ 1_ 30 3, 2, 4 2, 6

If we let the eigenvectors above form the columns of a matrix P, then P is
-I -Ik k

invertible and P AP-D, so P mAP -Qm D where D is a diagonal matrix

with the eigenvalues 0, 0, 0. -6, -6, and -12 as the entries on the diagonal.

-4

Since our goal is to solve the differential equation X kA X we will let

-4 -1-' k
U = P X, then apply Exercise 2.4 with n-6, where we have factored 4m

A, -#

out of the matrix A instead ofr. Thus PU= D U becomesM, 4mP U=+P U D U6 beco(2)

p(1) + p(2) 0 2 .+ p(6) a r6= -_Lm u +r ul + ,66

where NI =N2-;3=0, 45--6, and N? -- 12. This equation can be simplified

k

by multiplying through by 4m , gathering terms and moving everything to

the left side.
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FP(Da kp(F (2) k P(2)L I 4m 1 1uL 2 4m 2 2]

+FP (6) a p(6) U1

[1 6- 4m u6]=

(1) (2) (6)
Factoring out P P ... we have

[i- 4m I Ul]P(l) + [02- '4-Lmk2 u2] () + ...+ [ii6- 4m 6 u6] P() = ".

Since the columns of P are orthonormal eigenvectors of A, we know they

are linearly independent. Thus, we have a finite linear combination of

linearly independent vectors which equals zero, so the coefficients of
(1. .) (2)

P P., P must be zero. If we set each of the coefficients in the

above equation equal to zero, we have

Il4m I I I 4mII

0 -LX u 0 or U Xk2- 4m ~2 = 0 2 2 4-m k2u2

k k 00 -x u6 4m 6 6 6 4m 66

Since N1 -,2-,3-0, ,4 -N 5 --6 and &6--12, these differential equations

become
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a =0 3k uu= u4= 2m 4

2= 5 2m 5

a =0 3k

3 u6  M6

These are all second order linear differential equations which can be solved

using basic techniques. (See Appendix A.) The solutions are

UI= c ICt +  cl2

u2= c21t +c22

u 3 c31t +C32

( 3k ( 3k -u4 =c 41cos 2 t)+c sin f- t )

4=4 (12m 42 2m

U6 =C6 1 C0s(Tk +c 2 sin 3
u5= c5cos ( rk t + cssin ( k t 1

These solutions can be written as a matrix equation which can be

substituted into X = P U.
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X =PU

-~ ~ t - C+c3 --6 -2 4 11 12

3 -3 0 2 0 ' 21t- "c 22

S30 _ 3 1- 1- 1 c31' + C32
-T6 2 4 2 Co r/'k t + c si 23 T

, - J j/ J C41CO 4 3k t)3 - -1 -- 2 -6 Co T i ~

A 4 - 2  6  C61 Cos( t) + c62 sin(kt

The solution X to X A X is found by multiplying the matrix P by the
4m

vector U. The components of the solution vector X are

X I=c I -t+C - t-C3 + C I4 Cos( 3kti
1 13 12 3 31 6 32 6 41 2 k2m)

1__4 3Ik t)__4_-k
+N ) C i os

-c 1/14 sin ( k t) _c j1cos ( Tk~ t) _c6 2 sin ( k t)
r+ v'3 A142"+c -- +C

Vt +1 t+C c tKc cos t
2= 113 123 313 32-3 51 2 V

- cu-14sin r t)
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_E _ VL3 h 3kx3 Cl t + c1 _3 t c+

3 =11-3 12 3 31 6 32 6 41 2 Cos

C4 2 2 3k,.t) c1 4 2m)

Si'-4(F. _l'1 si3k

- c - sinfl IL+ C iLCOS( k~ 1 j3
52 4 , 2m) 612 m 622 m

y c- L --_ c -~ c i +c 14Co ( 3 k:
= 21 3 c22 3 312 322 4 1 4  2m

-CY4sin( 3 kt +C 3E4Cos( 3 t i t42 4 x~2mi 51 2 \2m1

Cos. + c(6--- + c -A
Y 52 C t 6 + 216_in

,r3_ . 3k+c3 E( 1 i 3k t

Y=Cl 2 3 + 22 3  41 2O k 2m) + 42 2511 2m)

_E I 3k

63 tvvm, 6 3 /

y3-21 t 3 22 3 312 322 41 4 2m

-(3k -c 3

C52 2 \ t) /56126 -( 2 6
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It is possible to determine the values of the cij provided we have been given

enough details about the system which we have modeled. Since the values

of m ithe mass of the spring) and L (the length of the spring in equilibrium)

are given, and if we know the value of each cij, then we will be able to find

the value for each xi and Yi at a given time.

We now want to apply the theory of the spring-weight system which

we have just studied to understand how this system models the vibrations

of a water or H2 0 molecule, as shown in Figure 3.11.

Oxygen

0
0 0

Hydrogen Hydrogen

Figure 3.11

Figure 3.1 has three springs, but the water molecule has only two bonds.

The third spring represents the repulsion force of the two hydrogen atoms.

A water molecule which lies in the xy-plane would have a translational

motion in both the x- and y-directions as described in Figures 3.5 and 3.6.

Also, the molecule would be able to rotate, as we saw in Figure 3.7.
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Moncrief and Jones (1977) explain the three vibrational modes for H20

using Figure 3.12.

o,, 0 \o,,
H H H H H H

0
/ \ H" O

H H H

o 0 0

H H H H H H

Ao, //o\
H HH

H H H

(a) (b) (c)

Figure 3.12

The vibration in Figure 3.12(a) is called a symmetric stretch since the

bonds between the both hydrogen atoms and the oxygen atom are

stretching by the same amounts at the same time. We have already

consider this type of motion in Figure 3.8. In Figure 3.12(b) we see an

asymmetric stretch which is due to the fact the bonds between the

hydrogen atoms and the oxygen atom are being stretched by the same

amount but not at the same time. Figure 3.9 describes this same mode of

vibration in the closed spring-weight system. The final mode of vibration is

called symmetric bending and is seen in Figure 3.12(c). This vibrational

mode consists of the hydrogen-oxygen bonds remaining at the same length,
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but the two hydrogen atoms vibrate by moving further apart then closer

together. We have already seen this in Figure 3.10.
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Application II Appendix A: Review of Differential Equ.tions

We will limit our discussion to second order linear differential

equations with constant coefficients. This appendix is not meant to replace

a differential equation course, but only to show how to solve a very select

group of differential equations. The second order linear differential

equations which we want to solve are of the form

(A.) i+ mx= 0,

where the coefficient of the x-term is a constant which we denote by m.

Any second order differential equation which can be put in the form of

Equation (A.I) is called a linear differential equation. The differential

equation i + m sinx = 0 is no longer linear because sinx is a nonlinear

function of x. The method used to solve the differential equation (A. 1)

above, depends on the value of m. We will consider three possible cases.

CASE 1. m-0

If m-0, then our second order differential equation becomes

i= 0.

By the Fundamental Theorem of Calculus, if i = 0, then i = a, and

x= at + b.

Conversely, if x = at + b, then differentiating this equation with

respect to time we have
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dt =a or x=a
dt

Differentiating again, we obtain

dx0 or i=O
dt 2

Therefore, we conclude that x = at + b is the solution to the differential

equation i = 0.

CASE 2. mO

The differential equation i + m x = 0 can be rearranged as i = - m x

where -m is a positive number. Recall from calculus, that the exponential

function, when differentiated, yields a multiple of itself. Thus, we want an

exponential function which when differentiated twice results in a positive

multiple of itself. Let us pause for a moment and consider two examples of

exponential functions.

x=eZt and x=e -Zt

Taking the first derivative of these two function with respect to time, we

obtain

i=2ezt and i=-2e-2 t .

After taking the second derivative, we have the following two functions
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i=4e2t and i=4e- 2t

If we substitute the values for i and x into the differential equation

i - 4x = 0, we see that z = e2t and x = e 2t are both solutions to the same

differential equation. Furthermore, any linear combination of these two
2t -2tsolutions such as x = cle +c 2e , is also a solution to i + mx = 0 when

m--4. From this we conclude that x = cIe + c2 e is a solution,

for all c, and C2 .

CASE 3. m>0

The differential equation i + mx = 0 can be rearranged as i = - m x

where -m is a negative number. Recall from calculus, that the cosine

function, when differentiated twice yields a negative multiple of itself. This

is also true for the sine function. Let us pause for a moment and consider

two examples involving the cosine and sine functions.

x=cos2x and x=sin2x

Taking the first derivative of these two function with respect to time, we

obtain

x=-2sin2x and x=2cos2x.

After taking the second derivative, we have the following two functions
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i=-4cos2x and x=-4sin2x.

If we substitute the values for x and x into the differential equation

x + 4x = 0, we see that x = cos 2 x and x = sin 2x are both solutions to the

same differential equation. Furthermore, any linear combination of these

two solutions such as x = clcos2x + c2 sin2x, is also a solution to i + mx = 0

when m=4. From this we conclude that x= cICos Vi-- t + c2 sin V/im t, is a

solution, for all c1 and c2.

Just as it was shown in Case 1, where m-0, every solution of i = 0 must be

in the form at+b. It can also be shown that every solution for Cases 2 and 3,

where mO, must be in the forms we have presented.
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Application II Appendix B: Solutions to Exercises

The system D U can be rewritten asdh syte mr i 0 -1 U 2

the following two second order differential equations

--3k

(Bli

u I -
" it k -2 1 xl

Similarly, the system X x =  -2 -. AX can be

rewritten as the following two second order differential equations

=i --- 2k Xl +-L= x

(B.2)
k 2k

Each equation in (B.1) can be solved independently using only basic

techniques from differential equations. However, since each equation in

(B.2) is in terms of both variables x1 and x2 , neither equation can be solved

independently. Thus, it is much easier to solve the system of differential

= - u k -4

equations given by U= D U
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We have already found the eigenvalues of A to be ,13 and N2 "- 1, thus,

3k 1k
I I-I- and r2=- , which are both greater than zero. From this we see that

the two second order differential equations in uI and u2 are

k +  -u = 0 and a 2+ m1u2 =0

These are both second order linear differential equations which can be

solved using basic techniques. Their solutions are

Ul=llO IT t)+C m n t)

u2 =c 21 cos (j- t)c 22 sin m . t)

The solution to the original system of differential equations X =m A X is

found by substituting the values for both the matrix P and the vector U

into the equation X = P U.

l) Czos( .t) +C2sin(
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Multiplying the matrices on the right side together and equating

components, we get the following solutions to the differential equation that

models the spring-weight system.

= C1lCOS(J A t)+Ct 2sin()-t)+c2 1cos( i) t)+c 2 Sin( jt)

x =c lCS t) + c 12 sin ( -t)+ 21CS( t) + c22si m t

Exerise 2.3

Since we have n variables x , x2....xn, we have n equations of motion

which are

d F aTi_ aV d F aTl aV d F aT aV
dt iLdij ax ' dt i aXj x 2 't a=

L L -1-['

The easiest way to construct these equations is to find each component. To

find the left side of each of the equations of motion, we first differentiate

the equation for kinetic energy with respect to x. (i- 1, 2, n).
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6T Im
a 2 1[2iO +0+...+0]=mxi

aT _1

S 2 m[ + 2i 2 + 0 + 0]=x 2

aT 2 [0 - 02x mt2

-L m FO+ +
ain 2 L n

When we differentiate each of these with respect to time, we have

d-aT = d[mx] = mil

d " -[mxz]= mx2

d sT u ti[ mo on

The right side of each of the equations of motion is
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-VI krzb +2b 1 +.+2,,x1-.bx b ]x + +b 1 X n]

-2 = -_k [2b12X 1+ 2 22zX2 + + +2b2nx n] =_k[b 12XI + b 22X2 +.. + b 2nX n]

3V _ I~bn,2~x bn
3- 1=  X +...+ 2bnnxn]=-k[b nx

I +b 2n' 2 +...+bnn

If we combine these components, the equations of motion become

il =k -b x-bl2x- -b nx

i2 = [ 12x1-b22x2 - nn

in=kl bnl-2nx2- ..-nnx n].

The equations of motion can be rewritten in matrix form as

SI l -b 12 "" -bin

X-"/2 k b 12 -b 22  b2n : 2 =--B': m

i(n Iln - b2n n

where B is an n x n symmetric matrix. Now we have an equation that

should look very familiar to us.
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k
X -jBX

Since B is a symmetric n x n matrix, there exists an orthogonal matrix P
-1

such that P BP-D. The matrix D is the diagonal matrix whose entries

along the main diagonal consist of the eigenvalues X'1 ... Xn of B and the

-4 -4

columns of P are the corresponding eigenvectors X X ... X associated

with the eigenvalues X1 ..... Xn , respectively. The following theory will be

very similar to the theory that we developed for the spring-weight system

with two blocks, except the sizes of the matrices and vectors will be n x n

and n x 1, respectively. If we multiply both sides of this equation by P
-1

and use the identity P P . i n , we get

p-I -kk k"(pP- BP X-(P-

m BX BX WP-B P X -I

To simplify this equation, we let U P X. To introduce the vector

variable U, we substitute U = P X into this equation. We then substitute
-1p -i l .- -

P-B= D and U =P X into the right side to obtain U D U. Now,m

multiplying both sides of this matrix equation by the matrix P, we get

"k k "
P U = P D U. Rewriting the left side of P U =-FP D U gives
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(ii

pU~p(=(p(2) (n)) U2  =(1) p(Z) ( " (n)

n

fi)
where P represents the ith column (i - 1, 2. n) of the matrix P. We

rewrite the right side to obtain

k---D k m- (1). (2 .+p(n) ,
= 1U+PX 2 uz .+ Un].

kThus, P Uj 1  P D U can be written as

P()0 +P (2) 0 ... +p (n) a = LF (1) X "" + (2 .. P (n) ' I .

1 2 n= m 1 1 2 2 n u

k
We can simplify this equation by multiplying through by m , gathering

(1) (2)
terms, moving everything to the left side, and factoring out P 1 P

P(n) from each quantity.

u ... + M 0
1Ul--m'1Ul] P(l)+[02Z-  " '2 u2 p ) "+ [ain - -Kn un~ p n =

Since the columns of P are orthogonal, we know they are linearly

independent, thus, the coefficients of the vectors P , P P must
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be zero. If we set each of the coefficients in the above equation equal to

zero, we have

0 u = 0 u -K-X u = 0, u 01' M 1 1 2- m 2 2 ,n- mnUn =0

These are all second order linear differential equations which can be solved

using basic techniques. If we let r.=- j-Xi , where i-l, 2,..., n, then these

equations become

t + rI u = 0, 02+ r 2 u2 0 .. n + rn un = 0

Using the following formulas, we can solve for the vector U. (Note: To

determine whether ri is zero, negative or positive, substitute Ni into

ri= - AkXi,)

If r.= 0, then u.=c cii t + ci2

r.t -r.t
If r.<0, then u.=c i e +ci 2 e

If r > 0, then u. =c.1 cos ( +C~ sin i2i I Oil .-
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kThe solution to the original system of differential equations X = - B X is

found by substituting the values for both the matrix P and the vector U
-. -

into the equation X = P U.

Since the spring-weight system lies free in the xy-plane, the entire system

can move vertically up or down, horizontally to the left or right, or rotate.

These types of motion are called rigid motions. The system can also vibrate

producing the motions that are described by Figures 2.6 and 2.7.

(a) Suppose the three masses are moved to the right causing the first three

springs to stretch by different amounts and causing the fourth spring to be

compressed. This is depicted in Figure B.1.

m m m

I-HI -x2-1 H-X3--1

Figure B.1

First, we need the equation which describes the kinetic energy of the

system in Figure B.I.

T =I 2 [2+ x 2+ x 2'
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The potential energy of the system is the sum of the potential energies of

each spring. Spring I is stretched from its equilibrium position by the
I 2

amount x I , so the potential energy for spring I isV = k x Spring 2 is

stretched from its equilibrium position by the amount 1 l -12 , so that

2

V2= k(Xl J is the potential energy for spring 2. Spring 3 is stretched

from its equilibrium position by the amount x2 -x3 , producing a potential

2
energy of V= . k(x 2 - x3) for spring 3. Spring 4 is compressed from its

equilibrium position by the amount x3. Thus, the potential energy for

spring 4 is V4 = kx2. Therefore, the potential energy of the system is

4 2 3

V= vi- 2 1 1- 2) + -' 3)

=k x+x2+x3- 1xx2 -x 2x3]

Since we have three variables x1, x2, and x3 , we have three equations of

motion which are

d _. _ TV d [ aT _ aaT d V

L ad 3
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The easiest way to construct these equations is to find each component. To

find the left side of each of the equations of motion, we first differentiate

the equation for kinetic energy with respect to i (i-1,2,3).

aT i-m[2x1 +0+0]=mx1
a)I
-T = - n[20 + 0+ 01 = mn i,

aT-=mFO+2i +O1=mx

2 2 2 2

T I [0 +O+2 3]= mi 3a~i 3-2 m'3

Now, differentiating each of these with respect to time, we have

dt aiJl dt L 2

Tte at m mon

The right side of each of the equations of motion is
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aY

1 k, 2x-x 2 ]=k[-2x +x I

-v -kF 2x - x- x 1=krx -2x +
dx2 - 2 1 3 1 L 1 2 3 J2

a v k[2] 3 - 2 =k[x 2 - 2x]
8x3

If we equate these components, the equations of motion become

x =A-[-2xl+X2 ]

i2= K[Xl-2x +X3

~ =!.[x2- 2x2 31

The equations of motion can be rewritten in matrix form, which is the

system of differential equations modeling the spring-weight system in

Figure B.1.

x= -2 1 0
k=x=~{1 -2 J~ A

3 ) 0 1 -2 3)

(b) Since A is a symmetric matrix, all of its eigenvalues are real and A is

diagonalizable. We begin by finding the eigenvalues of the matrix A.
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det(A -41I) = det 1 -2 -4 1.=(.+2( -" .+2+.

0 2- X

If we set det(A - XI) equal to zero and solve for N, we find the eigenvalues

are Y\-2, ?2 -- 2+F'2 and ?3 -2-4'. Thus, there exists an invertible matrix

P such that P- I AP -D. D is the diagonal matrix whose entries along the

main diagonal consist of the eigenvalues of A and the columns of P are the

corresponding eigenvectors. To find P, we need to find the eigenvectors

associated with Yi--2, N2--2+'2 and N3 --2-'5. For i--2 we have to

reduce the following augmented matrix

-2+2 1 0 01
1 -2+2 0
0 -2+2 0

1 0 1 0
to obtain 0 1 0 0 which yields the following equations: x--x 3 and

0 0 0 )

x2=0. If we let xI--1, an eigenvector associated with I=- 2 is

F Xi= 2!32  
we h

For N,2--2 -v2 we have to reduce the following augmented matrix.
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( -(-2+ -2-(-2+ ) 0 0

0 -2-(- +%12) 1 0,

toobtain 0 - V 5 0 ,which yields the following equations: '1-x 3

and x2- 2x 3 . If we let x3=1, an eigenvector associated with N,1--2+-'2 is

-4 ( I
x z.z+- = KI.

X. X -2+j2-I
2 1

For N2 -- 2--2 we have to reduce the following augmented matrix.

-2-(-2- V/2) 1 0 I 0)

1-2-(-2-.V2) 1 I 0
0 1 -2-(-2-V) I o)

(1 0 110)'~
to obtain o -I - 0 , which yields the following equations: x= x 3

o 0 1 0)

andx2--2X3 . If we let x3 - 1, an eigenvector associated with N,--2-; is
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X 3_/i =(f2. Using the theory that we developed in Exercise 2.3,

we know that we must first solve the differential equation P Ui = -F-P D U,

which leads to

I- 1 1),ll"l+[02-- -;,zu21P'2'+[03-m X3u31' 0.

Since the columns of P are orthogonal, we know they are linearly
(1) (2) (3)

independent. Thus, the coefficients of the vectors P , P and P(, must

be zero. If we set each of the coefficients in the above equation equal to

zero, we have

u --L-X u =0, 0 xu =0, i -LX u =01 1 2 z z = 3- m  3u3 0

Substituting in the eigenvalues, we obtain

(- -(-2)u =0 (- 2+ %/f2)u = =0

After simplifying these equations they become

a~ + ui =0, u +(2- )k u=0, a + u 0I' + 1 2=m 2 3 m 3
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From these differential equations we observe that

2k (2- -V)k (2 + Vi2)k

r I --- r-2 = m ' 3  m

Since each ri (i-, 2, 3) is greater than zero, the solutions to these second

order linear differential equations are

u2 =c 2 1Cos zv i t + )c 2 sin 

u 3 c3,cos (2+-F2)k t) csin( (2 +v)k

The solution to the original system of differential equations X = A X is
.-4

found by substituting the values for both the matrix P and the vector U
-+ -4

into the equation X = P U.

-4 -4

tP(

cl 1cos ( t) + cl12sin (Jk t)

(1 4 ~cs 2I~kt+ 2 sn z/~
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Multiplying the matrices on the right side together and equating

components, we get the following solutions to the differential equation

which model the spring-weight system.

= C 3lCos ( 2+r' )- t) ( in F)

Co t) + cZ~i

+ Cc/1 cos /(2 + - )k t)+ c 2 sin ( 1(2- VI2)k

c31  ( m t)+ c 32sin m t)

(c) To describe the configurations in which the spring-weight system
vibrates, we need to write each u in terms of the x. This can be done by

using the matrix equation X = P U or U = P- X. We first find P Iand

substitute it into the matrix equation.
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following three equations.

U 23

2= 4

u3 4

x1, x2 and 3. The three modes in which this spring-weight system

- xI  Ix x1  + 3/ z

vibrates are u1= - 1 2 with u2Oand u3 -.O ,u = 1 2 3with

24

2 4I

anxu 2 3 with U1 -O and u2-O.
, 3 4



259
-x 4-X -x +X3

In the first mode, u 2 with u2 -0 and u3-0. Since 2

represents how the distance between blocks one and three is changing, the

first mode of vibration describes how the distance between the two blocks

is changing. We visualize this by considering a series of diagrams similar to

those in Figure 2.6. Recall, the banner is made of an elastic material and

indicates the distance between the two blocks. When this system vibrates,

we see the banner contracting and stretching with a frequency associated

with 'I" This is indicated by the series of "snapshots" of the spring-weight

system in motion seen in Figure B.2.

Figure B.2
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X 3 x2+x3

In the second mode, u2 =4 with u ,=0 and u3 -0. To

visualize this mode of vibration, we consider a series of diagrams similar to

those in Figure 2.6. When this system vibrates, we see the flag moving

back and forth with a frequency associated with t\2. This is indicated by

the series of "snapshots" of the spring-weight system in motion as seen in

Figure B.3.

Figure B.3
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In the third mode, u 4 with u -0. To
34 wih 1 -0and u2 O

visualize this mode of vibration, we consider a series of diagrams similar to

those in Figure 2.6. When this system vibrates, we see the flag moving

back and forth with a frequency associated with \3. This is indicated by

the series of "snapshots" of the spring-weight system in motion, as seen in

Figure B.4.

Figure B.4
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Exrie2.6
Since the spring-weight system lies in the xy-plane, the entire system can

move vertically up or down, horizontally to the left or right, or rotate.

Besides these rigid motions, the system can also vibrate producing the

motion that were described in Exercise 2.6.

Exercise 3A

We write f (_L) as a Taylor series expansion expanded about zero.

f f 0) + '.(0) 1 f'i ( I 2L! +  -+"

We use f which has been repeated below for convenience, to find f(O),

NO) and f"(O).

(( 2 fi V3 4 + -&2(x,-x) +(yl- y2))

f(O) - I

f, (0 x I )- I -Y2)]

f (() 2 2

-f(o)- 1

S ub- sttu -i thes + x a- x2)mpliY h2av
Substituting these into the Taylor series expansion and simplifying, we have
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r~*/ (.y 1 -(x- 2 .f(Yj 2 ) 1

2 2 2

2! L2

1+ (x I- x2 - A13 (Y - Y2) + higher power terms.

Figure B.5 contains the coordinates of the blocks and the distance formula

for the spring from Figure 3.3.

7'2 (x2  Ly)

x2

X22

w here d - _ _2_ _-VT__ _ _ _ _ _ _ _ _ _ 2

I1-- --L3 73)

Figure B.5

The potential energy of this spring is one half the spring constant k times

the square of the distance that the spring is stretched. The displacement of
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the spring from its equilibrium position (the distance that the spring is

stretched) is Id-L!. Expressing the potential energy of the spring in terms of

,d-L:. we have

V lk IIkd-_LI 2

23 2

We want to rewrite V2 3 using the variables x2 , Y2, x3 and Y3. To do this,

we must first simplify the expression for the distance d.
I

X2 - (L2+ x3') +fjL y 2 ) -y 3 j

2
" 2 'I2 2

L ( I

=-x X 3 L+ y2-Y3

3~x (x 22 3 ) 3)+( y3)

L-L 1. -x-3) + V 3 (y -y )]+ -. ~~~ 3 +K'Y)
LL

We can rewrite the quantity expressed by the square root using its Taylor

series expansion. The terms of higher powers have been grouped together

for convenience.

2_ + (2-x3) "12(Y2 Y3)]l'
d1!LI ~+terms ofhigher powers I

)L
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This expression can be simplified by multiplying through by L and then

moving the L to the left side. The resulting quantity is what we wanted to

find.

d-- [x - x 3 )V( 2 - 3 ]terms of higher powers

This quantity can now be substituted into the formula for the potential

energy V23.

V2 k ld-L
23=2

=4 + '3 ] + terms of higher powers~

The Taylor series expansion for potential energy can not have nonzero

linear terms, since the system has an equilibrium configuration. Also, we

are considering only small vibrations so we ignore the terms of higher

powers. The formula for potential energy V2 3 , is
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23 tLkX2-x3+'- YY3)

2 2 2 2
kx X3  3y 3y23  I

k, 2 X X V3 x V3
2 44 4 4 2 2 x3 +- 2 x 2Y2 2 x 3Y 2

2 2 32 3 32231

Exercise ,3.3

Figure B.6 contains the coordinates of the blocks and the distance formula

for the spring from Figure 3.4.

Y3 (

3  X1

2
where d L j[.+X L'-J+X3 ]+y- f

Figure B.6

The potential energy of this spring is one half the spring constant k, times

the square of the distance that the spring is stretched. The displacement of

the spring from its equilibrium position (the distance that the spring is

stretched) is jd-Lj. Expressing the potential energy of the spring in terms of
Id- L , we have
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V I kId-LI2

13 "-Z

We want to rewrite V13 using the variables x1, y , x3 and Y3 . To do this

we must first simplify the expression for the distance d.

1
2

22L 2 2 ]

=AL2 *2L(x 1 -x 3)+(x2-x 3 ) +(Yl- y3)j

We can rewrite the quantity expressed by the square root using its Taylor

series expansion. The terms of higher powers have been grouped together

for convenience.

d= L 11+ 2 (1I + higher power terms
L.,
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This expression can be simplified by multiplying through by L and then 2

moving the L to the left side. The resulting quantity is what we wanted to

find.

d- = -x + higher power termsI 3/

This quantity can now be substituted into the formula for the potential

energy V 1 3.

V=kd-LI2

- f + higher power terms1

The Taylor series expansion for potential energy can not have any nonzero

linear terms, since the system has an equilibrium configuration. Also, we

are considering only small vibrations so we ignore the terms of higher

powers. The formula for potential energy V 130 is

2

V13= 2 x

k2 X +X- 2Xl-

1 _ 3 2 I 3
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(1

[ .O =Tj- k = ie
Substituting Xx=0 io= o X - AX = 0, gives

0 8m

0

0 1 00 0)-kA1 8m 0
0 ,0

S0 0

( -5 1 4 V/3 -V3 0
1 -2 1 -V3 0 v/3

1( 000) 4 1 -5 0 V/ v !lI
8m -3- V3 0 -3 3 0

v O'T 0 v/3 3 -6 3 0
0 -%/3" - 0 3 _3. O

f1
k..(o0ooo00) I =0

8m 0

0)
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Exrcie 3.

Substituting X nto= x - A X.0, give

2. ~
S1)

IO 0

l 0

1K (o 0011 11- A 0

8m 1

-5 1 4 -%3 --%/3 0' 0)

1 -2 i-3' 0 -v3 0
-0 0 0 1 1 ) 4 1 -5 0 v3-V3 0

8 V -V3 0 -3 3 0 1

-Nf3 0 -/ 3 -6 3 1

0 V"'3 -V 0 3 -3\

0
01

_k 0 0 0 0 0 0) 0 1 o
8m 1

1
l . 0
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-- 4 2 V3

Substituting X - N into V X 8m A X .

0
3

gives

-r3 V3
2-%- 2-*3

-k -m

-3 8m -3

o 0
3 j 3

-5 1 4 0--3 0

1 -2 -v'i 0/-
=j(-V 2-4-3,03) 4 1 -5 0 -3 "'3

8mr- -,r3 0 -3 3 0 X
-- / 0 V 3 -6 3

0 0 -v'3 0 3 -3

2V3
-k 0 0 0 0 o O) -V3 =0
8m -3

0
3
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Now, show that X is orthogonal to both X and X

" X 3-'" 1 I 0

' 3m= 0  x1= 0  -3 0

0 0
3 30

X x = 0 =0
3- Xe3 0

0 0

To show that X x06and X X-6are orthogonal, we show their dot

product is zero.

0 0

X X =_1 ,- =0
x1 0

1~ 0
2 1_


