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ABSTRACT

INTERACTION OF ELECTROMAGNETIC

SIGNALS WITH PARTICULATE

CLOUDS

by

JOSE MARIO PAUDA, B.S.

SUPERVISING PROFESSOR: THOMAS A. GRIFFY

A particulate cloud affects the ability of an electronic detector to

receive an electromagnetic signal in two ways: by scattering light from the sun

into the detector, thereby masking the signal, and by attenuating the signal

itself. These effects are well studied in the Mie theory, which is summarized.

The effect of the particle distribution in the cloud and the shape of the cloud

on the scattering and absorption problems is then analyzed. The results of

this analysis and of the Mie theory are incorporated into a computer program

which is included in the appendix. The graphs generated with the program can

be used (in conjunction with information about the sunlight intensity and the

V



detector's discriminating ability) to determine the effect of scattered light on

the detection of the signal. We conclude that attenuation of the signal plays a

relatively minor role in the ability of a detector to receive a signal affected by

a cloud of particles.

vi /
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Chapter 1

Introduction

1.1 Scattering: A New Computer Model
for an Old Problem

Most of the information we receive from a variety of sources is in the

form of electromagnetic signals. These electromagnetic signals interact with

the particles suspended in the medium through which they travel. Examples

include the absorption of sunlight by dust particles suspended in the atmo-

sphere, the absorption of radar signals by water dropplets, and the absorption

of infrared signals by particles produced by rocket motors. If we assume that

an electronic detector is to receive and process a signal that has to interact with

a cloud, be it a radar return passing through a rain cloud or an infrared signa-

ture of a "hot" object passing through a smoke cloud, we must investiga~e the

effect of the particulate cloud on the signal itself. This effect is two-fold: the

signal may be partialy absorbed by the particles to a point below the thresh-

old of the detector, or the signal may be masked by the light from a brighter

source scaLtered by the particles into the detector. This is the major aim of

this project: to create a computer model to investigate the absorption (also

called the extinction) of the signal as it travels through a cloud of particles and

the masking of the signal by light scattered by a cloud of particles. Specifically,

we consider the effect a conical cloud has on a detector at the vertex of the

cloud. This investigation is by no means new. However, other authors have
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limited their investigations to long wavelengths or to preselected absorption

'alues. We have tried to fill this gap by providing a general computer code,

with none of the limitations listed above. Thus, by implementing the code

included in the appendix, the reader will be able to generate theoretical pre-

dictions for a wide range of particles, wavelengths and refraction coefficients.

In the remainder of this chapter, a brief explanation of how these parameters

affect the absorption and scattering of the signal is presented. In particular,

the results of the Mie Theory are summarized and expressions for the electric

and magnetic fields in terms of known parameters are presented. In chapter 2

the effect a nonconstant particle size distribution is investigated, as well as the

effect of the shape of the cloud itself. In chapter 3 we apply the information

from chapters 1 and 2 and present the graphs of the scattered light and ab-

sorbed signal. These graphs were obtained by plotting the points calculated

by the computer program included in the appendix.

1.2 Exact Solution to the Problem:
The Mie Theory

Any electromagnetic signal may be treated as a plane wave if the

distance from the source to the observation point is much greater than the

wavelength. More explicitly, if the observation point is at a distance d from

the source and the signal has wavelenght A, then with k = , the signal may

be treated as a plane wave if

kd > 1. (1.1)

In particular, consider a spherical particle in a vacuum at a distance d from

the sun, such that equation 1.1 holds. Furthermore, assume that the particle is



3

I,

I II!!/

Figure 1.1: Relation of the incoming plane wave to the scattering angle 9
[van de Hulst 81, page 12].

absorbing in the ..ifrared region of the spectrum. Then the scattering problem

is as depicted in figure 1.1: a train of plain waves comes in from "infinity"

and interacts with the particle. Part of the signal is absorbed and part is

scattered at an angle 0. If the radius of the particle is much smaller than the

wavelength, r < A, the problem reduces to the well-known Rayleigh scattering,

treated in many textbooks. Jackson, for instance, has several sections dedicated

to this very problem [Jackson 75, sections 9.6 and 9.7]. However, to solve the

scattering problem exactly, with no assumptions as to the ratio of the particle's

size to the wavelength of the signal, we must solve Maxwell's equations subject

to the appropriate boundary conditions. This problem was first solved by Mie

in 1908 [Mie 08]. In his classic book van de Hulst covers the work of Mie

thoroughly and concisely [van de Hulst 81, chapter 9]. Indeed, his treatment

of the scattering of light is among the most lucid and complete. In this thesis,

we do not recreate Mie's original work, nor emulate van de Hulst's. Instead, we

simply summarize the process they used to arrive at the solution. Their result
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is then used to write the computer program which can be used to calculate the

effects of a cloud of particles on the signal.

Consider, then, a plane wave of random polarization, and a spherical

particle with which the wave interacts, as in figure 1.1. Let the electric field be

represented by E and the magnetic field be represented by B. Furthermore,

let the wave have wavelength A and circular frecuency w = ck. Then, in any

medium, this wave is represented by Maxwell's equations as1

C atV.E=O V xE+;--=0

V.B=0 VXB- - -=0
C at

where c is the speed of light in vacuum, y is the magnetic permeability and

c is the electric permittivity of the medium (in vacuum, these parameters are

unity). By combining the two curl equations, we can show that each cartesian

component of E and B satisfies the wave equation

1 02U
V2U_ = (1.2)

V
2 0t

2

where
c (1.3)

is the velocity of the wave in the medium. For a wave traveling in the z

direction, the wave equation 1.2 has the solution

u(z, t) = e-ikz+iw. (1.4)

'In this introductory chapter, we follow the approach of van de Hulst, chapter 9. In
particular, we use his notation for a plane wave traveling in the z direction as shown in
equation 1.4. Most modern references assign a negative sign to the time component of the
wave and a positive sign to the spacial component, which is opposite to the convention
adopted here. In addition, we have used the cgs unit system.
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This solution may be generalized to include the vector quality of the E and B

fields. Following the convention that the physical electric and magnetic fields

are obtained by taking the real parts of complex quantities, the plane wave

fields may be written in the form

E(z,t) = eEe- ikz+iwt (1.5)

B(z,t) = e2Be- kZ+"t (1.6)

Equations 1.5 and 1.6 describe a plane, transverse wave in vacuum, with the

electric field, of magnitude E, polarized in the el direction and the magnetic

field, of magnitude B, pointing in the e2 direction. The waves then interact with

the particle, resulting in an outgoing-scattered wave as shown in figure 1.1. The

rigorous solution of the problem requires the matching of boundary conditions

at the surface of the particle between the outside-incident wave and the inside

wave, and the inside wave and the outside-scattered wave. Therefore, we must

investigate the nature of the waves in the medium as well as the nature of the

boundary conditions. We do this in the next three subsections.

1.2.1 Maxwell's Equations in the Scattering Medium

To find the nature of the electromagnetic waves in the medium, we

must solve Maxwell's equations as they are expressed in the medium itself.

Consider, then, a plane wave of random polarization, and a spherical particle

with which the wave interacts, as in figure 1.1. In the scatterer itself, or put

differently, in a macroscopic medium with surface charge density p and current

J, Maxwell's equations are

V. D = 47rp (1.7)
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1 8B
VXE=--- (1.8)cat

V. B= (1.9)

V x H 1 D 4ir j
c a +  (1.10)

where H is the magnetic field, B is the magnetic induction, E is the electric

field, and D is the electric displacement. The electric displacement and electric

field are related by

D = EE,(1.11)

while the magnetic field and magnetic induction are given by

H = IB. (1.12)

Finally, the current J and the electric field E are related by Ohm's Law:

J = aE, (1.13)

where a is the conductivity of the medium. In section 1.2 we assumed that, be-

fore interaction with the scatterer, the magnetic and electric fields form a plane

wave. We also found that they are periodic in nature, given by equations 1.5

and 1.6. When they interact with the scatterer, the expression for the E and

H fields changes (as we shall see). Nonetheless, they maintain their periodic

nature. Thus, in the scatterer, the magnetic and electric fields are of the form

E = Eo(x)expwiu (1.14)

H = Ho(x)expwi, (1.15)

where Eo(x) and Ho(x) are the complex amplitudes. By taking the time

derivatives of equation 1.14 and equation 1.15 above, plugging into the two
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curl equations (equations 1.8 and 1.10) and simplifying, we obtain

V x E =-ikH (1.16)

and

V X H =ikm2E, (1.17)

where J = aE and D = cE have been used. The new term m in equation 1.17

is called the complex index of refraction, given by 2

41ria7
m 2 =e- , (1.18)

Uj

while k - 2,* From equation 1.18 it is apparent that the complex index of

refraction is a function of frequency. However, in practical applications, "m

cannot generally be determined from the static values of c and o but should

be determined by measurements at the circular frecuency w" [van de Hulst 81,

page 116].

The curl equations remain coupled. However, by applying the di-

vergence equations, we can decouple them as follows. From equation 1.17 we

get

E=m2V X H.

Taking the curl,

V x E = -VX(V X H),
km

21n so defining m, we have separated the complex part of the problem from the wave
number k. Other authors, Jackson in particular, prefer to include the complex factor in the
k itself [Jackson 75, page 286]. Thus, what we denote as mk is equivalent to Jackson's k.
Furthermore, our expression for m will not involve the parameter j, since we shall restrict
our analysis to substances for which p = 1.
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or, using V • H = -V . B = 0,

V 2 V2 H. (1.19)

Equating equation 1.16 to equation 1.19 and rearranging terms, we get an

expression involving only the magnetic field H:

V 2H + k2m 2H = 0. (1.20)

A similar (decoupled) equation can be obtained for the electric field, E. Thus,

each of the cartesian coordinates of E and H satisfy the scalar wave equation

V 2u + k2m 2u = 0. (1.21)

The simplest solution to the scalar wave equation is very enlightening. This

simple solution is

u(z, t) = e- i kmz+iwt

Notice that, if m has an imaginary component, then the wave in the medium

of propagation is damped. On the other hand, if m is strictly real, the wave

suffers no attenuation, although it does undergo a phase shift. As enlightening

as this form of the solution might be, however, it does not represent the solution

of the wave in a spherical particle, nor the solution of the wave scattered by a

small sphere. The actual solution involves spherical waves, which is the topic

of the next section.

1.2.2 Solution of the Wave Equation in Spherical Coordinates

Consider the spherical coordinates shown in figure 1.2. Assuming that
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M I

0.

0, 7 ro

Figure 1.2: A spherical coordinate system. The origin of the system is located
at the center of the scattering sphere [Arfken 85, page 104].
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the scalar wave equation is separable in r, 0 and 0, its solution may be written

as

u(r, 0, 4)= R(r)0(0),D(O).

Using the laplacian for spherical coordinates, separating the radial equation

from the angular dependence, and solving the resulting three equations, we

obtain
3

u(r, 0, 0) = (A cos(lI) + B sin(10))P'(cos 0)z.(mkr),

where A and B are constants, 1 and n are integers such that

n> 1>0,

P (cos0) is the associated Legendre polynomial, and z,(mkr) is the spherical

Bessel function.

Since the scalar vector function represents any one of the components

of the vector wave function, it follows that the solution of the scalar function

must be related to the solution of the vector wave function. Mie shows that, if

u is a solution of the scalar wave function, then the vectors Mu and Nu, defined

by

M = VX(ru) (1.22)

and

mkN,= V x M, (1.23)

satisfy the vector wave equation. Furthermore, M. and N,, are related by

mkM, = V x N, (1.24)

3The separation of variables in spherical coordinates is treated in many textbooks. See,
for instance, [Slater 47, pages 148 to 151] and [Arfken 85, page 105 and pages 448 to 450].
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Finally, if u and v are two independent solutions to the scalar wave function,

then the electric and magnetic fields are given by

E = M, + iN,, (1.25)

and

H = m(-M,, + iN,), (1.26)

respectively [Mie 08, page 120]. Thus, given two independent solutions to the

scalar wave equation of a wave in an absorbing medium, we can find the electric

and magnetic fields which satisfy the vector wave equation. However, the wave

equation need not be limited to a dissipative medium. Equations 1.22 through

1.26 apply equally well to an incoming (incoming from the point of view of a

scatterer) plane wave in vacuum, as well as to an outgoing, scattered, spherical

wave, provided m is appropriately expressed. The exact relationship between

these waves is given by matching the appropriate boundary conditions at the

skin of the scatterer. The nature of these boundary conditions is t'-' subject

of the next section.

1.2.3 Boundary Conditions Between Different Media

Equations 1.7 through 1.10 are the differential form of Maxwell's equa-

tions for waves in a macroscopic medium. By applying the divergence and

Stoke's theorem, Maxwell's equations can be written in their integral form:

is D.nda = 47r V pd3 x (1.27)

iB.nda = 0 (1.28)
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D,

n

Figure 1.3: Infinitesimal Gaussian pillbox used to determine boundary condi-
tions [Griffiths 81, page 280].

rrF4 rj 1 ODl

E-dl = !L nda, (1.30)

where equations 1.27 and 1.28 are defined over any closed surface S with vol-

ume V, and equations 1.29 and 1.30 are over any surface S bounded by the

closed loop C. In this form, Maxwell's equations are particularly useful in de-

termining the boundary conditions. Consider a very thin Gaussian pillbox as

in figure 1.3. As the thickness of the pillbox goes to zero, equation 1.27 leads

to

(D 2 - Di).n = 4rE, (1.31)

4Griffiths gives a particularly good presentation of the limiting process used to arrive at
the boundary conditions [Griffiths 81, pages 280 and 281, and, on a different context, pages
78 and 79].
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Figure 1.4: Infinitesimal Stokesian loop used to determine boundary conditions
[Griffiths 81, page 281].

where E is the surface charge density. Meanwhile, equation 1.28 leads to

(B 2 - B,).n = 0. (1.32)

Similarly, consider the Stokesian loop in figure 1.4. As the height goes to zero,

equation 1.30 leads to

n×(E2- Ej) = 0, (1.33)

while equation 1.29 leads to

nx(H2- H 1 ) = 4rK, (1.34)

where K1 is the idealized surface current. If medium 1 has an index of re-

fraction m, and medium 2 has an index of refraction in2 , both finite, then the

surface current K vanishes [van de Hulst 81, page 117]. Then, equation 1.34

may be written as

nx(H 2 -H,)=0 (1.35)
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Equations 1.31, 1.32, 1.33 and 1.35 are the boundary equations to which the

incoming, inside and outgoing wave are subject. To find the scattered electric

and magnetic fields at any point in space, all that remains to be done is to find

the waves in terms of known quantities and apply the boundary conditions.

We do this in the next section.

1.2.4 The Mie Coefficients: Parameters in terms of

Known Quantities

A review of the progress achieved seems appropriate at this point5 . So

far, we have found an expression for the plane waves in vacuum (equations 1.5

and 1.6) which then interact with the spherical scatterer. We have found

(equations 1.25 and 1.26) the expression for the electric and magnetic fields

inside and outside the scatterer in terms of two linearly independent scalar

functions u and v (these scalar functions are to be determined). We have also

discussed the boundary conditions which the incoming wave, the inside and

the scattered wave must satisfy (equations 1.31, 1.32, 1.33 and 1.35). In this

last section of this introductory chapter, we apply the boundary conditions

to obtain the solution to the scattering problem in terms of known quantities.

First, however, we must find the expression for the scalar functions u and v. As

explained in [van de Hulst 81, pages 121 through 123] the electric and magnetic

fields may be expressed in terms of the scalar functions u and v as follows.

'The credit goes to Mie, of course. In this section we continue to summarize his theory,
as presented by van de Hulst.
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The outside, incident wave:

u = eiWcos(O) Z(-i)" 2n + P,(cosO)j.(kr), (1.36)
n=1 n(n+1)

v swtsin(O) Z(_iy' 2n + 1 p1 (cosO)jn (kr).(

n(n+1)(1.37)

The angles 0 and 0 are as defined in figure 1.2, n is an integer from 0 to oo, jn

is the spherical Bessel function of the first kind and P1(cos 0) is the associated

Legendre polynomial.

The inside wave:

u = e"w cos( )00m(-i)n +1 P (cosOlj.(mk,), (1.38)

=1n(n +!)

v = ewttsin(O) Emdn(_i)n 2n + 1 Pn(cosO)jn(mkr), (I.39)
n=1 n(n +1)

and the outside, scattered wave

u= ei°cos) -a,(-i)" 2n+ 1
n(n + 1) P(cosO)h(1 )(kr), (1.40)

00

v = eiwt sin(¢) E -b,(-i)n 2n + 1 p'(cosO)h$)(kr), (1.41)
n=1 

n(n + 1 n

where h$()(kr) is the spherical Hankel function of the second kind. In the

equations for the inside and the scattered waves, (equations 1.38 through 1.41)

an, b,, cn and d, are called the Mie coefficients. These coefficients are the

sought-after parameters which are expressed in terms of known (or functions

of known) quantities. By matching the appropriate boundary conditions at the
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skin of the particle (see section 1.2.3), we obtain for the Mie coefficients

_S'.(y)S,,(x) - rnS.(y)S',(z) (.2

an S'.(y)S.(x) - mS(Y)'() (1.42)

b - mS,(Y)S.(X) - Sn(Y)S((.)
= mS'(y)Cn(X) - Sn(Y)'(X) (1.43)

where x = ka = k,:

wk ", y = mka, and m is the complex index of refraction of the

medium. Sn and Cn are the Riccati-Bessel functions defined by

S(z) = zj,,(z), (1.44)

and

C,,(z) = -zn,,(z). (1.45)

where j,(z) and nn(z) are the spherical Bessel functions of the first and second

kind, respectively6 . The functioni "(n) is defined in terms of Sn and Cn:

( S(Z +Cn(Z).

Thus, for a given radius r, a wavelength A, and a complex index of refraction

m, we can find the corresponding Mie coefficients. Having found the Mie

coefficients, we can then find the fields at any point. However, the distribution

of the size of the particles in the cloud, the shape of the cloud and, most

importantly, the direction in which the detector is "looking," make the problem

nontrivial. In the next chapter we investigate these factors.

6See section 3.1 for the generating function used for the Riccati-Bessel functions.



Chapter 2

Particle Distributions and Cloud Shapes

2.1 Scattered and Absorbed Signals in Clouds with
Nonuniform Particle Distributions

In problems of practical importance, the signal is affected by a cloud

of particles, as opposed to just one particle. Recall the problem at hand: a

signal may be masked by the light from a strong source scattered into the

detector, or the signal itself may be attenuated by the cloud. Although the

cloud may have any geometrical shape, the particles tend to be spherical.' If

we further assume, for now, that all particles in the cloud have radius a and

that the number of particles per unit volume is N, then the light intensity

scattered per unit volume in the direction 0, is

Itot,(O, a) = NI(O,a) (2.1)

where 1(0, a) is the intensity of light scattered by one particle. In terms of the

Mie coefficients, the intensity is given by 2

I(0,a) -_ oi1(0) + i2 (0)2k 2r 2  (2.2)

1This certainly seems true of particles produced by rocket motors. See, for instance,
[Dawbarn 80].2 0n first inspection, it seems as though the intensity 1(0, a) is not a function of the radius

a of the particle. However, we must keep in mind that the Mie coefficients, which are a part
of il and i2 by equations 2.2 through 2.6, are radius-dependent.

17
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where r is the distance from the detector to the scatterer, I. is the intensity

of the incident wave, and i1(0) and i2(0) are the scattering functions for the

perpendicular and plane polarized scattered waves, respectively. They are given

by

i 1(0) = ISI(O)12, (2.3)

and

i2(o) = IS2(o)12. (2.4)

In turn, S1(0) and S2(0) are given by3

Si(0) = n(2n + 1) {ar,(cos 0) + b .r(cos 9)), (2.5)

and

S2(0)= 2 1 br.(cos) + a0r2(cosO 9).

n=1 n(n + 1)
Finally, Xrn(cos 0) and rn(cos 0) are given by

dP.(cos 9)r(os)= dcos 0 ' (2.7)

and
Tr(cos0) = cos(0)w.(Cos0) - sin 2  7 ,(COS0) (2.8)

dcos9

where Pn(cos 0) is the Legendre polynomial of order n. The second part of the

problem involves the attenuation of the signal itself. This attenuation is given

by

I = Ie - n, (2.9)

3The functions S1 and S 2 are not to be confused with the Riccati-Bessel functions Sn
defined by equation 1.44.



19

where R is the distance the signal has traveled in the absorbing cloud, and Y is

the extinction coefficient, which is a function of the size of the particles, a, the

number of particles per unit volume, N, and the extinction efficiency factor,

Qext:

- = Nira2 Q . (2.10)

In terms of the Mie coefficients, the extinction efficiency factor is given by

2 00
Qezi = 2E -(2n + 1)Re(a, + bn) (2.11)

n= 1

Finally, in the above equation, x is the ratio of the particle's circumference to

the wavelength of the light:
27ra

x = ----- (2.12)

Realistically, however, the particles in the cloud will be of different

sizes. The number of particles per unit volume of a given radius is determined

by a distribution function. The number density of particles with radii between

a and a + da (as given by the distribution) replaces N in formulas 2.1 and 2.10.

The effect of the whole cloud is obtained by adding the contributions of all the

individual parts. For instance, for the total intensity of the light scattered in

the direction 0, the expression is

Itta(= (0) Ii(O,a,) (2.13)

where Ii(O, ai) is the intensity of light scattered at an angle 0 by particles of

radius a,. Similarly, the total attenuation coefficient -f becomes

-y= I' Q,,(a)-(a)ra2da, (2.14)
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where A-(a) represents the normalized particle size distribution:

j0 A(a)da = 1.

- (a)da, then, represents the number of particles with radii between a and

a + da per unit volume. In the next section we will find the actual particle

population for a given distribution.

2.2 Determination of Particle Population

Throughout this paper, we have summarized the results of the Mie

theory and treated the scattering of an electromagnetic signal in very general

terms. We will now specialize the discussion to the cloud of aluminum oxide

particles found in the exhaust of rockets. The aluminum oxide is produced as

a byproduct of aluminized solid fuel used to propel the rockets. As the fuel

burns, the aluminum particles in the propellant vaporize and react with oxygen

to form molten aluminum oxide [Mularz 72]. This example is of current interest,

for it applies, among other problems, to the recovery of satellites by the Space

Shuttle. One of the missions of the Shuttle is to recover satellites before they fall

back to the Earth. If the satellite has not been visually detected (or cannot be

visually detected due to distance, operational constraints, etc.), then it must be

detected by the infrared signature the satellite possesses. If the Shuttle is firing

its rockets to maneuver, then the signal may have to pass through the cone-

shaped cloud of the Shuttle's exhaust. The size of the particles in the cloud

will not be of one, and only one, radius. They will, instead, be distributed

throughout a wide range of values. However, to illustrate the method used to

obtain the solution for a non-constant distribution, we first look at the simplest
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of distributions: a constant distribution. Assuming there are Y particles of

density p and constant radius a, the total mass M of the particles is4

4 3
M = K-4ira3 p.

3

Solving for K, the total number of particles,

M

3ira 3p

This result is most useful if expressed as a particle density:

M 1

3Ira3p Volumecoud

where N represents the number of particles per unit volume and Volumedo ,d

depends on the shape of the cloud.

For a non-constant distribution, we must take a weighted average.

Consider, for example, the following distribution, which is the distribution of

particles produced by the Titan-IIIC rocket exhaust':

&-(a) = 0.012(2a) 2exp[-1.89 x 10-2 (2a)2 ], (2.15)

which is shown in figure 2.1. By definition of a distribution, AK(ai) is the

number of particles with radii between ai and ai + Aa. Let vol(a,) be the

4 Notice that the actual number of particles is denoted by ', while the number density is
denoted by N.

51t may seem as though we are using one system (the Titan-TllC rocket) to talk about
another system (the Space Shuttle). However, the reader must bear in mind that the Shuttle
was introduced only as an example. Certainly, there must be other examples to which this
analysis applies. Furthermore, the distribution of the Shuttle's exhaust must resemble, at
least in shape, the distribution presented in figure 2.1
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1N0 0.0 5.0 10.0 1 .0

Figure 2.1: Particle distribution for a Titan-IIIC rocket motor [Dawbarn 80,
page 126].

volume of the particles with radii between ai and ai + Aa. Then the mass of

all the particles present is

M = Evo(aj)p.A/'(a,)

M = p vo(aj)AAf(aj).

Solving for ALN(aj), we get

AA/(a,) - M (2.16)

p E, vol(aj)(

We have assumed, for simplicity, that all the burned mass turns to smoke

particles or other absorbing particles. This is usually not the case. Instead,

only a fraction f of the amount burned turns into particles. Thus equation 2.16,

expressed as a number density, becomes

AN(a,) = fM 1 (2.17)

p Z, vol(a,) Volumedod'

where AN(a) is the number of particles per unit volume with radii between

ai and ai + Aa. To encode the above ideas into a computer program, we need



23

to write a program to solve the scattering/absorption problem for a "constant"

distribution. We then take care of the changing nature of the distribution by

incrementing the radius a small amount, and solving that "constant" distribu-

tion problem. However, the amount of light (scattered or absorbed) reaching

the detector depends not only on the distribution of particles in the cloud, but

also on the shape of the cloud itself. We investigate the effect of the cloud on

the signal in the next section.

2.3 Effect of the Cloud Shape

We now turn to the question of the effect the shape of the cloud has

on the scattering and absorption of light. Again, we start with a very simple

model: a detector at the center of a spherical cloud composed of constant

size particles. Figure 2.2 shows the arrangement. In this case there is perfect

symmetry. The intensity of the scattered light reaching the detector is the

intensity of the light in the solid angle subtented by the cone:

I= 2r 2r sinOdO ri) (2.18)

Substituting equation 2.2 for the intensity i(O) in equation 2.18, we can express

the ratio of the scattered intensity to the original intensity as

I NrR, f92
I - k2  , sin(O)(i(O') + i2(O'))dO, (2.19)

where 0 is the angle the detector makes with the z axis, 0' is the scattering

angle , ' = ir - 0, and AO = 02 - 01 is the resolution angle of the detector

(see figure 2.2). Recall that i1 (0) and i2(0) are functions of the Mie coeficients

(see equations 2.3 through 2.6). Thus, all the parameters in equation 2.19 are
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zy

4R, Y

Figure 2.2: A detector in a spherical cloud. The intensity reaching the detector
is the intensity of light in the solid angle subtended by the detector's field of
view.
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known. Consequently, for a given size particle, we now have an expression

for the scattered intensity (the absorption of the signal remains as given by

equations 2.9 through 2.12). For a distribution of particles with n different

sizes, we simply repeat the process n times, each time with the appropriate

particle radius.

For a cone-shaped cloud, the problem is, in many respects, similar

to the problem of the spherical cloud-and uniquely different in others. For

instance, if the solid angle subtented by the detector's view angle is com-

pletely contained within the conical cloud, then the problem is identical to

the spherical-cloud problem-with the provision that the particle density will

be higher for the cone cloud because of its smaller volume for compatible di-

mensions (see figure 2.3). However, if the detector is "looking" off the axis

of the cloud, as in figure 2.4, then the problem looses all resemblance to the

spherical cloud problem and becomes much more complicated. Specifically, the

intensity of the scattered light will depend on the following factors:

1. The relative sizes of the solid angle of the detector's field of view and the

conical cloud.

2. The angle the axis of the cloud makes with the sun's rays (the z axis).

3. The viewing angle of the detector with respect to the axis of the cloud.

This angle does not have to be in the same plane as the sun's rays and

the axis of the cloud.

We treat the case in which conditions 1 and 2 above apply, with the detector's

view axis on the z-y plane, as in figure 2.3. A detector view width of two
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Figure 2.3: The cloud as a cone. The angle subtended by the detector is smaller
than the angle subtended by the cloud
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z

y

x

Figure 2.4: The detector's view axis off the y-z plane.

degrees is used, while the ratio of the length of the cone cloud to the radius

of the base is set as 10 to 1, giving a cloud angle of 11 degrees. Thus, the

detector's view angle is contained within the cloud.



Chapter 3

Data Used, Results and Calculations

3.1 Data and Method of Calculation

The computer program can be described as a series of iterations of the

equations in chapters 1 and 2. Specifically, it divides the distribution function

of the particles (smoke or aluminum oxide) into 50 equally spaced regions. 1

Thus, since it is assumed that the smallest radius in the distribution is zero

and that the largest radius is 12 pm, the center of the ith division corresponds to

a radius ofa, = (i+ )(0.24) pm, or to a diameter of Di = (i+-)(0.48) um. For

each radius thus calculated, it finds the Mie coefficients using equations 1.42

and 1.43. The Riccati-Bessel functions used in equations 1.42 and 1.43 are

generated using the following expressions, taken from [Gumprecht 51, pages

xii and xiii]:
2n - 1

S.(X) _ S2.- _(x) - S. 2 (X), (3.1)

and
2n - 1

C.(x) = C._,(x) - C.- 2(x), (3.2)
x

given that the two initial functions are given by

So(x) = sin(x), S 1(x) = ) cos(x),

'We found that 50 iterations give results accurate to one, and for some wavelengths, two
significant figures. Since the results are reported as graphs, we felt that any higher accuracy
would be superfluous.

28
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and

Co(x) = cos(x), Ci(x) - coi(x) + sin(x).

The derivatives of the Riccati-Bessel functions follow from the above definitions.

Having found the Mie coefficients, the program then calculates the scattering

functions for the perpendicular and plane polarized scattered waves, il(O') and

2(0'), as defined by equations 2.3 through 2.8. Recall (section 2.3) that the

scattering angle 9' and the angle the detector makes with the z axis (the sun

rays) 0 are related by

0' =r -0.

The program then calculates, by use of equation 2.19, the ratio of the intensity

of the scattered signal to the intensity of the incoming signal, -, for the view

angle 0 from 0 to 180 degrees. This corresponds to a scattering angle of 180 to

0 degrees. The program repeats the above process for all the divisions in the

distribution.

In calculating the attenuation, we assumed that the signal travels the

extent of the cloud. Thus, the attenuation has no angular dependence. How-

ever, the contributions of all the partitions must still be added, as indicated by

equation 2.14. In addition, we found that the range of values in the attenua-

tion, as given by equation 2.14, is very wide. Thus, we express it in terms of

decibels:

attenuation = 10 log

or

attenuation = 4.343-IR,.
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Figure 3.1: The imaginary part of the index of refraction for aluminum oxide
at 2950 K [Bakhir 77].

To calculate the Mie coefficients, we need the value of the index of

refraction of the substance at the frecuency (and, thus, the wavelength) in

question. We used the values calculated by Bakhir et al. [Bakhir 77], who

published a graph of the dependence of the imaginary part of the index of

refraction for aluminum oxide at 2950 K as a function of wavelength. We have

reproduced their results in figure 3.1. They also published the dependence of

the real part of the index of refraction on the wavelength in the form of a table.

We reproduce this result in figure 3.2. For the index of refraction of smoke, we

used m = 1.75 - iO.45, which was taken from Ramaswamy [Ramaswamy 85].

It was assumed that 1 kg of fuel was burned, and that the fraction of
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Figure 3.2: The real part of the index of refraction for aluminum oxide at
2950 K [Bakhir 77].
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mass burned that turned into aluminum oxide or smoke particles is 0.05. The

densities were taken as 2.0 x 103 kg/m 3 for smoke and as 2.7 x 10' kg/M 3 for

aluminum oxide. The results are shown in the next section.

3.2 Results of the Models

The results are divided into two groups of graphs. The first group,

figures 3.3 through 3.6, show the intensity (expressed as the ratio of the in-

tensity reaching the detector and the initial intensity, -AL) of scattered light the

detector receives. Each one of the graphs show the intensity as a function of

the cloud extention (R, in figure 2.3) and the detector's view angle for a given

wavelength and index of refraction. For instance, figure 3.3 represents the ratio

_ for the wavelength A = 4.04 ym and index of refraction m = 1.76 - i0.0102
Io

as a function of viewing angle for cloud extentions R, of 1, 10, 100 and 1000 me-

ters. The scattering particles are aluminum oxide in figures 3.3 through 3.5 and

smoke in figure 3.6. It was assumed that the size distribution for the smoke

particles was identical to the distribution of aluminum oxide. The informa-

tion presented in these graphs may be used to determine the extent to which

the scattered light masks the signal. Ultimately, the ability of the detector to

distinguish the signal from the "noise" introduced by the scattered light will

depend on the intensity of the incident light, I., and the intensity of the signal

itself, IigL. While the intensity of sunlight is well known, a determination of

the signal intensity and the detector's ability to distinguish the signal from the

scattered "noise" is beyond the scope of this project.

The second group of results is shown in figure 3.7. This graph shows
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the attenuation (as defined in section 3.1) of the signal itself as a function of

extention R, of the cloud. Since the attenuation in aluminum oxide for signals of

wavelengths 4.04 pm, 6.25 pm and 8.0 pm was found to be essentially identical,

only the graph for A = 8.0 pm is shown. In addition, we also show, in the same

graph, the attenuation of light at A = 10.0 pm for smoke. From this graph we

see that the attenuation is in the order of ldb for a cloud extention of 10 meters,

falling rapidly for greater cloud demensions. Thus, attenuation should not be

a factor in the detection of signals for cloud extentions greater than 10 meters.
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3.3 Conclusions

The results of the model for the scattered intensity, figures 3.3 through

3.6, show the ratio of scattered intensity to incident intensity -. This infor-

mation can be used, in conjunction with information on the intensity of the

sunlight and the signal itself, to determine the effect of the scattered light on

the detector's ability to detect the signal. To calculate the graphs, we assumed

that the amount of fuel burned is 1 kg, that the fraction of particles converted

to aluminum oxide or smoke is 0.05, and that the densities are 2.7 x 10' kg/m 3

for aluminum oxide and 2.0 X 103 kg/m 3 for smoke.

The results for the attenuation are much easier to interpret. Figure 3.7

shows that the attenuation of a signal in the range of 10 ym is of the order of

1 db for a cloud of 10 m. The attenuation decreases rapidly with increasing

cloud dimensions. Thus, the attenuation should not be a problem in signal

detection once the cloud has dissipated to 10 meters or greater.

3.4 Recommendations for Further Work

Future investigations of this problem should look at the problem of

a detector searching for a signal in a direction not in the plane defined by the

cloud axis and the sun's rays. Although the theory of the problem is the same

as in this presentation, the unusual geometry of an off-plane detector makes it

much more complicated.
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*o CONDITIONS:
Substance: Aluminum Oxide
A =4.04/.m
m =1.76- iO.0102

-' temp = 2950K 

0

S-- R0=01 m

1''

£ ~Rc = 1=0 m .

............. ..--....=
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- 0.0 3.0 6.0 90.0 ,2o.0 10.0 110.0
detector's view angle 9 (degrees)
(scattering angle 0' = 7r - 9)

Figure 3.3: .L for the aluminum oxide particle distribution of a Titan-IIIC
r0

rocket at A = 4.04 pm.
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r¢ CONDITIONS:
Substance: Aluminum Oxide
A =6.251 im
m =1.6 - i.0142
temp = 2950 K

.. ......

-R . - 100 m

0'

S.................... . °. ".

...... ...................

- 0.0 0.0 60.0 9.0 120.0 10.0 180.0
detector's view angle 0 (degrees)
(scattering angle 6' = 7r - 6)

Figure 3.4: t. for the aluminum oxide particle distribution of a Titan-IIIC

rocket at A = 6.25 pm.
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bo CONDITIONS:
Substance: Aluminum Oxide -
A = 8.0/Um
m = 1.39- iO.021
temp = 2950 K

C
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Figure 3.5: L for the aluminum oxide particle distribution of a Titan-IJIC

rocket at A - 8.0 rim.
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Q CONDITIONS:

Substance: Smoke
A =10.0 ;Am

- m =1.75 - iO.45
temp =2950K 

o m

R 1 / 

Y - Rl 100 m

S..... .................... ...........

/* R= 1000 m

-. 0.0 i0.0 6. 00 I. 5. 8.
detector's view angle 6 (degrees)
(scattering angle 6' = ir- 6)

Figure 3.6: for the smoke particle distribution of a Titan-IIIC rocket at
A = .0 .

A '= 10. pm. c: 00
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Smoke at 10.0 jsm

Aluminum Oxide at 8.0 JM-

Cloud extention R, (meters)
I" . , . I . . I I I...

Figure 3.7: The attenuation for the aluminum oxide and smoke particle distri-
bution of a Titan-lG rocket at A = 8.0 im and A = 10.0 pm, respectively.



Appendix A

The Computer Program

We have tried to make the program as self-explanatory and user-

friendly as possible. Experience shows, however, that what is clear to the

programmer need not be clear to the user. Thus, we include the following

"pointers" in the hopes of clearifying the workings of the program.

9 Whenever possible, the equations or formulas in the program are written

in the form they are written in the text. Unfortunatelly, this is not always

possible due to the limited selection of characters available to the pro-

grammer. For instance, while the text can easily handle characters such

as A and S 1, the programmer does not have access to those characters.

In those cases, we either spell the name of the variable ("lambda" for A,

for instance) or we try to associate a discriptive name with the variable

("numdivisions" for number of divisions.)

* The program asks the user to input the wavelenght of the radiation, the

number of partitions in the distribution, the extention of the cloud and the

index of refraction. When supplying the data, it is extremely important

that the data be in the units specified in the program; otherwise, although

the program may run, the results will be meaningless (the program, as

stands, does not check for the correct units nor dimensions.)

40
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" In subroutines, the input and output arguments are separated in one

of two fashions: by a space between the last input argument and the

first output argument, or by placing the output arguments in a new line.

Additionally, at the beginning of every subroutine, we say, in a comment

box, which arguments are inputs and which are outputs.

" In addition to output arguments, subroutines may also create data files.

These data files are then used by other subroutines.

* The results for the scattering problem (-) are stored in the file sums.dat,

while the attenuation is stored in the file data file attenuation.dat.

Turn to the next page for the program.
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program scattermain

*Comment: Throughout the program, comments will be enclosed

*in boxes (such as this). This program asks the user to

*input the wavelength. For the program to run correctly,

*it should be expressed in micrometers (1E-06). On the other

*hand, the cloud radius should be in meters. It's very important

*to input the complex index of refraction as follows: if z is

*a complex number, z = a + ib, where a is the real part of z and

*b is the imaginary, then it should be typed as (a,b). Thus,

*z = 1.75 - iO.45 would be typed as (1.75,-0.45).

*NOTE: if data for a density, fraction of burned mass, or any

*other parameter, different from the ones used in the program,

*is wanted, then they must be changed in the declarations below

double precision left,right,step,numberdensity(0:1000)

double precision Q(0:1000),totalgamma,gamma(0:1000)

double precision lambda,viewwidth,cloudradius,PI

double precision volume,k,intensity,sum(20),a,n

double precision density,massburned,cloudbase

complex refraction

integer i,numdivisions
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external qamp,intensitysub

external particlepopulation

parameter (PI - 3.141592635)

parameter (viewwidth - 2.0)

parameter (massburned = 0.05)

parameter (left = 0.0)

parameter (right 12.0)

open (1,file-'viewwidth',status-'new')

write (1,*)viewwidth

close (1)

print *,'input density in kg/m(3)'

read *,density

print *,'input number of divisions (even)'

read *,numdivisions

print *,'input wavelenght in micrometers (10 (-6)m)'

read *,lambda

print *,'input cloudradius in meters'

read *,cloudradius

print *,'input the complex index of refraction

in this format: m - a+ib = (a,b)'

read *,refraction

k = (2.0*PI)/(lambda*1D-06)
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*the volume is different for different cloud shapes!! If data

*for a cloud not in a cone shape is wanted (say, a sphere),

*then the following formula must be changed

cloudbase = cloudradius/10.O

volume = (1.0/3.O)*PI*(cloudradius**2)*cloudbase

totalgamma = 0.0

step = (right - left)/nmdivisions

call particlepopulation(numdivisions,left,step,volume,

* massburned,density,PI)

open (1, file - 'population', status = 'old')

do 10, i 0 0, (numdivisions -I),1

read(I,*) numberdensity(i)

10 continue

close(l, status = 'delete')

do 09, i = 0, (numdivisions -1), 1

n = (2*i + 1)/2.0
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a s left + (n * step)

call qamp(a/lambda,refraction, q(i))

gamma(i) - numberdensity(i)*PI*((a*lD-06)**2)*q(i)

totalgamma - totalgamma + gamma(i)

call intensitysub(k,numberdensity,cloudradius)

open (1, file = 'intensity', status = 'old')

do 11, j=l, 19

read (1,*)intensity

sum(j) = sum(j) + intensity

11 continue

close (1, status - 'delete')

print*,'this is division # / out of numdivisions:'

write(*,*)i,numdivisions

09 continue

open(l, file - 'totalgamma', status - 'new')

write(1,*)totalgamma

close(l)

" comment: if needed, the total coefficient of extinction

" (totalgamma) may be obtained from the file totalgamma.dat

" above.
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open (2, file - 'sums', status - 'new')

do 13, i = 1, 19

write (2,*)sum(i)

13 continue

close (2)

open (1, file - 'attenuation',status - 'new')

write (1,*)(4.343*totalgamma*cloudradius)

close(l)

end

*Particlepopulation finds the actual number of particles

*as dictated by the distribution and the amount of fuel

*burned. It calls on the function "distribution."

*All the arguments are inputs. The output is the

*data file population.dat, which contains the normalized

*distribution of particles.

subroutine particlepopulation(numdivisions,left,step,

* cloudvolume,massburned,density,PI)

integer numdivisions,i
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double precision n,a,leftstep,numnormalized(0: 1000)

double precision particlevolume, denominator ,nuznatrmax

double precision distribution,massburned,totalnum

double precision cloudvolume,numberdensity(O:1000) ,PI

double precision sumofparticles

double precision number(0:1000)

external distribution

sumofparticles - 0.0

do 9, i=0,(numdivisions-1),I

n = (2*i +1)/2.0

a - left + (n*step)

nwnber(i) - distribution(a,step)

sumofparticles - sumofparticles + number(i)

vrite(* ,*) i,sumofparticles

9 continue

denominator - 0.0

do 10, i0O,(numdivisions-1),l

n - (2*i +1)/2.0

a - left + (n*step)

nulmnormalized(i) - distribution(a,step)/sumofparticles

particlevolume - 4.0/3.0 * PI * (a*1D-06)**3

denominator - denominator + nulmnormalized(i)
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* *particlevolume

10 continue

numatrmax - massburned/(density*denominator)

do 11, i - 0, (numdivisions-1),l

numberdensity(i) = numnormalized(i) * numatrmax

/cloudvolume

11 continue

open (1, file - 'population', status - 'new')

do 12, i - 0, (numdivisions-1), 1

write(I,*) numberdensity(i)

12 continue

close(l)

end

*Distribution finds the distribution of the particles.

*Called on by particiepopulation. If a new distribution is

*to be studied, this is the place to insert that

*new distribution.

*Inputs: a (the radius of the particles), step (increment)
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*Output: the value of the distribution at (a) times the step

* (area under the curve)

double precision function distribution(a,step)

double precision a, step, distro, Diam

Diam = 2 * a

distro = (0.051 * (Diam)**2) *

exp( (-1.89D-02)*((Diam)**2))

distribution - distro * step

end

*The following subroutine is the most involved subroutine in the

*program. It may be considered the heart of the program.

*For a given size of particles, it calculates the Riccati-Bessel

*functions needed to find the Mie coefficients. Finds the

*coefficient of extinction, QEXT.

*Inputs: x - a/lambda (particle radius/wavelength)

* m = index of refraction

*Outputs: coefficient of extention, QEXT, mie coefficients

*a and b in the file aandb.dat

*Calls on subroutine amplitude, which calculates il and i2
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SUBROUTINE QAMP(X,M, QEXT)

COMPLEX M, SY(0:50), SYP(0:50), Y, ZETA(0:50)

COMPLEX ZETAP(0:50), A(50), B(50)

DOUBLE PRECISION LAMBDA, PI, X, SX(0:50), SXP(0:50)

DOUBLE PRECISION SUMQSCA, QSCA, OLDQSCA, XOFTHETA, THETA

DOUBLE PRECISION CX(0:50), CXP(0:50) ,QEXT, OLDQEXT

DOUBLE PRECISION SUMQEXT, TOLERANCE

INTEGER N ,HAXITS,LIMIT

INTRINSIC SIN, COS, ABS

PARAMETER (PI - 3.1415926356)

PARAMETER (LIMIT - 50)

PARAMETER (TOLERANCE - 0.00001)

EXTERNAL INITIALRICCATI, INITIALRICCATI 1

EXTERNAL QEXTING, DERIVATIVES, AANDB

EXTERNAL QSCATT,AMPLITUDE, RICCATIBESSEL

X = 2*PI*X

y - M*X

SUMQEXT = 0

SUMQSCA = 0

QEXT = 0



QSCA - 0

MAXITS - 10

CALL INITIALRICCATI(X, Y,

* CX(o), SX(0), SYCO, ZETACO,

* CXP(0), SXP(0), sYP(0), ZETAP(0))

*Comment: the above routine sets up the initial Riccati-Bessel

* function and its derivative.

N - 1

CALL INITIALRICCATI1(X,Y, CX(1),SX(1),SY(1),ZETA(1))

CALL DERIVATIVES(SX(N-.) ,SX(N) ,CX(N-1) ,CX(N) ,SY(N-1),

* SY(N) ,N,X,Y, CXP(N) ,sxP(N) ,SYP(N) ,ZETAP(N))

1492 DO 10, N - 2, MAXITS

CALL RICCATIBESSEL(N,X,Y,SX(N-1),SX(N-2),CX(N-1),

* CX(N-2) ,SY(N-1) ,SY(N-2),

* CX(N) ,SX(N) ,SY(N) ,ZETA(N))

CALL DERIVATIVES(SX(N-1) ,sX(N) ,CX(N-1) ,CX(N) ,SY(N-1),
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*SY(N),N,X,Y, CXP(N),SXP(N),SYP(N),ZETAP(N))

10 CONTINUE

DO 11, N - 1, MAXITS

CALL AANDB(SX(N) ,SXP(N) ,SY(N) ,SYP(N) ,ZETA(N),

* ZETAP(N),M, A(N),B(N))

11 CONTINUE

DO 12, N - 1, MAXITS

OLDQEXT - QEXT

CALL QEXTING(A(N), B(N), SUMQEXT, X, N,

* QEXT, SUMQEXT)

IF ((ABS(QEXT - OLDQEXT)).LE. (TOLERANCE)) THEN

GO TO 13

END IF

12 CONTINUE

IF (MAXITS.EQ.LIMIT) THEN

GO TO 21

END IF

*COMMENT: If MAXITS has not reached the limit, then increment

* by 10 and go through the process again.
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MAXITS - MAXITS + 10

GO TO 1492

21 WRITE(*,2000)QEXT

GO TO 14

13 WRITE(*,2010)QEXT

14 OPEN (3,FILE = 'AANDB', STATUS = 'NEW')

DO 20, N - 1, MAXITS

WRITE (3,*) REAL(A(N)), AIMAG(A(N)),

REAL(B(N)), AIMAG(B(N))

20 CONTINUE

CLOSE (3)

CALL AMPLITUDE(MAXITS)

2000 FORMAT(1X,'Qext not converged after LIMIT number of

terms. So far, Qext - ',E12.4)

2010 FORMAT(X,'Qext converged to ',E12.4)

END



54

*Subroutines for QAMP follow

* Most of the ''set up'' subroutines are self-explanatory.

" For instance, the subroutine initialriccati finds the

* initial values for the riccat-bessel functions, while the

* subroutine derivatives finds the derivatives of the

" riccati-bessel functions.

SUBROUTINE INITIALRICCATI(X,Y,

*CX, SX, SY, ZETA,

* CXP, SXP, SYP, ZETAP)

INTRINSIC SIN, COS

REAL X, CX, SX, CXP, SXP

COMPLEX Y, SY, ZETA

COMPLEX SYP, ZETAP

SX - SIN(X)

Cx - cOS(X)

SY = SIN(Y)

ZETA = CMPLX(SX,CX)
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SXP - Cos(X)

CXP - -SIN(X)

SYP - CosC(Y)

ZETAP - CMPLX(SXPICXP)

END

SUBROUTINE INITIALRICCATI1(X, Y,

* CX, SX, SY, ZETA)

REAL X, CX, SX

COMPLEX Y, SY, ZETA

INTRIN~SIC SIN, COS

sx - (SIN(X))/X - COS(X

CX - (COS(X))/X + SIN(X)

SY= (SIN(Y))/Y - COSMY

ZETA - CMPLX(SX,CX)

END

SUBROUTINE RICCATIBESSEL(N,X,Y,SXNM,SXNMM,CXNM,CXNMM,

*SYNM,SYNMM, CXN,SXN,SYN,ZETAN)
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REAL X,SXNM,SXNMM,CXNM,CXNNM,CXN,SXN

COMPLEX ZETANY,SYN,SYNM,SYMMM

INTEGER N

SXN - ((2*N-1)/X)*SXNM - SXNMM

CXN - ((2*N-1)/X)*CXNM - CXNUM

SYN - ((2*N-1)/Y)*SYNM - SYNM

ZETAN = CMPLX(SXN,CXN)

END

SUBROUTINE AANDB(SX, SXP, SY, SYP, ZETA, ZETAP, MM,

* A, B)

REAL SX, SXP

COMPLEX SY, SYP, ZETA, ZETAP, MM, A, B

A - (SYP*SX - MM*SY*SXP)/CSYP*ZETA - MM*SY*ZETAP)

B - (MM*SYP*sx - SY*SXP)/(MM*SYP*ZETA - SY*ZETAP)

END

SUBROUTINE QEXTING (A, B, TEMPSUM, XTEMP, NTEMP,

* QTEHP, TSUM)
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REAL TSUM, TEMPSUM, QTEMP, XTEMP

COMPLEX A, B

INTEGER NTEMP

'ISUM =((2*NTEMP + 1)*REAL(A + B)) + TEMPSUM

QTEMP =(2/XTEMP**2)*TSUM

END

SUBROUTINE QSCATT(A, B, TEMPSUM, X, N,

* QSCA, SUM)

REAL TEMPSUM, SUM, QSCA, X

COMPLEX A, B

INTEGER N

SUM =(2*N + 1) * ((ABS(A))**2 + (ABS(B))**2) + TEMPSUM

QSCA =(2/X**2)*SUM

END

SUBROUTINE DERIVATIVES(SX4M, SXN, CXNM, CXN, SYNM,SYN,
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N, X, Y, CXPN, SXPN, SYPN, ZETAPN)

REAL SXNM, SXN, CXNM, CXN, X, CXPN, SXPN

COMPLEX ZETAPN, SYNM, SYN, SYPN,Y

INTEGER N

SXPN - SXNM - (N/X)*SXN

CXPN = CXNM - (N/X)*CXN

SYPN = SYNM - (N/Y)*SYN

ZETAPN = COPLX(SXPN,CXPN)

END

* Comment: Subroutine amplitude finds the scattering functions

* for the perpendicular and plane polorized scattered waves,

* il and i2, respectively.

* Inputs: maxits. Also uses the data files aandb.dat and

* viewwidth.dat

* Output: il and i2 in the data file ilandi2.dat

SUBROUTINE AMPLITUDE(MAXITS)

complex a(0:50),b(0:50),sone,stwo,oldsone,oldstwo

complex temp
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double precision pprime(0:50) ,pdoubleprime(0: 50)

double precision tau(O:50), p(0:50), viewvidth

double precision tolerance,reala, imaga ,realb, imagb

double precision il(O:1,O:18),i2(0:1,0:18),PI,theta,x

double precision viewby2, angledegrees, angleradians

double precision sine(0:1,0:18)

integer n,maxits,count,side

parameter (tolerance = 0.01)

parameter (PI = 3.141592654)

intrinsic COS, CMPLX,abs,SIN

open (l1fileu'viewwidth' ,status'lold')

read (1 ,*)viewwidth

close(1)

open(1,filezlaandb' ,status'.'old')

do 13, n = 1, maxits

read(1,*,end - 14)reala,imaga,realb,imagb

a(n) - CMPLX(reala,imaga)

b(n) -CMPLX(realb,imagb)

13 continue

14 close(1, status - 'delete')

open(2, file - 'ilandi2', status - 'new')
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viewby2 =viewvidth/2.0

count =-1

do 1990, theta - 0, 180, 10

count - count + 1

do 09, side - 0, 1, 1

angledegrees - theta - vievby2 + (vievby2 *side *2)

angleradians - angledegrees * P1/180.0

x = COS(PI - angleradians)

p(O) I

p(1) x

do 10, n - 2, maxits

p(n) - 2*x*p(n-1) - p(n-2) - (x*p(n-1) -p(n-2))/n

10 continue

pprime(0) -0

pprime(l) = 1

do 11, n = 2, maxits

pprime(n) - n*p(n-1) + x*pprime(n-1)

11 continue

pdoubleprime(0) - 0

pdoubleprime(1) - 0

do 111, n a2, maxits
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pdoubleprime(n) - (2*n - 1)*pprime(n-1) +

* pdoubleprime (n-2)

ill continue

do 12, a 0, maxits

tau(n) - x*pprime(n) - (I-x**2)*pdoubleprime(n)

12 continue

sone = cmplx(O.0,0.O)

do 15, n =1, mazits

oldsone =sone

temp -a(n)*pprime(n) + b(n)*tau(n)

sone -C temp *(2*n +1)/(n*(n+i)) ) + oldsone

if ((abs(sone -oldsone)).le.(tolerance)) then

go to 16

end if

15 continue

print*,'WARNING: Si (and ii) not converged'

16 il(side,count) - (abs(sone))**2

stwo - cmplx(0.0,0.0)

do 18, n =1, maxits

oldstwo =stvo

temp - b(n)*pprime(n) + a(n)*tau(n)
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stvo - C temp * (2*n +1)/(n*(n+l)) ) + oldstwo

if ((abs(stwo - oldstvo)).le.(tolerance)) then

go to 19

end if

18 continue

print *,'WARNING: S2 (and i2) not converged'

19 i2(side,count) - (abs(stwo))**2

sine(side,count) = ABS(SIN(angleradians))

09 continue

write(2,*)il(O,count),i2(0,count),sine(0,count),

il(1,count),i2(1,count),sine(1,count)

1990 continue

close(2)

end

*The above subroutine was the last subroutine in QAMP. By now,*

*the program has calculated, for a given particle radius,

*the extinction coefficient, gamma, the amplitudes ii and i2.
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*The following subroutine uses il and i2 to find the total

*intensity of the scattered light reaching the sensor. This

*total intensity is the integral of the intensity over the

*solid angle the viewer "sees." The integration is accomplished

*numerically (of course), in this subroutine.

*Input: k, numberdensity, cloudradius

*Output: the intensity of scattered light for one particular

* direction in the data file intensity.dat

subroutine intensitysub(k,numberdensity,cloudradius)

integer count,side

double precision i1(0:1,0:18),i2(0:1,0:18)

double precision sine(O:1,O:18), numberdensity

double precision foftheta(0:1), integral, viewby2, PI

double precision intensity(O:18),viewwidth,k

double precision cloudradius,geomfactor

parameter (PI - 3.1415926356)

open (1,file - 'viewwidth',status 'old')

read (1,*)viewwidth

close (1)

open (1,file - 'ilandi2', status - 'old')
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do 10, count - 0, 18

read (1,*)il(0,count),i2(0,count),sine(0,count),

il(1,count),i2(1,count),sine(1,count)

10 continue

close (1, status - 'delete')

viewby2 - vievidth/2.0

*The geometric factor depends only on the solid angle that

*the detector "sees." Thus, it is independent of the sphape

*of the cloud, as long as the detector's field of view lies

*completely within the cloud

geomfactor - (numberdensity*PI*cloudradius)/(k**2)

do 11, count - 0, 18

do 12, side - 0, 1

foftheta(side)-sine(side,count)*( il(side,count) +

i2(side,count) )

12 continue

integral - (foftheta(O) + foftheta(1) ) *

C viewby2 * PI / 180.0)



65

intensity (count) - geomfactor * integral

11 continue

open (2,file - 'intensity', status -'new')

do 13, count - 0, 18

write (2,*) (intensity~count))

13 continue

close(2)

end
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