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ABSTRACT

Type 6061 aluminum alloys containing between O and 5.2 volume percent
indium and pure indium samples were fabricated. Each sample was
characterized by metallographic and analytical electron microscopy
and the damping capacity and storage modulus were measured. The
model proposed by L. G. Nielsen was used to calculate the damping
capacity and storage modulus of the alloys using the damping capacity
and storage modulus of pure indium and 6061 aluminum. The damping
capacity of the Al1-6061-In-T6é alloys were higher than the Al-6061-T6
- alloy and increased with increasing indium content. The Nielsen
model gave a good first approximation of the damping capacity and
storage modulus of the alloys.

ADMINISTRATIVE INFORMATION
This report was prepared under the Quiet Alloys program, part of the
Functional Materials Block Program, under the sponsorship of Mr. Ivan Caplan,
David Taylor Research Center (DTRC Code 0115). Work was performed at the
David Taylor Research Center and the Department of Materials Science and
Engineering, University of Michigan, Ann Arbor. The work was supervised by
- Dr. 0. P. Arora, DTRC Code 2812, under Program Element 62234N, Task Area
RS34S94, Work Unit 1-2812-949. This report satisfies FY89 Milestone 94SR1/6.
INTRODUCTION
An important characteristic of a structural material is it’s damping
capacity. While metallic materials exhibit adequate stiffness for structural
use, the damping capacity may be quite low, having a typical loss factor on
the order of 10‘4. In contrast, polymeric materials exhibit very high
damping, with loss factors on the order of ome, but rather low stiffness.
Their stiffness can be increased with the use of fillers and fibers but the
resultant resin matrix composites exhibit lower damping properties, with loss
factors on the order of 10-2. Attempts made to improve the damping response
of the resin matrix composite by adding rubber did not result in significant
improvements [1]. It was shown that symergistic effects from interactions
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between the rubber and the resin were responsible for the lower than expected
damping behavior.

In the case of metal matrix composites, work by Ray, Kinra, Rawal and
Misra has shown that the damping of aluminum alloy 6061 is increased by the
addition of graphite fibers [2]. However, the increase in damping was low
considering the high volume fraction (0.34) of graphite. Recent work by
Diehm, Wong and Van Aken has shown that the addition of a viscoelastic
inclusion (indium) to pure aluminum will produce high damping materials [3],
but it was uncertain whether the principal damping resulted from the matrix or
the inclusion since both have high damping capacities.

In this investigation the addition of indium, an elastically soft second
phase particle, to 6061 T6 aluminum, a stiff matrix, was examined in order to
differentiate between inclusion and matrix damping. Additionally the model
to predict the stiffness of composite materials proposed by L. G. Nielsen
[4,5]) was evaluated for its ability to predict the damping capacity of
composite materials. The dynamic properties of pure (99.99%) indium and 6061
T6é aluminum were determined. The dynamic properties of the composite were
calculated using the values of the monolithic materials in the Nielsen model

and directly compared with the experimental results.

NIELSEN MODEL
The model developed by Nielsen [4) predicts the complex modulus of
isotropic two phase materials with arbitrary phase geometry. It is based on a
continuum mechanics composite sphere assemblage model but is semi-empirical.
The model assumes that the alloy is isotropic, strained only in the elastic
range, and is phase symmetric, that is both the matrix and second phase
geometries are identical at equal respective volume concentrations. Equations
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1-4 below, from Nielsen's model [5], can be used to calculate Young’'s modulus

of the alloy, E,, using the Young's moduli of the matrix, Ey', and second

v’.

phase, Eyi, and the volume concentration, c¢. The volume concentration = z;;f:—ar;

where V! and V* are the volumes of the second phase and matrix respectively.

E, - eEy' eq.l

where e is the relative Young'’'s modulus of the alloy.

_n+y+qy(n-1)

n+7q-cn-1) eq.2
where n is the relative stiffness and vy is the shape function.
i
n= E;; eq.3
v - %{p[l - el - )] + o[ - e(l - )]%n(l - p) } eq.b4

where p is the shape factor which is dependent on the morphology of the

composite.

The complex modulus of the matrix, E‘, and second phase, E*, is defined as

follows.

E® = a* + b%i and E' = a! + b} eq.5
where a and b are the storage and loss modulus respectively and the

superscripts s and i refer to the matrix and second phase respectively. The
conversion from Young’s modulus equations to complex modulus equations is
accomplished with the use of the correspondence principle. The complex moduli
from equation 5 are substituted for the Young's moduli in equations 1 and 3 and

the real and imaginary parts are separated. Starting with equation 3:




_E _at 4 ib _ (al + ibY)(a® - ib%) _ _ale® + b'B® | (a'h! - albh)i

TR T @ 4 b (a* + ib*)(a® - ib®)  (a%)? + (b*)? (a*)? + (b%)?

ip s i i1 8
Let n = A + Bi whereA--iii'—"'—hb—and B-—i'—b-—l—'a—b——— eq.6
(a®)? + (b*)* (a®)? + (b*)*

Now recalling equation 4

7= 3{pll - e - W] + (1 - (1 - m)]*4n(l - p) }
Upon substitution of equation 6 the first part of equation 4 becomes

e[l - c(l -n)] =p - pc + pcn = p - pc + pcA + pcBi eq.7

The second part of equation &4 is Jpzll - e(l - n)J%+4n(l - p)

(1 -c(l-n)]2=1-2c(1 -n) + el - n)?
=1-2c+ 22n + c% - 2¢%n + c2n?

=1 - 2c+c?+ (2¢ - 2¢?)n + cn?

since n?2 = (A + iB)(A + iB) = A% - B? + 2ABi

then (1 - c(l - n)]% = (1 - 2¢ + ¢) + (2¢c - 2c?)A + c2(A% - B?)

+ i[(2c - 2c?)B + 2c2AB)




therefore Jpz(l - ol - n)]%*4n( - p)

= {21 - 2c + 2 + (2¢ - 2D)A + c2(A® - BY)]

+

1
1p2[(2c - 2¢2)B + 2c?AB]i + 4A(L - p) + 4B(L - p) }°

{p21 - 2c + e + 2¢(1 - c)A + c2(A? - BY)]

1
+ 4A(L - p) + 1[p22c(L - ¢)B + 2c2ABp? + 4B(L - p)] >

1
Let Ap2[1 - c(1 - n))*#4n(l - p) = [a + Bi)?

where a = p2[(c - 1)2 - 2c(c - 1)A + c?(A% - B ] + 4A(1 - p)
and 8 = p22c(l - c)B + 2c2ABp? + 4B(1 - p)

In order to find the square root the coordinates are changed.
1
r = (a® + g*)?

@ = arctan (‘\Ig]

substituting equations 11 and 12 into equation 8 results in

NP1 - c(1 - n)1%#4n(l - p) = r'/%[cos(8/2)+isin(8/2)] = ri/2eté/2

Combining equations 7 and 13 gives the complex shape function, 7*.

5
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v = 3{pl1 - c@ - W] + peBi + rii2e10/2} eq.14

Substituting the complex values of y* from equation 14 and the complex values

of n from equation 6 into equation 2 gives the complex relative modulus, e*.

._n+1'+-y"c(n-1)_n+-y*+cn-y"~-1"c
n+y" -c¢cn-1) n+7Y -cn+c

A+ Re(7*) - cRe(y") + c[ARe(y") - BIm(y")]
(A +Re(vy") - cA+c) + (B+ Im(y*) - cB)

i{B + Im(7*) - cIm(y*) + c[AIm(¥") + BRe('y")]}

(A ¥ Re(y) - A +c) + (B + Im(y) - cB) eq.15

Let € = A + Re(y") - cRe(7") + c[ARe(7*) - BIm(vy")] eq.16

and 7 = B + Im(y*) - cIm(y*) + c[AIm(vy*) + BRe(y")] eq.17

and substitute into equation 15.

. £ + in

& " @ +Re(y) -cA+c) + (B + Im(7) - cB)L

_ (€ + in)[(A+ Re(y") - cA+c) - (B+ Im(y*) - cB)]
(A + Re(7") - cA + c)? +(B + Im(y*) - cB)?

_&(A +Re(y") - cA+c)+ n(B+ Im(y*) - cB)
(A + Re(7*) - cA - ¢)2 + (B + Im(y*) - cB)?

+ in(A + Re(y*) -~ cA + ¢c) - £(B + Im(y*) - cB)
- 5 - 3 eq.1l8
(A + Re(y") - cA - ¢)° + (B + Im(y") - cB)

Finally the complex modulus of the alloy is found by combining




equations 1, 5 and 18.
E! = ¢'E* = Re(e*)a® - Im(e*) + i[Im(e*) + Re(e*)b®)

a‘{e(A + Re(y*) - cA+ ¢) + n(B + Im(y") - cB)}
(A + Re(7*) - cA - ¢)2 + (B + Im(y*) - cB)?

b*{n(A + Re(7") - cA +c) - £(B + In(y") - cB) }
(A + Re(7") - cA - ¢)?2 + (B + Im(y*) - cB)?

+

i(zr{,;m + Re(7y") - cA +c) - £(B + Im(y") - cB) }
(A + Re(y") - cA - ¢)®> + (B + Im(y*) - cB)?

. bs{f(A + Re(y") - cA+c) + n(B + Im(y") - cB)} )

eq.1l9
(A + Re(7*) - cA - ¢)® + (B + Im(y*) - cB)?

Where the real part of equation 19 is the storage modulus of the composite and

the imaginary part of equation 19 is the loss modulus.

EXPERIMENTAL PROCEDURE

Aluminum 6061 alloys with additions of 0 to 13 weight percent indium were
prepared by plasma arc-melting. The starting alloys were pure indium (99.99%)
and 6061 alloy. The chemical composition of the alloys were determined by
wet-chemistry. The volume fraction of indium was calculated using the weight
fraction and density of each alloy by assuming complete immiscibility between
aluminum and indium. The arc-melted ingot was then reduced 60 to 80% in
thickness, by repeatedly cold-rolling 20 to 30% and annealing, to produce a

flat sample with a nominal thickness of 1.5 mm. The alloys were given a T6
temper consisting of solution treatment at 532 °C (990 °F) and aging at

193 °C (380 °F) for 7 hours. Samples of pure indium were likewise plasma

arc-melted and rolled.




Each sample was characterized by metallographic and analytical electron
microscopy. Electron microscopy studies were performed at the University of
Michigan Electron Microbeam Analysis Laboratory. Thin foils for transmission
electron microscopy were prepared by twin jet electropolishing in.a solution
of 20% nitric acid (by volume) and methanol.

The damping capacity and modulus of the samples were measured with a
Polymer Laboratories Dynamic Mechanical Thermal Analyzer (DMTA). The DMTA
uses a fixed-guided cantilevered arrangement where the left clamp holds the
sample to a stationary frame while the right clamp attaches the sample to the
drive shaft as illustrated in Fig. 1. A small sinusoidal mechanical stress is
applied to the cantilevered sample and the resulting sinusoidal strain is
measured with a noncontacting eddy current transducer. Comparison of the
amplitude of the stress, o, and strain, ¢, signals yields the storage
modulus, a, and the phase lag of strain behind the stress gives the phase
angle, 6. The complex modulus, E, and loss modulus, b, are calculated using

the following equation:

g -=a(l +itans) =E =~ a + ib eq.20
where tané is the loss factor. The frequency of the vibrations was cycled
between 0.1, 1 and 10 Hz while the tewperature was increased cre degree C per
minute from 20 °C (68 °F) to 100 °C (212 °F). Each sample was measured at

least twice to check measurement consistency.

RESULTS
The measured chemical composition and the calculated volume fraction of
indium are presented in table 1. The volume percent varied from O to 5.2.
The microstructures of the indium containing alloys are shown in Fig. 2. A
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uniform dispersion of indium particles was found in all the samples with the
individual areas of indium increasing in size and number with the increase

in volume percent. The micrographs show the indium phase to be roughly
spherical. Examination of the age-hardened matrix using transmission electron
microscopy revealed that the age-hardening process was affected by the
addition of indium. A typical 6061 T6 microstructure consists of a uniform

distribution of Guinier-Preston Zones (GPZ) and B’ (rod shaped MgZSi)

precipitates in the aluminum matrix as shown in Fig. 3a. The diffraction
conditions are optimized in Figs. 3a and 3b to show the B' precipitates. The
aged microstructures of the alloys containing 1.4, 1.7 and 5.2 volume percent
indium are shown in Figs. 3b to 3d. It is apparent that the aging kinetics
have been affected by the additions of indium. The general trend is that the
precipitation of B’ is inhibited and the volume fraction of second phase is
reduced. Only the GPZ's are observed in the 1.7 and 5.2% alloys.

The results of the DMTA testing are shown as plots of loss factor, tan§,
versus the storage modulus on logarithmic axis in order to eliminate
temperature and frequency measurement error from the data. As the temperature
was increased from 20 °C to 100 °C the loss factor increased and the
storage modulus decreased. The measurements of pure indium and the 6061 T6
alloy are shown in Fig. 4. For the temperature range tested, the storage
modulus of the 6061 T6é alloy did not vary significantly from 71 GPa while the
storage modulus of the indium varied from 2 GPa at room temperature to 0.9 GPa
at 100 °C. It was generally observed that the storage modulus decreased and
the loss factor increased with increasing addition of indium as shown in
Fig. 5. The storage modulus of the sample containing 5.2 volume percent
indium exhibited a more dramatic change than alloys containing less than 3.2
volume percent indium, as illustrated in Fig. 6. The loss factor of the 5.2

9




volume percent indium alloy at room temperature was measured to be 0.01. This
was likely due tu increased continuity of the indium phase. The storage
modulus and loss factor were calculated with the Nielsen Model using the data
from the monolithic material in equations 19 and 20 and a shape factor of one.
A shape factor of one describes perfectly spherical second phase areas
completely surrounded by the matrix. The results of these calculations are
presented in Fig. 7. The calculated and measured values of the O volume
percent indium alloy are constrained to be equal. Comparing the calculated
values to the measured values as in Figs. 8 and 9 it is obvious that although
the calculated values show the same trends as the measured values, they
consistently overestimate both the measured storage modulus and the loss
factor of the alloys. For the alloys containing less than 3.2 volume percent
the storage modulus is only overestimated by 2% and the loss factor is
overestimated by 30%. However, in the case of the 5.2 volume percent indium
alloy the storage modulus was overestimated by more than 100% while the loss
factor was overestimated by 60%. These results may indicate a synergistic
effect such as the partitioning of alloying elements present in the 6061

material to the indium.

DISCUSSION

High damping aluminum alloys may be obtained by the addition of a
viscoelastic inclusion. In the present case a volume fraction of at least
0.05 is required to produce an alloy with a loss factor greater than 0.01.
However, there is a significant loss of stiffness associated with the addition
of the indium and there appears to be a synergistic effect between the matrix
and the inclusion. The aged 6061-T6 microstructure shows a decreasing
precipitate density with increasing indium content and the measured loss
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factors are much less than the calculated values based on the damping
capacities of the monolithic samples. It is tempting to speculate that these
observations are related. Indeed, the solubility of magnesium in indium is
greater than 30 atomic percent at the Té aging temperature used in this
experiment [6]. Thus the low volume fraction of precipitates may be related
to the partitioning of magnesium to the indium inclusions. Furthermore, The
indium-magnesium inclusions may have a lower damping capacity than the pure
indium. If indeed the damping of the indium inclusion is a strain dependent
mechanism, such as dislocation motion, the addition of solute atoms will
result in a lower loss factor for a comparable cyclic strain.

The Nielsen model failed to predict the dynamic properties of indium
containing 6061 T6 alloys from the pure indium and 6061 T6é alloy properties,
but did provide a good first approximation. Future modeling of this system
will use the dynamic properties of monolithic indium-magnesium alloys to
compensate for the synergistic effects encountered and the shape factor will
be varied in an attempt to compensate for inclusions which are not

perfectly spherical.

CONCLUSIONS
Additions of indium, an elastically soft second phase particle, to
6061 T6 aluminum, a stiff matrix, have resulted in an increased damping
capacity while still maintaining the stiffness of the matrix. The measured
and calculated values agree that the damping capacity increases and the
storage modulus decreases with increasing indium content. The Nielsen model
is a good first approximation for both the prediction of the maximum damping

capacity and stiffness of a particular alloy system and the tailoring of

11




alloys to obtain the damping capacity and stiffness required by a given

application.
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Table 1: Chemical Composition of Al-6061-In-T6 Alloys

-----------------------------------------------------------------------------

Calculated | Measured
Volume Percent | Weight Percent
Indium | Indium Magnesium Chromium Silicon Copper Iron Aluminum
0.00 { 0.00 0.77 0.048 0.71 0.26 0.23 98.97
0.78 | 2.08 0.74 0.047 0.83 0.27 0.25 95.78
1.43 | 3.77 0.70 0.046 0.76 0.26 0.24 94.22
1.67 | 4.37 0.67 0.045 0.73 0.25 0.22 93.72
2.16 ] 5.63 0.70 0.044 0.75 0.26 0.22 92.40
2.66 | 6.87 0.73 0.045 0.71 0.25 0.21 91.19
3.20 | 8.20 0.73 0.041 0.70 0.28 0.22 89.83
5.16 | 12.80 0.70 0.042 0.64 0.23 0.20 85.39

-----------------------------------------------------------------------------
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