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Chapter 1

INTRODUCTION

The signal returns from radar targets are usually buried in thermal noise and clutter.

Clutter refers to any undesired signal echo that is reflected back to the receiver by

buildings, clouds, sea, etc.. Since the clutter plus noise power is unknown at any given

location , a fixed threshold detection scheme cannot be applied to the radar returns

in individual range cells if the false alarm rate is to be controlled. Thus, the signal

processor must either be insensitive to the statistical properties of the clutter and

interference or be able to adapt to a changing environment.

In this work we concentrate on the adaptive threshold CFAR processor which .sets

the threshold adaptively based on local information of total noise power, with noise

assumed to be Gaussian distributed. The adaptive threshold CFAR processors can be

divided into two classes: (1) Those that estimate clutter power based on arithmetic

averaging and (2) those that regard the problem of target detection and clutter sup-

pression more generally as a problem of signal estimation •and restoration.

The most popular schemes that fall in class (1) are CA-CFAR, GO-CFAR and SO-

CFAR processors. Most CFAR schemes that fall in class (2) are based on ordered

observations and may be thought as versions of the L-filter, which has been used in



restoration of non-stationary signals embedded in additive noise with impulsive compo-

nents [6, 7]. Here the requirements are to preserve abrupt signal transitions or edges and

reduce the effects due to impulsive noise components. These requirements are related

to those in radar where clutter power tiransition need to be suppressed and impulse-

like targets detected. Trunk's OS-CFAR scheme [9] was the first that falls in class

(2). Following that are the OS-CFAR, the Adaptive OS-CFAR, and the VTM-CFAR

processors,the scheme that we discuss in this work.

The threshold in a CFAR detector is set adaptively by processing a group of range

samples within a reference window surrounding the cell under investigation. Essentially,

the threshold may be formed by determining an estimate of the local noise power in

the reference window. The CFAR detector declares the presence or absence of a target

in each range cell depending on whether or not the radar return exceeds the threshold.

What makes one CFAR scheme different from another is the way in which the threshold

is estimated. The general CFAR detection scheme is shown in Figure 1. The specifics

of each CFAR processor are shown in Figures 1,2,3,4 and 5.

The CA-CFAR processor is the optimum CFAR processor when the background

noise is homogeneous, that is while maintaining the constant design false alarm rate

it maximizes detection probability in exponential noise and clutter. Therefore, this is

the most desirable processor if there are no clutter edges and interfering targets in the

reference window. However, we know that this is not a practical assumption . The

CA-CFAR processor's performance significantly degrades in the presence of clutter and

interference filling a non-homogeneous window (see [1]).

In the case of multiple targets the threshold estimation scheme is influenced by the
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interfering signal power leading to unnecessary increase in overall threshold. This leads

to masking of the primary target and thus severe degradation in detection probability.

When a clutter edge is present in the reference window with a target return in the test

cell, severe masking of targets results due to increase in threshold. However, if the test

cell contains a clutter sample, the threshold is not high enough to achieve the design

false alarm rate because the noise estimate also includes values from relatively clear

background. A direct consequence of this is a significant increase in the false alarm

rate. Both of these effects become worse as the clutter power increases.

The remaining schemes mentioned above were all introduced in an attempt to over-

come the masking of the primary target and excessive false alarm rate caused by clutter

edges and interfering targets when the CA-CFAR is used. Of all the schemes mentioned

above, the GO-CFAR scheme has the best performance in presence of a worst case clut-

ter edge in terms of false alarm rate, but it is incapable of resolving closely spaced tar-

gets. On the other hand, the OS-CFAR has the best detection performance in presence

of multiple targets. Unlike the SO-CFAR, which performs very well in resolving two

closely spaced targets only if they are located in the same half window, the OS-CFAR

performs well regardless of the location of the interfering targets due to the ordering

of the samples involved [1, 9]. The OS-CFAR processor resolves closely spaced targets

effectively for proper choice of its parameter value. However, the OS-CFAR is unable

to prevent excessive false alarm rate at clutter edges, unless the threshold estimate in-

corporates the ordered sample near the maximum, but in this case the processor suffers

greater loss cf detection performance [2]. The TM and the VTM-CFAR detectors are

an attempt to combine the two classes of CFAR schemes mentioned earlier in order
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to benefit from averaging when the background noise is homogeneous and in order to

benefit from the good detection performance of OS-CFAR in multiple target situation.

The VTM-CFAR can give minor improvement over the OS-CFAR detector and the

VTM-CFAR processor unifies all the existing schemes by merely choosing appropriate

values for its parameters.

The rest of this thesis is organized as follows. The basic assumption and model

description that have been used to analyze the performance of the CFAR processor

are discussed in Chapter 2. In Chapter 3, a review of the CA-CFAR, the GO-CFAR,

the SO-CFAR, the OS-CFAR and the TM-CFAR processors is given along with a short

discussion of their performance. In Chapter 4, the VTM-CFAR detector is discussed and

is shown to possess the CFAR property , provided that some mild conditions are met.

An analytical expression is obtained for the probability of false alarm and probability

of detection as well as the ADT of the VTM-CFAR in homogeneous background. In

Chapter 5, we present some simulation results and discuss the results obtained. The

overall conclusions of the study are given in Chapter 6. Most of the derivations and

proofs are relegated to the Appendices in order to enhance the main thrust of the study.
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Chapter 2

BASIC ASSUMPTIONS AND MODEL DESCRIPTION

In a general CFAR detection scheme the square-law detected video range samples are

sent serially into a shift register of length N.+ 1 = 2n + 1 as shown in Figure 1. The

statistic Z which is proportional to the estimate of total noise power is formed by

appropriately processing the N reference cells surrounding the test cell containing the

candidate for a target Y. Threshold is equal to TZ where T is a constant scale factor

used to achieve a desired constant false alarm probability for a given window of size N

when the total background noise is homogeneous. A target is declared to be present

if Y > TZ ; otherwise no target is declared. The way statistic Z is obtained leads

to different CFAR schemes. For example, in the CA-CFAR processor ,Z is sum of the

range samples; in GO-CFAR, Z is max(Suml, Sum2) where Suml is sum of the leading

N/2 samples and Sum2 is sum of the lagging N/2 samples.

In order to analyze the detection performance of a CFAR processor in homoge-

neous background noise, we assume that the samples Xi, ... ,XN and Y are uid and

exponentially distributed, with probability density function

A -_ 0( 2 .1 )

0 otherwise.

Under the null hypothesis H0 of no target in a range cell and homogeneous background,
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A is the total background clutter-plus thermal noise power, which is denoted by I.

Under the alternative hypothesis H, of presence of a target , A is P(l + S), where S

is the average signal-to-noise ratio (SNR) of a target. This means that we are assuming

a Swerling I model for the radar returns from a.target and Gaussian statistics for the

background. We also assume that the observations in the (N + 1) cells are statistically

independent. Therefore, for the cell under test the value of A in (2.1) is

AP under Ho

A = (2.2)

Sp(l + S) under H,

and for the N cells surrounding the cell under test A always equals 1A [2].

In our analysis and study of the non-homogeneous background for which the ref-

erence cells do not follow a single common probability density function (pdf), we are

concerned with transitions or changes in power A and presence of multiple targets in

the window. In the case of transitions, we consider the case of a single transition from

"a lower total noise background power level to a higher level. Thus, we assume that

"a portion of the reference cells have thermal noise only with A = IA = /jo and the

remaining reference cells arise from a clutter background with thermal noise so that

A = i = po(l + C), with C being the clutter-to-noise ratio (CNR). The extent of

the physical clutter area is assumed to be at least as large as the size of the reference

window so that the reference window does not contain multiple clutter patches [2]. In

the case of multiple target environment, the amplitudes of all the targets present in

the reference window are assumed to fluctuate according to the Swerling I model. The

common interference-to-total noise ratio (INR) of all extraneous targets is denoted by

I. Thus, for reference cells containing extraneous targets the value of u in equation (1)
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is A(l + I). We are interested in detection performance as a function of primary target

SNR for different values of interference-to-signal ratio (i.e I/S).

It is crucial to note that the performance in homogeneous background of a CFAR

processor is independent of the total power u, whether it be thermal noise power or

clutter-plus-thermal noise power. Therefore , only changes in the total noise power

caused by regions of clutter power transitions and multiple target environment influ-

ences the overall processor performance. Naturally, the most desirable CFAR processor

would be one that is least sensitive to changes in the total noise power within the

window of reference cells so that a constant false alarm rate is maintained.

The processor performance is determined by average detection and false alarm prob-

abilities. Probability of false alarm, Pj1a is determined in general by

e•= E {P [Y > TZ/!Ho]}. (2.3)

Since Y e 0 < Y<oo

pfa E= T I E{g e Ydy}

= E{e- TZ}

= Mz(T/2;i) (2.4)

where Mz(.) denotes the moment generating function (mgf) of the random variable Z.

Similarly , the detection probability Pd is given by

Pd = E{P[Y > TZ/H1 ]}. (2.5)

Since under the signal-present hypothesis H1 the mean 2A = 2s(i+ 5), we can determine
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Pd by simply replacing IA with ji(i + S) in (2.4) i.e.,

Pd = Mz [T/2pu(1 + S)]. (2.6)

Following the discussion above, it follows that, for a CFAR scheme, Mz(T/21A) must

be independent of ju. If for a'scheme Mz(T/2pu) is not independent of M, then it is not

a CFAR scheme.

Since there are several different CFAR schemes, it is important to have a reliable

way of comparing their performances. One way is to compare their false alarm rate

performance in presence of clutter edges. A second way is to compare their detection

performance and a third way is to compare the ADT (Average Detection Threshold)

for each processor. The ADT is also useful because comparison of the fixed optimum

threshold with ADT of a CFAR processor gives a measure of the overall loss of detection

without the need to calculate the detection probability. From [2]

ADT = E(TZ)/2ju. (2.7)

For the optimum detector the the ADT is simply - ln(Pf.) [2]. From probability theory

(see [15, 16] on moment generating functions), we know that

d
E(Z) = -2--TMz(T/2/s)IT=O (2.8)

Therefore,

ADT = -T {f -P.,aT=o} (2.9)

It is irnportant to note that for any CFAR scheme the ADT is independent of M because

Pa is independent of p. The rest of this work will be based on these assumptions unless

otherwise stated.
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Chapter 3

AN OVERVIEW OF BASIC CFAR PROCESSORS

The CFAR processors that will be discussed in this chapter are well known and they

have been included in this thesis for ease of comparison with the VTM-CFAR that we

study. A thorough discussion of these schemes can be found in [2].

3.1 The CA-CFAR Processor

For the CA-CFAR processor
N

Z= x. (3.1)

Using the result given in (2.4)

P, a Mz(T/2As)

= E {-c.Tz}

"E •{CsmXi (3.2)

Using the well known result that for the iid random variables X1 , ... ,XN

E{g(XI)g(X 2 ) ... g(X.)j = E[g(X1 )] ... E[g(XI)]

N

PIG = fE{I e }
s1

(1 + T)N" (3.3)
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It follows from expression (3.3) that

Pd = [1 + ( S)(3.4)

We can also compute the constant scale factor from ( 3.3) to be

faT - p "- 1. (3.5)

For the CA-CFAR detector substitution of expression (3.3) into expression (2.9) yields

ADT = NT. (3.6)

In non-homogeneous background, assuming that the reference window contains r cells

from clutter background with noise power po(l + C) and (N - r) cells from clear

background with noise power yo, then

rN
z= x + x,. (3.7)

There are two interesting situations to consider under these circumstances. One is when

the cell under investigation comes from a clear background. This yields,

Pf = [1 + (1 + C)T1-?[1 + T]" VN. (3.8)

The other is when the cell under investigation comes from a clutter background. This

yields,

P = Mz ( 2  C))

= (I + T)-'(l + T/(I + C))"-N (3.9)

In the case of multiple targets,

Pd = [1 + (1 + I)T/(1 + S)1-r [1 + T/(1 + S)Ir-N (3.10)

10



where r represents the number of interfering targets present in the reference window.

The performance of the CA-CFAR processor is compared with those of other CFAR

processors as we study the others.

3.2 The GO-CFAR Processor

For the GO-CFAR processor

Z = maz(Suml, Sum2) (3.11)

where Suml = EjN/ X. and Sum2 = E'=N12+1 Xi. When the background noise is

homogeneous, the false alarm probability is found by using expression (2.4), which

requires the computation of the mgf of Z which is easily computed, and we obtain:

Pfa =2(1+T)-n ( (2+ T)-(-+'). (3.12)
i=O

As explained before, the detection probability Pd is found by simply replacing T with

T/(I + S) in (3.12).

The ADT for the GO-CFAR processor is found by using equation (2.9)

- (n+i-) (i + n)2 (n+i+l) 
(3.13)ADT = 2T *- (( i ) +I

.=O

Table 1 lists the values of T and the ADT for various design Pfa.

When the reference window contains a clutter edge or multiple targets, an exact

P1 0 expression can be found (see [21). Since the purpose here is to compare the GO-

CFAR detector with the VTM-CFAR detector for which an exact expression under

these circumstances is not available, we obtain the P/fa and Pd values for the GO-CFAR

detector using Monte Carlo simulations. Numerical values will be given and discussed
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at the end of the thesis; therefore, for the time-being, we note that this processor has

the best performance among all the CFAR processors in terms of false alarms at clutter

edges. What makes this processor undesirable is the intolerable masking of the primary

target which is worse than the CA-CFAR processor.

We will not discuss the Smallest Of (SO) CFAR processor here, but we mention that

although it was introduced as a solution to detection loss in multiple target situation,

the Order Statistics (OS) CFAR scheme that will be discussed next is superior to the

SO-CFAR scheme; because, unlike the SO-CFAR scheme, the detection performance of

the OS-CFAR detector is independent of the location of the interfering targets. Thus,

the SO-CFAR processor is not an interesting processor and will not be compared to the

VTM-CFAR detector.

3.3 The Order Statistics CFAR Processor

The OS-CFAR detector is designed to overcome the problem of the loss of detection

performance suffered by the CA-CFAR and the GO-CFAR detectors when the interfer-

ing targets are in the background. In a processor based on just averaging, in presence

of interfering targets in the reference window, the statistic Z has a larger value than

the average noise power in the window and this causes a large loss of detection. To

alleviate this problem in the OS detector the reference range samples X 1 , ... XN are

first ordered in ascending order and then the statistic Z is formed as

Z = X(k) (3.14)
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where X(i) is the largest sample in the reference window, i = 1, ... ,N and 1 < k _< N

is an integer valued design parameter. The value of k is chosen to eliminate the back-

ground cells with the largest voltages in order to optimize detection performance. Since

the cells with the largest voltages are likely to be interfering targets, by using this

method the influence of interfering targets are eliminated leading to a statistic Z which

is more representative of the background noise power. Consequently , there is not a

large loss in detection performance when interfering targets are in the background cells.

The false alarm probability and the ADT expressions for the OS-CFAR processor

are derived in [21 and therefore only the final results will be presented here.

In homogeneous background,

k-i (N - i)
IIl (N-i)TP i=O=I (N-i+T¥ ) (3.15)
i=0

and it follows that
k-1f( -i

Pd I, (N +) (3.16)

and
k-i

ADT = T 1'i:o N i"(.7

We note that T is a function of k and as shown in [2] as k increases T decreases in order

to compensate for the increase in Z and thus maintain the design false alarm rate.

It is shown in [2] that the ADT exhibits a broad minimum for larger values of k.

Thus, as explained before, any reasonable k for which ADT is relatively low may be

chosen for estimating the noise power without sacrificing the detection performance in

uniform noise background.

As explained in [2], in stationary clutter the detection performance of the OS-CFAR

13



imp'oves until k reaches 21 when N = 24 where Pd achieves the maximum value and

the ADT the minimum. For k greater than 21, the Pd degrades or equivalently the

ADT increases. Thus, for N = 24 and stationary clutter , the optimum value of k is

21 (2, 3]. Although the OS detector can discriminate the primary target from up to

(N - k) interferers, it is shown in (21 that unless k is chosen to be a number close to N,

i.e., k = N ,the false alarm rate of the OS-CFAR detector can increase substantially

in presence of clutter power transitions. However, as shown by [2] such a value for k is

not generally desirable because the corresponding OS-CFAR detector not only suffers

some loss of detection performance in stationary clutter but it also fails to detect the

primary target in presence of multiple targets. In conclusion, the OS-CFAR processor

performance is significantly worse compared to the GO-CFAR processor in presence

of clutter edges and it exhibits some loss of detection power in homogeneous noise

background compared to the CA and GO-CFAR processors; however, its performance

is superior in a multiple target environment.

For the interested reader we would like to add that closed form expressions for

the P18 and the Pd in presence of clutter edges and multiple targets can be found

in reference [2]. Our values for comparison with the VTM-CFAR detector in these

situations will be obtained using Monte Carlo simulation, the same way that the data

for the VTM-CFAR detector will be obtained.

3.4 The TM-CFAR Processor

This is one of the first attempts to combine the benefits of averaging and order-

ing+censoring. In this scheme the noise power is estimated by a linear combination of
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some selected ordered range samples. The linear combination may be anticipated to

give better results because averaging estimates the noise power more efficiently as in

the case of the CA-CFAR and the GO-CFAR processors and thus loss of detection in

uniform background is more tolerable.

In the TM-CFAR detector the statistic Z is obtained by censoring T, ordered range

samples from below and T2 ordered range samples from above and then forming a sum

of the remaining samples. Thus,

N-T 2

Z= E X() (3.18)
i=T1 +1

where T, and T2 are the upper and lower trimming parameters, respectively, satisfying

conditions 0 < T1, T2 < N and T, + T2 < N.

It helps to realize that OS- and CA-CFAR schemes are special cases of the TM-

CFAR scheme. Namely, when T" = k - 1 and 222 = N - k the TM-CFAR scheme

reduces to the OS-CFAR scheme and when T1 = T2 = 0 the TM-CFAR scheme reduces

to the CA-CFAR scheme.

The P/a and the ADT in homogeneous background for this scheme are derived in

[21; here we give a slightly simpler version of the ADT. As derived in [2] (see equation

(48))
N- T, - T2

Pia = JJ Mv,(T) (3.19)

where
T, (N - i) (3.20)

Mv,(T)=O" [N + T(N - T2 - Tj) - i]

and

Mv,(T) a i= 2,..., N - T1 - T2  (3.21)
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where

S(N-iT- i + 1) (3.22)( (/- T - T2 - i + 1)'

As usual, the detection probability Pd is obtained by replacing T with T/(1 + S) in

(3.19). The loss of detection in terms of the ADT is computed simply by using (2.9)

which yields

ADT=T (N-T2-Tl) (N1 )+ N- T- - T2-i-+1) } (3.23)

As shown and explained by [2], symmetric trimming is not very interesting, because

it does not give a performance advantage over the other CFAR schemes in regions of

clutter transitions. However, asymmetric trimming can be made more interesting with

the right choice of T1 and '2 values. In fact, it has been shown in [2] that the sum of

more than one ordered range samples that is incorporated in the TM detector leads to

some improvement in the detection performance in exponential stationary clutter over

that of the OS detector [2). It is also shown in [21 that a relatively high value for T1

is required to reduce degradation in the false alarm rate of the TM detector at clutter

edges with only minor loss of detection performance in stationary clutter. Furthermore,

the TM detector can discriminate the primary target from up to T 2 interferers.

Since the performance of the TM-CFAR detector is very close to the performance

of the OS-CFAR detector, it is sufficient to provide numerical results for only the OS-

CFAR detector..
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Chapter 4

The VARIABLY TRIMMED MEAN CFAR

DETECTOR

4.1 Definition of The VTM Detector

The motivation for using this procedure came from the similarity of the requirements

of radar where clutter power transitions need to be suppressed and impulse like targets

detected, and the restoration of nonstationary signals embedded in additive noise with

impulsive components [6, 7] . The recent literature in the latter topic has shown that

the Modified Trimmed Mean (MTM) filter, which is related to both the L-filters and

the class of M-filters [71, has good performance at signal edges. Hence, we decided to

use the idea of the modified trimmed mean (MTM) filter for CFAR radar detection to

alleviate the problems at clutter edges and multiple target situation.

We called our processor Variably Trimmed Mean (VTM) because of the way the

samples are trimmed, namely, data adaptively. For this detector, the statistic Z is

obtained as follows.
K2

Z = 77(K 2) E X(i) (4.1)

where integer valued k is the index of the smallest ordered sample in the sum and is a

design value between 1 and N, k < K 2 :5 N is a discrete random variable whose value
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is determined based on a data-dependent rule,and the i1(K 2) is some appropriately

chosen normalizing coefficient. The VTM detector can therefore be thought of as a

TM detector with a fixed lower trimming T, = k - 1 and a variable upper trimming

T2 = N - K 2 . The data-dependent rule that .sets the value of K 2 in each processing

window is defined as follows:

K 2 = k2 iffX(,) < X(k) + q < X(k,+l), k < k2 < N (4.2)

where q is a design parameter which may or may not be fixed. This procedure can be

thought of as performing a separate experiment on X( 1),i =1,..., N to compute the

value K 2 = k2 in every window. A block diagram of the VTM detector is shown in

Figure 5.

The operation of the VTM detector can alternatively be explained as follows: First

the values of the design parameters N,T,k,q and 77(K 2), k < K2 :_ N, are selected . In

each processing window, an interval of size q is formed above and including X(k), and

those range samples whose values fall within the interval [X(k), X(k) + q] are used to

determine the statistic Z. The normalizing coefficients can simply be 1/(K2 - k + 1),

k < K 2 < N, which scales the sum of (4.1) according to the number of ordered samples

used. The 17(K 2) can also be picked to be unity. We assume that the 77(K 2) depends

only on the values of N,k and q, and is independent of the design P10. The parameter

T, on the other hand , is tuned to achieve the design P1 ,. The value of q determines,

on the average, the number of range samples incorporated in the sum. Clearly, the

VTM-CFAR detector reduces to the OS-CFAR detector with parameter k as q - 0

and to the TM-CFAR detector with T, = k - 1 and T2 = 0 as q -- co. We will show in

the next section that a VTM detector with a fixed q will not result in a CFAR detector;
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however, a detector in which q is set proportional to X(1 ) for some i in each reference

window, is shown to be CFAR.

A VTM detector with a more general rule can be defined where a symmetric interval

of size 2q is placed around X(k) and range samples whose values fall in [X(k) - q, X(k) + q]

are used to compute Z. However ,we chose not to do so for reasons that will become

clear shortly.

For a given k, the value of q can be chosen to maximize the detection performance

in a homogeneous reference window. This is achieved by selecting the smallest value of

q that leads to a situation where almost all of the range samples larger than X(k) are

used to obtain Z. When the reference window contains multiple interfering targets , the

corresponding range cells will generally be larger than X(k) + q , for a properly chosen

k. Hence, the value of k must be less than the maximum number of interferers that

may appear in the reference window to guarantee satisfactory detection performance in

a multiple target environment.

On the other hand, when a few range samples (less than N - k) from a high-

clutter region enter the reference window, they look like interfering targets to the VTM

detector and tend to be discarded. The false alarm rate and detection performance

characteristics are only slightly degraded since X(k) is still chosen from samples that

come from a low-clutter region. When the number of high-clutter samples exceeds

N - k, X(k) is now one of the high-clutter samples. Hence, most of the samples larger

than X(k) will now be included in obtaining Z. This leads to a considerable increase

in the threshold, which in turn helps to control the false alarm rate when the test cell

Y contains a range sample from the high-clutter region. Therefore, in practice , for
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exponential clutter, k should be chosen as large as possible to prevent excessive false

alarms at the clutter edge. This conclusion is similar to the one reached in [2] for the

TM detector where the lower trimming parameter T, was set to a high value to reduce

the degradation in the false alarm rate caused by regions of clutter power transitions.

A special case of the VTM CFAR detectornamely, the Excision CFAR detector,

has recently been analyzed in a multiple target environment in which the value of k

is set to unity [101. Here k2 is chosen to satisfy the condition X(;.2 ) < j < X(;.,+,) for

some real-valued design parameter #. Clearly , the false alarm rate performance of this

detector will degrade considerably in regions of clutter power transitions because,the

detector will almost always censor samples from a high clutter region even if the test

cell is from the high clutter region itself. Hence, it is essential that the size-q interval

be formed around a kth smallest range sample, with k > n.

4.2 Analysis of The VTM Detector

In this section we will show that the VTM detector is a CFAR detector provided that

q is chosen properly. Let us define the event EA2 by :

Ek2 : X(1,2) _< X(k) + q < X(j,+,). (4.3)

The false alarm probability of the VTM detector , which is defined to be the proba-

bility that a noise sample in the test cell exceeds the threshold in a stationary clutter

environment, is given by

PG = P[Y > TZ]

N

= P[Y > TZ(K2 )IEk2 I P[Ek2 ]
K 2 =k

20



N

-- P[Y > TZ(K 2), Ek2] (4.4)
K2=k

where Z(K 2) = n(K 2 ) E X(j) and Y is a noise sample. Note that Z and Z(K 2) are

two different statistics; the former is a function of X(1 ),..., X(N) .whereas the latter is a

function of only X(k), ... , X(K2). It is worth mentioning again that the expression (4.4)

for the P1. must be independent of the total noise power A for the VTM detector to

be CFAR in stationary clutter. To prove that this is in fact true, we refer to [4] where

a general proof is given. We include that proof here, for completeness.

First some definitions to facilitate the proof are introduced. Let X be the vector

(XI,.-. . , XN) of N real-valued random variables (in our context,X can be thought of

as the vector of range samples in a reference window).

Definition 1 An event A(X) is called scale invariant iff A(rX) = A(X) for all real-

valued r > 0.

Definition 2 A family fX(x; ji, 2) of densities of X parameterized by real-valued pa-

rameter p> 0 and 0 is said to have a scale parameterju if fX(X; p, j) = (j1/n )g(xl/s; _)

where g(. ; 0) is some density function independent of p.

Proposition 1 Let fX(x; A, f) be a family of densities with scale parameter o. Fur-

ther, let A,(X), A2(X), ... , An(X), m, finite, be some scale invariant events. Then

P[A1 (X), A2(X),..., An(X)] is independent of p.

Proof of this proposition is given in Appendix A. We have the following corollary as a

simple consequence of the proposition.
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Corollary 1 Let Xi, i = 1,..., N be iid random variables governed by a common

probability density function (pdf) fx(z; p, 2) ,and Y be a random variable independent

of Xi, i = 1, .. ,N with pdf fy (y; p, j) where p is the common scale parameter. Then

P[Y > TZ(k 2), Et,] is independent of u if q/l is a fized constant, or if q is a linear

function of X(i), i = 1,...,N.

The event Y > TZ(K 2) is clearly scale invariant, whereas EK2 is scale invariant

provided that the condition described in the corollary is satisfied. The proof of the

corollary then fdllows from the fact that the joint pdf of X(k), ... , X(KA+I) also has p

as a scale parameter.

With the aid of the above proposition, all of the CFAR schemes considered previ-

ously which assume exponentially distributed stationary clutter and target model can

be shown to be CFAR, without actually computing the expression for the false alarm

rate. More generally, these schemes will remain CFAR even if the distributions of the

noise and target returns do not obey the commonly assumed exponential distribution

, but are governed by arbitrary distributions with a common scale parameter propor-

tional to the total noise power and other parameters independent of noise power. This

fact can be used in further study when the samples are assumed to have a Rayleigh

instead of an exponential distribution. Since Rayleigh distribution has a lighter tail

than exponential distribution the variable trimming along with the averaging operation

incorporated in the VTM detector may give better results than exponential distribution

assumption.

In the case of VTM detector we have the following two cases:

Fized-q VTM Detector: Clearly if q is fixed , then the VTM detector is not CFAR. A
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different approach can be taken in which the ideas of conditional-tests may be employed

to the fixed-q VTM detector. Here, 'he multiplier T which is a function of N, the design

Pie, k and q is allowed to vary with K2 . K2 is computed by satisfying the condition

P[Y > T(K 2)Z(K 2)1 EK2 ] = P1%. The overall Pfa in this case no longer depends on

the P(EK2 ) (see equation (4.4)). Such a VTM detector is still not a CFAR detector

since T(K 2) depends on the value of p. However, our simulation results indicate that

the influence of q on T(K 2 ) is relatively weak and that the false alarm rate remains

nearly constant for a noise power variation of 30 dB.

Adaptive-q VTM Detector: Here, the value of q is adaptively set in each window

from the reference range samples . In particular , we propose to set q such that

q --= 7X(k) (4.5)

where -y > 0 is a preselected design parameter. As a matter of fact, any other order

statistic X(,) can be used in place of X(k) in equation (4.5) . The constant multiplier

T now depends on k and -y for fixed N and the design Pj,. The event E4, of equation

(4.3) becomes

Ek2 : X(k2 ) _< X(•) + 7X(k) < X(k,+l) (4.6)

or

Ek2 : X(K.) - (1 + 7)X(k) <_ 0 < X(K 2 +1) - (1 + -,)X(k) (4.7)

and is now scale invariant. Hence , the adaptive-q VTM detector is a true CFAR

detector.

The basic steps in deriving the closed-form expression for the Pf. of the adaptive-q

VTM detector along with the final closed form expression is presented below. In order
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to make the thesis more readable, the detailed derivation is given in Appendix B.

We start the derivation of the false alarm probability by using the result from

chapter 2, namely

Pt. = E{e.-T-TZ} (4.8)

Since it has been established that for the adaptive-q VTM detector this is independent

of ju, for simplicity we will set a = 1/2. We will also assume that 77(K 2 ) = 1. Therefore,

equation (4.8) reduces to

P10  = E Ie-TZ}

= Efe-TEK2 I)

= b- (4.9)

where, as established before k is a fixed deterministic integer valued variable which can

have a value between 1 and N. In order to make the derivation more comprehensive,

we can think of K 2 as the last time that X(j) • (1 + 7)X(k). We also introduce the

notation bk in order to keep track of the derivation which, as will be obvious soon, has

a backward iteration nature.

Using the indicator function to facilitate our derivation, we proceed as follows:

bk= E [eT •u- lIX(h),('+)X(b)I](X(j)) X(j)] (4.10)

where the indicator function is defined as:

I z < X(j) <altz,G](X(J)) = X)>a.(4.11)

0 X(j) > a.

We should keep in mind that in our case a = (I + 7)X(k) (see (4.10)). Conditioning

on the random variable X(k) and using the result E[ E[XIY] J, equation (??) can be
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rewritten as

bk= E [E T IX(k) (4.12)

Letting the random variable X(k) =Z,

S= JoE [eT-' N-. 1'J(x')xn IX(k) - Z] fx(k)(z)dz. (4.13)

Simplifying further,

b = j e-T E [e-T•,-&÷i 1[,(L+,),1 (X(,))X(2) IXi) = ] fx(h)(z)dz

= E [e-TX( 1 E [,T1j+ (x(&)'(l+,)x(k)I(X(j)) X(,) I.X(k) .1 (4.14)

Here we introduce a notation that will greatly facilitate the derivation:

Definition:

Vk* (Xk) = E [e-TE k+l '(X") .J(X (j)) X) IX(k) (4.15)

Thus, using equations (4.14) and (4.15) we can express bk in a compact form as follows:

bk = E [e-rx•) Vk•¶+')x( )(X(k))] . (4.16)

Here, we point out that the subscript of b and V is one less than the index of summation

in equation (4.15), which means that the index of the smallest order statistic that falls

in the window is equal to the index of b. In other words, bi is the false alarm probability

when the smallest sample that falls in the window is X(j). The rest of the calculations

that will lead to the closed form expression for bk depends on the most important

observation that for r < j

, .X =...._..=. ).....X()=Z(,)(Y) = .fx(.)IX(,)=z(. (Y) (4.17)
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which establishes that the order statistics in a sample from a continuous distribution

form a Markov Chain (see [8, page 20] for the proof) . Using this fact, we can simplify

equation (4.15) further by conditioning on X(k+l).

V,(z) = E [E [e-T j+1 1[,&(Axj)) X IX(k+l), X(k) = z (4.18)

= J E [e-T ji. 1,I(x(j)) IX([k+l) = Y, X() =

× fX(It+t)lAt,) (y/z) dy (4.19)

Now, we observe that either z < y < a or a < y < oo. When z < y < a, the indicator

function equals 1. In the latter case,the indicator function is equal to 0 and thus the

argument of the summation in the equation (4.19) is 0. Since the first term of the

summation X(k+l) is not a random variable, it can be taken out of the expectation and

we obtain

V = e-TYE [e-T + .(X()) Xj) IX(k+l) = y,X(k) =

x fx(,+,, Ix(h)(y/x) dy + fIx,+,, x(x,)(y/z) dy (4.20)

e-T E[e-T A+2 1"(,,. 1 (X(,))X)IX(k+l) = Y1

x ,(k,+ (y/Xz)( d / +, la+ fX(k+,) ix(,)(y/z) dy (4.21)

where we used the Markov property (see (4.17)) to go from the first equality to the

second. The conditional pdf of X(o) given X(,) = z for z < y can easily be calculated

(see [8, equation 2.7.1] for details). Thus, for the exponential clutter,

(N - k)e-(Nvk)(Y-) y > .

fX(h+I)IX(h) (y/z) = (4.22)

0 otherwise.
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Substitution of equation (4.22) into equation (4.20) yields:

00
Vk'(z) = (N - k)e-(N-k)(1-z) dy

+ e-TY V,' 1(y) (N - k)e-(Nk)(l-' dy

= e-(N-k)(a-z)

+ e(N-)x f(N - k)e-YN-k+71 Va+, (y) dy. (4.23)

Now, we start processing:

If k = N - 1 in expression (4.23), then,

e-_x)= + exj e-y(l+T)V•(y) dy (4.24)

-- + (I + T [e(l+T)(a-z) - 1]. (4.25)
(I +T)

Substitution of equation (4.25) into equation (4.16) with k = N - 1 , a = (I + f)X(k)

and z = X(k) results in

br1= E {eTXI vk (7X(k)x,))} (4.26)

= E e-x((1)(f+r) + 1 + T) . (4.27)

Let E[e-OXM()] = Mx(,,(, 3 ), which is the moment generating function of X(k) (see [15]

for more on moment generating functions.) The derivation of MX(k)(,3) is straight

forward:

00
MXh)(,3) = e -'fx(4)(z) dz (4.28)

=(N - k)!(k - 1) ( - e-=)k-1 e-z(N-+1+t3 ) dz (4.29)

and making change of variable 1 - e- = u in (4.29) gives:

MXN f(3) N ! uk-1 (1 - u)Nv-ý+O du
(N - k)!(k - 1)! f/
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N!r(N - k +0 + 1)
(N - k)! r(N + 0 + 1)

N!
(N -k)! (N + 0)(N + - 1)...-(N +]9 +1- k)

N! k-i 1 (4.30)
(N -- k)! .•= (N +i• - i)

Thus, we can express bN-1 in terms of the moment generating function of X(N-1

S= Mx(,-,) (T + -f)+(1T {MX(N,,)(2T)- Mx(N ,)(7 + 2T + 7 T)} (4.31)bN- = X(Nt}( + ) +(I + T)---

Similarly, by back substitution we can derive bN-2,. .. , b, in the given order. Expres-

sions for bN-2,... , bN- 5 are given in the Appendix B. By looking at these expressions

we realize a pattern that the expressions for bk follows. This leads to a closed form

expression for the false alarm rate, Pfa for any value of k, I < k < N.

Pf. = bN-= (T + 1 (-)i2 M() (4.32)
it =0 T 2=0

where U = (ji-i + 2 )7 + T[(i + 1) + i2 and k = N - j or j = N - k. Also, by

using the definition (2.9) given in chapter 2 it is straight forward to derive the general

expression for ADT:

ADT = T [ ( 1)'2 M[(j-i 2 +i) 7 ]

x {D [(j - il + i 2)t] [il + 1 + i 27] + ill] (4.33)

where M(,3) is as defined in (4.29). and D(3) '=-=0 (N= 3-) ad J= N - . Of

course the Pf 0 and the ADT expressions given above are for the un-normalized Z,

i.e., for Y?(K2 ) = 1. Notice that il + 1 is the number of terms that form the sum

Z, i.e., il + 1 = K 2 - k + 1. Thus, t7(K 2) = 1/(i1 + 1). Let ZNo,.maized = T, then

7= i7(K 2)Z. Since Threshold is equal in both cases, T = 71(K 2 )T. Thus, we can
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replace T in expression (4.32) by T/(il + 1) in order to obtain the normalized Pfa

expression,i.e.,

P bN-i + 1) + I i2) -I)' M(/3) (4.34)

it =0 Ti 1 i

where 3 = (j - il + i2)'y + T[(il + 1) + i27 ] and k = N - j or j = N - k.The following

normalized ADT expression is derived as before to be

ADT = T (i+) 2 ( 1)i' M [(j-il + i2)7 ]

x {D [(j - il + i2)-Y] [il + 1 + i27] + il}l (4.35)

where M(O8) is as defined in (4.29) and D(,3) = - 1  and j = N - k.
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Chapter 5

DISCUSSION OF RESULTS

At the end of the thesis we present some results to facilitate the comparison of the

VTM-CFAR detector with those detectors that are well known to have good perfor-

mance characteristics under clutter power transitions or multiple target stuh)"ion. In

addition to presenting tables we have plotted various performance curves in order to

obtain a better feel for the comparisons. The constant scale factor,T, the average de-

tection threshold, ADT and other performance values in homogeneous background are

obtained analytically. The performance characteristics at clutter power transitions and

in presence of multiple targets are obtained by Monte Carlo Sim~ktion with 106 runs.

In Figures 1-5, we show the block diagrams of the processors mentioned in the previous

chapters.

In Figures 6,7, and 8, k vs. ADT are plotted for selected f values. In Figure 6 we

observe that the VTM with k = 20, 21 and - = 2.0 performs closest to the OS detector

with k = 20, 21 in terms of ADT. Thus, we can expect the two detectors to have

similar detection performances in presence of homogeneous noise. Comparing Figure 6

with Figure 7, we observe that for bigger design Pfa's the VTM-CFAR with 7 = 2.0

and k < 21 has smaller ADT values. A careful inspection of Figure 8 reveals that

for N = 16, and Pf. = 0.001 the VTM-CFAR performs worse than the OS-CFAR in
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terms of ADT, which implies that the VTM-CFAR becomes superior to the OS-CFAR

as the window size gets larger. The results demonstrate that some improvement in

the overall performance can be achieved by using a VTM-CFAR detector with proper

design parameters. For example, if the VTM detector with k = 20, f = 1.0 is employed

with N = 24, then, it will operate close to the optimum OS detector in regions of clutter

power transitions (see Tables 6 and 7). However, the VTM detector with k = 20 and

-t = 1.0 is superior to the OS detector with k = 21 in multiple target situations (see

Tables 4 and 5). Figure 9 shows the detection performance in homogeneous background

of the OS and the VTM-CFAR processors as a function of the primary target SNR at

pf. = 10-3 for a window size of N = 24. As predicted from the ADT characteristics,

Figure 9 indicates that the OS with k = 21, 20 and the VTM with k = 20, 21; 7 = 2.0

are very close; note that the VTM with k = 20 and7 = 1.0 suffers some detection

loss in homogeneous background. A careful inspection of Figure 9 also reveals that

the Pd characteristic for the VTM with k = 21, -t = 1 is reasonably close to the Pd

characteristic of the OS processor with k = 20,k = 21. In Figure 10, comparison of

detection performance in presence of four interfering targets, INR/SNR = 1, of the

OS-CFAR with k = 21 and the VTM with k = 21,7 = lor2;k = 20,7 = lor2 is

shown. Clearly, the VTM with k = 20, 7 = 1 or 2 are superior to the CA, and the OS

with k = 21 in terms of detection probability in presence of multiple targets. Figures

11,12, and 13 show false alarm rate performance of the SO-, the GO- and the VTM-

CFAR detectors. From these Figures we see clearly that the VTM-CFAR with k = 21,

7 = 1 or 2; k = 20, 7 = 2 are superior to the OS with k = 21 and that their performance

does not degrade as much as the OS with k = 21 as CNR increases.
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All in all, comparing all the Tables and performance curves given, we see that the

VTM detector with k = 20, = - 2.0 is the best detector; and the second best VTM

detector is the one with k = 20,7 = 1.0. Actually, these two VTM detectors have

very close performance. The VTM with k = 20 and -y = 1.0 has slightly superior

performance in multiple targets situation; whereas the VTM detector with k = 20 and

7 = 2.0 is superior in clutter power transitions.

5.1 Areas For Further Research

The results shown above were obtained for exponentially distributed clutter. Further

study is required with clutter distributions having lighter tails than the exponential

distribution. In particular, if a linear detector is used instead of the square-law de-

tector, the range samples from the clutter regions would be governed by the Rayleigh

distribution. Here the variable trimming along with the averaging operation incorpo-

rated in the VTM detector may give better performance than the OS-CFAR detector.

More generally, other clutter models need to be considered to determine the overall

effectiveness of this scheme.

Recently published literature [11,12,14] indicate that there is much interest in CFAR

detection in the radar research community.
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Chapter 6

CONCLUSIONS

Previously published results established the usefulness of the Modified Trimmed Mean

filter in restoration of nonstationary signals embedded in additive noise with impulsive

components. Our original motivation in this study was to investigate the usefulness

of this technique for CFAR radar detection, since radar detection under clutter power

transitions and multiple target situations is a related problem. In particular, we modi-

fied the MTM filtering technique according to the specifics of the CFAR radar detection

problem; and we called the resulting detector the Variably Trimmed Mean (VTM) de-

tector.

The results obtained validate our predictions that this new technique, with prop-

erly chosen design parameters, offers some improvement over the previously known

techniques in the presence of clutter power transitions and multiple targets.

The mentioned improvement occurs due to the fact that the new technique em-

ployed combines the merits of using ordered statistics with averaging and censoring,

in addition to estimating the threshold data adaptively. This is the main reason of

the superior performance of this technique as opposed to the previously known ones in

CFAR detection.
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However, it should be noted that, for small window size, the VTM-CFAR detec-

tor does not perform better than the OS detector in homogeneous background. An

important limitation of this new technique is the absence of analytical expressions for

probability of false alarm under clutter power transitions and for probability of detec-

tion in presence of multiple targets. Obviously, this dictates the use of simulations for

evaluating the performance characteristics of this new detector.

It is expected that the VTM-CFAR scheme presented may prove to be useful for

CFAR radar detection for non-homogeneous background. Another potential application

area of the presented new technique may be in sonar detection in the presence of

impulsive noise.
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Appendix A

Proof of Proposition 1

In this appendix we prove proposition 1 given earlier in chapter 4.

Proof: Let us define random variables Vi = Xi/p, i = 1,..., N. Then, since u is a

scale parameter of fX(x; A,_0),the joint pdf fv(v; p, ) of V given by (see Definition 2)

/V("', ) = g(v;_O) (A.1)

is independent of j4. In addition, for each scale invariant event Ai(X), i =i,... , m,the

following relations hold:

Ai(X) = A,(V), i = 1,..., m. (A.2)

We therefore have

LP(AI(X),A2(X),...,A.•(X)]=1L"• fx(XC;/'4,-) dz

JIV
At (X) x A2 (X) x... xA,(X)

- L" N g(v;f) dv (A.3)
At (V) x A2 (V) x ... x A,. (V)

where x denotes the cartesian product. The proof is complete since the right hand side

of expression (A.3) is independent of M.
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Appendix B

Derivation of Pfa for VTM-CFAR Processor

In this appendix, the derivation of the false alarm probability of the adaptive-VTM

CFAR processor is given. The argument used in this derivation is similar to that

employed in deriving the false alarm probability, bN- 1, when k = N- 1. From equation

(4.16)

bN2= E {eT Vk v(~~X& (k))} (B. 1)

and using equation (4.23) with k = N - 2,we get:

v -() =e 2(az) + e2 2e11( 2 +T) Vj_,.-I(y) dy (B.2)

Substitution of expression (4.25) in (B.2) yields:

V Ný_2(Z) = e- 2 (a-z) + 2e-2 a-z)e-aT { (e(T +-+1)( + -z )

+ 2(( + 1) (

e,-T -B ) } (B.3)
(T + 1)2

Substitution of equation (B.3) into equation (B.1) with a = (I + -y)Xk, and z = X,

into (B.3) results in

bN-2 = E {e-(2+T)Xi&} + 2 1e-) -[+2T)xI ) + e -(2-f+(±TxI)

(T~~~( +) 1e( ) -i,(1 e- 3TXI k_- e- (+(3+Y)T)X(3 + e-6(2.+(3+2-YT)XtkjI (BA)+ TT + 1)2

36



In above equation we emphasize that k = N - 2. Now, it is obvious that bN_2 can be

expressed in terms of the moment generating function of X(k). For simplicity we refer

to the moment generating function Mx(,) by M and proper k value will be understood

from the context.

bN-2 = M(2-y+T)+ 2 [M(+2T)-M(27+(2+7)T)]
(T+ 1)

+ (T + 1)2 [M(3T) - 2M(-y + (3 + 7 )T) + M(27 + (3 + 27 )T)] (B.5)

We continue in exactly the same way to iterate the solution by back substitution.

bN-3 = E eTX(h (7)X(h)(B.6)

V (z) = 3(-)+ 3e-3(a-z)e-a (e(T+1)e +3e{ (T+1)
2e- a [T2e(T+1)(a-_) _ e(T+l)(az) ++ (T + 1)2

e -2aT r[(e3(T+,)(a-z) _ e 2(T+') +e(T+ )(a-1) 'B.7)+ TT + 1), L3 3

Thus, substituting (B.7) into (B.6) with z = X(k) and a = (1 + -7)X(,) gives,

bN.-3 = M(37 + T)

3
+ 3 [M(2-t + 2T) - M (3-f + (2 + 7 )T)]

3
+ T+ 1)2 [M(-t + 3T) - 2M(27 + (3 + y)T) + M(3 7 + (3 + 27)T)]

1
+ (T 1 [M(4T) - 3M(7 + (4 + y)T)]

+ JM (27 + (2 + -y)2T) - M (37 + (4 + 37 )T)J. (B.8)

The false alarm probability for k=N-4 is found by using

bN{4 = E e V(+)x (X(k))} (B.9)
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Back substituting (B.7) into (4.25) and evaluating results in

Vý- 4 (z) e-4(a-o) + e-4(a•-)e-
2aT { 4eaT (e(T+I)(a-z) - I

+ (T 1)[e2(T+l)(c-z) - 2e(T+)(a-) +1

+ (6 + )

+4e-aT - 3e 2 (T+1)(a•z) + 3e (T+i)(]-z) 1+ T + 1)3 1

e-+ T 4e4(T+1)(a-z) - 4e 3 (T+l)(a-z)+(T + 1)4

+ 6e 2 (T+l)(a-z) - 4e(T+1)(a-Z) + 11 } (B.10)

which when substituted into bN- 4 with z = X(k) and a = (I + 7 )X(.) gives us the Pfa

for k = N - 4. i.e.,

bN-4 = M(4 7 +T)+ [M(37+2T)-4M(4-y+(2+-I)T)]
(T + 1)

6
(T + 1)2 [M(2- + 3T) - 2M (3- + (3 + -))T) + M (4- + (3 + 27 )T)]

4

+ 4 [M(-y +4T) - 3M (2-7+ (4 + -t)T)
(T +1)3

+ 3M(3-/+ (4 + 27)T) - M (4- +T(4 + 3-t)]

S 1(T + 1)4 [M(5T) - 4M (-y + (5 + -7)T) + 6M (2-7 + (5 ÷ 2-y)T)

- 4M (3-y+ (5 + 3-f)T) + M (4-y +(5 + 4-I)T)] (B.11)

The P,. for k = N - 5 is computed in exactly the same way.

bN.... = E {eTX~h v i;)xh)x(k) } (B.-12)

V-5(a) - + e-5(a-z)e-2aT (5eaT (e(T+I)(a-z) - 1
o(T+1)

+ 10 [e2(T+1)(.-z) - 2e(T+1)(cL-I -1';
(T' + 1)2

+ (T'-+ 1)- [e3(T+1)(a-z) - 3 e-(T+ )(a-z) +- 3 eI( T-'- 1)(a
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+ (T +)4 [e4(T+1)(a-z) - 4e3(T+l)(a-z)

+ 6e2(T+l)(a-z) - 4e(T+1)(a-z) + 11

e+3 a.T . eS(T+1)(a.z) _ 5,4(T+1)(a-z) + 10e3(T+1)(a-z)
+ (T + 1)S +

-10e 2(T+)(az) + 5e(T+1)(a2) i1} (B.13)

Thus,

5
bN-s = M(57 + T)+[M(47 + 2T)- 5M (57 + (2 + y)T)]

(T+ 1)
10

(T + 1)2 1 M(3-y + 3T) - 2M (47 + (3 + y)T) + M (57 + (3 + 27 )T)]
10

+ (T + 1)3 [M(27 + 4T) - 3M (37 + (4 +4 7 )T)

+ 3M(41+ (4 + 27 )T)- M (57+ + T(4 + 37))]

+(T 4 1)4 [M(7 + 5T) - 4M (27 ±- (5 + 7)T) + 6M (27 + (5 + 27 )T)

- 4M (47 + (5 + 3-)T) + M (57+ + (5 + 47)T)]

+(T: 1)5 [M(6T) - 5M(f + (6 + 7)T) + 10M (27 + (6 + 27)T)

- 10M (37 + (6 + 37 )T) + 5M (4-f + (6+ 4-,•)T)

-M (5-y + (6 + 57 )T)]. (B.14)

On examining bN-1,... bN-5 we see a pattern which leads to one Pp, expression for

any k value.
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FIGURES and TABLES

Table 1 Constant scale factor T and Average Detection Threshold of GO-CFAR
Detector.

Pfa Optimum N = 16 N = 24
ADT T ADT T ADT

10-1 2.3026 0.2627 2.5145 0.1754 2.4441
-10: 4.6052 0.5728 5.4827 0.3719 5.1816
10"a 6.9078 0.9359 8-9577 0.5908 8.2317

Table 2 Constant scale factor T and Average Detection Threshold of SO-CFAR
Detector.

Pf. Optimum N = 16, k= 14 N =24,k= 21
0 ADT T ADT T ADT

10-1 2.3026 1.3625 2.5625 1.2752 2.4771
10- _ 4,6052 3.0249 5.6891 2.7319 5.3210

10-1 - 6.9078 5.0300 9.4600 14.4078 8.5627
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Table 3 : Constant scale factor T and Average Detection Threshold of the VTM-CFAR

Detector with 77(K2 ) = 1/(K 2 - k + 1).

N = 24,Design Pfa = 10-1
k It T ADT

22 0.10000 3.767728 8.656557
22 0.25000 3.684335 8.741631
22 0.50000 3.514345 8.842375
22 0.75000 3.360350 8.859883
22 1.00000 3.238421 8.831052
22 2.00000 3.001415 8.679820
21 0.10000 4.373288 8.595652
21 0.25000 4.253289 8.687183
21 0.50000 4.014467 8.780179
21 0.75000 3.800912 8.784838
21 1.00000 3.631138 8.746226
21 2.00000 3.281645 8.563764
20 0.10000 5.007010 8.588369
20 0.25000 4.851740 8.683609
20 0.50000 4.547264 8.770417
20 0.75000 4.276477 8.767860
20 1.00000 4.059497 8.724521
20. 2.00000 3.588250 8.517207
18 0.10000 6.435691 8.664460
18 0.25000 6.210353 8.767033
18 0.50000 5.772578 8.851266
18 0.75000 5.381757 8.844525
18 1.00000 5.062599 8.798253
18 2.00000 4.30975e 8.553805

N= 16.DesignPt. 10-3
14 0.10000 5.006803 9.494599
14 0.25000 4.918793 9.609330
14 0.50000 4.721133 9.781494
14 0.75000 4.519513 9.853190
14 1.00000 4.339345 9.841975
14 2.00000 3.889794 9.557630
13 0.10000 6.103888 9.540107
13 0.25000 5.974751 9.672779
13 0.50000 5.686565 9.859839
13 0.75000 5.392674 9.930309
13 1.00000 5.1?8386 9.910476
13 2.00000 4.442138 9.561359
12 0.10000 7.376223 9.676599
12 0.25000 7.206164 9.824957
12 0.50000 6.825778 10.029464
12 0.75000 6.435243 10.106696
12 1.00000 6.080349 10.087201
12 2.00000 5.121474 9.695518
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Table 4 : Detection performance of the adaptive-q VTM detector with q = X(k),
N = 24,design Pf. = 10', four interfering targets, 77(K 2) = 1/(K2 - k + 1) and
SNR = 15dB. Note that Pd =-0.258 for the CA detector and 1.410 for the OS-CFAR
detector with k - 21 and 0.218 for the GO-CFAR detector.

7 0.1 0.25 0.5 0.75 1.0 2.0
k
16 0.689 0.688 0.688 0.690 0.694 0.708
17 0.683 0.683 0.684 0.687 0.691 0.705
18 0.673 0.674 0.676 0.680 0.684 0.697
19 0.654 0.657 0.662 0.667 0.672 0.630
20 0.616 0.622 0.632 0.641 0.646 0.641
21 0.412 0.417 0.427 0.433 0.436 0.417
22 0.221 0.224 0.229 0.232 0.232 0.213

Table 5 Detection performance of the adaptive-q VTM detector with q =XI),
N = 24,design Pfa = 10-1, three interfering targets, 77(K 2) = 1/(K 2 - k + 1) and
SNR = 15dB. Note that Pd = 0.341 for the CA detector and 0.643 for the OS-CFAR
detector with k - 21 and 0.282 for the GO-CFAR detector.

7 0.1 0.25 0.5 0.75 1.0 2.0
k
17 0.711 0.709 0.709 0.711 0.714 0.726
18 0.705 0.705 0.706 0.708 0.711 0.723
19 0.696 0.697 0.698 0.702 0.706 0.715
20 0.680 0.682 0.686 0.691 0.695 0.701
21 0.644 0.649 0.659 0.667 0.671 0.665
22 0.395 0.400 0.407 0.412 0.414 0.396
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Table 6: False alarm performance of the VTM-CFAR detector with q = X(k),
N = 24, design P10 = 10-3, i7(K 2) = 1/(K2 - k + 1) and CNR = 1OdB with

number of clutter cells in the window = 12. Note that P10 = 0.0212 for the
CA-CFAR detector and 0.0137 for the OS-CFAR detector with k - 21 and

0.0037 for the GO-CFAR detector.

7 0.1 0.25 0.5 0.75 1.0 2.0
k

17 0.0479 0.0492 0.0510 0.0514 0.0510 0.0448

18 0.0358 0.0368 0.0381 0.0384 .0379 0.0322
19 0.0263 0.0270 0.0279 0.0280 0.0274 0.0228
20 0.0193 0.0197 0.0202 0.0203 0.0197 0.0161
21 0.0138 0.0141 0.0144 0.0143 0.0139 0.0115

22 0.0099 0.0101 0.0102 0.0102 0.0099 0.0083

Table 7: False alarm performance of the VTM-CFAR detector with q =X(k),

N = 24, design Pf0 = 10-3, iJ(K 2) = 1/(K2 -k+1) and CNR = 15dB with
number of clutter cells in the window = 12. Note that P1 , = 0.0243 for the

CA-CFAR detector and 0.0141 for the OS-CFAR detector with k = 21 and

0.0038 for the GO-CFAR detector.

7 0.1 0.25 0.5 0.75 1.0 2.0
k
17 0.0562 0.0579 0.0602 0.0611 0.0605 0.0527

18 0.0397 0.0408 0.0424 0.0426 0.0421 0.0357
19 0.0281 0.0289 0.0298 0.0299 0.0292 0.0243
20 0.0197 0.0203 0.0208 0.0208. 0.0203 0.0166
21 0.0142 0.0144 0.0148 0.0148 0.0144 0.0117

22 0.010 0.0103 0.0105 0.0104 0.0102 0.0086
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Figure 2 : Mean level CFAR Detectors.
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Figure 3 Order Statistic CFAR Detector.
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Figure 4 : Trimmed Mean CFAR Detector.
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Figure 5 Variably Trimmed Mean CFAR Detector.
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MISSION
oýf

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C3I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C0I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliabi'ty/maintainability and compatibility.


