
DPC FILE COPY

Technical Document 1781
March 1990

Superconcurrent
00 Processing
N, A Dynamic Approach to

Heterogeneous Parallelism

R. F. Freund

I I

Approved for pubc relase; dietributlon Is unlimited.

~c10 06 18 218

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

This work was performed by the Ashore Command Centers Branch, Code 423, Naval
Ocean Systems Center, under an in-house block program.

Released by Under authority of
R. E. Pierson, Head J. A. Salzmann, Jr., Head
Ashore Command Ashore Command and
Centers Branch Intelligence Centers

Division

ACKNOWLEDGMENT

This research was suMpported by the Office of Naval Technology, under the Navy High
Performance Computing Initiative, and the Naval Ocean Systems Center.

JG

CONTENTS

BACKGROUND .. 1

Introduction ... 1
Vector Architectures .. 1

Types of Parallelism .. 3

SUPERCONCURRENCY ... 4

D efinition ... 4
Reasons for Superconcurrency .. 4
Benchmarking and Code Profiling ... 5
SIM DN ector Crossovers .. 6

OPTIMAL SELECTION THEORY OR STATIC OPTIMIZATION 8

M athematical Formulation ... 8
Exam ple .. 8

DINS OR DYNAMIC OPTIMIZATION ... 9

A pproach ... 9

Exam ple .. 10
Expected Results ... 10

FEA SIBILITY .. 11

L evels ... 11
Bandwidths and M ixed Types .. 11
Concurrent Supercomputing .. 11
PA SM ... 11

Software and Algorithms .. 12

IM PLICATIONS .. 12

C2 or Resource M anagement ... 12
Superconcurrency Power .. 13
Superconcurrency .. 13

REFERENCES .. 14

FIGURES

1. Vector pipelining of zi = xi + yi .. 1

2. Memory contention effects on pipelining of zi = r xi + y' 2

3. Vector, SIMD, and MIMD architectures 3

4. Code profiling and machine matching 5

5. Analytical benchmarking ... 6

6. SIMD, "orthogonal vectorization" of zi = xj + yj 7

7. SIMD/vector comparisons for zi = xi + yj 7

FIGURES (continued)

8. DINS' hierarchy ... 10

9. DINS' role in command center.. 12

10. Superconcurrency power applied to baseline model 13

TABLE

1. Optimal selection theory example 9

Accession For
NTIS GRAI
D TCIC TAB

/o

o ri

BACKGROUND

INTRODUCTION

There is a growing concensus We, 4 4 among supercomputer scientists that super-speed
computers of the future will be parallel processors, since the traditional vector processors are only able to
pipeline out one or a few results per cycle. Parallel processors are potentially able to have hundreds or
thousands of execution streams going at once. In earlier years, the clock cycle speed of supercomputers
was so much faster than parallel processors and the parallel machines were in such an experimental state
that it still made sense to look to vector processing for practical supercomputing. Both of those conditions
are changed today, providing computational scientists with the occasion to begin to realize the full power
of parallel processing. As we start to do this, however, we realize that while vector processors are basically
all very similar to each other, parallel architectures present a wide variety of types. It seems quite unlikely
that one of these types will be ideal for a wide range of problems. For that reason, a number of
computational scientists are looking at distributed heterogeneous processing as a potential solution.
Superconcurrency is one approach to this form of computing. (1)

VECTOR ARCHITECTURES

Vector architectures, such as the CRAY XMP (which will be primary example in this paper), are
primarily means for the hardware to support pipelining (Freund, 1990). Suppose we wish to add a set of
[xi } to a set of { Yi), i.e., { zi } = xi } + [yj } . We refer to figure 1 to see how this is normally done
on a vector machine. The { xi) are loaded into one vector register (called V0 here) and the { yi } into
another (V1) vector register. These operands are then fed through the floating point add unit, and the
{ zi } are then pipelined out at the rate of one per clock cycle.

xc Yo
V0 x, y, V

X2 Y2

YL-i

YL-i

4(Z 1. at ras of am per cycle

Figure 1. Vector pipelining of zi = xi + yj.

1

Most vector architectures are able to get some additional concurrency or parallelism by having some
of the features of (a) two or three functional units in the pipeline stream (called chaining), (b) independ-
ent execution of the scalar portion of the processor, and (c) several copies of the scalar/vector central
processing unit (CPU). Still, the potential concurrency available in vector machines is quite limited and
unlikely ever to have hundreds, much less thousands, of execution streams going at once.

There are several idiosyncrasies characteristic of vector machines. For example, methods of
organizing memory are such that often stepping through memory (called stride) in units greater than one
(as defined by the reverse lexicographic order implicit in FORTRAN) can result in significant performance
degradation through memory conflicts. The author demonstrated several years ago a typical result
(figure 2) in which it is clear that the greater the power of 2 in the stride, the worse the performance (due
to bank and section conflicts).

100

0

50

50

I I I I I I I I

8 16 24 32 40 48 56 64

STRIDE CLASSES

Figure 2. Memory contention effects on pipelining of zi = r* xi + yi.

Another idiosyncrasy concerns linear algebra. Let us examine chaining in a basic linear algebra
operation, matrix times a vector. Let 1T = (X(1), X(2), ..., X(N)) be a point in N-space and A = (A(I, J))
be the M by N matrix mapping X into M-space, i.e., AX = Y= (Y(1), Y(2), ... , Y(M))7

A(,1.A,2,.- A0i.N) Yoi)(A(2.1).A(2.2)..A(2.N) 1!X(2) Y(2)

((.........A(M Nj\ ,,X(N ,

where Y(I) = >9(1, J)* X(J).

Algorithmically, we can think of this in two ways: (a) as N updates to the elements of Y by
successively adding in terms A(I, J) * X(J), commonly called SAXPY, or (b) as M dot products of rows
of A with the column vector of X aka SDOT. Both are written in FORTRAN below (assuming initialization
of Y to 0):

2

DO I J= I.N
SAXPY DO I 1= IM

Y(f) = Y() +A(, f)* X(J)

DO 1 I= I.M

SDOT DO I J=I,N
S Y(1) = Y(J1) A(1, J)* X(J)

While the SDOT method corresponds to the way we have normally been taught to think theoretically

of linear algebra operations, SAXPY is the method that works better on most vector architectures because
of the nature of the hardware (essentially, in this case, the inability to add a vector to a scalar).

One of the consequences of these idiosyncrasies is the way people think about performing and
benchmarking code for super-speed architectures. Most of the standard analysis tools, e.g., LINPACK,
(Dongarra, 1989), use code strongly configured to implement SAXPY Rnd avoid nonunit FORTRAN

stride. However, these rules of thumb learned from vector architectures do not necessarily apply to

parallel processors. The Naval Ocean Systems Center (NOSC) Superconcurrency Research Team (SRT)
has striking examples where natural, parallel implementation of fundamental algorithms yields dramatic
performance increases over traditional vector implementation (and associated limitations).

TYPES OF PARALLELISM

One of the fundamental facts of parallel processing is the wide variety of types. There are a number of
variant factors, e.g., memory organization (distributed. global, hierarchical, etc.) or processor intercon-
nect scheme (bus, mesh, hypercube, etc.). However, the most basic distinction is whether the processors

execute the same instruction on multiple data (SIMD) or multiple instructions on multiple data (MIMD).
Figure 3 summarizes these types of parallelism compared to vector processing, with asymptotic perform-

ance factors. Since the time to execute on each MIMD processor often cannot be determined until

MIMD
(MULTIPLE INSTRUCTION. MULTIPLE DATA).
e.g. ENCORE

NT , 4O(LONGEST)

SIMD
(SINGLE INSTRUCTION. MULTIPLE DATA)
e.g., CONNECTION MACHINE, DAP

VECTOR
e.g., CRAY, STARDENT ORTHOGONAL VECTOR

IIIIIIII IIIII IIIII11 1111 11111111 1 1

T - O(1) TO MULTIPLE PROCESSOR

Figure 3. VECTOR, SIMD, and MIMD architectures.

3

run-time, there is some probability that many processors may have to wait for one to finish. Naturally, this
probability tends to increase as the number of processors increase, so MIMD machines usually do not
have thousands of processors. On the other hand, each processor in a SIMD machine is usually a simple,
e.g., bit-slice, processor (sometimes with an associated coprocessor) so the execution time for any one
processor is long. Thus, SIMD machines do well only when the number of different data streams is quite
large, i.e., in the thousands. The variety of parallel processors is also increased by such features as very
long instruction word (VLIW) design, data-flow technology, and the fact that many designs are hybrids
incorporating several different features. The fundamental result is that ",ost parallel architectures are a
good fit for some problems and a poor fit for others. The consequenct. ,s that an optimal method (to be
made more precise in the next section) to compute a wide diversity of computational types is with a
corresponding variety of architectures, i.e., the distributed heterogeneous processing approach mentioned
in the introduction.

SUPERCONCURRENCY

DEFINITION

Superconcurrency is a general technique fo matching and managing optimally configured suites of
super-speed processors. In particular, this document shows a general method for choosing the most
powerful suite of heterogeneous parallel and vector supercomputers for a given problem set, subject to a
fixed constraint, such as cost. The dual problem could find a minimal cost configuration for a fixed-speed
requirement. Thus, the Optimal Selection Theory is a mathematical problem for which one wishes to
minimize the total time spent on the sum of all code subsegments. The theory is mathematically
dependent on a new methodology of code profiling and a new methodology of analytical benchmarking.
The intent is to use this technique to provide supercomputing power for Naval Command and Control C2

problems; however, this paradigm should work for many classes of supercomputing problems. The basic
result is that for a computational problem with a diverse set of computational types, not all tightly coupled,
the optimal solution is a heterogeneous suite of parallel and vector processors rather than a single
supercomputing architecture. This solution is called superconcurrency both because it is an approach to
supercomputing and because it concurrently uses concurrent (vector and parallel) processors. Ercegovac
(1988) has recently looked at the feasibility of a suite of heterogeneous processors to solve supercomput-
ing problems. Resnikoff (1987) and Kamen' have examined the cost-effectiveness of supercomputers
(one generally finds the smaller minisupers to be more cost-effective than the largest machines). Bokhari
(1988) has investigated partitioning problems among various types of processors. There are several
reasons for partitioning. First, many large codes have diverse computational types. Second, the various
super-speed parallel and vector processors have quite different performance profiles on these types, often
amounting to several orders of magnitude. It is a commonplace observation and a corollary of Amdahl's
Law (1967) that any single type of supercomputer often spends most of its time computing code types for
which it is poorly designed. If we could configure our processor suite so each processor could spend almost
all its time on the code for which it is well designed, the overall increase in speed could be orders of
magnitude over what is now achieved by conventional supercomputing.

REASONS FOR SUPERCONCURRENCY

One way of understanding the reasons for superconcurrency is to look at Amdahl's Law (1967).
Basically this says that the overall rate at which a machine will compute an overall code or set of codes is
determined by the sum of the inverses of the times on each subportion. The paradoxical consequence of

'Kamen, R. B. 1989. Private communication on comparison of supercomputer costs and peak performance.

4

this is, in the face of diverse computation requirements, a single machine asked to execute all the code
will spend most of its time on the portions of code for which it is not well designed, as illustrated in
figure 4. The superconcurrency approach is also shown here in which we try to identify and use a suite of
machines wherein each is used primarily to compute code types for which it is well-suited, and conversely
each portion of code is matched to an appropriate architecture.

BENCHMARKING AND CODE PROFILING

As discussed earlier, the basic approach of this document is contingent upon breaking down the
overall code into groups of segments within which the processing requi-ements are the same or
homogeneous. The segments of homogeneous type are assigned to optimal processors for that type. Before
that can be done, it is necessary to take two benchmarking type steps. The first, called code-type profiling
is a code specific function to identify the "natural" types of code that are actually present and group the
code segments by type. Types that might be identified include vectorizable decomposable, vectorizable
nondecomposable, fine/coarse-grain parallel, SIMD/MIMD parallel, scalar, special purpose, e.g., FFT or
specialized sorting algorithm, etc. The second step, called analytical benchmarking, is an analysis of how
the available processors perform on the identified types, i.e., this identifies processors that are appropriate
solutions for each code type (figure 5). Thus, it is more analytical than some previous techniques that
simply looked at the overall result of running a processor on an entire benchmark code or set of loops
(without any real analysis of how the myriad of relevant factors contributed). However, it should be
pointed out that recent research by Dongarra (1989) on LINPACK provides some insight to the processes
involved. Both code profiling and analytical benchmarking are now being undertaken by the SRT at
NOSC. Our initial research at Profiling/Benchmarking was directed at several large Naval C2 problems and
a suite of potentially matching minisupers/parallel processors (including the Connection Machine, Direct
Access Program (DAP), Ardent, Encore, Butterfly, MultiFlow, Aspen, and Convex). Most of the C2

CODE TYPE DISTRIBUTION IN LARGE
APPUCATION SUITE ON BASEUNE SYSTEM

VECTOR MIMD SIMD SCALAR SP

" " ' I I..
I .~.S *, -............ .

30% 15% 20% 25% 10%

DISTRIBUTED
HETEROGENEOUS
SUITE

1% 1%

1% 1% 1%
SINGLE VECTOR 20 TIMES FASTER
SUPERCOMPUTER THAN BASEUNE

..

1% 10% 15% 18% 6%
2 TIMES FASTER THAN BASEUNE

Figure 4. Code profiling and machine matching.

5

OLD WAY NEW WAY
MACHINES MACHINES

A B Z
1

2

CODE TIME FOR MACHINE I
3 U 3 U TYPES ON CODE TYPE j

21 *****-'**:.-B

cc

Figure 5. Analytical benchmarking.

applications we have looked at so far have been relatively loosely coupled, and we have found it feasible
to break them up (manually) into homogeneous portions and assign them to appropriate processors. From
the processor (benchmarking) point of view, our most interesting result to date is how consistently the long
vector problems are much better done on SIMI) (Connection Machine or DAP) processors rather than
vector processors.

SIMD/VECI'OR CROSSOVERS

SIMI) and vector architectures perform abstractly the same type of computation, since vectorization
pipelines different data through the same functional unit. I call SIMI) orthogonal vectorization (since the
operations are done on a broad front, one deep, as opposed to a vector architecture which is N deep, but
only one wide). Let us consider an elementary scientific calculation traditionally done on vector machines,
e.g., (zi) = [xi) + { yj)}, i = 1, ... , N. The x, y, and z variables are real numbers, and N is typically
some large integer in the hundrods or even thousands. Figure 1 shows how this is normally done on a
vector machine.

The results are computed in time 0(N), or more precisely the time is bounded below by N * T,, where
r, is the clock cycle time of the particular vector machine in question.

A SIMI) processor (Single Instruction Multiple Data), such as the Connection Machine or AMT
DAP, typically has thousands of simple processors all executing the same instruction stream in lockstep.
Figure 6 shows a method by which the same calculation could be computed on a SIMI) architecture.

6

INDMDUAL SIMD PROCESSORS, (Pj}

PO P1 P2 PN-I PN PMi_

x0 X1 X2 XN.I 0 0

YA Y1 Y2 YN-1 0 0

Zo ZN Z zN- 0

Figure 6. SIMD, "orthogonal vectorization" of zi = xi + yi.

Namely, y i we load xi, and Yi into processor i. Then we issue the same instruction, e.g., a floating point
add, to all processors simultaneously. The add takes much longer on the simple SIMD processor than
a comparable sin& add instruction on a vector machine. However, since all processors are simultaneously
computing the same instruction, the results are computed in time 0(1), i.e., it takes the same time for
any N _ M, where M is the number of processors in the SIMD machine. Thus, the time is bounded below
by rs, where Ts is the time needed for one of the SIMD processors to compute a floating point add. The
implications of this are clear. If N is large enough such that N * tv > rs, that total computation
is performed faster on the SIMD than on the vector machine. The value of N for which the SIMD
machine overtakes the vector machine, i.e., the least Ne N> rs/rv is called the crossover point, or
x-point hereafter. Freund, Gherrity, and Kamen (1988) computed x-points for several operations ori-
ented around linear algebra computations (Lubeck, 1988). One of these is V=V+V, e.g.
Z(J) =X(f)+ Y(f), I = 1, ... , N. The results of this computation are shown in figure 7. We feel that the

1000.00

100.00

000

10.00 II I lt I I Iii| | | I lll II 1 |

10 100 1000 10000 100000 1000000
VECTOR SIZE

Mill 4KCM2 CRAYXMP 1KDAP &ra 4KDAPw/o I
8K CM2 CONVEX C210 :.w. 4K DAP

Figure 7. SIMD vector comparison of zi = xi + Yi.

7

results of this experiment, run on a CRAY XMP, Convex 210, 4K and 8K Connection Machines (with
floating point coprocessor), 1K and 4K DAP, and 4K DAP (simulated with coprocessors) support the
conclusions that

" SIMD architectures are potentially faster than vector architectures for long vector problems,

and

* DAP appears to be a more efficient SIMD architecture than the Connection Machine.

Until recently, vector problems on lengths in the thousands have not been usual. With increasingly
more difficult problems of the future, e.g., in moving from 2D to 3D simulations, computational scientists
may well need the long-vector capability of SIMD architectures.

OPTIMAL SELECTION THEORY OR STATIC OPTIMIZATION

ihe Optimal Selection Theory is a mathematical program for which one wishes to minimize the total
time spent on the sum of all code subsegments subject to a fixed-cost constraint. The method is
mathematically dependent on a new methodology of code profiling of the problem sets being implemented
and a new methodology of analytical benchmarking. The full formulation of this theory is given by Freund
(1989).

MATHEMATICAL FORMULATION

We can state the basic problem as a linear (actually integer) program. We want to get the most power
we can, given some overall cost constraint. Mathematically, we wish to maximize the power (or speed)
function, P. We do this by minimizing a time function, T, giving the time taken on a code, so that P -
T - 1. T is defined on the two-variable range, X x S. X is the set of potential machine choices, X = { xi }
where the xi are candidate architectures. S is a nonoverlapping set of all code subsegments, sj; thus S = U
sj and sj n Sk = 0 if j ;d k. The choice of sj defines the code profiling and analytical benchmarking
problem. We denote C as the overall cost constraint, { ci } as the set of costs corresponding to the { xi),
and { ti } as the set of corresponding time functions, i.e., ti(-;j) is the time taken by machine xi on code
segment sj. Let I denote the set of all possible indices of one machine type per segment with vi denoting
the number of such machines used per segment. Let , be the number of machines of type i (which may
be 0 if machine xi is not in the indexed configuration). Then the mathematical programming problem can
be stated as

MINIMIZE T(xj, sj) = > tl(sj)

(1)

such that V!c5 C.

EXAMPLE

Let us consider the following example. Suppose the code to be 50% vectorizable (35% nondecom-
posable, i.e., only one vector machine at a time can run it, and 15% decomposable), 20% suitable for
SIMD, 20% MIMD, and 10% inherently scalar. We shall assume that each type of machine only achieves
scalar speed on code for which it is n= designed, e.g., a vector machine will be assumed to get only scalar
speed on parallel code. In table 1, we denote by a the speed up each machine achieves on portions of
code for which it is best suited. The Vs are vector machines, the Ss SIMD, the Ms MIMD, and the Sc a
scalar machine. Suppose our overall cost constraint is $4 million.

8

Table 1. Optimal selection theory example.

V V2 V3 S1 S2 M1 M 2 Sc

c(in SM) 4 1 0.3 1 0.3 1 0.3 0.25

a 8 5 3 15 6 4 2 2

We can reformulate equation 1 as

T Pi - Viti.j (2)
j-1 v iS

where N = # different code types, PJ = % of code type j, and vj = total # processors for code type i. M =#
* processor types for code type j, and i. j = time for processor i on code type j.

In this computable form, we see the traditional vector supercomputer solution of 1 V, has P = 4.00
However, the multimachine solution of 1 V2, 3 V3,1 ISI, and 1 M1 , in which no one machine is a
traditional supercomputer, has a greater power function, P = 5.14. This is true in spite of the fact that 50%
of the code was assumed vectorizable.

DINS OR DYNAMIC OPTIMIZATION

One of the most active current research areas of the NOSC SRT has been the development of the
Distributed Intelligent Network System (DINS) concept. DIMS will be a reasoning system that uses
information from Core Profiling, Analytical Benchmarking, and network bandwidth to optimally manage
a network of heterogeneous, highi-performance, and concurrent processors and assign portions of code to
appropriate processors. In a general sense, this is similar to current research in load balancing and priority
assignment. However, the information to be used will be the three sources mentioned above with the
primary aim of optimal matching code portions to processors rather than (the secondary) factors of load
balancing and priority assignment. Since DINS will reason about processors actually available to it, this
means we can achieve configuration control at different sites even thoughi there may be a different
superconcurrent suite at each. Similarly, DIMS will continue to function and assign a second best
processor if a first choice is unavailable or down. Thus, DIMS is robust and survivable. Likewise, it is
compatible with evolutionary development, when a new processor is introduced because of changing

* technology, we simply replace the old benchmarking data with the new. The features of robustness,
configuration control, survivability, tailorability, and evolutionary development are essential for Naval C2

problems. We call DINS dynamic optimization since it dynamically tasks in an optimal way the backend
* suite of heterogeneous, superconcurrent processors that were chosen from the Optimal Selection Theory.

APPROACH

We plan to use artificial intelligence and compiler writing techniques to build the DIMS usii~g an
existing off-the-shelf high-level distributed operating system, e.g., CRONUS (BBN product) and MACH
(DARPA-sponsored Carnegie Mellon product). We will then use the ongoing results of analytically
benchmarking code profile types on a variety of machines for automating the partitioning of complex
codes so that homogeneous portions can be sent to the best suited processors. Our superconcurrency
efforts will also draw on the developing taxonomy of code profile types with similar processing
requirements, as well as our current work on the code profile types to find out what machines are ideal.
Some code portions may be complex mixes of simple codes, which are not easily decomposable because
of, for example, unusual data dependencies in the algorithms.

9

EXAMPLE

An example of how DINS would work can be seen from the SIMD/Vector crossover point study.
DINS would have matrices of the x-points for the various vector and SIMD machines available on its
network (figure 8). A vector problem that was short would be done on a traditional vector machine; a
long one on a SIMD machine. The kind of reasoning DINS would do would be similar in general nature to
the reasoning involved in the now classical problem of load-balancing, but the data it would reason about
would be the performance matrices determining optimal machine/code portion matching. Load balancing
could, in fact, be a secondary consideration, but only secondary, since the performance increases one gets
from this are typically much less than from superconcurrent matching.

SUN 0 ROBUSTNESS
LAN 0 CONFIGURATION CONTROL

* SURVIVABILITY
0 TAILORABLE
0 EVOLUTIONARY ACQUISITION

DISTRIBUTED INTEWGENT
NETWORK SYSTEM (DINS)

BACK-END SUPERCOMPUTING SUITE

Figure 8. DINS' hierarchy.

EXPECTED RESULTS

The findings of this project will enable us to assess the potential for improvements in performance
from a heterogeneous mix of concurrent processors. Based on the findings of our Optimal Selection
Theory, we expect that lower cost multimachine solutions will have speedups better than what can be
achieved with even the most powerful single supercomputer. With an intelligent system to distribute tasks
among multiple processors having disparate capabilities based on the code type, two to three orders of
magnitude of speedup could be achieved. The intelligent system for distributing appropriate code should
ptevent problems of low vectorization fractions for the vector machines. We expect the various parallel
and supercomputer machines to come closer to their peak performance ratings when they run code for
which they are optimal. Another of the advantages of constructing a system which can access multiple
processors as needed is that new computing technologies can be seamlessly incorporated into the system as
they become available. The end users of the system need not learn any new interfaces to take advantage

of improvements in technology. We can also expect fault tolerance from the ability to choose a

10

second-best processor when one of the machines is unavailable, implying robustness. This reasoning about
what is locally and currently available also implies automatic configuration control sinL.e DINS can run
transparently at different sites with different back-end supercomputers. This also implies graceful
evolutionary acquisition, as well as survivability and tailorability, all important considerations for Navy C2

environments.

FEASIBILITY

An important issue in superconcurrency is the feasibility of switching machines for various codes or
subcodes in our applications suite. In this section, we look at several aspects of this and mention related
research.

LEVELS

Superconcurrency could be conducted at three distinct levels. The coarsest or highest level would be
one in which we optimally match distinct whole codes to separate machines. The medium level granularity
would correspond to sending different subroutines or largely autonomous subportions to optimal
processors. The finest or lowest level would be the one at which we break up tightly coupled portions of
code to optimally match them to hardware. Clearly the coarsest level is easiest to implement, but yields the
least performance, whereas the lowest level granularity is hardest, but gives the best results. Clearly a
fundamental issue is the interprocessor bandwidths. Fortunately, ranges exceeding I Gbit and beyond
should be readily achievable in the near future.

BANDWIDTHS AND MIXED TYPES

Tightly and medium-coupled portions of code will be more difficult to break up and assign to different
processors, and the ability to do this will rest in part on the bandwidths of the storage devices and
distributed network used. In these cases, it may be necessary to assign mixed type code to the best
processor available. Superconcurrent implementations will attempt to work at the lowest level compatible
with the bandwidths available at any given site. Put another way, equation 1 above will actually use t'j, j
where the t ' reflect not only the actual compute time for processor i on code type j, but the required
interprocessor communication time:

N M

T I Vi t~', . (3)
J-1 M=

CONCURRENT SUPERCOMPUTING

Paul Messina (1990) of JPL/Cal Tech will be implementing distributed heterogeneous processing using
specialized computational resources at Cal Tech, JPL, Los Alamos National Laboratory, San Diego
Supercomputer Center, and Argonne National Laboratory. He should be able to achieve at least medium
granularity of code distribution, since he will be operating with an 80-Mb network.

PASM

Fineberg, Casavant, and Siegel (1989) of Purdue have constructed a special prototype machine,
PASM, able to compute in both SIMD and MIMD mode. This enables them to study the performance of
various algorithms on different architectural configuration. In addition, PASM is able to switch modes in a

11

single cycle, so that study of mixed-mode computation is possible. In particular, this machine makes it
possible to study superconcurrency issues at the lowest possible level, even matching modes to individual
lines of code.

SOFTWARE AND ALGORITHMS

Methodologies for developing parallel algorithms and the associated software issues are not addressed
here. However, these are key research areas at many laboratories. SRT's current efforts in this area,
including the use of parallel ADA, will be available as superconcurrency is implemented for Navy C2

centers.

IMPLICATIONS

C2 OR RESOURCE MANAGEMENT

Superconcurrency is a technique not being tested to support Navy command and control (C2)
problems. Command and control is somewhat similar to resource management in the civilian world. The
aim of the C2 centers is to provide commanders and their staffs with tools to plan and allocate resources.
Superconcurrency would fit into a generic center in the manner shown in figure 9. Different kinds of
users, Operations, Intelligence, etc., would link into a C2 environment that would have available a variety
of general-purpose resources, e.g., file servers, general-purpose computers, etc. Part of the C2 center
would be DINS that would take compute-intensive work and optimally allocate it to the variety of
back-end super-speed processors available at the given site.

]COMM SERVER

PAS D SEVETR

DINS

PARALLEL D

Figure 9. DINS' role in command center.

12

SUPERCONCURRENCY POWER

To be effective in a Navy C2 environment, superconcurrency needs not just to supply more
computational power in the form of speed, but more generally it must supply a mix of speed, complexity
(model fidelity), and multiplicity (what-ifs), as shown in figure 10. Furthermore, this mix must be easy to
define at run-time by the user. The NOSC SRT has already demonstrated increases in speed of three
orders of magnitude for some C2 models (by fitting them to the right processor type). The next step is to
support, through DINS, the required power in the more general sense.

SUPERCONCURRENCY

The underlying premise of this paper is that many codes, and particularly many sets of codes, have a
heterogeneous set of computational types. The solution, called superconcurrency, is nothing more than
the commonsensical approach of selecting a heterogeneous suite of processors that most effectively
addresses this diverse set of requirements. The solution is expressed as a mathematical problem with all
that implies about the existence of an optimal solution. This approach requires a more analytical way of
benchmarking and code profiling to analyze the power of various processors on atomic portions of code.
Superconcurrency has the potential of achieving orders of magnitude greater speed over conventional
supercomputers if the code profiling techniques show the overall application to be quite diverse in its
requirements. The future addition of a Distributed Intelligent Network System to manage a superconcur-
rent suite of vector and parallel processors offers the potential of robustness, configuration control,
survivability, tailorability, and evolutionary development.

ELAPSED TIME ON CURRENT SYSTEM

Ik ELAPSED TIME WITH 1,000-FOLD
POWER INCREASE TRANSLATED
INTO SPEED ONLY

1.000-FOLD POWER INCREASE TRANSLATED INTO

COMPLEXITY MULTIPLICITY SPEED---- _--
- 10 "WHAT IF*

ITERATIONS
- - mmm

MODELS 10 TIMES EACH VERSION
MORE COMPLEX 10 TIMES FASTER

Figure 10. Superconcurrency power applied to baseline model.

13

REFERENCES

Amdahl, G. M. 1967. -Validity of the Single Processor Approach to Achieving Large-Scale Com-
puting Capability." Proc. AFIPS Comput. Conf., vol. 30.

Bokhari, S. H. 1988. -Partitioning Problems in Parallel, Pipelined, and Distributed Comput-
ing." IEEE Transactions on Computers, vol. 37, pp. 48-57.

Dongarra, J. J. 1989. "Performance of Various Computers Using Standard Linear Equations
Software in a FORTRAN Environment." Argonne National Laboratory Technical Memoran-
dum, No. 23.

Ercegovac, M. 1988. "Heterogeneity in Supercomputer Architectures." Parallel Computing, vol.
7, pp. 367-372.

Fineberg, S. A., T. L. Casavant, and H. J. Siegel. 1989. Experimental Evaluation of SIMD PE-
Mask Generation and Hybrid Mode Parallel Computing on Multi-Microprocessor Systems.
Purdue University, TR-EE 88-55.

Freund, R. F. 1990. "Linear Algebra on a CRAY X-MP4." NOSC TD 1670.

Freund, R. F. 1989. "Optimal Selection Theory for Superconcurrency." Proceedings of Super-
computing 89, Reno, Nevada.

Freund, R. F., M. J. Gherrity, and R. B. Kamen. SIMDIVector Crossover Points. To be pub-
lished.

Lubeck, 0. M. 1988. "Supercomputer Performance: The Theory, practice, and Results."Adv. in
Computers, 27, 309.

Messina, P. 1990. "Cal Tech Concurrent Supercomputing." Conference notes.

Resnikoff, H. L. 1987. "Toward a Science of Parallel Computation." Computational Mechanics,
vol. 75.

Worlton, J. 1985. "Toward a Science of Parallel Computation." Computational Mechanics, vol.
75.

14

REPORT DOCUMENTATION PAGE
Pub ki bwdn to ml. oo kwoqlon t Ima d a.o a G I hw w miNrePo. I IJdl " m9 rW 1 r m Wom MWboU . asM" nt 0" d- oUuM. 0m*1g md
mneftienO ftdi needed. nd oW1phU mi meWWngmec d #oflontk1 o . Stid oan mik regmidon hi g 1 neelt. orany siermpea N " atedlo nia lmk 1, 1 g
auagaiambomomdudnulwbud. a W Wm*ngton H~edquwmnsSeelos. Omdodf nlbmOAOPfWm mid R . l215.Jdigmon 121 mM H0w,,,. Su 1W 204. Aamon. VA ,A,
,,d to O Of, of and , Luco lii, eje t PC, 2, o_,______ . WM, DOc 205o.
1 AGENCY USE ONLY I~Lsw 2. IREPORT DATE 3. REPORT TYPE AND DATE$ COVERED

March 1990 Final

4. TITLE AND SLIRTl 5. FUNDING NUMAERS

SUPERCONCURRENT PROCESSING PE: 0602234N
A Dynamic Approach to Heterogeneous Parallelism PROJ: RS34C77

S AUHRS) DN: 300086

R. F. Freund

7. PERFORMING W.MATO NAMEj(S) AND ADDRESS"~5 S. PERFORMING ORANIZATION
REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 921525000 NOW TI 1781

9. SPONStINNGA flfflG4 AGE4CY NAME(S) AND ADDRESS(ES) 10. SPONSORWNGAKNITOF0N
AGENCY REPORT NUMER

Naval Ocean Systems Center
San Diego, CA 92152-5000

11 .SUPPLEMNW NOTES

12& DWSTRIBIJ1NAVAAIURY STATEMENT 12b. DISTRhIB N COODE

Approved for public release; distribution is unlimited.

13. ABSTRACT jirnma 2W w)

This document describes an approach to finding and using an optimal, heterogeneous suite of processors to solve
supercomputing problems. This technique, called superconcurrency, currently works best when the computational
requirements are diverse and significant portions of the code are not tightly coupled. It is also dependent on new methods of
benchmarking and code profiling, as well as eventual use of Al techniques for intelligent management of the selected
superconcurrent suite. This latter technique, combined with anticipated bandwidth increases, will permit much more closely
coupled code portions to be distributed on the heterogeneous suite. This document also presents theoretical and empirical
results to show SIMD architectures are faster than vector architectures for processing long vectors. Implications for future
architectures and distributed heterogeneous processing in general are also discussed.

14. SUSCT YENMS 15. NMER O PAMS

20
SIMD, vector processing, distributed processing, heterogeneous processing, superconcurrency, vecops, e. PRIDE coDE
npu omputing, code profiling, benchmarking, optimal selection, Amdahl's Law

I. UCuUTY OLAr 811ICA.ION 1sEU'Y OELASIFICATION 19. SE'IRITY OLABFICAT1ON 20 UMITATIOn OF ABSTRACT
OF REOT OF TOIF PA E OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NMI SWW m nn 201

