
Navy Personnel Research and Development Center
San Diego, CA 92152-6800 TN-90-11 March 1990

DT] ,1 C-oPY

A Portable Courseware Architecture

a, Brian Thomason
Brian Van de Wetering

NRoger Booth
(NN

I

DTIC
EtLECTE
JUN 19 1990U

Approved for public release; distribution is unlimited

NPRDC-TN-90-11 March 1990

A Portable Courseware Architecture

Brian Thomason
Brian Van de Wetering

Roger Booth
Systems Engineering Associates

San Diego, California 92109

Reviewed and released by
Wallace H. Wulfeck, II

Director,Training Technology Department

Approved for public release;
distribution is unlimited.

Navy Personnel Research and Development Center
San Diego, California 92152-6800

REPORT DOCUMENTATION PAGE Fom 188
1.MC No. 0704"18

public reortin bwden for this colletion do fomation is entimated to avmp I hour par e. includin the tme fr eviewing intuctions, searhin existing data mouto, gathering
and majntaining the data needed, and competing and mveng the colhection of infomation. Send comnts regarding this burdan estimate at y othe aspect of Otis collection fd informaia,
inchltag suggesti; fee reducing this burden, to WashingtUn Iqtiszma Services, Directorate fx Idennation Operations and Repu.i, 1215 leffazon Devis ttigway, Sue 12D4. Arlib-
tat. VA 222024302. and to the Office of Mansigona and Bud^ papwork Reduction Pioject (0704-0158), Washintgton DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATE COVERED
Marh 1990 Interim-Sep 88-Feb 90

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Portable Courseware Architecture

6. AUTHOR(S)
Brian Thomason, Brian Van de Wetering, and Roger Booth

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Navy Personnel Research and Development Center REPORT NUMBER
San Diego. California 92152-6800 NPRDC-TN-90-11

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Office of the Assistant Secretary of Defense AGENCY REPORT NUMBER
(Force Management and Personnel) (Room 3E808, Pentagon)
Washington, DC 20301-0000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
pproved for public release; distribution is unlimited.

It. ABSTRACT (Maximum 200 words)
Many vendors produce high-performance, low-cost training hardwre, but bundle th ir products with proprietary software

interfaces. Because these interfaces are proprietary, courseware and authoo g systems writt to operate on one set of hardware will
not run on a competitors's hardware. Expensive reprogramming is needed o adapt to new h dware. These reprogramming costs can
be eliminated by adopting standard software interfaces. The objectives of tis effort were dscribe and develop a standard software
interface that will allow training systems to be assembled from separate 'plug-and-play components in the same way that stereo
systems can be assembled from separate speakers, amplifiers, and other components. The Portable Courseware (PORTCO)
architecture consists of two interfaces, the Device Services Interface and the Device Handler Interface. It also contains three layers:
application, routing and configuration, and device handler. This architecture should allow applications software to run on any
compliant set of hardware components. The series of reports describing the PORTCO architecture should direct development of
portable MS-DOS applications and standard peripheral device handlers. This report provides an overview of the PORTCO architecture
and should be of interest to all who are concerned with computer-based training. ((t - -2

14. SUBJECT TERMS 15. NUMBER OF PAGES
Courseware portability, computer-based training, interactive courseware, virtual device 26
interface 16. PRICE CODE

17. SECURITY CLASSIFICA- 18. SECURITY CLASSIFICA- 19. SECURITY CLASSIFICA- 20. LIMITATION OF ABSTRACT
TION OF REPORT TION OF THIS PAGE TION OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Srd. Z39-18
298-102

Foreword

This document describes a draft specification for an architecture for
interactive courseware delivery systems. It was developed under the
sponsorship of the Office of Secretary of Defense (Force Manage-
ment and Personnel). The technical sporsor was Mr. Gary Boycan.
Funding was provided under Program Element 06047221, Work
Unit 99-PJl-90-006.

This document was developed under the technical supervision of Dr.
Raye Newmen, Dr. Wallace H. Wulfeck, and Mr. Walter E Thode of
the Navy Personnel Research and Development Center (NPRDC).
This report itself was written by Systems Engineering Associates
under Contract N66001-88-D-0054, Delivery Order 7J30.

This architecture was developed as part of an effort to complete a
reference implementation of a courseware portability specification.
The implementation is scheduled for later this year. Comments on
the architecture described here are solicited from all interested par-
ties. The specification will then be submitted for consideration for
official adoption by the Department of Defense and the National In-
stitute of Standards and Technology.

Point of contact at NPRDC is Walter F. Thode (619) 553-7703 or
AUTOVON 553-7703.

WALLACE H. WULFECK II
Director, Training Technology Department

Accession For

NTIS GRA&I
DTIC TAB
Unarnounced 0
Justification

Distribution/

Availbi-lity Codes

!av n ind-/ o --- r
Dist Special

'i-I

.V

Summary

Background

Over the next several years the Federal Government will invest mil-
lions of dollars to develop training materials for delivery on comput-
er-based interactive training systems. To support this investment,
Federal agencies will acquire a variety of computers and peripheral
devices. This hardware will host several operating systems and au-
thoring system software to speed courseware development.

Many vendors produce high-performance, low-cost training hard-
ware, but bundle their products with proprietary software interfaces.
Because these interfaces are proprietary, courseware and authoring
systems written to operate on one set of hardware will not run on a
competitor's hardware. Expensive reprogramming is needed to
adapt to new hardware. These reprogramming costs can be eliminat-
ed by adopting standard software interfaces.

Objectives

The objectives of this effort were to describe and develop a standard
software interface that will allow training systems to be assembled
from separate "plug-and-play" components in the same way that ste-
reo systems can be assembled from separate speakers, amplifiers,
and other components.

Approach

The Portable Courseware (PORTCO) architecture consists of two
interfaces, the Device Services Interface and the Device Handler In-
terface. It also contains three layers: application, routing and config-
uration, and the device handler. This architecture should allow
applications software to run on any compliant set of hardware com-
ponents.

Results and Conclusions

This report is the first in a series of five reports; it provides an over-
view of the PORTCO architecture and should be)f interest to all
who are concerned with computer-based training. The second report
describes the MS-DOS Device Services Interface and is intended
primarily for programmers who want to develop portable applica-
tion software. The third report describes the Device Handler Inter-
face and should be of primary interest to device manufacturers and
system vendors who must develop device handler software. The
fourth report is intended for system vendors and describes the design

vii

of the first PORTCO routing and configuration program. The fifth re-
port is intended as additonal support for those who must develop
complaint MS-DOS device handlers.

Recommendations

1. The reports describing the PORTCO architecture should di-
rect development of portable MS-DOS applications and standard pe-
ripheral device handlers.

2. The architecture should serve as a foundation for compliance
with the Interactive Video Industry Association's "Recommended
Practices for Interactive Video Portability." The architecture should
motivate development of specific applications and device handlers
that adhere to this specification.

3. Feedback about problems and suggested improvements
should be forwarded to the Navy Personnel Research and Develop-
ment Center, Code 152.

viii

Table of Contents

1. Introduction 1

2. Purpose and Scope 3

3. Preliminary Concepts 4
3.1 Logical Devices and Device Classes 4
3.2 Device Handlers5
3.3 Core and Extended Services 6
3.4 Requests and Alerts 7

4. PORTCO Architecture 8
4.1 Standard Interfaces 9
4.2 Packets 10
4.3 Conformance 12

5. Further Reading 13

6. G lossary 14

7. References 17

ix

List of Figures

Figure 1
A three-layer PORTCO architecture will enhance portability 2

Figure 2
A device handler translates requests for logical device service
into instructions that a physical device can understand 5

Figure 3
Applications request service from multiple logiLal devices by
specifying a device's class and number 6

Figure 4
Routing of request and alert packets is almost identical 8

Figure 5
Request packets communicate one or more service requests;
alert packets report asynchronous device activity 11

x

1. Introduction

Over the next several years the Federal Government will invest millions
of dollars to develop training materials for delivery on computer-based
interactive training systems. To support this investment, Federal
Agencies will acquire a variety of computers and peripheral devices. I This
hardware will host MS-DOS2 or UNIX3 operating systems and authoring
system software to speed courseware development.

Many vendors produce high-performance, low-cost training hardware,
but bundle their products with proprietary software interfaces. Vendors of
integrated training syste:is bundle their products with interfaces to all
system resources, while vendors of individual peripherals (such as mice)
bundle their products with simpler, single-device interfaces. Because
these interfaces are proprietary, courseware and authoring software
written to operate on one product will not run on a competitor's product.
Expensive reprogramming is needed to adapt to new peripheral
hardware. These reprogramming costs can be eliminated by adopting
standard software interfaces.

This paper introduces two standard interfaces that allow training systems
to be assembled from separate "plug-and-play" components in the same
way that stereo systems can be assembled from separate speakers,
amplifiers, etc. Named the Device Services Interface (DSI) and the Device
Handler Interface (DHI), they are part of the Portable Courseware (PORTCO)
architecture illustrated in figure 1 (and discussed in section 4).

The DSI allows application authors and system integrators to write software
that controls generic logical devices, instead of particular devices from
particular manufacturers. The DHI allows vendors to write standard
device handlers. Together, the DSI and DHI provide a foundation to build
sophisticated applications that can easily adapt to changes in individual
system components.

1. Special terms appear in mics when first used, and are defined in section 6.
2. MS-DOS is a registered trademark of Microsoft Corporation.
3. UNIX is a trademark of AT&T Bell Laboratories.

1

Figure 1: A three-
layer PORTCO

architecture will
enhance portability. Application Layer

DSI Toolbox

Device Services Interface

Device Handler Interface

Device Handler Layer

2

2. Purpose and Scope

This paper describes the PORTCO architecture and its two standard
software interfaces, the DSI and the DHI. The PORTCO architecture will
be implemented in two stages, first on MS-DOS-based platforms and then
on UNIX-based platforms. This is one of several publications guiding the
architecture's MS-DOS implementation. Section 7 lists other MS-DOS-
based PORTCO publications. A similar set of documents will be
published in FY 90 depicting the architecture's UNIX implementation.

This paper provides an overview of the PORTCO architecture; details are
provided in other PORTCO publications. This paper should be reviewed
by all users, administrators, developers, and maintainers before reading
the other publications listed in section 7.

The following section introduces logical devices and device classes, and
shows how these concepts can be applied to insulate application software
from changes in peripheral equipment. Section 4 presents the three-layer
PORTCO architecture. It describes the purpose of each layer, provides an
overview of the layers' packet-based communication protocols, and
describes the architecture's two standard interfaces. For readers who
desire more information, section 5 elaborates upon the other PORTCO
publications and helps direct further reading. Section 6 presents a
glossary of special words used in this paper.

3

3. Preliminary Concepts

Peripheral devices from different vendors frequently share common
features. But to distinguish themselves in the marketplace, vendors add
product features and protocols that are slightly different from their
competitors.. Application authors must create expensive new software to
accommodate these similar, yet different, peripheral protocols and
services.

For example, different vendors might design their videodisc players to
display a still frame in response to different command strings. Or one
vendor might provide separate commands to present a video motion
sequence ("Set End Marker," "Search To Start Frame," "Play To End
Marker"), while another might provide a single high-level command to
play from one video frame to another. Accommodating these differences
requires custom programming for each player. Such programming can
be eliminated by writing software to control logical devices instead of
particular peripherals from particular vendors.

3.1 Logical Devices and Device Classes

A logical device is a concept (not a piece of hardwaie) that is synthesized
from characteristics of several similar peripherals. For example, a logical
videodisc player might be synthesized with attributes common to many
actual players: It may have a door to insert or remove videodiscs; it may
have a remote control unit to usurp computer control; and it may respond
to a fixed collection of display and action command strings.

Because a logical device is a concept, not a piece of hardware, it is
characterized only by the services it provides, not by its physical
attributes. A collection of logical device services is called a device class.

A device class is like a mold from which identical logical devices are
fashioned. Just as a mold used to cast an automobile engine block
precisely defines the size and shape of the block, services in a device class
precisely define the behavior of a logical device. For example, services in
the videodisc player device class precisely define the behavior of a logical
videodisc player. (All PORTCO device classes are specified in references
1 and 2).

When an application author designs software to control a logical device,
he does not need to be concerned with the operation of any particular
vendor's peripheral. The author must only be concerned with the

4

services provided by the logical device (i.e., the services in its device
class). So using logical devices insulates an author from the details of any
particular peripheral's operation.

3.2 Device Handlers

To run a program designed for logical devices on real hardware, part of
the system must translate requests for logical device service into
instructions that real hardware understands. Software modules that
perform this translation are called device handlers. Figure 2 illustrates
the relationship between a logical device, a physical device, and a device
handler. In this figure, an application issues service requests to a logical
videodisc player. A device handler intercepts these requests and
translates them into instructions that a physical videodisc player can
understand.

Figure 2: A device
handler translates
requests for logical
device service into 8VW

instructions that a M Ply

physical device can P . ..M

understand. physical

~Alibn~ -wc : Deice

Identical peripherals from the same manufacturer can be interchanged
without affecting an application's performance because they have
identical hardware and software interfaces. Such peripherals are like
identical twins, they "look" the same to applications. To plug-and-play
peripherals from different manufacturers, these different peripherals
must also "look" identical to applications. Standard device handlers can
make dissimilar peripherals "look" the same.

For example, because the application in figure 2 requests service from a
logical videodisc player, not from the physical peripheral, it "sees" only
the player's standard device handler, not the player itself. A player from
any other manufacturer can therefore be substituted, without changing
the application, by at the same time substituting a different device
handler.

5

Figure 3:
Applications

request service from
multiple logical

devices by H In

specifying a m fo
device's class and # HA

IN

number.

L ---------------

A

Logical devices and standard device handlers can also insulate from
peripheral hardware those applications that control two or more devices.
For example, figure 3 shows a program that controls two videodisc
players, one from manufacturer A and one from manufacturer B. The
program requests service by specifying the applicable device class
(videodisc player) and the logical device from that class (player #1 or
player #2). As in figure 2, either of the players in figure 3 might be
replaced with players of different makes and models by changing the
device handler, not the application.

3.3 Core and Extended Services

Use of logical devices and standard device handlers lets applications
request peripheral services in a standard way, but some physical
peripherals may not support all services in their device class. For
example, the PORTCO overlay device class contains a service to set a
video dissolve level, but not all overlay cards can effect a video dissolve.

6 --------

To solve this problem, each PORTCO device class identifies a subset of
services that are common to all physical devices in the class. These are
called core services. The rest are called extended services, and may or may
not be available on a specific physical peripheral in the class. For
example, the service described above to set a video dissolve level would
be an extended service (because it is not available on all overlay cards),
while a service to make a color transparent and opaque would be a core
service (because all overlay cards offer it).

Application authors can ensure portability by using core services. Using
extended services may enhance performance, but will reduce portability
to only those peripherals that support the required extensions. So
extended services allow application authors to balance their products'
portability and performance. They also allow vendors to differentiate
themselves in the marketplace by letting them choose which extensions (if
any) their products will offer.

The PORTCO architecture must evolve gracefully with advancing
technology. Core services, extended services, and device classes provide
a framework for this evolution. Extended services will be added
frequently as manufacturers create new hardware features. These will
become core services as they are adopted by a larger segment of the
peripheral marketplace. New device classes will be added with
significant breakthroughs in peripheral technology (e.g., digital video
interactive).

3.4 Requests and Alerts

Applications must be able to request services from logical devices, and

they must be alerted asynchronously when important device activity
occurs. For example, an application should be able to ask a videodisc
player to show a still frame, and it should be alerted when a mouse
movement or button-press occurs. Two types of services are included in
each PORTCO device class to satisfy this requirement. Requests are used
to solicit service, and alerts are used to inform applications of
asynchronous device activity. All requests and alerts are specified in
references I and 2.

7

4. PORTCO Architecture

The PORTCO architecture contains three layers and two standard
interfaces, illustrated in figure 1 (page 2). Each layer communicates with
its neighbor(s) using contiguous blocks of data called packets. For
example, applications request peripheral service by passing packets
through the routing and configuration layer (R&C layer) to device handlers.
Figure 4 illustrates packet routing for PORTCO requests and alerts.

Figure 4: Routing
of request and alert

packets is almost Requests Alertsidentical.

AW~catirt U~fAWIC~on Layer

Lot ~kerpp Roi &paodwtui Lae
DDHI

RoulkV& H o Laye DV H ond8 Layer

Rotepdit oprW ote atI

devioeNw~e/

Standard device handlers constitute the lowest layer of the PORTCO
architecture. They translate requests for logical device service into
instructions that real peripherals can understand. They also alert the
architecture's upper layers when device activity (e.g., a mouse movement)
occurs. As discussed in section 3.2, device handlers are the only PORTCO
components that depend upon physical devices; they are the only
components that must be replaced when peripheral devices are changed.
Device handlers are implemented as modified MS-DOS executable files.

The middle layer of the PORTCO architecture is called the R&C layer. It
loads and configures device handlers and routes packets between
applications and device handlers. For example, in the system illustrated
by figure 3 (page 6), the R&C layer would direct all packets requesting
service from logical videodisc player #2 to videodisc player A's device
handler (instead of videodisc player B's). The R&C layer is implemented
as a TSR program.

Application software constitutes the PORTCO architecture's highest
partition. This layer also contains the DSI toolbox. This is a collection of
software modules (developed by the PORTCO user community) that
helps applications use the DSI. In the simplest case, the toolbox consists
of functions in various programming languages that format packets and
pass them to the R&C layer (i.e., language bindings). More sophisticated
toolbox components might coordinate the activities of several logical
devices (e.g., to track a logical mouse's cursor on a logical graphics
device) or implement more abstract virtual devices (e.g., an integrated
videodisc system).

4.1 Standard Interfaces

Boundaries between adjacent layers of the PORTCO architecture are
called interfaces. The boundary between the application layer and the
R&C layer is called the DSI, and the boundary between the R&C layer
and device handlers is called the DHI. Each of these interfaces consists of
a collection of services and a set of protocols (or rules) for invoking them.
For example, one of the services offered by the DSI asks a logical
videodisc to display a still frame. Applications employ a packet-passing
protocol (using a software interrupt) to invoke this service.

DSI services are used by applicatiors and the DSI toolbox to control
logical devices. DHI services are used by the R&C layer to load,
configure, and control device handlers. The DSI guides construction of
applications and application interfaces, while the DHI guides
construction of device handlers.

9

Services offered by the DSI and the DHI are substantially the same, and
are defined by the PORTCO architecture's device classes. When an
application uses the DSI to manipulate a logical device, the R&C layer
routes the request to the proper device handler through the DHI.
Likewise, when a device handler alerts the R&C layer (via the DHI) of
device activity, the R&C layer routes this alert to the application (via the
DSI).

The DSI and DHI are not identical. Protocols used by each interface to
invoke services differ, and each interface contains a unique set of
initialization and configuration services. References 1 and 2 detail the
protocols and services used by each interface.

The DSI toolbox and application software also share a boundary, as
shown in figure 1. This means that the toolbox can offer its own interface
to applications. This interface may range from an informal set of function
calls produced by a particular vendor for its own use, to a standard like
the Interactive Video Industry Association's (VIA's) Application
Interface. In either case, all software in the toolbox employs the DSI to
communicate with peripheral devices, and is thus portable to any other
PORTCO-compliant system. For example, implementing the IVIA's
Application Interface as a DSI toolbox component makes this standard
immediately available on all PORTCO-compliant systems.

4.2 Packets

Adjacent layers in the PORTCO architecture communicate using
contiguous blocks of data called packets. Two types of packets are used:
request packets, to solicit services, and alert packets, to announce device
activity.

Figure 5 illustrates each type of packet. As this figure suggests, each
request packet identifies one or more services and a logical device that
should perform them. Each alert packet identifies one or more activities
completed asynchronously by a logical device. Logical devices are
described by their device class and device number, and services are
specified using a service number and various parametric data.

10

Figure 5: Request
packetsR b

communictie one or "ckO WO

more serviceDW=cd
requests; alertohom
packets report WMDw
asynchronous WAW Ad

device activity.PA=M

am

Dat

As illustrated in figure 4 (page 8), packets are passed between the
application layer and the R&C layer using a software interrupt, and
between the R&C layer and device handlers using an assembly language
call. Details concerning inter-layer communication and packet formats
appear in references 1 and 2.

4.3 Conformance

Conformance to the PORTCO architecture implies use of the DSI and the
DHI. Applications and toolbox components conform by using the DSI.
R&C-layer software conforms by implementing the DSI using the DHI.
Device handlers conform by implementing a single device class in the
DHI.

Applications and toolbox components that use the DHI directly do not
conform.

12

5. Further Reading

Application authors, system administrators, and readers intending to
build R&C-layer software should study reference 1, 'The MS-DOS Device
Services Interface." This document describes each DSI service in detail,
and specifies each service's packet format and invocation protocol. It also
designates core and extended services, and describes the DSI's
initialization and configuration services.

Device handler and R&C-layer developers should review reference 2,
"'The MS-DOS Device Handler Interface." This document describes all
DHI services and their invocation protocols. It also discusses the R&C
layer's role in loading and initializing device handlers, and it provides
detailed constraints for developing compliant handlers.

R&C-layer and device-handler developers should also review references 3
and 4, "MS-DOS Routing and Configuration Layer Program Design
Document" and "Guidelines for Implementing MS-DOS PORTCO Device
Handlers." These documents present detailed examples of software that
implements the PORTCO architecture.

13

6. Glossary

The following list defines terms used in this paper. These terms are
defined in the context of their use in this paper and the other documents
listed in section 7. The definitions may therefore be more restrictive than,
or otherwise differ from, the commonly accepted definitions. Words that
are italicized in definitions are themselves defined elsewhere in this list.

Alert A service in the DSI that interrupts an
application when a specific peripheral device
activity occurs. A service in the DHI that
interrupts the R&C Layer when a specific
peripheral device activity occurs.

Alert packet A packet used to communicate an alert between
layers of the PORTCO architecture.

Application Application software.

Application layer The highest partition in the PORTCO
architecture. Contains the DSI toolbox.

Application Any software that is part of the application layer.
software

Architecture The organization or structure of a system or of a
system component.

Authoring Software that aids the development of
system computer-based instruction.

Core service A service within a device class that must be
provided by every compliant device handler in
the class.

Courseware Software and/or data used to present
computer-based instruction.

Device class A collection of services provided by a single
logical device.

Device handler A software module that implements the DHI for a
single device class. Translates requests for
service from a logical device into instructions
that a physical peripheral can understand.

14

Device handler The lowest layer of the PORTCO architecture.
layer Contains device handlers.

Device Handler A standard collection of services and protocols
Interface (DHI) that defines the boundary between the R&C

layer and the device handler layer.

Device Services A standard collection of services and protocols
Interface (DSI) that defines the boundary between the

application layer and the R&C layer.

DSI toolbox A software module (or modules) providing an
interface between the application software and the
R&C Layer.

Extended service A service within a device class that may be
provided by compliant device handlers in the
class.

Integrated system A collection of computer hardware and
software sold as a single unit by a system
integrator.

Interface A software interface.

Layer A group of related functions that make up one
level of a layered architecture.

Layered A software architecture in which components are
architecture grouped in a hierarchical arrangement in such a

way that each layer provides functions and
services to adjacent layers.

Logical device A conceptual device synthesized by using
characteristics of several similar peripherals.
Specified by a device class.

Packet A contiguous block of data used to
communicate information between layers of the
PORTCO architecture.

Peripheral device Any physical device that is distinct from a
computer's main processor.

Physical device A computer system hardware component.

15

Portability The ability of applications to run correctly on
various system configurations.

PORTCO A layered architecture presenting a standard
architecture interface between peripheral devices and

applications.

Protocol A set of rules governing the communication
between two software modules.

R&C layer Routing and configuration layer.

Request A service in the DSI or the DHI that demands
action from a peripheral.

Request packet A packet used to communicate a request between
layers of the PORTCO architecture.

Routing and The middle partition of the PORTCO
configuration architecture.

layer

Software The boundary between two or more software
interface modules, or a protocol that defines how two

software modules communicate.

Software module A named collection of software instructions and
data.

System The number and types of peripheral devices
configuration connected to a computer.

System integrator A vendor that assembles and sells an integrated
system.

TSR program An MS-DOS terminate-and-stay-resident
program.

16

7. References

1. Thomason, B. L., Van de Wetering, B. L., The MS-DOS Device
Services Interface. Systems Engineering Associates, San Diego, CA,
Feb. 26,1990.

2. Van de Wetering, B. L., Thomason, B. L., The MS-DOS Device
Handler Interface. Systems Engineering Associates, San Diego, CA,
Feb. 26,1990.

3. Van de Wetering, B. L., Thomason, B. L., The MS-DOS Routing and
Configuration Program Design. Systems Engineering Associates,
San Diego, CA, Feb. 26,1990.

4. Van de Wetering, B. L., Thomason, B. L., Guidelines for
Implementing MS-DOS PORTCO Device Handlers. Systems
Engineering Associates, San Diego, CA, to be issued August 1990.

17

Distribution List

Distribution:
Assistant Secretary of Defense (Force Management and Personnel)
Deputy Under Secretary of Defense for Research and Engineering (Researc: and Advanced Tech-

nology)
Director, Total Force Training and Education (OP-11)
Director, Aviation Training Systems Program Coordinator (PMA-205)
Commanding Officer, Naval Training Systems Center
Defense Technical Information Center (DTIC) (2)

Copy to:
Deputy Chief of Naval Operations (MP&T) (OP-01)
Assistant for Planning and Technical Development (OP-01B2)
Head, Training and Education Assessment (OP- 11B 1)
Director, Total Force Information System Management (OP-16)
Director, Submarine Manpower and Training Requirements (OP-29)
Director, Command Surface Warfare Manpower and Training Requirements (OP-39)
Director, Air ASW Training (OP594)
Assistant for Manpower, Personnel, and Training (OP-983D)
Commander, Naval Sea Systems Command (PMS 350)
Commander, Naval Sea Systems Command (PMS 396)
Commander, Naval Sea Systems Command (CEL-MP)
Director, Strategic Systems Project (SP-15)
Commanding Office', New London Laboratory, Naval Underwater Systems Center (Code 33A)
Commanding Officer, New London Laboratory, Naval Underwater Systems Center (Code 3333)
Naval Training Systems Center, Technical Library (5)
Naval Training Systems Center (Code 10), (Code N-I), (Code 7)
Director, Office of Naval Research (OCNR- 10)
Chief Scientist, Office of Naval Technology (OCNR-20T)
Chief of Naval Education and Training (Code 00)
Director, Training Technology (Code N-54)
Commanding Officer, Naval Education and Training Program Management Support Activity

(Code 03) (2)
Commanding Officer, Naval Education and Training Program Management Support Activity

(Code 04) (2)
Chief of Naval Technical Training (Code 00) (2)
Commander, Naval Military Personnel Command (NMPC-OO/PERS-1)
Naval Military Personnel Command, Library (Code NMPC-013D)
Commanding Officer, Naval Health Sciences Education and Training Command, Bethesda, MD
Commander, Naval Reserve Force, New Orleans, LA
Commandant of the Marine Corps, Commanding General, Marine Corps Research and Develop-

ment and Acquisition Command
Commander, U.S. ARI, Behavioral and Social Sciences, Alexandria, VA (PERTI-POT-I)
Technical Director, U.S. ARI, Behavioral and Social Sciences, Alexandria, VA (PERI-ZT)
Commander, Air Force Human Resources Laboratory, Brooks Air Force Base, TX

19

Scientific and Technical Information (STINFO) Office
TSRLITechnical Library (FL 2870)
Program Manager, Life Sciences Directorate, Bolling Air Force Base, DC (AFOSR/NL)
Commander, OPSTNGDIV Air Force Human Resources Laboratory, Williams Air Force Base, AZ

(AFHRL/OT)
Commander, Air Force Human Resources Laboratory, Wright-Patterson Air Force Base, OH, Lo-

gistics and Human Factors Division (AFHRL/LRS-TDC)
Director of Training, Office of Civilian Personnel Management
Superintendent, Naval Postgraduate School
Director of Research, U.S. Naval Academy
Center for Naval Analyses

20

