OFFICE OF NAVAL RESEARCH CONTRACT N00014-81-C-0776 TASK NO. NR-051-0775 TECHNICAL REPORT #38

THE ADSORPTION OF INCOMMENSURATE MONOLAYERS ON AN HEXAGONAL SUBSTRATE: LEAD UNDERPOTENTIALLY DEPOSITED ON SILVER (111)

by E.E. Mola* and L. Blum**

19 y 🗘

*INIFTA, Universidad Nacional de La Plata Casilla Correo 16, Sucursal 4, 1900 La Plata, Argentina

**Department of Physics, POB AT, Faculty of Natural Sciences, University of Puerto Rico, Río Piedras, PR 00931

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY

Reproduction in whole or in part is permitted for any purpose of the United States Government

* This document has been approved for public release and sale; its distribution is unlimited

* This statement should also appear in Item 10 of Document Control Data - DD Form 1473. Copies of form available from cognizant contract administrator.

677 1

E COPY

EFORT SOLUMERIATION PAGE BEFORE CONFLICTING FORM A 1. GOVT ACCESSION NO. A RECIPIENT'S CATALOG HUMBER Report #38 1. GOVT ACCESSION NO. A RECIPIENT'S CATALOG HUMBER Initian Commensurate Monolayers on I Substrate Lead Underpotentially Introduction and the potentially Introduction and the potentially Initian Commensurate Monolayers on I Substrate Lead Underpotentially Introduction and the potentially Introduction and the potentially Initian Commensurate And Accession Interformation and the potential deposition and the potential deposition of process and and the potential deposition (DEN) Initian Commensurate And Accession Interformation and the potential deposition (DEN) Initian Commensurate And Accession Interformation and the potential deposition (DEN) Initian Commensurate And Accession Interformation and the potential deposition (DEN) Initian Commensurate and accessing and definition of an and layer on a crystalline Incommensurate adsorption of an and layer on a crystalline We show that in the case of Photechander) The incommensurate adsorption of an ad layer on a crystalline for itial is discussed. An explicit form for the pb/Ag(111) case is	DEDAGT DACHNENTATION	PACE	READ INSTRUCTIONS	
Report #33 1. SUMTACCESSION OF A SECTION SCALLOD NUMBER inn of Incommensurate Monolayers on I Substrate Lead Underpotentially 1. TYPE OF REPORT & PERIOD COVERED and L. Blum 4. CONTRACT OR SEART NUMBER: NO0014-B1-C-0776 and L. Blum 4. CONTRACT OR SEART NUMBER: NO0014-B1-C-0776 and L. Blum 10. PROGRAM ELEMENT PROJECT TASK OF Physics OF Puerto Rico of Piedras, PR 00931 11. SECURITY CLASS (01 NUMBER: NO0014-B1-C-0776 f Naval Research M 22217 11. SECURITY CLASS (01 NUMBER: NUMBER: NAME & ADDARESS (11 SUBJECT TO CONTREMENT OF PACES NUMBER: NUMER: NUMBER: NUMBER: NUMER: NUMBER: NUMBER:	REPORT DUCUMENTATION	PAGE	BEFORE COMPLETING FORM	
int: ion of Incommensurate Monolayers on 1 Substrate Lead Underpotentially n Silver (III) and L. Blum AGANITATION NAME AND ADDRESS of Puerto Rico Of Physics of Puerto Rico OFFICE NAME AND ADDRESS OFFICE NAME AND ADDRESS II. AEPORT DATE II. AEPORT	Technical Report #38	2. GOVT ACCESSION NO.	J. ACCIPICATS CATALOG NUMBER	
<pre>ion of Incommensurate Monolayers on 1 Substrate Lead Underpotentially n Silver (III) and L. Blum Constant AND ACOMESS and L. Blum Constant AND ACOMESS af Naval Research n, VA 2217 charts are AND ACOMESS f Naval Research n, VA 2217 charts are Constant different from Controlling Officer f Naval Research n, VA 2217 charts are Constant different from Controlling Officer f Naval Research n, VA 2217 charts are constant different from Controlling Officer f Naval Research f Nava Research f Naval Research f Nava Research f Nava Research f Nava Research f Nava Research f Naval</pre>	TITLE (and Sublitte)		S. TYPE OF REPORT & PERIOD COVERED	
<pre>1 Substrate Lead Underpotentially n Silver (III) 4. PERFORMING ORC. REPORT NUMBER n Silver (III) 4. CONTRACT OR GRANT NUMBER; and L. Blum 4. CONTRACT OR GRANT NUMBER; and L. Blum 4. N00014-81-C-0776 4. N00084-81-C-0776 4. N0004-81-C-0776 4. N</pre>	The Adsorption of Incommensurate	Monolayers on		
n Silver (III) A PERFORMING ORG. REPORT NUMBER and L. Blum AGANITATION NAME AND ADDRESS Of Physics of Puerto Rico O Piedras, PR 00931 OFFICE NAME AND ADDRESS I. REPORT DATE II-5-88 I. NUMBER OF PACES F Naval Research II -5-88 I. NUMBER OF PACES II - 5-88 II - 508 II -	an Hexagonal Substrate Lead Under	potentially		
and L. Blum AGANIZATION NAME AND ADDRESS of Physics of Physics of Puerto Rico o Piedras, PR 00931 OFFICE NAME AND ADDRESS f Naval Research n. WA 22217 GENCY NAME & ADDRESS(!! dillerent item Controlling Office) is SECURITY CLASS. (of inte second) Unclassified 12. REPORT DATE 11. NUMBERS 13. NUMBERS 14. REPORT DATE 11. SECURITY CLASS. (of inte second) Unclassified 13. SECURITY CLASS. (of inte second) Unclassified 14. DECLASSIFICATION/DOWNGRADING STATEMENT (of the second part of parts) STATEMENT (of the second part of parts) AV NOTES for public release; Distribution Unlimited STATEMENT (of the second part of parts) AV NOTES for publication in International Journal of Quantum Chemistry MUMDE primer into iterations of an ad layer on a crystalline We show that in the case of Pb adsorbed on Ag (111) the size ons are not enough to determine the angle of epitaxy: A special adsorbing potential is required. The necessary conditions for tial is discussed. An explicit form for the pb/Ag(111) case is	Deposited on Silver (III)	- 1	6. PERFORMING ORG. REPORT NUMBER	
and L. Blum N00014-81-C-0776 AGAMIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK of Physics of Physics of Puerto Rico 11. REPORT DATE orFict NAME AND ADDRESS 12. REPORT DATE f Naval Research 11. NUMBERS L_VA 22217 11. NUMBERS GENCY NAME & ADDRESS() 13. SECURITY CLASS. (a) (Nik (mon) Unclassified 13. SECURITY CLASS. (a) (Nik (mon) Unclassified 13. SECURITY CLASS. (a) (Nik (mon) STATEMENT (a) (Nik Report) 13. SECURITY CLASS. (a) (Nik (mon) for public release; Distribution Unlimited 13. SECURITY CLASS. (a) (Nik (mon) STATEMENT (a) (Nik southest missed in Black 20, (I different from Report) AV NOTES for public release; Distribution Unlimited STATEMENT (a) (nik southest missed in Black 20, (I different from Report) AV NOTES for publication in International Journal of Quantum Chemistry AV NOTES for publication in International Journal of Quantum Chemistry AV NOTES for publication in International Journal of Quantum Chemistry Av NOTES for publication in International Journal of Quantum Chemistry Av NOTES for publication in International Journal of Quantum Chemistry as conting potential is required. The necessary conditions	AUTHOR(+)	······································	. CONTRACT OR GRANT NUMBER(+)	
AGANIZATION NAME AND ADDRESS IO. PROGRAM ELEMENT PROJECT. TASK of Physics OF Puerto Rico of Puerto Rico IO. PROGRAM ELEMENT PROJECT. TASK for Puerto Rico IO. PROGRAM ELEMENT PROJECT. TASK statement for International Controlling Office IO. PROGRAM ELEMENT PROJECT. TASK statement for the source Procession IO. PROGRAM ELEMENT PROJECT. TASK statement for International Controlling Office IO. PROGRAM ELEMENT PROJECT. TASK statement for International Journal of Quantum Chemistry Project and Proverse P	E.E. Mola and L. Blum		N00014-81-C-0776	
of Physics of Puerto Rico o Piedras, PR 00931 OFFICE NAME AND ADDRESS f Naval Research n. VA 22217 GENCY NAME & ADDRESS(II different from Controlling Office) II. SECURITY CLASS. (of this report) Unclassified IS. SECURITY CLASS. (of this report) IS. SECURITY CLASS. (of this report) Unclassified IS. SECURITY CLASS. (of this report) IS. SEC	PERFORMING ORGANIZATION NAME AND ADDRESS	i	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
of Puerto Rico o Piedras, PR 00931 office NAME AND ADDRESS f Naval Research 1. Humder of Paces f Naval Research 1. Number of Paces f Naval Research 1. SECURITY CLASS. (of (Nie (Peer)) Unclassified 1. SECURITY CLASS. (of (Nie (Peer)) STATEMENT (of (Nie (Peer)) for public release; Distribution Unlimited STATEMENT (of the secure of In Block 20, If different from Reperi) AV NOTES For publication in International Journal of Quantum Chemistry MUMUT PR PRIVIE (New Secure of Identify Dr State number) d electrode, interfaces, underpotential deposition (JES) The incommensurate adsorption of an ad layer on a crystalline We show that in the case of Pb adsorbed on Ag (111) the size ions are not enough to determine the angle of epitaxy: A special adsorbing potential is required. The necessary conditions for tial is discussed. An explicit form for the pb/Ag(111) case is	Department of Physics		1	
o Piedras, PR 00931 office NAME AND ADDRESS f Naval Research n. VA 22217 Other NAME & ADDRESS(II different from Controlling Differ) 11. Number of PAGES 11. Steppender 11. Steppender 12. Steppender 13. Steppender 14. Steppender 15. Steppender 16. Prove of PAGES 17. Steppender 18. Steppender 19. Ste	University of Puerto Rico			
OFFICE NAME AND ADDRESS 11. AEPORT DATE 11. AEPORT DATE 11-5-88 11. NUMBER OF PACES 11. NUMBER OF PACES II. ADDRESS(II dillorent from Controlling Office) 13. SECURITY CLASS. (of (mis report)) Unclassified 13. SECURITY CLASS. (of (mis report)) STATEMENT (of this Report) 13. SECURITY CLASS. (of (mis report)) STATEMENT (of the observed in Block 20, II different from Report) Unclassified STATEMENT (of the observed in Block 20, II different from Report) STATEMENT (of the observed in Block 20, II different from Report) AV NOTES Tor publication in International Journal of Quantum Chemistry AV NOTES Tor publication in International Journal of Quantum Chemistry AV NOTES Tor publication in International Journal of Quantum Chemistry The incommensurate adsorption of an ad layer on a crystalline Me size ions are not enough to determine the angle of epitaxy: A special is discussed. An explicit form for the pb/Ag(111) case is	Box AT, Río Piedras, PR 00931			
f Naval Research <u>I VA 22217</u> GENCY NAME & ADDRESS(// dillerent /rem Controlling Office) II. SECURITY CLASS. (of interesson) Unclassified II. SECURITY CLASS. (of interesson) Unclassified II. SECURITY CLASS. (of interesson) Unclassified II. SECURITY CLASS. (of interesson) Unclassified II. SECURITY CLASS. (of interesson) STATEMENT (of the Reset)) for public release; Distribution Unlimited STATEMENT (of the ebstified in Block 20, II different from Reset)) AV NOTES For publication in International Journal of Quantum Chemistry MINUT in Toyress Inde Hammer and Hamming by Stock number) It electrode, interfaces, underpotential deposition (JES) The incommensurate adsorption of an ad layer on a crystalline We show that in the case of Pb adsorbed on Ag (111) the size ions are not enough to determine the angle of epitaxy: A special adsorbing potential is required. The necessary conditions for tial is discussed. An explicit form for the pb/Ag(111) case is	CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
 f. Number of Paces f. Number of Paces i. Number of Paces i. Security class (if interport) i. Security class (if interport) Unclassified i. Security class (if interport) <li< td=""><td>Code 472</td><td></td><td>11-5-88</td></li<>	Code 472		11-5-88	
11. VA 22217 GENCY NAME & ADDRESS(// different from Controlling Office) 13. SECURITY CLASS. (of this report) Unclassified 13. DECLASSIFICATION/DOWNGRADING STATEMENT (of the Report) for public release; Distribution Unlimited STATEMENT (of the ebelfect entered in Block 20, 11 different from Report) RV NOTES for publication in International Journal of Quantum Chemistry MINUE private rise if necessary and identify by block number) the incommensurate adsorption of an ad layer on a crystalline We show that in the case of Pb adsorbed on Ag (111) the size tons are not enough to determine the angle of epitaxy: A special adsorbing potential is required. The necessary conditions for tial is discussed. An explicit form for the pb/Ag(111) case is	Office of Naval Research		13. NUMBER OF PAGES	
Unclassified ^{13.} <u>DECLASSIFICATION/DOWNGRADING</u> STATEMENT (of this Report) for public release; Distribution Unlimited STATEMENT (of the observed entered in Block 20, 11 different from Report) RY NOTES for publication in International Journal of Quantum Chemistry MINUS in Trypter and of the entered in Block 20, 11 different from Report) A electrode, interfaces, underpotential deposition (JES) MINUS in Trypter and of the entered in Block 20, 11 different in the entere and the incommensurate adsorption of an ad layer on a crystalline We show that in the case of Pb adsorbed on Ag (111) the size ions are not enough to determine the angle of epitaxy: A special adsorbing potential is required. The necessary conditions for tial is discussed. An explicit form for the pb/Ag(111) case is	Arlington, VA 22217	at tram Controlling Offices	11 15. SECURITY CLASS (a) this tanget	
Unclassified 13. DECLASSIFICATION/OOWNGRADING STATEMENT (of the Report) for public release; Distribution Unlimited STATEMENT (of the observed in Block 20, 11 different free Report) AV NOTES for publication in International Journal of Quantum Chemistry Annue in treases and in the case of an ad layer on a crystalline We show that in the case of Ab adsorbed on Ag (111) the size tons are not enough to determine the angle of epitaxy: A special adsorbing potential is required. The necessary conditions for tial is discussed. An explicit form for the pb/Ag(111) case is	- MUNITOHING AGENCY NAME & ADDRESS(II dillere			
Ise. DECLASSIFICATION/DOWNGRADING STATEMENT (of the Report) for public release; Distribution Unlimited STATEMENT (of the observed in Block 20, 11 different from Report) RY NOTES for publication in International Journal of Quantum Chemistry Advances of the statement of the statemen			Unclassified	
for public release; Distribution Unlimited STATEMENT (of the observed in Block 20, 11 different from Report) TATEMENT (of the observed in Block 20, 11 different from Report) TATEMENT (of the observed in Block 20, 11 different from Report) TATEMENT (of the observed in Block 20, 11 different from Report) TATEMENT (of the observed in Block 20, 11 different from Report) TATEMENT (of the observed in Block 20, 11 different from Report) TATEMENT (of the observed in Block 20, 11 different from Report) The publication in International Journal of Quantum Chemistry The incommensurate adsorption of an ad layer on a crystalline We show that in the case of Pb adsorbed on Ag (111) the size tons are not enough to determine the angle of epitaxy: A special adsorbing potential is required. The necessary conditions for tial is discussed. An explicit form for the pb/Ag(111) case is			15. DECLASSIFICATION/DOWNGRADING SCHEDULE	
Av NOTES for publication in International Journal of Quantum Chemistry number of reverse side if necessary and identify by block number). I electrode, interfaces, underpotential deposition (JES) the incommensurate adsorption of an ad layer on a crystalline We show that in the case of Ab adsorbed on Ag (111) the size lons are not enough to determine the angle of epitaxy: A special s adsorbing potential is required. The necessary conditions for tial is discussed. An explicit form for the pb/Ag (111) case is	Approved for public release. D	istribution Unlin	nited	
d electrode, interfaces, underpotential deposition (JES) and the incommensurate adsorption of an ad layer on a crystalline We show that in the case of Pb adsorbed on Ag (111) the size ions are not enough to determine the angle of epitaxy: A special adsorbing potential is required. The necessary conditions for tial is discussed. An explicit form for the pb/Ag(111) case is	Approved for public release; D. 7. DISTRIBUTION STATEMENT (of the about oct entered	istribution Unlin	nited	
the incommensurate adsorption of an ad layer on a crystalline We show that in the case of Pb adsorbed on Ag (111) the size lons are not enough to determine the angle of epitaxy: A special adsorbing potential is required. The necessary conditions for tial is discussed. An explicit form for the pb/Ag(111) case is	Approved for public release; D. 7. DISTRIBUTION STATEMENT (of the observed entered 8. SUPPLEMENTARY NOTES Prepared for publication in Inte 9. XEY WORDS (Compute on reverse side it necessary)	istribution Unlin	nited	
	Approved for public release; D. 7. DISTRIBUTION STATEMENT (of the observed entered 8. SUPPLEMENTARY NOTES Prepared for publication in Inte 9. XEY WORDS COMMINUS ON TWYNTSE Side Handlesson Structured electrode, interfaces	istribution Unlin	al of Quantum Chemistry	
	Approved for public release; D. 17. DISTRIBUTION STATEMENT (of the obside of entered 18. SUPPLEMENTARY NOTES Prepared for publication in Inter 19. XEY WOROS' COMMANS on reverse side it necessary a Structured electrode, interfaces	istribution Unlin	nited	

5/N 0102-LF-014-6601

••••

١

.

THE ADSORPTION OF INCOMMENSURATE MONOLAYERS ON AN HEXAGONAL SUBSTRATE : LEAD UNDERPOTENTIALLY DEPOSITED ON SILVER (111)

· , ...

E.E.Mola

INIFTA, Universidad Nacional de la Plata Casilla Correo 16,Sucursal 4, 1900 La Plata, Argentina

and

L. Blum

Department of Physics, Faculty of Natural Sciences University of Puerto Rico, Rio Piedras, P.Rico 00931

ABSTRACT

We discuss the incommensurate adsorption of an ad layer on a crystalline substrate.We show that in the case of Pb adsorbed on Ag (111) the size considerations are not enough to determine the angle of epitaxy: A special form of the adsorbing potential is required. The necessary conditions for this potential is discussed. An explicit form for the Pb/Ag(111) case is given.

1-INTRODUCTION

Considerable progress has been made in recent times in the understanding of adsorbed monolayers on solids. Most of the early work however was made on gases adsorbed physically from vapor phase onto graphite or metals¹². One of the interesting features discovered in this system was the existence of commensurate-incommensurate transitions of the adsorbate, which were observed by LEED³, and explained in terms of models without rotation first⁴⁵, and later by a theory which allows for a variable epitaxy angle between the adsorbate and substrate lattices⁶⁷. In the McTague-Novaco theory⁶, the interaction potential between the adsorbate and substrate is of a simple harmonic form , and the theory predicts a continuous variation of the epitaxy angle as a function of the atom-atom distance of the adsorbate, in good agreement with the LEED experiments of Shaw, Fain and Chinn⁶ of argon on graphite.

In this work we adress the problem of the electrodeposition of substrates in general, and metals in particular, in an electrochemical cell.It is only very recently that direct in situ structural information of active electrodes has become available⁹.Although our analysis is dedicated to the underpotential deposited monolayer of lead on .(111) surface of silver, it can be easily extended to other similar cases of different geometry.

In an early, ex-situ LEED experiment two phases were detected in this system: a low density, commensurate phase and a high density incommensurate rphase¹⁰. In the active electrode, however, only the dense phase is observed¹¹. The epitaxy angle is 4.4°, and is not dependent on the lattice constant of the adsorbate, at least within the small range in which this constant can be changed¹². This is in direct contradiction with the McTague Novaco theory⁶, which not only fails to predict the unequality.

y Codes

correct epitaxy angle, but also cannot account for the locking of the substrate at this fixed angle. This locking can be explained in terms of an adsorption potential that is not harmonic: the purpose of this investigation is to determine the conditions on the adsorbing potential that will explain the value and stability of the epitaxy angle.

We use a simplified model of surface adsorption, to which we can, eventually, incorporate details of a more realistic model of the electrolyte- metal interface. The model uses the sticky potential of Baxter¹³ to represent the adsorption potential. It was used by Perram and Smith¹⁴ to study adsorption of hard spheres onto a smooth, structureless surface. Charged surfaces with discrete adsorption sites were studied in earlier work¹⁵ ¹⁶.

The most general form of the sticky potential for a surface is

$$e^{-\beta u_i(r_j)} = -1 + \lambda(R) \, \delta(z - \sigma_i/2) \qquad (1.1)$$

where $\beta = 1/kT$ is the Boltzmann factor, r = (x, y, z) is the distance from the interface, situated at the plane z=0; $\mathbb{R} = (x, y)$ is the position on the interface, and we assume that each molecule i has a hard core diameter σ .

The function $\lambda(\underline{R})$ is the stickiness of the surface at \underline{R} on the surface. As discussed in earlier work¹⁵, it also represents the fugacity of the adsorbed species, or equivalently, a measure of the chemisorption potential. The symmetry properties of $\lambda(\underline{R})$ should be the same as those of the true adsorption potential $u(\underline{R}, 0)$.

In this paper we discuss the symmetry properties of $\lambda(\mathbb{R})$ for and hexagonal close packed adsorbate on an hexagonal close packed substrate. This is the case of Pb on Ag(111).

In section 2 the mathematical problem of the appropriate form of $\lambda(\underline{R})$ for the largest adsorption free energy is stated for the hexagonal lattice. The specific case of the Pb/Ag(lll) interface is discussed in section 3. We make some general remarks in the concluding section.

2-MATHEMATICAL PROBLEM: THE HEXAGONAL LATTICE

Consider an hexagonal lattice \leq (substrate) with lattice constant a which ,for convenience will also be our unit of length (a=1).Consider now a second hexagonal lattice \underline{A} (adsorbate) of lattice constant b. The coordinate system for \underline{A} is (x,y) and that of \underline{S} is (x',y'),and the numbers (m,n) and (r,s) define the positions of the points on the lattices A and S. The distance d between the points (x ,y) and (x ,y) is

$$d = [(x_{1} - x_{0})^{2} + (y_{1} - y_{0})^{2} - (x_{1} - x_{0})(y_{1} - y_{0})]^{1/2}$$
(2.1)

Assume that the coordinates A, (x, y) and S, (x, y) have a common origin. The angle between the principal axes of S and A is θ , which is also the epitaxy angle (see figure 1).

The positions of the points of lattice A, (m,n), in the coordinate sytem $\widetilde{\sim}$ (x',y') is given by the equation

$$X' \rightarrow b M(\theta) X$$
 (2.2)
where X' and X are the vectors

$$\begin{array}{c} x' \\ z' \\ y' \end{array} \qquad \qquad \begin{array}{c} x \\ z' \\ z' \end{array} - \begin{pmatrix} n \\ n \\ \end{pmatrix}$$

$$(2.3)$$

and
$$M(\theta)$$
 is the matrix

$$\begin{array}{c} \approx \\ M = \\ -2/\sqrt{3} \sin \theta \\ -2/\sqrt{3} \sin \theta \end{array} & 2/\sqrt{3} \sin(2\pi/3-\theta) \end{array}$$
(2.4)

First we would like to investigate the number of overlaps of the points of lattices \underline{A} and \underline{S} : A given point of S will overlap with one of lattice \underline{A} if

$$d(r_{s}) = hb$$
 (2.5)

where d(r, s) as given by (2.1) is the distance from the origin to the point (r, s) and h is an entire number. The overlap is achieved by turning A by

the (epitaxy) angle θ (see figure 1).

Because of the hexagonal symmetry of the problem we need to consider only the interval

$$-30^{\circ} < \theta < 30^{\circ} \tag{2.6}$$

It will suffice, therefore to find the set α of pairs (r, s) with r > 0and

$$r \ge 2s_{0} \qquad \text{if } s \ge 0$$

$$r \ge |s| \qquad \text{if } s < 0 \qquad (2.7)$$

that satisfy (2.5). If the set α is not empty, the element (r_{α}, s_{α}) such that

$$d(r_{a}, s_{a}) = \min(2.8)$$

defines one of the points of the coincidence lattice (see figure 1).For symmetry reasons there will be 6 equivalent coincidence points that satisfy equation (2.8)(see figure 1).The epitaxy angle is then given by

$$\theta = \operatorname{arc} \cos \left[\frac{2r_{\bullet} - s_{\bullet}}{2(r_{\bullet}^{2} + s_{\bullet}^{2} - r_{\bullet} s_{\bullet})^{1/2}} \right]$$
(2.9)

The lattice constant of the coincidence lattice is hb . In figure 1 we display a coincidence lattice where the lattice constant is 3b (h=3). and $b=\sqrt{13}/3=1.2018$.

We introduce the degree of overlap γ of the lattices A and S as the ratio of the unit areas of each ot these lattices to the area of the coincidence lattice. Therefore $\gamma - h^{-2}$. γ is the proportion of points of the substrate lattice that overlapping points of the adsorbate lattice.

Consider now the effective energy function $\lambda(\mathbf{x}', \mathbf{y}')$ (1.1), which must satisfy the symmetry requirements of lattice S. In the absence of any other interaction, the adsorption free energy of the substrate onto the adsorbate is

$$E = h^{-2} \sum_{m=0}^{h} \sum_{n=0}^{h} \lambda(x', y')$$

where the prime indicates that the sum is over all the points of \underline{A} of the unit coincidence cell (a total of $(h+1)^2$ points). The energy is normalized to the energy per adsorbate atom by h^{-2} , and (x',y') is given by (2.2).

4

.

3-A REAL SYSTEM : UNDERPOTENTIALLY DEPOSITED Pb ON Ag (111)

Recent experiments on the Pb/Ag underpotential deposition ¹¹ ¹² have shown that the adsorbate and substrate are hexagonal,with an epitaxy angle ∂ =4.4°. The lead-lead distance on the surface lattice is 3.459± .002 A° which is 1.2% shorter than in the bulk (3.501A°). The lattice constant of Ag is 2.88 A° for the bulk crystal. If we assume that there is no distortion of the surface layer, then the ratio for the overlayer is b(ol)=1.2010, in contrast to the 'bulk' ratio b(bulk)=1.2152. In table 1 we give the values of (r_o, s_o) that satisfy (2.5) for values of b such that

|b - b(o1)| < .002b(o1) (3.1)

The experimental situation is that the value of b is not known accurately because the surface layer of the substrate ,Ag in this case, may suffer small distortions.

From (2.5) and (2.9) we find

$$\sin \theta = \sqrt{3} s_{\theta} / (2hb)$$

 $\sin (2\pi/3 - \theta) = \sqrt{3} r_{\theta} / (2hb)$ (3.2)

so that from (2.2) and (2.4) we get :

$$x' = [(r_{0} - s_{0})m + s_{0}n]/h$$

y' = [-s_{0}m + r_{0}n]/h (3.3)

For the values of (r, s), b and θ of table 1, the coordinates of the nodes of the adsorbate are multiples of 1/h, so that

 $(hx',hy') \in \mathbb{Z}^2$ (3.4)

where Z^2 is the set of ordered entire numbers. If we now choose for the adsorption potential a function of the form

$$\lambda(x',y') = -\cos 2\pi h x' - \cos 2\pi h y'$$
 (3.5)

then every piont of the adsorbate lattice will be situated at a minimum of

the adsorption potential. Although this ideal situation is probably never realized in nature, the requirement is that the Fourier component of largest amplitude of $\lambda(\mathbf{R})$ for a given configuration must be that given by (3.5).

The proposed structures in table 1 are all compatible, within experimental error with the reported spacings¹¹ ¹² of the ad layer, but the epitaxy vary widely.

For the underpotentially deposited Pb on Ag (111) the adsorption parameter $\lambda(R)$ must have its largest component of the form

 $\lambda(\mathbf{x}',\mathbf{y}') = -\cos 56\pi \mathbf{x}' - \cos 56\pi \mathbf{y}' \tag{3.6}$

From table 1 the parameters should be

h=28 b= $\sqrt{1129}/28=1.2000...$ $\theta=\pm4.43^{\circ}$

The energy for this potential is -2, which is an ideal value.

CONCLUSIONS

The preceding discussion shows that for a given ratio of sizes the epitaxy angle can vary over a large range of possibilities. The fact that in the experiment the epitaxy angle is very reproducible and stable, indicates that there must be a special form of the adsorption potential which is responsible for it. Another possibility would be grain boundary effects: However, this is unlikely to be so, because then there would be a much larged degree of disorder in the adlayer, which is not observed.

ACKNOWLEDGEMENTS

This work was supported by the Office of Naval Research. E.E.M. is member of CONICET of Argentina.

REFERENCES

- 1) A.Thomy and X.Duval, J.Chim. Phys. 66, (1969) 1966, 67 (1970) 1101.
- 2) See for example'Ordering in Two Dimensions', S.K.Sinha, Editors, North Holland, New York(1980).
- 3) M.D.Chinn and S.C.Fain Jr., Phys.Revs.Letters 39,(1977),146.
- 4) J.Villain, Phys.Revs.Letters 41,(1978),6.
- 5) P.Bak in 'Solitons in Condensed Matter Physics', A.R.Bishop and T.Schneider Editors, Springer, New York (1978).
- 6) J.P.McTague and A.D.Novaco, Phys. Revs. B19, (1979), 5299.
- 7) H.Shiba, J.Phys.Soc.Japan, 46, (1979), 1852, 48, (1980), 211.
- 8) C.G.Shaw, S.C.Fain Jr.and M.D.Chinn, Phys.Revs.Letters 41, (1978), 955.
- 9) J.G.Gordon, O.R.Melroy and L.Blum, Spriger Series in Surface Science,
 M.Grunze, H.J.Kreuzer and J.J.Weimer, Editors, Springer (1988).
- 10) K.Takayanagi, D.Kolb, K.Kamke and G.Lempfuhl, Surf. Science 100, (1980), 407
- 11) M.Samant, M.Toney, G.L.Borges, L.Blum and O.R.Melroy, Surf. Science 193(1988) L29, J.Phys.Chem. 92, (1988), 220.
- 12)O.R.Melroy, M.Toney, G.L.Borges, M.G.Samant, J.B.Kortright, P.L.Ross and L.Blum Surf. Science (submitted).
- 13) R.J.Baxter, J.Chem. Phys., 49, (1968), 2770.
- 14) J.W.Perram and E.R.Smith, Chem. Phys. Letters, 39, (1976), 328, Proc. Roy. Soc. A353, (1977), 193.
- 15) M.L.Rosinberg, J.L.Lebowitz and L.Blum , J.Stat. Phys. 44(1986), 153.
- 16) J.P.Badiali, L.Blum and M.L.Rosinberg, Chem. Phys. Letters 129(1986), 149.

TABLE	1
-------	---

Values of parameters for the adlayer that satisfy (2.8) and (2.11) b(ol)=1.2010

9	۲	b	h	(r ,s)
13.89 [•]	3-2	√ 13 /3 − 1.2018	3	(4, 1)
-13.89 [•]	3 =2	$\sqrt{13}/3-1.2018$	3	(3,-1)
0.00	5 -2	6/5-1.2000	5	(6, 0)
30.00 [°]	13-2	9√ 13 /13 − 1.1991	13	(18, 9)
-30.00 [°]	13 ~2	9 /13/ 13 - 1.1991	13	(9,-9)
4.43°	28-2	√ 1129 /28 − 1.2000	28	(35, 3)
-4.43	28 -2	√ <u>1129</u> /28 - 1.2000	28	(32,-3)

FIGURE CAPTION

Figure 1 : (•) points of the substrate lattice

(**O**) points of the adsorbate lattice

() points of the coincidence lattice

The dotted lines indicate a unit cell of the coincidence lattice

 $b = \sqrt{13}/3$ h-3 $\theta = -13.89$ (r, s) = (3, -1)

