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STRUCTURED ELECTRODE INTERFACES

LESSER BLUM
Department of Physics, PO Box At, University of

Puerto Rico, Rio Piedras, Puerto Rico, 00931

Abstract

A general discussion of the structure of the charged interface when

the surface is not smooth is presented. In particular, the effect of a

structured electrode is presented.

Introduction

-- The electrochemical interface offers a particularly big challenge

to the scientist: because it is such an important system a lot has

been worked on it, and yet because of the intrinsic technical

difficulties associated with non-extra high-vacuum surface physics,
very little direct structural evidence is available for the active

electrode.

There is an increasing body of evidence coming from optical

spectroscopy-Techniques such as Surface Enhanced Raman effect
(SERS),, Surface Infrared spectroscopy (SIRS) 21 , and more
recently, second harmonic generation (SHG) J3] are fine examples of

diagnostics for structural changes (changes in bonding arrangements)

but do not provide unequivocal structural information: The shifts and
intensities of the spectral lives depend on local field as well

as local structure. / ,j ,

Quite interesuing information can be obtained from ex-situ

experiments, in which the electrodes are examined by surface sensitive

techniques [4], (LEED, for example in extra high vacuum. As has happened in
the science of solid surfaces, we learn that the structure of

electrodes is rich and complicated. For example, there may be ordered
2-dimensional phases formed by species present at the interface. Take,

for example the case of Pb deposited on silver (11). This is a case
of under potential deposition. A mono layer of Pb is deposited
much before bulk lead is. Kolb,[51 and co workers have performed

X



ex-situ studies of this system and shown that there can be two phases

of Pb. One is a dense, hexagonal phase which, however, is

incommensurate with the underlying Ag(ll1) surface. A low density

phase (1/3 of full coverage) is also observed in these experiments.

At intermediate coverings a mixture of the two phases is observed.

The question is: what happens in the active electrode? It is

quite fortunate that, direct, x-Ray observations can (and recently

have[61 been made on this system.

The results indicate that:

a) at high voltages (-.53 to - 1 v) only the dense phase exists.

b) at lower voltages, (-.38, -.39 v) where the shoulder in the

voltamogram is, the low density,commensurate 43 x 43 R 300 phase is

not observed.

c) furthermore, at intermediate coverage, only the dense phase exists

in the form of clusters. These clusters grow in size, (and number)

shrink and twist slightly during the deposition, which takes place

between -.375 and -.525 v. from x-Ray diffraction experiments[7]) .The

film seems to be stable between -.53 V and -1 .V.

The question now is: how do we formulate a statistical mechanical

theory of the double layer (in this case, the inner Helmholtz layer) in

which the structure of the solid surfaced is included - clearly this is

an old problem that has been discussed by many distinguished
researchers like Frumkin, Levine, Fawcett, just to mention a few names.

But their approach was necessarily more empirical than fundamental. Our

point of view is going to the different. We will propose simple,

schematic models of the structured interfaces, about which we can make

precise statements. (It is similar to the drunkard who lost the key to

his home somewhere, but looks for it under a light pole, because

it is the only place where he can see). So, let us consider a smooth

electrode again (one sided, meaning a hard impenetrable surface, or two
sided, which consists of a surface separating two conducting media), ko@ossion For

ITI S GRA&I "'
and let us decorate it with sticky sites[8] . ITIC TAD 5

Unannounced -

exp [-13u(r)]= 1 + X8(r-a-) (1)ustitriatio

FRy
where 8 (r) is Dirac's delta function, 03 is Boltzmamn's thermal lstribut±

fAvelability Oodes
factor, and X is the sticking probability. Again we start at the light vaiil and/or

pole, like the drunkard: Our model may not be very close to the real stl Speolal

/ /



interface, but it has been simplified so that we may be able to

understand it. Let us now turn to an even simpler version

(Jancovici[91): In two dimensions, the one component plasma (OCP), that

is, the system in which the positive ions, for example have been smeared

to become a uniform neutralizing background, and the negative ions are

point charges. The negative ions interact through the potential.

u(r.) = -e2 In Iij (2)

For a specific temperature T, for which

2=ea2 /kT=2 (3)

The statistical mechanics of the OCP is completely solvable . This

means that we can use this model as a tool (of "experimental

mathematics") to test exact sum rules, valid for the more realistic 3

dimensional models. Very briefly, to see why this model is

exactlysolvable, consider the configurational canonical partition

function of a system of N negative charges

ZN(X) = -I. Jdr ..drN exp [-3 u + vA

I dr-dr exp -( v)] exp [ I3( e 2 In Ir. )]

1 r 2=19.1d r..drN exp [( vi) TTri- r. (4)

Here, v =v,(ri) is the interaction of the charge with the background.

In the simplest case, it will be the uniform charge density, in which
2

case v.- I l
There seems to be another two ingredients that are necessary to

obtain explicit solutions for these models[10]

a) that the product in equation (4) can be written as a determinant of

dimension NxN.

b) that the determinant can be diagonalized for arbitrary values of N.

This diagonalization has been achieved for backgrounds which mimic one

and two sided electrodes, and, in general for arbitrary forms of



v.(x) (Here r= x,y).

More recently it has been shown[ l that the case of a structured

interface of a two dimensional OCP can be solv' explicitly. In the

simplest case, v.= x+ V and V is defined
I St St

M

exp [-P3V (r)]= 1 + X (y-ym)8(X)
m=l

(5)
where y is the position of the mth sticky site. All the sticky sites
are located at the straight line defined by x--O, and the system is

otherwise uniform. M is the total number of sites for a finite length L

of the line.

co=M/L (6)

is the density of the sites on the line. The excess free energy Af'=AF/L
due to the presence of the line of adsorbing sites is then

AF=- kT In [-N J (7)

AfC=AF/L= -kT o fd ln[l+).p 03(C,t) (8)
0

where

t=np/2co2

p is the density of charges in the bulk system, and 0 3 ( ,t) is the
Jacobi theta function defined by[12]

00

0 (,t= -tm 2+27im (9)
m=-oo

We can also compute other properties of this model. The fraction of

occupied sites is (the adsorption isotherm!).



xp 03 (,t)
a 0o [l+xp 0 3(0,t)] (10)

and the density profile p(r) is, using

p(r)=y(r)[l+ X "8(r-r,) ]  (11)

M=I

2 -pz 2  1 F( ,z,t)
y(r)= p - p e [ 03(,t)] (12)

with

2F( ,z,t) = 03( +toz/,t) 03 ( +tz* /n,t) (13)

+0 3 ( tcoz/n,t) 0 3(-tcoz /IEt)

and z = x + iy; z* = x - iy. (14)

Consider now the case of the one sided interface (a) or two sided
interface (b).Both of these cases were recently discussed by Comu [131.
We follow her analysis closely. For case (a):In that case we get

1+0/0)
Af= -AT (o f d ln[l+)Lp H,( )I (15)

I+o/(O Xp H ( )

n. fo/Co [I Ap H1()

where

HI(C ) = 7 S C+n) (17)

n

S (u)= 2AIdt e" 2 u2/t (18)
1+0(nuv't)



d [l+4(0uVt)J

du

U

(D(u)= 2/,/x {dv e (19)
0

and the single particle density is (regular part)

2 1+0/0)

y(r)= p e2 px2 f d S (+n) e2)z(n+ )  (20)

[1+p H ))

For the double-sided model of the interface (b) we have

Excess free energy

Af4= -kT (o f d In [ I+XPaH 2() e-2( 'a- b) ] (21)

0

Adsorption isotherm (fraction of occupied sites)

n,= fHI dC 2 (g a9b (22)

0 [i+Xp Hi(C) e 2 a

Single particle density



y(r)= p a e "tPax 2( ga "9b f d S2 (C+n) e2 R1O z(n+ )

0

(23)

[ e 27I)z *(n+-) .P&H2(C) e - 2 ( g a " ' )  S2(]+m)e2lIoz(M+ )

[ l+p aH 2( ) e-2(a-b ) ]mb )

where

H = S2( +n) (24)

S2(u)= 2Vg/Vt (5
e 2 u2 (25erfc(-u/t) +m e 2u 2 t erfc(mnuet)

with

erfc(u)= l-D(u) (26)

_m a (27)

VPb

Nest question is: can we draw conclusions from the two dimensional
models that will be also valid for the three dimension case?

Consider now the case of an impermeable wall in 3d, decorated with
an array of sticky sites - we use the definition

Pli(1)=Yi(1) exp[-3v i (r) 1=

=Yi(1) [1 + B(z) Z" a B(R-nla 1 -n2 a2 ) ] (28)

nln
1 2

where p i(l) is the density of species i, r= (x,y,z), R = (y,z), and the

sum n ,n2 is over all the sites on the surface. Then, we can derive a

contact theorem that will relate the contact density to the charge on
the wall and thermodynamic properties of the fluid [141 Assume that

the sticky sites form a regular lattice, and that the area of the unit



cell in that lattice is A. From (28), we write

- -4 -- - v(1)
-kT V p()= Pi(1) VIui(1) - yi(1) V1 e

(29)

+Z d2p (12) Vu..(12)
ii li

where v.(1) is the sticky potential (1) alone and all the other

contributions to the single ion potential are included in Ui(x 1) and

u.. (12) is the two body potential. This equation is very complicated

because it is three dimensional. If we now take averages over the unit

cell, that is, we define

Yi(0) = 1/Afdx dyi Pi(xy,Z) (30)
/cell1

then we get by integration

kTj O)-P 8 2 + kT . <8xYi(1)/8z 1 ,l=0 (31)
A I

where P, is the bulk pressure, e is the dielectric constant, <E2 >0

is the mean square bare (vacuum) field at the undecorated interface.

This contact theorem is verified by the exactly solvable model

Let's then try to give a more quantitative treatment of this

model[15] . We start by a model in which we have a hard sphere fluid in

contact with a wall decorated with sticky sites. Let us call H0 the

hamiltonian of the N particle system without the sticky sites, and

the sticky potential

N
Hs~ = v.1(1)l

Then

z(o)= , fdrN e'HO (32)

Z)- 1 fdrN e " P(H+H) (33)
-NT



and because of (1)

I -JM-I N
ZL N! IfPN e a j [1+ XE 8(z.)8(R-R,)] (34)

i=1

Divide and multiply by Z(O), and recall the definition of the s-body

distribution functions, then

Z(X) - oZ -- s--- p( R .... R) (35)

with

O(R .... R ) . dr dr e -PH °  (36)

= g(R 1 ... R ) IT P(R)
S I S t

where pi(r) is the singlet distribution function for the undecorated

model. Using standard thermodynamics, and the fact that X can be
identified up to a multiplicative constant (or, equivalently up to a

shift in the reference chemical potential) with the fugacity of the

adsorbed particles, we get

AF = kT In [-}] (37)

Af =AF/A (38)

n =(/oA) a In Z(X)n oa ) a in K. (39)

and the Gibbs equation

AF= r(x)-F(0) a s (40)a p.

where F(X) is the total surface excess (decorated) and F(0) the

undecorated one.

Clearly starting with (35), we have formal expressions to compute
the properties of the interface . H o wever we need to know the

distribution functions of the undecorated system to all orders.
We did, indeed, know this function for the 2-D, solvable model. But we

do not know it in general. So we have to make approximations, the
simplest of which is Kirkwood's superposition approximation which is

S

go(R I .... R) = g(Rt,R,) (41)
i,j



If we now introduce the potential of mean force between particles in

sites, ij of coordinates r. = (0, R.), r.= (0, R)
I j J

o. = -kT In g..(rir.) (42)

Then we can rewrite (35) as

s p0(ri)
Z(X) Z -xp [PE wO(ri~r) (43)

All sitcs
on the surlace

We observe now that this is just isomorphic to the grand canonical

partition function of a two dimensional lattice gas in an external

field. The site-site interaction is given by the potential of mean

force co.., and the external field by a potential

v= -kT In p0(O) (44)

Using the Percus-Yevick expressions for g ( ) and for po(0)

g (a ) = (1 +1/2)/(1 -T1)2

p(0)= (1 + 2T1) /(1- 1I)2 (45)

T1_----m / 6 P03

we get, using mean field theory (Bragg-Williams approximation).

n c

na I+ P 0 g nx,(7

where c is the number of nearest neighbors in the lattice. This is an

equation for the fraction of occupied sites n . At high densities and

low coupling constants there is a phase transition. The reason for

this is that the contact probability go(o) increases with density,

meaning that the effective pair attraction of particles in occupied

sites also increases with density. The effect of the sticky parameter X



(actually, of X po(O) ) is that of the external field, which has the
effect of attracting indiscriminately to any site of the interface, and

therefore has a disordering effect.

Very recently Caillol, Levesque and Weis[161, have carried out a

detailed Monte Carlo simulation of a system that is similar to the

sticky surface system. The major difference is that the sticky sites are

not points, but rather small muffin tins (camembert boxes) of
cylindrical shape. Any ways the simulation does not see a sharp

transition, as predicted by the theory. However, the qualitative effect

of clustering is clearly noticeable.

Furthermore, the size of the clusters increases with the coverage

n, and furthermore, they are not really commensurate with the lattice

of adsorbing sites. This is due to the fact that because of thermal
rattling, the 'effective' diameter of the adsorbate is bigger

than a. Therefore the clusters are not commensurate with the surface. But

certainly, this model does imitate the features of our Pb/Ag(1ll)
interface, at least qualitatively in the sense that the effect on the

higher coverage is to decrease the distance between the adsorbed

particles, while the size of the clusters increases. To see a sharp
transition we probably have to make the camembert boxes smaller, or even

introduce an attractive potential between the adsorbed particles. This

does not seem to be the case in the computer simulation, or the

experimental data on the Pb/Ag(111) system.
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