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EXACT RESULTS FOR THE STRUCTURED LIQUID-SOLID INTERFACE

The theoretical discussion of smooth surfaces is considerably

simpler than that of a realistic surface, in which the solid,

usually a metal, has a well defined crystal structure. The reason

is that in the case of a smooth surface the problem is one

dimensional, rather than three dimensional . The analysis of a

realistic metal surface potential in contact with an ionic

solution is extremely difficult, and requires the use of very

large computers. We would like to discuss a simple model of a

structured interface which predicts surface phase behavior, for

the adsorbed layers, and which is mathematically tractable. In

fact, if the correlation functions of the smooth surface model are

known to all orders, then the properties and correlation

functions of our model can be computed exactly,at least in

principle

The model' combines two ideas that have been used a very long

time ago : Boltzmann's sticky potential 2, and the adsorption site

model of Langmuir3. The elegant work of Baxter4 in which the

Percus-Yevick approximation of the sticky hard sphere model is

solved and discussed, shows that this model has a particularly

simple mathematical solution In Baxter's work the potential has

the form .

exp [-1u(r)]- 1 + A6(i- ) (1)

where 3-1/kT is the usual Boltzmann thermal factor,u(r) is the

intermolecular potential,A is the stickiness parameter, r-(x,y,z)



is the relative position of the center of the molecules, and T is

the diameter of the molecules. The right hand side term represents

the probability of two molecules being stuck by the potential

u(r): this occurs only when the two molecules actually touch, and

for this reason we use the dirac delta function 6(r-o-),which is

zero when the molecules do not touch, is infinity when they do,

but the integral is normalized to one. The stickiness is
represented by the parameter A, which except for a normalization

factor ,can be considered as the fugacity of the formation of the

pair.

The Langmuir adsorption sites can be represented by a

collection of sticky sites of the same form as was suggested by

Baxter. Only that now we do not have a sphere covered uniformly by

a layer of glue, but rather a smooth, hard surface with sticky

points, which represent adsorption sites where actual chemical

bonding takes place. For this model, equation (1) has to be

changed to

exp[-u a(r)]= 1 + A a(R)6(z) (2)

with
wth a(R)= EXa a(R-n1a1 -n2a2 ) (3)

Here R=(x,y) is the position at the electrode surface,and z the

distance to the contact plane,which is at a distance T/2 from the

electrode. In (3), nl,n 2 are natural numbers, and al,a 2 are

lattice vectors of the adsorption sites on the surface. The number

Aarepresents now the fugacity of an adsorbed atom of species a,

onto the surface which has a perfectly ordered array of adsorption

sites. While this is not a requirement of the model, it makes the

mathematical discussion much simpler.

Consider the case of a simple salt dissolved in water, near a

metallic electrode: in the SSM there will be three components,the

anion, the cation and the solvent,and the lattice atoms. In the

limiting case of the SSM, the sizes of the-different species play

a crucial role in the possible ordering of the ad layers at the

interface. It will be convenient to picture the ions as having a

hard sphere core with a diameter aa,0 b, and the solvent as having
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a hard core with diameter an' -'he lattice spacing of the metal

surface is d, and because it is the most stable surface, we will

restrict ourselves to the (111) surface of the fcc crystals, or

the (100) face of the hcp crystal, that is, the triangular

lattice. In the most general case, all three components can be

adsorbed competitively, and this situation can give rise to very

complex phase diagrams .In most electrochemical situations the

electrode surface is polarized either positively or negatively,
which means that either the cation or the anion is strongly

repelled from the surface, and therefore we need to consider the

adsorption of either a or b and the solvent n on the electrode.

This implies a drastic simplification in the model, because now we

can discuss at least the case of commensurate adsorption in terms

of models that have been solved analytically, such as the spin

s=1/2 Ising model and the hard hexagon gas model. The phase

transitions predicted for these models seem to be reasonable in

terms of the currently available experimental evidence.

There are two cases of chemisorption of electrochemical

interest: In the first one, the charge of the adsorbate is

neutralized by the electrons in the metal, and this means that the

interactions between neighbors on the surface is attractive. If we

are far from the point of zero charge, and the metal is negatively

charged, the contact probability of the anions a is zero for all

practical purposes and we have only the cation b or the solvent n

on the adsorption sites. The problem is then reduced to a spin

s=1/2 Ising model with ferromagnetic interactions. In the second

case there is no discharge of the adions by the metal. The

interactions between the ions of the same sign is clearly

repulsive, so that the nearest neighbor sites to an occupied site

are not going to be occupied.

The possible existence of phase transitions was discussed in

the work of Huckaby and Blum5 . The observation is that the SSM

model maps the three dimensional interface onto a two dimensional

lattice problem. The phase behavior in the interphase is

determined by the mapping of the parameters, and exact conditions

on the existence of phase transitions can be given.

The spacing between the sites of the lattice is d. This
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surface is in contact with a solution Only two states of

occupation are allowed: the sites are either occupied by an ion or

by the solvent, or alternatively in the case of a pure fluid, by a

fluid particle or none. The fluid particles have an exclusion

diameter a, which may or may not be associated with a hard core

potential. Otherwise the interactions are arbitrary. We assume

however that the pair correlations on the surface decay

sufficiently fast so that we need to take into account first
neighbor interactions only. There are two possible situations: If

the adsorbate diameter a is smaller than the lattice spacing d,

then there are two possible phases, a dense, crystalline one and a

dilute disordered one. There is a first order transition between

them. If the adsorbed particles exclude all next nearest

neighbors, that is when

d<o-<4 3d

then the problem is exactly analogous to the h=rd hexagon problem
5

of Baxter. In this case there is a second order phase transition

between an ordered 43x43 phase and a disordered one. The partition

function is in this case

Z/Z 0 = Z exp[-I3wjti tj + E ti ) t i0,1
z nn

(t )i

where g=l/kT and (4)

13w=-lng 0 (d) (5)2

,3p=ln[AP0 (0)] 
(6)

This partition function can be mapped onto an Ising model

with spin variables si-±l by means of the transformation

si=2ti-1 or ti=(si+l)/2 (7)

and using the above definitions we get the exact condition

for phase transitions when w<O

AP0 (0)-[g0(d)]
- 3
2 (8)

The preceding analysis can be illustrated by a fluid of hard

4



spheres in contact with a sticky triangular lattice of spacings

d-c. In this case a good estimate of both the contact density and

the pair distribution function are obtained from the Percus-Yevick

theory

0 (1+271)P (O)=P 2 (9)
(1-0 Z(9

gO (1+n/2) (10)
2. (l--Q)

n= (1/6)xpa
where 71 is the fraction of occupied volume. Replacing into the

previous expression we get

A= (1 /6) m 3 8l-3)
(/ (1+2-0) (1+71/2) 3  (11)

This relation is a necessary but not sufficient condition for

the occurrence of phase transitions.

A sufficient condition for the occurrence of a phase

transition can be obtained from the work of Potts on the

magnetization of the ferromagnetic Ising model on the triangular
6lattice . We use the variable

1/2

Solving now the magnetization equation with this variable we
obtain for the contact pair correlation function the condition

g0 (d)l -3 (13)

g2( crit
and the value for the critical sticky parameter A is

Ap0 (0) 1 1/27 (14)
crit"

These are exact results, that are model independent. In our

example of hard core fluid in the Percus-Yevick approximation, we

get the critical value of the excluded volume fraction
Ylcrit-0 .3 7 1

and the sticky parameter

5



A crit=0.0118 a-3

These exact results are in qualitative agreement with the
mean field theory of Badiali et al.1, where the first order phase

transition is also predicted. But the quantitative agreement is
not good, which illustrates the pitfalls of mean field theory. In

the computer simulations of Caillol et. al.7 the conditions for
the occurrence of a first order phase transition are not met,
because the adsorption sites are of finite size, and for that
reason the occupancy of a site may prevent nearest neighbor
occupation. In this case we expect a second order phase transition

to occur.

When there are longer ranged interactions, beyond the nearest
neighbor interactions, Dobrushin8 has shown that the first order
phase transition still occurs. However, an exact relation is not
available.

As was mentioned already in the electrochemical case the
contact pair correlation function of ions of equal sign is
practically zero, because of the Coulomb repulsion which prevents
ions of equal sign to approach each other. However condensed

phases in the ad layers are observed in electrochemistry. In
particular the under potential deposition of some metals on
electrodes occurs at certain very well defined values of the

potential bias9. For example the deposition of Cu on the Au (111)
face forms two phases according to the deposition potential.

These phases have been observed ex-situl° and in situ 11 12 13. At a
lower potential a dilute ordered 43x43 phase is formed. At a
higher potential a dense commensurate phase is formed. It is clear
from the above considerations that in the dense ad layer case the
ions must be discharged, because then they would form a metallic

bond, which makes w negative , and therefore ferromagnetic. This
is supported by the features of the EXAFS spectra. In the high

density phase the near edge structure corresponds to that of
metallic copper, which has a characteristic double peak . The
dilute 43x43 phase has the white line characteristic of the
charged ions. We may assume then that in this case the Cu retains
part of its charge, so that the interactions are in this case
repulsive. If the occupation of one site in the triangular
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lattice also excludes the nearest neighbors, then the problem is

equivalent to the hard hexagon problem of Baxter14 . This problem

can be solved when the interactions between the hard hexagons are

neglected.

The thermodynamics of the hard hexagon model was recently

worked out by Joyce . In terms of the lattice fugacity

'=Xp (0) (15)
The system undergoes a second order phase transition between

an ordered solid like phase and a disordered one. The transition

occurs when
%crit '=(11+545)/2=11.09

The fraction of occupied sites is

Scrit=(5-45)/10=0.2764
We remark that in the limit of highest possible density the

occupied sites fraction is 9=1/3.

Consider again the model of hard spheres of equal size but

larger than the lattice spacing. Then we can draw the adsorption

isotherm for different values of the sticky parameter . See figure

1.
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Figure 1: Adsorption isotherm for a->d. The fraction of occupied

sites is given as a functin of the bulk density pr , fot the

following values of the stickiness parameters X/a : (a) 0.2, (b)

1.0, (c)2.0, (d) 10 and (e) 40. An order disorder transition occurs at

e =0.2764.
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