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INTRODUCTION:THE EXPERIMENTAL EVIDENCE

The general problem of the interface between two phases which are

charged and or conducting is of relevance to a number of systems which

occur in nature: colloids, micelles, membranes, solid-solution

interefaces in general and metal solution interfaces in particular,

form a bewildering array of systems of enormous complexity. The

investigation of the structure of these systems poses considerable

difficulties, both experimentally as well as theoretically. The

experimental problem is that the interface has ,0-8 )particles relative

to the bulk, solid or liquid phases. For this reason one needs -a-

surface specific method, which is able to discriminate between the

signal from the surface from the rest. Electrons do not penetrate

into solids and for that reason have been used extensively for the

determination of the surface structure of solids. However they must be

used in vacuum and that precludes their use in the study of the liquid

solid interface. The study of electrode surfaces removed from the

liquid cell under various conditions has provided an enormous wealth

of useful data which we will not try to review here-. The only way to

understand the relation between the ex-situ and is to measure both. -------- . ,

Neutrons are another possible choice: unfortunately there is no

mechanism by which the neutrons can be made surface selective, and for

that reason only systems with large specific surface, which in general

are disordered, can be studied. *

X-rays are a viable alternative for the study the solid-liquid

interfaces. The X-ray probes are reviewed in the excellent chapter by

H.D. Abruna. There are three techniques that have been used to

determine structural features in well characterized metal electrolyte

interfac, s:

I) EXAFS or extended X-ray absorption fine structure2 , which permits

the determination of the near neighbor structure of a given target

atom, and also yields information about the electronic state of that

atom when it is adsorbed at the surface 3.

2) GIXS, or grazing incidence X-ray diffraction 4. This method permits

the determination of the in-plane structure of an adsorbed monolayer

of a target atom on the surface. It is a very exacting technique, and

requires that the structure of the adsorbed monolayer should be



different of that of the substrate5 .

3) Standing wave methods 6 . In this case an X-Ray standing wave is set

up at the interface of the solid and the fluid There are several

modes in which these standing waves can be formed; they allow the

determination of the distance from the surface of the solid into the
7fluid phase

The spectroscopic methods using ultraviolet, visible or Raman
8spectroscopy are very useful in situ probes . Although they are not

directly related to the geometrical structural parameters, these can

be extracted from theoretical considerations with a fair degree of

reliability. The optical spectroscopic methods do not require special

installations such as the synchrotron, and are most useful for complex

molecular species, The techniques are the surface enhanced

Raman9 , surface infrared spectroscopy 10  second harmonic

generation , which permits to discriminate between differen:

geometries of the adsorbates on single crystal surfaces.

A technique that provides with direct structural information of

the electrode surface is the Scanning Tunnel Microscope (STM). It has

been recently shown by various groups that the STM is capable of

resolving structural details of metal surfaces in contact with

electrolytic solutions 12  However when the electrochemical potential is

scanned, then the tunnel voltage of the STM also changes. This does

not affect the study of surface geometry, since the images are
13relatively independent of the tunnel voltage . The resolution of the

STM pictures of the metal electrolyte interface is of the order of

1-2 Angstroms.

An in situ electrochemical technique that has been established

recently is the quarz microbalance: this instrument can measure small

changes in the mass of a metallic electrode that is attached to a
14 15quarz oscillator . In this way the electrosorption valency can be

calculated directly from the amount of charge from the, voltamogram,

and the mass obtained from the microbalance. Proper interpretation of

the results of this instrument requires electrode surfaces that have

large molecularly smooth regions.

A further method that has yielded very interesting information

about the structure and interactions in the diffuse part of the double

layer is the direct measurement of forces between colloidal

particles 16 . Here the forces between two mica plates are measured

2



directly in the presence of different solutions. Quite interestingly

the forces give raise to oscillations of a period similar to the

dimensions of the molecules enclosed between the mica plates.

Amongst the optical techniques there are also the more

traditional methods such as the ellipsometry, electroreflectance and
17particularly, surface plasmons , where experimental and theoretical

advances 18 have made it possible to offer a picture of the surface

electronic states of the metal in some selected cases, such as the

silver (111) phase. We should mention here the measurement of image
19

potential induced surface states by electroreflectance spectroscopy

In this case, besides the normal surface states which arise from me

termination of the crystal lattice, there are discrete states due to

the existence of an image potential for charges near the conducting

interface.

And last, but certainly not least, there is a very extensive

literature on the differential capacitance of solutions near either

solid (polycrystalline or single crystal) or liquid (mercury)

electrodes which we will not try to cover 2 0 . We should mention the

recent work on the influence of the crystallographic orientation of

silver on the potential of zero charge of the electrodes, in which a

detailed mapping of the influence of the crystal face on the

differential capacitance of the inner layer is made2 1.

The complexity of the system described by the experimental

methods defies any simple theoretical interpretation. Yet these are

needed for the understanding of what is actually going on at the

charged interface. It is clear that there are two kinds of forces in

these systems: the long ranged Coulomb forces and the short ranged

forces that are at the origin of the chemical bonds and are also

responsible of the repulsion between atomic cores. There are important

quantum effects at the interface due essentially to the quantum nature

of the electrons in a metal. For this reason we have organized the

theoretical discussion of the chapter starting with very simple model

systems about which a lot is known, and to systems which are much

more realistic but difficult to handle theoretically. The emphasis of

the theoretical treatment will be on the structure functions, or

distribution functions p,(1), p l ,2) ... which give the probability

of finding an ion(s) or solvent molecule(s) at specified position(s)

near the interface. The properties of the interface can be calculated

3



from these distribution functions.

One of the very interesting theoretical developments of recent

years has been the exactly solvable model developed by Jancovici,

Cornu and co-workers22 . This is a two dimensional model at a particular

value of the reduced temperature, and is particularly useful to

elucidate the subtle properties of the long ranged Coulomb forces. For

the non primitive model with solvent molecules there is a one

dimensional exactly solvable model 23 . Exactly solvable models serve as

benchmarks for approximate theories and to test exact and general sum

rules.

In this chapter we will not discuss the solvent structure,

because this is a subject under development, in our discussion we will

restrict ourselves to models in which the solvent is a continuum of

dielectric constant E. The focus of this article is the structure of

the inner layer of the interphase, the layer of ions that is directly

adsorbed onto the metal surface. We discuss the sticky site model

(SSM), in which the adsorption sites are sticky points at the

interface. This model requires the distribution functions of the

undecorated, smooth surface as an input. The theory of these

distribution functions is reviewed in section I. In section II we

review exact sum rules for the interface. In section III we discuss

the structured interface in the SSM.

I-THEORIES FOR THE SINGLET AND PAIR DISTRIBUTION FUNCTIONS

In recent years there has been significant progress in the

statistical mechanics of inhomogeneous charged systems such as the

metal electrolyte interface. The real interface is much too complex to

be described by a tractable model, so that simple models that focus on

some of .the more relevant aspects of these systems are used. Most of

the effort in the past has been directed to understanding models in

which the metal side is an ideally smooth, charged surface, with or

without image forces. The solvent is either a continuum of dielectric

constant e, or hard spheres with embedded point dipoles. It is

possible to study models with realistic solvents near charged or
24

neutral surfaces in the absence of electrolytes , and less realistic

models such as the models with quadrupoles 2 5 , or with sticky
26octupoles , in the presence of electrolytes, but for the time being

extensive calculations have not been made. The primitive model of

charged hard spheres near a charged hard wall, all embedded in a
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continuum dielectric is by far the most studied, and to date, the best

understood of the three dimensional models of the electric double

layer.

There has been considerable progress in the theory of the

primitive model of the electric double layer. The theories are

constructed as direct improvements on the original Gouy-Chapman

theory, such as the Modified Poisson Boltzmann (MPB) 27 , theories, the

theories based on functional density expansions 28 and then there are

the theories derived from integral equations. The MPB theories have

been adequately reviewed in another review in this series2 9 . The

integral equation theories can be classified into three groups: those

derived from the Ornstein Zernike (OZ) 3 0 equation and those derived

from the Born-Green-Yvon (BGY) 3 1, Wertheim-Lovett-Mou-Buff (WLMB) 3 2 and

Kirkwood's 33 equations.

As it happens in other areas of condensed matter physics,

the forces between molecules is not known, but rather the properties

that are ieasured are interpreted in terms of these forces. Since the

equations are only approximate, it is impossible to estimate from the

comparison of the theory to experiment the accuracy of the theories.

For that reason computer experiments play an important role, since

here one knows the input intermolecular potential, and the properties

and structure can be computed for systems consisting of a few hundred

to a few thousend particles. There are two techniques used to perform

these simulations: molecular dynamics (MD), in which the equations of

motion of the molecules are solved simultaneously, and the Monte Carlo

method (MC), in which an equilibrium ensemble is generated from a

random walk algorithm (a Markov Chain). For systems of hard charged

spheres the MD technique cannot be used because the forces are both

singular and very long ranged, and this produces insurmountable

technical problems. The MC techniques are more amenable to simulate
34

the primitive model of the electric double layer , although because of

the long range of the Coulomb forces the relatively small size of the
35

system poses problems

Models in which the solvent is represented by dipolar hard

spheres or even higher multipolar solvents have not been simulated in

the neighborhood of charged walls. The full solution of the

HNCI equation has not been achieved for the planar wall, only in the

the Mean Spherical Approximation (MSA) and in the Generalized Mean



Spherical Approximation (GMSA) have been solved.

BASIC DEFINITIONS: THE GOUY CHAPMAN THEORY
We have a mixture of ions of density p, charge e=ez,,

where e is the elementary charge, : is the electrovalence, the ion

diameter is a, the number density profile of i at a distance z is

p,(z)=p(1) from tbe electrode, which is always assumed to be flat and

perfectly smooth. (see figure 1).
The singlet distribution function is

g (z)=h (z) +1

=p,(z)/p L

where p, is the bulk density of species i. The charge density q(z) is

given by
m

q(z)=z e, p I (z) (2)

where m is the number of ionic species. The electrostatic potential

0(z) is obtained by integration of Poisson's equation

V20(z) = d2 O(z)_ -4t q(z)/E (3)
dz

2

we have

0(z)-4nt d t(t-z)q(t)/r: (4)

z

The total potential drop A0 is obtained from (4) by either

letting z--O or z--, depending on the reference potential of the

model. In general the latter choice is adopted. An important quantity

is the differential capacitance Cd which defined by

C d_=dq/dAO 
(5)

where q is the surface charge on the electrode. This quantity is

seldom measured directly, it is inferred from either surface tension

measurements, or frequency dependent AC measurements of the capacitance.

The surface charge satisfies the electroneutrality condition

6



q z zq(z)(

0

= E (0)e/4ir

where E (0) is the external or applied field.

For low applied field, the Gouy -Chapman -Stern3 6 3 theory (or

modified Gouy-Chapman Theory, MGC) is accurate for the primitive model
in comparison to computer experiments.

Consider the Poisson equation (3). If we approximate the density
of the ions by Boltzmann' distribution formula

p1(1)= p exp([IO( I)1 (7)

replacing into (3) we obtain the Poisson Boltzmann equation

v2 0(1)=-4r7c e, p exp[-I3e0(l)] (8)

This equation has been solved analytically for several cases of

interest. A first integral can be obtained multiplying by V0(1), both
sides of this equation. For planar electrode this yields

E2 =[VO(1)] 2=-4itkT/e Z p, {exp[-ke(1)]-1 (9)
Z I

Using the definition of C and the electroneutrality relation (6) we

get the formula for the differential capacitance

Sei P exp[-PeiO(O)]

d (10)

where €(0)=0(z),. 0=A0 is the potential at the origin, which is
equivalent to the total polarization potential of the electrode.

At this point it is convenient to make a variable change

X=exp[-Oe O(0)j (11)

where e = z e, and z is the electrovalence of species i.

We integrate equation (9) to get

7



xz(z)/

d -- ~ (z-z)

d /X P1  p0 A(12)

where for the general case, X0 and A are integration constants3 8 39

Since the electrovalences z are always small numbers, the

integration of the left hand side is always possible in terms of
elliptic functions 40 . For the z==1 case the radicand of the left

hand side is a perfect square and the integral can be performed

explicitly.
The result for this case is, for the potential drop AO

OeE 0/KE=2sinh[Aoeo/21 (13)

The density profile is given by

-KZ -KZ 2 (4p (z)=p ([l+zcte'l/[1.z t eI j (14)

with ot=tanh[Ao eJ3/4]. K is the Debye parameter

K =4r/kTiE Z pte (15)

There are several remarks about the Gouy-Chapman theory.

From equations (10) and (14), we see that for any mixture of ions of

equal size the contact theorem is satisfied.

kT p P(O)= re/8t E2(O)+kT Z P, (16)
I I

Contrarily to what has been assumed in the literature, the

contact theorem is not satisfied for mixtures of unequal size ions.

This can be seen from equation (16): In the contact theorem all the

ions have to be in contact with the wall simultaneously. Since there

is only one distance in (16), there is no way that the theorem will be

satisfied. However for very high positive or negative fields when only

one kind of ions is present, and then the Gouy-Chapman theory will

satisfy asymptotically the all important contact theorem.

8



The density profiles obtained from the Gouy-Chapman theory

are monotonous, that is they show no oscillations. When the contact

theorem is satisfied, and also the electroneutrality integral comes

out to be correct, p,(l) is pinned at the origin, and has a fixed

integral, so that the density profile cannot deviate too much from the

correct result. However, when the density is high the profiles will be

oscillatory, and we should expect deviations from the GC theory. This

is also true for the non-primitive model in which the solvent is a

fluid of finite size molecules.

The Gouy Chapman theory has been solved for non-equal size 4 1 ions.

For I-1 electrolytes the comparison to computer simulations shows

good agreement, because in the regime of high electrode charge there

is only one ion present in the double layer. The situation should be

different when we are dealing with a mixture of anions or cations of

different sizes.

INTEGRAL EQUATIONS-THE PRIMITIVE MODEL

The classic Gouy and Chapman 36 theory, is based on the

Poisson equation and a closure giyen by Boltzmann's equation. In this

theory the ions in the double layer are point charges with no

exclusion volume, all embedded in a continuum dielectric. There have
been a large number of papers dealing with ways to improve this

equation. We must remark, however that at least in the regime of low

density and high temperature (or large dielectric constant) the GC
theory is not really bad in spite of its simplifications because it

does satisfy the contact theorem (16) asymptotically for E--, and of

course, it also satisfies the electroneutrality condition (6).

However, since the electrochemist is really interested in systems in

which the solvent is not a continuum the primitive model should not be

considered a working model for the interpretation of experimental

data, but rather a learning model for the theoretician because of the

availability of computer experiments. Indeed as the density and

coupling constant increase, significant deviations from the behavior

predicted by the GC theory occur.

All of the theories can be formulated as an (integral) equation

for the density profile p, (1), or alternatively as a (differential or

integrodifferential) equation for the potential 0)(I)42 . Consider first

9



the one particle direct correlation function, which will be the

central quantity of our discussion4 3  4, from which the integral

equations can be deduced:
c (1)=ln[p i (1)/,; 1]+3u (1) (17)

where c (1) is the one particle direct correlation function, '4i is the

fugacity of species i, and u(1) is the external potential.

The function c(1) is a member of the family of direct

correlation functions c(1,2. .)45, which is the sum of all irreducible

graphs with density factors p(l) for every field point (For a

detailed discussion of correlation functions see for example Hansen

and McDonald46).

ORNSTEIN-ZERNIKE BASED APPROXIMATIONS

At the interface between an electrode and a fluid the

density of the fluid is a function of the distance of the point to the

surface pI(z). The Ornstein Zernike equation for this system can be

obtained from an homogeneous mixture in which there are some large

ions, of radius R * -+ -,such that pR,3 -- 0 . In this limit the planar
HAB (Henderson-Abraham-Barker) OZ equation is4 7

h(l) -cw(1) =7pj [d2 cB.qJr 12I) h.(2) (18)
j JJ

where h (1) is defined by

h( 1)= [g(1)-1]=[p1(1 )-p]/pi (19)

The function h(1) is the density profile function for ion i. The

function cw(1) is a much more complicated object, and in general does

not admit a simple diagram expansion. To get some insight about the
48

meaning of this function we use functional series expansion

Consider the functional power series expansion of ln[pi(l1)

around the uniform density pi

Pu(1)+ln[p (1)]=ln[p ]+ " p fd2 cB ( Ir )h (2)
12J

(20)
+ 1/n! p j..d2d3..cB ( 1, 2,3..)h (2) h (2)..

E h 'ii k

ik.,

the direct correlation functions are defined by the functional

10



derivative

cBk(1,2,3,.. )= kc P (2)SPk(3).. (21)

The superscript B stands for the bulk functions. If we now
introduce the new function cw(1), defined by

c*(I)= -13 u (1)-ln[g (1)) +h()U U I

(22)

+ I /n! Epj Pk..{d2d3..cBjk(l,2,3 ..) hj(2)h k(3)
ijk

where the inhomogeneous potential is of the form
u.(1)= U ,5 (l)+w (23)

I 1 ( 3

where u5T(1) is short ranged and for a hard, smooth charged electrode.

The electrostatic part is
w (1)=-etE zt/2

i (24)

Combining this definition with the functional expansion (20) we

get the HNCI equation for the flat wall electrode

-3w (I)-In[g(1)]=Zpj d2cB( r 2 )h(2) (25)

Equation (25) has a deceivingly simple aspect, but in fact
because of the long range of w(1) is not convergent, and therefore
not amenable to numerical solution. Using the equation

cB = "1w (1r,2 1) + cS( r,21) (26)

with

w..( r121) edee 1 2  (27)

and replacing into (25) yields

001 (1)+ln[g(1)]= Zp J d2 csr(1r121) h.(2)ij (28)

where 0(l) is defined by

*(1)= E z+ Jd2 p,(2)/e r,2  (29)

ii



This equation is now completely defined in terms of short
ranged quantities, which is not the case for the first form of the

equation (25) 4 9 . One important observation about the HNC1 is that it

does not satisfy the contact theorem (16), but rather 50

kT p(0)= e/8n E2(0)+ PO PlaP0 (30)

with

P0= Z p. (31)

However, the HNC 1 satisfies automatically the

electroneutrality relations and the Stillinger Lovett sum rules. (see
below). The HNC is the most accurate theory for bulk electrolytes. It

is the theory that has the closure with the largest number of graphs.
One would expect that this fact would remain true in the plane

electrode limit. However, because of the inaccuracy of the HNC for
uncharged hard sphere fluids the HNCI does no do well in representing

the exclusion volume of the ions, and is not on the whole, such a good

approximation for the electric double layer.

For high fields and low concentrations the fact that we get
the compressibility rather than the pressure is not very important and

the HNCl is still a reasonably good theory, as will be shown below.

However for dense systems this is a rather severe shortcoming.

Specifically, when we are dealing with a molecular (dipolar) solvent

the density is very large and the dielectric constant e is of the

order of one (instead of 80 in water) which makes the electrostatic

term in (16) small in comparison to the contact density term. The

consequence is that the HNCI will put more counter ions near the

electrode than the exclusion of the hard cores will permit. Eventually

thermodynamic stability conditions will be violated, such as the
51Bogoliubov inequality . For very high charges the HNCI predicts a

decreasing potential drop 00 with increasing applied external field
E 52

z
The bulk direct correlation function

cB (1r 2 ) (32)

which should be used in solving the HNCI equation (28) is that

obtained from the solution of the bulk HNC equation for the same

system. This however yields poor results when compared to computer

12



simulations. Generally better results are obtained if instead of the

HNC bulk direct correlation function the corresponding MSA functions

are used, the general agreement with computer simulations improves 5 3 .

There have been several calculations with improved versions of

this HNCI equation. Including the next term in the expansion (22)

amounts to including the bridge diagram in the bulk HNC1 calculation.

This was done by Ballone, Pastore and Tosi, with good success 54 . The

density profile for the I M, 1-1 electrolyte at a surface charge

o*=q s/e= 0.7, which will be the test case used for comparisons. This

is the highest surface density simulated, and shows charge

oscillations due to the hard core of the electrolyte. In this

calculation the bridge diagrams were computed directly from their

definition.

cw(1)= -3u,(1)-lnfg (1)] +h (1)

Sd B B B (33)
+ 1/2- P P J 2 d3 h'B(l 2 ) hik(13 ) hkj(3 2 ) h (2) h,( 3)

t jk

where the product of the three bulk pair correlation functions in the

second term of the right hand side is first term in the density

expansion of

c Bk(1,2,3) (34)

The results of this calculation are shown in figure 2. Since

there are no adjustable parameters, the agreement is very good. An

alternative less laborious procedure was suggested by Rosenfeld and

Blum5 5 , but actual calculations were not performed.

Another way of inmproving the HNCI approximation was

introduced by Forstmann and co-workers 5 6 . In their method the HNC1

equation is used as described above, but instead of taking the bulk

direct correlation function, as prescribed by (28), a local density

dependent c B (r,- ) is taken. The local density is defined by

x+A z+a/2
(x)= 1f dz j"dz p (Y) (35)

x-A z-/2

where a is the diameter of the ion and A is an adjustable parameter.

The bulk correlation function is then

13



B (6c 1fIrll) (36)

For the test case with surface charge a =.7, the results of this
method, as shown in figure 3 are very good.

BGY BASED APPROXIMATIONS

The BGY equation can be derived from the one particle direct

correlation function c(1). Consider again (20): letting the gradient
act on the f-bonds of the graphical expansion of c(1)57, we get the

BGY equation

-kT V1p(1)=p(1)V 1u1(l)+ d2pj(1,2)V1u (1,2) (37)

Using (23) and (26) to eliminate the long ranged terms, we

obtain (37) in a different form

-kTV p(l)=p (1)V usr(1)+ Pi Mei Villi(1)

r _(38)

+ d2p (12)V, us(12)+p (1)efd2P(2)eh (12)V (1/er
f i

This equation can be integrated from - to z, to yield

ln[gi(z)l='ei[C0(z)+V, (z)]+J 1(z) (39)

which together with Poisson equation (3) forms a closed system of
equations that is very convenient for numerical solutions.

This equation is of the same type as the one derived from
the HNC1 equation (28): The right hand side term consists of three
contributions: The potential 0(1), which is determined by the single
particle distribution function pi(1), and the terms w,(z) and J(z)
which are functions of the pair distribution function h (1,2). From,i

(38) we get

Wi(z) 4dz, p(0) Jd2Pj (2)e h (1,2)V(/Er 12)

(4O

J(z) = zl d2 p ,(12)V u's(1,2)

We remark that in (38) (and also in (39)), if the fluctuation

14



terms J (z) and 41,(z) are neglected, then we get back the Gouy Chapman

theory, which has a known analytical solution .
In the BGY based theories the pair correlation function

h (1,2) must be given by some approximation. The interesting feature

of the BGY equation is that for no matter which closure, the contact

theorem (16) is satisfied. However, the electroneutrality conditions

(see below) are not satisfied, in general. The simplest approximation

one could think which is equivalent to Kirkwoods superposition

consists in writing

h.(1, 2 )=hB (r ) (41)

where h(r ) are the bulk pair correlation functions, fails to

satisfy the important electroneutrality condition (see below),

-ei=Z d2pj(2)eh. ( 1,2) (42)

and gives very poor results when compared to the computer simulations.

The approximation
5 8 42

h(12) = f.(1)f(2)hB(r) 1(j 12 1 l> j (43)

r- 1
1  2  < ( 0 i U

icosrce sotath fuc iosf(zarreuedtstiyth

electroneutrality condition (42) for the inhomogeneous pair

distribution function. This yields an integral equation for those

functions. This construct of the inhomogeneous pair correlation

function can give negative values of g i(1,2). The problem is

specially severe for dense systems, beyond 2 M of salt concentration

or also for the test case of high surface density charge. A simple way

to circumvent this problem was suggested by Caccamo, Pizzimenti and

Blum
59
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h (1,2)= f (I)f (2)h B (r)+A (1.2) r y
IiI J 12 U

(45)

where

A (1,2)=Ahrj(r) z lz 2<20y (46)
tr i j 12 e

the parameter A is adjusted to eliminate negative correlations from

h (1,2). The results are, however not very sensitive to the exactU

value of A. The comparison to the Monte Carlo simulations is again

good, this method yields for the test case with a =E,/eao=.7 the
z

density oscillations in the profile of the counterions. Figure 4 shows

the comparison to the computer simulations of Torie and Valleau 34 .

The inhomogeneous pair correlation function h (1,2) can
IJ

be obtained from the inhomogenous OZ equation

hI(1,2)-c (1,2) = fd3 h A(1, 3 )pk( 3) ckj(3,2) (47)

and a suitable closure for the direct correlation function.

ci (1,2)=-13 u (1,2) r1,>a. (MSA2 approximation) (48)

c (1,2)=-P u (1,2) + h (1,2)-ln[g ,(1,2)1 (49)

(HNC2 approximation)

The MSA2 approximation cannot be integrated explicitly, as
is the case of the homogeneous MSA. When the ions are approximated by

charged points then for some specific form of the density profiles

p(1) the OZ equation can be integrated, and series solutions have

been given (Blum, Hernando and Lebowitz 4 2 and Carnie and Chan60). The

numerical solution of the MSA2 and HNC2 has been extensively studied

by Henderson and Plischke6 1 . Approximate solutions of this kind will

satisfy the contact theorem (16) as well as the electroneutrality and

dipole sum rules6 2

The BGY-HNC2 equation has been solved numerically by

Nieminen, Ashcroft and collaborators 6 3 , however for systems with
neutral molecules.
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WLMB BASED EQUATIONS

Yet another integral equation is derived from the one

particle direct cwrelation function c (1) (22) by introducing relative
coordinates for all field in the diagram representation and taking the

derivatives with respect to those coordinates 57 64 This yields and

exact hierarchy of equations that is related to thy BGY hierarchy. The

first member of the Wertheim-Lovett-Mou-Buff (WLMB) equation is

44 4 (50
V 1 p(l) V1u(l)= p(1)z 'd2 c (1.2) Vp(2) (50)

This equation contains long range. divergent terms. Introducing the

local potential 0(1) (29), we have65 66

4 4 4 4V ln[p(1)]+P3 V40(1)+ 0 V u r(l) = jd2 c r(1,2) V2p(2)1 1 p (51)

This equation has been studied by Henderson and Plischke6 6 in

detail. As can be seen in the figure 5, it yields very good results

for the test case of a =.7. The calculations were performed solving

both the HNC2 closure for the inhomogeneous pair correlation function,

and also the MSA2 closure in a few cases.
A simplified version of the WLMB equation that produces

reasonably good results was studied by Colmenares and Olivares 6 7

KIRKWOODS EQUATION
An interesting approach has been suggested by Kjellander and

68Marcelja , based on the observation that for the HNC approximation the
chemical potential can be obtained explicitly as a function of the

pair potential h i(r12) for an homogeneous fluid. Then, within the HNC

the function c(1) can be explicitly evaluated.

The central idea is to slice the three dimensional space

into two dimensional layers that are homogeneous. The three

dimensional OZ equation can be mapped into coupled set of N two

dimensional OZ equations for a mixture of N components, each component

is an ion in a different layer. The particles interact with a species

dependent interaction pair potential. In the limit of an infinite

number of layers this procedure yields the correct inhomogeneous OZ

equation. The chemical potential gt(a) of the ith ion in the ath

17



layer is given by Kirkwoods equation:

gL(ct) =kT In p(a)+ kT In Ao/Az+ V (a)

rI8gRc~X (52)

+ p (O ) fd . J d R g,(R , c X ) a g j(R,_; ) (52 )

where X is the coupling parameter, Az is the thickness of the layer,

A0 is the ideal gas fugacity, V(a) is the interaction between a

particle in layer a and the wall; R is the two dimensional distance.

In the HNC closure

c(Rc4)= h (R,a3)-u (R,ao3)/kT-ln [g1i(R,a3)i (53)

Kirkwoods equation can be integrated to yield

p(a) =A z/Aoexp{ 1 (a) + p (13) dR l/2h 2(Ra)-c (R,a3)

-u (R,ap3)/kT] -1/2 In [gt (Rao)/exp[ui(R,ao)kT]R=O - 0(a)

(54)

where D(a) is the average potential for layer a.

Vi(a) = 21te 2/E i P( 3) Iza-z31 (55)

The results for the same case of a =.7 is shown in figure 6. The

agreement is also excellent.
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II- SUM RULES FOR THE CHARGED INTERFACE

The sum rules for the charged interfaces can be classified in two

categories:

1) the dynamic sum rules which are derived from balance of forces

considerations,
2) the screening sum rules, which are specific to Coulomb forces.

Because of the very long range of the electrostatic forces, the

stability of the system requires that all charges surround themselves
with a neutralizing cloud.

DYNAMIC SUM RULES

Consider the Born Green Yvon (BGY) equation33 69 70

T V (1 A M = 1) Vlut() +Z d2 pi)(1,2) V u j(1,2) (56)

J

where k is Boltzmann's constant, T is the absolute temperature, p,(l)

is the density of species i at position r=x,y 1 ,zi* If species i is
non spherically symmetric then the integration should also include the

rotational coordinates, the Euler angles K2, a, I u (1) is the

single body potential acting on i. The pair potential is represented by

u (1,2). Similarly p..(1,2) is the pair density function, which can beIj

written in the form

P ij(,2)=p.(2)pj(2)g(1,2) (57)

where g i(1,2) is the pair distribution function.

For charged particles it is convenient to separate the

electrostatic from the nonelectrostatic contributions. For the singlet

potential we have

u.(l)=e.0(1)+u" (1) (58)

where 01) is the local potential at r1 , e is the electric charge of

species i and u (1) is the sum of all nonelectrostatic forces, which

includes the hard repulsion from the wall. Similarly, the two body

contribution is
u. (1 ,2)=e cler +u"t(1,2) (9

ii ij1 12 tj (9

where u'r(1,2) is the nonelectrostatic interaction of the pair ij, and

the first term is the electric potential between the charges of i and
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j. Furthermore we use the function

h (1,2)=gj (1,2)-I (60)

and the potential

(1)=O(1-)+Ze ) d2j( 1)/r 12 (61)

where r,,= rl-r2 . The BGY equation is then transformed to

-kTV P(1)=P (1)VlU s ( 1)+ P (1)e V W (1)

4 44

+Z (1,2)Vt us (1,2)+p Me V (1/er )
dp Ii PIIp() I i 1,)41 12

(62)
We consider a system which is limited by an arbitrarily rough

planar, but charged surface. The precise mathematical requirement is
that there is a prism with an arbitrarily large cross section area S ,
and height L ( the volume V=SL), such that the force through the walls
parallel to z is of O(S1.8), where 8>0, as S-.a.

We integrate now over the whole prism of volume V. This is a

generalization of the case of a decorated surface recently discussed in

the literatumre, and is of interest in the discussion of the
electrochemistry of rough surfaces.

We integrate the BGY equation in the volume of a prism of the same

section S but smaller height L I<L. Summing over all species i, we get

! 11 LI I I Je)

+ 1ld Z d2 p~j(1,2)V u s(l 2+,lp()h(1,2)V(elr

(63)

Since in our system VI=a/az, the integral of the- left hand side

term can be easily performed
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L

Jdr1 Vp(l) dxdy, dz I  ap (l)/az
JS Jz,(xt Yl )

= S[ p(L)- I/Sfdxdy1 p,(x.YtZ)]

JdrI Vp(1)= SI p(L1 )- I(S) I (64)

where we have defined the average contact value as

5 (0) = I/SfdxldYi p (x,y,z , ) (65)

To integrate the second term in the right hand side we use

Poisson's equation
2 (66)V I V (1)= -4x/EE e p(1) =-V,.E(I) (6

where we have used the electric field

E(1)=-V 1Wj (1) (67)

Substitution into the second term of the right hand side leads to

Jdr1 [E ep,()] [ E.(l)]= - /47Jdrt V~ (1) E (1)

= e/41cdr1 [VI E(1)] Ez(1)

(68)

where E(1) is the electric field at position r1 , and E(1) is the z

component. Integrating by parts, we get

L

Jdr, [Z ep(1)] [ E()]=e./8nJdx c 1Jdz1  aE 2(1)/aZ
is tz z (xI'Y1 ) (69)

+ e/4ntldxdydz [E(1) 8E(1)/,x + E (1) 8E(1)/ay,]
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The second term of the right hand side is zero: For a periodic
interface in the x and y directions, if we take S to be the surface of

a unit cell, then the terms like aE x(1)/ax will be equal but with
opposite sign for neighboring cells. For the general random interface
we conjecture that this term is finite: then in the limit S-- the
contribution vanishes. We have

u/s fdE [(01 ) [ =-E/8n E > (70)

where the average square field in the z direction is

<E2> 1 /S fdx dy E2(xly 'Z) (71)

The first term yields

I/S p (1)V usr(l)= <p(1) 8ur(1)/az >S (72)

where
<pi(l) au:r(l)/aZI>s = I/S Jdx dyt dz, pP() au:(1)/,z (3

I 1 1/ (73)

S Jz S(xyY)

The last term in the right hand side of equation (63) is the average

of the pair forces. We write

L .L

Ip= fdx dyIfdx 2dY2 Idz fdz 2  ZF.j(I,2)

S 'z (xI y) Z (x2 ,Y2 ) J (74)
L ILi L

Jdx dyf x 2dY2  dz I  dz + fdz 2  ZFi](1,2)

S Sz (x,y) z y)(XY) L J

where

F ((,2)- p.(1,2)V u$r(l,2)+p(l)p,(2) h,(1,2) V,(eelEr
FII 

2 (75)
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clearly

F.(1,2)= -F..(2,1) (76)
ii ji

from where the first double integral in (74) vanishes. Since the

interactions are short ranged, the second double integral yields

the virial contribution to the bulk pressure P

L L

P=1/sf dxtdyf dx,dy, zxy fdz, ZF ( 12)

j 
I

JS JS z " S (x, y) JL (7

=21r/3 pp fdr r3 [e eh (r)/r'+ g (r) au (r)/or

0

Putting it all together yields the general contact theorem for a

surface that is planar on the average, but not necessarily smooth:

kTZ '(O): P + E/8x<E 2>S - <p(1) u"(1)/az,> (78)

I I

This theorem is a generalization of the rreviously derived contact

theorems to the realistic case of non smooth electrode surfaces. It

contains the previous results as particular ca'-s. If the interface is

a smooth hard wall then the surface averages become the surface values

of the parameters and we get

kT_ p,(O)= P + &18x E'(0)- Z <p(l) 8u"(1)/z 1 > (79)
I I

where the last term is now

<p (1) au"'(1)/az > = fdz Pi(1) au'r(l)/z(80)
0

when u'r(1) is zero then we recover the previously obtained results

kT p,(0)= P + &/8x E2(0) (81)

for the primitive model with a continuum solvent of dielectric constant
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E, and

kTI p,(O)+ p(O)] = P + I/8n E2O) (82)

for the molecular solvent case. Here the second sum in the left hand

side is over all the neutral molecules in the system, while the first

is over all the ions present.
When the surface has an array of sticky adsorption sites, such as

in the case of the SSM model discussed below, then the adsorption

potential has the form
exp[-u a(r)]= I + ka (R)8(z) (83)

with

Xa(R)= ZXa S(R-nia 1 -n 2a2 ) (84)

nln 2

Here R=x, y is the position at the electrode surface, and z the

distance to the contact plane, which is at a distance o/2 from the

electrode. In (84), nl,n2 are natural numbers, and a1 ,a2  are lattice

vectors of the adsorption sites on the surface. The number Xa
represents the fugacity of an adsorbed atom of species a. Define now the

regular part of the density function

P (1)=y (1)exp[-P3u"(1)] (85)

Replacing into the general contact theorem (78) yields

kTZ (0)= P + e/8n<E2>S  + kTX, Z<ayi(l)/az> (86)
I I

This theorem has been verified recently by F.Cornu, for the

exactly solved model of a one component plasma in two dimensions 7 2

THE SCREENING SUM RULES

In systems that are electrically neutral, any fixed arrangement of

charges is screened by the mobile charges of the system. In homogeneous

bulk phase this is an intuitively natural fact, because if the long

ranged Coulomb forces would not be screened then the partition function

would not exist (it would diverge), and matter would not be stable.
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This is expressed by the fact that the charge distribution around a

given charge ei is of equal value but opposite sign.

In the homogeneous bulk phase this is a natural fact:

-e,=ZJd2pj(2) e h(1,2) (87)
J

Rotational invariance in bulk fluids require that not only charges

but also multipole of arbitrary order should be screened by the mobile

charges of the media7 3 . This fact is much less intuitive in the

neighborhood of charged objects, in particular in the neighborhood of a

charged electrode. However the theorems hold and in classical

mechanics, at least, perfect screening of all multipoles occurs, in the

homogeneous or inhomogeneous systems.

These conclusions are supported by the results of the exactly

solved Jancovici model 7 4 . However, perfect screening of all multipoles

does not occur in quantum systems or in systems out of equilibrium 7 5

As a consequence of the screening the second moment of the pair

distribution function must be normalized. This is the Stillinger-Lovett

moment relation7 6 . As was shown by Outhwaite7 7 , it can be written in the
form of a normalization condition for the electrostatic potential

VI(r)= lie [e/r+Z pje drI hi,(r,)/( Ir-r, 1)] (88)

We have then that the second moment relation is

1/kT[ I YedrI 'V()]=l1 (89)

Carnie and Chan7 8 have shown that this normalization condition is

also valid for the inhomogeneous systems of charged particles: Consider

the inhomogeneous Ornstein-Zernike (OZ) equation

i U (d3 hi(1, 3 )pk( 3 ) c k(3,2) (90)

where c.,(1,2) is the direct correlation function and the singlet
aj
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density function p(1) satisfies the electroneutrality condition

e efdr p,(1)=-qS (91)

where q, is the surface charge density and S is the area of the

interface. The pair distribution function satisfies the sum rule

-e= ZJd2pj(2) e, hJ(l,2) (92)

From the diagram expansion we write the direct correlation function as

c ( 1,2 ) .-co ( 1,2)-Puu-t( 1,2) (93)

where

uel(1,2)= e e/erj 2 e/ 12  (94)

is the electrostatic part of the interaction and c°.(1,2) is the short
1J

ranged part of the direct correlation function. in the dense

media

(1,2)e j=-uI (r )+ dr u e(r )p (r )h (3,2) (95)
j ijI12 3 ik 13 k 3 kj

and from the OZ equation (90) we get

h.(1,2)=-0.(1,2) e -c 0(1,2) + d3 c'(1,3)ph3(1,( -c. Zkl3)9(3d332)(6

Multiplying this equation by epj(2), integrating over r2  and
summing over j , yields after use of the electroneutrality condition

(92)

1/kT ,fdr, p,( 1) (1,2)= 1 (97)
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which is the generalization of the Outhwaite formula of the Stillinger

Lovett sum rule for inhomogeneous charged systems.

OTHER SUM RULES

For flat hard electrode surfaces there are number of other sum
rules. A complete review of these rules was recently made by
Ph.A.Martin 7 9 . We will just mention a few of the more relevant to the

calculation of density profiles in the electric double layer 80

kT aln pI(1)/aE0 = . Jd2p,(2) e h (1,2) (z2-z) (98)

where E0 is the bare field at the electrode surface. The differential

capacity, which is defined by

d 8 q/a a (l) (99)

where q, is the surface charge, q=E0 e/4nt, and ( 1) is the

potential drop, satisfies the sum rule

l/Cd = 8n2/2S ZJfdld2pj(2) p(1) eeh (1,2) (z2"z_)2  (100)

The surface tension y obeys relations that can be given in

terms of the direct correlation function8 1 82

y =(OkT/2) JIdzdz2 api(1)/azI 1 P r2 &1 2r32 c..(1,2) (101)

Using the Ornstein Zernike equation we get the form that contains
the pair correlation function

Y =(,/2kT) Jdz dz p(1)lu(1)/8z p,(2) au(l)/az2 dr r3 h (1,2)1 2 i 12r12 i j (

(102)

These sum rules provide ways of asserting the accuracy of the
different approximations used to compute the charge and ion density
near charged walls.
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III- THE STICKY SITE MODEL

The theoretical discussion of smooth surfaces is considerably
simpler than that of a realistic surface, in which the solid, usually a
metal, has a well defined crystal structure. The reason is that in d,e
case of a smooth surface the problem is one dimensional, rather than
three dimensional. The analysis of a realistic metal surface potential
in contact with an ionic solution is extremely difficult, and requires
the use of very large computers. We would like to discuss a simple
model of a structured interface which predicts surface phase behavior,

for the adsorbed layers, and which is mathematically tractable. In
fact, if the correlation functions of the smooth surface model are
known to all orders, then the properties and correlation functions of
our model can be computed exactly, at least in principle.

The model 83 84 combines two ideas that have been used a very long
85time ago : Boltzmann's sticky potential , and the adsorption site model

of Langmuir 86 . The elegant work of Baxter 87 in which the Percus-Yevick
approximation of the sticky hard sphere model is solved and discussed,

shows that this model has a particularly simple mathematical solution.
In Baxter's work the potential has the form

exp [-13u(r)1= I + X8(r-o') (103)

where 3=l/kT is the usual Boltzmann thermal factor, u(r) is the

intermolecular potential, X is the stickiness parameter, r=(x,y,z) is
the relative position of the center of the molecules, and a is the

diameter of the molecules. The right hand side term represents the
probability of two molecules being stuck by the potential ua(r): this
occurs only when the two molecules actually touch, and for this reason
we use the Dirac delta function 8(r-o), which is zero when the

molecules do not touch, is infinity when they do, but the integral is
normalized to one. The stickiness is representeu by the parameter ,

which except for a normalization factor, can be considered as the

fugacity of the formation of the pair.

The Langmuir adsorption sites can be represented by a collection

of sticky sites of the same form as was suggested by Baxter. Only that

now we do not have a sphere covered uniformly by a layer of glue, but
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rather a smooth, hard surface with sticky points, which represent
adsorption sites where actual chemical bonding takes place. For this
model, equation (103) has to be changed to

exp[-3u a(r)]= 1 + X a(R)8(z) (104)

with
X a(R)= %"ka 8(R-nlal-n 2 a2 ) (105)

nln 2

Here R=(x,y) is the position at the electrode surface, and z the

distance to the contact plane, which is at a distance a/2 from the

electrode. In (105), nl,n2 are natural numbers, and al,a, are lattice
vectors of the adsorption sites on the surface. The number Xa
represents the fugacity of an adsorbed atom of species a, onto the
surface which has a perfectly ordered array of adsorption sites. While
this is not a requirement of the model, it makes the mathematical

discussion much simpler.

Consider now a fluid consisting of only one kind of particles of
diameter a , near a smooth, hard wall with sticky sites. The fluid has
N particles and the volume of the system is V. The Hamiltonian of the

system is

H= H0 +H2  (106)

where H0 is the hamiltonian of the system in the absence of the sticky

sites on the hard wall, and H2 is the sticky sites interaction

N

H2 = ? u'(ri)  (107)

where u (ri) is the sticky interaction of eq.(104).

The canonical partition function of this model is8 3

Z= - ,ep[-O3H 0 1 1 (R.)8(z.)] dr. 18
a I N a
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Expanding the product in (108) and integrating the Dirac delta
functions we get, using the single component notation to avoid heavy
and unnecessarily complex equations, with the understanding that in the
multi component case X is a vector quantity with components Xl.Xa and
the necessary modifications of N! and the integrations have to be made.

Z =Z0 z(aS/s,) ps(r.. rs), 9

S urac

where ri= Ri.0 is the position of the ith adsorbing site on the

surface. p0(r l..r s) is the s-body correlation function of the smoothsurface.S

interface model.

0 0 N
P0(rl"" rS) (N-s z  exp [-PH ]is dri (110)

(N-s)!Z I ~ ~

0s 0g0 (r... r s) ijiP (ri) (I)

i=1

Equation (111) defines the s-body correlation function g0(r

while p (ri) is the singlet density of the smooth wall inhomogeneous

problem. The smooth wall partition function is

Z0 = N. exp [-3H I I dri  (112)
1 i=1

The important observation is that in our sticky sites model (SSM),
the excess properties of the interface depend only on the correlation

functions of the smooth interface model. In fact, introducing the

potentials of mean force ws(rV...rS)

0 0 (r)g0(rl...rs)= exp 1-[ ws(r,.r s)]  (113)
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0on Ue sur][aceI (114)

The left hand side of (114) is closely related to the excess free

energy of the sticky site model as compared to the smooth wall

problem. In fact, from standard thermodynamics the excess free energy

is

Xs s 0

zft5s= I13 ln(Z/Z ) (115)

It is clear that in (114) the right hand side is the grand

canonical partition function of the two dimensional lattice gas in

aai
C 0

that the single particle density of the smooth wall problem depends

only on the distance to the electrode z, and not on the position of the

adsorbed particle on the interface. The SSM is a model that decouples
the structure of the interface from the inhomogeneous charged fluid

problem, which in itself is a very difficult one, even for the smooth

interface. The excess properties of the lattice surface are formally

the same as two the dimensional lattice gas problems that have been
extensively investigated, notably in connection with the psing model8 8 .

If the area of the interface is S , and the number of sites is M, the

number of sites per unit area is

w=--M/S (1 16)
Define also the excess free energy per unit area

M.S = AFs/s (117)
and the fraction of occupied sites oa=Na/M of particles of species a.

If we compare (109) to the grand canonical partition function of a

lattice gas on the sites of our model, we see that the number of sites

occupied by paricles of species a is
<Na>-- = n ZN/8na (118)

and using (116) the fraction of occupied sites is

a=(l/M)alnZN/alnX a (119)

31



The excess free energy Afs is also the excess pressure due to the

presence of the discrete sites structure on the interface.

EXACT RELATIONS FOR THE SSM

SUM RULES FOR THE FLUID DENSITY FUNCTIONS

The SSM for a charged interface satisfies a number of exact

relations: The first one is the analog to the Gibbs absorption

equation: If we define the surface excess in the SSM of species a83

a (120)

where pa(z) is the density profile of the smooth wall, and pa(Z) is

that of the SSM, then we must have

Ara=- P8aAfS/elnX a (121)

Because of the singularity in the f-function, the distribution

functions also must have a singularity. They must be of the form

Pa(r)= [1 +Xa(R)8(z)] Ya(r) (122)

where >'a(r) is the regular part of the distribution function. The

average number of adsorbed particles is given by the integral of the

singular part of the density pa(r)

<Na>=f.a(R)8(z)Ya(r)dr (123)

since this integral is actually a sum over the sticky sites m, we get

the relation

0a =X ay a(r ) (124)

which is exact : The stickiness parameter X a is the ratio between the

number of adsorbed and non adsorbed particles at site rm of the

lattice. Integrating (122) over all space yields

N=<Na>+4fYa(r)dr (125)

which can be rewritten as

<Na>=- dr[ya(r)- pa ]  (126)

Because of the analogy of the partition function to the grand

canonical partition function, a relation similar to the compressibility

relation holds
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<N 2>-<N >2=x a (<Na>
a a . a(127)

a

EXACT RESULTS FOR THE ADSORBED LAYER

Consider the case of a simple salt dissolved in water, near a
metallic electrode: in the SSM there will be three components, the
anion, the cation and the solvent, and the lattice atoms. In the
limiting case of the SSM, the sizes of the different species play a
crucial role in the possible ordering of the ad layers at the

interface. It will be convenient to picture the ions as having a hard
sphere core with a diameter oa ob' and the solvent as having a hard
core with diameter an. The lattice spacing of the metal surface is d,
and because it is the most stable surface, we will restrict ourselves
to discussing the (111) surface of the fcc crystals, or the (100) face
of the hcp crystal, that is, the triangular lattice. In the most
general case, all three components can be adsorbed competitively and
this situation can give raise to very complex phase diagrams89 . This
most general case can be modeled by the spin S=1 Ising model, has a
very rich phase diagram, involving first and second order phase

transitions and multi critical points. However, in most electrochemical
situations the electrode surface is polarized either positively or
negatively, which means that either the cation or the anion is strongly
repelled from the surface, and therefore we need to consider the
adsorption of either a or b and the solvent n on the electrode. This
implies a drastic simplification in the model, because now we can

discuss at least the case of commensurate adsorption in terms of
models that have been solved analytically, such as the spin S=1/2 Ising
model and the hard hexagon gas model. The phase transitions predicted
for these models seem to be reasonable in terms of the currently

available experimental evidence. Consider
Z SiTlP(ri~x

7/Z O= exp [- .w0(r ...rs)]
s! (114)

Here the sum has two kind of factors, the fugacity of the

adsorbed molecules
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= 'apO(r ) (130)

and another factor which corresponds to the interaction of the
adsorbed particles

g(r 1 .rs)=exp[.[3wO(r r ...rs)] (131)

Equation (114) is the grand canonical partition function for a
lattice gas with arbitrary interactions. In the most general case, the
adsorbate could occupy one or more than one single adsorption site, and
any adsorbed molecule could interact with an arbitrary number of
neighbors. This problem is however quite untractable, and therefore not
very useful. The first approximation that comes to mind is the Kirkwood
superposition approximation

g O(rl.-rs = T gO(ri,r j )
.s 2(r.,r. (132)

Because of geometrical considerations, this approximation is probably a
good one for molecules with short range interactions such as hard
spheres, and not a very good one for unscreened charged particles. In
terms of the effective potentials, we have

wo: wO )= E o ,r.
s s <ij < ( 13 3 )

1 < i ,j<s

With this approximation the problem can be mapped onto the lattice
gas problem with arbitrary interactions, which is still a difficult
problem.. If we restrict the interactions to nearest neighbors only,
then not only is the problem a tractable one, but there is a rather
extensive literature on cases that are of physical interest, for which
the phase diagram of the two dimensional lattice gas is known, and
hence the adsorption isotherm can be deduced.

Consider the case of a simple salt dissolved in water, near a
metallic electrode: in the SSM there will be three components: the
anion, the cation and the solvent, and the lattice atoms. In the
limiting case of the SSM, the sizes of the different species play a
crucial role in the possible ordering of the ad layers at the
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interface. It will be convenient to picture the ions as having a hard
sphere core with a diameter Ya' b, and the solvent as having a hard

core with diameter an. The lattice spacing of the metal surface is d,
and because it is the most stable surface, we will restrict ourselves

to the (111) surface of the fcc crystals, or the (100) face of the hcp
crystal, that is, the triangular lattice. In the most general case, all

three components can be adsorbed competitively, and this situation can

give rise to very complex phase diagrams. In most electrochemical

situations the electrode surface is polarized either positively or

negatively, which means that either the cation or the anion is strongly

repelled from the surface, and therefore we need to consider the

adsorption of either a or b and the solvent n on the electrode. This

implies a drastic simplification in the model, because now we can

discuss at least the case of commensurate adsorption in terms of
models that have been solved analytically, such as the spin s=l/2 Ising
model and the hard hexagon gas model. The phase transitions predicted

for these models seem to be reasonable in terms of the currently

available experimental evidence.

There are two cases of chemisorption of electrochemical interest:

In the first one, the charge of the adsorbate is neutralized by the

electrons in the metal, and this means that the interactions between
neighbors on the surface is attractive. If we are far from the point of

zero charge, and the metal is negatively charged, the contact

probability of the anions a is zero for all practical purposes and we

have only the cation b or the solvent n on the adsorption sites. The

problem is then reduced to a spin s=1/2 Ising model with ferromagnetic

interactions. In the second case there is no discharge of the adions by

the metal. The interactions between the ions of the same sign is

clearly repulsive, so that the nearest neighbor sites to an occupied

site are not going to be occupied.

The possible existence of phase transitions was discussed in the

work of Huckaby and Blum 90.The observation is that the SSM model maps

the three dimensional interface onto a two dimensional lattice problem.

The phase behavior in the interphase is determined by the mapping of

the parameters, and exact conditions on the existence of phase

transitions can be given.

The simplest electrolyte has three components that can be adsorbed
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onto the sites of the metal: the anion, the cation and the solvent. The

possible phase behavior of such a system has been discussed in the

literature and although there are some exact results on the phase

behavior of the adsorbed layer, the study of this system remains an

open problem. The simpler case of two component adsorption is discussed

in more detail.

THE THREE STATE ADSORPTION MODEL

This is the case of a simple salt dissolved in a solvent like

water. We call the ions a and b, and the solvent n. since this is a

dense system, then the sticky sites will never be empty, they will be

occupied by either by a, b or n. Now there are various possibilities,

because the size of adsorbate may be bigger or smaller that the

site-site separation. In the first case the adsorbate will exclude not

only its own site but also the neighboring ones, and the problem

becomes the hard hexagon problem of Baxter when the interactions of the

neighboring sites are ignored altogether. If the adsorbate is smaller

than the lattice site separation then it can been shown that the

problem can be reduced to the two component lattice gas: This case was

recently studied by Rikvold8 9 . In fact we have, by direct comparison of

the partition function and the hamiltonian of the three state lattice

gas

a ca ca  a c b  + c b 

-(1/0) In I I Z
pa jj , >

%b .E. b b a. cb
p cj ga ci 9 b i

(134)x
where we have used Rikvold's notation: the operators ci are 1 when site

i is occupied by x, and 0 otherwise. In our case x is either a or b,

and the solvent n counts as the empty site. The interactions are
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w - Wnn -(1/03) In g 0(ri,rj)/gn (rirj (135)

ij are neighboring

sites

and similar relations for 0 ab and *bb" The last two sums in (134)

correspond to the single occupation of a site by x

X.apO0(ri )

laGO n ';an= (1/3) In anP(a i

(136)
and a similar expression for 9b"

The possible arrangements on the triangular lattice of a three
component mixture is quite complicated and has been studied recently by
Collins et al.91(see also Y.Saito92). There are 10 different ordered
phases on the surface, when only next nearest neighbors are
interacting. Of course the picture is even more complicated for longer

ranged interactions. The geometrical arrangement is either (Ixl), and
there are three phases of this kind which correspond to pure a, pure b
and pure solvent n. These are dense phases and correspond to total
coverage (0=) for each of these components. These are limiting cases
when there is very strong adsorption of any of the components and

attractive interaction between atoms of the same kind. If we consider
ions with their charge, then because of the Coulombic repulsion the

interaction is repulsive or antiferromagnetic and the dense phases with

either pure a or pure b are to be excluded. In the case of the
underpotential deposited dense monolayers. This is explained by the
fact that the metal cations are not charged at the surface, and

therefore do not repell each other.

The remaining 7 phases are mapped on the (43x43) lattice. The unit
cell of this lattice contains three sites of the original triangular
lattice, and appears rotated by 30" with respect to it. Each of the
three sites can be occupied by either of the components of the mixture,
but because of the symmetry (geometrical degeneracy) of the phases, the
number of distinct coverings is reduced from 24 to 7. In table 1, which
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is taken directly from Collins's work we show the coverage, energy and

degeneracy of each of the ordered phases.
There are two cases chemisorption of electrochemical interest: In

the first one, the charge of the adsorbate is neutralized by the

electrons in the metal, and this means that the interactions between
neighbors on the surface is attractive. If we are far from the point of
zero charge, and the metal is negatively charged, the contact
probability of the anions a is zero for all practical purposes and we
have only the cation b or the solvent n on the adsorption sites. The
problem is then reduced to an spin s=1/2 Ising model with ferromagnetic
interactions, which will be discussed in the next section.

In the second case there is no discharge of the adions by the
metal. The interactions between the ions of the same sign is clearly
repulsive, and that of opposite sign is attractive: we have then

Oab <0, and aa' Obb> 0  (137)
This is definitely the antiferromagnetic case. Let us assume

for simplicity that we are dealing with the symmetric case in which

Oaa = Obb

(138)
Then there are two possible situations: either the

repulsive interactions predominate and

"aa > 0 ab (case I)
(139)

or the ab attractions predominate

- Oaa < 0ab (case II)

(140)
The phases in case I for a possible set of parameters is pictured

in figure 7. Here we may have phases ranging from pure a, for very
large negative 11a to pure b for very large negative 9b. In the example
of case 11 the ab atraction predominates so as to render the dilute
phases with b=I//3, 2/3 thermodynamically unstable. This case is
pictured in figure 8.

Complicated phase diagrams may exist in the neighborhood of
the point of zero charge for systems in which there is strong
chemisorption of some of the species. In the absence of specific
adsorption one would expect that either g1a or 9b is large , but not
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both at the same time. In these cases we are in the asymptotic regime
where the system can be treated by two state models. This will be done

in the next section.

THE TWO STATE ADSORPTION MODEL
We specialize now to the case in which only one of the ionic

species of the solution or the solvent is adsorbed. In this case the
structure of the phase diagrams is simpler, which at the same time
allows for a more general discussion, because we can include the cases
in which the size of the adsorbate is variable.

The following discussion is taken from the work of Huckaby and
Blum 90 . We consider a system in which we have a triangular lattice of
sticky sites on a hard plane surface. The spacing between the sites of
the lattice is d. This surface is in contact with a solution. Only two
states of occupation are allowed: the sites are either occupied by an
ion or by the solvent, or alternatively in the case of a pure fluid, by
a fluid particle or none. The fluid particles have an exclusion
diameter a, which may or may not be associated with a hard core
potential. Otherwise the interactions are arbitrary. We assume however
that the pair correlations on the surface decay sufficiently fast so
that we need to take into account first neighbor interactions only.
There are two possible situations: If the adsorbate diameter a is
smaller than the lattice spacing d, then there are two possible phases,
a dense, crystalline one and a dilute disordered one. Three is a first
order transition between them. If the adsorbed particles exclude all
next nearest neighbors, that is when

d<o<4 3d (141)
then the problem is exactly analogous to the hard hexagon problem93  of
Baxter. In this case there is a second order phase transition between
an ordered 43x43 phase and a disordered one.

SINGLE SITE OCCUPANCY

Consider again equation (114) together with the superposition
approximation (133):
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S pO(r) exp [Pwrirj)]

.' "2. (142)

where the subscript nn means that the pairs (ri,rj ) in the sum inside

the square brackets are nearest neighbors. As was done before (see

eq.134), we can write (142) as a lattice gas partition function 9 4

Z0= exp [OwE ti tj + O3i± ti ] ti--O I

(143)

where ti is the occupation number of site i which can be either 0 for

the site when it is occupied by the solvent (or empty) and 1 when it is

occupied. Furthermore

3w = - In go(d) (144)

N= In [PO(0)] (145)

This partition function can be mapped onto an Ising model with

spin variables si--±l by means of the transformation

si=2ti- I or ti=(si+l)/2  (146)

In this case (143) becomes the partition function for the Ising

model

Z/rz 0 = e[- E(sisj-2si-2sj) + f4 [ s ]
(1 )

(147)

where C is a constant that is irrelevant to our calculation. w/4=J is

the Ising parameter, which is bigger than zero in the ferromagnetic

case, and smaller than zero in the antiferromagnetic case. The variable

that plays the role of the external magnetic field is h, given by
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2h = g-wq/2 (148)
where q is the coordination number of the lattice. In the case of the
triangular lattice q=6. The two state ferromagnetic Ising model has a
first order phase transition when h=0 .From (148) this means

g-wq/2 (149)
and using the definitions (144) and (145) we get the exact condition for
phase transitions when w>O

,;=X 0 (0)=[g0(d)1- 3 (150)
The preceding analysis can be illustrated by a fluid of hard

spheres in contact with a sticky triangular lattice of spacings d=o. In
this case a good estimate of both the contact density and the pair
distribution function are obtained from the Percus Yevick theory

p 0(0)=p (1+21) (151)
(1-1)1

0OCY)= (l+T/2)
92() 7.2f(152)(1-1) (152)

1=(1/6) ipo 3  (153)
where il is the fraction of occupied volume. Replacing into (150) we get

(1/6)x(; 3  (J-(1)48=(1(154)
1 (1+2il) (1+11/2) 3

This relation is a necessary but not sufficient condition for the
occurrence of phase transitions.

A sufficient condition for the occurrence ot a phase transition
can be obtained from the classic work of Potts on the magnetization of
the ferromagnetic Ising model on the triangular lattice95 . The
magnetization in the Ising model is the difference in the number of
spins up Pu and spins down pd

I(x)=pu-Pd (155)

or using (146) I(x)= 20-1 (156)
where 0 is the fraction of occupied sites. Following Potts we use the
variable

x= e'Ow/2= 1 /( g0(d)) ' /2  (157)
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The result for the spontaneous magnetization is

16 x6  1/
I(x)= [1- (+3x )(-x)j 1 (158)

Using (156) and (157) yields the fraction of occupied sites as a
function of the pair interaction function

0 = 1/2 -(1/2)[ - 1
((d)+3)( g(d)-7)3  (159)

The critical value of 0 occurs when 0=1/2. Solving (159) for the
contact pair correlation function yields

2 (160)
From (150) we get the value for the critical sticky parameter X

X p0 (O)=1/27 (161)

In our example of hard core fluid in the Percus Yevick
approximation, we get using these equations together with (151) and
(152) we get the critical value of the excluded volume fraction

rlcrit=O. 3712 (162)
and the sticky parameter

crit=0.01185;3 (163)
This system undergoes a first order phase transition. The

isotherms for various values of the parameter X are shown in figure 9.
These exact results are in qualitative agreement with the mean field
theory of Badiali et al. 4 , where the first order phase transition is
also predicted. But the quantitative agreement is not good, which
illustrates the pitfalls of mean field theory. In the computer

simulations of Caillol et. al. 9 6 the conditions for the occurrence of a
first order phase transition are not met, because the adsorption sites
are of finite size, and for that reason the occupancy of a site may
prevent nearest neighbor occupation. In this case we expect a second
order phase transition to occur.

When there are longer ranged interactions, beyond the nearest
neighbor interactions, Dobrushin9 7 has shown that the first order phase
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transition still occurs. However, an exact relation such as (150) is not

available.
As was mentioned already in the electrochemical case the contact

pair correlation function of ions of equal sign is practically zero,
because of the Coulomb repulsion which prevents ions of equal sign to
approach each other. However condensed phases in the adlayers are
observed in electrochemistry. In particular the underpotential
deposition of some metals on electrodes occurs at certain very well
defined values of the potential bias9 8. For example the deposition of Cu
on the Au (111) face forms two phases according to the deposition

99 to1potential . These phases have been observed ex-situ 10  and in situ10 . At a
lower potential a dilute ordered 43x43 phase is formed. At a higher

potential a dense commensurate phase is formed.( see figure 10). It is
clear from the above considerations that in the dense adlayer case the
ions must be discharged, because then they would form a metallic bond,
which makes w positive , and therefore ferromagnetic. This is

supported by the features of the EXAFS spectra. In the high density
phase the near edge structure corresponds to that of metallic copper,
which has a characteristic double peak (figure 11). The dilute 43x43

phase has the white line characteristic of the charged ions. We may

assume then that in this case the Cu retains part of its charge, so

that the interactions are in this case repulsive, which corresponds to

the antiferromagnetic case.

MULTIPLE SITE OCCUPANCY: THE HARD HEXAGON CASE
If the occupation of one site in the triangular lattice also

excludes the nearest neighbors, then the problem is equivalent to the
hard hexagon problem of Baxter87 . This problem can be solved when the

interactions between the hard hexagons are neglected.

The thermodynamics of the hard hexagon model was recently worked
out by Joyce 102. In terms of the lattice fugacity

%-o0(0) (130)
The system undergoes a second order phase transition between an

ordered solidlike phase and a disordered one. The transition occurs
when

'crit =(11+545)/2=11.09 (164)
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The fraction of occupied sites is

Ocrt =(5-45)/10=0.2764 (165)
We remark that in the limit of highest possible density the

occupied sites fraction is 0=1/3.
For the low density phase the equation of state is

[1 1 Q2 - ( 2Q 3 + 2Q 2 Q1/2 )1/2
-40 (1-0) QZ + 2Q31(166)

Q0 = 1-50+50 2

QI =, QO ( 1 0 + 0 2

Q2 =( I - 20) (1 - 110+4402 7703+6604_ 3305+106)

Q3 =1 - 160+10602_37803+80304_108005+96206

-57607+2190 8 -5009+10010

while for the ordered phase

2(2-30)(1-0)

[+120-4502+660 3_3304_ (I-50+5-2)3 (19 +902)) (167)

Consider the case of an electrolyte in the neighborhood of a
charged electrode. The simplest model is the restricted primitive model
of a continuum dielectric and a smooth imageless surface. The contact
probability is computed from the Gouy-Chapman theory discussed in
section I.

g2(d)=p (O)/p.= exp[-zv.(0)] (168)

where we are using (7) together with the definition

Vi(O)= jPeo(O) (169)

we get

,Xoiex p [- ziVi(0 ) ] (170)

where V,(0) is the reduced potential at the inner Helmholtz plane.
Equating (170) to either (166) or (167) produces a suggestive form of

an adsorption isotherm that is shown in figure 12.
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From (164) and (170) we deduce that in reduced units there is a

critical potential at which a phase transition occurs between an

ordered and a disordered phase

z IYCI(O)=In[Xp]-2.406 (171)

At this point a second order phase transition occurs in the
surface, which is also seen in the adsorption isotherm.
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TABLE I

Configuration ea 0b  On Energy Degeneracy

Dense Phases (lxl)

a 1 0 0 30 aa +4a
a a

bb 0 1 0 30bb+gb

n 0 0 1 0
n n

Diluted Phases (43x43)

3

b 2/3 1/3 0 oab'2')bb Toaa1 2
( +) Itb (3) Ig

i 3

a 1/3 2/3 0 ab+(i)aa+ T~bb
b b +( 1) ga+( 2)  9~b

n 2/3 0 1/3 2aa +(2) a 3
a a a a

n 0 2/3 1/3 2bb 3

a 1/3 0 2/3 (j) I'a 3
n n

b0 1/3 2/3 (3 It
rn n 9

a 1/3 1/3 1/3 Oab ga b 6
bn 6
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FIGURE CAPTIONS

Figure 1: The primitive model of the electric double layer. The metal
side is represented by a smooth hard wall. The ions are charged hard

spheres. The solvent is a dielectric continuum.

Figure 2: Density profile for the test case with a --0.7
(ref.34,a =o'E/e). The line is the result of Ballone, Pastore and Tosi,

ref.54.

Figure 3: same as fig.2. Results from Nielaba and Forstmann , ref.56.

Figure 4: same as fig.2. Results from Caccamo, Pizzimenti and Blum,

ref.59.

Figure 5: same as fig.2. Results from Plischke and Henderson, ref.66.
Figure 6: same as fig.2. Results from Kjellander and Marcelja, ref. 68.
Figure 7: Phase diagram for the three state adsorption model case I

(from Rikvold et al. ref. 89).

Figure 8: same as figure 7. case 1I.

Figure 9: Adsrption isotherms for hard spheres in the mean field

approximation for a triangular lattice of sticky sites. (ref.84).

Figure 10: Cyclic potential curves for underpotential deposition of Cu

on Au(ll). The first peak (low density phase), corresponds to a
coverage 0.3. The second peak corresponds to a dense, commensurate

adlayer (ref.99).

Figure 11: Comparison of the near edge adsorption peaks for the
underpotential deposited Cu on Au (111). (a) spectra of the low density
phase. The near edge structure has a single high peak, similar to that

of CuSO 4, shown in (b). The high density phase spectrum (c) has a

double peak, similar to that of Cu foil (d).
Figure 12: The fraction of occupied sites 0 as a function of the

applied potential. The units are adimensional. There is a second order

phase transition at 0--0.2764.
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