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Earlier results for coherent propagation of light in correlated random distributions of dielectric particles of radius
a {with minimum separation b 2 2a small compared with wavelength A = 2x/k) are generalized to obtain the re-
fractive and absorptive terms to order (ka)2. The present results include the earlier multiple scattering by electric
dipoles as well as scattering and multipole coupling by magnetic dipoles and electric quadrupoles. The correlation
aspects are determined by the statistical-mechanics radial distribution function f{R) for impenetrable particles
of diameter b. The new terms for slab scatterers and spheres involve the integral of fR (first moment) orof fIn R
for cvlinders. The new packing factor is evaluated exactly for slabs as a simple algebraic function of the volume
fraction w, and it is shown that the bulk index of refraction reduces to that of one particle in the limit w = 1. Asim-
ilar result is achieved for spheres in terms of the Percus-Yevick approximation and the unrealizable limit «w = 1.

INTRODUCTION

Earlier papers! developed simple forms for the coherent bulk
index of refraction ( = y ¢) for correlated random distribu-
tions of dielectric particles with minimum separation (b) of
centers small compared with wavelength (A = k/2x). Writing
the index as n = 5, + in, + i7,. we applied general scattering
theory* to the range of small &b to obtain results for the re-
fractive (n,) and absorptive (n,) terms that were explicitly
independent of A and to obtain corresponding results for the
scattering (7,) loss term to lowest order in A. The explicit
approximations? for 7, and 7, for spheres, cylinders, and slabs
(m = 3. 2. 1, respectively) depended only on the particles’
radius or half-width (@), their complex index of refraction (n’
= ¢), and their average number (p) per unit volume; they
exhibited the statistical aspect of the problem only in the
volume fraction w = pt, with ¢ = v{a) as the volume of one
particle. The corresponding scattering terms 1, were addi-
tionally dependent on (ka)™ and on the low-frequency limit
of the structure factor W(W), with W = pv(b/2) = w(b/2a)™
as the volume fraction of impenetrable statistical particles
with diameter b 2 2a, i.e.. in general, each dielectric particle
was visualized as having a transparent coating of thickness
(b/2) ~ a. The present paper applies the general theory®+ to
derive the leading A-dependent terms of 1. and n,, these de-
pend explicitly on (ka)? and a/b for all cases and on appro-
priate correlation integrals A (w).

The correlation aspects of the distribution that we consider
are determined by the statistical-mechanics radial distribution
function® f(R) for impenetrable particles and are exhibited
explicitly as simple integrals over all R of the total correlation
function F = f — 1. The integrals for spherical and slab
particles are of the form § FR"dR (moments of F), but cy-
lindrical particles also involve { F(In R)dR. These can all he
evaluated numerically from existing statistical-mechanics
results or approximations™ '8 for f. We obtained explicit
closed-form approximations before':'7 for the integrals that
arise in the ‘W set and also used the required W integral for
spheres in a related development!8 for large kb; for slabs, we

00:30.3941/83/111562-06501.00

qo \ o0
DU S e P =

obtain both the W and A integrals from our earlier Laplace
transformation! of the exact Zernike--Prins result'? for f. For
cylinders, we may use the virial expansion for f to consider
some of the properties of N

In the following, for brevity, we use, for example, form (4:
113) to indicate Eq. (113) of Ref. 4, as well as essentially the
same notation as before.!-* We generalize the earlier multi-
ple-scattering electric-dipole approximations for n? = € given
collectively in form (1:44) by including scattering (and mul-
tipole coupling) by magnetic dipoles and electric quadrupoles
(for spheres and cylinders). For slabs and b = 2a (minimum
separation of slab centers equal to slab thickness), the explicit
approximation for n2 = ¢ reduces to € — ¢ if w — 1, as required
from physical considerations: The particles occupy all space.
The limit w — 1 is not realizable for identical spheres, and we
take w < wq ~ 0.63, with wy as the densest random packing
introduced earlier!-!7 to define the amorphous solid. How-
ever, our explicit approximation for ¢ for spheres also reduces
to ¢ as w reduces to 1; we regard this as consistent with the
approximations involved in scaled-particle® and Percus-
Yevick®7 statistical-mechanics theory and with the closure
approximation used in the multiple-scattering theory.?# For
eylinders, we take w < wy ~ 0.84, as before.! Were an anal-
ogous closed form available for the A -integral for this case,
we would expect the corresponding approximation for ¢ to
show the same behavior for the nonrealizable limit «w — 1.

The present application of the general theory3* to larger
kb than before!2 plus the recent applications!® to large kb
provide simple forms that explicitly display the functional
dependence on all key parameters for many practical appli
cations. Thus, in these ranges of kb, elaborate machine
computations are no longer required, and the results help to
delineate the fundamental physical processes.

PRELIMINARY CONSIDERATIONS

For a slab-region distribution and a normally incident wave
¢e ~'<! (representing either the electric or the magnetic
component) we write
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p=¢ée'kz, @-2=0, k=2n/\=2mn./A, (1

with 1, as the index of the embedding medium. The corre-
sponding bulk coherent propagation coefficient

K=knp/ne =kn, n*=ce (2)

is to be expressed in terms of p and F for pair-correlated
particles specified by their isolated scattering amplitudes g(&,
2). The normalization for g is such that for lossless parti-
cles

—Reé-g(2,2) = —~Re g = .M|g(k, 2)|2, (3)

with .} as the mean over all directions of observation #. The
corresponding known!? scattering coefficients a, (which may
represent two sets) are normalized by the form

g=Y a,, a,=aple, x), €=¢,/€, x=ka (4)
In addition to the dependence on ¢ (the relative dielectric
parameter) and on x (the normalized radius or half-width),
the coefficients depend on the dimensionality (m) of the
problem and on the choice of field component for m = 2 (i.e.,
on whether the electric polarization is lateral or transverse to
the cylinder’s axis). We obtain results for the bulk relative
dielectric parameter ¢ in the form

=6 +e. +ie, =6+ x26.+ixm6E,, (5)

where the set 6 is independent of x = ka. The forms for &,
and &,, corresponding to multiple scattering by electric di-
poles, were discussed before!2 in detail. Now we obtain
6.
From Rayleigh’s results for spherical dipoles,?0 the first
approximation for sparse uncorrelated distributions corre-
sponds to

_dmp  idp 12

v ke ko ©

ng—1=—cg/2, er=ng%

In first of the papers cited in Ref. 1, for lossless small ¢’ = 1,
we multiplied Im 7, by the statistical-mechanics packing
factor W to obtain the appropriate 7, for the correlated case.
The complete ¢, for spheres and slabs was given by Maxwell,?!
and for cylinders for both polarizations by Rayleigh.22 We
obtained ¢; and ¢, from forms (3:74) and (4:52)

n2-—1=-cG, ni=e¢, )]

with G as a multiple-scattering amplitude. This form with
G = g was obtained originally by Reiche2? and by Foldy?! for
spherical cases, and Lax?> derived the form in terms of a more
general amplitude than g. The function G that we require
is discussed in detail in Refs. 3 and 4. In particular for
spheres, cylinders, and slabs, respectively, the systems of al-
gebraic equations (4:113), (3:92), and (3:179) determine ¢ =
n? functionally in terms of a, and F for arbitrary ¢ and ka =
x. Before, we kept only the electric-dipole coefficient a; in
these systems and considered only the leading terms of their
imaginary and real parts, of order x™ and x 2™, respectively,
for lossless scatterers. Now we include terms to order x ™+2
for the refractive and absorptive effects.

Thus, for spheres with x small, the electric dipole approx-
imates!'?
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where the next terms are of order ix7 and x8 The corre-

sponding magnetic dipole (a,pm) and electric quadrupole are,
respectively,

(8)

ix?(e = 1) ix5(e' — 1)
am = , Az =

30 6(2¢ +3)
where the next terms are proportional to ix7, ix9 and x 19
The resulting amplitude for Rayleigh’s approximation (6) is
g~a; +apm+ as. (We use a,, aju for the earlier® b,,
¢ 1.)
For cylinders!® and polarization transverse to the axis, we
have g = ap + a, + a3 with dominant dipole
X3+ e -4 —1)L]
8(e'+1)
x4r(e — 1)2
- ——), (10)
8(¢’ + 1)2

The next terms are

(9)

irx2(¢ — 1)
Q) =
2(¢ + 1)

where L = In(2/xc’) withc¢’ = 1.781 ...
of order ix® and x6. We also retain

irx¥e — 1) _imx¥e-1)

Qg x ———————, o= s
0 32 2% 6 + 1)

where the next terms are of order ix6, ix8, and x®. For cylin-
ders and polarization along the axis, we use g ~ ap + a;,
with

(11)

T3¢ — 1) 2
ap T —— 1—58—[3—5—(5— 1)4L]}
_ xdni(e — 1)2

s (12
16 (12)

where the next terms are of order ix® and x%. In addition, we
keep

a; = irx4e — 1)/16 (13)

and ignore ix8, ix8, and x8 terms.
For normal incidence on slabs, g = ay + a;, as discussed for
(3:193). The dominant term is

x2(2¢ = 1)

ay = ix(e = 1|1 —

<

] —x¥e =12, (15

where the next terms are of order ix® and x4. We also re-
tain

a; = ix3(e = 1)/3, (16)

but not x5, ix7, and x% terms.

DISTRIBUTION OF SLABS
From form (3:177) we have

G=Av+ A, c=i2p/k=iw/x,uw =p2a=pria), (17
where

Ao =anll + AgHo+ A H /D),
Ay =nia (1 + Aok /n + AyHn/nd), (18)

with #| = ¢ + #,,and #,and #, given as functions of k, 1,
and F in form (3:177). This algebraic system is valid? for all
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ka = x, but we consider only forms (15) and (16) for a, and
the corresponding leading terms of the correlation integrals
Hy =d, 1IN, Wehave

Fo = 20 fmFdR+ik2p f FRAR = W = 1 + ixN.
{ O

i)
#, > —ixnN, (19)

where the next terms are 0{x°). Substituting into the ap-
propriate form (7) yvields

E=[1—(‘au(1+anﬁu)](1 '—(‘(11) (20)
to 0(x?). Thus in the corresponding form (5)

€=1+wd—x2wd?2 —w+ 3N/3+ (xd2ww,
d=¢—1, (21)

we require only the functions W and N.

The rigorous pair function pf for one-dimensional impen-
etrable statistical-mechanics particles of width b was given
by Zernike and Prins,!? and its Laplace transform was ap-
plied!? in the development of a residue series. From the La-
place transform of f as in Ref. 4, we obtain the moments of F
= f — 1 by a Tavlor-series expansion:

)

Fu= f1FdR = bi=2+ W/2 = ~bF.,
W = pb = pr(b/2) = wb/2a,
Fi= | FRAR = b1 ~ 4W/3 + W/2/2= ~bF,,

(22)

where the notation is the same as in Ref. 18. (The identical
results follow on integrating the virial expansion of F in powers
of W.) Substituting into W =1+ 2pF,and N = (2p/a)F,. we
obtain

W=(1-W)?> N=-(b/a)W(l -4W/3+ WZ/2),
(23)

where W was obtained earlier! from the rigorous Tonks
equation of state'® (which also follows from scaled-particle
theory®) by using statistical-mechanics theorems.

From elementary physical considerations, if b6 = 2a (mini-
mum separation of particle centers equal to particle width),
then for w' = 1 (the limit of a uniform slab) we require that ¢
=¢'. Since W -»QanC N -+ =1, the result (21) reduces to ¢
= ¢, as required,

More generally for b = 2a, the bracketed function in Eq.
(21) reduces to

| |1=2-7w+8uw?-3ud, b=2a. (21"

DISTRIBUTION OF CYLINDERS

For polarization along the axes, to the orders of accuracy in-
dicated for forms (12) and (13), we follow the development for
slabs with

¢ =i4p/k? = i4uw/7wx?, w = pral=pela), (24)

where /|, = (¢ + Hy+ #.)/2in terms of the correlation in-
tegrals in form (3:71). We have
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ffo=2mp SFRAR + i4p § Fln(c’kR/2)RAR = W — 1 + 1N,
H, = =i 2xp/nw) § FrdR = —in"(W - 1)/nm,

(25)
where the next terms are 0(x*). We obtain form (20) to 0(x?),

from which

e=14+wd+ x2wd>(1 + 2w+ AM)/8 + imx 26w W/4,

6=¢—1. (26)
Here
W=1+2rp f FRAR =1 + 2npF, =1 — 8WF,,
W = mp(b/2)? + pv(b/2) = w(b/2a)?, 27)
and
M=L-7mnN/2

= In(b/a) + W In(2/c’kb) — 2wp § FIn(R/b)RAR
= In(b/a) + WL, + 8WE,,

F=- J“ Fdn wudu, (28)
0

with F(R) = F|R/b] = Flu] and L, = In(2/c’kb).

We may evaluate F, and F; numerically by using tabulated
values of f or the original integral-equation approximations
in the computing routine. To first order in W, we use the
virial expansion: F = —1foru <1,

-

and F=0foru > 2. A closed-form approximation of W’ (and
consequently of F) was derived earlier! by differentiating the
scaled-particle equation of state.? Thus we obtained!

8W
F= —'cos" 4.4
T 2 2

12
' 1=u<2 (29

W= (1-W)31+ W), (30)

from which W =1-4W + 7W2 + ... The rigorous virial
expansion to 0( W?) is

W=1-—4W+ V3 12W2r = 1 - 4W + 6.6159W2L (30"

For the unrealizable value W = 1, the closed-form ‘W’ vanishes;
a comparable approximation of M would reduce to —%, for b
= 2a and W = 1 in order for € to equal €. The corresponding
moments are then F; = Ysand F; = —(In 2)/2.

For polarization transverse to the axes we use G = Ay + 4,
+ A, with A, satisfying the system (3:89). From the solution
(3:90) and the corresponding form of 12, in terms of a, and #,,
of form (3:91), to the accuracy required for present purposes,
we work with

—(e— D/e =ap+ A + 2aall + Ayc/2)% (31

Ay =a,/(1 —a;H),
AN =c+H W = D +HiN —ie(0 - 1)/27,

where ¢.4 is a multiple-scattering coefficient that includes
all electric-dipole-dipole coupling. The coefficient a (es-
sentially the magnetic dipole) is uncoupled, and the multiplier
of the electric quadrupole a. includes all orders of electric-
dipole coupling to the required accuracy.

Using approximations (10) and (11), we obtain initially
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2l = 1 5
Q=1+l e
1+€ —~wle—~1) D

D=1+—— b=¢-1. (32)

with which

x2wd |3+ ¢ — 8[4M + ¢, (W — 1))

8 207

eley + D3 imx262uW
T2+ D 802

€= € —

(33)

-6

For b = 2a and the unrealizable value w = 1, we have D =1
and ¢; = ¢’, and the result for W = 0and M = =¥, is again e =
€.

For comparison with form (26), say, ¢;. we have to 0(4?) for
the present ¢,,

exl+wd—w(l —u)d/2+ x2wd2(1 + 2w + 4M + W)/16
+ (wx26cwW/8.  (34)

The corresponding bipolarization? is

¢ — € ~w(l —w)t?/2 + x"wd2(l + 2w + 4M - 'W)/16
+ i7rx 202w W/8, (35)

and we may obtain higher-order terms in é from Eq. (33).

DISTRIBUTION OF SPHERES

For spheres we use form (7) with

G=A+Am+ A, = (47p/k3 = i3w/x3,

w = pdmwa’/3 = pv(a), (3R

with the 4s satisfying the system (4:113) in terms of the iso-
lated coefficients a, and the correlation integrals #,, of form
(4:80) or (3:148). Introducing the low-frequency forms (3:
149), we suive the system and obtain

=(n? = e =n2A; + pPaiu[l + Asen/(n + D)2
+ ntas(l + A 1¢3/5)%
J‘] =01/(1 —017'111),
3H L =20+ 2Ho+ Hox20+2(W 1)
+IN(2Z+ 12/5)/x, (37)

with
W=1+4mp fm FRR = | + 47pFy = 1 — 24WF,,
0
W = pdr(b/2)Y/3 = pr(b/2) = w(b/2a )", (38)
and

N = —4xpa fm FRAR = —4wpaF, = 24(a/0)WF,. (39)
O

Here n2.4,/a; includes all electric-dipole-dipole coupling, and
the multipliers of the magnetic dipole a)p and the electric
quadrupole a, incorporate multipole coupling with all orders
of electric dipoles to the required accuracy.

Using approximations (12) and (13), we obtain initially
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Sw(e = 1) wd
=l =+,
@ 24+ ¢ —w(e—1) ! 0
1—w)b
p=1-LTW0 s 1 o)
3
with which
.
Dzl 5
(2€|+3)2“ ix3262wW 41)
10 5(2¢’ + 3) 9?2

The magnetic-dipole contribution x2wde; « ajpe; shows that
the effects of the function in brackets in Eq. (37) have can-
celed.

By differentiating the scaled-particle approximation® for
the equation of state, we showed that!.!7

= (1 - W)Y/ +2W)?, (42)

which also follows from the Percus-Yevick approximation.”
The first moment F; obtained® from the Wertheim-Thiele
solution of the Percus—Yevick integral equation” gives the
closed form

2a 6W w W
N="=—""—|1-"4+ 4
b 1+2W 5 IO) (43)

Although the physically realizable range corresponds to W <
W4 = 0.63, we see that, for b = 2a and the unrealizable value
w = 1, it follows that W = 0 and N = 9/5; then € = ¢’, as was
discussed fcr slabs and cylinders.

For comparison with forms (21), (26), and (34), we have to
0(62) for the present case of the sphere

ex1+wd—w(l — w3 + x2wd?6 + 3w — 5N|11/(15)*
+ (x3202w0W/9.  (44)
For b = 2a, the function in brackets reduces to

[ 1=3(2-5w + 4u? — /(1 + 2w). (44"

BULK INDEX OF REFRACTION
We write forms (21), (26), (33), and (41) collectively as
e=¢; + woP(x2) + wdSx™,d=¢ — 1, (45)

wh ro P and S, proportioned to x? and x™, are obtained by
1, - ~ction. The k-independent term

a=1+wd/(1+6D), D=(-1w)Q,
Qi=Qu=0, Qx="h Q3= (46}

represents special cases of the result for ellipsoids.> The
corresponding S for ellipsoids is also known,? and form (45)
holds for all small dielectric particles (discounting a resonant
multipole).

The corresponding bulk index of refraction may be
written

n=le +wbAP + i = g+ wbHP +iSV2n, (4T)

with 7, = \ ¢;. More generally. we write ¢ = ¢, + (¢, and n =
N+ i,

-

lel = [e,2 + €22 (48)
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In terms of A = ¢ — 1, we obtain form (2:3), so that part of the
earlier development is appropriate.

In particular, if we retain ¢; to 0(6%) and P and S to 0(5"),
then

(e — Dw = Aw =6(1 —0D + 82D + AP +iS) (49)

is correct to 0(6%), 0(x282), and i0(x™62). For complex § = §,
+ 16, we construct A = A, + i A, essentially as for form (2:25)
with the earlier (S replaced by iS + P but retain only the
leading term of the earlier 4% contribution. Thus

AJw = 8,41 = 8,D + 8,2D2) + §,2D(1 — 356,D)
—28,8,8+ (5,2 = 5;DP  (50)

and
Aw =81 = 26,D+ (35,2 = 6,D?
+ (0,2 — 6,8 + 26,0,P.  (5l)

The terms in P account for the 0(k*) corrections indicated for
forms (2.22) ff. £ 6, = 0, then A, is independent of S, and 4;
of P.

Similarly in terms of » = 0" = 1 with 1" = n,/n,, we write 0
=n” =1 =u(2+ ¢ and express 7 — 1 to O(+*), 0(x%?), and
(O{x™02) as
(= 1w =r+ A + 4P + i45)/2 + vB/2,

A=1~(w+4D), B=—(1=w)w +4D) + 8D%  (52)

For complex v = v, + {1, we construct n = 0, + {7, essentially
as for form (2:28).  Thus the refractive contrast , — 1 is given
by
n, — D/w=v Al + v,A/2 + v,.°B/2) — v;2(A + 3v.B)/2

— 40, S+ 20,2 = v;HP. (53)

and the net attenuation is determined by

niw = v (14 v,A+ (32— v )B/2)

+ 20,2 = D8 + 4P (54)
If the -catterers are lossless (v, = 0), then 5, does not depend
on S. and »; is independent of P. The present forms (50)-(54)
hold for all small-spaced particles to the indicated accuracy.
Generalization of [ and S to aligned ellipsoidal particles and
cocentered nonsimilar ellipsoidal exclusion regions are given
in Ref. 2.

For measurements in which the parameters ¢, and n, of the
embedding medium are varied, we normalize ¢, and n, with
respect to €, and 7, instead of ¢, and 1. See Ref. 2 for de-
tails.

The values of D, P, S. A, and B for forms (49)-(54) are given
by the following for the special cases at hand. For slabs,

D=0, Ai=1-w, B, =-w(l-uw)), (H5)
Py=—x32-W+3N)/3, S;=xWw, (56)

with W and NV as in forms (19) and (23). For cylinders and
lateral polarization, {Dy;, Ay, Byl equals {D,, Ay, By}, and

Po=x31 + 2w+ 4M)Y/8, So = x2mW/4. (57)
For cvlinders and transverse polarization,

I);l{ =(1 —w)/2, .‘1-_51 = —(]l ~uw)= —Ag[.

By, = ~w(l —w) = By, (h8)

Victor Twersky

Py = x¥1 + 2w + 4M + W)/16 = Py/2 + x2W/186,
Sy = wx2W/8 = §,4/2, (59

with M and W as in forms (25)-(30). For spheres,

Dy=(1~w)/3, Az=-(1-w)/3,
Bi=—{1 —w)(4 + 5w)/9, (60)

Py =x%(6 + 3w — 5N)11/(15)%, S, =2x *W/9, (61)

with N and W as in forms (38), (39), (42), and (43).

For cylinders, the values of ¢ and »’ for the lateral and
transverse cases may differ, and the corresponding birefren-
gence (n; — 1,;) will then display intrinsic as well as form ef-
fects. See Ref. 2 for details. The relations Ay, = —A4 and
Ba, = By, simplify considerations. In particular, if there is
a common vy, then

=M =wriA + P — x2W/16 +iS)]

=wrl —w+xH(1+ 2w+ M- W)/16
+ imx2W/4] = v¥R + i]). (62)

Then the birefrengence corresponds to

Re(m — ) = (.2 = ;R — 2p,0,] (63)
and the dichroism to

Im(y, = ) =20, 0,R + (0,2 = v, ). (64)

For experiments in which 7, is varied, we introduce the vari-
able £ = (1, — np,)/n,, and the constant u = np,/9p- to con-
struct v = (—=¢ + ip)/(1 + £). For small £, we have

Re(npr = o)/ Mpr = [(82 = PR + 28ul](1 = £).  (65)
Im(’?h[ - ”hr)/npr = [—2E#R + (52 - FZ)”“ - E)‘ (66)

which generalize the result in form (1:67).
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