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Pair correlations and the effects of dense packing are included to extend existing results oncreflection and scattering by distributions of protuberances (bosses) on rigid or free base planes.
The earlier energy conserving forms for the specularly reflected wave, the surface impedance, and
the differential scattering cross section per unit area, are obtained in terms of a transform of the
scattering amplitude of an isolated boss. Low-frequency approximations are developed with

emphasis on the roles of the packing density and multipole coupling effects, and explicit results 4o
are given for semi-elliptic cylinders and hemi-ellipsoids. For lossless bosses, the reflection ' , -
coefficient has a minimum, and the incoherent scattering a maximum, at the packing density

(N corresponding to maximum fluctuations in the number of bosses per unit area. Multipole
coupling effects may be misinterpreted in data inversion programs as changes in boss shape; if
such effects are not included, then, e.g., hemispheres may be mistaken for hemiellipsoids
broadened along the base plane and shortened along the normal. . -

PACS numbers: 43.20.Fn, 43.20.Bi

INTRODUCTION We obtain the original form' for R (Z) in terms of a more

Various physical aspects of the coherent reflection and complete impedance proportional to a transform off that
incoherent scattering of sound by rough surfaces are exhibit- includes packing effects and correlations, plus a correspond-
ed by random distributions of protuberances on rigid or free ing energy-conserving approximation for Q. We construct
base planes. For sparse uncorrelated distributions we ob- explicit low-frequency results (with semi-ellipses, and hemi-
tained' energy-conserving approximations, general enough ellipsoids as illustrations) and emphasize the roles of packing
to account for the dependence on angle for near-grazing inci- density, and multipole coupling. It is shown, for example,
dence and for pseudo-Brewster effects, and simple enough to that for lossless bosses, the specularly reflected energy has a
analyze special shapes' 2 and to reduce data in experimental minimum, and the incoherent scattering a maximum, at the
contexts.3  packing density corresponding to maximum fluctuations in

The representations' of the reflection coefficient (R the number of bosses per unit area. Another application re-
and the differential scattering cross section (Q) in terms of an lates to the inversion of reflection data to determine boss
impedance(Z) proportional to the scattering amplitude(f)of shape: e.g., because of multipole coupling effects a hemis-
one protuberance (boss) in isolation and to the number (p) of phere corresponds to an equivalent hemi-ellipsoid (broad-
bosses per unit area, are restricted to sparse packings. At ened along the base plane and shortened along the normal),
dense packings and low frequencies, i.e., for negligible inco- and such effects need to be included to the data reduction
herent scattering, we supplemented R with results for peri- procedure.
odic distributions4 .' for the case of one propagating mode For hemispheres with symmetry axis perpendicular to
(separation of bosses small compared to wavelength 2 ). To the plane, we take the packing density (w) either as the frac-
investigate domains of validity for the sparse and periodic tion of plane covered by the boss bases (of radius a), or more
cases for parallel cylindrical protuberances (analogs of the generally as the fractional area covered by cocentered larger
statistical mechanics one-dimensional cases of the sparse gas acoustically transparent disks (of diameter b>2a). The b
and crystal), we included the effects of pair correlations.6  disks correspond to impenetrable statistical mechanica par-
Using the Zernike-Prins7 one-dimensional liquid state pair ticles" - 2 with b equal to the minimum separation of centers;
function pp(x) for minimum separation b and average separ- equivalently, b is the radius of the exclusion region contain-
ation b = p -' of centers, plus a rapidly converging residue ing the center of only one base of radius a. The additional
series for b<b and b- b, led to forms in terms ofpb = w for parameter b for the minimum separation, or the correspond-
the full range 0 < w< 1, from sparse gas on to the determinis- ing packing density w = pnrb 2/4, enables us to model a
tic periodic limit. The present paper extends the earlier work broader class of surfaces. The size of w, from near zero on to
on striated surfaces6 to facilitate data inversion purposes, w, =0.84 (anexperimented value for the densest packing of
and provides analogous results for rough surfaces of arbi- identical circular disks) determines the correlation effects.
trary bounded bosses in terms of a pair functionpp(R) with R More generally, the base of the boss and of the exclusion disk
as the Reparation of centers of pairs. The development is are not taken as circular; their shapes and orientation in the
based on recent work on correlated monolayers' plane are specified by cocenitered curves a(R) and b (R) that

" Work supported in part by the National Science Foundation and the Of- are neither similar nor similarly aigned. As before,8 we as-
fice of Naval Research. sume that b(R) fully determines p(R) and that both have the

b'Fellow of the John Simon Guggenheim Foundation, 1979-1980. same reflection and inversion symmetries as an ellipse.
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In the following we use expressions given in Refs. I and - o, Ref(k, k') = oa + o,, q, = aoro &fI fi k) 12;
8 and refer to earlier equations by (1:38), etc. For brevity, the
recent work on monolayers' is cited for many detailed re- 4 41r
suits that are required. We work with forms for the average =k' kT
multiple scattering amplitude F for one boss in terms of the .f f/2
isolated valuef and in terms of transforms off. (We could = I dO, - I si
construct these forms by superposing results for the symmet- f ,/2 2r J
rical monolayer, but we include some additional relations where o-, and a, are the absorption and scattering cross sec-
F[f] to facilitate perturbation extensions to more general tions; "#If12, the mean value over the back space of real
base planes.) For detailed applications, we consider series directions (0<9</2), is also (by symmetry) the mean over-
decompositions of F and f in terms of the same scattering all directions. See Ref. I for additional theorems and discus-
coefficients A, and a,, and the distribution integrals A'. sion off. for arbitrary bosses, and for explicit low- and
(continuum analogs of lattice sums) derived for the symmet- high-frequency approximations for semicircular cylinders
rical monolayer.' and hemispheres; results for elliptic semicylinders are given

in Ref. 2, and for hemi-ellipsoids in Ref. 5 (p. 661, if).
Similarly for 0 incident on a configuration of obstacles

I. COHERENT REFLECTION (s = 1,2,...N) with centers at R, on z = 0, we specify the re-
sponse as in (8:7) in terms of the multiple scattering ampli-

As before,8 we use tudes G. determined functionally by the isolated values g, as

r = rr, r2 = z 2 + R 2, i = i cos 0 + R(q)sin 0, in G [g] of(8:8). For the corresponding boss problem we work
R( v) = i cosq + sinq, (1) withF[f], such that in terms ofG'sfora symmetrical mono-

layer, F, (i, k') = G (i, k) ± G (i, k') = G (', k') ± G (', k)
as well as the direction cosines i = iy + ia + 9 = iiy. equals twice the symmetry components of G. Thus, with
Suppressing e .', we work with a pair of plane waves, ei"R'F, as the amplitude for the boss at R,, we write the
imaged in the base plane z = 0, solution (excess pressure) for the configuration of bosses as

1=e' x r, k=klA, k=21/rA,

k = P{00, TO) = ,,, '4(r)= fe' e' R."F,( ,

' = e'1 '. k' = kk', k, = k,; iy = i(0,, q j, (6)

= firr- Oo, ( = = =ro'. (2) where f, equals (l/r)fdO, with contour as for H"', or

We write k'=ik-21 i = k-2yoi with yo=cos0o (l/21r)fdf2(0,, q¢) with contours as for h Similarly,
= Icos 0oI. For cylinderswith generators along 9, we set F,(k k') =f,(i, k')
q, = o, fl = 73 = 0, and R = i. In general we use three-di- I
mensional terminology; if two forms of a factor arise, we list + -X f (F, i l)F ,(i, -. ,Rk.,,

the cylindrical first. 2 f,'
For 6 incident on an arbitrary obstacle at the phase R,, = R, - R,, (7)

origin, we write" the scattering amplitude as g(i, k). If the where X is the sum over s# t.
obstacle is symmetrical to reflection in z = 0, then g(F, For a homogeneous ensemble of configurations ofiden-
k) = g(F', k() with ' = f(1r - 9, q ). The scattering amplitude tical aligned bosses, we proceed as for (8:9) to obtain the
for the corresponding boss on a rigid ( + ) or free ( - (base corresponding ensemble average of (6),
plane excited by ± o' follows by superposition,

f± (F, k ')=g +g(i , k) ' V)k =peirF(,flf~ " .R

= g(', ') ± g(', k) =f± (i', k). (3)
= 41 2CF(k', k);

The boss amplitudesf, are obtained directly from known
C = p/kro, prl/k 2-y., (8)

results for g, as discussed originally by Rayleigh'" for fine
semicircular cylinders. Equivalently, f, or f- is twice the whereF= (F,), is the ensemble averaged amplitude for any
component of g symmetrical or antisymmetrical to reflec-
tion in z = 0. We normalize g(P, k) as before,' so that for fixed boss. Thus
losslesscabes, - Reg(k,k)equalsthemeanvalueofIg(Ll ,) 2  (') = ±-' 4 + (:' _ ) = ±41' + ('P,R), (9)
over all directions of observation r. with the coherent reflected wave as in (1:37),

We restrict consideration to the half-space z > 0 (hence-
forth the backspace). The choice ± f 'for the incident wave (P'R) =0 (1 + 2CF)=$ 1 , Z= CF
for the corresponding rigid and free base planes allows for a 1 - Z T + CF
single representation of the scattered and reflected fields, F = F(i, F') (% ), (10)
and for the general suppression of subscripts ± . Thus the in terms of the nomalized impedance Z. The same form also
specular scattering theorem' for either case has the form arises for periodic surfaces with p ' as the grating spacing
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for parallel cylinders4 or as the area of unit cell for the rec- introduce the energy functions to provide motivation, but in
tangular lattice5 and spacings small compared to A (one view of the details that are available,' the present develop-
propagating mode). ment is brief.

To obtain F = (F,),, we consider the ensemble average
of (7) in terms of the pair-distribution function pp(R,), II. AVERAGE ENERGY FUNCTIONS

I We write the average energy density as
(F, (i, + ') +- p dnR p(R,) (I p12) = I(V/>)12 + V, with I( P)I'obtained from (9) as the

coherent component. The variance V = (I i - ( 2 ) 12), the
X ff(F, ,)(F(r, ')), ei(k" - k.R,. (11) incoherent or fluctuation component, follows from (6) by

proceeding as for (8:19). In particular, forz- oo we write V
Proceeding as for (8:13), we approximate (F),, by (F,),, as an integral over ali back space directions (101 <Ir/2),
and use briefer notation F(, k') = F,o, F( , k') = Fo, etc.,
to obtain V- pcJ W-[K ] jF(i, k')j 2 sec O-=p Q,o sec 0;

2 pldRp(R) fFoei
lk, - k).R (12) 2 1

In terms of the Fourier transform of the pair correlation
function W-[K] I + g[K] = I +pJ[p{R)-le' ndR, (18)

P [K ] =prp(R)eXRdR, K = k(i - i).(ii + f) where 7'1K ] is the structure factor, andpQ,o is the multiple
J scattered differential cross section per unit area.

(13) For the corresponding average energy flux, we have

and simple contours J± = ReQP* VP,±/k) =Jc + 1,

dO2, if r2  J' =k'±ReO,(PR:)*(k+k)+(.p;)12k,= +,.'* ~~~~~~~~~dO, I1 ff jo-, ... dO, sin 0,'J F '±R~' )*k+k)+I )~

f + - 2 I np| Q, isec0 (19)

we obtain the form (6:37) developed originally for striated
surfaces The first term of the coherent component J is the incident

flux, the second arises from interference of the incident and
F ) =f,0 + S f,, ,reflected waves, and the third is the specularly reflected flux.
S [ The net returned flux is

2 -o f 2 (14) J,=Ri+I, R=I(!p)I 2 =II+2CF12 = l+Z

with. W as in (4). [See (8:13H8:16) for discussion of the con- (20)

vergence factor and other aspects.] We showed that fsc oper- corresponding to coherent reflection plus incoherent scat-
ates on a function of the real variables Vc and sin 0c; because tering. The components of (19) normal to the base plane
we assume that p(R) has the same inversion and reflection equal
symmetries as an ellipse, P [K] is real, and it follows that .4WP !.Jc = (1 + R )cos 0o, i i =por0jA1/hlF, 12 = p,

and S, are real and imaginary operators, respectively. (21)
Introducing the Fourier transform of the total correla- with p Y, as the average incoherent scattering cross section

tion function p(R) - , per unit area. The corresponding average absorption cross

.' [K] =p[ p(R) - leI'ndR, (15) section per unit area is the average inward flux
f -- i.J = p . Conservation of energy requires, i.J = i.(J'

we make the specular contribution explicit to obtain form + I), from which'
(6:41), 1 =R +p Y sec 0 , Y =Yo + Y,, (22)

F, =fo(l + CFI 4- S''f, Fco, i.e., the incident flux density equals the flux coherently re-

$ = ?) [ K ] + S,. (16) flected plus that absorbed and incoherently scattered by the

If the effects of S" are negligible, then Fand the correspond- area of distribution irradiated by unit area of the incident

ing impedance reduce to the sparse-gas approximations' wave. From the development following (8:23), we may repre-

F= F' and Z=Z', with sent

F% =fo(l + CF) =f/(l - Cf), Y,, = -fRei *Vi/ik),.dA

= Cf(k, k') = Cf (17) as an integral over the surface of the boss, or as one-half of
as discussed and applied earlier in detail. .2 For the general the result of integrating over the boss plus its image.
case (16), we reduce Fby using the results of the analogous Substituting R = 1 + 2CFoo1I in (22), and using
development of G for the monolayer.8 As before, we first 4C cos 0o/p = ao, we obtain
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- ReFo= CjFoo 2 + (' + Y")/ao The coherent power reflection coefficient equals

= C IFoo2 + ,& ['K ]IF. 12 + y/ lo, R + 2 4ReZ - +p( +,)sec 0 o
(23) R= I _ I =1I + 11 Z-12  I-Z1 2

which for lossless scatterers reduces to (6:65). See (8:24)ff for Z = C/oo, , = o44I 0"1 Ai 2 . (33)
the detailed procedure for the more general problem of the
nonsymmetrical monolayer. The essential feature of the pro- The corresponding differential scattering cross section per
cedure for present purposes is that the energy relation (23) unit area is approximated by
corresponds to Fof (16), and that the same procedure may be pQo =p,o/I - Z . =W = [K ] cI l, 2 ;
applied to a modified problem shorn of specular losses. c, = 2/i'k, I/k 2, (34)

Il1. SCATTERING AMPLITUDE REDUCTIONS such that &, = f4,0, with

The procedure (8:24)ff for obtaining the energy rela- O F f,2
tions (23) applied to a modified scattering problem specified f' VJIJ.ol=,qo

by for ar isolated boss. The phase change (e) introduced by the

A =f,0 + S(Of,,/o, S(°) = Wgg" [K ] + S,, (24) distribution of bosses is given by

i.e., by the form (16) without the specular term, yields the tane= 2 Im Z/(I - IZ 12), (35)
corresponding form of(23). Thus for lossless scatterers, where e+ and lr + e_ are the total phase changes on reflec-

- Re/o = [.## '[K ]I/1 2 . (25) tion of ± 0' from distributions on rigid ( + ) and free ( - )

In terms of/we reduce (16) and the corresponding imped- base planes. These forms and C = p/kro orpir/k 2ro are the

ance Z = CF/(I + CF) to same as before,' and the dependence of/± on y0 = cos 0.
and r = cos 0 near grazing are determined by the corre-

F, =/,(1 + CFO.) =/,/(1 - C/), sponding behavior off± discussed for (1:11). Thusf_(F, 1')

Z = C/= C/. = C(k(i, k'), (26) vanishes and f, does not, as either F or k' approaches graz-

i.e., the same forms as in (17) discussed earlier,' but withf ing; consequently, Z-,.- and Z---0, so that (P±)/

eplaced by the modified amplitude / ( ±i '-- - 1, and Q---.

To analyze /and display the implicit physics we ex- The operation over S, in (30) is negligible for large kb

pressfin terms of the amplitudef' for a radiationless boss,4'5  for the present problem (which excludes complex 0, as well
as multimode periodic cases), and also for small kb provided

flo =f;o + - f;, f,o, (27) that boss width (a) is small compared to minimum separation

such that for the lossless case, f;, +f o* = 0. The leading b. (If a/b is not small, S, may introduce k-independent fac-
term of (27) includes phase and absorption effects but no tors arising from multipole coupling.') Neglecting S, corre-
radiative losses. For a lossless isolated boss, sponds to
-f, -f*o =zd-f,,f0, -Refoo = "If 2 , (28) Aozfo + .4'f;, 2 , (36)

with the special case for Refoo corresponding to (4) for a, which differs from the isolated scattering amplitude f,o in
= 0. that the radiation integral is modulated by the structure fac-

Writing P [K I = *'-[K I in S(°)of(24), we express/ tor W- = I + 9. As discussed before,8 the term I corre-
in terms off' as sponds to radiation in isolation, 9 to correlations among

/,o =f;o + [f1& W, + S, I f . (29) pairs, and W' represents fluctuation scattering; see (8:64)
and (8:77).

Suppressing S, by means of the radiationless distribution For small Im]>Ref, or small W-and small absorption,
amplitude, we iterate (37) and neglect absorption in the quadratic terms

f; =f;o + S, f" f,, (30) to obtain

such that for the lossless case, Ref;) = 0, we obtain oo=f; + - 7f, f =f~o - j i f; V2

A, =fl + # a[gKfK (31) Z i Imfoo - (a, + aJ/o0 ,
as the analog of the isolated-boss form (27). C

From Fo=//(1-C/}= (/'-C/I 2 )/ll-C/I 2  a.-.4'7[K ]fl 2 = PcJ YIK[K]q,0 . (37)
of (26), we construct -ReFo=(-Re/+ C1/1 2)/

II - C/I 2 . Using (25), we obtain To this approximation, /differs fromfonly by the presence

- ReF0, = C IFol2 + t-W W[K IIF, 12  (32) of the structure factor Xq[K] in the radiation integral. Writ-

corresponding to (23) for lossless bosses. In ing

- Ref,, -= ,W lfI2 of (28), the term - Refoo represents Z C/o = iZ, + Z 2,
the energy loss from the incident and image wave via inter- Z C Imfoo = pao Imf/4y,
ference with the radiated wave, and j_#1fI2 shows it is bal-
anced by scattering. In (32), the interference lIss is balanced Z 2  - p(o'. + &.)/4yo, (38)

by specular reflection and fluctuation scattering. we simplify (33H35) for various practical purposes by
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R= -p(o + &)sec 80 4w(2 - w)(2/ir)"2 sin(.Y - ir/4)

1 _ -Z [2 ' - (1 - w )2  23f /2 , 45

pW1[K ]qo e =Z , (39) which approaches unity more rapidly with increasing XW

11p - 2 tan - .- than (42). For elliptically symmetric statistics specified by an

where we may approximate 1- -Z12 by 1-22 + Z exclusion ellipse with principal semidiameters b2 and b3 (cor-

I + Z. The factor sec2 0 in Z2 insures that R+--l as responding to aligned hard elliptic disks with principal di-
90 -- r/2, and also relates to the pseudo-Brewster minimum ameters b2 and b3 ), from geometrical consideration,' we6 -i/2,andals reate tothepsedo-rewterminmum work with (43H-45) in terms of
in R +. The present Q may be used to isolate 7qK ] versus w
from measurements essentially as in x-ray diffraction by li- .X 2/k 2 = b 2 (a - ao)2 + b 2 - ibo)2, w = i"pb2b3/4,
quids, and the resulting 0' - 1 = 9 may then be Fourier (46)
transformed numerically to determine p(R) - 1. For the di- where ,y2 = K j(b 2 ii + b 3 , We apply existing results
rect problem we use 7W[K] as in (8:76) and (8:77), or numeri- for circular disks p(R ) =pIu I given in terms of u as radial
cal results obtained from other approximations' ° ofp. distance divided by disk diameter, by regarding u as the size

For cylindrical bosses, except for w = pb 1, it follows parameter for a set of cocentered similar ellipses; u = I
from the Zernike-Prins p(x), that6-8 specifies the exclusion ellipse.

For small-spaced bosses (small kb), and small a/b, to

I)= 1 + 2w (p - )cos Au du= ( + -9) lowest orders in k for the numerators and denominators in
w +sn W C(39), we have

w +sin." w2( -Rcos )
2 (l- w )2j 2  

' Rl- p)o,+ c+Z2
= kb (sin 0 - sin 0o). (40) p T '° Z,- Po Imfoo (47)

Ifkb is small, or if 0 0, then PQZ l -Z 1 ' 4 cos 0, (

'( )Y = N- + BJY
2 + 0 (p

4), '/ - = (1 - w) 2, where, except for pressure release bosses on a rigid base, Z, is
of order k, and o, and q are of order k ' for cylinders and k 4

B = A/"wI) 1 - 4w), (41) for bounded bosses. To this approximation, the greater gen-

so that Af (,Y) increases quadratically in .3' from its mini- erality of the present distribution compared with the sparse
mum /" = #' (0). The first local maximum of A'(') of(40) gas case,' appears simply as a multiplicative packing factor:
with increasing X is the largest, and for large 3"(1 - w), thus the earlier results can be carried over by inspection.

2w sin V4 The packing factor

- -w XA" ()'= I +pf [p(R)- I]dR (48)
approaches unity with oscillations decreasing as K '.

For aligned bounded bosses and a circular exclusion decreases the scattering effects as the packing density w in-
curve of radius b, corresponding to hard statistical mechan- creases. If there are n bosses in a central region A, such that

ics disks of diameter b, we have p = (n)/A, then
fo 7/- = [(n'

) 
- (n)']I(n) = ((n - n))2)I(n) (49)

A' -(K) = I + 8wJ (p -1 )Jo(UVu)u du, is the variance (fluctuation) in the number of bosses in A. If
there are no fluctuations, then Q and .Y, = 7, "a, /(I + Z 2)

w = (a - (43)' + #2vanish, and R < I corresponds solely to absorption. For hard
(.4'/kb (2 = (a -ao): + (fi- o)2  statistical mechanics particles governed by an equation of

= sin2 0 + sin2 Oo - 2 sin 0 sin 0, cos(qv - q7o), state E, we used the theorem9 (dE/c'p)' = W1" and the
scaled particle 2 approximations f, " to obtain" 7" as sim-

where Y2 = b 2K.(il + i}.K with K = k (P - ii). In gen- pie rational functions of the pac'ang density w:

eral, computations for 7W-(,) can be based on numerical 71o = (I - w), W'-, =, I - W)I,
results for p obtained from integral equation approxima- 2(1 - w 3/( 1 + w). (50)
tions.' If kb is small, or if P = k, we may use the virial expan-sion ofp to develop *-(,Y) in powers of w and Xit 2,  Here W, is the function in (41), *1 2 is mentioned after (44),

sion o+ to deeo i eand 71o is the analog for a random lattice gas corresponding

I - 4w + 6.6159W2 + .Y 2w( 1 - 5.9746w) to uncorrelated space-occupying particles. The upper bound

*- + ,V 2
B, (44) on 5V, and N( ,is unity; for 5V2, we used" w:5 0.84, an

where the final form is the analog of (41). From the scaled experimental value for the densest random packing of identi-

particle'" approximate equation of state, we showed cal circular disks on a plane, which approximates the mean
of the square (0.785) and hexagonal (0.907) close packed val-
ues.

For large (I - w),V, we integrate (43) by parts, and use The fluctuation effects are determined by (n) W, or by
J,(x)-(2/irx)'/ 2 sin(x - r/4) and the scaled particle approx- the normalized variance, S = wI5. From (50), we see that
imation for p(b) to obtain S (w) is small for w near its lower and upper bounds, and that
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S has a maximum S, = S (w,) corresponding to w = w, for I" aus, from (5), for semicylinders
which d9,S = S'= 0. As discussed before in a different"
context, FO± = G,0 ± = Ge A. [e" o ± e" -0 ]. (57)

.n=O

So, = 4, woQ ; with A.(0o) as in (8:57)ff in terms of a. and Jp',; see (8:59)-
St =A *=0.148, w , = (8:70)for,'" intermsofp(x), or intermsof XIK ]. Similarly

S,, =0.0856, w, =0.215. (51) for bounded bosses,

To consider extrema of R and pQ as functions of w, we write F±= X A%'[Y:Ii+YTI(']
(47) as n= _ ,

R~-wF +SB SB'R = I -,F S , pQ= SB (52) =YA1YT(f)[I+ -)-] (58)
1 + w2A"2 1 -4- urZA n n ,

and assume F<B. with A T(to) as in (8:72)ffin terms of a' and <k'-'; see (8:74)-
For moderate 0o we drop A 2. Then, if there is no absorp- (8:89) for ,,+,. All of the earlier results for the symmetrical

tion, Rz I - SB has a minimum andpQ = SB'has a maxi- monolayer ' can be applied to the present problem. We illus-
mum, trate the procedure by considering semi-ellipses and hemi-

R = I - SB, pQ,, =SB', (53) ellipsoids with principal diameters di small compared to A.

at the values w, of (5 1) corresponding to maximum fluctu- In the course of the development, we provide corresponding

ations. For nonvanishing, smallF/B, the extrema are shifted forms off',f f , and /'to be used in (26)ff.

to w ,, For ellipsoids, or for other obstacles having the same
to wA > w.. To first order in F, in terms of S, reflection and inversion symmetries, we retain only the mon-
R , 1 - (WF + S, B), wA =w. + F/B IS ', (54) opole and dipole terms and write the scattering amplitude as

where l/ISJ = I , 4, 0.453, for the sequence in (51). For
small w, scattering losses dominate in R, but with increasing = ao + . a, y' 4;
w absorption dominates. On the other hand if F B is not i a-
small then there is in general no minimum of R with vari- ao = a0 /(1 - as), a - a/{l - a/n), (59)
ation of w, and F dominates the loss effects for all w. where a; and a: are the corresponding coefficients of g' for

Similarly if we retain A 2 in (52) for F = 0, we obtain the radiationless problem. Here n = 2 or 3 for cylinders or
frequency dependent values w, for the extrema correspond- bounded obstacles, and yj and 7, are the direction cosines of
ing to vanishing R , -zR + (w,. - w)R '". To lowest or- P and i = ro with respect to i, i, 5 [see (8:90) for arbitrary
ders, alignment]. For a boss, from (3),

R-zI - iB(
1 

+WS 2 A), pQ, S,B'/(l +wA 2), fo =2airo74,
w,, - w. - R 'IR - S, w, 2A 2/IS,,1. (55) f0 = 2(ao + a2r2 r2 + arY3 33), (60)

Thus the extrema occur at smaller packings w, < w,, and with similar forms in terms of a' for the corresponding f'.
the shift is proportional to A 2. Extrema with both F and A 2 For the distribution of bosses,
retained correspond to w such that in terms of R (w,) = R, Flo =2Ay,
and Q(w) = Q, and of(52), we have F,+ = 2(Ao + A2y2 + A3y3), (61)

R, =R_, Q, =Q_' with

w.1 zw, - 2wSoA 2/1S"Ij + F/B iSl (56)

when w, may be greater or less than w,. A, = a,(IP, + 4,A,), A, = a.(7, + -Y,,A,

IV. SCATTERING COEFFICIENT REDUCTIONS _*"s = Jj, = 2S , y, = 1, (62)

In Ref. 8, we expanded the scattering amplitude g of an where i andj equals 0, 2, 3 in the form for A, and the *' are
arbitrary obstacle and the multiple scattering amplitude G given in terms ofJP, and Y*. in (8:93) and (8:94).
for a general monolayer as multipole series in terms of corre- For A , we have directly
sponding scattering coefficients a and A. From G [g] of(8:16), A, = a,7e,/( I - a , ,)_, 7,',
we obtained an algebraic system A [a] expressing A in terms
of a and the distribution integrals A (continuum analogs of F0= 2.o/,y, = 2 /, cos 0cos 0o. (63)
lattice sums determined by p). The same procedure applied The three coupled equations for A0 , A 2, and A, are reduced
toF[f]of(14),ormoredirectlytoFof(5)intermsofG forthe after (8:95). In particular, ifq'o = 0, so that 7 = 0 and 7,
symmetrical monolayer, involves the same A's and A's. = sin 0., then

A0 = .aV(/o + -YOA), A2 = .W 2(e2 + A'20Ao), r/, =a,/(l - a, .4',),

F*= 2 ° + -Z2r2e + -'o'02-o2(Y2 + 11) = 2 a ° + a 2 Y2e - aoa 2 [J,' 22 + "orr -,*:o 2 Y 2 + )]
1 - - 0 -d 2(Pr'0 2)2  1 - ao0oA' - a2 Y' 22 + a0a2[AWr22 - (' 02)2 ] (64)
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This result holds for all i for spheroids with symmetry axis cializing to q9o = 0, reduces (72) to the form (64) in terms of

along z, and for the two-dimensional problem (y2 = sin 0) of a , r/ = a /(I - a KY' 2 ), and :2•

elliptic cylinders. We may apply the above to Rayleigh's results"5 for el-

More generally, we reduce the coefficients to determine liptic cylinders and ellipsoids of area or volume 7', specified

the modified amplitude / to use in (33)ff. To isolate the by two relative parameters C and B (compressibility and in-

specular contributions, we decompose the distribution inte- verse mass density in the simplest cases, but complex in gen-

grals as in (8:105), eral). We have

-Y, j 2Cy ,yj - m, 6 , + , ao (iF ) , ' = C - 1;

J: + i. I -, (65) a'= - igii/(l + zq,)=- ifl 3, . 4 = B - 1,

where mo  1, and mi = 1/n with n = 2 or 3 ifi#0. Substi- r = k 27/4, k 3 7 /4r; Im C>0, Im B<0. (73)

tuting into the initial form of A, in (62), and using Fo- These results are correct to /[k ), and the next terms are
= 2A, Y of (61), we obtain ,( (k" 2). Here q, is the standard depolarization integral'"

A, =a, I e + [ 2C(e")2 + ]A; , /n]A,) written in terms of the principal diameters d,,
= P, (I + CF 0-o),

a =a,/[l -a,(k , - I/n)]. (66) q, =dd 2dj 12(d2 + x)[(d, + x)(d + x)

Thus, from F, =/' (I + CF,) of 126), and F,0 = 2A y, of
(61), we have X×dA +x)]" 2  'dx, q, = 1. (74)

2,, jye, For cylinders, d,- oc and q, 0,
a, =a/ l -a kP,)=a'/(1-a'f,), (67) d _ r d, (75

wherea, =a/(l +a,/n)anda,' =a,/(l -ia,. ",,)arethe qd = -q 2  d d, I + r d,-(7
corresponding coefficients off' and! ".

For F , we introduce with q, = = for the circle. For spheroids with d, as the

i = a,-i + a j', A = ai + a,', symmetry axis, q, + 2q2 = 1. If r = dl/d, < 1, the oblate

i= .+ v- case, then

.*' *ii + /". 1 i5 + ji) + ) ,S'S', (68) q, r cos

or the corresponding matrices, and rewrite the system in (62) 1 -r 2  (I - r2)1 2

as - <q<l, 0<q2<-, (76)

Ao= ao( + h 0(xAt, + Y.A), 3 3

A + -*'A(, +k.A). (69) such that for near disks, q, 1 - 7rr/2 + 2r 2. If r> 1. the
prolate case,

Using 65), and compacting Fo = F as in 161), we write I r cosh - ' r

y2i + y,' ask' (or i) to obtain q, = 1 - -- l--

AO= .-/;( + CF + -K".A), 1 1 -

A=. ' +[k') +CF)+ AKA], 0<q,< I' - <q 2 < -, (77)

A) = a,/(I - a, 0) =ag/(I - a') , such that for near needles, q, =(In 2r - 1)/r 2 . If d, is the

. = (I - ('.Y) I. - j". 1'.- *j (70) symmetry axis, then q2 + 2q, I, and we interchange d,

Here a; a,/(1 + a,) and i' = (I + ik/n = aii + a and d2.
If r = 1, then q, = [ for the sphere. For near spheres,j are the coefficients off', and a; a/j I - ia;. f "g)and

ii I ) -,.A, are the coefficients off". Eliminating rz 1, and (76) and (77) giveq, - 4(r - 1)/15. More gener-
e s t s all y, for a near sphere, di = d (I + 6, (with 6, z 0. From (74) to

the cross terms, first order in 6, we have q, = +) - 46, + 26, + 26,); simi-

A, = {ao~ + a.k '))l + CF), larly for q2 and qs, so that Xq, = 1. For a volume preserving

A a ± a-i')l + CF), deformation (dd 2d, = d '), we require 1i5 , = 0, and conse-
S= (I - .2/or '..k.. ) - '.V, =d.(I + a(,'. ), quently q, - 26,. 5 These points are stressed to facili-

tate geometrical interpretation of the multipole coupling ef-
.... =#'.dao= .c" a,. (71) fects we consider subsequently.

From (26) and (71), The form in (73) for a6 holds for arbitrary shapes; if

/ 4 = 2[aO + a.(F + k') + , (72) Bz 1, then a;= - iF is similarly shape independent. For
a rigid obstacle, we let C and B equal zero in (73) to obtain

where only the i and j components ofP and k' arise. We may

also obtain (72) by using f,, = 2(a, + Piit) and / a(, - iF, a' ziF/)l - qj. (78)

= 21u + t.u) in (24) to obtain u = ao + a.k' and u = a For pressure release obstacles (e.g., gas bubbles for under-

+ O.k'. See analogous discussion of , following (8:109). Spe- water sound)
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ao,2  - iir/2o, a3 -ik, a'= -iF/q,, and

o=ln[8/kc(d,+d 2)], c= 1.781; K(v)= (l -vsin2 r'- /2 dr

(f [(d2 + x3d + xlld + x) ]/2 dx (79) are the complete elliptic integrals, and p is the two-dimen-

The dipole terms ai, obtained by letting B---o in (73), are sional radial distribution function."" If w is small,
negligible in g but dominate inf -. The values of ?(the elec- 12 = 8 w(l + 0.4157w). See discussion of (8:89) for illustra-
trostatic capacity) for the spheroid equal tions for t = 2 and 4, and for comparisons with analogs for

e(2/I 2  (10 - I'/c r for r< 1, the rectangular periodic lattice.'
For all such cases, -o = 1 + O(k 2)= 1, and the mono-

2/d, =-- (r2 - l)1/ 2/cosh - ' r for r> 1. (80) poles satisfy

These reduce to e2/d= I for the sphere, to f/d 2 (2/ ao' ao il"' . (85)
r')(l + 2r/rr) for near disks, and to e2/d = I/An 2r for near The dipoles a' = a'/.i differ from a' by the k-independent

needles.
More generally than in (73), we use a dyadic parameter

and incorporate the shape integrals q, in a dyadic 4. For .q = 1 - ia;A, = 1 - FT'N1,/(kb 2)' = 1 + 0,.

present purposes, we assume that the principal axis of all (86)
dyadics are aligned with the Cartesian axes of the exclusion
ellipse and its normal, and replace - by -i = Bi - I. See
Ref. 8 for the general case. Ete E2 = --e E = 12/2,T b 

2, (87)
For small spaced scatterers, we use where Y = lTdd 2/4. For bounded dipoles, from (73) and

f ,j =N"Mjja. _j= Vi,,6 u5,, (81) (84)

where h" is the k-independent packing factor. The _'f. for C, eC 2 = - (e + e'), e3 = - (e -
kzO, reduce to. V'o=9?, 9Q°/kb 2, and .-r=9?(kb2 )3 for f= vI 2M0/4nrb 3, C' = 3 4I2M2/4rb , (88)

i#0; except for NO which depends on In k, the 91's are k where V = nddd 3/6. Both sets satisfy Xc1 =0, so that if
independent. we introduce new depolarization factors

For such cases (for i = 0, 1, 2, 3),
a," a, a' Q= q, + e,, Y Q 1 e, = o,

a, =_ - (82)
we reduce a;' to the same form as a;,

Except for the monopole terms for pressure release scat-
terers (which we consider separately) all coefficients are of a - i-
order k ". The dominant terms in (81) for cylinders, from a = + I --
(8:70) and (8:93) are given by (kb)2 _r-97, ' +

R2 21 2=2w du, (83) - + Q iF',. (90)

in terms of the Zernike-Prins p. If w is near zero, then The relations (85) and (90) specify an ellipsoid having the
I, z 2w1 + w 0.307); if w is near unity, 12 ( (2) = 7/ same volume and physical parameters as the original but a
6 z 1.645. different shape. From the discussion following (77), the

For bounded obstacles and elliptically symmetric sta- packing effects incorporated in Q determine the shape. The
tistics determined by t = b3 /b 2 (the ratio of the principal di- equivalent ellipsoid is flatter along the array normal (i = 1)
ameters of the exclusion ellipse), from (8:87) and (8:94) in and broader in the base plane, the elongation being greater
terms of (kb2 ) t . 1-- , along the smaller diameter of the exclusion ellipse (along b,

for b2 < b3 ).
-1 j9, - I2M0, 12 = 8w| . du, For elliptic cylinders with shapes specified by r = d,/

2l U d2 = q2/q 1, the equivalent cylinders correspond to r,

9722j = _ ± 1 2 = 1/2M
0 ± j M = d/d2 = Q2/QI such that

oJ2JM2 ± 3M 2r de.d, _ [ 12 2  E/q2r= d--- -, J d L2- 1 + c]
M °0 = (2/rt E (v), d d 2)

M' = (2/nr3tv)[(2 - v)E(v) - 2(l - v)K(v)], zl - - = 1 Id_ (1 )d)v = - t ,  (84) qlq 2  8b2  - (91)

We substitute (85) and (90) in a, of (82), and write
where = + i'W'2) and 93, = iti - 1V,) in terms of real

dcomponents with 2 and positive and small compared to
E- i d Wand 9. Keeping only the leading loss terms, we have
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ao = a/(l - a" W zir" ( -, - [r [W2 , + r ',, a a

a, = a /(l - al 7f/ n) . - - 1 I), - F (F ,12 ) + F " 2,)a 1 - a, LIV o o = 0o kb 2 "

(_____ ,2 For cylinders 41 oo= 92,- iF ,. F 1 0,1n- -I-,

1 + 44Q (1 +44,a n 9_= - -_P, P_=_1ln
(92) 7T ckbu

Using these in (67) and (68) in the forms IO = 2 (p - 1)ln = - I,

---"2(a. + "2y IP" + a ,r _e3 ), / = 2 -,ril , (93) 2 ckbu ) 2
we substitute into F = //(I - Z) with Z = C. Io = 2w In l)du - 2w -I ckb'

Writing j ? = y, for brevity, the imaginary part of Z is

given by I= 2w (p - l)ln udu. (99)

IMZ = 2r Ifw is small, J= - 2w[l + u2 In 2- 1.25)]; ifw- 1, then

I, - ln21r), and 1 °  - ln(4ir/ckb ). For bounded obstacles,
aSi1) = Will) - 2(1)e2 - IB](I)Y

23' I -1llY (94) .A/,kbjTOR,,

The corresponding real part involves absorption and scatter- 92o= - , Io = (p - 1 du,
ing terms 

] 0

p(. +), M' =(2/irt)K(v), v= -t 2  (100)
ReZ 4y Ifw is small, then I= - 8w(1 - 0.6413w). For the rectan-

P-7 3 ~k 4 gular lattice, we replace IoM ° by L°= -21n(4ir/
- pkk> P"8 k , ct) - 3.906 + 2 In t.

- 8y,((95) We have

'e'2)+ 2117/2 13Q~~laf =B,( 95) 902'Z I l, = I1- 1011/f
6 32 ' T2i.3:Z 1 + ('Y(/b2)Il0 M00= I - ((/b 2)l.IM o, (101)

= + + n n where only! .91 is k independent. The corresponding imped-n n n
ance is

In &,, for semicylinders we use k 'and n 2, and for bound- Z = C/- = C 2a
ed bosses, k 4 /rr and n = 3.

For rigid bosses on rigid or free base planes, by letting = C2a0/l - ag ') - C2a'/' - a )
I-- -and . 4,- I in (92)-(95), = C2a/(l - iao91 - a; 7k1, (102)

- with ao as in (79). For cylindrical bosses, a; = -i2 ,
= - ! ++ I Z -i2p/ky[2(o +I°)/7r+iZ'], (103)

( Q) I-Q,) Zvi -Ql)
(96) where for w- 1, o + 0 -ln[2b/ d, + d 2)] becomes inde-

1 2 _~+?_ pendent of k, and -=(I-- 0. For bounded bosses, a

I -Q2)2n + (1 -Q, )2n '  (l-Q})2n -ik4I

The correspondingf+ and Z+ specify reflection for the ho- Z+= ky. I + IM°/b2 + ik( '"
mogeneous case of a fully rigid rough surface;f- is of inter- - i2irpb2 1 1
est for underwater sound incident on the submerged part ofa ky( b0/4 )oM ° + ikb2 /Y' (0
rigid obstacle on the sea surface, and Z_ specifies reflection
for the corresponding distribution, so that for both (103) and (104), Im Z is essentially of order I /

The present development also suffices for the homogen- k.
eous pressure release surface, free bosses on a free base, We generalize the monopole development to include

S IQ r2 9) the first resonance for large finite'6 = C - I =C, by using
, . IQ 2 n. (97) a,' ; -- , -. (105)For various practical purposes, we would use 1 + of(96) and (1 - Fr' Y) ir V'

of (97) for the reflection of sound from the sea surface, The denominator is ofthe form I + 19 e(k 2); if '6 is moder-
+ for airborne sound, and 1 - for underwater sound. ate in size, we neglect the l(k 2) term to obtain (73), and if

The one remaining case, that of free bosses on a rigid W--Coo we obtain (79). The resonant frequencies, given by
base plane is exceptional in that the monopole as in (79) is not y . 1, equal
of order k '. Here ao is appropriate for underwater k 2
sound incident on a gaseous boss adhering to a rigid bottom. k, = 21r/71'W, o, 41r./7'W (106)
The effects of dense packing on the imaginary coefficient a; and the corresponding isolated monopole coefficient
as determined by -410, may be appreciable. We have ao = a; /(1 - ao) reduce to al ̂  = -
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