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-I Introduction

Let us consider the problem of scheduling a set of N tasks on a processor such that the

scheduling time constraints of each task are satisfied. In a hard real-time system, each task
Ti has a ready time ri, a deadline di, and a computation time ci. In a feasible schedule the
execution of the tasks must not begin before ri and must complete by di. It is well known

that this is an NP-complete problem [Gare79], which may require an examination of O(N!)

schedules to assume finding a feasible schedule.

In [Yuan89a, Yuan89b, Yuan89c], we developed a decomposition scheduling technique

for real-time scheduling. In this approach, the scheduling is carried out in two steps. In the
first step, the tasks are divided into subsets, and a sequence of the subsets is determined. In

the second step, the tasks are scheduled according to the sequence. It has been shown that
when a subset of tasks (r'), is before a subset (r' ) in this sequence, and if a non empty set of
feasible schedules exist, then there is a feasible schedule where all tasks of T i are scheduled

before all the tasks of rj. The overall complexity of the scheduling problem reduces to that

of finding a feasible schedule of each subset, as the complexity of decomposing the tasks

into subsets has been shown to be O(N) [Yuan89a], if tasks are ordered according to their

ready times1 .

In this paper, we evaluate the decomposition scheduling approach introduced. The

number of schedules to be examined directly depends on the number of tasks in each subset

which is also called the size of the subset. It is important to know the average size of

each subset, and the probability that there are k tasks in one subset for assessing the

performance of this scheme. If there is only one task in each subset, the scheduling becomes

O(N) computation, and the smaller the size of the subsets, the less is the complexity of

scheduling.

In order to evaluate the performance of the decomposition scheduling technique, we use

a stochastic model of task requests. For this model, we proceed to calculate the probability

that k tasks will be in a subset, for an arbitrary k. The expected value of the number of

tasks in a subset is derived next. A similar model has also been used in [Zhao89, Leho89].

In the next section, we briefly introduce the decomposition scheduling approach, and

basic terminologies. In section III, we calculate the probability for a special case where the

last task is contained in the first, when the tasks are ordered by their ready times. This

result is used in section IV to calculate the probability and expectation of the subset size

in general cases. The conclusion is in the last section.

1If we count the sorting cost, the complexity of the task decomposition is O(N log N).
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II Background and Assumption

A. Brief Review

The request of a real-time task, Ti, is represented by a triple < ci, ri, di >, where ci is
the computation time, ri is the ready time, and di is the deadline. We also define the task
interarrival time to be the difference of the ready times of two consecutive tasks, assuming
tasks are ordered according to their ready times.

Task T is also identified as task i in the rest of this paper, whenever there is no possibility
of confusion.

We define wi (wi = [ri, di]) as the window for task i. The window length Iwil is di - ri.
For a scheduled task i, si is its start time, and its finish time fi is si + ci. Clearly, for a

feasible schedule, the following equation should hold for all tasks,

ri < si < di - ci.

If we consider two tasks i and j, they must have one of these three relations (or we can

switch i and j around to have these relations):

1. leading - i -< j, if ri < ri, di _ dj and wi 0 wi.

2. matching - iiij, if ri = rj and di = di.

3. containing - i U j, if ri < rj and di < di.

These three relations are shown in Fig. 1. When iUj, we also say that i and j are concurrent.
For an arbitrary set of tasks, any form of task window combination is possible. In our

previous report [Yuan89a], we establish the decomposed leading schedule sequence by using
the leading relation to decompose a set of tasks into a sequence of single schedule subsets,
T 1, r 2 ,. . . ' . An order among these subsets is therefore defined. The decomposed leading
schedule sequence (DLSS) is represented by,

DLSS = rI or 2 o...0 rm

such that Vki E Ti Vkj E r ki -< ki, for 1 < i < j I m, and r i cannot be further
decomposed for i = 1, 2,..., m.

In [Yuan89b], we generalize our approach and define ti., strongly-leading relation to
further decompose tasks by taking into account the computation time for the tasks also. In
this paper, we focus our attention on the leading relation decomposition.

In [Yuan89a], we show that if a set of feasible schedules exists for the given set of tasks,
then there must exist a feasible schedule in which all tasks of a subset, ri are scheduled
before all Lasks of another subset ri, if ri appears before ri in DLSS. Therefore, in the

2
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time

Figure 1: Task window relations

decomposition scheduling technique, first we construct DLSS for the given tasks and then
schedule tasks in the subsets, attempting to create a minimum length schedule for each

subset. Our approach to finding a minimum length schedule for a subset has been presented

in [Yuan89c].

B. Assumption of the Evaluation

Assumptions made in tiiis paper are as follows,

1. only the leading relation is used for the decomposition;

2. the task arrival is a Poisson process with parameter ,;

3. the task time window length is exponentially distributed with parameter A2.

The Poisson process and the exponential distribution are the most common assumptions in
the computer system evaluation to characterize task arrival and workload [Triv82, Lazo84].
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III The Probability Distribution for a Special Case

Before presenting the probability density function of the number of tasks in a subset, we
first look into a special case.

What we are interested in is the probability for the last task to be contained in the first
one, when there are n tasks sorted in a list according to their ready times. The configuration

is showed in Fig. 2. We say that these tasks form a cluster.

I I
X, Y2

X21

I I

I I

Figure 2: A cluster of n tasks

First, let us examine a two-task case, as showed in Fig. 3. Let random variable X, denote
the interarrival time between the first task and the second one, and let random variable Y1,
Y'2 denote the window lengthes of the two tasks. X 1, Y1, and Y2 are independent random
variables.

If the first task contains 2 the second one, the following condition holds:

X1 + Y2 <_ Y1

Therefore,

'The two task will match if Xi = 0 and Y = Y2. In our model, the probability of two successive task
matching is zero and we will not consider that case any further.
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I I

Figure 3: A two task case

P(X 1 + Y 2 - Y) - JJJ fxlYl 2 (X1,Y1,Y 2 )dyi dxI dY 2
I +y2

_- JO 0I 0 0L> 2e -Ai xi e - A2Y1 e-A2 Y2 dyl dxl dy 20O JO X1 +Y2

1

2(1 + )

The calculation of the two-task case can be generalized to the n task case of Fig. 2

(n > 2). Assume that Xi (i = 1, .. , n - 1) is a random variable representing the

interarrival time between task i and task (i + 1) and random variable Yi (i = 1, -, n) is

a random variable representing the window length of task i.

The condition for the first task contains the nth task is that

X1 +X 2 +-.-+Xn- 1 +Yn _< Yl

In this case, all these n tasks are in the same subset, and cannot be further decomposed by

the leading relation.

Therefore,

P(X, + X2 + .. + X,_, + Yn <_ Y,)

" JO I,+X2+...1+1 fx 1,x 2,...,X.. 1,Y1,Y(X, Z2, ", zn-1, Yl, Yn)

dy, dyn dxl ... dzn-1

100. oo IZI+Z+*ZR. n-I A e - I I(1+x2++ " -n I )e - A2( +Yn)

. f+,2 +'"+ n-I \ + 2



dy, dyl ddx, "" dx1 -1
1

2(1+ 21)n-1

The probability of the n-task cluster is used in the next section to calculate the proba-

bility of arbitrary n-task subsets in general.

IV Probability and Expectation

In the last section, we examined the probability of an n-task cluster where the first task
contains the last one. In this section, we develop a general approach to calculate the
probability of an n-task subset where tasks may have arbitrary relationships, but the subset

cannot be partitioned further by the leading relation.
For an arbitrary undecomposable subset, we can always count the first task in a subset

as task 1 and the last task as task n.

First let us examine tasks in the order of their ready times. We find that tasks in

one subset can be further decomposed into a sequence of groups, as shown in Fig. 4. The
definition of the group is as follows:

1. the first task in a subset forms a singleton group;

2. the last task of a group is contained in one task in the previous group, and no other
task with later ready time has the same property.

3. the tasks between the last task of the current group and the last one of the previous
group are the members of the current group. The group excludes the last task of the

previous group.

Assuming that there are k groups, we name the last task in the pth group to be task ip

(1 < p _< k). As a special case of two tasks in Fig. 5, il = 1, and i2 = 2. A more complicated
case with il = 1, i2 = 4, and i3 = 7 is presented in Fig. 6.

The next question is how many groups exist in an n-task subset. We observed that for
a subset of n tasks. (n > 1), the number of groups (k) is less than or equal to n/2 + 1, but
greater than or equal to two. The proof that the number of groups is greater than or equal
to two can be directly inherited from the group definition. The proof that the number of

groups is less than n/2 + 1 is shown later in this section.

We also name the task as jp, which is in the pth group, and contains task ip+1 of the

(p+ 1)th group. There are k - 1 such tasks in a k-group subset. In Fig. 5, j, = 1. In Fig. 6,

ii = 1, j2 = 3.
It is always the case that il = Jj = 1, and ik = n for an n-task subset with k groups.

Tasks between j. to i,+, form a cluster.
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Group 1: E 1 I i1, jl2 1
Group 2: K I 12

4 1 i2

7 51

Group 3: 6 1 7 13

- I Ik-1

Group k - 1:L n - 2 1 ik-x
Sn-l[I

Group k: n L ik

Figure 4: A subset with n tasks

For a k-group subset, jp is different from ip for p = 2,.-., k- 1. That is, jp < ip. Suppose
that there is a group p (2 < p < k - 1), such that jp = ip (note that it is impossible that
jp > ip by the definition). In other words, task ip+l is contained in ip. But we know that

ip is contained in jp-. Thus, ip+l is also contained or matched by ip-1. The conclusion
contradicts the fact ip and ip+l are in two different groups.

Next, we calculate the probability that n tasks form a subset which cannot be decom-

posed by the leading relation.
Let random variable A count the number of tasks in a subset. For n > 2,

PA(n) = p(3k lili2, i ,*kil,1ji2,',jk-1

(1 = il = 1 <j2 <i2 <j3 < i3 < ... <jk-1 <ik-1 < ik =n)

A(jlli2 A J21i3 A ... jk-flik))

n/2+1

k=2 2(1 + -)121+~ 32 *2(1 + )ik-jk-1

n/2+11

E- I- 2 k1i~)P(ip-)+n-1()k=2 2k-(l + ,A" p-.

7



11 I ii, ji

21 li 2

Figure 5: A two-task case

The summation - ip - jp) is undecidable, since jp can be any number between

(iP, ip+1 ) by the group definition. But we can find the upper and lower bounds for the

summation.

By ip < jp+l < ip+l for p = 1,. .,k - 2, we can get ip + 1 < jp+l ip+l - 1. Thus,

k-i k-i
yE(i - jP) :S E (i - (i -1 + 1))

p=2 p=2

ik-l -kil-(k-2)

_<(n -1) - 1- (k - 2)

- nk

On the other hand,

k-i k-IE oi - jP) Dip i-(o - 1))
p-=2 p=2

= k-2

Note that,
k-I

k2< (ip -jp) n -k
p=2

We have

2k < n + 2

Or,
k < n/2 + 1
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11 I ii, ji

2 I
31 I J2

4 L...._ i2

51 I
61 [

7 LJ i3

Figure 6: A more complicated example

which shows that the number of groups is less than n/2 + 1.
Replacing the upper and lower bounds of k-I jP) in PA(n), we get the upper and

lower bounds for pA(n) (n > 2).

First, the upper bound of pA(n):

n/2+1 1
PA(k) - =2 2 k- (1 + -,)(k-2)+n-

1 -n/2

)n2( + 2A

Then the lower bound of pA(n):

n/2+1 1
PA(n) - =Z 2 k-( 1 + i)(n-k)+n-1

S.:-( (1+ ))-/
- (1+9.)2--(i-.)whn"1 2

when Al A2

-2fl-- otherwise

From the probability of pA(n) (n > 2), we can derive the probability that only one task
forms a subset. The probability is PA(1).

PA() - 1ZpA(n)

n=2

9



oo n/2+1

n2 k=2 2 k -( 1 +

The upper bound of pA(l):

1 _' ( 2L (1+(.) .))-/2

I - En=2 (1+-(-_-.) when A, 1  A2

-n n

F-0n0=-2 otherwise

And the lower bound of pA(1):

00 1 )n/2

The bounds ol PA() can be further simplified. For the upper bound of PA(M), and

, 54 A2 :

)1- ((1 + Al))(n+2)/2

- 1 + AZ)2n+l (1 - Az

= 1 --- ( 1 _i))

1- (1+ A )2 -1 21/2(21/2(1 + -)3/2 1

For the upper bound of PA(1), and A1 = A2 :

n=2 22n- 1
n--

11

18

The lower bound of PA() can be simplified too.

1 - -_(n+2)/2
o .2(i+.4

P-M A1  (1-),/2

E n 2

+ + A2  21/2(21/2(1 + A)3/2 _ 1)

When A, = A2 ,

P A ( ) > _
-9

The expectation of the number of tasks in a subset,
00

E(A) = nPA(n
n=1

10



oo 1n/2+1 I
+1 Z A k ip )+n-I

=2 k=2 2k-"~ -I , - 2-

00 n/2+1
+ A2- k- ,_1 )- (3)

n=2 k=2 2 k-1(l + .2cc n/A+I

The boundary condition can be also achieved according to the upper and lower bounds

of pA(n) for n = 1,.- ., oo.

The upper bound of E(A), when A, $ A2:

E(A) < 1 -1 (+A)1/2
1- (1 + )2 - 21/2(21/2(1 +i 1 ) 3 / 2

I 1 n/2

c1n. 2(1+F.)

1-=2 (1 + )n-2 (2(1 + )

1 + 1  A2  2 1  +A2  'I11 ( +(1+ )1)/2 21 /2(1+ Z)l_2

Al A.2( A2) 2A,( A2)

21/2(21/2(1 + T)3/2 - 1)2 21/2(1 + )3/2 _

If A1 = A2:

11 /2 1 -4

E(A) _< 1- + Z(n.(1+ A _2(+ ) )

127-
12.352

54

The expectation of the number of tasks in a subset is upper bounded by 2.352.

The lower bound of E(A), when A1 # A2 :

E(A) > 1 1 A1  (1+ )1/2

21 + . (1 2/2(21/2(1 + I)32 _ 1)

+ (n 1- (1(1+ -)))/n

(1+ .)n-(_ ~.

= 1 11 1  (1+ Z) )/2

1 + E( 1+ A2  + 21/2(21/2(1+ A)3/2 -

++ 1--(( 2 ,s ~ ( ,

11



1+ )1/2 21/2(1+ + )/

21/2(21/2(1 + 1)3/2 _ 1)2 21/2(1 + )3/_ 1

If A1  A2 :

E(A) I - (1 + +-2- -(1 1/ n .

S + 7 A2  21/2(21/2(1 + 1 ) -

4 00 n2
9 + )9 E22n-1

_77
- _ 1.426

54

We note that when A, = A2, 1.426 < E(A) < 2.352.

From the upper and lower bounds of E(A), we find that the boundary value only depend

on the ratio of A, and A2 (i.e. A). The boundaries are also discontinuous at the point of

A1 = A2 . In Fig. 7, ratio ' changes from 0.2 to 0.9. In Fig. 8, the ratio changes fromA2
1.11 to 10. We can see that when j > 0.4, the expectation of task number in a subset is
upper-bounded by 7.8. The expectation becomes smaller, as the ratio becomes bigger.

Intuitively, only when the average wiidow length (1/A2) is much greater than the average

interarrival time (1/A1), the upper bound can be quite large in comparison with the one
when A1 is close to A2. For example, when 7 = 5 -L, the upper bound can be as large as

27. But on the other hand, the lower bound is close to 8.

From the expectation bounds, we observe that:

* The number of tasks in a subset only depends on the ratio -. Changes in the bounds

is insignificant when A > 0.2.

" In the case where A1 is close to A2, the decomposition scheduling is close to the linear

computation.

V Conclusion

In this paper, we examine the performance of the decomposition scheduling technique using

a stochastic model for tasks, and compute bounds on the expected number of tasks in a

subset. We note that the number of tasks in a subset is a function of A1/A2 of our model,

and that over wide range of this ratio, relatively tight bounds exists for the expected number

of tasks in a subset.

The computation complexity of the decomposition scheduling depends one the algorithm

of decomposition and the scheduling of tasks in a subset. It has been shown that the

complexity of decomposition is O(N) [Yuan89a]. The scheduling of tasks in a subset requires

computations which grow' rapidly. But if the size of subset is limited, the complexity of

12



this step is limited also. In practical situations where task interarrival times and window

lengthes have exponential distributions, the complexity of using decomposition scheduling

is O(N) with multiplicative constants being a function of \ 1/A 2.
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