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ABSTRACT

The Naval Postgraduate School (NPS) is currently involved in a long-term

project to investigate and develop real-time control software, artificial intelligence,

computer architecture and control systems theory as they pertain to U.S. Navy

autonomous vehicle programs. In support of this goal, the NPS is currently designing

and fabricating a testbed autonomous underwater vehicle.

This work describes the design, development, and testing of a Guidance

Subsystem for this testbed vessel which utilizes portions of cubic spirals as the desired

path to follow between waypoints. In addition, data translation firmware and real-

time control software for the control surfaces and main motors is designed,

implemented and tested.

The process of selecting and implementing an appropriate computer

architecture in support of these goals is also discussed and detailed, along with the

choice of associated computer hardware and real-time operating system software.
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I. INTRODUCTION

In the next decade, Autonomous Underwater Vehicles (AUVs) will begin to

perform missions which have previously been accomplished by attack submarines.

AUVs could "...change the nature of undersea warfare..." and by the year 2025 they

"...will be as important as manned systems and by 2050 will be the predominant

[undersea] warfighting systems." [HOLZER 901

AUVs will perform such missions as underwater surveillance, tracking,

minelaying, and possibly offensive antisubmarine warfare missions [BARKER 86].

Richard Rumpf, the assistant secretary for research, engineering and systems, in

testimony to the House Armed Services Committee in April of 1990, emphasized the

U.S. Navy's commitment to AUVs "...for a variety of naval missions, including

antisubmarine warfare." [HOLZER 90]

Other prominent individuals see AUVs as "mission enhancers" for manned

submarines, and feel that they will be "...integrated combat systems which are a part

of a submarines sensor suite ...." [BAKER 89]

Current U.S. Navy schedules project the deployment of AUVs aboard the SSN-

21 Seawolf by 2000, and on Improved SSN-688 Los Angeles-class submarines by 2005

[ROBINSON 86, HOLZER 90].

Untethered, unmanned submersibles offer significant advantages over

conventicnal manned submersible vessels:



" They can perform tasks which are considered too dangerous for humans to
accomplish.

" They can operate at tremendous depths, and can maneuver without regard for
human physiological limitations.

Along with these advantages come disadvantages, primarily the lack of human control

and the inability to intervene in the event of unforeseen problems. To compensate

for these shortfalls, a successful AUV must be able to incorporate the advantages of

artificial intelligence, real-time control, environmental sensing and maneuverability

into a compact, integrated package.

The development of autonomous underwater vehicles which have these

characteristics, and are capable of operating under a wide variety of situations and

operating conditions, is an area of intense and diverse investigation. A prime

problem in fielding an operational AUV is the requirement for "...robust software to

maintain vehicle integrity while accomplishing mission goals ...." [BELLINGHAM 89]

At the Naval Postgraduate School (NPS), two AUVs have been constructed in an

attempt to address some of this issues.

The first NPS submersible, designated AUV 1, was 27 inches long and displaced

less than 20 pounds, which allowed operation in a 40 foot long test tank. This vehicle

had an umbilical to provide power to onboard control systems and had no onboard

computer system. Vehicle control was provided by an off-hull PC AT microcomputer

which transmitted plane commands through radio control equipment to the AUVs

dive planes. [BRUNNER 88]
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In order to allow completely autonomous behavior a second AUV (designated

AUV II) is under construction. AUV II will support analysis of vehicle dynamics and

control, real-time control systems theory, higher level artificial intelligent processing,

robotics and computer architecture for future large AUVs. This research is being

conducted as part of a long-term study funded and sponsored by the Naval Surface

Weapons Center, White Oak, Maryland [HEALY 89b].

A. OBJECTIVES

This thesis covers several tasks in support of the initial launch of AUV II

including:

(1) Selection of the Vehicle Control computer and data translation hardware and
real-time computer operating systems which meet the requirements specified
above

(2) Design, development and testing of the vehicle Guidance subsystem

(3) Development and testing of real-time control software for the control surfaces
and main motors on AUV II.

B. BACKGROUND

1. Vehicle Characteristics

The basic layout of AUV-2 is illustrated in Figure 1. The main vehicle

body is constructed as a rectangular aluminum box with a beam width of 16 inches,

a height of 10 inches, and a length overall (LOA) of 93 inches. It is anticipated that

the finished vehicle will displace approximately 370 pounds.
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NPS AUV II

B'LARGE HE 0~]

& AMP BATTY GRID W 1
FBA BAT-T

TOP VIEW

o Q~0 LARGEGRD Cf -

LEAD BALLAST

SIDE VIEW

Figure 1 - Basic Equipment Layout [GOOD 90]

AUV-2 has independently controllable port and starboard bow planes, and

port and starboard stern planes as well as independent fore and aft rudders.

Propulsion is provided by four tunnel thrusters (fore and aft athwartships,

fore and aft vertical) and two main screws aft. The tunnel thrusters, combined with

the two main screws give the vehicle active control of five degrees of freedom (pitch,

yaw, heave, sway and surge) at very low speeds (Hovering Mode). When the vehicle

is operating at higher speeds (Transit Mode), all six degrees of freedom (pitch, roll,

yaw, heave, sway, and surge) are actively controlled using the main screws for

4



propulsion and the hydrodynamic forces on the control surfaces to maintain desired

pitch, roll and yaw rates. [KWAK 90]

There is a sonar system consisting of four individual pencil-beam sonar

transducers mounted in a flooded nose, an inertial sensor suite ( consisting of a flux

gate compass, three rate gyros, three accelerometers, a vertical gyro and a directional

gyro), a differential pressure sensing depth cell, a paddle wheel speed sensor, and

individual motor RPM sensors. The overall combination of sensors and effectors

results in a minimum requirement of 12 separate analog control output signals and

23 different analog input signals for AUV-II (as summarized in Table I).

There were numerous goals established for the development of AUV II.

The vessel computer system had to be low cost, utilizing off-the shelf hardware where

possible, be readily reconfigurable for different missions, and be expandable to multi-

processor capability at a later date. The operating system and control software had

to be easy to implement (preferably in the C language), had to use a commercially

available operating system, must be able to simulate complex behavior, should

support multi-tasking and should be easy to reconfigure for different missions.

2. AUV Software Classification

Software for NPS AUV-Il can be divided into two broad classes: Mission

Planning software (off-vehicle non-real-time software) and Vehicle Control software

(real-time on-vehicle software).

Mission Planning is the process of determining a reference path to be

followed by the AUV based on knowledge of pre-existent obstacles, threats and other

5



Table I - Analog Input and Output Signals of AUV II

ANALOG INPUT ANALOG OUTPUT
SIGNALS SIGNALS

Port and Starboard Bow planes (2) Control Surface Position (5)

Port and Starboard Stem planes (2) Propulsor RPM (6)

Fore and aft Rudders (2) Pitch/Pitch Rate (2)

Port and Starboard main engines (2) Roll/Roll Rate (2)

Fore and aft horizontal thrusters (2) Yaw/Yaw Rate (2)

Fore and aft vertical thrusters (2) Depth (1)

Sonar Channels (4)

Speed (1)

Health and Well-being (4)

possible hazards to the vehicle. The Mission Planner constructs a path as a series of

waypoints for the vessel to reach. Development of the Mission Planner for AUV II

is described in [ONG 90]. This obstacle-free path is downloaded to the vehicle via

a detachable RS-232 serial link.

The Vehicle Control software utilizes the path information from the

Mission Planner and controls the vehicle from point of origin to mission goal. As the

mission progresses, the Vehicle Control system analyzes all input signals from

onboard sensors and provides output signals to control surfaces, thrusters and main

motors while piloting the vessel to the desired goal.

6



The Control System Software Architecture for AUV II is illustrated in

Figure 2 and the proposed hardware architecture is shown in Figure 3.

Use

Mission
)1: 40 "aPlanningE ff-Lin Mission PkIw*g Level

noi 10et Sys(em (Td MicroExplorer)

SRS-2 32

Mission
OControl

M 1"11Mission R onnnM Love
Vehicle Model (GRiDCASE)

RS-232

Vehice Contro CoNtrol

Database Level
(GESPAC)

Actuators Sensors
and Motors

Figure 2 - Control Systems Software Architecture

An off-hull LISP machine (currently a Texas Instruments Micro-Explorer)

generates and downloads the Mission Control software to AUV-2 just prior to

deployment. The current Mission Control software consists of a series of waypoints

to be achieved during the mission. A waypoint is a quadruple made up of the desii ed

three-dimensional position (x,y,z) combined with desired vehicle velocity (v). The

quantity of information available in a waypoint is an important consideration in the

development of the Local Path-Planner (LPP) and is discussed fully in Chapter 3.

3. Real Time Vehicle Control Requirements

AUV II requires a complex real-time control system which must be able

to simultaneously handle a myriad of tasks. These tasks range from the lowest level,

7



CS LAB

GRIDCASE TI ISLMICRO7EXPLR

RS-232

VEHICLE POOLSDE SUPPORT

GROCASE

GRiOCASE
RS-232 or

RS-232 PC

GESPAC

Figure 3 - Proposed Hardware Configuration

such as managing interrupts and processing the sensor input/output specified above,

to very high level tasks, such as obstacle avoidance and path-replanning. The

development of this type of system is dependent on numerous constraints which are

generated by the nature of the problem such as:

* program and mission complexity

" data processing and storage requirements

" control loop timing

as well as constraints generated by the choice of hardware:

" processor speed

" data translation device speed

" communication bandwidth

" compiler and debugger capability

8



Tests with NPS AUV-I demonstrated that an IBM AT-clone could provide

autonomous control for diving plane operation while controlling a single propulsor.

With AUV-II, both the number of controls required and their complexity will be

increased.

For AUV II the Autopilot control loop must be closed at a minimum of

10 times per second (every 100 msec). The Vehicle Control computer system must

be able to multi-task, and should be expandable to allow additional of data

translation, memory and processor capability [HEALY 90].

4. Guidance Subsystem Requirements

The Guidance subsystem receives waypoints (x,y,z,v) from the Mission

Planner. These waypoints correspond to points on a three-dimensional grid being

traversed by the vehicle. These waypoints must be fitted to a smooth path, and the

path information must be fed to the Autopilot subsystem as series of intermediate

positions (x,y,zv) with heading and pitch angle (O,0). These intermediate positions

must be fed at a rate which will allow smooth operation of the AUV.

There have been numerous methods of trajectory planning developed in

the past decade [BRADY 82, KHATIB 85, SHIN 86]. These methods were all based

on a set path in cartesian space which could be transformed to a set of points which

describe the motion through inverse kinematic equations. It has been shown that

jerk, the third derivative of position of the desired trajectory, adversely affects control

algorithms and therefore should be minimized [KYRIAKOPOLUS 88]. It is also

9



intuitive that in an underwater vessel, jerk can not be tolerated because of the

hydrodynamic constraints in place on the vehicle.

Kanayama and Hartman originally proposed the utilization of the

derivative of path curvature of cubic spirals1 as a cost function for path smoothness

in a local path planner for an autonomous vehicle [KANAYAMA 88a]. The cost

function utilized in the preparation of the path between postures is the integral of the

square of the derivative of curvature of the path which minimizes jerk.

Kanayama's method of guidance was first implemented on Yamabico-1 ,

an autonomous land-based mobile robot [KANAYAMA 88b]. The elegance and

simplicity of Kanayama's method was attractive, and appeared to be readily adaptable

to AUV control as well.

Kanayama also developed a set of equations providing stable feed-forward

tracking control for Yamabico 11 [KANAYAMA 90]. His method utilized postures

(x,y,O) as input from the 'Mission Planning' level, and output postures and velocities

to the Autopilot. In this thesis, both Kanayama's guidance and tracking control

methods have been modified for implementation and use on NPS AUV II.

C. THESIS ORGANIZATION

Chapter II presents a survey of previous work on AUV systems and associated

technology. Current operational AUV and Unmanned Underwater Vehicle (UUV)

A cubic spiral is a curve whose tangent direction is described by a cubic function of

length.
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systems are described, and their effect on the hardware and software decisions made

for AUV II is presented.

Chapter III provides a detailed description of the vehicle computer hardware

and associated low level software. This includes a review of the rationale for the

choices made as well as a discussion of the development of the control firmware

(data conversion and control) routines which were created for AUV II.

Chapter IV discussed the development and implementation of the Guidance

Subsystem including the on-line and off-line local path planners, and the tracking

controller. Background information necessary to understand the Guidance problem

for AUV II, and the relationship between Guidance and applicable software modules,

is also provided.

Chapter V provides a summarization of the overall work, and gives

recommendations for possible extension, expansion and improvement. This chapter

also discusses a review of the contributions made to autonomous vehicle

development.

11



II. RELATED WORK

This chapter provides an overview of current work in the field of autonomous

vehicle control as well as related topics pertinent to the design of the AUV II Vehicle

Control Computer and the Guidance subsystem are also presented. The effect of

these other projects on the hardware and software decisions made for AUV II is

summarized.

A. EDUCATIONAL INSTITUTIONS

1. Texas A&M

Texas A&M Uhversity has proposed the use of a modified blackboard

system based on "situations" as the structural design paradigm for the knowledge

based control architecture in AUVs. These situations are defined as "...the rule sets,

domain and declarative knowledge required to make the decisions, judgements and

actions required of the reasoning component in the corresponding part of the

problem space ...." [MAYER 87] A prototype implementation of this strategy has been

in incorporated on four Symbolics 3640 machines, but the system does not appear to

have been implemented on an operational vessel.

2. University of Florida

The University of Florida has done work on a hierarchical control system

for autonomous vehicles based on work by Sardis. The core of this system is a three-

level "Intelligent Module" controller consisting of a Planner, Navigator and Pilot

12



which all interface with a Cartographer, and a separate Low-Level Controller

[ISIK 841. This system has been modeled, but reference to an operational vessel has

not been found.

3. Georgia Institute of Technology

Arkin at Georgia Institute of Technology proposes the use of "Motor

Schema" as the basic unit of behavior for navigation [ARKIN 87]. These "schema"

are multiple concurrent processes which operate in parallel with sensory schema to

provide vehicle motion. This differs from Brooks' subsumptive architecture

[BROOKS 88] in that it avoids layering entirely and instead uses a "souplike" network

of schemas which can change dynamically based on the vehicles current needs,

perceptions and goals [ARKIN 87].

4. University of New Hampshire (UNH)

UNH has been involved in submersible technology since 1977 and has

constructed and launched three generations of autonomous vehicles. The current

generation of AUVs are the EAVE III vehicles. The EAVE III has a modular,

hierarchical computer architecture and utilizes three Motorola 68000 based

computers on a VME bus running under the pSOS operating system [JALBERT 88].

The lowest level software is coded in 'C' and the upper level is coded in 'LISP'.

The vehicle is designed with a blackboard based system for context sensitive higher

level mission planning [CI-IAPPELL 87], but these vehicles have also successfully

13



operated under the NIST NASRAM architecture (MUST vehicles) described in the

NIST section below.

5. MIT - Sea Grant College

The Massachusetts Institute of Technology - Sea Grant College (MIT - Sea

Grant) has built a small AUV as a software testbed. The vehicle displaces

approximately 60 pounds, utilizes three thrusters, has a depth rating of 200 feet and

endurance of approximately 2 hours [BELLINGHAM 90]. The initial mission

selected for the vehicle is to avoid obstacles while proceeding to a stationary target.

In pursuit of this goal, the vessel must utilize several "intelligent behaviors" including:

homing, obstacle avoidance and information gathering [BELLINGHAM 89]. The

vehicle utilizes a GESPAC-MPU20 68020 based processor running under the OS-9

operating system. Software is writte.j in C on an IBM AT compatible and cross-

complied for the 68020. Prior to the start of a mission, software is downloaded to the

AUV and activated through a serial link tether. When the mission is complete, the

tether is reattached and data is uploaded to the IBM AT clone for analysis.

The MIT - Sea Grant vessel utilizes a "Layered Control" system adapted

from work done by Brooks with land-based robots [BROOKS 88, 89]. This

architecture is modular in that a mission is broken into discrete behaviors which can

output commands. It is reflexive since behaviors respond to immediate sensor

readings, thus world models are not required. Behaviors are hierarchically prioritized,

and completely asynchronous [BELLINGHAM 90]. These modular behaviors are

combined to produce intelligent behavior.

14



6. University of California - Santa Barbara

Kanayama developed a Guidance system for a mobile land robot called

Yamabico- 11 which utilizes a set of postures (similar to AUV II waypoints) for local

path control [KANAYAMA 89a, 89b]. This system utilizes portions of cubic spirals

as the path to be followed between postures. The cubic spiral has the property of

minimizing jerk (the second derivative of acceleration) between postures which is very

desirable for an underwater vehicle. This system operated in real-time and is

implemented in the C language.

B. INDUSTRY AND GOVERNMENT

1. FMC Corporation

FMC Corporation (FMC) has developed a hierarchical real-time control

system architecture where there is an "order of ten" space-time difference between

hierarchical levels [NITAO 85]. The upper levels in this hierarchy possess a broad,

abstract view of the world. Since actions in these higher levels do not affect the

narrow, detailed real world of the lower levels, the processing times can be

significantly slower than at lower levels.

This method also employs a Reflexive Pilot which does not utilize a

memory map of past subgoals. Higher level replanning is only required when the

Reflexive Pilot fails to make progress [NITAO 86].

FMC is also developing a control system which does path-planning based

on 3-D digital maps. They assert that the system can be incorporated into any multi-

15



level functional architecture. This path planning strategy utilizes a three-tiered system

where the User (or Action Planner) furnishes input to a Global Path Planner, which

then computes a path to provide to the Local Path Planner for execution

[PARODI 84].

2. Rockwell

Rockwell is working on an Expert System to "dynamically schedule the

allocation of resources" onboard satellites. This system incorporates several

"intelligent agents" such as a Satellite Controller, a Planner, and a Subsystem

Specialist [BARRY 88]. This system is functionally very similar to the FMC system

and to the system being developed for NPS AUV II. The Satellite Controller

generates an "agenda" (mission) which is provided to the Planner. The Planner

generates a plan (path) for the Subsystem Specialist (Pilot) to carry out.

3. Martin-Marietta

Martin-Marietta Aero and Naval System's Mobile Undersea Systems Test

(MUST) Laboratory has been working since 1984 to develop a testbed for AUV

technology development. They have constructed a 30 foot long vessel which is

capable of diving to 2000 feet. The MUST vehicle is controlled by two Motorola

68020 processors on a VME buss utilizing a commercial operating system. All I/O

and memory cards are also off-the-shelf circuit boards. Research payloads will drive

the control system at a 10 Hz rate. The vessel uses a "...modular, event-driven state

16



table process system..." designed around the NIST NASREM Real-Time Control

System (RCS) [HEBERT 87].

4. National Institute of Standards and Technology

The National Institute of Standards and Technology (NIST) proposes the

use of the NASA/NBS Standard Reference Model for Telerobot Control System

Architecture (NASREM) a hierarchical control system developed by Albus

[ALBUS 89]. This architecture incorporates several layers of control, each of which

provides commands to the next lower layer. Desired vehicle actions are input at the

highest level and decomposed both spatially and temporally [ALBUS 88]. As

commands are passed to lower levels they are further decomposed (both temporally

and spatially) until they become specialized enough for vehicle control.

Each layer has its own sensory processing, world modeling and task

decomposition which allow it to sense the environment and take appropriate action.

The system supports up to seven or more layers, all of which can share common

memory as a blackboard, for map storage, object files, etc.

The command timing structure in the NIST architecture is similar to that

used by UNH. Commands are passed at a time interval of approximately 10 times

the time interval of the next lower layer [ALBUS 90].

The NIST NASREM system architecture was tested on two UNH EAVE

III vehicles in a Multiple Autonomous Vehicle (MAUV) experiment funded by the

DARPA Naval Technology Office [ALBUS 88, HERMAN 88]. This experiment
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utilized the hierarchical structure of NASREM in conjunction with UNH's lower level

control code.

S. Woods Hole Oceanographic Institute

Woods Hole has developed a very capable double tethered vehicle system

(ARGO-JASON) [YOEGER 90]. This system utilizes 8086 based processors running

under the VERTEX operating system. The ARGO-JASON system has the ability

to operate in an Auto-Heading or Auto-Depth mode, but does not operate with total

autonomy.

6. NOSC

The Naval Ocean Systems Center (NOSC) has configured the EAVE-West

vehicle to demonstrate distributable software architecture for AUV plan execution

[DURHAM 87]. NOSC is also doing work with the possible application of neural

network technology to autonomous vehicles [DURHAM 90].

7. International Submarine Engineering

International Submarine Engineering Research, Ltd. (ISE) has developed

several untethered, remotely controlled submersibles. The first autonomous

remotely controlled submersible (ARCS) was designed as a hydrodynamic survey

vehicle which follow a series of waypoints. ARCS had a control system consisting of

three Intel microprocessors on a common bus utilizing common memory

[THOMAS 85, JACKSON 84].
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DOLPHIN is a diesel powered UUV designed by ISE. It was originally

developed as an offshore hydrographic mapping vessel, but has since been revamped

for use as a search and survey vehicle, advanced hydrographic survey and seismic

exploration. The vehicle control computer on DOLPHIN uses the GESPAC G-96

bus with Motorola 68010 and 680008 processors. ISE conducted an extensive market

survey, and chose the GESPAC system based on price, performance, size ruggedness

and availability [WIETZEL 87].

Because of the increased complexity of the real-time control systems on

autonomous submersibles, ISE is pursuing the development of a complex object-

oriented real-time control system. This system bases system operation on events and

actions and utilizes a simple, efficient preemptive scheduler [ZHENG 88]. This

scheduler is extremely modular, and can be adapted to a variety of different hardware

architectures, and has been tested on Intel based PCs and Motorola 68000/68010

based GESPAC systems.

C. SUMMARY

There are very few operational underwater vehicles which are truly autonomous.

A summary of the capabilities of vessels which are truly autonomous is given in

Table II. Of the AUVs listed, the MIT Sea Sprite most nearly approximates AUV II

in size and intended use.
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Table II - Current AUV capability [after BELLINGHAM 90)

VEHICLE Thrust Comp Sens OA

ARCS (ISE) if 3(68010) D yes

EAVE III (UNH) 2f,2v,21 3(68000) D,T yes
1(68020)

Sea Squirt (MIT) 2f,21 1(68020) D,T dev

MUST (Martin-Marietta) lf,2v 2(68020) D dev?

EAVE-West (NOSC) 2f, lv 1(8080) D,P,T no

Thruster Type: f=forward, v=vertical, 1=lateral

Computer Type: qty(processor type)

Sensors: D=depth, T=temperature, P=photography

Obst. Avoid: yes, no, dev=under development

The following observations were based on known AUV systems, and were central to

the choices made for the AUV II Vehicle Control Computer system:

• There does not appear to be a clear standard for real-time operating systems
for AUVs.

" The 'C' language appears to be the preferred language for control-level
coding.

" Several AUVs utilize the GESPAC Motorola-based architecture.

" Most vehicles have a modular, hierarchical control structure, with each level
operating about ten times faster than the layer which lies lower in the heirarchy.

" The cubic spiral system Kanayama created for Yamabico- 11 is readily adaptable
for use in AUV II.
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II. EVOLUTION OF ONBOARD COMPUTER SYSTFM

This chapter presents the evolution of the Vehicle Control Computer system

for AUV II. The Vehicle Control Computer system consists of a GRiDCASE 1535

EXP based on a 12.5 MHz Intel 80386 processor and a GESPAC system centered

around a 25 MHz Motorola 68030 processor.

A. GRiDCASE 1535 EXP

A survey of available systems which could meet the increased computational

requirements for AUV-II conducted prior to the start of this thesis resulted in the

purchase of the GRiDCASE 1535 EXP (GRiDCASE). This is a 12.5 Mhz 80386-

based laptop computer which runs under a version of MS-DOS modified by the

GRiD corporation. The purchased configuration included an 80387 math

coprocessor, 4 Mbyte of RAM, a 40 MByte hard drive, a 2400 baud internal modem,

and an expansion tray which allowed for the addition of one AT-compatible

expansion card and one XT compatible expansion card [GRID 88].

1. Data Translation Boards

Two Data Translation (DT) cards were purchased to provide analog-to-

digital and digital-to-analog capability for the GRiDCASE. The first was a DT2821

High-Speed DMA combined analog-to-digital/digital-to-analog converter and the

second was a DT2815 digital-to-analog converter [DATA 89]. The DT2821 provided

16 channels of digital input/output, 2 channel of 12-bit digital-to-analog outputs and
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16 single-ended (or 8 differential) input analog-to-digital inputs. The DT2815

provided 8 channels of 12-bit digital-to-analog output. The combined total capability

of the system (which used both available card slots on the GRiDCASE) was:

* 10 channels digital-to-analog output

* 8 channels analog-to-digital input

0 16 channels digital input

As can be seen from Table I this combination did not meet the initial specified data

translation requirements, but it was thought that satisfactory operation could be

achieved if some input signals were multiplexed and if control surfaces (such as bow

planes and stern planes) were ganged together. (In fact, multiplexing would be

undesirable since demultiplexing of the input signals would require additional CPU

time during execution of the primary control loop.)

Test programs were written to verify proper operation of the DT boards.

Simple input/output tests were successful, but attempts to utilize the DMA capability

of the DT2821 failed repeatedly. Several versions of code were written in an attempt

to get proper DMA operation. Numerous calls to technical support personnel at

both Data Translation and GRiD over a period of months were fruitless. Each

vendor attempted to point to the other as being the source of the problem. The final

result was that DMA did not function properly.

2. Real-Time Operating System

Because of the timing requirements for the Vehicle control computer

(control loop must be executed at a minimum 10 Hz rate) it was decided that the
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new system should be able to multi-task (at least to the point of allowing the

Autopilot to operate independently of all other modules). This posed an interesting

problem, in that the GRiDCASE computer was operating under MS-DOS, which

does not readily support multi-tasking.

a. TSR Program

A simple evaluation program was written to determine if a single

control program could operate at a specific time interval (see Appendix A). The

program written was a terminate-and-stay-resident (TSR) program that operated at

a 100 msec frequency, while allowing another program to operate in the foreground

at all other times [DETTMAN 881. This program took advantage of DOS interrupt

28h (the timer interrupt) and showed that two programs could be operated

successfully under MS-DOS.

The primary disadvantage to the TSR method was that all procedures

and code which were included in the TSR loop had to be completely devoid of DOS

level calls (because the TSR interrupt INT 28h operates below the DOS level). If

this method were chosen for Full Scale Development, all C function calls would have

to be evaluated to ensure proper operation and many would have to be rewritten.

As an example, the C printf would not work because it utilizes DOS calls when

printing to screen, and so would have to be modified to use BIOS level calls for

screen input/output.
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b. Regudus Operating System

In order to provide a true multi-tasking capability, it was decided to

purchase and evaluate the Regulus operating system. Regulus is a UNIX-like

operating system that provides such features as real-time tasks, shared memory data

segments and user access to physical memory [ALCYON 86]. Regulus was purchased

and installed on a GRiDCASE EXP-1535. The installation procedures for Regulus

assumed that the host machine was an 80386 machine operating under true MS-DOS.

Because the GRiDCASE operates under a modified version of MS-DOS there were

some minor problems with installation. The Regulus operating system is relatively

new, and the user manuals offer little insight into the systems multi-tasking

capabilities. Regulus' customer support system was able to offer little help on

applications, and gave the impression that system performance would be significantly

degraded in a multi-tasking mode using high-speed DMA.

3. Hardware Problems

There were now several distinct problems with the original hardware and

software purchased for AUV-Il:

• There was no room for expansion (both card slots were filled).

" There were inadequate A2D and D2A channels for required input and output
signals.

" A maximum of two tasks could operate under DOS "simultaneously" (one a
TSR), and the TSR task must be entirely devoid of DOS system level calls.

" The chosen machine was relatively slow (12.5 Mhz).
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* Since the converter boards were from a different manufacturer (DT) than the
computer (GRiD), compatibility problems were difficult to resolve.

0 The multi-tasking operating system (Regulus) might eventually work, but once
again there were incompatibilities due to the modified MS-DOS operating
system used by GRiD.

Because of these problems, a new survey for a real-time control computer

system and operating system was conducted. A true multi-tasking operating system

was desired. In addition, the new system must be expandable to multi-processor

capability and have the ability to add additional data conversion capability. A final

requirement was that other autonomous vehicle projects be using the system, to

ensure that the system would work in an undersea environment, and to allow transfer

of information and low-level source code.

B. GESPAC

After the survey of literature discussed in Chapter 2 was complete, several

organizations were contacted directly about appropriate hardware. Discussions with

the Monterey Bay Aquarium Research Institute (MBARI), International Submarine

Explorations (ISE), Naval Ocean System Center (NOSC), the University of New

Hampshire (UNH) and the Sea Grant College at Massachusetts Institute of

Technology (MIT - Sea Grant) resulted in the choice of GESPAC.

GESPAC offers a variety of Motorola 68000 based systems. The GESPAC

systems operate under the OS-9 commercial operating system produced by

Microware [GESPAC 88]. OS-9 is a true multi-tasking operating system

[MICROWARE 87] and is currently in use in the MIT - Sea Sprite AUV, (allowing
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possible use of MIT Sea Sprite data conversion code). GESPAC manufactures their

own data conversion cards which minimizes the possibility problem of hardware

incompatibility [GESPAC 89]. Both ISE and MIT have successfully utilized GESPAC

systems on autonomous vehicles. It was decided to purchase two GESPAC systems

with similar data translation capabilities for AUV II.

1. Target System

The system to be placed on AUV II is designated the target system . It

utilizes a GESPAC MPU30HF main processor board with a Motorola 68030 CPU

and 68882 FPU operating at 25 MHz. This board is configured with 2.5 Mb of on-

board RAM and has room for 4 Mb of EPROMS. To meet the data translation

requirements specified in Chapter 1, four additional boards were required: an ADA1

(16 SE/8 DE analog-to-digital input channels, 4 digital-to-analog output channels); an

ADC2B (16 SE/8 DE analog-to-digital input); a DAC2B (8 digital-to-analog output

channels); and a MFI card (2 serial ports, 2 8-bit parallel ports). A GESPAC SCSI

hard disk controller card and a 200 MB Conner peripheral hard drive will be utilized

for data storage. The six GESPAC cards are placed in a 12 card rack to be mounted

in AUV II, and not only met all known data processing requirements, but also

allowed six additional slots for future expansion.

For the target system a PC Bridge cross-compiler and source level

debugger was purchased. PC Bridge allows an IBM compatible machine to serve as

a terminal and data storage device for the development system, which currently has

no disk storage. With this system, control software for the vehicle can be written in
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C on an IBM PC compatible machine, compiled and debugged using PC Bridge, and

then downloaded via an RS-232 serial link to the vehicle for testing. When the

vehicle is ready for launch, mission software can be downloaded to the vessel using

PC Bridge and a serial link.

2. Development System

The off-hull OS-9 system has been designated the development system.

It utilizes identical processor and data translation boards as the target system. This

allows for any of the boards in this system to be transferred to the target system in

the event of a board failure.

In addition, this system is configured with a 40 MByte hard-drive and the

OS-9 development compiler and debugger. This system operated entirely under OS-9

(PC Bridge operates under MS-DOS) and therefore cross-compilation is not required.

A second advantage of the development system is that when the low level

control code has been adequately debugged, this system is ideally suited to prepare

Motorola S-records which can be burned into EPROMs and placed on the

MPU30HF processor board. This will free up RAM, and speed up the downloading

of mission control code.
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C. AUV II DISTRIBUTED COMPUTER SYSTEM

The AUV II has a distributed computer control system divided into three major

components:

(1) Vehicle Control Computer (VCC) - onboard computer which provides active
vehicle control at the lowest level. It passes information to/from the Mission
Replanner.

(2) Mission Replanner - onboard computer which performs recalculation of
mission plan as required. Provides mission plan to VCC as a series of waypoints.
Receives vehicle feedback and sensor data necessary for mission replanning from
the VCC.

(3) Mission Planner - off-hull computer which constructs mission based on global
world model and data. This is the only computer with direct operator interaction.
Downloads mission to Mission Replanner.

The current configuration utilizes the GESPAC as the Vehicle Control Computer and

a Texas Instruments MicroExplorer as the Mission Planner. There is no software for

the Mission Replanner, so the mission plan is downloaded directly into the Vehicle

Control Computer via an RS-232 serial connection.

The final configuration of the on-board computer system will utilize both the

GRiDCASE and GESPAC systems. The GESPAC will continue to be the Vehicle

Control Computer, performing all actual real-time vehicle control and data

translation functions. The GRiDCASE will be used as the Mission Replanner,

receiving the Mission Plan as a series of waypoints via the RS-232 serial link from the

off-hull Mission Planner and providing them to the Vehicle Control Computer as

required. In addition, if obstacles are encountered while traversing from waypoint

to waypoint, the Mission Replanner will perform path planning functions similar to
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the Mission Planner to create a modified Mission Plan in real-time without operator

interface.

D. DATA TRANSLATION SOFTWARE

The GESPAC data translation boards are provided without associated data

translation software. In order to properly test the vehicle control software and

hardware, it was necessary to write the necessary data conversion routines. The code

for these data translation and conversion routines is provided as Appendix B.

1. Digital-to-Analog Routines

Each GESPAC digital-to-analog board is assigned a specific hardware

address on the G-96 bus. Individual devices are assigned unique channels on a

specific board. As an example, the STBD_MAIN motor is assigned to channel 0 of

the DAC2B board.

The user routine accesses the desired control device by a call to a function

specifying a individual board type with a channel number and voltage to be written

to that channel (e.g. DAC2B(STBDMAIN,1000)).

2. Analog-to-Digital Routines

The analog-to-digital routines work in a similar manner. The user routine

specifies a specific board and channel to be read (e.g. ADA1(STBD_MAIN_RPM)).

The analog-to-digital routine reads the specified channel and returns an integer value

corresponding to the analog value read.
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E. CONTROL OF HYDRODYNAMIC SURFACES

The hydrodynamic control surfaces on AUV II are being driven by Airtronics

94510 model airplane control servos. This type of servo requires a pulse-width

modulated control voltage to properly position the device. The servos are powered

by an eight-channel pulse-width modulator (PWM) designed by an NPS staff

electronics technician. The schematic diagram for this device is provided in Figure 4.

VCC

To SYNC OSC

DIS

Aad NE555I
CRL

INPUT JITS

0 TO IV I t K +

~Vcc

PULSE WIDTH
MODULATOR

Design: T. Chr sLion
For:AUV ProjecL 5/10/89
ProF.Heeley / LL.Good

Figure 4 - Pulse-Width Modulator Schematic

The PWM receives a zero to ten volt control signal from the digital-to-analog

boards on the GESPAC control computer system and outputs a 0.5 to 1.5 millisecond

pulse to the control surface servo motors. The pulse width is a nominal 1 millisecond
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with a 5 volt input signal. The output is exponentially non-linear but highly

repeatable.

Output pulses are triggered by negative going synchronizing oscillator input

signals. This signal releases an internal shorting transistor across the output timing

capacitor. The output capacitor charges exponentially through the timing resistor

until the output voltage reaches the value of the control input voltage, resulting in an

exponential relationship between input voltage and output pulse width. This pulse-

width modulated voltage is provided to the appropriate control surface servo motor.

1. Servo Control Testing

Tests were conducted using two different servos and all eight channels of

the PWM. The servo test setup is shown in Figure 5. A variable-voltage DC power

supply was connected to the PWM control line of each channel. The power supply

voltage was varied to achieve control surface positions from -45 to +45 degrees in

15 degree increments. The voltages were checked in both increasing and decreasing

directions to verify that the direction of approach did not matter.

The data recorded was extremely stable. The power supply voltage varied

less than 20 mV for all combinations of servos and channels. The servo data

obtained is provided in Table III and is graphed in Figure 6.

It was expected that the PWM output would be exponentially non-linear

because the output pulse-width is determined by the charging of the capacitor

connected to TSH of the NE455 (see Figure 4). Experimental results confirmed this

hypothesis and the exponentially non-linearity can be seen in Figure 6.
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Figure 5 - Servo Test Setup

Table III - Servo Test Data

Angle Voltage]

-45 0.270

-30 1.565

-15 

2.835

0 3.855

+15 4.680

+30 5.380

+45 6.020
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Figure 6 - Raw Servo Control Voltage

2. Servo Control Signal Calculation

The program CALCSVO.C (see Appendix C) was written to create a

look-up table of digital-to-analog signals which provide linear control surface response

over the range from -45 to +45 degrees in one degree increments. The program

does linear extrapolation of the data contained in Table III and writes to a look-up

table file called "servo.dat".

The linear interpolation is based on the equation:

= *Inc (Ang, - Angpp) + Vpp (31)
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where Vd. is the desired voltage, V.p is the voltage at the next data point, Vpp is the

voltage at the last data point, Angd. is the desired angle, Angpp is the angle at the last

data point, and Inc is the absolute difference between data points (in degrees).

3. Manipulation of Control Surfaces

The Autopilot manipulates the control surfaces through the function

send-servo which takes two arguments:

" SURFACE - the desired control surface to reposition

" ANGLE - the desired position of that surface

send-servo does a table look-up of the appropriate digital-to-analog signal in

"servo.dat" based on the desired position input. This linearized value is passed to the

control surface digital-to-analog channel, which then sends the proper control voltage

to the PWM. The control signal is pulse-width modulated and sent to the control

surface which is positioned to the desired angle.

The calculated table values were compared with actual position and the

resultant deviation was less than one degree from desired position over the entire

control surface input range (-45 to +45 degrees).

F. MAIN MOTOR CONTROL

The two main propellers on the submersible are driven by Pittman 14202

(WDG #3) 24 Volt DC servo motors [PITTMAN 87]. These motors are fed from a

motor controller designed and fabricated at NPS by a staff electronics technician.

The schematic diagram of the controller is provided as Figure 7.
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Figure 7 - Motor Controller Schematic

The circuit is a voltage amplifier with a bridge output. Two identical operational

amplifiers channels are connected 180 degrees out of phase to Darlington output

power transistor pairs which drive the motor.

The motor controller receives zero to ten volt control signals from the

GESPAC digital-to-analog converters. A zero volt control signal results in maximum

negative voltage output (corresponding to maximum astern RPM) and a ten volt

control signal results in maximum positive output being applied to the main motors

(corresponding to maximum ahead RPM). A five volt control signal results zero

voltage output and the motor remains stationary.
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The current Autopilot outputs RPM commands to the main motors (vice

outputting velocity commands) [RILING 90]. To achieve these RPM commands, a

conversion routine was created which converts desired RPM values into appropriate

voltage counts for the digital-to-analog boards, which then provide control voltages

to the motor controllers to achieve the desired RPM.

1. Main Motor Control Testing

A system test tank was set up to calibrate the main motor controller. The

motor test unit was designed to closely approximate the expected vehicle operating

conditions and included a motor, propeller and shaft, and Kort nozzle as shown in

Figure 8.

A DC power supply was connected to provide motor drive power in the

voltage range expected during vehicle operation (20 to 30 VDC) and a variable DC

power supply was connected to the control voltage input of the controller. A strobo-

tach was used to monitor actual shaft RPM.

The variable DC power supply was adjusted to achieve motor speeds from

zero to 700 RPM in both the ahead and astern directions. 700 RPM was chosen as

the maximum value because motor current was approaching the five ampere limit of

the test equipment circuitry. The test was conducted with motor drive supply

voltages of 20 VDC, 24 VDC and 30 VDC.

The control voltage required to achieve a desired motor RPM value was

surprisingly independent of motor supply voltage. The control signal required

deviated less than 20 mV as the main motor supply was varied from 20 to 30 volts.
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Figure 8 - Main Motor Test Setup

The average values obtained from these tests are recorded in Table IV and are

graphically shown in Figure 9.

2. Main Motor Control Signal Calculation

Since the control voltage to RPM relation is non-linear, a software look-up

table was needed to linearize the relationship.

CALCMN.C (Appendix D) creates a lookup table of digital-to-analog

signals which provides linearized response in ten RPM increments from zero to 700

RPM in both the ahead and astern directions. This program does linear interpolation

of the data contained in Table IV and writes to a look-up table contained in the file

"main mtr.dat".
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Table IV - Main Motor Data

RPM Voltage (Ahead) Voltage (Astern)

100 5.319 4.670

200 5.558 4.450

300 5.902 4.140

400 6.387 3.739

500 6.898 3.250

600 7.498 2.730

700 8.280 2.010
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The linear interpolation is based on the equation:

V4, 5 P EP *• (RPMb, - RPM (3-2)
Inc P

where Vdes is the desired voltage, V.p is the voltage at the next data point, VPP is the

voltage at the last data point, RPMde is the desired RPM, RPMpp is the RPM at the

last data point, and Inc is the absolute difference between data points (in RPM).

3. Control of Main Motors

The Autopilot controls main motor speed through a call to MAIN-RPM

which takes two arguments:

" MOTOR - the desired main motor (Port or Stbd)

• RPM - the desired motor RPM (-700 to +700)

MAIN-RPM normalizes the requested RPM (to 0-1400 RPM) and does a table look-

up of the appropriate digital-to-analog signal in "main mtr.dat" based on the desired

motor RPM. This linearized value is passed to the appropriate main motor digital-to-

analog channel, which then sends the proper control voltage to the motor controller.

The control signal is amplified and sent to the main motor.

The calculated table values for the main motors were checked against

actual motor RPM at supply voltages from 20 to 30 VDC over the main motor input

range (700 RPM astern to 700 RPM ahead) with an observed deviation of less than

one percent.
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IV. GUIDANCE SUBSYSTEM

The purpose of the Guidance subsystem is to provide desired waypoint, heading

and velocity input to the Autopilot subsystem in a manner which will minimize jerk.

In order to achieve this goal, Guidance requires reference waypoint input from the

Mission Planner and current vessel parameters from the Navigation sub-system.

'Reference' parameters are those received directly from the Mission Planner.

'Current' paramters are values which are calculated by Navigation during the most

recent iteration. 'Desired' parameters are those values fed to the Autopilot after

processing by Guidance. More complete definitions of these terms can be found in

Appendix E.

A. INPUTS AND OUTPUTS

The Guidance Subsystem provides local path-planning and tracking control

for AUV II. It receives as input a file of waypoints consisting of three dimensional

grid position and velocity (x,y,z,v) from the Mission Planner. These waypoints are

used to construct a smooth path between waypoints. This smooth path is broken into

a series of discrete postures (x,y,z,O,v) which are then output to the Autopilot, one

posture at a time.
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B. SUBSYSTEM COMPOSITION

The Guidance Subsystem for AUV 11 is comprised of three major

functional parts:

(1) OFF-LINE LOCAL PATH PLANNER - an off-line program (see Appendix
F for source code) which extracts and stores desired curve information for all
allowable combinations of waypoints.

(2) ON-LINE LOCAL PATH PLANNER - on-line program (see Appendix G
for source code) that steps through a given cubic spiral, providing reference
postures to the tracking controller at a user specified frequency.

(3) TRACKING CONTROLLER - on-line program (also in Appendix G)
which provides navigational corrections to the reference postures from the on-
line local path planner to create desired postures. The desired postures are
fed to the Autopilot.

Each component of the Guidance subsystem is described in detail in a subsequent

portion of this chapter.

The Guidance system algorithms presented herein perform local-path ,lanning

and Tracking Control fo, two-dimensions, Application to the third dimension (depth)

is discussed at the end of this chapter.

C. INTERFACE WITH OTHER SOFTWARE MODULES

It is useful to divide the computer systems onboard an autoncmous vehicle into

individual modules which perform specific functions. This approach has been

followed in a number of AUVs and Remotely Operated Vehicles (ROVs)

[CROWLEY 85, ALBUS 90, RUSSELL 86, BELLINGHAM 90, ZHENG 90]. For

AUV II, the onboard software is divided into the following Modules:
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" Mission Replanning

" Navigation

" Collision Avoidance

" Obstacle Recognition

• Local Path-Planning (LPP)

• Autopilot

• Data Collection

" Hovering

The inter-relation of these modules is illustrated in Figure 10. Three of these

modules/subsystems interact directly with the Guidance subsystem:

" Mission Planner

" Navigation

" Autopilot

The function of these modules and their interaction with the Guidance subsystem are

described below.

1. Mission Planner

The Mission Planner is responsible for finding a safe path between the

starting position and the goal position utilizing the information available from the off-

line world model. The path must minimize distance while at the same time taking

into account other factors such as mission duration, threat analysis, and other possible

hazards. The output of the mission planner must be readily usable by the onboard

computer systems.
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Figure 10 - AUV IJ Software Modules

Because the paths that an autonomous vehicle must follow are complex

and subject to change, real-world data must be obtained and utilized to arrive at

satisfactory solutions [MOZIER 87]. AUV II will contain vehicle models and mission

models at various levels, and will have on-line environmental databases to ensure

proper data input for all of the above modules [HEALY 90].

The choice of an appropriate global or world model is essential to

designing and implementing a successful navigation system and as a consequence

most mobile robot planners are strongly influenced by the world modeling method

employed. In addition, selection of appropriate information to be passed to the
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vessel can greatly simplify the design of the Mission Planner. 'The key to a successful

modelling technique lies in defining a conceptual model that adequately describes the

operating environment for the tasks being performed and <which> lends itself to

computer implementation...." [MOZIER 87] By utilizing a grid structure for the world

model, formal search methods such as A* and depth-first can be employed in

conjunction with appropriate heuristics. The current Mission Planner for AUV II is

based on a three-dimensional rectangular grid and uses several different heuristic

search methods [ONG 90).

a. Grid Size Determination

The grid has identical x and y dimensions, with a smaller z dimension.

A two-dimensional representation of this grid is illustrated in Figure 11. For the

purposes of software testing he grid is sized based on estimated vessel

maneuverability. The actual values must be validated during initial trials.

The Mission Planner assumes that the AUV is traveling on a three-

dimensional grid. The algorithm utilized by the Mission Planner in calculating a

desired path assumes that the AUV can only traverse directly from one waypoint to

another waypoint on the grid (it cannot stop at intermediate points off of the grid),

and that when it arrives at the next waypoint, it will be heading in a cardinal direction

(North, South, East or West). This type of maneuver is illustrated in Figure 12. The

position and direction assumptions are the critical link between the algorithms used

by the Guidance Subsystem and the path prepared by the Mission Planner.
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Figure 12 - Allowable Maneuvers
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The basic size for the grid is established during sea-trials. Basic grid

size is the maximum of the x and y values (advance and transfer) obtained as the

vehicle executes a 90 * course change under worst case conditions (most probably at

low speed).

b. Output from Mission Planner

The output from the Mission Planner is a series of weypoints (x,y,z,v)

which describe the optimal path and desired velocities to be achieved between the

start and goal points. Note that this path is optimal only for the given set of

boundary conditions. The Grid size is determined off-line based on the AUVs ability

to execute a 90 degree course change under worst case conditions. For example, if

the worst case calculations showed a change in x of 70 cm and a change in y of 90 cm

in 4 sec. Also assume that the worst case expected current resulted in a set of 10

cm/sec. The maximum dimension would be 130 cm (90 cm plus 10 cm/sec for four

seconds). The resulting grid would be 130 cm on a side. These waypoints are

coupled with reference vehicle velocity to form a file of waypoint-velocity pair which

is downloaded to AUV II. Since the Mission Planner has knowledge of possible

obstacles in the AUVs world, the area between these waypoints is assumed to be

obstacle free.

The Mission Planner can also be programmed to correct for expected

set and drift encountered as the vehicle maneuvers. This capability will be especially

beneficial when the AUV is operated in the bay or at sea. As an example, assume

that the worst case measured values for advance and transfer are 100 cm and 80 cm
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respectively, and that these values were obtained at a vehicle velocity of 0.5

meter/second. Using these values, the basic grid size would be 100 cm. If the

expected set and drift was 0.1 meter/second (direction is irrelevant), then the

correction is given by:

Grid~s
2 (4-1)

cOrr =
Corr tr ial v el

and the final grid size would be 130 cm (including a correction of 30 cm). The

proposed x, y, and z positions that the Mission Planner outputs to Guidance are

integral values of the final grid size.

2. Autopilot

The Autopilot receives desired waypoint, heading and velocity values from

Guidance. These desired values are reference values which have been corrected

based on current vehicle parameters [RILING 901. The Autopilot outputs commands

to the control surfaces, and main motors as it tries to achieve the desired attitude.

3. Navigation

The Navigation subsystem determines current vehicle position, heading,

velocity and acceleration and provides this information to Guidance for comparison

with reference waypoint-velocity information and deduced reference velocity and

acceleration values [FRIEND 89].
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D. OFF-LINE LOCAL PATH PLANNER

FINDCS is the off-line program which performs the cubic spiral calculations

for Local Path Planning in the Guidance subsystem. It is a modification of the cubic

spiral calculation program developed by Kanayama for Yamabico-l1 [KANAYAMA

88a].

The program takes as input a file consisting of the 27 possible combinations of

x and y positions in the xy-plane. FINDCS takes these 27 sets of data, creates two

postures P1 and P2, determines the appropriate cubic spiral (or pair of cubic spirals)

which joins these two postures, and writes the associated cubic spiral data to the

output file. The position combinations are four sets of xy-pairs {(x 1,y 1),(x 2,Y2), (x3,Y3)

and (x4,Y4)} which are used to calculate P1 and P2 as described below.

1. Reference Heading

Each posture is calculated using three of the pairs. P1 is calculated using

the first three xy-pairs {(x 1,y 1),(x 2,y2), and (x3,Y3)}, and P2 is calculated from the last

three xy-pairs {(x 2,Y2),(x 3,Y3), and (x4,y4)}. The xy-position for the posture is taken

from the inner xy-pair of the triple (for P1 the xy-position would be (x2,y2) and for P 2

it would be (x3,Y3)). The reference heading for each posture is calculated in the same

manner as was described earlier, where heading is the arc tangent of the difference

between the previous and the next positions on the grid. As an example, if the input

pairs are ((0,0)(1,1)(2,2)(2,3)), then the P1 and P2 positions would be (1,1) and (2,2)

and the associated angles would be:
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e = tan-' (2 - 0) = 450 (4-2)
(2-0)

and

02 = tan-, (3 - 1) = 63.430 (4-3)

(2 - 1)

respectively.

2. Cubic Spiral Calculation

Once the postures have been determined, the next step is to determine the

appropriate cubic spiral or cubic spirals to join the waypoints in the same manner as

Yamabico-11, specifically:

(1) If P1 and P2 are symmetric, then find the cubic spiral which joins P1 and P2.

(2) If P, and P 2 are not symmetric, then find the split posture (Q) between P1 and
P2 such that the sum of the cost for (P 1,Q) and (Q,P2) is minimum.

(3) Find the cubic spiral joining P1 and Q, and then do the same for the cubic

spiral joining Q and P 2.

After the appropriate cubic spirals have been found the associated length

(1) and curvature constant (a) values are written to the output file. The curvature

constant is:

6 * (02 - 01) (4-4)
i3

Both of these terms and their importance to the local path-planning calculation are

described fully in [KANAYAMA 88a].
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E. ON-LINE LOCAL PATH PLANNER

The local path-planner must find a smooth path from waypoint to waypoint.

In addition to waypoint information, the desired vehicle heading at each waypoint

should also be included in the calculation, and can be inferred from waypoint

information.

The desired vehicle heading at a waypoint is taken to be the arc-tangent of the

two dimensional Cartesian difference between the previous waypoint (xj, Yj) and the

next waypoint (x2, Y2):

0=tan - 1 (x2-xl) (4-5)
I (y2-Y1)

Figure 13 illustrates this calculation in the case where the prior waypoint and the

current waypoint have the same x grid values, and the following waypoint has x and

y values one grid unit larger resulting in a desired heading of 27.5 degrees.

A posture (x,y,zv,O) is defined as a combination of the Cartesian coordinates

of a point, a velocity, and a heading. Two postures are required as input to the local

path-planner. The output from the local path-planner is a smooth "path" which

satisfies the input conditions while minimizing total cost. A path (1r) can be

represented as a function of length (s) along the path where the tangent direction (0)

and curvature (K) of ir are:
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Figure 13 - Calculation of Desired Heading

O(s)= tan- ' d (4-6)

.(s) dO (4-7)ds

1. Cardinal Heading Maneuvers

The vehicle is initially assumed to be heading in a cardinal direction

(North, South, East or West). The 'Cardinal Heading' is calculated by the

Guidance subsystem based on the first three waypoints. This calculation, and its

effect on Guidance, is explained below.

With the stipulation that the vehicle can only turn left (L), go straight (C),

or turn right (R), and that the vehicle must end up on the grid, all possible
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combinations of vehicle maneuvers can be reduced to a set of twenty-seven curves,

each of which can be identified by a triple (e.g. LLL) as specified in Table V. In

Figure 14, the vehicle was initially heading East, then turned to the North (L), the

West (L) and then to the South (L), for a combined (LLL) maneuver. The resultant

cubic spiral is a quarter circle to the left.

Table V - Possible Combinations of Maneuvers

LLL CLL RLL

LLC CLC RLC

LLR CLR RLR

LCL CCL RCL

LCC CCC RCC

LCR CCR RCR

LRL CRL RRL

LRC CRC RRC

LRR CRR RRR

Any maneuvers which require more than these three changes in cardinal

heading can be simulated through some combination of these twenty-seven triples.

Since there are only twenty-seven predefined possible maneuvers, the cubic

spiral information is precalculated using Kanayama's method [K4NAYAMA4 88a], and

placed into a lookup table, resulting in a tremendous increase in calculation speed.
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NORTH

Figure 14 - Example of a LLL Maneuver

2. Theory of Operation

'-he objective of the LPP is to provide appropriate data to the Stepper

which calculates the next desired posture to follow between waypoints. The Stepper

requires information on the length of a curve (d) and curve deflection (a), where d

is the Euclidean distance between the waypoints and a is the angle between the

desired vehicle heading at each of the waypoints. This pair (d,a) is called a curve set.

On Yamabico-11, the local path planner must perform curve set

calculations on-line, since the waypoint orientation is unknown [KANAYAMA 89a].

For AUV-II the task is much simpler. The local path calculations are expedited by

using a stored curve database which contains all allowable combinations of vehicle
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maneuvers. By eliminating on-board calculations of curve parameters, the real-time

response of the LPP is dramatically improved.

Because of the simplified set of twenty-seven possible combinations of

waypoints (as indicated in Table V) achievable by the AUV, the curve set

information is calculated by the off-line local path planner and is placed into a lookup

table for use by the on-line local path-planner. The off-line program utilizes path

curvature and the derivative of path curvature as cost functions as follows:

cost = a2 * D(a) 3 . (4-8)

As specified by Kanayama, there is only one simple path with a given curve

set (da)[KANAYAMA 88a]. If a set of waypoints (x,,yl) (x2,y2) As symmetric, then the

desired curve set consists of a single cubic spiral. The desired solution to a set of

waypoints is symmetric if and only if

01 P = -02 (4-9)

where

=fI_1(Y2 - Y). (4-10)
X2 - .X1

If the waypoint pair is not symmetric then two curves which satisfy the

minimum cost function are required, resulting in two curve sets. The lookup table

utilized by the local path-planner has two curve sets for each of the possible

combinations, with the second curve set placed to zero if the waypoint pair is
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symmetric. These lookup table are size-free and can be scaled to any desired grid

size.

Once a set of curve information has been retrieved, STEP-SPIRAL is used

to calculate a series of intermediate reference postures which are used by the

Tracking Controller. A reference posture is defined as a quadruple of reference

x-position, y-position, depth, speed and heading (x,y,zv,6).

3. Waypoint Processing

As waypoints are passed to the local path-planner, a new vessel pseudo-

heading is computed based on the past way-point (xo,yo) and the current way-point's

successor (x2,Y2). This pseudo-heading is used to calculate relative direction change

and the new vessel cardinal heading. The new pseudo-heading (01) is given by:

1 tan -Y2-Y *) _
-Xo (4-1l)

where i0 is the cardinal heading which existed prior to the maneuver. Using

Figure 14 as an example again, assume the vessel was initialially heading East, the

pseudo-heading to the next waypoint would be -90.0 *, resulting in a relative direction

change of (L), and a new cardinal heading of North. This relative dirction change

is combined with the last two relative direction changes to form a new triple. The

triple is used as the table entry for the table lookup of the appropriate cubic spiral

curve information.

The desired vehicle heading calculation at the start of the mission is

somewhat more complex. Since there is no previous waypoint, the initial reference
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heading must be calculated based on the following two waypoints. This is

accomplished by determining whether the change in the x and y directions are

positive, negative or zero. Two pairs (sign-x sign-y) are calculated and reference

vehicle heading and dummy values for the previous position (x0,Y0 ) are chosen based

on these pairs.

4. Reference Value Calculation

Reference values are dead-reckoned from the point where the mission

originated. The length of a "step" from one reference posture to the next is current

vessel velocity multiplied by execution time interval.

Let do denote the distance of a point from the start of the path, and s the

size of an incremental change in do. Then the distance after an incremental change

becomes:

d, = do + s (4-12)

and the curvature K can be determined from:

Kc =A * di * (1 - d1 ) (4-13)

where I is the total length of the cubic spiral. The change in the reference heading

(Aer) is then:

AO, = Y * s (4-14)

and the new reference heading is:
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Or = O + AO . (4-15)

The new reference values for x and y (Xr-Yr) are calculated from simple trigonometric

relationships:

x= cos(O) • s (4-16)

Yr sin(O) s (4-17)

F. TRACKING CONTROLLER

The purpose of the Tracking Controller is to provide desired postures to the

Autopilot. The Tracking Controller for AUV II is modelled after the system utilized

in Yamabico-11 by Kanayama because of its proven capability, robustness and ease

of implementation [KANAYAMA 901.

1. Basic Operation

The Tracking Controller receives as input reference postures and velocities

from StepSpiral which define the path that the vessel should follow, along with

actual position and velocities from Navigation which show the actual vehicle path.

An error value calculation is performed and applied to the reference position to get

the desired values of heading, velocity and position to provide to the Autopilot.

The AUV in the world possesses six degrees of freedom in positioning

which are represented by a posture (x,y,z,0,,), which is also a function of time. The
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set of positions (x,y,z) that the vessel traverses is called a path, and it can easily be

shown that heading is actually:

a= an-'() (4-18)
x

(where the dot is defined to be the derivative with respect to time).

The velocity of the vehicle in three-dimensional space can be specified as:

a triple:

q =(v,c,*) (4-19)

where v is the AUV speed, o is rotational velocity in the x-y plane and fr is the

rotational velocity in the x-z plane (we are neglecting vehicle roll).

The relationship between the posture p and the velocities q is given by:

q = (v,j,$) = (t cosO cos, + cosO sin#, 6, $) (4-20)

where 0 is the current vehicle heading and 0 is the current vehicle pitch.

2. Error Value Calculation

The error value determination method used in AUV II is identical to that

used in Yamabico-11. The error values are the difference between reference and

actual positions scaled by actual heading and are calculated from:

x, = (x, - x,) * cos(Oc) + (y, - y) • sin(O) (4-21)

y, = (x, - x,) * sin(Oe) + (y, - Y) * cos(O) (4-22)

0 = 61 - Oc . (4-23)

58



3. Desired Value Calculation

As the vehicle proceeds from waypoint to waypoint, it is constantly

comparing actual posture (Pc) to reference posture (Pr). There are three possible

outcomes from this calculation:

" The vehicle is ahead of the reference posture (x, positive).

" The vehicle is at the reference posture (x, approximately zero).

* The vessel is behind the reference posture (xe negative).

If Xe is positive, a new reference posture is calculated by the on-board LPP, desired

velocity is decreased, and new x, and Yr values are calculated and passed to Autopilot.

If Xe is nearly zero, a new reference posture is calculated by the on-board LPP, vd

remains unchanged and a new desired posture is calculated and passed on to

Autopilot. If the AUV is lagging behind (x, negative), then the reference posture

remains the same, xd and Yd are recalculated, and vd is increased and passed on to

Autopilot.

For AUV II, the desired x and y values are calculated using the same

equations developed for Yamabico- 11, and are then scaled to the current vessel grid

size:

Xd = (x, + Xe) * GRID_SZ (4-24)

Yd = (Y, + Y) * GRID..SZ (4-25)

where the error values and reference values are calculated as above.
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Desired velocity determination is also the same as for Yamabico-ll:

Vd = (K * x) + (v, *) (4-26)

The calculation of desired heading is somewhat more complex. Since 0 is

the derivative of heading, the desired change in heading can be obtained by:

AO = w+ +v , * (K*y, + K*O) (4-27)

where oc and vc are the actual angular velocity and linear velocity supplied by the

Navigation subsystem. This change in heading (AO) is added to the old desired

heading to determine the new desired heading. K. KY and K. are integration

constants whose values are calculated using the methods specified by Kanayama

[KANAYAMA 90]. For the purposes of validating the Guidance Subsystem software

without a vessel, these constants were calculated to be: K, = 10/sec, Ky =

0.0064/cm 2, and K, = 0.16/cm. The final values for these constants must be

determined and verified by experimentation when the vehicle is in the water.

4. Look-Ahead Limitation

The Tracking Controller is designed to "drag" AUV II along from desired

posture to desired posture. It is desirable for the next desired posture to be just far

enough ahead of the current posture that the vehicle will reach the desired posture

after a certain number of cycles of Autopilot operation. For the Tracking Controller

in AUV I the Autopilot is allowed ten cycles to achieve the desired posture.

The selection of the factor of ten difference in the timing between the

Tracking Controller and the Autopilot is quite common in AUV control [BLIDBERG

90, ALBUS 90], and provides for adequate separation of the various layers of control.
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If the vehicle is unable to achieve the desired position in ten cycles, then

a decision must be made either to calculate a new desired position, or to continue to

the old desired position. This is accomplished by comparing the size of xe to a

reference maximum value. As long as xe is negative and less than the maximum, a

new reference value is calculated. If x. becomes greater than the maximum, the old

reference posture is passed to the Autopilot.

If the vehicle gets ahead of the desired posture, a new posture is

calculated, and in addition, the vehicle velocity is decreased by an amount

proportionate to the size of xe

G. TESTING RESULTS FOR TWO-DIMENSIONAL GUIDANCE

The two-dimensional Guidance subsystem source code was compiled and

installed on the GESPAC Vehicle Control Computer. The output of the Guidance

subsystem was written to a file along with the waypoints and the smooth cubic spiral

curves between waypoints. Since there is neither an operational navigator nor a valid

simulation model for AUV II, the last desired parameters were fed back as actual

vehicle parameters to Guidance. This artificiality is not a major concern, because the

Tracking Controller system has already been operationally tested in Yamabico-I I

[KANAYAMA 89).

Several files of waypoints generated by the Mission Planner were downloaded

to the GESPAC via an RS-232 serial port, and the missions were run to completion.

All missions resulted in adequate vehicle performance.
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The results of one such mission are shown in Figure 15. The path followed by

Step Spiral is the solid line. The waypoints provided by the Mission Planner are the

diamonds. The desired postures fed to the Autopilot are the crosses. As can be seen

from this drawing, the Tracking Controller was able to "drag" the simulated vehicle

along with no discernable error.

H. THREE-DIMENSIONAL CALCULATIONS

As was previously mentioned, the Guidance subsystem described thus far only

performs local path-planning and Tracking Control in two-dimensions. The addition

of depth brought new and interesting problems.

1. Depth Descriptors

Since the vehicle was operating on a three-dimensional grid, it was possible

to create a set of curve descriptors which would apply to depth. The vehicle

isrestricted to moving ahead, up or down just one grid square at a time (U,S,D).

These three possiblities are applied in the same manner as for the two-dimensional

case, and once again result in a maximum of 27 possible combinations of cubic spiral

curves.

The primary problem here is that unless the z grid dimension is the same

as the x and y dimensions (resulting in a cubic grid pattern), then the depth curve
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Figure 15 - Guidance Subsystem Performance

descriptors will have to be chosen based on the scale difference. As an example, if

the x/y dimension is 100 cm and the z dimension is 10 cm, then the depth curves must

be calculated based on this relationship. The program FINDD (see Appendix H for

three-dimensional source code) performs these calculations. It requires an input file

showing the relationship between the waypoints, and outputs an appropriate set of

cubic spiral curve descriptors.
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2. Modifications to On-Line Local Path Planner

The vehicle must travel from waypoint to waypoint on the three-

dimensional grid, and it must arrive at the x-y waypoint coordinate at the same time

as it arrives at the z waypoint coordinate. This poses the hardest problem in

achieving three-dimensional guidance. There must be some time synchronization

between stepping through the x-y curve set and the z curve set.

The total distance to travel in each dimension is known (it is the sum of the

lengths of the individual cubic spirals (1)) and the number of steps in each dimension

must remain equal. From this it is easy to see that to travel the same number of

steps, and yet go a different distance, the step sizes must be different. Therefore, the

z step size is calculated from:

z.step = xy-.step * (xy.lenl +xy.len2) (4-23)
(z.kenl +z.len2)

By keeping the number of steps the same, the time spent in each curve will be

identical, and the vessel will complete both curves at the same time.
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VI. CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes the contributions which have been made to AUV

research in general, and specifically to the NPS AUV II. It also provides

recommendations for future research in AUV II guidance and control.

A. CONTRIBUTIONS

1. Vehicle Control Computer System

The necessary computer equipment was identified, procured and

configured to ensure that all identified data processing and data translation

requirements at the Vehicle Control level were met or exceeded. In addition, the

chosen VCC allows for data translation capability upgrades, and for expansion to

multiple processors at some future date,

2. Guidance Subsystem

A functional Guidance subsystem has been implemented and tested on the

Vehicle control computer. This subsystem calculates a smooth path from waypoint

to waypoint while minimizing vessel jerk. The Tracking Controller in this subsystem

provides all necessary information to the Autopilot at a user specified frequency.

The Tracking Controller module is robust enough to be used to provide

vehicle control commands without an Autopilot.
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3. Vehicle Firmware

All data translation firmware necessary for the Vehicle Control Computer

has been designed, implemented and tested. This software should be able to function

totally unchanged for the life of the project.

In addition real-time software has been developed and tested for the main

motors and hydrodynamic control surfaces. The 'lookup table' function used to

control these effectors and the algorithm used in creating the lookup tables for these

devices can be applied to all other vehicle control mechanisms.

This combination of firmware provides all software necessary for initial in-

water testing of AUV II.

B. RECOMMENDATIONS FOR FUTURE WORK

1. Real-Time scheduling

The single most important decision facing the AUV II real-time computer

systems is the design and implementation of a multi-tasking scheduling scheme. The

OS-9 operating system is designed to allow the use of several possible methods of

multi-tasking [DIBBLE 88]. The event driven control method used by ISE

[ZHENG 90] is another viable option, as is the real-time pre-emptive scheduling

methods being pursued by MIT-Sea Grant [BELLINGHAM 90]. This scheduling

decision will drive the design and implementation of all other support modules.
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2. Guidance Subsystem

The Guidance subsystem should be linked to the off-hull Mission Planner

to allow for accurate real-time simulation of mission plans. This integration,

combined with the integration of Autopilot and Navigator, and an improved vehicle

dynamic model, will allow missions to be run in real-time, which would greatly

enhance the credibility of the vehicle simulatons.

The Guidance subsystem must be interfaced to the Autopilot when the

Autopilot has been operationally tested on the Vehicle Control Computer. Further

testing of the Guidance subsystem should also be accomplished using simulated

vehicle dynamic inputs to verify the robustness of the Tracking Controller.

3. Communication

There is an urgent need to establish real-time communications between

the GESPAC and the GRiDCASE computers. Waypoints must be sent from the

GRiDCASE to the GESPAC, and vehicle attitude and positional information must

be sent from the GESPAC to the GRiDCASE to allow for Mission Replanning. In

order to facilitate initial vehicle testing, an RS-232 link should be connected between

the GESPAC and the pierside GRiDCASE/PC. The removable fiber-optic data link

would be the best choice for this communications connection.

4. Vehicle Firmware

Routines must be written which will ensure that equipment in AUV II is

powered up in the proper order, and which will ensure proper operation of the
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effectors prior to launch. In addition, firmware is required for the inertial sensor

suite, for the health and well-being sensors, and for the tunnel thrusters.
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APPENDIX A. GRiD TIMED INTERRUPT SOURCE CODE

/*

Program: TESTTSR.C
Purpose: timed interrupt test program for GRiDCASE 1535 EXP
Author: LT M.J. CLOUTIER

TESTTSR does the following:

1. Using vector 66h, checks whether the clock is already installed
2. Saves original clock vector
3. Sets up new clock vector (InstallAutopilot)
4. Does a "do nothing loop" to evaluate the TSR function

(NOTE: This code is an extensive modification of a timer routine in the DOS
Programmers Reference by DETTMAN)

,/

#include <stdio.h>
#include <dos.h>
#include <conio.h >

/* constants */
#define PGMSIZE 3000

/* define base address for video display */
#define MONOBASE OxbOOO
#define COLORBASE 0xb800
#define EGABASE OxaOOO

/* interrupt vectors for BIOS and DOS */
#define AUTOPILOT 0x66
#define TIMER 0xIc
#define VIDEO 0xl0

void interrupt (*orig_clock)(void); /* original clock vector */
void interrupt autopilot(void);/* declare autopiloto */
void InstallAutopilot(void);
void RemoveAutopilot(void);
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int tick count = 0; /* c!ock tick counter ~
mnt sp; I* stack pointer *I
mnt ss; !* stack segment *
mnt count = 0;
char buf[801 ="<-----
char far *auvptr;

maino

union REGS regs;
int mode;
int

InstallAutopiloto;
for0j=0 ;j < 2;+)

printfQ'Count= %d\n",count);
delay(50);

RemoveAutopiloto;

void Install-Autopilot(void)
/* Set up the Autopilot interrupt handler, saving machines clock program to
orig-clock *

int mode;

/* sets auvptr for appropriate screen mode *

mode =getmodeo;
printf("Display mode is %d\n",mode);
if (mode== 7)

auvptr = MKFP(MONOBASE,3856);
else if (mode= =3)

auvptr = MKFP(COLORBASE,3856);
else

auvptr = MK_-FP(EGABASE,3856);
orig clock = getvect(TIMER);
setvect(TIMER,autopilot);

} I InstallAutopilot */

void RemoveAutopilot(void)
/* Removes Autopilot interrupt handler, restores machines clock program ~
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setvect(TIMER,orig_clock);
}/* RemoveAutopilot */

void interrupt autopilot(void)
/* Autopilot interrupt handler ... called by the timer interrupt

18.2 times per second. Every 5th second add one more tick
before advancing to keep average time correct

static int INSIDEAUTOPILOT =0;

static unsigned long Count = 0;

/* call the original interrupt first *
(*oigclock)();

/* Advance the tick counter *
tick-count + +;

/* Every 20th tick write Autopilot string ~
if (!INSIDE_-AUTOPILOT && !(tick-count ~'OxOa)){

tick count = 0;
INS IDEAUTOPILOT = 1;
disable(;
sp = SP;
5= _SS;
_SS = _CS;
_SP =PGMSIZE;
enableo;

itoa(+ +count,&buf[8J.10);
displaystr(buf);
for (;Count < 400000; Count+ +);

disableo;
_SP = sp;
_SS = ss;
enableo;
Count = 0;
INSIDEAUTOPILOT =0;

} I autopilot *

displaystr(str)
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/* Display the string at the clkptr position on the screen
char *str;

char far *ptr;

ptr = auvptr;
while( *str) {

*ptr++ = *+r+
ptr + +;

I

getmode()
/* Returns video display mode of the system *

union REGS regs;

regs.h.ah = OxOf;,
int86(VIDEO,&regs,&regs);
return(regs.h.al);

}/* getmode *
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APPENDIX B. DATA TRANSLATION SOURCE CODE

* Program -- ALL_-ADDA.C
* Purpose -- Data Translation routines for GESPAC DAC2B, ADAl and

ADC2C *cards for AUV 11
* Author --LT M.J. CLOUTIER
* (Some of these routines are from data translation routines used in the MIT Sea

Sprite)

#define DACADDR OxFFFOOOOO
#define DACOMSB OxO
#define DACIMSB 0x4
#define DAC2_MSB Wx
#define DAC3_MSB Oxc
#define DAC_[SBOFFSET Wx

#define ADCADDR (DAC-ADDR + 0x11)
#define ADCMSB OxO
#define ADC_[SB Wx
#define ADCCMD_-REG 0x4
#define ADCSTATUSREG 0x4
#define ADCBUSY 0x4

#define DAC2B_-ADDR OxFFFOOO4O
#define DAC4_MSB Oxlo
#define DAC5_MSB 0x14
#define DAC6_MSB Ox 18
#define DAC7_MSB Oxic

#define ADC2_ADDR OxFFF0OO2O
#define ADC2_CHGAIN OxO
#define ADC2 STATUSREG Wx
#define ADC2_DATA Oxi
#define ADC2_CMDREG Wx

unsigned short *adc2_a =ADC2_ADDR;

unsigned char *dac2b-a =DAC2B_-ADDR;

unsigned char *adal-dac-a = DACADDR;
unsigned char *adal-adc-a = ADCADDR;
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* adal adc(n) -- reads adc channel 'n' (channels 0-15)

int adal adc(n)
int n;
{

int val;

adaladc.a[ADCCMD REG] = n;
while (adaladc-a[ADCSTATUSREG] > 20); /* wait for data */
val = adaladc a[ADCMSB] << 2;
val + = adaladc a[ADCLSB] >> 6;
return (val);

}/* adal adc */

* adc2_adc(n) -- reads adc channel 'n' (channels 0-15)
* with gain 'g'(0 to F = > 0 - 1024)

int adc2_adc(n,g)
int n,g;
{

int val;

adc2_a[ADC2_CHGAIN] = (n < < 4) I g; /* set c&g, start conv */
while (adc2 a[ADC2 STATUSREG] != 0); /* wait for ready */
val = adc2_a[ADC2_DATA];
return (val);

}/* adc2_adc */

* adaldac(s,ch) -- writes signal 's' to adal dac channel 'ch'
* (allowable channels 0-3)

void adaldac(s,ch)
int s,ch;
{

ch = ch < < 2; /* offset for G-96 addressing */
adal dac a[ch] = s >> 2; /* write upper 8 bits to MSB*/
adal dac-a[ch + DACLSBOFFSET] = s < < 6; /* write lower 2 bits B3,B2 */
return;

}/* adal dac */
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*dac2_dac(s,ch) -- wri9tes signal 's' to dac2 channel 'ch'
* (allowable channels 0-7)

void dac2_dac(s,ch)
int s,ch;

ch = ch < < 2; /* offset for G-96 addressing *
dac2ba[ch] = s > 4; /* write upper 8 bits to MSB*/
dac2b -a[ch + DAC_[SBOFFET] = s <« 4; /* write lowe,-r 4 bits B3-BO ~
return;

} dac2_dac ~

*read -adal -dac(ch) -- read output from dac

mnt read -adal-dac(ch)
int ch;

mnt s;

ch = cli <« 1;
s = adal-da.c_archl << 2;
s = s + (adal dac~ach + DAC_[SBOFFSET] >> 6);
return (s);

}/* read-adal-dac *

*adal-2adal(nl,n2) -- signal from adal adc(nl) written
* to adal dac(n2)

void adal_-2_-adalI(nlI,n2)
int nl,n2;

int val;

n2 = n2 <« 2;
ada I adc-a[ADCCMD REG] = n 1;
while (adal adca[ADC_-STATUS -REG] > 20); /* wait for data *

adal-dac-a[n2] = adal adca[ADC_MSB];
adal dac a[n2 + DACLSBOFFSET] = adal_adcaADCLSB];

} ada_ 2_ada I/
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*adc2-2adal(nl,n2) -- signal from adal adc(nl) written
* to adal dac(n2)

void adc2_2_adal(nl,g,n2)
int nl,g,n2;

unsigned short val;

n2 = n2 <« 2;
adc2-a[AD2CHGAIN] = (n1 <<4) 1 g;
while ((adc2 -a[ADC2-STATUSREG] & 007) !0); 1* wait for data *
val = adc2 -a[ADC2_DATA];
adaldacafn2] = vai >> 4;
adal -dac -a[n2 + DAC_[-SBOFFSET] = val <« 4;

}I* adc2_2_adal /

*ada-2-dac2(nl,n2) -- signal from ada adc(nl) written
* to dac ch(n2)

void adal_ -2_-dac2(nl,n2)
mnt nl,n2;

n2 = n2 << 2;
adal-adc-a[ADCCMD REG] = n1;
while (adal adca[ADC_-STATUS -REG] > 20); /* wait for data *

dac2ba[n2] = adal_adc -a[ADCMSB];
dac2b-atn2 + DAC_[ SB_-OFFSET] = adal_adc_a[ADCLSBJ;

}I* adal_2_dac2 ~

*adc22I-dac2( n1,n2) -- signal from ada adc(nl) written
* to dac ch(n2)

void adc2_2_dac2(nl,g,n2)
int nl,g,n2;

unsigned short val;

n2 = n2 <« 2;
adc2_a[ADC2_CHGAIN] = (nI << 4) 1 g;
while ((adc2_;a[A5C2 STATUS REG] & 007) ! = 0); 1* wait for data *
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val =adc2 a[ADC2 DATA];
dac2b-a[n2J = val > 4;
dac2b -a~n2 + DAC -LSB_-OFFSET] =val <« 4;

}/* adc2_2_dac2 ~

main (argc,argv)
int argc;
char *argv[];

int val;

1* This program reads from the ADAl or ADC2B ADC and writes to the DAC2B3
DAC *to test the data conversion routines

priptf("ALL A2D && D2A: testing\n");
while (I)f

adal_2_-dac2(0,O);
adal_ 2_dac2(1,1),
adal_2_dac2(2,2);
adal_2_dac2(3,3);
adal_ 2_-dac2(4,4);
adal_2_-dac2(5,5);
adal_2_dac2(6,6);
adal_-2_dac2(7,7);

adc2_2_dac2(0,0,0);
adc2_2_dac2(1,0, 1);
adc2_2_-dac2(2,0,2);
adc2_2_-dac2(3,0,3);
adc2_-2_dac2(4,O,4);
adc2_2_dac2(5,0,5);
adc2_2_dac2(6,0,6);
adc2_2_dac2(7,0,7);
adc2_2_ada 1(8,0,0);
adc2_2_adal(9,0,1);,
adc2_2_-adal(10,0,2);
adc2_2_adal1(11,0,3);
adc2_2_adal(12,0,4);

} * ALLADDA ~
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APPENDIX C. SERVO CONTROL CODE

/,
* Program - CALCSVO.C
* Purpose - perform servo lookup table calculationg '?AUV II
* Author -- LT M.J. CLOUTIER
./

#include <math.h>
#include < stdio.h >

FILE *outfp;

void calc_servoval(angle)
double angle;
{

double voltage;

angle +-= 45.0; /* normalizes angle to 45 */
if (angle < 15.0)

voltage = (angle*0.086333)+0.27;
else if (angle < 30.0)

voltage = ((angle - 15.0)*0.08466) + 1.565;
else if (angle < 45.0)

voltage = ((angle - 30.0)*0.068) + 2.835;
else if (angle < 60.0)

voltage = ((angle - 45.0)*0.055) + 3.855;
else if (angle < = 75.0)

voltage = ((angle - 60.0)*0.04666) + 4.68;
else if (angle < = 90.0)

voltage = ((angle - 75.0)*0.04266) + 5.38;
else {

printf("Invalid angle: %4.2f\n",angle - 45.0);
exit(-1);

}
fprintf(outfp,'\t%d, n",(int)(102.4 * voltage));

}/* calcservoang */

main (argc,argv)
int argc;
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char *argv[];

double ang;

if ((outfp = fopen("setvo.dat","W")) == =)

printf("Unable to open 'svo.dat');
exit(-1);

fprintf(outfp,"int svo -ang[9l] IV)
for (ang = -45.0; ang < = 45.0; ang + = 1.0){

caic-servo val(ang);
I

fclose(outfp);
/* CALCSVO ~

* S.DAT - servo lookup table for AUV II
* Author - LT M.J. CLOUTIER

int svo ang[91]={
2i7,36,45,54,63,71,80,89,98,107,116,124,133,142,151,160,168,
177,186,194,203,212,220,229,238,246,255,264,272,281,290,297,
304,311,318,325,332,339,346,352,359,366,373,380,387,394,400,
406,411,417,422,428,434,439,445,451,456,462,467,473,479,484,
488,493,498,503,507,512,517,522,527,531,536,541,546,550,555,
559,564,568,572,577,581,585,590,594,598,603,607,612616

* Program --- TEST_-SVO.C
* Purpose --- servo test program for AUV Il
* Author ---- LT M.J. CLOUTIER

#include <stdio.h>
#include <math.h>
#include 's.dat"

#define DACADDR QxFFFOOOOO
#define DACLSBOFFSET Wx
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#define BOW 0

unsigned char *daca = DACADDR;

* dac(s,ch) -- writes signal 's' to adal dac channel 'ch'
* (allowable channels 0-3)

void dac(s,ch)
int s,ch;
{

ch = ch < < 2; /* offset for G-96 addressing */
daca[ch] = s > > 2; /* write upper 8 bits to MSB*/
daca[ch + DACLSBOFFSET] = s < < 6; /w ,ritt, lower 2 bits iT3,B2 /
return;

}/* dac */

void send servo(surface,angle)1*
* This function sends the desired ANGLE to the specified control SURFACE
* The angle is first normalized to (-45 to 45), then correction is applied
* for the non-linearity in the servo control module
,/

int surface;
double angle;

double voltage;
if ((angle < -45.0) I1 (angle > 45.0)){

printf("Angle out of range: %4.2fn",angle);
} else {

dac(svo-ang[(int)(angle + 45.0)],surface);
}

}/* send-servo */

main (
{

double ang;
long j;

ang = 0.0;
while ((ang <= 45.0) && (ang >= -45.0))f

printf("Enter desired angle from -45 to +45 degrees (999 to quit)\n");
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scanf("%lf',&ang);
send-Servo(BOW,ang);

send servo(BO W,O.O);
} I TESTSVO.C ~
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APPENDIX D. MAIN MOTOR CONTROL CODE

* Program - CALC -MN.C
* Purpose - perform main motor lookup table calculations for AUV II
* Author -- LT M.J. CLOUTIER

#icud mahh
#include <mth.h>

FILE *outfp;

void calcrpm(rpm)
double rpm;

double voltage;

if (rpm < -700)f
printfQ'Invalid RPM: %4.2t\n"',rpm);
exit(-1);

I
else if (rpm < -600)

voltage = ((2.73 - 2.0l)/100*(rpm+700)) + 2.01;
else if (rpm < -500)

voltage = ((3.25 - 2.73)Il00*(rpm+600)) + 2.73;
else if (rpm < -400)

voltage = ((3.74 - 3.25)I100*(rpm+500)) + 3.25;
else if (rpm < -300)

voltage = ((4.14 - 3.74)/100*(rpm+400)) + 3.74;
else if (rpm < -200)

voltage = ((4.45 - 4.14)I100*(rpm+300)) + 4.14;
else if (rpm < -100)

voltage = ((4.67 - 4.45)I100*(rpm+200)) + 4.45;
else if (rpm < 0)

voltage = ((5.0 - 4.67)/100*(rpm+ 100)) + 4.67;
else if (rpm < 100)

voltage = ((5.32 - 5.0)/100*rpm) + 5.0;
else if (rpm < 200)

voltage = ((5.56 - 5.32)/100*(rpm-100)) + 5.3 2;
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else if (rpm < 300)
voltage = ((5.90 - 5.56)/100*(rpm.200)) + 5.56;

else if (rpm < 400)
voltage = ((6.39 - 5.90)/100*(rpm-300)) + 5.90;

else if (rpm < 500)
voltage = ((6.90 - 6.39)/100*(rpm-400)) + 6.39;

else if (rpm < 600)
voltage = ((7.45 - 6.90)I100*(rpm-500)) + 6.90;

else if (rpm < = 700)
voltage = ((8.28 - 7.45)/100*(rpm-600)) + 7.45;

else f
printfQ'Invalid rpm: %4.2t\n",rpm);
ex-it(-l);

fprintf(outfp,"\t%d,\n",(int)( 102.4 *voltage));

} * caic-rpm *

main (argc,argv)
int argc;
char *argv[];

double rpm;

if ((outfp = fopen("main -mtr.dat","w")) == =~

printfQ'Unable to open 'main-mtr.dat');
exit(-1);

I

fprintf(outfp,"int main mtr[ 141] = fn)
for (rpm = -700.0; rpm < = 700.0; rpm + =10.0)f

calc-rpm(rpm);
I
fprintf(outfp,"} ;\n");
fclose(outfp);

/* CALCMN.C

* S.DAT - servo lookup table for AUV Il
* Author - LT M.J. CLOUTIER

int main mtr[141]={
205,213,220,227,235,242,250,257,264,272,279,284,290,295,
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300,306,311,316,322,327,332,337,342,347,352,357,362,367,
372,377,382,387,391,395,399,403,407,411,415,419,423,427,
430,433,436,439,442,446 "9,452,455,457,460,462,464,466,
469,471,473,475,478,48-, .64,488,491,495,498,501,505,508,
512,515,518,521,525,528,531,534,538,541,544,547,549,552,
554,557,559,561,564,566,569,572,576,579,583,586,590,593,
597,600,604,609,614,619,624,629,62 4,639,644,649,654,659,
664,670,675,680,685,690,696,701,706,712,717,723,729,734,
740,745,751,757,762,771,779,788,796,805,813,822,830,839,
847,

84



/,
* Program --- TESTMN.C
* Purpose --- main motor test program for AUV II
* Author ---- LT M.J. CLOUTIER
#/

#include <math.h>
#include <stdio.h>

#include "m.dat"

/* address of ADA1 (could also use DAC2B) */
#define DAC ADDR OxFFFOOOOO
#define DACLSB OFFSET 0x2
/* PORT MAIN is channel 1 of ADAI */
#define PFORTMAIN 1

unsigned char *dac a = DACADDR;

* dac(s,ch) -- writes signal 's' to adal dac channel 'ch'
* (allowable channels 0-3)

void dac(s,ch)
int s,ch;
{

ch = ch < < 2; /* offset for G-96 bus addressing */
daca[ch] = s > > 2; /* write upper 8 bits to MSB */
daca[ch + DACLSBOFFSET] = s < < 6; /* write lower 2 bits B3,B2 */

return;
)/* dac */

void main rpm(motor,rpm)
int motor;
double rpm;
{

rpm + = 700.0; /* to normalize to 0-1400 RPM */
dac(main_mtr[(int)(rpm/10.0)],motor);

}/* main-rpm */

main (

duuble rpm; /* RPM value to send to MAINRPM */
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rpm = 0.0;
while ((rpm <= 700.0) && (rpm > = -700.0))f

printf("Enter desired RPM value from -700 to + 700 RPM (999 to quit)\nt );
scanf("%lf',&rpm);
main rpm(PORTMAIN,rpm);

main rpm(PORT_-MAIN,0.);
} * TESTMN.C ~

86



APPENDIX E. GLOSSARY

Waypoint -
a quadruple (xy,z,v) consisting of position at the intersection of grid points in
a global rectangular three-dimensional grid coordinate system (xy,z) and linear
velocity (v) in the x direction of a vehicle centered coordinate system.

Posture -
a sextuple (xy,z,,O,v) consisting of position (xy,z) in a three-dimensional
rectangular coordinate system (not constrained to grid intersections), velocity
as defined above, heading (0) in the x-y plane, and pitch angle (0) in the x-z
plane.

Reference Posture -
Reference postures are generated by STEP SPIRAL. They are postures which
are located on the current cubic spiral somewhere between the last waypoint
and the current waypoint. The velocity in a reference posture is taken directly
from the current waypoint.

Desired Posture -
A Reference Posture which has had navigational compensation applied to
position, angles and velocity based on actual vehicle position and velocity
parameters. Desired Postures are generated by the Tracking Controller and
are provided as input to the Autopilot.

Current Posture -
The current vehicle posture consists of current position and velocity as
determined by Navigation.
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APPENDIX F. OFF-LINE GUIDANCE SOURCE CODE

/,
* WAYPT.DAT -- the required input file for FIND CS.C
* These are the 27 possible combinations of grid points for AUV II
./

001102-11
001 102-12
001 102-13

00111203
00111213
00111223

00112233
00112232
00112231

00102112
00102122
00102132

00102031
00102030
0010203-1

00102-13-2
00102-12-2
00102-11-2

0 0 1 -12 -2 3 -1
0 0 1 -12 -2 3 -2
0 0 1 -12 -2 3 -3

0 0 1 -11 -2 2 -3
0 0 1 -1 1 -2 1 -3
0 0 1 -1 1 -2 0 -3

0 0 1 -1 0 -2 -1 -3
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0 0 1 -10-2-1 -2
0 0 1 -1 0-2 -1 -1

* find cs.c - This program is used to determine the appropriate
* cubic spiral path for the NPS AUV local path-planner.

* It is a modification of the cubic spiral calculation
* program developed by Yutaka Kanayama for Yamabico-11.

* LT M.J. CLOUTIER
* 12/18/89

* Inputs - file consisting of sets of four waypoints
* (expressed as doubles) consisting of x and y position

* Outputs - file consisting of one or more cubic spiral values
* for A and l

#include <stdio.h>
#include <math.h>
#include "cst.h"

/* required for cot function (doesn't exist in TurboC) */
#define TURBOC 0

* MACROS

#define SQR(x) ( (x) * (x))
#define CUBE(x) ((x) * (x) * (x))
#define EUCLDIST(xl,ylx2,y2) (sqrt(((xl) - (x2)) * ((xl) - (x2)) + ((yl) - (y2)) *((yl) - (y2))))
#define DIST(xl,ylx2,y2) (fabs((xl) - (x2)) + fabs((yl) - (y2)))
#define r2d(r) ((r) * RAD)

***********************************************************

* DEFINED CONSTANTS
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#define TRUE 1
#define FALSE_ !TRUE
#define SUCCESS 1
#define FAILURE !SUCCESS

* NUMERICAL CONSTANTS

#define PI 3.14159265358979323846
#define NII -3.14159265358979323846
#define DPI 6.28318530717958647692
#define HPI 1.57079632679489661923
#define RAD 57.29577951308232087684
#define ZERO RAD 0.01
#define NAMESIZE 20

********* * ** *** * *** ** * ** ** *** ** * ***************************

* VARIABLES

typedef struct posture {
char posture id[NAMESIZE];
double x;
double y;
double theta;
double k;}

POSTURE;

FILE *infp, *outfp;

* zero rad - TRUE if data is <= ZERO RAD

int zero rad(data)
double data;
{

return ((fabs(data) <= ZERORAD) ? TRUE_: FALSE_);
}/* zero rad */
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* cot - returns the trigonometric cotangent
* (TurboC doesn't provide cot!!!)

#ifdef TURBOC
double cot(arg)
double arg;
{

double tmp;

if (zero rad(arg)) {
fprintf(stderr,"cot: bad argument %7.3f\n",arg);
exit(-1);

} else {
return (1.0 / tan(arg));

}
}
#endif
/* cot */

* createposture - assigns x,y,theta to posture

POSTURE *createposture(x,y,theta,p)
double x, y;
double theta;
POSTURE *p;
{

p->x = x;
p->y = Y;
p->theta = theta;
return(p);

}/* create-posture */

* pnorm - positive normalization (0 < a < 2PI)

double pnorm(a)
double a;
{

while (a > = DPI)
a -= DPI;

while (a < 0)
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a += DPI;
return(a);

}/* pnorm */

* norm - normalizes angle between -PI and PI

double norm(a)
double a;
{

while (a > PI)
a -= DPI;

while (a < = NPI)
a += DPI;

return(a);
}/* norm */

* LOOKUP-CURVE - returns normalized distance for value looked
*up in cst.h

* cst[all I- ------
* I I
* dist ---- ---
* I I I\
* cst[a2] I-------
* I ____ ____

* al tmp a2

double lookupcurve(alfa)
double alfa;

int alfal, alfa2;
double dist, tmp;

tmp = r2d(alfa); /* because cst.h is in degrees */
alfal = (int) tmp; /* get cst value below tmp */
alfa2 = alfal + 1; /* get cst value above tmp */
tmp = tmp - alfal; /* set tmp to delta btwn alfal and tmp */

92



if (alfal <= 281) {
/* interpolate dist based on proximity of alfa to integer values */
dist = cst[alfa2] * tmp + cst[alfal] * (1 - tmp);

} else { /* zero crossing undefined -> set to 1000 */
dist = 1000;

}
return (dist);

}/* lookup-curve

• COSTF - used to calculate best split point when two CS are
• required. Returns the local cost of an ALFADIST pair
• where cost is ratio of angle squared to length cubed

• (from Smooth Path Planning Paper)

* Minimum cost occurs if ANGLE is ZERO. Minimum cost
* for a given angle occurs when length is large (small
* curvature)

• len 1 dist
-- - = > len "-----

* dist D(alfa) D(alfa)

b*** * ** **** ** *** * ***

double costf(alfa,dist)
double alfa, dist;
{

return(SQR(alfa) * CUBE(lookup curve(fabs(alfa))/dist));
}/* costf */

********************* ********* *** ****** *** ** ** * ********* *

* COST - returns the cost of a given trajectory, where cost
• is defined to be sum of the costs of two separate
* DIST,ALPHA pairs.

* xcyc are center of circle which is locus of mid-points
* symmetric to both (xl,yl) and (x2,y2).
* r is radius of circle. g is angle to r
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* x (xcyc)
*(xl~yl) I/\
* x- x (x2,y2)

* Ir I

* disti l dist2

double cost(xlyl,thetal1x2,y2,theta2,xc,yc,r,g)

double xl,yl,thetal1x2,y2,theta2,xc,yc,r,g;

double x,y,d,distl,dist2,alpha 1,alpha2;

1* find center of circle *
x = xc + r * cos(g);
y = yc + r * sin(g);
disti = EUCLDIST(xl,ylx,y);
dist2 = EUCLDIST(x2,y2,x,y);

/* 2.0 * forces symmetry (SPP Paper) *
aiphal = 2.0 * norm(atan2(y - yl, x - x1) - thetal);
alpha2 = 2.0 * norm(atan2(y2 - y, x2 - x) - theta2);

/* Total cost is cost of both CS */
return(costf(alpha 1,dist I) + costf(alpha2,dist2));

} I cost *

*SPLIT - splits a set of postures that require two cubic spirals
* into two separate postures with the proper mid-point

POSTURE *split(p_, q_, Q)
POSTURE *p_1 *q_ *Q;

double co, xc, yc, r, xm, yin, theta_mid, gi, g2, g, w;
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double xI, yl, thetal, x2, y2, theta2, alpha, aiphal, betal, etal, eta2, wi;
double costg, costgl,costg2,

X1 = p-->x;
y1 = p_->y;
thetal = p-->theta;
x2 = _>x

theta2 = cL_->theta;

1* determine if symmetric/parallel *
alpha = norm(theta2 - thetal1);
alphal = fabs(alpha);

/* if the postures are parallel then split at midpoint of line between *
if (aiphal < ZERO_-RAD){

xm = (xl + x2) / 2.0;
ym = (yl. + y2) / 2.0;

}else { /* find the best midpoint based on minimum cost *
I* first find the center of locus of valid midpoints *
co = cot(alpha / 2.0);
xc = (xl + x2 + co * (y]. - y2)) / 2.0;
yc = (yI + y2 + co, * (x2 - x1)) / 2.0;
r = EUCLDIST(xl,ylxc,yc);

1* now pick proper values for quadrant *
if (alpha > 0.0) f

g1 = atan2(yl - yc, x1 - xc);
g2 = atan2(y2 - yc, x2 - xc);
etal1 = thetal. - HPI;
eta2 = theta2 - HPJ;

}else {
g1 = ata,12(y2 - yc, x2 - xc);
g2 = atan2(yl - yc, x1 - xc);
etal1 = theta2 + HPI;
eta2 = thetal1 + HPI;

/* g is direction to r from (xc,yc), w is increment for search ~
g =(g]. + g2) / 2.0;
w =alpha 1 / 2.0;
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/* pick proper chunk of curve to explore (to minimize search time ~
if (((wi = pnorm(etal - g1)) < aiphal) && (2.0 * wi < aiphal)){

g =etal;

w wl;

if (((wi = pnorm(g2 - eta2)) < aiphal) && (2.0 * wi < aiphal)){
g =eta2;

w wl;

/* iterate g until get minimum cost ~
costg= cost(xl,y 1,thetal1x2,y2,theta2,xc,yc,r,g);
while (w > ZERORAD){

w = w1/2.0;
costg 1= cost(x 1,y 1,theta I x2,y2,theta2,xc,yc,r,g +w);
if(costgl < costg){

g =g+ W;
costg = costgl;

}else{
costg~d = cost(xl,y 1,theta 1,x2,y2,theta2,xc,yc,r,g-w);
if (costg2 < costg){

g = g-W;
costg =costg2;

/now calculate midpoint for split *
xm = xc + r * cos(g);
ym = yc + r * sin(g);

/* create new posture for midpoint of split *
betal1= atan2(ym - yl1, xm - xl1);
theta-mid = betal. + norm(betal - thetal.);
createjosture(xm,ym,theta_mid,Q);
return(Q);

}/* split ~

* SOLVE 1 - gives simple turn solution using cubic spiral
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solve l(p, q)
POSTURE *p, *q;

double alpha, len;

P~ these calculations are same as above (COST) from SPP Paper *
alpha = 2 * norm(atan2(q->y - p->y, q->x - p->x) - p->theta);
len = EUCL DIST(q->x, q->y, p->x, p->y) / lookupcurve(fabs(alpha));

/* write into instruction buffer *I
fprintf(outfp,"% 16. 12f,% 16. 12f 'len,6*alpha/(CUBE(len)));

}/* solve 1

* SOLVE - returns a single posture (or posture pair) based on input
* pairs of (x,y,theta)

int solve(pp, qq)
POSTURE *pp, *qq;

POSTURE p,q,midpst;
double beta;

/* check if valid input *
if ((zero-rad(p.y - q.y)) && (zero rad(p.x - q.x))){

fprintf(stderr,"Bad waypts (%d,%d) (%d,%d)\n",p.x,p.y, q.x,q.y);
exit(-I);

I

/* find angle between postures ~
beta = atan2((q.y - p.y), (q.x - p.x));

/* if symmetric use one CS *
fprintf(outfp,'7 \t{");
if (fabs(norm(q.theta - beta) - norm(beta - p.theta)) < ZERORAD) {

solve 1(pp, qq);
fprintf(outfp,", %16.1 2f,% 16. 12f',O.O,O.O);

I else f 1* split and use two cubic spirals*/
split(pp, qq, &midpst);

97



solvel(pp, &midpst);
fprintf(outfp.....);
solve 1(&midpst, qq);

fprintf(outfp,"},\n");
return (SUCCESS);

}/* solve */

main(argc,argv)
int argc;
char *argv[];

int scan -result;
double x1,y1,x2,y2,x3,y3,x4,y4;
double theta 1, theta2;
POSTURE p,q;

/* open input and output files *
if ((infp = fopen(argv[1],'Y')) = 0){

printf("Unable to open %s for input\n",argv[1]);
exit(-1);

I
if ((outfp = fopen(argv[2j,"w")) == 0){

printf("Unable to open %s for output\n",argv[2]);
exit(-1);

I

1* get each set of waypts ~
while ((scan-result = fscanf(infp,"%lf %If %If %If %If %If %If %Tf,

&xl,&y1,&x2,&y2,&x3,&y3,&x4,&y4)) !EOF) I

/* Determine the angles */
thetal = atan2((y3 - yl),(x3 - xl));
theta2 = atan2((y4 - y2),(x4 - x2));

/* create the postures ~
p.x = x2;
p.y =y2
p.theta = theta 1;
q.x = x3;
q.y =y3

q.theta theta2;
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1* and calculate 'A' and '1T*
solve(&p,&q);

}/* main *

I* find cs.c *
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APPENDIX G. REAL-TIME GUID)ANCE SOURCE CODE

I pp.h - Header file for NPS AUV Local Path-Planner
di (adapted from mml.h for Yamabico-li by
di Yutaka Kanayama)

LT M.J. CLOUTIER
di 12/19/89

S Revi - 1/24/90

di MACROS

#define SQR(x) ( (x) *i (x))
#define CUBE(x) ((x) *i (x) di(x))

#define EUCL_-DIST(xl,ylx2,y2) (sqrt(((xl) - (x2)) &1 (x) - (x2)) +((yl) - (y2)) d

#define DIST(xl,ylx2,y2) (fabs((l) - (x2)) + fabs((yl) - (y2)))
#define SQRT(xc) (sqrt(1.0 + (xc)di(xc)))
#define SIGN(x) (((x) < 0.0) ? 0x01 ((x) > 0.0) ? 0x02: OxOO)
#define r2d(r) ((r) diRAD)

#define d2r(d) ((d) /RAD)

di DEFINED CONSTANTS

#define TRUE_ 1
#define FALSE_ !TRUE_
#define ON 1
#define OFF !ON
#define YES 1
#define NO !YES
#define SUCCESS 1
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#define FAILURE !SUCCESS

/* THESE MAY BE CHANGED AS REQUIRED *
#define GRID SZ, 180 /* 70in =180cm *
#define MAXSTEPS 200
#define CLOSEENOUGH 0.5
#define INTRVL 0.0001
#define RPM_2_VEL 0.04921 1* in/sec*sec/min*min/rev*cm/in (350rpm=4fps)*I
#define KX 10
#define KY 0.0064
#define K-HDG 0.16
#define MINXERROR 1

#define GSTA 361 /* size of cubic spiral table *
#define BUFSIZE 1024 /* buffer size for getstr ~
#define MAXCLINE 40 /* max string length */
#define NAMESIZE 20 /* name size for posture *

*NUMERICAL CONSTANTS

#define PI 3.14159265358979323846
#define DPI 6.28318530717958647692 /* P1*2 *
#define RAD 57.2957795 1308232087684 /* 180/PI l
#define HPI 1.57079632679489661923 /* PI/2 */
#define OPI 0.78539816339744830962 /* PI/4 (was P14) *
#define ZERORAD 0.01
#define NOSPIRAL 0
#define SINGLE 1
#define DOUBLE]1 2
#define DOUBLE2 3

#define N Ox0l
#define Z_ OxOO
#define P 0x02

#define NN OxO5
#define NZ 0x04
#define NP 0x06
#define ZN Ox0l
#define ZZ 0x00
#define ZP 0x02
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#define PN 0x09
#define PZ 0x08
#define PP OxOa

#define NEG -1
#define ZERO 0
#define POS 1

#define LFT 7
#define CENTER 0
#define RGHT -7

#define L Oxol
#define C 0x00
#define R 0x02

#define LLL 0x15
#define LLC 0x14
#define LLR 0x16
#define LCL Ox 11
#define LCC OxlO
#define LCR 0x12
#define LRL 0x19
#define LRC 0x18
#define LRR Oxla
#define CLL 0x05
#define CLC 0x04
#define CLR 0x06
#define CCL OxOl
#define CCC OxOO
#define CCR 0x02
#define CRL 0x09
#define CRC 0x08
#define CRR x~a
#define RLL 0x25
#define RLC 0x24
#define RLR 0x26
#define RCL 0x21
#define RCC 0x20
#define RCR 0x22
#define RRL 0x29
#define RRC 0x28
#define RRR Ox2a
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/* Ipp.h */

* curves.def - xy-plane curve descriptors for 'guidance.c'

struct DESCRIPTOR{
double 11,A1,12,A2;

};

struct DESCRIPTOR desc[43] = {
{ 1.000000000000, 0.000000000000},
{ 0.426861119501, -20.677652279190, 0.600965473691, 20.227029553329},
{ 0.426861119501, 20.677652279190, 0.600965473691, -20.227029553329},
{ 0.0000000000, 0.0000000000},
{ 1.450450440178, 1.265295220167},
{ 0.475286674856, -6.072725411590, 1.082989700434, 5.743097253612},
{ 0.832934089063, 5.272056359189, 0.600005018599, -5.166871437198},
{ 0.000000000000, 0.000000000000},
{ 1.450450440178, -1.265295220167},
{ 0.832934089063, -5.272056359189, 0.600005018599, 5.166871437198},
{ 0.475286674856, 6.072725411590, 1.082989700434, -5.743097253612},
{ 0.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000},
{ 0.600965473691, 20.227029553329, 0.426861119501, -20.677652279190},
{ 1.054318417319, 4.747378858590},
{ 0.527159208659, 37.979030868724, 0.527159208659, -37.9790308687241,
{ 0.000000000000, 0.000000000000},
{ 1.082989700434, 5.743097253612, 0.475286674856, -6.072725411590},
{ 1.652500089655, 2.088558538488},
{ 0.902131678928, 10.078999384402, 0.628250853818, -10.838140077661},
{ 0.000000000000, 0.000000000000},
{ 0.600005018599, 5.166871437198, 0.832934089063, -5.272056359189},
{ 1.414213562373, 0.000000000000},
{ 0.628250853818, 10.838140077661, 0.902131678928, -10.078999384402},
{ 0.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000},
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{ 0.000000000000, 0.000000000000},
S0.000000000000, 0.000000000000},

{ 0.000000000000, 0.000000000000,
{ 0.600965473691, -20.227029553329, 0.426861119501, 20.677652279190},
{ 0.527159208659, -37.979030868724, 0.527159208659, 37.979030868724},
{ 1.054318417319, -4.747378858590},
{ 0.000000000000, .000000000000},
{ 0.600005018599, -5.166871437198, 0.832934089063, 5.272056359189},
{ 0.628250853818, -10.838140077661, 0.902131678928, 10.078999384402},
{ 1.414213562373, -0.000000000000},
{ 0.000000000000, 0.000000000000},
{ 1.082989700434, -5.743097253612, 0.475286674856, 6.072725411590},
{ 0.902131678928, -10.078999384402, 0.628250853818, 10.838140077661},
{ 1.652500089655, -2.088558538488}

* guidance.c - This program is the local path-planner for the NPS
* AUV. It reads in waypoints from an input file,
* determines the appropriate curve or curve pair for
* the given waypoints and then calls the stepper. It
* writes to two separate files as indicated below

* LT M.J. CLOUTIER

* Inputs - file (argv[1]) of waypoints consisting of x,y position

* Outputs - file (argv[2]) of input descriptors for stepper
* - file (argv[3]) of stepper output postures

* Rev4 - 1/11/90 - changed get init data to return (xO,y,card_hdg)
* Rev3 - 1/10/90 - changed dir chg to operate on sign of norm(hdg)
* - changed get-descriptor to tbl lookup (vs switch)
* - default cardinal hdg is now determined from first
* two way-pts
* - eliminated atan2 using tbl lookup
* - shifted output coord system [abs(HPI-theta)]
* Rev2 - 1/09/90 - incorporated GRIDSZ
* Revl - 1/07/90 - initialized reftheta, init_hdg
* Orig - 12/21/89
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*include *8**8* **

#include < stdio.h >
#include <math.h>
#include "lpp.h"
#include "curves.def'

double act_x, act_y, actz, act_v, acthdg;
#define actomega 0.0

extern struct DESCRIPTOR; /* (from 'curves.def) */

/* exported GLOBALS */
double desx, des_y, des_z, desv, des hdg; /* values to AUTOPILOT */

/* globals */
int xlast,ylast,z-last,v_last;/* holds next goal values from MP */
int x_next,y next,znext; /* current goal position from MP */
int vnext; /* next desired velocity from MP */
int v_curr; /* current velocity */
int triple; /* the current turn combo (eg. LLL) */
double cardinal hdg; /* vehicle cardinal heading (N,S,E,W) */
struct DESCRIPTOR cd; /* descriptor for current spiral */
double disttrvl; /* distance traveled on current spiral */
double stx, st.y, st_hdg; /* values from stepper */
FILE *infp, *outfp; /* input path, output posture files */
int eofinfp; /* eof pointer for input */
double x start, ystart, z-start; /* initial position */
int curvetype; /* (NOSPIRAL,SINGLE,DOUBLE1,DOUBLE2) */

* MISCELLANEOUS MATH FUNCTIONS

* ATAN2 - returns table lookup of angle to replace
* atan2

/* TABLE LOOKUP VALUES */

105



double xyang[5][5] = {
-2.356194490192344840,
-2.034443935795702710,
- 1.570796326794896560,
-1.107148717794090410,
-0.785398163397448279,
-2.677945044588986970,
-2.356194490192344840,
-1.570796326794896560,
-0.785398163397448279,
-0.463647609000806094,
3.141592653589793120,
3.141592653589793120,
0.00 0 00 0,00 0 0
0.000000,0000
0.0000000000,
2.677945044588986970,
2.356194490192344840,
1.570796326794896560,
0.785398163397448279,
0.463647609000806094,
2.356194490192344840,
2.034443935795702710,
1.570796326794896560,
1.107148717794090410,
0.785398163397448279};

double ATAN2(y2,yx2,xl)
int y2,ylx2,xl;
{

return xyang[(y2-yl)/GRIDSZ+ 2][(x2-x 1)/GRIDSZ+ 2];
}/* ATAN2 */

* norm - normalizes angle between -PI and PI

double norm(a)
double a;
{

while ((a > P_)II (a <= -PI_))
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if (a > Pl_)
a = a -DPI;

else
a = a + DPI;

return (a);
} * norm *

* dir-chg - returns the relative direction chg (LIC or R)
* based on input waypoints. dir chg uses the
* global "cardinal hdg" to determine rel chg

mnt dir -chg(xl,yl,x2,y2)
mnt xl,ylx2,y2;

double heading;
int rel dir;

heading =ATAN2(y2,ylx2,xl);

heading -=cardinal hdg;
rel-dir = (int)(10.0*norm(heading));
switch (reldir){

case LET cardinal hdg + = HPI;
return L;

case CENTER :return C;
case RGHT :cardinal hdg - HPI;

return R;
default :fprintf(stderr,"dir_chg: Bad result in dir-chg\n");

exit(-1);

} I dir-chg ~

*process_next-waypt - reads next waypt from infp and returns
* the next curve descriptor

void process_next waypt()
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int mpx, mpjy, mpz, mpvy; /* values from MISSION PLANNER *

if ((eof infp = fscanf(infp,"%d %d %d %d",&mp_x,&mpjr,&mp z,&mpvy))!
EOF){

triple = (triple & OxOf) <« 2 1 dir chg(x_last,y_last,mp_xmpjy);
cd = desc[triple];
v-curr = v-next; /* this is target velocity ~

x-next = x -last; /* this is current goal ~
ynext = y last;
z-next = z -last;
v-next = vylast;

x-last = mp_x ; /* this is next goal ~
ylast = mpjy;
z-last = mpz;
v-last = mp_v;

/* for now the desired depth is the same as reference ~
des -z = (double)z next;

} * process-next-waypt ~

* nextjpos - calculates next reference values for
* x, y and theta

void nextpos(AIl)
double Ajl;

double theta, del_theta, step., t_step;
double kappa;

/* $$$$$$$$ DEBUGGING VALUES $$$$$$$$ *
act-x = st-x;
actjY = stjy;
act hdg = sthdg;
1* $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ *

step = des -v * RPM_-2 -VEL *INTRVL;

dist trvl + = step;
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kappa = A * dist trvl * (I - disttrvl);
del theta = kappa * step;
st~hdg + = del-theta;
theta = st hdg - del_theta/2.0;
if (fabs(del theta) = = 0.0)f{

t_step = step;
}else f

t_step = step * (sin(del-theta I2.0)/(del-theta /2.0));

stx + = cos(theta) *tstep;

stjy + = sin(theta) *tstep;

} * next-pos *

* print stepper out - prints x,y and theta t0 step outfp

void print stepper outo

fprintf(outfp,"%d %d %8.4f\n",
st-x, stj', norm(fabs(HPI - sthdg)));

} I print stepper-out *

* print~desired~out - prints xvy and theta to step outfp

void print desired out()

fprintf(outfp,"%8.4f %8.4f %8.4f %8.4f %8.4f\n",
des-x + x-start, desjy + ystart, des-z + z-start,
des-v ,norm(fabs(HPI - des_hdg)));

fprintf(outfp,"%8.4f %8.4t~n",
des x + x start, desj + start):

} * print desired-out *

* step spiral - breaks spiral into discrete postures,
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* prints to output file with break between
* curves

void step spiral()

int step_ct;

stepct = 0;
while(step-ct < MAXSTEPS){

switch(curve type) {
case NOSPIRAL: dist-trvl = 0.0;

/* get spiral type *
if (cd.12 = =0.f

curve type = SINGLE;
}else f

curve type = DOUBLEI;

Pstep to nextpos *
for (;((dist_trvl <= cd.1i) && (step ct < MAX-STEPS));

step ct+ +)f
nextjos(cd.A1,cd.l 1);

I
break;

case SINGLE:
case DOUBLEl: for(;((dist-trvl < = cd.lI) && (step ct < MAX-STEPS)),

step ct+ +)f
nextpos(cd.A1,cd.I 1);

/* finished this spiral, reset dist-trvled, do next *
if (dist-trvl >= cd.I1){

dist trvl = 0.0;
/* if second part exists = > start along it ~
if (cd.12 != 0.0)f

curve_type = DOUBLE2;
for (;((dist-trvl < = cd.12)&&(step ct < MAX-STEPS)):-

step ct+ +){
nextpos(cd.A2,cd.12);

}else f I* go to next way-pt *
curve_type = NOSPIRAL;

110



break;
case DOUJBLE2: for (;((dist_trvl <= cd.12) && (step ct <

MAXSTEPS)); step_,ct++){
nextjos(cd.A2,cd12);

if (dist -trvl > = cd.12){
dist trvl = 0.0;
curve type = NOSPIRAL;

break;
default: fprintf(stderr,"step spiral: Bad input value\n");

if (curve type = = NOSPIRAL){
process-next waypto;

printfQ' Ipp (x,y) (%4.3f,%4.3f) MP (x,y) (%d,%d)\n",
st-x*(double)GRIDSZ +x-start,sty* (double)GRID SZ +y start,x-next,y_next);
print-desired outo;

}/* step spiral ~

* caic-des-val() - finds error values and desired values
* to feed to AUTOPILOT

void caic-desvyal()

double err-x, errjy, err hdg;

err -x = (((st -x - act -x)*cos(act hdg)) + ((sty - actj)*sin(acthdg)))2.57;
errjY = (((actx - st -x)*sin(act hdg)) + ((sty - actj)*cos(acthdg)))/2.57;
err -hdg = norm(st hdg - act hdg);
des -x = (st -x + err -x) * (double)GRID_SZ;
desjY = (stjY + errjr) * (double)GRID_-SZ;
des -v = (KX * err-x) + ((double)v curr * cos(errhdg));
des-hdg + = INTRVL*(act omega + (vcurr * (K_Y * errjy + K-HDG*

err hdg)));
/* if not too far behind, then get next st_ values else use old ones ~
if (err-x <= MINXERROR){

step_spiralO);



}/* caic-des-val ~

* open fileso - open input & output files

void open fileso

if ((infp = fopen("path.in","r")) = = 0){
printf("Unable to open 'path.in"\n);
exit(-1);

I
if ((outfp = fopen("path.out",'W')) = = 0){

printf("Unable to open 'path.out'\n");

}/* open-files *

* get_mnit-values - get initial lpp values

void get_init-values()

mnt dxl,dyl,dx2,dy2;
mnt dirl,dir2,dir3;
mnt x -curr, y curr, z-curr;
int x-past, ypast, zpast,

/* initialize variables *
x-past = ypast = 0;
x-curr = y curr = z curr =v curr =0;

x-next = y next = z-next =v-next =0;

x-last = yjast = z-last = v-last = 0;

/* this is the first time through, so read four waypoints ~
if ((eof infp = fscanf(infp,"%d %d %d %d %d %d %d %d %d %d %d %d",

&x-Curr,&y-curr,&z-curr,&v-Curr,
&x_next,&y-next,&z -next,&v -next,
&x_last,&y-last,&z-last,&v-last)) ! = EGE){
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1* get initial data ~
dxI = SIGN(x _next - x -curr);
dyl = SIGN(y next - ycurr);
dx2 = SIGN(x _last - x -next);
dy2 = SIGN(y last - y_next);
x-start = x-curr;
ystart = ycurr;
z-start = z-curr;

I* this switch determines a valid position PRIOR to start *
switch((dxl <« 2) 1 dyl){

case PZ: cardinal hdg = ZERO;
xJpast = x -curr - GRIDSZ;
ypast = ycurr;
break;

case PP switch ((dx2 <« 2) 1 dy2){
case PN :cardinal -hdg = HPI;

xjPast = x-curr;
ypast = y curr - GRID_SZ;
break;

default :cardinal -hdg = ZERO;
xjpast = x curr - GRID_SZ;
ypast = y curr;

break;
case PN switch ((dx2 <« 2) 1 dy2){

case PP :cardinal -hdg = -HPI;
xpast = x -curr;
ypast = y curr + GRID_SZ;
break;

default :cardinal hdg = ZERO;
xpast = x -curr - GRID_SZ;
ypast = ycurr;

break;
case ZP cardinal -hdg = HPI;

x-past = x_curr;
ypast = y__curr - GRIDSZ;
break;

case ZN :cardinal hdg = -HPI;
xjpast = x -curr;
y-jast = y curr + GRIDSZ;
break;
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case NZ : cardinal -hdg = PI_;
xjpast = x -curr + GRID_SZ;
ypast = ycurr;
break;

case NP switch ((dx2 <« 2) 1 dy2){
case NN :cardinal_hdg = HPI;

xjpast = x-curr;
ypast =y__curr - GRIDSZ;
break;

default :cardinal hdg = PI_;
xJpast =x-curr + GRIDSZ;
ypast =ycurr;

break;
case NN switch ((dx2 <« 2) 1 dy2){

case NP : cardinal hdg = -HPI;
xpast =x-curr;
ypast = y curr + GRIDSZ;
break;

default :cardinal hdg = PI_;
xjpast = x-curr + GRID_SZ;
ypast = ycurr;

break;
default :fprintf(stderr,"get mnit hdg: Bad input\n");

exit(- 1);

1* now get triple *
dinl = dir -chg(xpast,ypast,x-curr,y-curr);
dir2 = dirchg(xcurr,ycurr,xnext,y-next);
dir3 = dir -chg(x next,y next,x -last,y-last);
triple = (dil << 4) 1 (dmr2 <<2) 1 dir3;

1* and 'current' vehicle heading *I
sthdg = ATAN2(y next,ypast,x_next,xJpast);

/* for now the desired depth is MP depth *
deshdg = st_hdg;
des -z = (double) znext;
des v = (double) vcurr;

}else T
fprintf(stderr,"lpp_step main: not enough waypoints for path\n");
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I* read curve information *
cd = desc[triple];
1* and get first desired values *
step spiral();

} * get mnit-values ~

main()

int setparm = TRUE;9

while (eof -infp !=EOF){
if (setparm){

open -fileso;
get_mnit-valuesO;
setparm = FALSE_;

calc-des-valO);

close(infp);
close(outfp);

1* guidance.c *
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APPENDIX H. THREE DIMENSIONAL SOURCE CODE

/* D1070.DAT */

0.0 0.0 1.0 0.0 2.0 0.03.0 0.0
0.0 0.0 1.0 0.0 2.0 0.03.0 0.142857142857
0.0 0.0 1.0 0.0 2.0 0.03.0 -0.142857142857

0.0 0.0 1.0 0.0 2.0 0.1428571428573.0 0.142857142857
0.0 0.0 1.0 0.0 2.0 0.1428571428573.0 0.285714285714
0.0 0.0 1.0 0.0 2.0 0.1428571428573.0 0.0

0.0 0.0 1.0 0.0 2.0 -0.1428571428573.0 -0.142857142857
0.0 0.0 1.0 0.0 2.0 -0.1428571428573.0 0.0
0.0 0.0 1.0 0.0 2.0 -0.1428571428573.0 -0.285714285714

0.0 0.0 1.0 0.1428571428572.0 0.1428571428573.0 0.142857142857
0.0 0.0 1.0 0.1428571428572.0 0.1428571428573.0 0.285714285714
0.0 0.0 1.0 0.1428571428572.0 0.1428571428573.0 0.0

0.0 0.0 1.0 0.1428571428572.0 0.2857142857143.0 0.285714285714
0.0 0.0 1.0 0.1428571428572.0 0.2857142857143.0 0.428571428571
0.0 0.0 1.0 0.1428571428572.0 0.2857142857143.0 0.142857142857

0.0 0.0 1.0 0.1428571428572.0 0.03.0 0.0
0.0 0.0 1.0 0.1428571428572.0 0.03.0 0.142857142857
0.0 0.0 1.0 0.1428571428572.0 0.03.0 -0.142857142857

0.0 0.0 1.0 -0.1428571428572.0 -0.1428571428573.0 -0.142857142857
0.0 0.0 1.0 -0.1428571428572.0 -0.1428571428573.0 0.0
0.0 0.0 1.0 -0.1428571428572.0 -0.1428571428573.0 -0.285714285714

0.0 0.0 1.0 -0.1428571428572.0 0.03.0 0.0
0.0 0.0 1.0 -0.1428571428572.0 0.03.0 0.142857142857
0.0 0.0 1.0 -0.1428571428572.0 0.03.0 -0.142857142857

0.0 0.0 1.0 -0.1428571428572.0 -0.2857142857143.0 -0.285714285714
0.0 0.0 1.0 -0.1428571428572.0 -0.2857142857143.0 -0.142857142857
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0.0 0.0 1.0 -0.1428571428572.0 -0.2857142857143.0 -0.428571428571

1************************************************************************
*

* d_10-70.def -- curve descriptors based on 10/70 .'d

struct DESCRIPTOR d_10[43J = {
{ 1.000000000000, 0.000000000000, 0.000000000000, 0.000000000000},
{ 0.375115235242, -5.066081287242, 0.625593247974, 2.8396411015181,
{ 0.375115235242, 5.066081287242, 0.625593247974, -2.8396411015181,
{ 0.505688790039, 6.550461901757, 0.505688790039, -6.5504619017571,
{ 0.631932817268, 2.727297694553, 0.378921326300, -4.865469783722),
{ 0.506118022287, 8.183874149810, 0.507051887040,-11.4206672395101,
{ 0.505688790039, -6.550461901757, 0.505688790039, 6.550461901757),
{ 0.506118022287, -8.183874149810, 0.507051887040, 11.420667239510},
{ 0.631932817268, -2.727297694553, 0.378921326300, 4.865469783722,
{ 0.625593247974, -2.839641101518, 0.375115235242, 5.066081287241,
{ 0.500619316543, -6.820142254254, 0.500619316543, 6.820142254254,
{ 1.001238633086, -0.852517781782, 0.000000000000, 0.000000000000,
{ 0.378921326300, 4.865469783722, 0.631932817268, -2.727297694553,
{ 1.010152544552, 0.000000000000, 0.000000000000, 0.000000000000,
{ 0.442414807789, 5.530421017324, 0.570239645211, -7.174182722803,
{ 0.507051887040,-11.420667239510, 0.506118022287, 8.183874149809,
{ 0.507556871107,-13.022683702248, 0.507556871107, 13.022683702248,
{ 0.570239645211, -7.174182722804, 0.442414807789, 5.530421017324,
{ 0.625593247974, 2.839641101518, 0.375115235242, -5.066081287241,
{ 1.001238633086, 0.852517781782, 0.000000000000, 0.000000000000),
{ 0.500619316543, 6.820142254254, 0.500619316543, -6.820142254254,
{ 0.507051887040, 11.420667239510, 0.506118022287, -8.183874149809,
{ 0.570239645211, 7.174182722804, 0.442414807789, -5.530421017324,
{ 0.507556871107, 13.022683702248, 0.507556871107,-13.022683702248,
{ 0.378921326300, -4.865469783722, 0.631932817268, 2.727297694553,
{ 0.442414807789, -5.530421017324, 0.570239645211, 7.174182722803,
{ 1.010152544552, -0.000000000000, 0.000000000000, 0.000000000000)

/* D 7 70.dat */
0.0 0.0 1.0 0.0 2.0 0.03.0 0.0
0.0 0.0 1.0 0.0 2.0 0.03.0 0.1
0.0 0.0 1.0 0.0 2.0 0.03.0 -0.1
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0.0 0.0 1.0 0.0 2.0 0.13.0 0.1
0.0 0.0 1.0 0.0 2.0 0.13.0 0.2
0.0 0.0 1.0 0.0 2.0 0.13.0 0.0

0.0 0.0 1.0 0.0 2.0 -0.13.0 -0.1
0.0 0.0 1.0 0.0 2.0 -0.13.0 0.0
0.0 0.0 1.0 0.0 2.0 -0.13.0 -0.2

0.0 0.0 1.0 0.1 2.0 0.13.0 0.1
0.0 0.0 1.0 0.1 2.0 0.13.0 0.2
0.0 0.0 1.0 0.1 2.0 0.13.0 0.0

0.0 0.0 1.0 0.1 2.0 0.23.0 0.2
0.0 0.0 1.0 0.1 2.0 0.23.0 0.3
0.0 0.0 1.0 0.1 2.0 0.23.0 0.1

0.0 0.0 1.0 0.1 2.0 0.03.0 0.0
0.0 0.0 1.0 0.1 2.0 0.03.0 0.1
0.0 0.0 1.0 0.1 2.0 0.03.0-0.1

0.0 0.0 1.0 -0.1 2.0 -0.13.0 -0.1
0.0 0.0 1.0 -0.1 2.0 -0.13.0 0.0
0.0 0.0 1.0 -0.1 2.0 -0.13.0 -0.2

0.0 0.0 1.0 -0.1 2.0 0.03.0 0.0
0.0 0.0 1.0 -0.1 2.0 0.03.0 0.1
0.0 0.0 1.0 -0.1 2.0 0.03.0 -0.1

0.0 0.0 1.0 -0.1 2.0 -0.23.0 -0.2
0.0 0.0 1.0 -0.1 2.0 -0.23.0 -0.1
0.0 0.0 1.0 -0.1 2.0 -0.23.0 -0.3

* d_7-70.def -- curve descriptors for depth based on 7/70 grid

struct DESCRIPTOR d_7[43] = {
{ 1.000000000000, 0h000000000000, 0.000000000000, O.000000000000},
{ 0.375056870759, -3.550981208130, 0.625292414313, 1.992340756031},
{ 0.375056870759, 3.550981208130, 0.625292414313, -1.992340756031},
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{ 0.502797441596, 4.692973208712, 0.502797441596, -4.692973208712},
{ 0.628408287342, 1.953101936801, 0.376926970544, -3.481012896273},
{ 0.503006506962, 5.864754182372, 0.503461901514, -8.197729062929},
{ 0.502797441596, -4.692973208712, 0.502797441596, 4.692973208712},
{ 0.503006506962, -5.864754182372, 0.503461901514, 8.197729062929},
{ 0.628408287342, -1.953101936801, 0.376926970544, 3.481012896273},
{ 0.625292414313, -1.992340756031, 0.375056870759, 3.550981208131},
{ 0.500305048597, -4.787238600005, 0.500305048597, 4.787238600005},
{ 1.000610097194, -0.598404825001, 0.000000000000, 0.000000000000},
{ 0.376926970544, 3.481012896274, 0.628408287342, -1.953101936801),
{ 1.004987562112, -0.000000000000, 0.000000000000, 0.000000000000),
{ 0.439914558365, 3.951184960439, 0.566299789962, -5.145062579251),
{ 0.503461901514, -8.197729062929, 0.503006506962, 5.8647541823711,
{ 0.503710502314, -9.358296801935, 0.503710502314, 9.3582968019351,
{ 0.566299789962, -5.145062579251, 0.439914558365, 3.951184960440),
{ 0.625292414313, 1.992340756031, 0.375056870759, -3.550981208131),
{ 1.000610097194, 0.598404825001, 0.000000000000, 0.000000000000},
{ 0.500305048597, 4.787238600005, 0.500305048597, -4.787238600005},
{ 0.503461901514, 8.197729062929, 0.503006506962, -5.864754182371),
{ 0.566299789962, 5.145062579251, 0.439914558365, -3.951184960440),
{ 0.503710502314, 9.358296801935, 0.503710502314, -9.358296801935,
{ 0.376926* i6,44, -3.481012896274, 0.628408287342, 1.953101936801),
{ 0.439-)] .;58365, -3.951184960439, 0.566299789962, 5.145062579251},
{ 1.004987562112, 0.000000000000, 0.000000000000, 0.000000000000}

* xy.def - xy-plane curve descriptors for 'Ipp.c'

struct DESCRIPTOR{
double I1,Al,12,A2;

};

struct DESCRIPTOR desc[43] = {
{ 1.000000000000, 0.000000000000),
{ 0.426861119501, -20.677652279190, 0.600965473691, 20.227029553329},
{ 0.426861119501, 20.677652279190, 0.600965473691, -20.227029553329,
{ 0.000000000000, 0.0000000000),
{ 1.450450440178, 1.265295220167),
{ 0.475286674856, -6.072725411590, 1.082989700434, 5.743097253612),
{ 0.832934089063, 5.272056359189, 0.600005018599, -5.166871437198).
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{ 0.000000000000, 0.000000000000},
{ 1.450450440178, -1.265295220167},
{ 0.832934089063, -5.272056359189, 0.600005018599, 5.166871437198},
{ 0.475286674856, 6.072725411590, 1.082989700434, -5.743097253612},
{ 0.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000},
{ o.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000},
{ 0.600965473691, 20.227029553329, 0.426861119501, -20.677652279190},
{ 1.054318417319, 4.747378858590},
{ 0.527159208659, 37.979030868724, 0.527159208659, -37.979030868724},
{ 0.000000000000, 0.000000000000},
{ 1.082989700434, 5.743097253612, 0.475286674856, -6.072725411590},
{ 1.652500089655, 2.088558538488},
{ 0.902131678928, 10.078999384402, 0.628250853818, -10.838140077661},

{ 0.000000000000, 0.000000000000},
{ 0.600005018599, 5.166871437198, 0.832934089063, -5.272056359189},
{ 1.414213562373, 0.000000000000},
{ 0.628250853818, 10.838140077661, 0.902131678928, -10.078999384402},

{ 0.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000},
{ 0.000000000000, 0.000000000000,
{ 0.000000000000, 0.000000000000},
{ 0.600965473691, -20.227029553329, 0.426861119501, 20.677652279190},
{ 0.527159208659, -37.979030868724, 0.527159208659, 37.979030868724},
{ 1.054318417319, -4.747378858590},
{ 0.000000000000, 0.000000000000},
{ 0.600005018599, -5.166871437198, 0.832934089063, 5.272056359189},
{ 0.628250853818, -10.838140077661, 0.902131678928, 10.078999384402},
{ 1.414213562373, -0.000000000000},
{ 0.000000000000, 0.000000000000},
{ 1.082989700434, -5.743097253612, 0.475286674856, 6.072725411590},
{ 0.902131678928, -10.078999384402, 0.628250853818, 10.838140077661},
{ 1.652500089655, -2.088558538488}

};

* z.def -- z-plane curve descriptors based on 10/70 grid
I12*
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struct DESCRIPTOR z desc[43] = {
{ 1.000000000000, 0.000000000000, 0.000000000000, 0.000000000000},
{ 0.375115235242, -5.066081287242, 0.625593247974, 2.839641101518},
{ 0.375115235242, 5.066081287242, 0.625593247974, -2.839641101518},
{ 0.505688790039, 6.550461901757, 0.505688790039, -6.550461901757},
{ 0.631932817268, 2.727297694553, 0.378921326300, -4.865469783722},
{ 0.506118022287, 8.183874149810, 0.507051887040,-11.4206672395 10},
{ 0.505688790039, -6.550461901757, 0.505688790039, 6.550461901757},
{ 0.506118022287, -8.183874149810, 0.507051887040, 11.420667239510},
{ 0.631932817268, -2.727297694553, 0.378921326300, 4.865469783722},
{ 0.625593247974, -2.839641101518, 0.375115235242, 5.066081287241},
{ 0.500619316543, -6.820142254254, 0.500619316543, 6.820142254254},
{ 1.001238633086, -0.852517781782, 0.000000000000, 0.000000000000},
{ 0.378921326300, 4.865469783722, 0.631932817268, -2.727297694553},
{ 1.010152544552, 0.000000000000, 0.000000000000, 0.000000000000},
{ 0.442414807789, 5.530421017324, 0.570239645211, -7.174182722803},
{ 0.507051887040,-11.420667239510, 0.506118022287, 8.183874149809},
{ 0.507556871107,-13.022683702248, 0.507556871107, 13.022683702248},
{ 0.570239645211, -7.174182722804, 0.442414807789, 5.530421017324},
{ 0.625593247974, 2.839641101518, 0.375115235242, -5.066081287241},
{ 1.001238633086, 0.852517781782, 0.000000000000, 0.000000000000},
{ 0.500619316543, 6.820142254254, 0.500619316543, -6.820142254254},
{ 0.507051887040, 11.420667239510, 0.506118022287, -8.183874149809},
{ 0.570239645211, 7.174182722804, 0.442414807789, -5.530421017324},
{ 0.507556871107, 13.022683702248, 0.507556871107,-13.022683702248},
{ 0.378921326300, -4.865469783722, 0.631932817268, 2.727297694553},
{ 0.442414807789, -5.530421017324, 0.570239645211, 7.174182722803},
{ 1.010152544552, -0.000000000000, 0.000000000000, 0.000000000000}

* guidxyz.c - This program is the three dimensional guidance
* system for AUV II.

* LT M.J. CLOUTIER
* 04/17/90

* Inputs - file (argv[1]) of waypoints consisting of x,y position

* Outputs - file (argv[2]) of input descriptors for stepper
* - file (argv[3]) of stepper output postures
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* Rev7 - 4/16/90 - added third dimension to lpp
* Rev6 - 4/16/90 - attached another date to code
* Rev5 - 1/24/89 - modified code to operate with IRIS graphics
* routines
* Rev4 - 1/11/90 - changed get init data to return (xO,y,cardhdg)
* Rev3 - 1/10/90 - changed dir chg to operate on sign of norm(hdg)
* - changed get descriptor to tbl lookup (vs switch)
* - default cardinal hdg is now determined from first
* two way-pts
* - eliminated atan2 using tbl lookup
* - shifted output coord system [abs(HPI-theta)]
* Rev2 - 1/09/90 - incorporated GRIDSZ
* Revl - 1/07/90 - initialized reftheta, inithdg
* Orig - 12/21/89

#include <stdio.h>
#include <math.h>
#include "lpp.h"
#include "xy.def'
#include "z.def'

double actx, act_y, act-z, actv, acthdg;
#define actomega 0.0

extern struct DESCRIPTOR; /* (from 'curves.def) */

/* exported GLOBALS to IRIS/SYMBOLICS */
double desx, des_y, des_z, desv, des_hdg, desphi; /* values to AUTOPILOT */

/* globals */
int x_last,ylast,zlast,vlast; /* holds next goal values from MP */
int x_next,y next,z_next; /* current goal position from MP */
int vnext; /* next desired velocity from MP */
int vcurr; /* current velocity */
int triple; /* the current turn combo (eg. LLL) */
int ztriple;
double cardinalhdg; /* vehicle cardinal heading (N,S,E,W) */
struct DESCRIPTOR cd; /* descriptor for current spiral */
struct DESCRIPTOR zd;
double d_trvl; /* distance traveled on current spiral */
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double ztrvl;
double stx, stjy, st_z, st_hdg; /* values from stepper */
double zhdg,stjxz; /* dummy for curve trvl calc */
FILE *infp, *outfp; /* input path, output posture files */
int eof_.infp; /* eof pointer for input */
double x start, ystart, zstart; /* initial position */
int curve type; /* (NOCRV,SNGL,DBL1,DBL2) */
int z-ctype;

* MISCELLANEOUS MATH FUNCTIONS

* ATAN2 - returns table lookup of angle to replace
* atan2

/* TABLE LOOKUP VALUES */
double xyang[5][5] = {

-2.356194490192344840
-2.034443935795702710,
-1.570796326794896560,
-1.107148717794090410,
-0.785398163397448279,
-2.677945044588986970,
-2.356194490192344840,
-1.570796326794896560,
-0.785398163397448279,
-0.463647609000806094,
3.141592653589793120,
3.141592653589793120,
0.000000000000000000,
0.000000000000000000,

0.000000000000000000,
2.677945044588986970,
2.356194490192344840,
1.570796326794896560,
0.785398163397448279,
0.463647609000806094,
2.356194490192344840,
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2.034443935795702710,
1.570796326794896560,
1.107148717794090410,
0.785398163397448279};

double ATAN2(y2,yl,x2,x 1)
int y2,yl,x2,x1;
{

return xy ang[(y2-yl)/GRIDSZ+ 2][(x2-xl)/GRIDSZ+ 2];
}/* ATAN2 */

1*** * ** *** ** ** * ***** ** * ** * ** ** * ** ** ** ***************** *****

* norm - normalizes angle between -PI and PI

double norm(a)
double a;
{

while (a > PI_)
a -= DPI;

while (a < -P1)
a += DPI;

return (a);
}/* norm */

* dirchg - returns the relative direction chg (L,C or R)
* based on input waypoints. dirchg uses the
* global "cardinalhdg" to determine rel chg

int dir chg(xl,yl,x2,y2)
int xl,ylx2,y2;
{

double heading;
int rel_dir;

heading = ATAN2(y2,yl,x2,xl);
heading-= cardinalhdg;
rel_dir = (int)(10.0*norm(heading));
switch (reldir){
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case LIFT cardinal -hdg + = HPI;
return L;

case CENTER : return C;
case RGHT :cardinal hdg - HPI;

return R;
default : fprintf(stderr,"di.rchg: Bad result in dir chg\n");

exit(-1);

}/* dir-chg *

* z-chg - returns the relative depth direction change (U,S,D)
* uses normalized (ZGRID) depth diff for switch

int z Ichg(zl,z2)
mnt zl,z2;

switch ((zi - z2)/Z_GRID){
case -1: return U;
case 0: retuin S;
case 1: return D;
default: fprintf(stderr,"z-chg: Bad result\n t );

exit(-1);

} I z-chg ~

*process-next-waypt - reads next waypt from infp and returns
* the next curve descriptor

void process_next_waypt()

mnt mpx_, mpjy, mpz, mp_v; /* values from MISSION PLANNER *

if ((eof -infp = fscanf(infp,"%d %d %d %d",&mp_xY,&mpy,&mp_z,&mp v))! =

EOF){
triple = (triple & OxOf) <« 2 1 dir chg(x_last,y_last,mpx,mp-y);
z_triple = (z triple & OxOf) <« 2 fz chg(z_last, mpz);
cd = desc[triple];
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zd = z-desc[z triple];
v-curr = v next; /* this is target velocity *

x-next = x-last; /* this is current goal ~
ynPext = ylast;
z-next = z last;
v-next = v last;

x-last = mnp-x; /* this is next goal ~
yjlast = mpjy;
z-last = mpz.;
v -last = mp_v;

} * process-next waypt *

* nextpos - calculates next reference values for
* x, y and theta

void nextjos(del -s,AIl)
double del_s,A&l;
f

double theta, del_theta, t-step;
double kappa;

/* $$$$$$$$ DEBUGGING VALUES $$$$$$$$ *
act-x = st-x;
actjY = stjy;
act-hdg = st-hdg;

1$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ *

d-trvl += del_s;

kappa = A * d -trvl * (I - d_trvl);
del-theta = kappa * del_s;
st_hdg + = del-theta;
theta = st -hdg - deltheta/2.O;
if (abs(del theta) == 0.=

t_step = del_5;
}else I

t -step = dels * (sin(del theta I2.O)I(del-theta /2.0));

st-x + = cos(theta) * t_step;
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stjy + = sin(theta) * t-step;

} * nextpos *

* next z - calculates next reference values for z

void next z(del szAl)
double del-szAl;

double phi, deljphi, t-sz;
double kappaz;

/*****************DEBUGGING *****/

act-z = st-z;

z-trvl += del sz;

kappa-z = A * z-trvl * (1 - dtrvl);
delphi =kappa z * del-sz;
z hdg + =delphi;

phi = z -hdg - delphi/2.0;
if (abs(delphi) == =.)

t-sz = del_sz;
}else {

t-sz = del sz * (sin(deljphi I2.0)/(delphi I2.0));

}tx =cspi -z
st -z + = s(phi) * tsz;

} I next-pos *

* print stepper out - prints x~y and theta to stepoutfp

void print stepper Out()

fprintf(outfp,"%d %d %MAWn"
st-x, stjy, norm(fabs(HPI - St_hdg)));

* print~desired out - prints x,y and theta to step__outfp

void print~desire dout()
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{-

fprintf(outfp,"%8.4f %8.4t\n", des-x + x-start, desjy + ystart);

* step spiral - breaks spiral into discrete postures,
* prints to output file with break between
* curves

void step__spiralO)

int xyct;
int zct;

double step;
double z-step;

xy-ct 0;
z-ct =0;

while(xyct < MAXCT){
step = des-v *RP M_2_VEL *INTRVL;

z_step = step *(cd.I1 + cd.12) / (zd.l1 + zd.12);
switch (curve type) f

case NOCRV: d-trvl = 0.0;
I* get spiral type ~
if (cd.12 0.0)

curve type = SNGL;
}else f
curve type = DBLI;

I* step to nextpos *
for (;((d_trvl <= cd.I1) && (xyct < MAXCr)); xy_ct++){

_etpos(step,cd.A*,%d.l 1);
I
break;

case SNGL:
case DBL1: for (;((d -trvl < = cd.l 1) && (xyct < MAX_CT)); xyct ++){

nextpos(step,cd.A l,cd.l 1);
I
/* finished this spiral, reset d-trvled, do next ~
if (d -trvl >= cd.l1){

d -trvl = 0.0;
/* if second part exists = > start along it ~
if (cd.12 != 0.0)f
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curve type = DBL-2;
for (;((d_trvl < = cd.12) && (xy-ct < MAX -C7)); xy_ct ++){

nextpos(step,cd.A2,cd.12);
I
}else f /* go to next way-pt *
curve type = NOCRV;

break;
case DBL2: for (;((d-trvl <= cd.12) && (xyct < MAX ,CT)); xy_ct+ +){

nextpos(step,cd.A2,cd.12);
I
if (d trvl >= cd.12){

d-trvl = 0.0;
curve type = NOCRV;

break;
default: fprintf(stderr,"step spiral: Bad input value\n");

switch (z ctype) {
case NOCRV: z -trvl = 0.0;

/* get spiral type */
if (curve type != NO CRV){ /* started a curve

if (zd.12 = =0.1
z_ctype = SNGL;
}else f
z_ctype = DBL1;

1* step to nextpos *
for (;((z_trvl <= zd.l1) && (zct < MAXCT)); z-ct++){

next-z(z step,zd.A 1,zd.l 1);

break;
case SNGL:

case DBL1: for (;((z,_trvl <= zd.l1) && (zct < MAXCT)); z_-t+)
next z(z step,zd.Al,zd.1l1);

I
/* finished this spiral, reset z trvled, do next *
if (ztrvl >= zd.11){

z trvl = 0.0;
/; if second part exists => start along it ~
if (zd.12 != 0.0)f
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zctype = DBL-2;
for (;((z_trvl <= zd.12) && (zct < MAXCTF)); z_ct++){

next -z(z step,zd.A2,zd.12);
I

}else f 1* go to next waypt ~
zctype = NOCRV;

break;
case DBL2: for (;((z trv <= zd.12) && (z-ct < MAX_CT));z_ct++){

next z(z step,zd.A2,zd.12);
I
if (z trvl > = zd.12){

z-trvl = 0.0;
z-ctype = NOCRV;

break;
default: fprintf(stderr,"step spiral: Bad input value\n't );

if (curve type = = NO-CRV){
process-next waypto;

printf(' lpp (xy,z) (%4.3f,%4.3f,%4.3f) MP (xy,z) (%d,%d,%d)\n",
st -x* (double)GRID_-SZ +x start,sty* (double)GRID SZ +y_start,
st-Z*(double)Z _GRID+z_start,x_next,y_next, z-next);
print_desired_outo;

} * step-spiral *

* caic-des-val() - finds error values and desired values
* to feed to AUTOPILOT

void calc-des-val()

double err-x, errj', err-z, err_hdg;

err -x = (((st -x - act x)*cos(act hdg)) + ((stjy - actjy)*sin(acthdg)))/2.57;
err-Y = (((act -x - st -x)*sin(act hdg)) + ((sty - act y)*cos(act hdg)))12.57;
err_z = (((stz - act z)*cos(act hdg)) + ((stz - act z)*sin(act hdg)))12.57;
err_hdg =norm(st hdg - act hdg);

130



des -x = (st -x + err -x) * (double)GRID-SZ;
desjy = (stjy + errjy) * (double)GRID SZ;
des -z = (st z + err z) * (double)ZGRI1D;
des -v = (KX * err-x) + ((double)v _curr * cos(err-hdg));
des -hdg + = INTR VL*(act omega + (vcurr * (K-Y * errjr + KHDG*

err hdg)));
/*************TAL.K TO PROF KANAYAMA

/~desphi += INTRVL*O)*/
/* if not too far behind, then get next st- values else use old ones *
if (err-x < = MINXERROR){

step spiralO);
I
} * calc-des-val *

* open files() - open input & output files

void open files()
f

if ((infp = fopen( tpath.in","r")) = = 0){
printf("Unable to open 'path.in'\n");
exit(- 1);

if ((outfp = fopen("path.out","wt ')) ==0){

printf("Unable to open 'path.out'\n");
exit(-I);

I
}/* open-files ~

* get mnit values - get initial lpp values

void get mnit-values()

mnt dxl,dyl,dx2,dy2;
int dirl,dir2,dir3;
mnt x-curr, y curr, z-curr;
int xpast, ypast, zpast;
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/* initialize variables *
xpast = ypast = 0;
x _curr = y-curr = z -curr = v curr =0;

x,_next = y next = Z -next =v-next =0;

x _last = y last = z-last = v-last = 0;

/* this is the first time through, so read four waypoints ~
if ((eof infp = fscanf(infp,"%d %d %d %d %d %d %d %d %d %d %d %d",

&x-cufr,&y curr,&z-curr,&v-curr,
&x-next,&y_next,&z-next,&v next,
&x _last,&yjlast,&z-last,&v-last)) ! = EOF){

/* get initial data */
dxl = SIGNOx next - x -curr);
dyl =SIGN(y next - y__curr);
dx2 = SIGN(x last - x_next);
dy2 =SIGN(y last - y_next);
x-start = x -curr;
ystart = y_curr;
z-start = z-curr;

/* this switch determines a valid position PRIOR to start *
switch((dxl <« 2) 1 dyl){

case PZ: cardinal hdg = ZERO;
xjpast = x -curr - GRID_SZ;
Y-past = ycurr;
break;

case PP: switch ((dx2 <« 2) 1 dy2){
case PN: cardinal_hdg = HPI;

xpast = x-curr;
ypast = y curr - GRIDSZ;
break;

default: cardinal_hdg = ZERO;
xpast = x-curr - GRIDSZ;
ypast = ycurr;

break;
case PN: switch ((dx2 <« 2) 1 dy2){

case PP: cardinal_hdg = -HPI;
xjpast = X-curr;
ypast = y__curr + GRIDSZ;
break;

default: cardinalhdg =ZERO;
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xjpast = x -curr - GRIDSZ;
ypast = y-curr;

break;
case ZP: cardinal_hdg = HPI;

xJpast = x-curr;
ypast = y curr - GRIDSZ;
break;

case ZN: cardinal_hdg = -HPI;
xpast = x-curr;
ypast = y_ curr + GRID5SZ;
break;

case NZ: cardinal-hdg = PI_;
xjpast = x-curr + GRID SZ;
ypast = ycurr;
break;

case NP: switch ((dx2 < < 2) 1 dy2){
case NN: cardinal-hdg = HPI;

xjpast = x -curr;
y-past = y curr - GRID_SZ;
break;

default: cardinal hdg = P1_;
xjpast = x-curr + GRIDSZ;
ypast = y curr;

break;
case NN: switch ((dx2 <« 2) 1 dy2){

case NP: cardinal hdg = -HPI;
xpast = x_curr;
ypast = y curr + GRIDSZ;
break;

default: cardinal hdg = Pl_;
xjpast = x-curr + GRIDSZ;
ypast = ycurr;

break;
default: fprintf(stderr,"get mnit hdg: Bad input~n");

exit(-1);

1* now get triple *
dinl = dir-chg(xpast,ypastxcurr,ycurr);
dir2 = dir chg(x curr,y_curr,x-next,y next);
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dir3 = dir-chg(x next,y nextx_last,y_last);
triple = (din I« 4) 1 (dir2 « <2) 1 dir3;

/* and 'current' vehicle heading *1
st-hdg = ATAN2(ynext,ypastxnextx~past);

/* for now the desired depth is MP depth *
des-hdg = St-hdg;
des-z = (double) znext;
des v = (double) vcurr;

}else T
fprintf(stderr,"lpp_step main: not enough waypoints for path\n");
exit(- 1);

/* read curve information *
cd = descitriplel;
/* and get first desired values *
step spirals);

} I get-init values *

maino

mnt setparm = TRUE_;

while (eof infp ! = EOF){
if (setparm){

open fileso;
get -miit -valuesO;
setparm = FALSE_;

caic-des-valO);

close(infp);
close(outfp);

1* guid-xyz.c *
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