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INTRODUCTION

This final report is for work carried out under Grant No. AFOSR 88-0139
during the two year period from April 1, 1988 to March 31, 1990.

For vehicles that operate at altitudes above 80 km such as the Shuttle, the Na-
tional Aerospace Plane, and the Aeroassist Flight Experiment, calculations based on

the Navier-Stokes equations lead to erroneous results because of the very low densi-

ties. An alternative approach to the use of the Navier-Stokes equations, and one that
is well suited to treating rarefied hypersonic flows, is to employ the Direct Simulation

Monte Carlo (DSMC) method, a statistical procedure that simulates a gas flow by
a large collection of particles. However, a limitation of the DSMC method is that
it does not allow efficient use of vector architectures that are predominate in cur-

rent supercomputers. Consequently, the computation speed is severely limited, thus
restricting the problem size one can handle to principally one- and two-dimensional

flows.

The size of a simulation may be measured in terms of the number of particles
employed, and it is clear that more particles are needed for a 3D simulation than for a
1D or 2D simulation, if the same level of accuracy is to be obtained. Once the number
of particles is set, the number of cells into which space is divided is also set, because

the average number of particles per cell must be greater than a certain minimum value
to reproduce the correct flow physics. Practical experience shows this lower limit to
be about 15 particles per cell, assuming modest statistical accuracy. This number is
far too small to give useful statistics in simulations of nonsteady flows, but for steady

flows one may average the results over time, effectively increasing the sample size per

cell to a level that gives acceptable statistics. To model a 3D problem, it would be
desirable to have at least 500,000 cells (space of 128 x 64 x 64 cells) at an average
density of 20 particles per cell for a total of 10T particles. If the gas consists of several

species, then a still larger number would be required.

3asing an estimate on a single-species gas and using 103 time steps for the re- 0
quired time averaging (20,000 samples per cell on average) we see that 1010 particle-

time steps of computational effort is required to develop a solution. If the computation

is to be carried out in a period of 3 hours, then a performance of roughly 1 microsecond
Codes
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per particle per time step is required. Past experience has shown that this perfor-

mance is about one to two orders of magnitude beyond the capability provided by

the DSMC method implemented on the Cray family of computers. Recognizing that

the ratio in computation time between a straightforward serial code and an efficiently

vectorized code is roughly a factor of 15 to 20 on the Cray-2, it is clear that one

must also consider other algorithmic improvements beyond those directly related to

vectorization issues, if the necessary overall improvement in performance is to be

attained.

Our work has focused on a reformulation of the DSMC method with the objec-

tive of designing a procedure that is optimized to the vector architecture found on

the Cray-2. In this regard, we have developed a vectorizable collision-selection rule
to replace the time-counter algorithm of the DSMC method so that vector processing

can be more efficiently employed. This rule, which is used to statistically control the

selection of both the type and number of colliding particle pairs, has been a key step

in the development of the method. Additionally, our work has focused on finding a

better balance between algorithmic complexity and the total number of particles em-

ployed in a simulation so that the overall performance of a particle simulation scheme

could be greatly improved. Because of the rather significant algorithmic changes in-

troduced, it was decided to first study a single-species, ideal gas, until full verification

of the approach is achieved, prior to incorporating real gas effects.

COMPLETED WORK

A major effort in the period was devoted to the writing of a paper [1], which

was submitted for publication to the Physics of Fluids A. Because it outlines the

main objective of our work and fully describes the approach we are taking, a copy of

the manuscript is included in Appendix A. This work presents a detailed discussion

of the development of our theory fc: a :new selection rule governing collisions in a

particle simulation of rarefied hypers. . flow. The new rule is particularly well

suited for use on vector-oriented computers and it was specifically developed with the

objective of taking advantage of the much higher computation speed that is available

when running vectorized codes. In the paper we were able to show that shock-

wave profiles predicted by our method agree exactly with the corresponding profiles
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predicted by the Direct Simulation Monte Carlo (DSMC) method; and comparisons

are presented there for both density and temperature, for hard sphere molecules and

Maxwell molecules, and for shock-wave Mach numbers of 3 and 10.

In addition to the profile comparisons, the paper shows that the principal equa-

tion on which our theory is based can be related to the time-counter procedure used

in the DSMC method. This gives further proof that the two methods are entirely
equivalent. On the other hand, the selection rule governing collisions in our theory

leads to an algorithm that can be efficiently implemented on a vector-oriented com-

puter, while the time-counter method leads to a very inefficient implementation. A

demonstration of the greater computational efficiency that can be realized on the

Cray-2 supercomputer with our method is given by three examples in the paper. The

three cases selected were all carried out as three-dimensional simulations, where the

number of particles used ranged from 106 to 107 and the number of cells used ranged

from 3 x 104 to 4 x 105 .

A second major effort was the completion of a Ph. D. thesis by J. D. McDon-

ald [2]. His thesis describes all of the work that was done to develop the theory we

are using and to create the vectorized code for running on the Cray-2. His study, in

effect, completes our work on the use of a single-species gas. Beyond the material

presented in Ref. [1], his thesis gives a detailed account of the extension of the theory
we are using to the case of a multiple species gas, introduces an arbitrary power law

for molecular interactions, describes the approach he has developed to treat the ro-

tational degrees cf freedom for a diatomic molecule, introduces his proposed method

for handling vibrational nonequilibrium, sets the stage for the inclusion of chemical

nonequilibrium in our simulations, and gives the special programming steps taken

to implement vectorized code on the Cray-2, as well as the additional programming

steps taken to speed up many operations in general.

For example, he makes extensive use of lookup tables, as opposed to recalculat-

ing frequently used quantities. A special thermalized reservoir corresponding to the

freestream state is used to supply particles for input into the freestream, as opposed

to the use of random numbers and extensive calculations to generate this state. This

same reservoir of thermalized particles is used as a source of samples for determining
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the division of energy between vibration, rotation, and translation for colliding par-

ticles, as opposed to employing the Borgnakke-Larsen method with its heavy use of

exponential functions. In addition, rather complete information on the programming

used is presented along with a number of examples of the computed results for differ-

ent simulated conditions. His thesis represents the basis on which all of our further

investigations will be carried out. Also, his work has established the approach we will

be using to carry out the vectorization of the work remaining to be done.

Different aspects of the above work were also reported in two AIAA papers

which were given at the 24th Thermophysics Conference at Buffalo in June, 1989. A

paper by Woronowicz and McDonald [3] compares the simulated flow past a wedge

with results from a corresponding experiment. Although the maximum Reynolds

number that could be achieved in the simulation (for a reasonable computation time)

was below the value reported for the experiment (3,560 versus 13,500), density, tem-

perature, and pressure distributions were shown to compare very well, while the
velocity profiles in the boundary layer were found to be similar but thicker due to the

smaller Reynolds number.

The paper by Feiereisen and McDonald [41 is a product of the close collabora-

tion between the work being done by our Stanford group and work by NASA-Ames

scientists in the Aerothermodynamics Branch. In this case, Feiereisen (NASA-Ames)

developed the programming for creating an arbitrary three-dimensional body on an

IRIS Workstation, which then outputs to a file the resulting body geometry and

associated constants needed for the boundary conditions. This file is then used in

conjunction with McDonald's particle simulation program to obtain a solution for

the rarefied hypersonic flow about the body. This collaborative effort led to the first

successful attempt to study the full three-dimensional flow about the body shape

representing the Aeroassist Flight Experiment (AFE).

Shown in Figs. 1 and 2 are the resulting solutions for the pressure and temper-

ature distributions in the plane of symmetry and in a downstream wake cross-section

of the AFE. The blunt body shape was simulated accurately by the front surface,

but it was terminated by a flat plane on the aft side. The stair-stepped outline seen

is a result of the use of a graphical polygon-fill routine to create the front surface,
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but the terminating line was not defined. These runs were performed with 9.5 X 106

particles in a space of 120 x 60 x 60 cells for a total of 4 x 105 mesh cells. The
body diameter was 44 cell lengths, the upstream mean-free path length was 1.0 cells,
and the Mach number was 35. Based on the body diameter, the Reynolds number

was 2,300. Good statistics were obtained with time averaging over 800 time steps
using a total of 4.5 hrs. of Cray- 2 single processor CPU time. Because of the large
data sets required, these simulations made use of about 125 MW of Cray-2 central

memory.

MULTIPLE SPECIES

All of the work reported above was carried out for the rase of a single-species
gas. The stage was reached recently where we were confident that our approach had
been adequately tested and that it is basically correct. Following this, considerable
work was devoted to the creation of new code for handling multiple species. This code
was written in the C programming language by Jeffrey McDonald, and time-critical

elements of the code were being considered for translation into assembly language for
the Cray-2, just as was done for the single-species code that we have been using. The

C version of this code was created and tested before McDonald finished his thesis and
he was able to give a full discussion of his efforts there. Some of his tests involved the
computation of the shock-wave profile for a mixture of two hard-sphere, monatomic

gases; and one of his test results is shown in Fig. 3, where a comparison is made
between his predictions and results obtained using the DSMC method. As can be
seen, the two agree very nicely and McDonald was able to conclude that his vectorized

approach was working properly. Although McDonald finished his work as a student,
he still participates in our research efforts as he now has a position at NASA-Ames,
where he is associated with the Numerical Aeronautical Simulation (NAS) Program,

and has been given responsibility for work that is closely connected to his previous

work as a student.

At the start of calendar year 1990, several changes were made at the NAS
computation facility at NASA-Ames, which we use to carry out our simulations. The
change that has become most exciting to us was an upgrade in the version of the C
compiler available for use on the Cray-2 and the Cray YMP. Once McDonald and
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Fallavollita started testing the new compiler and set their sights on continuing the

development of McDonald's code for multiple species, which Fallavollita is taking on

as his thesis topic, it became evident that the new C compiler contains new features,

and a new capability, which greatly reduces the amount of work we will have to do.

The new features now provide the capability in the C programming language

that earlier could only be accessed after McDonald created considerable assembly

language code, unique to the Cray-2. In fact, essentially all c our previous assembly

language code can now be replaced by direct programming in C, assuming appropriate

attention is given to the use of proper code constructs. McDonald's tests have shown

that the new compiler has all of the capabilities that we need and that it produces

code that executes just as fast as his earlier assembly language code. This means that

we can write the programming for multiple species, and for the inclusion of chemical

nonequilibrium, in a much shorter time than would have been possible with the earlier

version of the C compiler. In addition, this code can now be run on either the Cray-2

or the Cray YMP. Although the NAS Cray YMP has 128 MW of central memory

versus 256 MW for the NAS Cray-2, it is twice as fast and represents a capability

which we are interested in using. This development represents a very significant step

forward in the rate at which we will be able to reach our goal of creating vectorized

code that includes chemical nonequilibrium. The first report that will result from this

new capability is an AIAA paper [5] to be given by Feiereisen and McDonald at the
5 th Joint Thermophysics and Heat Transfer Conference in Seattle in June, 1990. This

paper will discuss our progress made in dealing with multiple species and, hopefully,

initial steps toward the inclusion of nonequilibrium effects.

CHEMICAL NONEQUILIBRIUM

Concurrent with the development of the code for multiple species, Brian Haas

has been researching the problem of extending our simulation method to include

the treatment of chemically reacting flows, while retaining the advantages inherent in

vectorization present in the current code. His primary concern has been to develop the

theory so that good compatibility would be found between the needs of the algebra for

modeling chemical relaxation and the unique needs of vectorization. In this regard he
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and McDonald have worked very closely so that the desired features would be present

in the method selected as a result of his study.

One area in which Haas has made very nice progress is in his treatment of

rotational and vibrational nonequilibrium. Following McDonald's lead, he makes

use of the known relation between continuous and a quantized two-degree-of-freedom

systems to cause the rotational (continuous) and vibrational (quantized harmonic

oscillator) states to reach a common temperature (equilibrium), by mixing their en-

ergies in a way consistent with the fundamental physical assumption of statistical

mechanics. This assumption holds that two states having the same energy with no

degeneracies are equally probable. The primary purpose in using this approach is

that the mixing of energies can be done using mathematics that does not involve

extensive use of exponentials and transcendental functions, as is the case with the

Borgnakke-Larsen method - the approach most frequently used in Bird's Direct Sim-

ulation Monte Carlo method. This is very important in minimizing the computation

time that is taken in carrying out a simulation.

Some of the basic problems he has addressed have related to the question of

how to treat recombination, which has not been adequately treated, and even ig-

nored, in work by others. They have assumed that recombination would play a minor

role in hypersonic blunt-body flows and dissociation would be the dominate feature.

The principal reason for this assumption is that the theory for recombination, at the

molecular level, has not been fully worked out. The difficulty one encounters is that
recombination is basically a three-body process and a three-body collision is very dif-

ficult to handle in a particle method, where extremely rapid computation is essential.

Also, there is no clear physics associated with the way one should distribute the total

energy of the system under recombination in a way that meets all the requirements

associated with matching the temperature dependence of the recombination rate coef-

ficient, reproducing the correct equilibrium distribution for the different species, and

establishing a common temperature among all the species of the mixture.

In Haas' work he has made careful use of detailed balance, which is a very impor-

tant theoretical concept in both equilibrium and nonequilibrium thermodynamics. In

addition, he has made good use of a very reasonable assumption that the total energy
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of the system in recombination can be distributed among the component energies by

increasing each of them in proportion to the energies they had before recombination.

This method is exact for an equilibrium gas, but is not fully correct for a gas that is

wholly out of equilibrium. However, because many other thermalizing processes are

taking place at a much faster rate than recombination, and the fact that the fraction

that undergoes recombination is very small, the resulting approximation is a very

good one, and he has shown that it works extremely well.

Besides the presentation in his thesis which is expected to be finished in calendar

year 1990, he is in the process of writing several papers on his work. The first of

these will be an AIAA paper [6] to be given at the 5th Joint Thermophysics and Heat

Transfer Conference in Seattle in June, 1990. He has been working diligently on it

and the most recent draft of his paper is presented in Appendix B. Here, we can refer

to his figures 4 through 8 to see how well his model works and to assess the state

of his accomplishments. Figure 8 shows that he is able to fully handle a 5-species

representation of air at temperatures that correspond to re-entry conditions.

FLAT PLATE BOUNDARY LAYER

Michael Woronowicz has been studying the drag and heat transfer for a flat

plate boundary layer by researching the literature and by carrying out simulations

with our single-species code. The purpose of his work is to provide our group with

the knowledge and experience needed so that we will be able to treat and handle

the more complex boundary layers encountered in three-dimensional flows about the

AFE body. It is our view that we must show that we are able to predict the simple

case of a flat-plate boundary layer quite well, before we attack the more complex case

of interest in our work.

He has taken two very important steps which place our group in a strong posi-

tion to continue along our present path. First, he has devised a new way to correlate

all of the existing experirmental data so that the data collapse onto a single curve,

instead of appearing as a family of curves with a free parameter; and second, he has
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conducted numerous simulations with our code to compare results with these exper-

imental data, which show that we are able to make predictions that compare with

experimental results very well.

Figure 4 is taken from a paper that Woronowicz has been writing. It compares

all of the available experimental data on flat-plate drag for the case of an adiabatic

plate and for three different correlation methods: a) use of the viscous interacti..,a

parameter; b) the so-called slip parameter; and c) the new parameter introduced by

Woronowicz It is very clear that the new parameter is quite superior to the other two

in correlating the experimental data. Woronowicz is able to show that this parameter

works equally well for the case of a highly cooled plate, as well as for the case of heat

transfer to a cold flat plate.

In Figs. 5 and 6 we show comparisons between his simulated results and the
results of experiment, for the case of a cold flat plate and the case of an adiabatic, or

hot, flat plate. His new correlation parameter is used in these two plots and it is clear

that it is working extremely well. At present, more runs have been conducted for the

case of the cold wall, and therefore, Fig. 5 appears more complete than Fig. 6. The

figures show that the simulations are giving very good results over a wide range of
conditions and that they blend in nicely with the data in the near-continuum regime.

Because of the large number of particles that can be used in our simulations,
we are able to obtain nice resolution and striking pictures of the simulated flows. A
typical example is shown in Fig. 7 where the Mach number distribution in the flow

near the flat plate is displayed. It is of great interest to observe the velocity slip that

occurs near the leading edge of the plate. This is strictly a macroscopic phenomena

that occurs in a rarefied flow, as the boundary condition used for the individual

reflected particles gives these particles random thermal components of velocity, at

the plate temperature, but no mean motion.

EFFECT OF SCALE

An important effect that has not been studied is the connection between com-

putation time and the size of a simulation. One of the most useful properties of a
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particle code which is based on statistical sampling is that the computational cost is

proportional to the number of particles and the number of steps; that is, the same

computational cost is incurred when doubling the number of particles as when the

number of time steps is doubled. However, if doubling the number of particles leads

to a better physical representation of a gas flow than doubling the duration of the

averaging, then it is clear which arrangement one would choose, provided sufficient

computer memory is available.

If one assumes that the theory for statistically independent random variables
applies to a particle simulation, then one concludes that the fractional error, e, asso-

ciated with a macroscopic variable, depends only on the size of the statistical sample.

Therefore, it is given by e = 1/vW'T, where N is the number of particles in a cell
and T is the number of times steps used in time averaging. Because computation cost

depends directly on the product NT, one concludes that the fractional error remains

fixed, if cost is held fixed, independent of the size of the simulation, N. On this basis,

it is obvious that one would choose to use a longer time average because it would tie

up less of the computer resources. On the other hand, the situation may be quite

different if statistical independence does not fully apply.

Figure 8 shows the results of a very preliminary test using our single-species
code developed for the Cray-2. The test problem studied was the blunt-body flow

produced by a two-dimensional flat plate in a Mach 8 flow of an ideal, diatomic,

hard-sphere gas, where the Knudsen number, based on the plate width, was 0.1 and

the plate temperature was held constant at the freestream value. The error was
computed as the mean rms error of the pressure in a cell divided by the stagnation

point pressure. Fortunately, the absolute error can be determined simply from a series

of comparisons of the relative errors between the different runs, without having to

know the exact 3olution. The curve shown is for a constant value of NT; and we
see that the fractional error decreases dramatically as the number of particles in the

simulation is increased, even though the total computation cost is held fixed. The

figure indicates that the nonlinear physics present in the simulation requires that, in

order to reach a level of error of 0.1 percent, it is better to employ a simulation having

an average density of 100 particles per cell than to use 10 particles per cell together

with a longer time average. In fact, the preliminary data indicate that, for a given
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level of error, a certain minimum number density is needed, regardless of the duration

of the time average used. This clearly helps to explain how to minimize computation

cost in a particle simulation. This work has been carried out by Michael Fallovollita

and the results of a more complete study are to be published soon.

CONTINUING WORK

Over the past four years, we have enjoyed a very close working relationship with

the Aerothermodynamics Branch at NASA-Ames Research Center, in particular with

Dr. G. S. Deiwert (Branch Chief) and Dr. W. J. Feiereisen (Assistant Branch Chief),

and have received support from their branch in a number of ways: grant funds to sup-

port students, use of their workstations and facilities by our students, collaborative

effort between individuals in the Stanford and Ames groups, and access to the com-

putation facilities available through the Numerical Aerodynamic Simulation (NAS)

Program at Ames. At the present time our Stanford group consists of four Ph.D.

students, and three scientists from NASA-Ames regularly attend our weekly research

meetings (Feiereisen, McDonald and Boyd).

The collaborative effort between our respective groups was specifically planned

to consist of an arrangement where our students would focus principally on theoretical

questions and on computations that exercise and test new ideas, while the Ames effort

would give greater focus to the solution of practical problems, employing the new

computational capability developed. The main thrust of our continuing research is

to push forward on the following four fronts:

1) to include chemical kinetics in our simulations so that thermochemical nonequi-

librium among several different species may be handled;

2) to further develop our graphics display capability, along with suitable data

analysis, to handle the huge data sets we encounter in our simulations;

3) to study rarefied hypersonic boundary layers on flat plates to guide our under-

standing of boundary layers on complex three-dimensional bodies; and
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4) to apply these capabilities to the solution of practical problems of rarefied, real-

gas, hypersonic, three-dimensional flows about aerodynamic bodies such as the

AFE.

As the different efforts described above converge to a single working code, we will
turn our attention to the solution of several practical problems involving real vehicles

and real-gas flows. Here, our close collaboration with the NASA-Ames Aerothermo-

dynamics group will be extremely useful, as the work will require the specification of

reaction rates for different species, the use of realistic body geometries, questions of

physical processes associated with gas-surface interactions, conditions of heat transfer
at the body surface, and the altitude-Mach number flight envelope. One of the body

geometries we plan to investigate thoroughly is the AFE body. These will consist of

fully three-dimensional simulatiuns employing over 107 particles, 0.5 x 106 cells, and

multiple species. The anticipated results ought to be very exciting and we are looking

forward to the point in our work where we will be in a position to study data from

such runs.
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Fig. 1. Pressure distribution in the central plane of the AFE body and in a downstream
wake cross-section of the flow. The simulation models the AFE body at ari
altitude of 90 km and a Mach number of 35. The gas is nitrogen, treated as
ideal.
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Fig. 2. Temperature distribution in the central plane of the AFE body and in a down-
stream wake cross-section of the flow. The simulation models the AFE body at
an altitude of 90 km and a Mach number of 35. The gas is nitrogen, treated as
ideal.
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Simulation vs. Experiment, cold wall data
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Fig. 5. Comparison of simulated results versus experiment for the drag coefficient on a
cold flat plate. Simulations designated by the solid symbol.
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Simulation vs. Experiment, hot wall data
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Fig. 6. Comparison of simulated results versus experiment for the drag coefficient on
an adiabatic flat plate. Simulations designated by the solid symbol.
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A collision-selection rule for a particle simulation method
suited to vector computers

D. Baganoff and J. D. McDonald

Department of Aeronautics and Astronautics

Stanford University, Stanford, CA 94305

Abstract

A theory is developed for a selection rule governing collisions in a particle simulation

of rarefied gas-dynamic flows. The selection rule leads to an algorithmic form that is highly

compatible with fine grain parallel decomposition, allowing for very efficient utilization of

supercomputers having vector or massively parallel SIMD architectures (single instruction

multiple data). A comparison of shock-wave profiles obtained using both the selection rule

and Bird's Direct Simulation Monte Carlo (DSMC) method show excellent agreement. This

serves to establish the validity of the method, as the DSMC method is known to compare

well with experimentally determined shock-wave profiles. In addition, the equation on which

the selection rule is based is shown to be directly related to the time-counter procedure in

the DSMC method, further establishing their equivalence. The results of several example

simulations of representative rarefied flows are presented, for which the number of particles

used ranged from 106 to 107 , demonstrating the greatly improved computational efficiency

of the method.

PACS numbers:

47.45.-n

51.10.+y

47.10.+g

47.40.Ki



I. INTRODUCTION

The most widely used particle method for simulating a rarefied gas-dynamic flow is the

Direct Simulation Monte Carlo (DSMC) meth3d.1'2 This method was introduced by G. A.

Bird in the 1960s and has been advanced to the state where it is reliable, quite accurate and

can handle rather general conditions of gas complexity and flow geometry. The main problem

that arises in applying the method is that the principal algorithm employed contains logic

which leads to conditional branching of a type that does not allow one to make effective use

of supercomputers having a vector architecture, such as the Cray-2, or a massively parallel

SIMD architecture (single instruction multiple data) such as the Connection Machine.

Because the execution speed of an efficiently vectorized code is over an order of mag-

nitude faster on a vector oriented machine such as the Cray-2 than the speed of the same

code when limited to scalar execution, it is important to explore methods that fully utilize

these features. In addition, many of the projections estimating future increase in compu-

tational capability are principally based on extensive use of parallelism, requiring scientific

applications to be properly structured to use such architectures effectively.

It is well known that Monte Carlo schemes in general do not vectorize well, as this
problem has been addressed a number of times, particularly in the area of plasma physics.

In a recent fluid mechanical study, Ploss vectorized a modified Nanbu algorithm, a simulation

method for solving the Boltzmann equation, and concluded that the predominantly scalar

Bird scheme was still the faster approach.3 However, in light of the fact that over an order

of magnitude decrease in computation time could be realized if the DSMC approach could

be restructured to operate in a vector fashion, there is a strong motivation to seek ways

to reformulate the algorithms utilized in the DSMC method which are presently limited to

scalar execution.

To identify the elements that slow computation in the DSMC method and to under-

stand the kind of changes required, we first outline the general steps that characterize a

particle method and then focus the discussion on the particular step which represents Bird's

time-counter procedure and the problems associated with its use. This is followed by the

development of a theory, leading to an algorithmic structure for a selection rule governing

collisions that is highly compatible with fine grain parallel decomposition. A comparison of

shock-wave profiles obtained using both the selection rule and Bird's DSMC method show
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excellent agreement. This serves to establish the validity of the selection rule, as the DSMC

method is known to compare well with experimentally determined shock-wave profiles. In

addition, the equation on which the selection rule is based is shown to be directly related

to the time-counter procedure in the DSMC method, further establishing their equivalence.

Finally, the results of several example simulations are presented, where large numbers of

particles are used in the siziulations, to demonstrate the greatly improved computational

efficiency of the present method.

II. STEPS IN A PARTICLE METHOD

In outlining the steps taken in a particle method, it is most convenient to consider a

region of space free of boundaries or other special consideration. Also, we assume "he entire

space has been conceptually divided into a suitable arrangement of cells, similar to the

approach taken in a finite element method. The overall procedure in a particle simulation,

which applies at each time step At, can be represente ' "he following six steps.

(i) Advance all particles in space at crTstant velocity for the time At and ignore possible

collisions.

(ii) Use the new spatial positions and sort the particles into individual cells.

(iii) For a given cell in physical space, choose a pair of particles at random.

(iv) Use a selection rule to determine whether the pair formed is selected for collision. The

selection rule also determines the total number of sample pairs formed for each cell and

the distribution of colliding pairs over relative velocity. In order to simulate a real flow,

these values must be consistent with those predicted by kinetic theory.

(v) If accepted for collision, conserve momentum and energy while colliding the pair to

find their new states. The orientation of the relative velocity vector after collision is

chosen randomly in correspondence with the scattering properties of the intermolecular

potential considered.

(vi) Return to step (iii) to process the proper number of pairs in each cell and then to

process all cells.
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The above listing is presented primarily for purposes of discussion, since some of the steps

are often combined or altered in particular applications.

The sorting operation in step (ii) and the pair selection process in step (iv) prove

to be the most troublesome in writing efficient code for a computer having a vector or

massively parallel SIMD architecture. The time-counter procedure in Bird's DSMC method

corresponds to step (iv). To describe it, we assume the particles have been sorted into

individual cells, i.e.. steps (i) through (iii) have been completed. The time-counter procedure

consists of the following three operations.

(a) Retain the randomly chosen pair if R < a Tg/(aTg)max.

(b) For each pair retained, compute r = 2/(Nn oTg ) .

(c) Collide pairs while rl + 72 + r3 + ... < t for their cell.

In step (a), R represents a uniformly distributed random number in the range [0, 1], g is the

relative speed of the particle pair, oT is the total collision cross-section, and max denotes

the largest value for the cell. In step (b), n is the number density and N is the number of

particles in a cell. In step (c), the subscripts represent all the pairs accepted for collision in

a given cell, and t is the current time measured from the start of the simulation.

As is immediately obvious, the procedure contains two conditional branching state-

ments, one in (a) and one in (c). Step (c) proves to be more difficult to vectorize, because

the point at which the calculation terminates is not known a priori and it may be widely dif-

ferent for different cells. In the application of the algorithm, one discovers when to terminate

the calculation only during the calculation itself. This is the concept of data dependency

and we will return to the problem it presents in our discussion below. With regard to the

physics, it is clear that the branching logic is instrumental in determining the total sample

size for each cell. It selects the fraction that is to be retained for collision and it selects the

distribution of relative speeds over the chosen pairs (i.e., large values of OTg generate small

values of r, and consequently, more of these are needed to produce the required sum).

The well-known success of the DSMC method in being able to predict a variety of ex-

perimental conditions has been widely recognized as providing a strong argument in support

of its use. Its theoretical justification is based on the argument that, when the above steps
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are carried out a large number of times, for a large number of particles, they lead to the

single-particle collision frequency given by

E = no7T(1)

where the overbar represents a mean quantity in the sense discussed by Bird.4 Following

similar logic, our approach is to return to the basic relation from which the well-known

bimolecular collision rate for an equilibrium gas is derived and develop a relation for the

nonequilibrium state that leads to a selection rule governing collisions that does not contain

the data dependency represented by step (c).

III. BIMOLECULAR COLLISION RATE

The bimolecular collision rate is usually derived for the case of an equilibrium gas and

a hard-sphere molecule. This is because the velocity distribution function is known for the

equilibrium otate and the total collision cross-section for a hard-sphere molecule is clearly

defined and finite, and the associated scattering is isotropic. As a consequence, the algebraic

steps and required integrations can be carried out in a straightforward way. We will assume

a hard-sphere molecule in our initial development, but the gas will not be assumed to be in

equilibrium.

The numerical value of the (integrated) bimolecular collision rate gives the total number

of pair collisions occurring between two species per unit of time in a unit volume. However,

in order to handle rarefied flows, specific knowledge concerning the functional dependence

of the pair collision rate on the relative velocity is needed for the case of a nonequilibrium

gas. To obtain this information one must start with the basic expression for the collision

rate between two species A and B given by5

nABndCdZ = nAB fA(C)fB(Z)(irdAB)gdCdZ, (2)
1 + bAB

where nA is the number density, fA is the velocity distribution function, and C is the

molecular velocity, all for specie A. Also, dAB is the average diameter for the two molecules

and g is their relative speed. For convenience, we use the notation dC = dCdCydCz.

The Kronecker delta is used to account for the fact that AB collisions are the same as BA

collisions when A and B are the same specie.



Equation (2) can be written in terms of the relative-velocity vector (Z - C) by use of

the transformation
g=Z-C

G = (mAC + mBZ)/(mA + mB),

where g is the relative-velocity vector for the colliding pair, and G is the center-of-mass

velocity vector. For this case, the Jacobian of the transformation is unity, and therefore, we

have dCdZ = dGdg. On introducing the transformation into (2) and integrating over G,

to obtain an expression in terms of g alone, one encounters the following integral operator

F(g) = fA(G- -2g) fB(G + m* g)dG, (3)1-0MA MnB

where m* = mAmB/(mA + MB) is the reduced mass. Therefore, Eq. (2) can be written

ZABdg=nAnB f(g)dg(rdAB) (4)1 + 6AB

where a distinction between ZAB and ZAB is made to account for the different dimensions in

the two equations. Equation (4), as it stands, has the proper form to develop our desired

collision-selection rule, but it is useful to first review the fact that in many instances F(g) has

a very simple structure, which proves to greatly improve the utility of applying a statistical

method to (4).

The function F(g) describes how AB pairs are distributed as a function of their relative

velocity vector g, and clearly, it is a function of three independent variables. However, we

will show that it is always a rather smooth function, and that it can often be approximated

by a function of the relative speed g alone, i.e., a single independent variable. This is in

contrast to the velocity distribution function f(C), which has the potential for being a rather

complex three-dimensional function. For example, it assumes a bimodal distribution in the

upstream portion of a shock wave. The purpose of reviewing the simple structure of F(g)

is that, in using a statistical sampling scheme to evaluate Eq. (4), a far smaller number of

sample- can be used than would otherwise be necessary, and this clearly represents a very

important practical consideration.

In establishing the fact that F(g) is a smooth function, let's first consider the case of a

single specie gas, for which the integral corresponding to (3) is given by

F(g) = f(G - g/2)f(G + g/2) dG. (5)
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The first important observation we make concerning (5) is that it produces an even function

of the relative velocity vector g, i.e., we have

F(g) = F(-g). (6)

We note that this is a general result and it does not depend on any assumptions whatsoever;

it holds for any conceivable velocity distribution function, f.

The second observation is that the integral can be carried out exactly for the case of

an equilibrium gas, and it leads to the expression

F0(g) = (mrT) 3/ exp (- 4--.g) (7)

In this case F°(g) is a function of the scalar magnitude g alone. That is, the function is not

only symmetric but it is also spherically symmetric.

The third and final observation we make concerning the integral operator (5) is that

it has the unexpected property of satisfying the central limit theorem. This can be seen as

follows. For the case of a single independent variable, the convolution integral is defined by
00

f •f f o f(x - )f()d , (8)

and a known result of the central limit theorem is represented by

f * f * f f ... ----+ gaussian .

The corresponding operator suggested by (5) is different from (8) in the position of the minus

sign, the appearance of the variable z/2, and in the presence of the argument ( + x/2);

therefore, we define a new operator by

f#f = f( f x/2)f( + x/2)d,. (9)

We first note that the integrand in (8) could be replaced by f(x/2 - )f(x/2 + ) and the

conclusions of the central limit theorem would still hold. This can be seen by a simple

transformation of variables that leads back to Eq. (8). On using the operator defined by (9),

we can now write

f#f#f#f# ... = (f#f)#(f#f)#(f#f)#...

=e#e#e#e#...

=e*e*e*e*** -- gaussian,
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where e is defined to be an even function; and where the second step makes use of (6),

while the third step makes use of the fact that (8) and (9) are equivalent when f is an even

function.

At this point we have demonstrated that the operator defined by (5) satisfies the central

limit theorem for the case of a single independent variable. However, it is easy to see that

the results can be generalized in the following way. If one forms the Fourier transform of

both sides of (9), makes use of the transformation u = ( - x/2) and v = ( + x/2) and

notes the separation of variables, one obtains the relation F(w) = f(-W)f(W), where W

is the transform variable. For the case of three independent variables, one introduces the

three-dimensional transform variable w and performs exactly the same operation on (5),

which again produces a product of Fourier transforms given by f(-w)f(w). It is easy to see

that repeated applications of the operator defined by (9), or (5), lead to repeated products

of the same Fourier transforms. This is the property one uses in proving the central limit

theorem, namely, one shows that the resulting expression, suitably normalized, tends toward

the Fourier transform of the gaussian distribution.6 The same principle can be used to show

that Eq. (3) also has this property, however, its convergence to a gaussian is not as rapid

because of the potential asymmetry present, i.e., one obtains fA(-W)fB(W).

We now see that when the integral operator in (5), or (3), is applied a large number of

times it produces the gaussian or Maxwellian distribution. The significance of this result is

based on the fact that the central limit theorem is a very powerful theorem, in the sense that

only a few applications are required to obtain a very close approximation to the gaussian

distribution. The quick convergence to a gaussian distribution is best seen by considering

several simple examples. If we assume a one-dimensional asymmetric function for f, as shown

in Fig. l(a), then a single application of the operator given by (9) leads to the symmetric

function F seen in Fig. 1(b). Here we see that the symmetric function F is beginning to

look like the gaussian distribution.

A second example, which makes use of a three-dimensional representation for f, is

shown in Fig. 2. The integration required by (5) can be carried out analytically in three

dimensions, if f is assumed to be given by a spherically symmetric Cauchy distribution

(1/(a + x2 )). Normalization requires that the Cauchy distribution be truncated, because

the required integral is otherwise divergent. The truncated Cauchy distribution used, and
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the corresponding equilibrium distribution having the same total energy, are shown in Fig.

2(a). The result of the application of the operator (5) on both functions, shown in Fig. 2(b),

makes it clear that the action of the central limit theorem is so strong that the two results

for F(g) are very nearly the same. For use in our discussion below, we also show in Fig. 2(c)

the corresponding distribution functions for the relative speed (magnitude), which we define

as R(g).

The observations made above can now be used to introduce an excellent approxima-

tion for (5), which can then be used for a better understanding of the exact relation (4).

Because of the properties of the central limit theorem, we know that F(g) tends towards

the gaussian distribution; and according to (6) it is guaranteed to be symmetric. We can

therefore approximate (5) by a spherically symmetric function. However, this spherically

symmetric function is not the equilibrium function (7) when the gas is out of translational

equilibrium (see Fig. 2(c)). The approximation suggested is therefore the replacement of the

symmetric function F(g), which is a function of three independent variables, by a spherically

symmetric function, F(g), which is a function of only one independent variable. Using this

approximation and noting that the differential element dg becomes 47rg 2 dg for the case of

spherical symmetry, the expression for the speed-dependent bimolecular collision rate for a

single specie, hard-sphere gas is obtained from (4) and becomes

n 2

ZAB dg 2 [47rg2F(g)dg] (7rd 2)g.

On introducing the following definition

R(g) dg = 47rg 2 F(g) dg, (10)

and on introducing the time interval, At, our approximate relation becomes

(n 2  
2g~]

ZABdgAt = R(g) [(Ird2 )git]. (11)

The partitioning shown in (11) and the inclusion of the time step At are both introduced

for convenience below. The exact form of (11) is of course Eq. (4), which we repeat using

the same format employed in (11).
nA FnB1 2

ZAB + 6AB F(g)dg [(rdAB)gAt] (12)
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To emphasize the fact that (11) is exact as well for the equilibrium state, we can use it to

derive the known bimolecular collision rate for a single specie hard-sphere gas in equilibrium.

Defining ZAB to be the integrated bimolecular collision rate, and dropping the At from (11),

we have n2 2 00
ZAB = -- (rd2) gR(g)dg.

For the equilibrium state, we use (7) and (10) to evaluate the integral, which yields the

well-known result

ZAB = -(ird 2 )0, (13)

where the mean molecular speed for an equilibrium gas, C, is given by

0= V/8kf/7rm . (14)

Because Eq. (11) is conceptually simpler than the exact expression (12), we start with

its discussion. The left-hand side of Eq. (11) represents the number of binary collisions that

occur in a unit volume in the speed range g to g + dg, in the time interval At. The right-hand

side of the equation can be viewed several different ways, depending on how one chooses to

group it. For large n, the quantity n2/2 is approximately equal to the number of pairs that

can be formed out of n particles in a unit volume. The function R(g) is the distribution of

pairs over the relative speed g. Therefore, the quantity enclosed by braces is the number of

pairs found in a unit volume in the speed range g to g + dg. Now, the expression in square

brackets is the volume swept out by the hard-sphere particle in the time At as it moves at

speed g. If this small volume is viewed in conjunction with the larger unit volume being

considered, then its numerical value can be interpreted as the probability that the particle

pair will be found in the small volume (this is the same basic concept used in setting up Eq.

(2)). Using this interpretation, we can write Eq. (11) as follows

zAB dgAt = S R(g)dg Pa, (15)

where S is the sample size (for a unit volume) and P, is the probability of a binary collision.
In this case we are using the two relations

S = n2/2, (16)
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P, = (rd 2 )gAt. (17)

The statistical sampling scheme defined by Eq. (15) is to sample a unit volume S times,

saving only the pairs falling in a given speed range, and tlc,. -ave only the pairs for which a

uniform random number in the range [0, 1] is less than the fraction P. The number of pairs

retained is the number ZAB dg At.

Following the grouping used in (15), we can write the exact relation (12) in the same

form and it leads to the expression given by

ZAB dgAt = S F(g)dg P, (18)

where in this case, we have
S nAnB' (19)

1 + bAB'

and where P, is again given by (17). The purpose of deriving Eq. (15), which is an approx-

imate result, along with the exact result (18), is to emphasize the fact that (18) frequently

has the behavior of (15). This is important because, in a statistical sampling scheme, far

fewer samples are needed to sample a smooth one-dimensional function than for a complex

three-dimensional function, assuming the same level of accuracy. In view of the fact that

practical considerations often limit one to sample sizes for a single cell ranging from 10 to

100 sample pairs, for each time step, it is clear that such a small sample size is only useful

in sampling a smooth one-dimensional function. However, knowing that (18) often has the

symmetry of (15), one can operate on (18) with a relatively small sample size and still be

confident of obtaining good results. However, for those cases where F(g) is believed to be

more complex, then it is clear that a larger number of sample pairs is needed for each time

step, if one is to obtain reliable results. This situation makes clear where the transition from

a general approach characterizing kinetic theory problems to a more restricted approach

typically addressed by particle methods is taken.

IV. SELECTION RULE

In practice, where it is desirable to set the number of particles in a unit cell to as large
a value as possible, the corresponding number of possible pairs becomes much too large. For
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example, for n = 100 we find S = n 2 /2 = 5,000. Because it is not practical to sample a

cell 5,000 times, one must settle for a considerably smaller sample size. If we reduce the size

of our sample, S, then it is clear that P, must be increased by a corresponding amount in

order for the product to yield the same rate. The approach we will take is that one is free

to specify the sample size, S, provided that P, is adjusted to leave the product (15) or (18)

unaltered. Because of the adjustment that can be made to the value of P, we chose to view

it as a selection probability as opposed to a collision probability. The concept of a selection

probability applies to the model problem, while the concept of a collision probability applies

to the original physical problem. On using an arbitrary value of S, the corresponding value

of the selection probability (17) becomes

P, = {( AB)S} (ird2 )gAt. (20)

In the work that follows, we will assume a single specie gas to minimize algebraic

complexity. However, the work can be repeated for the case of two species in a straightforward

way. Use of P, in a computational scheme is simplified considerably, if one introduces the

definition of the mean-free path length for a hard-sphere molecule and replaces the physical

constant ird 2 by reference values of number density and mean-free path length. This can be

done because the hard-sphere relation

1

A = n /n(7rd2), (21)

clearly holds at all points in a flow. This step leads to a more useful expression given by

=, ni) ( n) VgAte (22)

When the simulation of a wind tunnel flow is carried out, freestream conditions may be used

to specify the required reference values.

Because the values of S and P, can be adjusted, it is appropriate to review combinations

that lead to optimal computational efficiency. Recognizing that certain data dependencies

can eliminate the possibility of exploiting any form of parallelism,7 we are interested in

selecting an algorithmic form that is free of these dependencies. An unfortunate example

of such a dependency was identified above in reviewing step (c) of the DSMC time-counter

procedure. It is such data dependency that must be avoided if the advantage of parallel
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structure is to be gained. Because no single expression adequately covers the concept needed

here, we will describe the algorithmic form having the desired properties as being open loop,

as opposed to closed loop which requires an input from the state of the system. We turn our

attention first to a specification of S.

A. Natural sample size

The principal difficulty in writing efficient code for a computer having a vector or a

massively parallel SIMD architecture is introduced by the data dependency associated with

step (c). This difficulty can be averted when using selection rule (22) by employing any

sample size that is proportional to n, which becomes a natural sample size. For example,

n/2 sample pairs out of a total of n particles in a unit cell is one such case. Consequently,

it proves to be useful to specify the sample size (for a unit volume) as follows

S = K (n/2), (23)

where K is a constant to b determined. Using this value for the sample size, we then have

from (22)
P, n ) gAt (24)

K n fref %F V'Aref

The adv..tage introduced by (23) can best be understood as follows. Assume the entire

listing of particle data is read sequentially while cell by cell pairings are made of the particles

as Lhey occur in the listing. This automatically leads to n/2 pairs, where n is a different

number for each cell. For K = 2, the listing is processed twice. However, in order to assure

random parings on successive reads, a random entry and a random stride (spacing between

entries) is actually used. Here, the number of pairs created is tied directly to the population

of a cell and is a number that automatically arises rather than a number imposed on the

system. Consequently, selection rule (24) may be applied in step with the processing of the

list and one has an open-loop algorithm. We also note that in the application of (24) it is

important to use the time averaged value of n/nref, to reduce statistical fluctuations, and

therefore it is a known quantity. A discussion of the fact that K need not be an integer value

and how that case is handled, together with details on a Cray-2 implementation, can be found

in a thesis by McDonald.5 A straightforward application, without regard to optimization of

code performance, is to use (24) in step (iv) to select the pairs that collide.
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Clearly Eq. (24) can only be used as a probability when P, < 1, and therefore, any

application must account for this restriction. The condition P, < 1 can now be used to fix

the minimum permitted value of K, leading to

K= (nmax ) gmax A t (25)
\rref ]V 'ref

In actual practice the value of P, is monitored during a simulation to see that it remains less

than unity for the conditions used. However, we can judge these conditions by estimating

the value of K, which requires that we review the individual quantities appearing in (25). A

study of Eqs. (7) and (10) shows that, for an equilibrium gas, 99.4% of the pairs fall in the

range 0 < g !5 gmax, where

gmax = 2.5/4T/r. (26)

On fi-st sight, it appears that (26) is unbounded, and consequently, (25) would predict

an unacceptably large value for K when the flow Mach number is large. However, the

temperature does not become unbounded in a simulation, and this can be seen as follows. An

estimate for the maximum temperature in a flow can be found by considering the stagnation

point on a blunt, adiabatic body in an Euler flow. Along the stagnation streamline, the

energy equation leads to the relation
2s - + 2 ,

-1 11

where a, is the speed of sound at the stagnation point, M1 and ul are the upstream Mach

number and fluid speed, respectively, and -y is the ratio of specific heats. On combining the

last two equations, we obtain an estimate for gmax, i.e.,

gma = 5(7-1 +_1 2 .7
9 2--- -- + M u. (27)

This last equation shows that, for a monatomic gas and in the strong shock-wave limit, we

have gmax = V /Ul. Because the quantity ul is normally set in a simulation, it is easy to see

that gmax is roughly twice as large as ul, and therefore, it is not an unbounded quantity, as

one would initially be lead to believe on first seeing (26).

Because we will be considering shock-wave profiles in a monatomic gas, we continue

with -y= 5/3 and, in the strong shock-wave limit, Eq. (25) yields the following estimate

K , 6.3ulAt/Al,
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where a density ratio of 4 was used in (25). On the basis of our experience in using the present

method, a reasonable value for the dimensionless group corresponds to ulAt/Al = 0.15.

This leads to a K value near unity, which is a very practical value. Because the hard-sphere

model leads to larger K values than power-law models for realistic gases, we will defer further

discussion of this topic until Section V.

B. Constrained selection probability

If we are interested in a more automatic procedure for limiting the selection probability

so that it is always less than unity, then we may make use of the approach introduced by

Bird, that is, for the case of the hard-sphere molecule, to set

P, = g/gmx, (28)

where gm,, is the maximum value of the relative speed in the cell. This is the concept

employed in step (a) of Bird's time-counter procedure. With this choice, one is assured that

the selection probability never exceeds unity. In this case, the sample size is given by

- gmaxAt] (29)
2 [Knref / VArefj

On comparing the expression in square brackets with the value defined by (25), it is easy

to see that the two are directly related, as they must in order to satisfy (18). The most

important fact concerning (29) is that the sample size is imposed, as a direct consequence

of (28), and therefore the number of times one must carry out step (iv) is set by this value,

i.e., one does not have an open-loop algorithm. Because of this, the creation of efficient code

for a computer having a vector or a massively parallel SIMD architecture becomes rather

difficult when this algorithmic approach is used. Likewise, in the application of (29), one

should use the time averaged value of n/nref to reduce statistical fluctuations.

C. Selection rule verification

A straightforward test of the theory is to compare computed shock wave profiles using

the present approach with the corresponding profiles predicted by Bird's DSMC method. In

order for the comparison to be a rigorous test of the selection rule alone, free of uncontrolled

effects, we replaced the time counter procedure used in step (iv), when using the DSMC
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method, by selection rule (24) and followed effectively the same series of steps (i) through

(vi) in carrying out the simulations. These results therefore do not provide comparative

information on vector versus serial code run times. Fig. 3 presents comparisons of shock-

wave profiles for Mach numbers of 3 and 10. Both the density and temperature profiles

are shown in each case. The simulations employing the present method were carried out

using selection rule (24), with K ; 1, A1 = 5 cell lengths, and ul At = 0.3 cell lengths.

The upstream average particle number density used was approximately 90 particles per cell

and the results were time averaged over 1,000 time steps. The DSMC results were obtained

from shock-structure data kindly provided by Boyd 9 from his recent work at NASA-Ames

Research Center. It is clear from the comparison that the two methods give nearly the same

results. This has been found to hold, as well, for other Mach numbers not shown here.

V. POWER-LAW MOLECULES

All of our results have been deveioped for the case of a hard-sphere model of molecular

interaction. In order to generalize these results, we must return to Eq. (2) and replace the

expression for the total collision cross-section for the hard sphere, given by 7rdAB, by the

more elementary form o(g, X) dQ, where o is the differential collision cross-section, X is the

scattering angle, and dQ is the differential solid angle. For the hard-sphere model, o' is a

constant and the scattering is isotropic. For the more general case, one must consider the

role played by the scattering angle as well. However, in the application of a particle method,

one may first use the integrated collision cross-section, orr(g), in (2) and then choose the

orientation of the relative velocity vector after collision to be a random quantity, selected in

correspondence with the scattering properties of the molecular interaction considered. This

is where the X dependence is introduced, which also explains step (v) in Section II, where

the procedural steps in a particle method were outlined. On this basis, we generalize Eq. (2)

by replacing the quantity 7rdAB by the total collision cross-section aT(9).

Because the algebraic steps which led from Eq. (2) to Eq. (12) are not affected by the

introduction of the function o. (g), the more general form of (12) can be written immediately

as

ZABdgIt nAnB F(g)dgj [0'(g)gAt]. (30)
d + ( 16AB)

16



The key algebraic step, in developing the dimensionless form (22), was the introduction of

the dimensionless group

G(g) = v"2_nrefAref O,(g), (31)

which was obtained from (21) for the case of a hard-sphere molecule. In anticipation of using

the same algebraic step and for the case of a single specie gas, we write Eq. (30) in the form

ZAB dg/t ={F(g) dg}1) G(g) (32)
n) ef v2/ Aref *

The algebraic expression for Ps, for the open-loop algorithm, is then obtained directly

from (32) and it reads
= 1 (n) gAt (33)

K =f G(9)A ref.

Likewise, by factoring go'T(g)/gmaxaT(gmax) from (32), the sample size S associated with the

constrained selection probability is obtained in the same way and is given by

S= n n-ef G(gmax) r. fj" (34)

In the work that follows, we will find a need for a general expression for the mean-free

path length in a single-specie gas. The desired relation is found by use of the basic definition

O(35)

where E is the single-particle collision frequency, and through the definition of the collision

frequency expressed in terms of the bimolecular collision rate, given by

- ZAB dg.
=n foo

The factor of 2 appears because, in the case of like molecules, each collision terminates two

free paths. 10 On using (30) for a single specie gas, the single-particle collision frequency is

therefore given by
00

n = n 0j ga, (g) F(g) dg, (36)

which yields the required expression for A when substituted into (35).
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A common approach in generalizing hard-sphere results is to assume a repulsive force

acting between molecules that is produced by the following potential

V = a r-*, (37)

where r is the distance between the colliding pair, and a and a are constants, characterizing

the molecule. The principal problem that arises in using (37) is that its total collision cross-

section is infinite for all finite values of a. Because of this, the collision frequency and the

mean-free path length are not clearly defined for such potentials.

This difficulty has been addressed in several different ways: 1) on the basis of certain

physical arguments, a cutoff can be introduced to limit the range of the potential and thus

limit the size of the computed quantities; 2) physical arguments can be used to replace the

total collision cross-section by either the total cross-section for momentum transfer, 0,M1 or

the total cross-section that arises in the calculation of the coefficient of viscosity, a,; or 3) use

of a novel approach introduced by Bird in which the isotropic scattering of the hard-sphere

model is retained, but the molecular diameter is allowed to vary as a function of g. This

model is called the variable hard-sphere (VHS) model. The argument put forward in favor

of the VHS model is the observation that, for most flows of interest, the variation in the

collision cross-section has a far greater influence on the structure of a flow than any variation

in the molecular scattering characteristics.

A. Variable hard-sphere model

The variable hard-sphere model was introduced by Bird in 1980, as a practical approach

to the solution of engineering problems." Isotropic scattering is assumed, like the hard-sphere

model, but its total collision cross-section is allowed to vary with g as follows

av Hs(g) = Alg2"', (38)

where A and w are constants. The constant w is is related to the exponent of the interaction

law (37) by the relation

w = 2/a. (39)

In the development of his model, Bird obtains the following explicit expression for the total
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collision cross-section

aT(g) = arf [m*g2/2(2 - w)kTre]-", (40)

which is equation (9) in his paper, and the following expression for the mean-free path length

A = (T/Tref)'/[(2 - w)wLF(2 - w)v/2Tn ,red, (41)

which is equation (10) is his paper. These two equations can be combined to obtain the

dimensionless group (31) for the VHS model, which is given by

1 (2kTref" 42
G(g) = F(2 - w) ('2 (42)

where we note that m* = m/2 for a single specie gas.

On substituting (42) into (33), we obtain the following simple relation for the selection

probability for the VHS model

P,=1 (n) D(w) (V ref)2w Are (43)

where the quantity D(w) is given by

D(w) = (ir/2)w/F(2 - w). (44)

For the case of the hard-sphere molecule, a = 00, or w = 0, and r(2) = 1; thus D(0) = 1 and

therefore Eq. (43) reproduces the hard-sphere result (24). For the case of Maxwell molecules,

a = 4, or w = 1/2, and LF(3/2) = Vfr/2; consequently, D(1/2) = V/2 and Eq. (40) becomes

Ps = n -- f) CrefAt (45)Pnr= Aref

This last relation shows that, for the case of Maxwell molecules, the bimolecular collision

rate is independent of the relative speed g, which is a known result. We also note that on

comparing (24) and (45) that the quantity g/V12 is replaced by ref, which is a much smaller

quantity when the Mach number is large. Therefore, the condition P < 1 is much easier to

satisfy for Maxwell molecules than for hard-sphere molecules.
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B. Cross-section for momentum transfer

An alternative to using the constants implied by (40) is to assume that one may use

the collision cross-section for momentum transfer given by 12

0M(g )  ( 2r 2g-4/aAl(a), (46)

where a and a are the constants appearing in (37) and the quantity A,(a) is a pure number,

for which tabulated values (where v = a + 1) can be found in Chapman and Cowling. 13

The collision cross-section for momentum transfer reduces to the hard-sphere value when

a = oo, and therefore, it is more suitable for use here than the cross-section associated with

the coefficient of viscosity, which reduces to 2/3 of the hard-sphere value. On comparing (46)

and (40), it is clear the two functional forms are identical, except possibly for the constants.

In order to compute the dimensionless group (31), we need an expression for the mean-

free path length at the reference conditions. This is where (35) and (36) prove useful. On

substituting (46) into (36), assuming the equilibrium state (7) and using definition (10), we

obtain 1_2

nreferef = {2,r (2a Aa() -(4kTref) r(2 - 2 (47)

Equations (46) and (47) can now be used to eliminate the collection of constants grouped
4

within the braces in (47) to obtain an expression relating nrefEref and aM (g) g*. Finally,

on using (35) to introduce the mean-free path length, and (31) to obtain the dimensionless

group G(g), we obtain
2

1G4__.(4kTr' (
G(g) = g(2-2) 2 (48)

On using (39) it is clear that (48) and (42) are identical, and therefore, the exact same

selection rule is obtained for the two models, i.e., Eq. (43) applies to both cases.

C. Sample size

Because the two models predict exactly the same results for G(g) and Eq. (43) applies

to both models, the sample size for each is obtained from (43) and we have

K = (nraax) D(,) ( Oe,2Wr gmaxA t  (49)
knref ( (gmax) (49)
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In order to study this equation, we need an estimate for the quantity Cref/gmax. This can

easily be obtained from the definitions for C, given by (14), the definition for the Mach

number, and by use of Eq. (27), which lead to

Cref = 2 FLYf(1, M2" 1 (50)

gmax =5 7r 520

A better estimate for the ratio nmax/nref, than the constant used in Section IV, is to use the

stagnation-point density, as a function of the upstream Mach number. After these equations

are collected, the resulting expression for K becomes sufficiently lengthy that a graphical

display of the results becomes more appropriate than an algebraic display of the resulting

equation.

Fig. 4 presents the functional dependence of K on the power-law constant w, for fixed

values of upstream Mach number M1, and for -f = 5/3. In evaluating (49) the dimensionless

quantity ujAt/Aj was assigned the value 0.3, which we have found to be a reasonable value.

Typical values for w for physical gases fall in the mid range of the w-values plotted. For

example, w ; 0.25 for the monatomic gas argon, while w : 0.22 for the diatomic gas

nitrogen. It is clear from the figure that for physical gases we may use K values near unity

and that the situation even improves as the freestream Mach number increases. It is also

clear that the hard-sphere model (w = 0) represents the most severe case, while the Maxwell

molecule (w = 0.5) represents the least severe case.

A study of Eq. (49), and the plot in Fig. 4, show that the sample size, K, is more

sensitive to the density than to the temperature in the flow. Our estimates were made for

the stagnation point of a blunt body and a thermally insulated wall. If the wall were a cold

wall, then the temperature of the gas at the stagnation point would be low, but its density

would be high. It is extremely difficult to obtain general analytic results for this case, but

several exploratory runs seem to indicate that the net effect is to increase the value of K by

as much as 50%, over those found in Fig. 4, when the Mach number reaches 30. However, the

figure shows that K = 2 would also handle this case for typical physical gases, and therefore,

the basic approach is the same.

Equation (43) gives the selection rule for the open-loop algorithm for either the VHS

model or for the model using the collision cross-section for momentum exchange. We found
in Section IV that the hard-sphere limit of this selection rule predicts the same shock-wave
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profiles as those given by Bird's DSMC method. A further test of the present approach

is to study the opposite limit, namely, the Maxwell molecule limit. The selection rule for

the open-loop algorithm has already been derived for this case, and it is given by Eq. (45).

Fig. 5 presents comparisons between the shock-wave profiles obtained using (45) and results

from the DSMC method, for the case of Maxwell molecules, a monatomic gas, and for the

shock-wave Mach numbers of 3 and 10. In our simulations, we used K z 1, A1 = 1.5 cell

lengths, and ulAt = 0.3 cell lengths. The upstream average particle nurrber density used

was approximately 110 particles per cell and the results were time averaged over 1,000 time

steps. It is quite evident from the comparisons that there is essentially complete agreement

between the two methods. The DSMC results were again obtained by making use of shock-

structure data provided by Boyd.9

The shock wave provides a test for a nonequilibrium gas, while an appropriate test for

an equilibrium gas is to compare the collision frequency, or mean free path length, in a single

cell with the predictions of kinetic theory. Equation (41) shows that A varies as T 1/ 2n- 1 for

a Maxwell molecule and as n - 1 for a hard sphere molecule. Because the former represents

the more rigorous test, we show in Fig. 6 the results of several example simulations for A

versus n for two values of the sound speed, differing by an order of magnitude, and for a

range of densities representative of many simulations of interest. It can be seen that the

comparison is quite good, which further supports the view that the proposed selection rule

is valid.

D. Time-counter method

Because the shock-wave profiles predicted by the present theory are essentially identical

to the profiles predicted by the DSMC method, it is clear that the two approaches must

be closely related. The comparison that suggests itself next is to consider whether Eq.

(30), which is the central equation in the application of our method, can be related to the

time-counter procedure in the DSMC method.

If we cancel the At in (30), assume a single specie gas and integrate over g, we obtain

the relation

n2

ZAB = < gar(g) >, (51)
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where ZAB is the integrated bimolecular collision rate and the operator representing the

mean quantity is defined by 00
< gT(g) > = g9 T(g)F(g) dg. (52)

If V is defined to be the volume of a small element in physical space, then the quantity

r = 1/(VZAB), (53)

represents the average time between binary collisions in the volume V. On substituting (51)

into (53) and defining the number of particles in the small volume to be N = Vn, we have
2

Nn < ga.(g) > (54)

The average number of binary collisions, N,11, occurring in the volume V in the time At is

given by NoIl = At/r and therefore (54) can be arranged to read

At = N, (N 2g) (55)

Turning our attention to the time-counter method and steps (a), (b) and (c), the sum

represented by step (c) can be written for a single time step, At, as follows

At NngaD(g) (56)

where Not, is the same quantity introduced in (55). Now, the operator representing the

mean quantity appearing in the denominator of (55) is based on the distribution F(g), as

defined by (52). However, the statistical sampling procedure used in steps (a), (b) and (c)

does not lead to a mean based on F(g), because the filtering action of step (a) modifies the

distribution to one that is proportional to gao(g)F(g). Identifying this modified distribution

by the symbol F,(g), its representation in normalized form is therefore given by

Sga(g)F(g) (57)
< gUr(g) >.

On this basis, the sum in (56) is described by the following mean quantity

At = Nol 2Nngar(g (58)
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where the mean is based on the distribution F,(g) and the operator used in (58) is defined
by

Nng T(g)F( ' g g) F(g)dg. (59)

Noting the cancellation that occurs when (57) is substituted into (59) and the fact that F(g)

is a normalized distribution, we see that Eq. (58) reduces to

At = N.j 1 (Nn < ga(g) > (60)

which is exactly the same as Eq. (55). Therefore, the two approaches are entirely equivalent,

which explains why the comparisons of shock-wave profiles resulted in such close matches.

The key step connecting the two methods is the relation between the operators appear-

ing in (55) and (58), i.e.,

< 9gT(g) >F = gaT(g) F 6)

This is a general result, which can be derived on the basis of probability theory alone, and

it does not depend on the particular function gaT(g) used here. Because the mean and

reciprocal operators do not commute, Eq. (61) is needed to make the proper transformation.

VI. DISCUSSION AND CONCLUSIONS

The key equation in the application of the present method is Eq. (30). It gives the

number of AB collisions occurring in a unit volume, in a specific relative-velocity range, in

the time At. The selection rule for the open-loop algorithm which follows from this equation,

for the case of a single specie gas and the VHS model, or the model using the collision

cross-section for momentum exchange, is given by Eq. (43). Additionally, the corresponding

equation for the appropriate sample size, used with the selection rule, is given by Eq. (49).

The basic difference between the present method and the DSMC method is in the application

of step (iv). Briefly, in the present method, the list of particle data is processed K times,

automatically creating S = K(n/2) random sample pairs, where n is a different number

for each cell. On using selection probability (43) in step with the processing of the list, to

determine which pairs collide in each cell, the resulting collisions then satisfy (30) in terms of

the number of collisions per unit volume in the time At and in the distribution over relative
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velocity g. The sole interest in the present method is that it leads to an open-loop algorithm

and greater computational efficiency on certain machines, as opposed to the closed-loop

sequence of steps required by the time counter method described by the three operations

(a) through (c). The discussion following Eq. (24) should be consulted for a more precise

description of the method.

The aim of our discussion has been to first establish the validity of the proposed selection

rule, and not on a comparison of execution speeds for different computer codes. The extensive

programming details used in implementing the present theory on the Cray-2 supercomputer

is presented in Ref. 8 and will not be reviewed here. Nevertheless, the presentation of several

example cases representing the capability of the method are appropriate, in order to establish

that the method does in fact offer a computational capability which has not existed before.

Figs. 7, 8 and 9 present three such examples. In each of these cases, the flow was

simulated as a three-dimensional flow, even when the intent was to study a two-dimensional

problem. Also, all the cases represent an ideal diatomic, hard-sphere gas with an adiabatic,

no-slip boundary condition on the body surface. The Knudsen number in each case was

chosen to be reasonably small so that near-continuum flow would be realized. The sample

size K ; 1 together with the parameter ujAt = 0.3 cell lengths were used in all three

cases. In addition, all the simulations were carried out using cubical, three-dimensional unit

cells everywhere in space. This we consider to be a very important component in producing

code that executes very quickly. All the simulations were carried out on the NAS Cray-2 at

NASA-Ames Research Center.

Fig. 7 presents the results of a simulation for a Mach 6 flow about a circular cylinder.

The simulated wind tunnel consisted of a space of 120 cells high, 80 cells long and 3 cells

deep, and the circular cylinder was 40 cells in diameter. The Reynolds number based on the

diameter was 720. The simulation was carried out using 1.0 x 106 particles and A1 = 0.5 cell

lengths. The figure shows the density distribution in the flow, where the display is in the form

of an infinite fringe interferogram. The interest in the problem was in determining whether

the correct shock-wave detachment distance would be predicted by the simulation. This was

found to compare very favorably with experiment, giving confidence in the programming

and the simulation method used. The simulation was carried out using a full cylinder and

therefore the symmetry seen in the flow gives further confirmation of the method employed.
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Fig. 8 represents a simulation for a Mach 6 flow about a 10 degree half-angle wedge,

where the velocity vector field is displayed. The dimensions of the simulated flow were 90

cells high, 256 cells long and 3 cells deep. The wedge was 128 cells long and 22 cells high;

and based on the full base height, the Reynolds number was 1760. In this case a total of

0.74 x 106 particles were used in the simulation with Al = 0.23 cell lengths. The aim of the

investigation was to see how detailed the resulting velocity field would be. Of great interest

is the detail found in the structure of the boundary layer on the wedge surface and in the

detail found in the region immediately behind the wedge. The vortex flow behind the wedge

can be seen very clearly, if the scale of the flow is increased to allow one to focus on it.

This result contradicts the conclusion drawn by Meiburg 14 who argued that the molecular-

dynamics method of particle simulation must be employed in order to see such phenomena.

Additional flow detail which can be seen more clearly in the pressure field than in the velocity

field is the existence of a wake shock.

Fig. 9 presents the results of a study of a true three-dimensional simulation, and rep-

resents an attempt to learn how well a three-dimensional flow can be resolved with the

capability at hand. The simulated wind tunnel consisted of a space of 120 cells high, 60 cells

long and 60 cells deep. A total of 9.5 x 106 particles were used in the simulation. The body

diameter was 44 cell lengths, A, = 1.0 cell lengths, and M, = 35. The Reynolds number

based on the body diameter was 2300. The view shown is the pressure field in the central

plane of a blunt nosed body inclined at an angle with respect to the freestream. The body

represents a typical blunt shape being considered for use on spacecraft for aerodynamically

assisted orbital changes. These results were obtained as part of a study at NASA-Ames

Research Center to apply the methods discussed above to practical aerospace problems.' 5

All of the above cases were run at a program execution rate of around 1 to 2 x 10- 6

seconds per particle per time step. For a simulation employing 106 particles, approximately

1 to 2 seconds of computation time is required per time step. Because a statistical method

requires time averaging over many time steps, to reduce statistical fluctuations in the results,

the total run time depends directly on the length of time averaging employed; thus, the use of

roughly 1,000 time steps leads to approximately one-half hour of Cray-2 computation time.
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Fig. 7. Flow past an adiabatic circular cylinder for the case of a hard-sphere, diatomic gas

and a Mach number of 6. Density distribution is shown in the form of an infinite fringe

interferogram. A total of 1.0 x 106 particles in a space of 120 x 80 x 3 cells were used in the

simulation.
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Fig. 8. Velocity vector field about an adiabatic, 10 degree half-angle wedge for the case of

a hard-sphere, diatomic gaa and a Mach number of 6. A total of 0.74 x 106 particles in a

space of 90 x 256 x 3 cells were used in the simulation.



Fig. 9. Pressure distribution in the central plane of a three-dimensional Mach 35 flow de-

scribed in the text. A total of 9.5 x 106 particles in a space of 120 x 60 x 60 cells were used

in the simulation. The body diameter was 44 cell lengths and A1 = 1.0 cell lengths.
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FUNDAMENTALS OF CHEMISTRY MODELING
APPLICABLE TO A VECTORIZED PARTICLE SIMULATION

Brian L. Haas*
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Stanford University

Stanford, California 94305

ABSTRACT Ed activation energy for reaction
The flowfield about vehicles re-entering the atmo- f, , energies

sphere is characterized by hypersonic rarefied flow P probability
in thermochemical non-equilibrium. An appropriate f energy distribution function

method for computing such flows is direct particle sim- number of degrees of freedom

ulation, an efficient implementation of which utilizes 0, vibrational characteristic temperature

the vector-processing capability of current supercom- 0 constant in reaction probability

puters. The fundamentals of extending the vectorized 0' exponent in Pd function

simulation to model chemically reactive flows are de- 0 exponent in P, function
scribed here. A review is presented of the reaction Ad degree of dissociation
physics of dissociation, exchange reactions, and re- uniform random number
combination, with attention to internal energy mode q, i, j vibrational quantum levels
contribution. Reaction selection rules, as functions of Q maximum quantum level

reactive collision energy, are reviewed. Reaction me-
chanics modeling is constrained by considerations of Superscripts:
detailed balance at equilibrium, and conservation of I post-collision value

linear momentum and energy. The proposed means post-dissociation value

of partitioning post-reaction energy among the energy equilibrium value
modes of the products is based on proportional energy
exchange per mode. Details of reaction mechanics per Subscripts:
reaction are presented with particular attention to the a, b pair of species a and b
quantum nature of the vibrational mode. Verification AB collision pair, A and B
of the models is made through simulation of super- (AB), o orbital-pair for A and B
heated diatomic reservoirs relaxing thermochemically X collision partner of any type
to equilibrium. c collision

d dissociation
NOMENCLATURE r recombination

A, B, C, ... monatornic chemical species f denotes forward reaction rate

AB, AC, ... diatomic chemical species e denotes equilibrium concentration

n number density int internal energy modes

k* forward rate coefficient re/ relative translational mode

K equilibrium concentration coefficient rot rotational mode
k Boltzmann's constant 3ib, v vibrational mode
T temperature 3,4 reactions in equations 3 and 4
A reduced mass of colliding pair m energy mode
a exponent in power law potential ref reverse reaction
a constant in collision probability ref reference value
9 relative speed of collision NTRODUCTION
a constant in Arrhenius expressions
b exponent in Arrhenius expressions Potential development of vehicles such as the Na-
x position of a particle tional Aerospace Plane (NASP) and the Aeroassist
u velocity of a particle Flight Experiment (AFE) have renewed interest in
G collision center-oi-mass velocity modeling hypersonic rarefied flow. Such flows may

be characterized by non-equilibrium between molec-
* Research Assistant, Student Member, AIAA ular energy modes and between the concentrations of
Copyright Q1990 by the American Institute of Aeronautics ad

Astronautics, Inc. All rights reseved.
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different species in the rarefied gas. Temperatures ex- REACTION PHYSICS
ceeding 20, 000K are possible behind the leading shock Atmospheric air, under the hypersonic conditions
of a vehicle entering the atmosphere with near-orbital described, can be approximately modeled by the fol-
velocity. Such conditions excite the vibrational mode lowing five-species set: 02, N2 , NO, 0, and N. A
of molecules in the air leading to dissociation. Ex- more complete model would include some of the ions
change reactions and recombination of free atoms will such as NO+. Associated with each particle in the flow
occur near cold catalytic surfaces and during expan- is its position, x = (z, y, z); its velocity, u = (u, v, w);
sion of the gas around body shoulders. The finite its species-type; and the energy of its internal modes,
rates of thermal excitation and reaction processes sig- Erot and ib if it is diatomic. Each species is identi-
nificantly alter the character of the flowfield, affecting fled by its mass, relative diameter, and characteristric
the temperatures, pressures, and heat-transfer experi- temperatures of vibration and dissociation.
enced by the body, and thus dramatically influencing Associated with the species set are 15 dissocia-
the aerodynamics of the vehicle. tion/recombination reactions, and 4 exchange reac-

The degree of rarefaction of these flows, at alti- tions suggested by Birds and listed in Table 1. In-

tudes above 80kmn, is characterized by Knudsen num- cluded in the table are the parameters pertaining to
the macroscopic reaction rate coefficients, k ()ad

bers exceeding 0.01. The low-density nature of this , k(T), and

flow is such that the familiar Navier-Stokes e s the species concentration coefficients, K(T)', obtained

are not applicable due to failure of the linear consti- by fitting experimental data to Arrhenius form. Al-

tutive relations. In contrast, discrete particle methods though application of this experimental correlation for
are based on real-gas molecular models and provide temperatures exceeding 10,000K is questionable, it isare ase onrea-gasmolculr mdelsandproide used here for lack of a better alternative. The reaction
potentially powerful alternatives for simulating these sedeor la a eter lteratie the racon
flows. One frequently-applied particle simulation i selection rules are derived to reproduce the macro

the Direct Simulation Monte Carlo (DSMC) method scopic temperature-dependence given by the Arrhe-

of Bird which, in a recent form', is capable of solv- nius forms.

ing only modest-sized problems due to large computa- Very little is understood regarding the non-

tional requirements. An alternate particle simulation equilibrium behavior of a chemically reacting gas.

method developed by Baganoff and McDonald2-5 is However, reaction rates and concentrations are well

structured specifically for the vector-processing archi- documented for gases very near equilibrium. There-
tectures of current supercomputers, resulting in signifi- fore, to model non-equilibrium flow we must devise re-

cant improvement in performance. Current implemen- action models based upon our limited knowledge of the

tation of that simulation models the three dimensional microscopic physics, specifying the unknown parame-

non-reactive flow of general gas mixtures4 . ters of those models by matching the experimentally-
observed macroscopic equilibrium behavior.

This paper introduces the fundamentals of extend- Dissociation reactions proceed as indicated by the
ing this vectorized particle simulation to treat chemi- general equation
cally reacting flows. Comprehensive modeling of chem-
ical kinetic processes in a gas involves solution of the AB + X -- A + B + X (1)
Schr6dinger wave equation, and is therefore ill-suited where AB is diatomic, A and B are monatomic, and
for large-scale simulations. However, meaningful simu- X is a partner of any type. Dissociation is possible
lations can be obtained by developing reaction models, only for those collisions with energy exceeding the dis-
applied at the particle collision level, which yield the sociation threshold, Ed. This represents the reaction
correct macroscopic chemical behavior. The types of energy which is removed from the energy modes con-
particles used in the simulation and their properties tributing to the reaction and stored in the electron
are presented along with a review of chemical reac-
tions. The basics of vector processing are introduced configuration of the products.
with a brief description of how the simulation is struc-
tured to be compatible with them, including discus- AB + C AC + B (2)
sion of the mechanics of thermal collisions. The reac-
tion selection rules, based on reaction probabilities as where C is monatomic. Again, collisions must have
functions of cohision energy, are then reviewed. Re- energy exceeding the threshold, Ed, to initiate the re-
action mechanics are presented, with details of how action. Associated with reaction (2) is its reverse reac-
post-reaction energy is partitioned among the energy tion which itself has a threshold energy, Ed... During
modes of the products. The thermochemical model reaction the energy, AEd = Ed - Ed.,, is removed
is then applied to a reservoir of superheated diatomic from the energy modes of the reactants and stored as
molecules relaxing thermally and chemically to equi- p .... ,ial energy in the products.
librium, demonstrating its ability to simulate reactive Recombination, the reverse of dissociation, is a
flows. three-body process. Benson and Fuenos suggest that
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recombination should be modeled as a succession of Particles in the flow are paired off as potential colli-
binary collisions. In the first step, given by sion candidates, and P, is computed per pair from (5).

To select colliding pairs from among all candidates, a
A + B - (AB), (3) uniformly generated random number, R, is compared

to that probability such that the collision is accepted
two atoms collide and possibly form a mutually orbit- if R < P,. Those pairs chosen to collide are placed
ing pair, denoted in parentheses as (AB). The pair re- in a new list which is later processed according to the
mains intact for some limited lifetime depending upon collision mechanics of the method.
the collision energy. If the orbiting pair experiences An algorithm which models chemistry, compatible
a collision during that lifetime, then it may stabilize with this list generation structure, must interrupt the
into a molecule, completing the second step of recom- above procedure as shown in figure 1. After pairs
bination, given by have been selected for collision, they must be tested

for reaction. Depending upon the class of collision,
(AB) + X - AB + X. (4) distinguished by the types of species involved, collid-

ing pairs are divided into respective class lists. Ideally
Upon stabilization, the reaction energy, Ed, from (1) each class should then be tested for several possible
is removed from the electron configuration of the re- reaction types associated with it. This again involves
actants and repartitioned among the energy modes of computation of probability functions as discussed be-
the products. low.

If no stabilizing collision occurs, the orbital Since testing all possible reactions is expensive for
pair splits into free atoms, representing a standard a given colliding pair, a simplification is employed in
monatomic thermal collision. Such a 2-step method this simulation which significantly reduces the amount
has been adapted for this simulation as described be- of conditional branching required. That is, only one
low. type of reaction is considered per colliding pair. This

simplification is appropriate given that particles are
SIMULATION FUNDAMENTALS randomly paired and the sample size is large. Taking

The pipelining architecture of a vector processing advantage of this, the type of reaction considered for
machine, such as the Cray Y-MP, permits simultane- the pair is determined not only by the types of particles
ous operations involving collections of data, yielding involved, but also by the specific order in which they
extremely fast computational throughput. However, appear in the pair, as indicated below:
algorithms must be structured accordingly in order to
utilize this capability. Algorithms which involve com- Dissociation 1 AB + CD- A + B + CD
plex conditional branching or dependence upon other Dissociation 2 AB + C -. A + B + C
elements within a single vector are not able to take Exchange C + AB -- AC + B
advantage of this architecture effectively, and suffer a Form Orbital Pair A + B - (AB)
loss in computational throughput 9 . When processing Stabilize Orbital Pair (AB) + X -. AB + X
a list of data, the current Stanford simulation handles
conditional branches by generating new subset lists for After reactive collisions have been selected, they are

later processing 3 . The positions, velocities, and inter- processed according to the reaction mechanics mod-

nal energies of each particle is stored in the particle els appropriate for the given reaction-type. Collisions

array in computer memory. which do not react are processed according to stan-

The basic steps in a particle simulation are the dard collision mechanics which may include thermal
collisionless motion of particles, followed by the pair- relaxation involving possible energy exchange among
ing and testing of neighboring particles for possible the relative translational, rotational, and vibrational

collision. The collision selection rule is taken from modes. Such collision mechanics are discussed in de-

Baganoff and McDonald 2- 4 , and is based on the power

law intermolecular potential. Each clas of interac- THERMAL-COLLISION MECHANICS
tion, involving species a and b, has associated with it
a unique power-law exponent, aab, and cross-section A collision between particles a and b has associated
constant, aob, as used in the collision probability of with it a center of mass velocity, Gab, and relative
the form translational velocity, gab = uG - ub. The relative

Pc(gab) - 1abg.'4/ (5) translational energy, fre.g,, is then defined by

where gab is the relative speed of collision. The power- 1 2

law exponent typically ranges from the Maxwell- creo, = Aa/bgab (6)

molecule limit, ab = 4, to the hard-sphere limit,
where cr.b = o. The constant, a.b, is found by match- where ji. = m.mb/(m. + m) is the reduced mass of
ing some specified reference mean-free-path 4. the pair. Neglecting the electronic modes, the ener-
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gies available in a given collision include cj., and the harmonic oscillator we define vibrational energy, mea-
rotational and vibrational internal energies of a and b. sured relative to the ground state, l kOG, by

Mechanics of Elastic Collisions (0b = qib(kO.) (9)
After an elastic collision, the particles separate with

relative translational velocity, gl,, which is simply a where qvib represents the number of quanta associated
random re-orientation of the collision approach veloc- with a given vibrator, and kO represents the charac-
ity, gab. This represents spherically uniform scattering teristic vibrational energy per quantum level.
of post-collision velocities adapted from the Variable To model the random mixing of rotational and vi-
Hard-Sphere (VHS) model of Bird' 0 . There is no alter- brational energies in a manner which promotes equilib-
ation of the internal modes of either particle. Note the rium, we take a~vantage of ,he fundamental physical
use of superscript ' to denote post-collision quantities. assumption of statistical mechanics7 . This states that

all possible divisions of internal energy,
Mechanics of Rotational Relaxation

Some collisions may permit energy exchange be- fin, = frot + fib, (10)
tween the translational mode and one or both of the
internal energy modes, promoting relaxation of the gas among the internal modes, c',, and ' are a prori
toward thermal equilibrium. Those collisions involving equally probable.
the rotational mode are generally more frequent than First, int is quantized by the characteristic vibra-
those involving vibration. tional energy, k0,, resulting in Q + 1 quantum levels:

Rotationally-relaxing thermal collisions involve re- 0, 1, ... Q. The limit, Q, is found from
partitioning of total energy, ce. 1 + c,,t, among the rel-
ative translational and rotational modes of the colli- Q int 
sion. This is adapted from the method of Borgnakke k (11)
and Larsen" by sampling the fraction,

where the brackets, "[ J", denote truncation.
F = +ot (7) Upon division, the outcome quantum level for vibra-

tion, q'ib, must be equally likely among these Q + 1
directly from the equilibrium distribution, f(F). quantum levels. A means of doing this is simply to
Knowing the types of particles involved in the collision, generate a floating-point random number in the range
f(F) is easily found and is invariant with temperature [0, Q + 1], and truncate to the nearest level, as given
when assuming that the translational and rotational by
energy distributions are continuous. The post-collision qi b - [S(Q + 1)(12)
rotational energy is then given by

where 3 is a uniformly generated random number in
ro0 = (Crei + crot) F. (8) the range [0, 1]. From (12), the new vibrational energy

given by
If both particles in the collision are diatomic, then gv by
-, is randomly divided between their respective ro-

tational modes. A probability, Pro, is used to select The remaining internal energy is placed in the rota-
which collisions will include rotational relaxation. tional mode according to

I I (4
Mechanics of Vibrational Relaxation Cot 

=  (i14t - 0(-)
A probability, P,,ib, is used to select which colli-

sions will include vibrational relaxation. These colli- As proven in the Appendix, applying this method
sions are modeled by McDonald 4 in a manner which of energy partition among the internal modes of a
avoids direct sampling from equilibrium distributions diatomic molecule will satisfy detailed balance be-
such as 1(F) since they are temperature-dependent tween the vibrational and rotational modes at equi-
when vibrational energy is involved. That model will librium. However, when out of equilibrium, the addi-
be adapted here to facilitate its use in reaction me- tional rotational-relaxation steps are required to pro-
chanics, and is based on an efficient iteration scheme, mote equilibrium distributions.
First, energy is exchanged between rotation and vi-
bration, followed by an exchange between rotation and ENERGY MODES IN REACTION
translation via rotational-relaxation as outlined above. For dissociation reaction (1), only collisions with to-
These steps may then be repeated, iterating toward tal energy exceeding the activation energy, Ed, are ca-
equilibrium. pable of dissociating molecule AB. That total collision

Note that consideration must be made of the quan- energy, c, = Eem, is the sum of energy from all con-
tum nature of the vibrational mode. For the simple tributing modes, m, and is distributed in a Boltzmann
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distribution with ( fractional degre s of freedom 12, Given that all available energy modes contribute to
given by the reaction, in simulating the chemistry, all modes

/ -1 c,/must be used in the reaction selection rules, and all

fc(c ( E" e_/TT. (15) must be affected by the reaction mechanics, as pre-
rQ((/2) (kT/ k sented below.

There has been considerable debate, however, DISSOCIATION SELECTION
regarding the role of internal energy modes in
dissociation'". It has been unclear which of the en- Chemistry modeling involves determining which
ergy modes, available in a given collision, contribute collisions react (reaction selection) and then perform-
to c, leading to confusion over the appropriate value ing the reactions (reaction mechanics). The probabil-
of C. Various theories on chemical kinetics suggest ity, Pd, that a given collision between particles AB and
that reactions occur as a result of intimate interac- X results in dissociation of AB as in (1) is computed
tions among the internal energy modes of the reac- as a function of the energies contributing to the col-
tants. Sharma, Huo, and Park14 suggest that disso- lision. A uniformly generated random number, R?, is
ciation is the result of vibration-vibration energy ex- compared to that probability such that dissociation is
change between molecules. Here, AB acquires vibra- accepted if R < Pd.
tional energy from partner X until it reaches its reac- The expression for Pd must be determined such
tion threshold and dissociates. Hansen'" suggests that that the resultant forward reaction rates at equilib-
the rotational modes contribute to vibrational excita- rium match those from experiment. Possible forms of
tion and possible dissociation. Such arguments imply this function have been suggested'" based upon the
that all modes contribute, in some way, to c. In addi- physics of the chemical interaction kinetics and are
tion, since only those collisions for which e, > Ed are adapted here in the format given by Bird 18, as
dissociation candidates, it is advantageous to include
all available energy modes in the f, sum, resulting in a d( ) - -1
greater number of sufficiently energetic collisions, and Pd(fe) = Od (20)
thus increasing the sample size for reaction selection.

This debate concerning internal energy mode con-
tribution to reaction may be partly resolved in a self- By matching the temperature dependence of the
consistent manner by consideration of detailed balance simulated dissociation rate due to application of (20),
w ierived by Haas16. More involved reaction selection against the the Arrhenius fit 19 for the rate coefficient
models, fully coupling internal modes to dissociation, from experiment, given by
have been studied extensively 14 , 7 but have yet to ap-
pear in large-scale particle simulations. k, (T) = a. 76 e - Ed/kT (21)

Including all available energy modes in the collision
energy, erAX + fntAB + fnt, (16) the free parameters in Pd(e,) are found to be' 6

the degrees of freedom for f(e) is simply the sum 1 4
of degrees of freedom from each of these statistically I= - ,I - )(22)
independent modes' 6 ,

CC = (4 _ 4 .) + C. x, (17) and
arAD,X r el2

where the subscripts denote the energy modes con- a a, v (-) AB.X r((./2) (23)
tributing to C,. In (17) the 4 - 4 /aA..X term accounts oAB,X r(2- 2 _X -2

for the relative translational energy biased by the col-
lision selection rule (5). Due to the rotational and Note that I = PAB.X is the reduced mass, k is Boltz-
vibrational internal energies, the internal degrees of mann's constant, and a, and b. are unique constants
freedom of AB isperacin per reaction.

intAB = 2 + GO'. (18) With the exception of CC, all parameters in Pd(c,)
are constant. However, ,ib and thus (int and ( are

Similarly, 4',-x is zero if X is monatomic, and is given very weak functions of temperature for the range of
by (18) if diatomic. Normally, the vibrational mode at interest in hypersonic flow, as shown in figure 2. We
equilibrium has associated with it i degrees of free- therefore fix Gi at some reference temperature, Te,,
dom, defined for the simple harmonic oscillator by7  for use in Pd. An appropriate T ./ is any intermediate

= 20,/T translational temperature taken from that portion of
%,I" ef./T _ (1) the flowfield dominated by reactions. Figure 3 shows
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the form of f,(E) at several temperatures along with where subscripts 3 and 4 correspond to the reactions as
an example of Pd(ec). given by equations (3) and (4), respectively, At is the

Exchange reactions are also selected via Pd with the duration of the timestep, 6 A,. is the Kronecker delta,
exception that (ntx is zero. and 0 is given by (22).

These reaction selection rules are functions of col-
RECOMBINATION SELECTION lision energies, and should therefore be applicable

As noted earlier, recombination is modeled by a 2- throughout the fiowfield. The free patameters of these
step process. All collisions between atoms result in the functions were determined from known equilibrium ex-
formation of orbital pairs as given by (3). Even for a perimental data.
highly dissociated flowfield, the concentration of (AB)
remains very low. During the next timestep, all (AB) REACTION MECHANICS
which collide with partner X are tested for stabiliza- Once reactive collisions have been identified via re-
tion by the recombination probability function action selection rules (20) and (24), the mechanics of

*.(24) those reactions must be performed.All reactions of in-
( onto Intx)- 2 terest in hypersonics involve some alteration of the en-

where ci,,t, and c,,t are the internal energies of the ergy modes contributing to the reaction. The objective
orbital pair (AB) and partner X, and 3,, 0., and 0,, here is to determine how to remove or add energy to
are unique constants per reaction. For monatomic X, each of the energy modes involved in the reaction just
fintx is excluded from (24). Note the use of subscript prior to splitting or forming particles into products.
"o" to denote orbital pairs, (AB). Those collisions se- The chemical-kinetic details are not well understood
lected (by comparison of a random number, 9, to P,), regarding energy partition among the energy modes of
will complete the recombination process of equation particles during reaction. However, the modeling of re-
(4). action mechanics must adhere to certain fundamental

The form of P, in (24) was chosen because it leads to constraints, including detailed balance at equilibrium,
the correct temperature dependence of the equilibrium and conservation of momentum and energy.
concentration coefficient, K, defined for reaction (1)
by Proportional Energv-Exchange Model

K = nans (25) Recall the energies contributing to dissociative col-
nA8 lision (1) as identified by (16). The dissociation energy

where K(T) typically assumes an Arrhenius tempera- must be removed from the collision energy,
ture fit from experiment,

K(T) = aeTbe - d l T. (26) = Cc - Ej (31)

The parameters in P, as well as the unknown = freJABX + Croti + fibA8 + fintx - Ed (32)

interaction potential for the collisions involving or- = fetAB.X + 4
O + Cb.. + f*intx (33)

bital pairs, i(A.)X, are found in a manner similar to
that employed for dissociation. However, a complete Note the use of superscript " to denote post-reaction
derivation involves consideration of detailed balance quantities.
among the energy modes contributing to the reaction, Though it is unclear how to redistribute the ener-
and is given by Haas"6 . From that derivation, the re- gies of (32) among those of (33), a convenient means
combination parameters are found to be by which to account for the alteration of each energy

4 mode, m, is to proportionally remove the reaction en-
a(AD),X = 4-4/a (27) ergy, Ed, resulting in post-dissociation mode energies,

4/cta..x - 20 .Aj'-x ft , given by

2 = 2 2 - (28)
aA,B 2C iC=E.-fmE =f I -Ed-.\ 34

0. = -0 (29)
This method is simple to implement and can be ap-

and plied to exchange reactions and recombination as well.
Note, however, that in exothermic reactions, Ed will

= A..) At (al/a-) 3  3P be proportionally added to each contributing energy
3--- -b, . "mode rather than removed.

At equilibrium, detailed balance dictates that there
(30) exists no net energy transfer among energy modes of

[F(2 - =)(2 - - *)r( L - .) all species in the gas7 . As a consequence, the reaction
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models must promote, or relax to, equilibrium for a The mechanics for exchange reactions (2) are
gas in thermochemical non-equilibrium. If a relaxing similar to that for dissociation, replacing Ed by
ensemble of particles reaches steady-state, yet exhibits AEd = Ed - Edt.,.
non-equilibrium behavior such as a difference in mode
temperatures, then the reaction model is in error. Mechanics of Orbital Pair Formation

Just as in the method of Borgnakke and Larsen 1 , Orbital pair formation is the first step in recom-
partitioning post-reaction energies by sampling di- bination modeling as given by (3), where two atoms,
rectly from equilibrium distributions would naturally A and B, join to form a single temporary orbital pair,
accomplish this. However, that requires that these dis- (AB). Conservation of linear momentum dictates that
tributions be available at all temperatures for all pos- the velocity of (AB) must be the same as the center of
sible reactions. Alternatively, the proportional energy- mass velocity of the A + B collision, GAB. Conserva-
exchange model above avoids this difficulty since it re- tion of energy requires that the relative translational
quires no access to equilibrium distributions, but fal- energy, EreAB, must be stored internally in (AB),
ters in that it will not readily promote equilibrium for
a flow initially in thermal non-equilibrium. It is there- f,-t(,D) = frCIA.8" (39)
fore necessary to add thermally-relaxing steps, as in
(7)-(14), to this algorithm for reaction mechanics. If (AB) remains uncolhded on the next time step,

Mechanics of Dissociation it is split into free atoms A and B. Doing so simply

Dissociation reaction (1) is divided into two steps. requires that Efg (AB) be converted back into fErCA,.

First, the dissociation energy is removed frr'n the re-
actants, creating temporary products, as described by Mechanics of Orbital Pair Stabilization

Orbital pair stabilization, given by (4), represents

AB + X - AB" + X". (35) the second step which completes the recombination re-
action. The reaction energy, Ed, must be absorbed by

The products, AB" and X", separate with relative the energy modes of the products, such that the post-

translational energy, , I A .x,' modified according to reaction collision energy is given by

the proportional energy-exchange model of (34). As
mentioned earlier, decomposing a relative energy into d= (AB)X + ,,t(aB)
post-collision velocities involves random re-orientation = i'eI + +/ +If(x

of the post-reaction relative velocity vector, g"s x as

found from f"II .ABx and equation (6). = GC1ABX + fiSAB + f (40)

If X is diatomic, the post-dissociation states of its
internal energies are not found individually by appli- According to the proportional energy-exchange con-
cation of (34), since consideration must be made of cept, the relative translational energy of separation
the quantum nature of the vibrational mode. Rather, of stabilized molecule AB and collision partner X is
the internal energy as a whole is depleted according found by adapting (34),
to (34),

,x= i - .) (36) relAB.X = Ere(A).X = (rel(A),x I + -). (41)

and is then redistributed between f and fit'bx ac-cording to the steps employed for vibrational relax- The internal energies of X, if applicable, are foundatondin toheqatio s mployed4 for is ronamic, - in the same way as in dissociation from equation (36),ation in equations (I1l)-(14). If X is monatomic, cint x

will remain zero. with the exception that reaction energy is added rather

Now that AB" and X" have separated, the second than removed.

step in the dissociation reaction involves splitting AB" Likewise, the internal energy of AB, given by

into free atoms, given by
i (11 ) fitA8 +E- (2

AB" - A + B. (37)

In order to conserve linear momentum and energy, all is distributed among its rotational and vibrational
of the post-dissociation internal energy of AB" must modes according to the method employed for vibra-
go into the relative translational energy for the sepa- tional relaxation in equations (11)-(14). However, as
ration of A and B. That is, stated earlier and as proven in the appendix, these

steps must be augmented by rotational relaxation to
promote equilibrium distributions for flow initially out

-cc - (38 of equilibrium.
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RESERVOIR SIMULATION perimental fit, where7

A single-species, adiabatic reservoir of molecules,
superheated in translation and rotation only, will re- n (45)
lax to thermochemical equilibrium through reactions 2nA2 + n A
and energy-mode exchanges. The final temperature,
T ° , and composition can be determined analytically 2 .
The relaxation history of this reservoir is similar to and
that behind a normal shock wave. 2

In the external flows typically associated with hy- K = 2(2nA2 + nA) d -Ad(
personic re-entry vehicles, dissociation and exchange
reactions dominate the flowfield chemistry' 7 . How- These plots indicate that the simulation does capture
ever, the objective here is to test the simulation in an the correct equilibrium behavior of a relaxing gas as
environment in which all types of chemical reactions predicted by the experimental fits of the reaction rates
(dissociation, exchange, and recombination) are pro- and species concentrations over a large temperature
nounced, such as would occur at equilibrium if the range.
temperature and diatomic concentrations remained The simulation was then run for the 5-species mix-
high. Consequently, to simulate thermochemical re- ture to demonstrate its applicability to hypersonic air
laxation to equilibrium, a model species, A 2 , is used chemistry. The gas, composed of 79% N2 and 21% 02,
which is similar to 02 except that ae = 0.10 rather is superheated in translation and rotation to 15,000K,
than 1200 as given in table 1. This effectively increases and allowed to relax thermochemically toward equilib-
the recombination rate, allowing greater concentration rium. The plot of species concentration relaxation is
of diatomic particles at high equilibrium temperature given by figure 8. Note the rapid increase in the con-
where reactions are significant. Such a gas represents a centration of atomic oxygen as 02 quickly dissociates.
"worst-case scenario" in which recombination has pro- Likewise, dissociation of N2 results in production of ni-
nounced effects to better demonstrate the capability of trogen atoms, followed eventually by formation of NO
the reaction models. The reactions pertaining to A 2  via recombination and exchange reactions.
are

CONCLUDING REMARKSA2 + A2 -, A + A + A2 (43)
A2 + A A + A + A. (44) The chemistry algorithms presented here are com-

patible with the existing vectorized simulation of
As plotted in figure 4, A2 was relaxed from 16,871K Baganoff and McDonald 2-5 . The dissociation selec-

to steady state. The mode temperatures correspond- tion models adequately yield the correct forward reac-
ing to translation, rotation, and vibration are plot- tion rates of chemical reactions in a test gas as found
ted in time, and converge to the equilibrium tempera- experimentally near equilibrium. The recombination
ture, analytically determined to be T ° = 7,000K. The selection models also yield correct reaction rate be-
rates of internal mode relaxation were controlled by havior as indicated by the close agreement with ex-
invariant inelastic collision probabilities, Prot = 0.20 perimental fits of equilibrium species concentrations
and P,,ib = 0.02, adapted from Bird 20 . Energy- and the resultant steady-state temperature. The reac-
dependent forms of these probabilities, suggested by tion mechanics models, based on proportional energy-
Boyd' 7 , would better model thermal relaxation in the exchange, conveniently account for the effects of re-
transient portion of the flow, but are of little benefit action on participating particles in a manner consis-
here in studying equilibrium behavior. The simulation tent with the constraints of detailed balance and con-
started with 40,000 diatomic particles and ran for 1500 servation of linear momentum and energy. However,
transient steps and 1000 steady-state sampling steps. essential to these routines is the inclusion of thermal-

The relaxation simulation was then repeated for relaxation steps which promote thermal equilibrium.
temperatures in the range 5,OOOK< T <15,000K, No direct attempt was made here to model the tran-
with reference temperature T,.e = 10, 000K. For each sient of the relaxing bath; comparisons to known be-
case, the resulting equilibrium temperature per mode havior were only made at equilibrium. However, the
reached by the simulation is compared to the analytic chemistry models are based on molecular interaction
value in figure 5. The close agreement between mode physics, independent of the equilibrium assumption
temperatures indicates that detailed balance is main- which is used only to evaluate unknown parameters.
tained, as is necessary for equilibrium. The simulated Keeping in mind the fundamentals as outlined here,
forward rate coefficient per reaction is plotted against one can devise more sophisticated chemistry models,
T° in figure 6, and is compared to the experimental possibly involving more species and greater coupling
curve of k.(T). Likewise, figure 7 compares the de- of internal modes to reaction, which adequately simu-
gree of dissociation, Ad, for these runs against the ex- lates the thermochemical phenomena of interest.
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APPENDIX The joint distribution of i' and Q is then
Proof of Equilibrium Convergence P(i', Q) = P(i' I Q) PZ(Q) (52)

The algorithm described by equations (11)-(14) for where the distribution of Q is given by
re-distributing internal energy represents random mix-
ing of continuous and discrete distributions pertaining PO(Q) = P(O)P*(Q) + P(1)P(Q - 1) +
to the rotational and vibrational energy modes, re- Q
spectively. The objective here is to prove that this = L P*(i)P*(Q - i) (53)
algorithm promotes equilibrium. i=0

The equilibrium distribution of rotational energy, The resulting distribution over i' is found by summing
for which o = 2, can be rewritten from (15) in the (52) over all Q,
form oo Q

f*(c) = e-'de, (47) P(i') = E ZP(i)P . (Q - i)P(i' I Q)
where c = Ero/kT is normalized energy, and super- Q=i i=0

script ' denotes equilibrium. Quantizing this distribu- 0 Q (1 - W)2W Q

tion with respect to the normalized characteristic en- = " E Q + I
ergy of vibration, e = kO,,/kT, results in the discrete Q=i, i= Q
equilibrium distribution over vibrational quantum lev- 00

els, i, 
WQ

Q=i'

P (i) = f,(e)dc k= W
=w(I-W) (54)

= w'( - ) (48) Comparison of (54) to (48) proves that the algorithm

where w = e-  < 1 is a convenient grouping of maintains the discrete equilibrium distributions for vi-

terms. For a given rotational energy, c, we associate bration and rotation.

a quantum value, j = [,/IJ, which is also distributed The rotational energy after mixing is

as in (48), such that the total quanta from (11) is '= j'e+ (55)
Q = i + j. The normalized surplus energy remaining where j' = Q-i, such that dc' = d over the quantum
after truncation is defined by interval, j'. The conditional distribution of outcomes

for c' is simply the joint distribution of j' and , given
= - ij, (49) Q, found by multiplying (51) and (50),

and is distributed according to f*(E) upon renormal- f(' I Q)d/ - P(j' IQ)f (t)d

izing over the quantum level, j, for which dt = de, e-fd5
=(Q + )(1- (56)

f() U+0(d Following the same development as in (54), we solve
S(j+ f* ()d for the distribution over c' by summing the joint dis-
i :d tribution over all Q,

eOt+¢)d oo Q
-(()dc = , L P*(J)P(Q - j)f(c' IQ)d

e- Q=j' j=0- e-i'(1 (1--)) Q=-I,=
(5) = 0

- ~ ~ ~ ~ ~ ~ W (-)(0=z z(l WwQ e-( d

Note that ft( ) is independent of rotational quantum Q0
level, j. = (I - w) e- ( dC 1: W

Baganoff2l arrived at the outcome distributions, Q=,O,

P(i') and P(j'), in the following manner. Let i' and
j' denote the outcome quantum levels due to uniform, = (1 - W) e- ( w' dF 2W-k
random division of total quanta, Q. The conditional k=0
distribution for i', given Q, is therefore constant over = (1 -W)efj'F 1
the Q + 1 posible outcomes, - (iW)

Ii= e-Q'(+)d)P(i' I Q) = Q + 1 . (51) = e- #ddd (57)
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Equations (54) and (57) prove that the mixing algo- puter Architectures," Ph.D. Thesis, Department of
rithm maintains both the discrete and continuous dis- Aeronautics and Astronautics, Stanford University,
tributions at equilibrium. December 1989

Note that (53) represents a convolution of the dis- I Feiereisen, W.J., and McDonald, J.D., "Three
crete distributions, P(i) and P(j). By virtue of the Dimensional Discrete Particle Simulation of an
central limit theorm, repeated convolution and divi- AOTV," AIAA Paper No. 89-1711 (1989)
sion by Q + I will result in relaxation of these dis- 6 Moss, J.N., and Bird, G.A.,"Direct Simulation
tributions toward equilibrium if they are initially out of Transitional Flow for Hypersonic Reentry Con-
of equilibrium. However, the continuous distribution, ditions," Progress in Aeronautics and Astronautics,
f(c'), will only reach equilibrium if both P(j') and Vol. 96, pp. 113-139 (1985)
f,(,c) equilibrate. Unfortunately, the distribution over 7 Vincenti, W.G. and Kruger, C.H., Introduction

experiences no convolution in this algorithm, and to Physical Gas Dynamics, Wiley (1965)
therefore will not relax toward equilibrium unless ad- 8 Benson, S.W. and Fueno, T.,"Mechanism of
ditional rotational relaxation steps are included. Atom Recombination by Consecutive Vibrational

To test the algorithm, a reservoir was initialized Deactivations," Journal of Chemical Physics, Volume
with no vibrational energy and with rotational energy 16, No. 6, pp. 1597-1607 (1962)
uniformly distributed, and was then thermally relaxed 9 Padua, D.A., and Wolfe, M.J.,"Advanced Corn-
via the mixing algorithm described here. Two test- piler Optimization for Supercomputers," Commun:-
cases were run, onc which included the rotational re- cations of the ACM, Volume 29, No. 12, pp. 1184-
laxation steps, and one which did not. The initial and 1201 (1986)
final distributions for rotation are shown in figure 9, 10 Bird, G.A., "Monte-Carlo Simulation In An En-
along with the final distribution for vibration. Note gineering Context," AIAA Progress in Astronautics
that both the discrete and the continuous distribu- and Aeronautics: Rarefied Gas Dynamics, Vol. 74,
tions are Boltzmann for the algorithm which included Part 1, edited by Sam S. Fisher, pp. 239-255 (1981)
rotational relaxation. However, when rotational relax- 11 Borgnakke, C. and Larsen, P.S.,"Statistical Col-
ation was excluded, the continuous distribution within lision Model for Monte Carlo Simulation of Poly-
each quantum interval did not relax, but remained uni- atomic Gas Mixture," Journal Of Computational
formly distributed. These tests prove that, for a gas Physics No. 18, pp. 405-420 (1975)
out of equilibrium, the mixing algorithm will relax the 12 Hinshelwood, C.N., The Kinetics of Chemical
discrete distributions to equilibrium, but additional Change, Claredon Press, Oxford (1940)
rotational-relaxation is needed to achieve equilibrium 13 Clarke, J.F., and McChesney, M.,Dynamics of
for the continuous distribution. Relazing Gases, Second Edition, Butterworths (1976)
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Table 1. Reaction equations and data6'" 9 for the 5-species air model.

REACTION af b, a, be Ed/k (K)

N2 + N 2  N+N+N2  6.17x 10- 9  -1.60 18 0.0 113,000
N2 + 0O2  N+N+0 2  6.17x 10- 9  -1.60 18 0.0 113,000

N 2 + NO N + N + NO 6.17 x 10- 9  -1.60 18 0.0 113,000
V2 + N IV + N +N 1.85 x 10=6 -1.60 18 0.0 113,000
N2 +O N+N+O 1.85x 10=8  -1.60 18 0.0 113,000

02 + N 2  0 + 0 + N 2  4.58 x 10-11 -1.00 1200 -0.5 59,500
02+02 0+ 0+0 2 4.58x 10-"1 -1.00 1200 -0.5 59,500

0 2 +NO V=O+O+NO 4.58x 10-11 -1.00 1200 -0.5 59,500
0 2 +N O+O+N 1.37x 10- 10 -1.00 1200 -0.5 59,500
02 +0 0 +0+0 1.37 x 10- 10 -1.00 1200 -0.5 59,500

NO+ N 2  N + 0 + N2  3.83 x 10- 13  -0.50 4 0.0 75,550
NO+0 2  N+0+0 2  3.83 x 10-

13  -0.50 4 0.0 75,550
NO + NO N + 0 + NO 3.83 x 10-1 3  -0.50 4 0.0 75,550

NO + N N + 0 + N 7.66 x 10-13 -0.50 4 0.0 75,550
NO+O N +0+0 7.66 x 10- 13 -0.50 4 0.0 75,550

N 2 + 0 .NO + N 5.30 x 10-
17  0.10 37,500

NO + N . N 2 + 0 2.02 x 10- 17 0.10 0
0 2 + N - NO + 0 5.20 x 10-22 1.29 3,600

NO + 0 - 02 + N 3.60 x 10-22 1.29 19,700

Note: k, from equation (13) is in units of m3/( molecule-a), K from equation (18) is in units
of mole/cm 3 , and T is in Kelvin.

Reaction Reaction Reaction
Types Selection Mechanics

\LX \ f A c \ I

Fig. 1. Adaptation of. a vectr-compatible collision algorithm to include chemistry.
F ction-type identification, reaction-seletion, and reaction-mechaics ar added.
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