TG ... copy ®
MASSACHUSETTS

INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/TM-421

A SERIALIZATION
GRAPH CONSTRUCTION
FOR
NESTED TRANSACTIONS

DTIC
; ELECTE - -
SJUNM '?i!f

Alan Fekete Fr B
Nancy A. Lynch
William E. Weihl

AD-A222 697

T OISTRIBUTION STATEMENT A
Approved far putilic reinase;
© Distribotion Uglimitad

February 1990

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

W 06 IR 146

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR 421

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL
(If applicable)

MIT Lab for Computer Science

7a. NAME OF MONITORING ORGANIZATION
Oifice of Naval Research/Dept. of Navy

6¢c. ADDRESS (City, State, and ZIP Code)

545 Technology Square
Cambridge, MA 02139

7b. ADORESS (City, State, and ZIP Code)

Information Systems Program
Arlington, VA 22217

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION
DARPA/DOD

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

1400 Wilson Blvd.
Arlington, VA 22217

10. SOURCE OF FUNDING NUMBERS

WORK UNIT
ACCESSION NO.

PROGRAM PROJECT
ELEMENT NO. NO.

TASK
NO

11. TITLE (Include Security Classification)

A Serialization Graph Construction for Nested Transactions

12. PERSONAL AUTHOR(S)
Alan Fekete., Nancy A. Lynch, William E. Wei

hi

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT

Technical FROM T0 February 1990 31 pp,
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT

3 uncrassiFieouUNUMITED [SAME AS RPT. {0 oTic USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
L Judy Little

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

(617) 253-5894

DD FORM 1473, 384 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

AUS Government Printing Offics: 1908 -807-047
Unclassified

A Serialization Graph Construction for Nested Transactions

Alan Fekete* Nancy Lyncht
University of Sydney William E. Weihl}
Sydney, Australia MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA 02139

le

o,) gnsther voar
‘ Abstract

This paper makesfthree coi’xtributions. First, we present 4 proof technique that offers
system designers the game ease of reasoning about nested trangaction systems as is given by
the classical theory f systemsijwithout nesting, and yet can b¢ used to verify that a system
satisfies the robust “user view* definition of correctness of #8). Second, as applications of
the technique, we verify the correctness of Moss’ read/write locking algorithm for nested
transactions, and of an undo logging algorithm that has not previously been presented or
proved for nested transaction systems. Third, we make explicit the assumptions used for
this proof technique, assumptions that are usually made implicitly in the classical theory,
and therefore we clarify the type of system for which the classical theory itself can reliably

be used.)
/u/

~— Keywords: concurrency control, recovery, fault-tolerance, nested transactions, serializ-

bility, verification. /5 1 |
ability, verification ,//QR/
1 Introduction

The notion of “atomic transaction” was originally developed to hide the effects of failures and
concurrency in centralized database systems. Recently, a generalization to “nested transac-
tions” has been advocated as a way of organizing distributed systems in which information is
maintained in persistent modifiable objects. Nested transactions allow the benefits of atomicity
to be used within a transaction, so that, for example, a transaction can include several simul-
taneous remote procedure calls, which can be coded without considering possible interference
among them. Examples of systems using nested transactions are Argus [9] and Camelot [15]. In

*Supported in part by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-
83-K-0125.

!Supported in part by the National Science Foundation under Grant CCR-86-11442, in part by the Defense
Advanced Research Projects Agency (DARPA) under Contract N00014-89-J-1988, and in part by the Office of
Naval Research under Contract N00014-85-0168.

!Supported in part by the National Science Foundation under Grant CCR-8716884, and in part by the Dcfense
Advanced Research Projects Agency (DARPA) under Contract N00014-89-J-1988.

these systems “atomic” objects can be created and operations on these objects arc guaranteed
to be serializable, even though they execute concurrently. In both Argus and Camelot the de-
fault algorithm used for concurrency control and recovery is the locking protoco! of Moss [13],
but the implementor of an object has the option of writing his or her own concurrency control
and recovery routines.

A natural question is what “correctness” means for concurrency control and recovery algo-
rithms in a nested transaction system. Once a specification for correct functioning has been
given, one seeks to prove that existing algorithms are correct. Moreover, the possibility of
user-defined concurrency control in a system leads one to seek proof methods that are modular,
so that when one object is reimplemented (for performance reasons) in a previously correct
system, the new system may be proved correct without needing to reconsider those parts that
have not changed. Such specification and proof issues have been addressed in a major research
project started by Lynch and Merritt {10} and continued in [5, 6, 8, 4, 1, 11].

In [10], a notion of correctness called “serial correctness” is defined for nested transaction
systems. The definition of “serial correctness” presented there is a “user view” specification: the
users of the transaction system should only be able to observe behavior that they could observe
when interacting with a system in which their transactions were run without concurrency and
without failure after partial activity. The definition of serial correctness embodies not only the
serializability condition of the classical theory, but also the “external consistency” condition,
i.e., that the apparent serial execution must not reverse the order of any pair of transactions
for which one completed before the other was invoked. Also, unlike the classical theory, this
definition of serial correctness is explicitly formulated to apply to systems in which transactions
can abort; in the classical theory, aborts are handled by considering only executions in which
all transactions commit.!

The definition of serial correctness from {10} is used in {10, 5], where a proof technique
is developed for verifying Moss’ algorithm. Modular proof techniques for locking algorithms
can be found in [4]. The same definition and proof techniques have been used in proofs of
the correctness of several other kinds of transaction-processing algorithms, including multi-
version timestamp-based algorithms for concurrency control and recovery [1], algorithms for
management of replicated data (6], and algorithms for management of orphan transactions [8].
The proof techniques of these papers are very general. They apply to large classes of systems,
including those where different data objects are implemented independently, and where the
type of the objects can be used to obtain increased concurrency (as in [17]). We summarize the
system model, definition of serial correctness, and main proof technique in the next section.

We can contrast the development of our theory of serial correctness for nested transaction
systems with the classical serializability theory for systems without transaction nesting, as pre-
sented (for example) in [14] and [3]. The classical theory uses a system model and correctness
definition that are somewhat more restrictive than necessary; for example, the classical correct-
ness definition is not stated in terms of the user view of the system, but rather in terms of the
activity at the data objects. The classical model and definition work very well for a number
of simple update-in-place algorithms, hut a different definition of correctness is needed to cope
with multiversion algorithms, and yet another for rc,"i lion management. The classical theory
is also restricted in that it deals almost exclusively +i-*- data objects allowing only read and
write operations.

! As discussed in [16), aborts must be modeled explicitly to analyze the subtle interactions between concurrency
control and recovery. Because it does not model aborts explicitly, and implicitly assumes an “update-in-place”
model for recovery, the classical theory is not general cnvugh to model certain kinds ol algorishms.

An advantage of the classical theory, however, is that for the simplest concurrency control
algorithms such as two-phase locking or single-version timestamps, it yields extremely simple
and intuition-supporting proofs. These proofs are based on the absence of cycles in a “seri-
alization graph,” a graph whose nodes are the transactions and whose edges record conflicts
between activity of the transactions.

We would like to be able to combine the best features of both theories. In particular,
we would like to be able to use serialization graph proof techniques similar to those of the
classical theory to reason about nested transaction systems, wherever this is possible. We
would especially like to use such techniques to prove that such systems satisfy the user view
serial correctness condition of [10]. We would also like to extend the applicability of serialization
graph techniques to data objects that admit other kinds of operations besides reads and writes.
In this paper, we show how to combine the two theories in these ways.

More specifically, we develop a proof technique for nested transaction systems in which
proofs have the same simple form as in the classical theory, namely, one must show that a graph
(having transactions for nodes, and edges representing necessary ordering between transactions)
is acyclic. Thus, we define a new kind of “serialization graph” and prove that, under certain
assumptions, the absence of cycles in this graph is a sufficient condition to ensure the serial
correctness of a system. In the first part of the paper, we restrict our attention to systems in
which each data object admits only read and write operations. For such systems, we assume
that (once aborted transactions’ activity is ignored) a read operation always returns the value
written by the most recent write operation. This assumption is true of systems in which each
data object is stored in a single location that is overwritten by any write access, and where an
underlying recovery system restores the appropriate old value when an ancestor of the most
recent write is aborted.

In much of the classical work on database concurrency control, these restrictions and as-
sumptions are made early on, and in fact the definition of correctness often includes them.
Systems satisfying these assumptions are very common, and while we feel that it is inappro-
priate to make these assumptions when defining the correctness condition to be satisfied, it is
clearly useful to find a simple sufficient condition that guarantees correctness when the system
does satisfy them.

We note that in contrast to the classical theory, the acyclicity of the graphs we construct
is merely a sufficient condition for serial correctness, rather than necessary and sufficient. This
is primarily because onr notion of serial correctness, based as it is on the user’s view of the
system, is not as restrictive as the one used in the classical theory.

After presenting our results for reads and writes, we indicate how they can be generalized
to arbitrary data types. That is, we define serialization graphs for systems with objects of
arbitrary data type, and prove once again that absence of cycles implies serializability. Once
again, the values returned by accesses to objects are assumed to satisfy special restrictions.

We use our serialization graphs to prove correctness of two algorithms—the read /write lock-
ing algorithm of Moss and an undo logging algorithm. (The latter algorithm is a generalization
to nested transaction systems of an algorithm duc to Weihl [16]).

Other work has also been done on modecling nested transaction systems. Hadzilacos and
Hadzilacos [7] present a generalization of the classical theory to handle “object bases,” which
exhibit a nesting structure very much like that considered in this paper. (Our objects corre-
spond to the instance variables in their objects, and our accesses to objects correspond to the
local steps that access the instance variables.) They define a serialization graph construction,

/Avail snd/er y

DTIE :Dtst Speaial

a
)
————etn
D

e e

 ——— e

Codes

and give an acyclicity condition for serializability. However, they do not consider recovery?, and
their basic model is significantly less general than ours (for example, their correctness condi-
tion is appropriate only with an update-in-place single-version implementation of objects, while
we permit multi-version implementations). Beeri, Bernstein and Goodman [2] present proof
techniques that are useful for systems organized using multiple levels of abstraction, with con-
currency control performed separately at each level. The nesting in such systems corresponds
to levels of data abstraction, while the nesting considered here corresponds more to levels of
procedural abstraction. It may be that the techniques in [2] could be applied to the kinds
of systems we consider here, but their techniques are more complicated, allowing replacement
of entire subtrees of nested activity by single actions as well as the reordering of actions in a
history. Also, they do not present a simple acyclic graph condition for correctness, and they do
not model recovery in their work.

The remainder of this paper is organized as follows. First, in Section 2, we summarize our
earlier work on which this work is based. Then, in Section 3, we give the assumptions we make
for systems based on read/write objects; that is, we define such systems and define the condition
that says that all reads return the latest value. In Section 4, we present our serialization graph
construction and the theorem that says that acyclicity of the serialization graph implies serial
correctness. In Section 5, we give a proof of Moss’ algorithm using our serialization graphs. In
Section 6, we indicate how to extend the work Lo other data types besides read/write objects;
this section includes a description and proof of the general undo logging algorithm. Finally, we
conclude with a discussion and some suggestions for further work.

2 Background

In this section, we summarize the main concepts from our earlier work that are used in the rest
of the paper. Complete details can be found in [11]. The reader who is already familiar with
our work, or who is not interested in the details of the proofs, may skip or skim this section.

2.1 Review: The Input/Output Automaton Model

The following is a brief introduction to the formal model that we use to describe and reason
about systems. This model is treated in detail in [12] and [11].

All components in our systems, transactions, objects and schedulers, will be mmodelled by
1/0 automata. An 1/0 automaton A has a set of states, some of which are designated as initial
slates. It has actions, divided into input aclions, output aclions and internal actions. We refer
to both input and output actions as external cctions. We use the terms in(A), out(A), and
ext(A) to refer to the sets of input actions, output actions and external actions of the automaton
A. An automaton has a transition relation, which is a set of triples of the form (s, 7, s), where
s’ and s are states, and 7 is an action. This triple means that in state s’, the automaton can
atomically do action = and change to state s. An clement of the transition relation is called a
step of the automaton.’

The input actions model actions that arc triggered by the environment of the automaton,
while the output actions model the actions that are triggered by the automaton itsclf and are
potentially observable by the environment, and internal actions model changes of state that are
not directly detected by the environment.

2A later manuscript of their paper has extended the resulls to include recovery.
3 Also, an [/O automaton has an cquivalence relation on the set of output and internal actions. This is nceded
only to discuss fairness and will not be mentioned further in this paper.

Given a state s’ and an action 7, we say that 7 is enabled in s’ if there is a state s for which
(¢',m,s)is a step. We require that each input action 7 be enabled in each state ¢’, i.e., that an
I/0 automaton must be prepared to receive any input action at any time.

A finite execution fragmment of A is a finite alternating sequence som;s172...m, s, of states
and actions of A, ending with a state, such that each triple (s’, 7, s) that occurs as a consecutive
subsequence is a step of A. We also say in this case that (sg,71...75,3,) is an eztended step
of A, and that (so,8,3s) is a move of A where 3 is the subsequence of 7} ...w, consisting of
external actions of A. A finite ezecution is a finite execution fragment that begins with a start
state of A.

From any execution, we can extract the schedule, which is the subsequence of the execution
consisting of actions only. Because transitions to different states may have the same actions,
different executions may have the same schedule. From any execution or schedule, we can
extract the behavior, which is the subsequence consisting of the external actions of A. We write
finbehs(A) for the set of all behaviors of finite executions of A.

We say that a finite schedule or behavior § can leave A in state s if there is some execution
with schedule or behavior a and final state s. We say that an action 7 is enabled after a schedule
or behavior a, if there exists a state s such that « is enabled in s and a can leave A in state s.

Since the same action may occur several times in an execution, schedule or behavior, we
refer to a single occurrence of an action as an event.

We describe systems as consisting of interacting components, each of which is an I/O au-
tomaton. It is convenient and natural to view systems as I/O automata, also. Thus, we define
a composition operation for I/O automata, to yield a new I/O automaton. A collection of I/O
automata is said to be strongly compatible if any internal action of any one automaton is not
an action of any other automaton in the collection, any output action of one is not an output
action of any other, and no action is shared by infinitely many automata in the collection. A
collection of strongly compatible automata may be composed to create a system S.

A state of the composed automaton is a tuple of states, one for each component automaton,
and the start states are tuples consisting of start states of the components. An action of the
composed automaton is an action of a subset of the component automata. It is an output of
the system if it is an output for any component. It is an internal action of the system if it is an
internal action of any component. During an action 7 of S, each of the components that has
action 7 carries out the action. while the remainder stay in the same state. If 3 is a sequence of
actions of a system with component A, then we denote by 3| A the subsequence of 3 containing
all the actions of A. Clearly, if 8 is a finite behavior of the system then §|A is a finite behavior
of A.

Let A and B be automata with the same external actions. Then A is said to implement B
if finbehs(A) C finbehs(B). One way in which this notion can be used is the following. Suppose
we can show that an automaton A is “correct,” in the sense that its finite behaviors all satisfy
some specified property. Then if another automaton B implements A, B is also correct.

2.2 Review: Serial Systems and Correctness

In this section of the paper we summarize the definitions for serial systems, which consist
of transaction automata and serial object automata communicating with a serial scheduler
automaton. More details can be found in [11].

Transaction automata represent code written by application programmers in a suitable pro-
gramming language. Serial object automata serve as specifications for permissible behavior of
data objects. They describe the responses the objects should make to arbitrary sequences of op-

cration invocations, assuming that later invocations wait for responses to previous invocations.
T'he serial scheduler handles the communication among the transactions and serial objects, and
thereby controls the order in which the transactions can take steps. It ensures that no two sib-
ling transactions are active concurrently—that is, it runs each set of sibling transactions serially.
The serial scheduler is also responsible for deciding if a transaction commits or aborts. The
serial scheduler can permit a transaction to abort only if its parent has requested its creation,
but it has not actually been created. Thus, in a serial system, all sets of sibling transactions
are run serially, and in such a way that no aborted transaction ever performs any steps.

A serial system would not be an interesting transaction-processing system to implement.
It allows no concurrency among sibling transactions, and has only a very limited ability to
cope with transaction failures. However, we are not proposing serial systems as interesting
implementations; rather, we use them exclusively as specifications for correct behavior of other,
more interesting systems.

We represent the pattern of transaction nesting, a system type, by a set 7 of transaction
names, organized into a tree by the mapping parent, with Ty as the root. lu referring to this
tree, we use traditional terminology, such as child, leaf, ancestor, Ica (that is, least common
ancestor), and descendant. (A transaction is its own ancestor and descendant.) The leaves of
this tree are called accesses. The accesses are partitioned so that each element of the partition
contains the accesses to a particular object. In addition, the system type specifies a set of return
values for transactions (henceforth simply called values). If T is a transaction name that is an
access to the object name X and v is a value, we say that the pair (T, v) is an operation of X.

The tree structure can be thought of as a predefined naming scheme for all possible trans-
actions that might ever be invoked. In any particular execution, however, only some of these
transactions will actually take steps. We imagine that the tree structure is known in advance
by all components of a system. The tree will, in general, be infinite and have infinite branching.

The classical transactions of concurrency control theory (without nesting) appear in our
model as the children of a “mythical” transaction, Ty, the root of the transaction tree. Trans-
action Ty models the environment in which the rest of the transaction system runs. It has
actions that describe the invocation and return of the classical transactions. It is often natural
to reason about T in the same way as about all of the other transactions. The only transactions
that actually access data are the leaves of the transaction tree, and thus they are distinguished
as “accesses.” (Note that leaves may exist at any level of the tree below the root.) The internal
nodes of the tree model transactions whose function is to create and manage subtransactions,
but not to access data directly.

A serial system of a given system type is the composition of a set of I/O automata. This
set contains a transaction automaton for each non-access node of the transaction tree, a serial
object automaton for each object name, and a serial scheduler. These automata are described
below.

2.2.1 Transactions

A non-access transaction 1" is modelled as a transaction automaton Ar, an 1/0 automaton with
the following external actions. (In addition, Ar may have arbitrary internal actions.)

Input:

CREATE(T)

REPORT_COMMIT(T’,v), for T' a child of T', v a value
Output:

REQUEST_.CREATE(T"), for T’ a child of T
REQUEST_COMMIT(7',v), for v a value

The CREATE input action “wakes up” the transaction. The REQUEST_.CREATE output
action is a request by T' to create a particular child transaction. The REPORT_COMMIT
input action reports to T the successful completion of one of its children, and returns a value
recording the results of that child’s execution. The REPORT_ABORT input action reports to
T the unsuccessful completion of one of its children, without returning any other information.
The REQUEST_COMMIT action is an announcement by T that it has finished its work, and
includes a value recording the results of that work.

We leave the executions of particular transaction automata largely unconstrained; the choice
of which children to create and what value to return will depend on the particular implemen-
tation. For the purposes of the systems studied here, the transactions are “black boxes.”
Nevertheless, it is convenient to assume that behaviors of transaction automata obey certain
syntactic constraints, for example that they do not request the creation of children before they
have been created themselves and that they do not request to commit before receiving reports
about all the children whose creation they requested. We therefore require that al' transaction
automata preserve transaction well-formedness, as defined formally in [11].

2.2.2 Serial Objects

Recall that transaction automata are associated with non-access transactions only, and that
access transactions model abstract operations on shared data objects. We associate a single I/O
automaton with each object name. The external actions for each object are just the CREATE
and REQUEST.COMMIT actions for all the corresponding access transactions. Although we
give these actions the same kinds of names as the actions of non-access transactions, it is helpful
to think of the actions of access transactions in other terms also: a CREATE corresponds to
an invocation of an operation on the object, while a REQUEST_COMMIT corresponds to a
response by the object to an invocation. Thus, we model the serial specification of an object X
(describing its activity in the absence of concurrency and failures) by a serial object automaton
Sx with the following external actions. (In addition, Sx may have arbitrary internal actions.)

Input:
CREATE(T), for T an access to X
Output:
REQUEST_COMMIT(Tv), for T an access to X,
v a value

As with transactions, while specific objects are left largely unconstrained, it is convenient
to require that behaviors of serial objects satisfy certain syntactic conditions. Let a be a
sequence of external actions of Sxy. We say that a is serial object well-formed for X if it is
a prefix of a sequence of the form CREATE(T)REQUEST_COMMIT(T3,v,) CREATE(T;)RE-
QUEST_-COMMIT(T3,v;). .., where T; # T; when ¢ # j. We require that every serial object
automaton preserve serial object well-formedness.

*This is formally defined in [11] and means that the object does not violate well-formedness unless its envi-
ronment has done so first.

2.2.3 Serial Scheduler

The third kind of component in a serial system is the serial scheduler. The transactions anc
serial objects have been specified to be any 1/O automata whose actions and behavior satisfy
simple restrictions. The serial scheduler, however, is a fully specified automaton, particular to
each system type. It runs transactions according to a depth-first traversal of the transaction
tree. The serial scheduler can choose nondeterministically to abort any transaction whose
parent has requested its creation, as long as the transaction has not actually been created.
Each child of T whose creation is requested must be either aborted or run to commitment with
no siblings overlapping its execution, before T can commit. The result of a transaction can be
reported to its parent at any time after the commit or abort has occurred.
The actions of the serial scheduler are as follows.

Input:
REQUEST_CREATE(T), for T # Ty
REQUEST_COMMIT(T,v), for T a transaction name,

v a value

Output:
CREATE(T), for T a transaction name
COMMIT(T), for T # To
ABORT(T), for T # To
REPORT_COMMIT(T,v), for T # To, v a value
REPORT_ABORT(T), for T # Ty

The REQUEST_CREATE and REQUEST_-COMMIT inputs are intended to be identified
with the corresponding outputs of transaction and serial object automata, and correspondingly
for the CREATE, REPORT.COMMIT and REPORT-ABORT output actions. The COMMIT
and ABORT output actions mark the point in time where the decision on the fate of the
transaction is irrevocable.

The details of the states and transition relation for the serial scheduler can be found in [11].

2.2.4 Serial Systems and Serial Behaviors

A serial system is the composition of a strongly compatible set of automata consisting of a
transaction automaton Ag for each non-access transaction name 7', a serial object automaton
Sx for each object name X, and the serial scheduler automaton for the given system type.

The discussion in the remainder of this paper assumes an arbitrary but fixed system type
and serial system, with A7 as the non-access transaction automata, and Sy as the serial object
automata. We use the term serial behaviors for the system’s behaviors. We give the name serial
actions to the external actions of the serial system. The COMMIT(T') and ABORT(T') actions
are called completion actions for T'.

We introduce some notation that will be useful later. Let T' be any transaction name. If 7 is
one of the serial actions CREATE(T), REQUEST_-CREATE(T’), REPORT_-COMMI'T(T’,v"),
REPORT.ABORT(T"), or REQUEST_COMMIT(T,v), where T" is a child of T', then we define
transaction(w) to be T. If 7 is any serial action, then we define hightransaction(w) to be
transaction(w) if = is not a completion action, and to be T', if = is a completion action for a
child of T'. Also, if 7 is any serial action, we define lowtransaction(r) to be transaction(n) if =
is not a completion action, and to be T, if 7 is a completion action for T. If 7 is a serial action
of the form CREATE(T) or REQUEST.-COMMIT(T,v), where T' is an access to X, then we
define object(r) to be X.

If B is a sequence® of actions, T a transaction name and X an object name, we define §|T
to be the subsequence of 3 consisting of those serial actions = such that transaction(n) = T,
and we define 8| X to be the subsequence of 8 consisting of those serial actions 7 such that
object(r) = X. We define serial(8) to be the subsequence of 3 consisting of serial actions.

If 8 is a sequence of actions and T is a transaction name, we say T is an orphan in 3 if there
is an ABORT(U) action in 3 for some ancestor U of T. We say the T is live in 8 if 3 contains
a CREATE(T') event but does not contain a completion event for 7.

2.2.5 Serial Correctness

We use the serial system to specify the correctness condition that we expect other, more efficient
systems to satisfy. We say that a sequence § of actions is serially correct for transaction name
T provided that there is some serial behavior v such that 8|T = 4|T. We will be interested
primarily in showing, for particular systems of automata, representing data objects that use
different methods of concurrency control and a controller that passes information between
transactions and objects, that all finite behaviors are serially correct for Tg.

We believe serial correctness to be a natural notion of correctness that corresponds precisely
to the intuition of how nested transaction systems ought to behave. Serial correctness for T is
a condition that guarantees to implementors of T that their code will encounter only situations
that can arise in serial executions. Correctness for Tp is a special case that guarantees that the
external world will encounter only situations that can arise in serial executions.

2.3 Review: Simple Systems and the Serializability Theorem

In this section we outline a general method for proving that a concurrency control algorithm
guarantees serial correctness. This method is treated in more detail in [11], and is an extension
to nested transaction systems of ideas presented in [18, 17]. These ideas give formal structure
to the simple intuition that a behavior of the system will be serially correct so long as there is
a way to order the transactions so that when the operations of each object are arranged in that
order, the result is legal for the serial specification of that object’s type. For nested transaction
systems, the corresponding result is Theorem 2. Later in this paper we will see that the essence
of a nested transaction system using locking algorithms like Moss’ is that the serialization order
is defined by the order in which siblings complete.

It is desirable to state our Serializability Theorem in such a way that it can be used for
proving correctness of many different kinds of transaction-processing systems, with radically
different architectures. We therefore define a “simple system,” which embodies the common
features of most transaction-processing systems, independent of their concurrency control and
recovery algorithms, and even of their division into modules to handle different aspects of
transaction-processing.

2.3.1 Simple Systems

Many complicated transaction-processing algorithms can be understood as implementations of
the simple system. For example, we will see that a system containing separate objects that
manage locks and a “controller” that passes information among transactions and objects can
be represented in this way.

®*We make these definitions for arbitrary sequences of actions, because we will use them later {or behaviors of
systems other than the serial system.

We first define an automaton called the simple database. There is a single simple database
for each system type. The actions of the simple database are those of the composition of the
serial scheduler with the serial objects:

Input:
REQUEST_CREATE(T), for T # To
REQUEST.COMMIT(T,v), for T a non-access trans-
action name, v a value
Output:
CREATE(T) for T a transaction name
COMMIT(T), for T # To
ABORT(T), for T # Ty
REPORT_COMMIT(T ,v), for T # Tp, v a value
REPORT_ABORT(T), for T # Ty
REQUEST_COMMIT(T,v), for T an access trans-
action name, v a value

The simple database embodies those constraints that we would expect any reasonable
transaction-processing system to satisfy. It does not allow CREATE, ABORT or COMMIT
events without an appropriate preceding request, does not allow any transaction to have two
creation or completion events, and does not report completion events that never happened.
Also, it does not produce responses to accesses that were not invoked, nor does it produce mul-
tiple responses to accesses. On the other hand, the simple database allows almost any ordering
of transactions, allows concurrent execution of sibling transactions, and allows arbitrary re-
sponses to accesses. The details can be found in [11]. We do not claim that the simple database
produces only serially correct behaviors; rather, we use the simple database to model features
common to more sophisticated systems that do ensure correctness.

A simple system is the composition of a strongly compatible set of automata consisting of
a transaction automaton Ar for each non-access transaction name 7', and the simple database
automaton for the given system type. When the particular simple system is understood from
context, we will use the term simple behaviors for the system’s behaviors.

The Serializability Theorem is formulated in terms of simple behaviors; it provides a suf-

ficient condition for a simple behavior to be serially correct for a particular transaction name
T.

2.3.2 The Serializability Theorem

The type of transaction ordering needed for our theorem is more complicated than that used in
the classical theory, because of the nesting involved here. Instead of just arbitrary total orderings
on transactions, we will use partial orderings that only relate siblings in the transaction nesting
tree. Formally, a sibling order R is an irreflexive partial order on transaction names such that
(T,T') € R implies parent(T) = parent(T").

A sibling order R can be extended in two natural ways. First, Rirens is the binary relation
on transaction names containing (T, T") exactly when there exist transaction names U and U’
such that T' and T” are descendants of U and U’ respectively, and (U,U’) € R. Second, if 8 is
any sequence of actions, then R...n:(8) is the binary relation on events in 8 containing (¢, T)
exactly when ¢ and 7 are distinct serial events in 8 with lowtransactions T and T’ respectively,
where (T, T') € Riyans. It i8 clear that Ry, and Reyeni(8) are irreflexive partial orders.

10

In order to state the Serializability Theorem we must introduce some technical definitions.
Motivation for these can be found in [11].

First, we define when one transaction is “visible” to another. This captures a conservative
approximation to the conditions under which the activity of the first can influence the second.
Let 3 be any sequence of actions. If T and 7" are transaction names, we say that 7" is visible
to T in S if there is a COMMIT(U) action in § for every U in ancestors(T') — ancestors(T).
Thus, every ancestor of T up to (but not necessarily including) the least common ancestor of
T and T’ has committed in 8. If 8 is any sequence of actions and 7" is a transaction name, then
visible((3,T') denotes the subsequence of § consisting of serial actions = with hightransaction(r)
visible to T in 8.

We define an “affects” relation. This captures basic dependencies between events. For a
sequence (8 of actions, and events ¢ and 7 in (3, we say that (¢.7) € directly-affects(3) if at
least one of the following is true: transaction(¢) = transaction(r) and ¢ precedes = in 3.8
¢ = REQUEST_CREATE(T) and # = CREATE(T), ¢ = REQUEST_-COMMIT(T,v) and
m = COMMIT(T), ¢ = REQUEST_CREATE(T) and # = ABORT(T), ¢ = COMMIT(T)
and 7 = REPORT_COMMIT(Tv), or ¢ = ABORT(T) and 7 = REPORT_ABORT(T'). For a
sequence 3 of actions, define the relation affects() to be the transitive closure of the relation
directly-affects(f).

The following technical property is needed for the proof of Theorem 2. Let 3 be a sequence
of actions and T a transaction name. A sibling order R is suitable for § and T if the following
conditions are met.

1. R orders all pairs of siblings T’ and T" that are lowtransactions of actions in visible(3,T).
2. Revent(B) and affects(B) are consistent partial orders on the events in visible(3,T).
The following lemma will be used later in proving that certain sibling orders are suitable:

Lemma 1 Let B be a sequence of serial events and let A be an irreflezive partial order on the
events in 3. Let R be a sibling order satisfying the following condition: If * and ©' are events
in § such that (w,7') € A and lowtransaction(r) is neither an ancestor nor a descendant of
lowtransaction(n’), then (1,7') € Reyent(B). Then Reyent(B) and A are consistent partial orders
on the events of 5.

We introduce some terms for describing sequences of operations. For any operation (7', v)
of an object X,let perform(T,v) denote the sequence of actions
CREATE(T) REQUEST_.COMMIT(T,v). This definition is extended to sequences of opera-
tions: if £ = €'(T,v) then perform(€) = perform(€') perform(T,v). A sequence £ of operations
of X is serial object well-formed if no two operations in £ have the same transaction name. Thus
if £ is a serial object well-formed sequence of operations of X, then perform(§) is a serial object
well-formed sequence of actions of X. We say that an operation (T, v) occurs in a sequence 3
of actions if a REQUEST_-COMMIT((,T'), v) action occurs in 8. Thus, any serial object well-
formed sequence J of external actions of Sx is either perform(§) or perform(§)CREATE(T) for
some access T, where £ is a sequence consisting of the operations that occur in 3.

Finally we can define the “view” of a transaction at an object, according to a sibling order
in a behavior. This is the fundamental sequence of actions considered in the hypothesis of
the Serializability Theorem. Suppose § is a finite simple behavior, T a transaction name, R
a sibling order that is suitable for 8 and T, and X an object name. Let £ be the scquence

“I'his inclndes accesses as well as non-accesses.

consisting of those operations occurring in § whose transaction components are accesses to X
and that are visible to T in 3, ordered according to Rireys On the transaction components. (The
first condition in the definition of suitability implies that this ordering is uniquely determined.)
Define view(8,T, R, X) to be perform(£).

Theorem 2 (Serializability Theorem|11])

Let (3 be a finite simple behavior, T a transaction name such that T is not an orphan in 3, and
R a sibling order suitable for B and T. Suppose that for each object name X, view(3,T,R,X) €
finbehs(Sx). Then § is serially correct for T.

3 Assumptions

In this section, we present our two main assumptions. First, for all of this paper except Section 6,
we will assume that the fixed serial system (with respect to which serial correctness is defined)
contains only objects of a particularly simple type, where the only ways to access an object
are to read it or to write it. This assumption reflects the reality at the lowest level of many
database management systems, since these are the only accesses possible to a disk. While
many systems do contain more complicated data types at a higher level of abstraction (for
example, in a relational database the accesses at the conceptual level include joins, selections,
etc.) the assumption that all the objects have this simple type is usually made in the classical
development of serializability theory, and we make it here to show the relationships between
our results and the classical theory. In Section 6 we remove this assumption.

3.1 Read/Write Serial Objects

Formally, our first assumption is that every serial object in the serial system is a specific kind
of object, described below, which we call a “read/write object.” That is, for each object name
X there is a domain of values D, a function kind (which indicates for each access whether it is
a read or a write), a function data (which indicates for each write access the value written—in
our model, all parameters of an access are regarded as encoded in its name, so this function
serves to decode one parameter), and an initial value d, such that the serial object automaton
Sx has the following state and transition relation. Its state contains two components: active
(either nil, or the name of an access to X) and data (an element of D, representing the most
recently written value). The start state s has s.active = nil, and s.data = d. The transition
relation is as follows:

CREATE(T), T an access to X
Effect:

s.active =T

REQUEST_-COMMIT(T,»), T a write access to X
Precondition:
sactive =T
v=OK
Effect:
s.active = nil
s.data = data(T)

12

REQUEST_-COMMIT(T,v), T a read access to X
Precondition:
s.active=T
§'.data = v
Effect:
s.active = nil

The definition of the automaton Sx ensures that, in a serial system, each read access returns
the most recent value written. This can be seen from the effects of a REQUEST.COMMIT
for a write access, which stores the value written by the access in the state component data,
and from the preconditions for a REQUEST_COMMIT for a read access, which ensure that the
value returned is the value of the state component data.

In the sequel, we will need a definition for the “final value” of a read/write object after
a sequence of write accesses. If 8 is a sequence of serial actions and X is an object name,
we define write-sequence(8, X) to be the subsequence of 8 consisting of REQUEST_COMMIT
events for transactions that are write accesses to X; then we define last-write(§,X) to be
transaction(r) where = is the last event in write-sequence(8,X) (if write-sequence(,X) is
empty, last-write(8, X) is undefined.) Finally, we define final-value(8, X) to be the initial value
d if last-write(B, X) is undefined, and data(last-write(3, X)) otherwise. Thus, final-value(8, X)
is the latest value written in § for X. The following lemmas characterize the state and behaviors
of the read/write object Sx in terms of final-value:

Lemma 3 Let 3 be a finite schedule of read/write serial object Sx, and let s be the (unique)
state of Sx after B. Then s.data = final-value(8, Sx).

Lemma 4 Let 8 be a finite behavior of Sx. Then Bperform(T,v) is a behavior of Sx ezactly
when either T is a write access to X and v = OK, or T is a read access to X and v =

final-value(B, X).

3.2 Appropriate Return Values

In a real transaction-processing system, different transactions can access an object concurrently.
Concurrency control and recovery algorithms are needed to ensure that the effect of a concurrent
execution is the same as that of some execution of the serial system, as far as the users of the
system can observe. Rather than developing a complex model of a real transaction-processing
system, we prove results about behaviors of simple systems satisfying certain restrictions; we
then show that a particular real transaction-processing system implements the simple system
(so each of its behaviors is also a simple behavior) and that its behaviors satisfy the necessary
restrictions. One advantage of this approach is that it allows us to make very few assumptions
about the structure of a transaction-processing system; instead, we make assumptions about its
behaviors, represented as simple behaviors.

In defining these assumptions, and in the remainder of the paper, we will apply the defini-
tions above of write-sequence, last-write, and final-value to behaviors of simple systems. Notice
that each of these was defined in terms of general sequences of serial actions, so applying them
to simple behaviors does not cause any problems.

Our first assumption described above, namely that each serial object is a read/write ob-
ject, applies to serial systems. Our second assumption applies to behaviors of simple systems.
Informally, we assume the existence of some underlying recovery system that ensures that de-
scendants of aborted and uncommitted transactions appear never to have happened; once the

13

actions of these transactions have been removed from consideration, the return value for an
access is what one would expect from a simplistic model of the simple system, where each
object’s value is stored in a location, being overwritten with a new value by write accesses and
unaffected by read accesses. Much of the classical work on concurrency control has used this
simplistic model without comment.

To make this formal, we introduce a definition: if § is a simple behavior, then we say that g
has appropriate return values provided that whenever 7 is a REQUEST_COMMIT(T,v) event
occurring in visible(8,To) and T is an access to an object X, then either T is a write access and
v = OK, or T is a read access and v = final-value(é, X), where § is the prefix of visible(3, Tp)
preceding w. Notice that we here restrict attention to the part of the sequence § that is visible
to Ty. This restriction corresponds to the classical theory’s focus on the “permanent” part of
the computation (called the “committed projection” in [3])—the part that has committed to
the outside world.

The following is a convenient characterization of appropriate return values for systems in
which all serial objects are read/write objects.

Lemma 5 Let § be a finite simple behavior. Then B has appropriate return values if and only
if perform(operations(visible(8,T5))| X)7 is a behavior of Sx for all X.

Proof: Suppose § has appropriate return values and X is an object name. We must show that
perform(operations(visible(8,To)| X)) is a behavior of S§x. We show the equivalent statement
that for any prefix £ of operations(visible(f,T10)|X), perform(€) is a behavior of Sx, which
we do by induction on the number of operations in £&. The base case, when there are no
operations, is trivial. Otherwise ¢ = €(T,v). By the induction hypothesis, perform(¢’) is a
behavior of Sx. Now since (T, v) is in operations(visible(3,To)| X), we see that T is an access
to X and there is an event 7 = REQUEST.COMMIT(T,v) in wvisible(83,To). Since 3 has
appropriate return values, either T is a write access and v = OK, or T is a read access and
v = final-value(d, Sx), where é is the prefix of visible(3, To) preceding 7. In the case where T is
a read access, then we note that write-sequence(d, Sx) = write-sequence(perform(£'), Sx) and
so final-value(é,Sx) = final-value(perform(¢'), Sx). Thus perform(&(T,v)) is a behavior of Sx
by Lemma 4.

Conversely, suppose perform(operations(visible(f,To)| X)) is a behavior of Sx for all X.
Consider 7, a REQUEST_COMMIT(T,v) event occurring in visible(8,To)|X where T is an
access. We must have (T, v) in operations(visible(3,To)|X), where object(T) = X. Let & be
the prefix of operations(visible(3,To)| X) preceding (7', v). Since perform(&’(T,v))is a behavior
of Sx, by Lemma 4 we conciude that either T is a write access and v = OK, or T is a read
access and v = final-value(perform(¢'), Sx). However, we note that if § is the prefix of vis-
ible(d,Tp) preceding m, then write-sequence(é,Sx) = write-sequence(perform(£'), Sx) and so
final-value(8, Sx) = final-value(perform(£'), Sx). Thus, either T is a write access and v = OK,
or T is a read access and v = final-value(é, Sx). Since m was arbitrary, 3 has appropriate return
values. a

3.3 A Sufficient Condition for Appropriate Return Values

The hypothesis that a system’s behaviors have appropriate return values is commonly made,
and in the classical development of serializability theory it is usually regarded as axiomatic.

"An “operation” is a pair (T, v); the operator “operations” extracts the sequence of operations corresponding
to the REQUEST_COMMIT events in an event scquence.

i4

However when one studies or designs a real system one must consider how particular algorithms
lead to this hypothesis being met. For write aceessos it is cortainly easy to ensuie that the return
value is OK. However the situation with read accesses is very different. In this section, we
define simple conditions that are sufficient to ensure appropriate return values. While these
conditions are not only sufficient and not necessary, they do apply to many algorithms.

We need to show the following: for every REQUEST_COMMIT(T ,v) event 7 in visible(3, Tg),
where T is a read access to X, the return value v is equal to final-value(8, X), where § is the
prefix of visible(,Tp) preceding 7. Now, at the time 7 occurs, the sequence § is not yet deter-
mined, since it depends on all the COMMIT events in 3, including those that follow =. It is
useful to have conditions that can be checked when 7 occurs and that are sufficient to ensure
appropriate return values. We define two conditions. The first requires that the return value
for a REQUEST_COMMIT event be “current” using the sequence of events that occur before
the REQUEST_-COMMIT event. Informally, a REQUEST_COMMIT event for a read access is
current if the return value provides the appearance of accessing a variable that is overwritten
when each new write access requests to commit and is restored when a transaction ABORT
occurs in order to remove all trace of the descendants of the aborted transaction. The second
condition requires that the return value be “safe,” in the sense that all the needed COMMIT
events are already present in the sequence before the REQUEST.COMMIT. Informally, a
REQUEST_COMMIT event for a read access is safe if the writer of the current value (under
the assumption that there is a current value that is overwritten and restored) is visible to the
reader. This ensures that any ancestor of the writer that is not yet committed is also an ances-
tor of the reader. Thus, the writer cannot be aborted (by aborting one of its ancestors) without
also aborting the reader. A read access that is not safe is sometimes described as reading “dirty
data.”

More formally, if 8 is any sequence of serial actions, we define clean(3) to be the subse-
quence of 3 containing all events whose hightransactions are not orphans in 8. Then if § is
a sequence of serial actions and X is an object name, we define clean-write-sequence(3, X) to be
write-sequence(clean(B), X). Also, we define clean-last-write(8, X) to be last-write(clean(8), X).
Similarly, we define clean-final-value(B3, X) to be final-value(clean(3), X).

Now, if § is a sequence of serial actions and 7 is a REQUEST_.COMMIT(T,v) event that
appears in 3, where T is a read access to X, then we say that 7 is current in 8 if v =
clean-final-value(f', X'), where (' is the longest prefix of 8 that does not include the event
7. In addition, if § is a sequence of serial actions and 7 is a REQUEST_COMMIT(T ,v)
event that appears in B, where T is a read access to X, then we say that 7 is safe in 8 if
clean-last-write((’, X') is either undefined or visible to T in /', where ' is the longest prefix of
f that does not include the event .

We have the following key lemma.

Lemma 6 Let 3 be a simple behavior such that the following hold.

1. If® is a REQUEST-COMMIT(T ,v) event that occurs in visible(8,Ty) where T is a write
access to X, then v = OK.

2. If m is a REQUEST_-COMMIT(T ,v) event that occurs in visible(B,To) where T is a read

access to X, then w is current and safe in 3.

Then B has appropriate return values.

Proof: Condition (1) above is the first condition needed to argue that B has appropriate
return values. It remains to show that if 7 a REQUEST_.COMMIT(T,v) event that occurs

in visible((,Tp) where T is a read access to X, and 7 is current in B and safe in /3, then
v = final-value(é, Sx) where § is the prefix of visible(8,Tp) preceding .

Now, if 7 is current in 3 then by definition v = clean-final-value(’, Sx) where 8’ is the prefix
of B preceding . Thus we need only prove that clean-last-write(3',Sx) = last-write(§, Sx).
Since 3 is a simple behavior (and so does not contain both a COMMIT and an ABORT for any
transaction), any transaction that is visible to Tp in 8 is not an orphan in 8, and hence is not
an orphan in 8. Thus write-sequence(d, Sx) is a subsequence of clean-write-sequence(, Sx).

We will show that the last event in clean-write-sequence(f’, Sx) if any, does occur in §. Note
that this last event is a REQUEST_COMMIT for clean-last-write(#', Sx). By the hypothesis
that = is safe, we see that clean-last-write(f3', Sx) is visible to T in #’, and hence in 3. Since 7 oc-
curs in visible(§, Tp) we have that T is visible to Ty in 8. We deduce that clean-last-write(3', Sx)
is visible to Tg in 3, and so the last event in clean-write-sequence(f’, Sx) occurs in visible(8, Sx).
Since it precedes 7, it occurs in § as claimed. Now (as it is a REQUEST_COMMIT for a write ac-
cess to X') we can deduce it will occur in write-sequence(é, Sx). Further, since the order of events
in write-sequence(§, Sx) is the same as the order of those events in clean-write-sequence(', S x)
(each order is just the order in §), it must be the last event as required. a

4 The Serialization Graph Construction

In this section, we present our serialization graph construction. Recall that the serial correctness
condition of {11] embodies not only the serializability condition of the classical theory, but also
the external consistency condition. Therefore, our serialization graphs will have two kinds of
edges, “conflict edges” and “precedence edges.” The former are similar to those used in the
classical theory, and serve to fix the order of conflicting operations. The latter are added to
capture restrictions required for external consistency.

We define a conflict relation between accesses so that two write accesses to the same object
conflict, as do a write and a read access to the same object, but not two read accesses or two
accesses to different objects. More formally, let Sx be a serial object for object name X, and
let 7" and 7" are accesses to X. Then we say that 7" and T conflict if either T or 17 is a write
access.

We extend the preceding definition to a conflict relation on operations: if Sy is a serial
object for object name X, (T,v) and (7”,v’) are operations where T and 7’ are accesses to
X, then we say that (T, v) and (77,v’) conflictif and only if T and T’ conflict. The following
proposition shows that non-conflicting operations can be reordered in serial behaviors:

Proposition 7 Suppose that £ is a sequence of operations of X such that pcrform(£) is a serial
object well-formed behavior of Sx. Supposc that 1 is a reordering of € such that all pairs of
conflicting operations occur in the same order in 7 and in €. Then perform(n) is a behavior of

Sx.

We next derive a conflict relation between sibling transactions, based on conflicts between
descendant operations. Formally, if § is a sequence of serial actions, we define conflict(3) to be
the relation such that (T',T) € conflict(B) if and only if T and 7" are siblings and the following
holds: there are events ¢ and ¢’ in visible(3,7,) such that ¢ = REQUEST.COMMIT(U ,v)
where U is a descendant of T', ¢’ = REQUEST.COMMIT(U',»') where U’ is a descendant
of T', (U, v) conflicts with (U’,v') and ¢ precedes ¢ in visible(3,Ty). Informally, T conflicts
with 7" if a descendant of T” accesses some object X after a descendant of ' accesses X in a

16

conflicting manner (i.e., at least one access is a write). Note that if two siblings are related by
conflict(B) then they (and thus their common parent) are visible to Ty in S.

If B is a sequence of serial actions, define precedes(f) to be the relation such that (T,7T’) €
precedes(B) if and only if T and T" are siblings whose common parent is visible to Tp in 3, and
a report event for T and a REQUEST_CREATE(T”) occur in 8, in that order. Informally, T
precedes T" if their parent knows that T finished before it requests the creation of 7".

If 8 is a sequence of serial actions, we incorporate the information in the relations conflict(3)
and precedes(f) into a graph, as follows. We define the serialization graph SG(8) to be the
union of a collection of disjoint directed graphs SG(8,T), one for each transaction T that is
visible to Tp in 3. The graph SG(8,T) has nodes labelled by the children of T', and a directed
edge from the node labelled T’ to the node labelled T" if and only if T’ and T* are children of
T and (T',T") € precedes(8) U conflict(B).

The following theorem gives a sufficient condition for a sequence § of serial actions to be
serially correct for Tp. It relies on our Serializability Theorem (Theorem 2).

Theorem 8 Let 3 be a finite simple behavior that has appropriate return values. Suppose that
SG(B) is acyclic. Then B is serially correct for Ty.

Proof: For each transaction T that is visible to Ty in 3, we can choose some total order on
the children of T that is a topological sort of the directed graph SG(8,T), since that graph
is acyclic. Let R denote the sibling order given by the union of the chosen total orders. We
claim that R is suitable for 8 (as defined in Section 2.3) and that for every object name X,
view(B, To, R, X) is a behavior of Sx. Once we have shown the truth of these claims, Theorem 2
(the Serializability Theorem of [11]—in Section 2.3) completes the proof.

To show that R is suitable we need to check that it orders all pairs of siblings T and 7" that
are lowtransactions of events in visible(3,Tp), and that R.yen:(0) and affects(3) are consistent
partial orders on the events in visible(3, Tp).

By construction, R orders all pairs of siblings whose common parent is visible to Tp in 3. We
argue that this includes all pairs of siblings that are lowtransactions of actions in visible(3, Tp)
as follows: the hightransaction of an action in visible(8,Tp) is visible to Tp in 3, and the parent
of an action’s lowtransaction is either the action’s hightransaction (for completion actions) or
the parent of the action’s hightransaction (for other actions). Since the action’s hightransaction
is visible to Tp in B, so is the parent of the action’s hightransaction. Thus R orders all pairs of
siblings 7" and T that are lowtransactions of events in visible(83, To).

Suppose that = and 7' are events in visible(3,T;) such that = affects »’ in A and
lowtransaction(r) is neither an ancestor nor a descendant of lowtransaction(n’). It is easy to
show that there must be a common ancestor T of lowtransaction(r) and lowtransaction(x’)
such that a report event for T} precedes a REQUEST.CREATE(T;) event in 3, where T
and T; are the children of T that are ancestors of lowtransaction(r) and lowtransaction(r'),
respectively. It follows that (T1,T3) € precedes(8). Since R was chosen using a topological sort
of the graphs SG(8,T), precedes(8) C R. Thus (T1,T2) € R, and so (7,7') € Reyent(B). It
follows from Lemma 1 that R...ni(8) and affects(B) are consistent partial orders on the events
in visible(B,Tp). Thus R is suitable for .

Now let X be an object name. We must show that ¥ = view(B, Ty, R, X) is a beha sior of
Sx. Lemma 5 implies that perform(operations(visible(f3,To)| X)) is a behavior of Sx. Now v
is of the form perform((71,v,)(T2,v2)...(Tn,v,)), where the (T;,v;) are the operations of X
that occur in wvisible(8,To), and (T, Ti41) € Rirans for every i from 1 to n — 1 inclusive. We
make the claim: If T; conflicts with T; and ¢ < j, then REQUEST_-COMMIT(T;,v;) precedes

17

REQUEST_COMMIT(T;,v;) in visible(8,Ty). In other words, y can be oblained from per-
form(operations(visible(8,To)| X)) simply by reordering non-conflicting operations.

The claim is proved as follows: Since REQUEST_COMMIT(T;, v;) and REQUEST_COM-
MIT(T}, v;) both occur in visible(8, To) it is enough to show that REQUEST_COMMIT(T;, v;)
does not precede REQUEST_COMMIT(T}, v;) in visible(8,To). Suppose it did. Then letting
U and U’ denote the children of lca(T;,T;) that are ancestors of T; and T; respectively, we
would have (U’,U) € conflict(B), and so (U’,U) € SG(B, lca(T;,T;)) and therefore (U’,U) € R.
Thus (T},T;) € Rirans, contradicting (T;, T;) € Rirens which follows from i < j. Thus the claim
is established.

By definition, the operations in operations(visible(3,Ty)|X) are exactly the same as those
in the sequence (T3, v;)(T2,v2) .. .(Tn, vn). Moreover, as the claim above asserts, conflicting op-
erations occur in the same order. Therefore, by Proposition 7 and the fact that perform(opera-
tions(vistble(8,To)| X)) is a behavior of Sx, we have that v is a finite behavior of Sx.

Theorem 2 then implies the result. O

5 Moss’ Algorithm

In this section we use the serialization graph described above to prove the correctness of Moss’
algorithm for read/write locking [13], the basic concurrency control mechanism in the Argus
and Camelot systems.

5.1 Generic Systems

First we describe one way to model a transaction-processing system that includes concurrency
control and recovery algorithms. We will model such a system as a “generic system,” which is
composed of transaction automata, “generic object automata” and a “generic controller.” In
this paper, we include only a sketch; complete definitions appear in {4].

Unlike the serial object for X, the corresponding generic object is responsible for carrying out
the concurrency control and recovery algorithms for X, for example by maintaining lock tables.
In order to do this, the automaton requires information about the completion of some of the
transactions, in particular, those that have visited that object. Thus, a generic object automa-
ton has (besides the CREATE and REQUEST_COMMIT actions) special INFORM_COMMIT
and INFORM_ABORT input actions to inform it about the completion of (arbitrary) transac-
tions.

There is a single generic controller for each system type. It passes requests for the creation
of subtransactions to the appropriate recipient, makes decisions about the commit or abort
of transactions, passes reports about the completion of children back to their parents, and
informs objects of the fate of transactions. Unlike the serial scheduler, it does not prevent
sibling transactions from being active simultaneously, nor does it prevent the same transaction
from boing both created and aborted. Rather, it leaves the task of coping with concurrency
and recovery to the generic objects.

A generic system of a given system type is the comnposition of a strongly compatible set
of automata consisting of the transaction automaton At for each non-access transaction name
T (this is the same automaton as in the serial system), a generic object automaton Gy for
each object name X, and the generic controller automaton for the system type. The external
actions of a generic system are called generic actions, and the executions, schedules and behav-
iors of a generic system are called generic ezecutions, generic schedules and generic behaviors,
respectively.

18

5.2 A Read/Write Locking Object Automaton

We model a system using Moss’ algorithm as a generic system in which every generic object
automaton is the “read/write locking object automaton” M1x described below, derived from
the appropriate serial object Sy. The automaton M1x maintains a stack of “values,” and
manages “read locks” and “write locks.”®

We give here the definition of the read/write locking object M1x. M1y has the usual
external actions for a generic object automaton for X, and it has no internal actions. A state s of
M1x has components s.created, s.commit-requested, s.write-lockholders and s.read-lockholders,
all sets of transactions, and s.value, which is a function from s.write-lockholders to D, the
domain of basic values. We say that a transaction in write-lockholders holds a write-lock, and
similarly that a transaction in read-lockholders holds a read-lock. The start states of M1x are
those in which write-lockholders = {Tp} and value(Tp) is d (the initial value of Sx), and the
other components are empty.

The transition relation of M1y is as follows.

CREATE(T), T an access to X
Effect:
s.created = §'.created U {T'}

INFORM_COMMIT_AT(X)OF(T), T # To

Effect:
if T € s'.write-lockholders
then
s.write-lockholders = (s'.write-lockholders — {T'})

U{parent(T)}
s.value(parent(T)) = s'.value(T)
s.value(U) = ¢ .value(U),
for U € s.write-lockholders — {parent(T)}
if T € §'.read-lockholders
then s.read-lockholders = (s'.read-lockholders — {T'})
U{parent(T)}

INFORM_ABORT AT(X)OF(T), T # To
Effect:
s.write-lockholders =
' .write-lockholders — descendants(T)
s.read-lockholders =
8'.read-lockholders — descendants(T)
s.value(U) = ¢'.value(U) for all U € s.write-lockholders

REQUEST_-COMMIT(T,v), T a read access to X
Precondition:
T € s'.created — s'.commit-requested
8'.write-lockholders C ancestors(T)
v = 3'.value(least(s'.write-lockholders))
Effect:

®This automaton is a simplification of the read/update locking automaton Mx defined in [4]. The latter is
defined for any scrial object, rather than the particular read/write scrial object defined in this paper.

19

s.commit-requested = s'.commit-requested U {1'}
s.read-lockholders = s'.read-lockholders U {T'}

REQUEST_.COMMIT(T,v), T a write access to X
Precondition:
T € s'.created — s'.commit-requested
s’ .write-lockholders U s'.read-lockholders C ancestors(T)
v= 0K
Effect:
s.commit-requested = 8'.commit-requested U {T'}
s.write-lockholders = s'.write-lockholders U {T'}
s.value(T) = data(T)
s.value(U) = §'.value(U),
for all U € s.write-lockholders — {T'}

When an access transaction is created, it is added to the set created. When M1x is informed
of a commit, it assigns any locks held by the transaction to the parent, and also assigns any
stored value to the parent. When M1y is informed of an abort, it discards all locks held by
descendants of the transaction. A response to an access T can be returned only if the access
has been created but not yet responded to, every holder of a conflicting lock is an ancestor of T,
and the return value is appropriate, being OK for a write access and the value corresponding
to the least holder of a write lock if the access is a read. (The component s.write-lockholders
will always be a linear chain of transactions, with every element being either an ancestor or
descendant of every other. The least element of such a set is the unique descendant of all
other elements.) When this response is given, T' is added to commit-requested and granted the
appropriate lock. Also, if T' is a write access, the new value is stored as value(T), while if T is
a read access, no change is made to value.

5.3 Basic Properties of M1y.

We begin with some basic properties of M1x. These can be proved by common techniques
such as invariant assertions or arguments about sequences of actions.

The statements of the results below use some terminology about the information about
the status of transactions that is deducible from the behavior of M1x. If 3 is a sequence of
actions of M1x, and T and 7' are transaction names we say that T is a local orphan at X
in B if an INFORM_ABORT_AT(X)OF(U) event occurs in § for some ancestor U of T, and
we say that T is lock-visible at X to T’ in 3 if B contains a subsequence §’ consisting of an
INFORM_COMMIT_AT(X)OF(U’) event for every U € ancestors(T)— ancestors(T"), arranged
in ascending order (so the INFORM_COMMIT for parent(U) is preceded by that for U). If 8
is a behavior of a generic system, we note that 7 is lock-visible to T’ at X in 8|M1x only if T
is visible to T” in . Similarly T is a local orphan at X in B|M1x only if T is an orphan in 3.

First we have a fundamental invariant of the state of M1x, which expresses the fact that
conflicting locks are never held by transactions except when one transaction is the ancestor of
the other. This condition is enforced when locks are granted, and preserved thereafter by all
actions.

Lemma 9 Let § be a finite schedule of M1y. Suppose 3 can leave M1x in state s, and that
T € s.write-lockholders and T' € s.read-lockholders U s.write-lockholders. Then either T is an
ancestor of T' or else T' is an ancestor of T'.

20

The fellowing lemma shows which transactions hold locks after a schedule of M1x.

Lemma 10 Let 8 be a finite schedule of M1x. Suppose that 8 can leave M1x in state s. LetT
be an access to X such that REQUEST.-COMMIT(T,v) occurs in 3 and T is not a local orphan
in B, and let T' be the highest ancestor of T such that T is lock-visible to T' in 3. If T is a
write access then T' € s.write-lockholders. If T' is a read access then T' € s.read-lockholders.

The following lemma shows that when an access T' occurs, all prior conflicting accesses
must either be local orphans or lock-visible to T’.

Lemma 11 Let 3 be a generic object well-formed schedule of M1x. Suppose distinct events
© =REQUEST.COMMIT(T ,v) and 7' =REQUEST.COMMIT(T',v') occur in 3, where T and
T’ conflict. If © precedes ©' in (3 then either T is a local orphan in ' or T is lock-visible to T’
in ', where (' is the prefiz of 8 preceding '.

The following lemma characterizes the value component of the state, showing that value(T')
reflects the effects of all transactions that are lock-visible to T'.

Lemma 12 Let § be a finite generic object well-formed schedule of M1x. Suppose that 3 can
leave M1x in state s. Let T be a transaction name that is not a local orphan in (3 such that
T € s.write-lockholders. Then s.value(T) = final-value(, X), where é is the subsequence of §
consisting of events m such that transaction(w) is lock-visible to T in (.

From the previous lemma, we can show a more general characterization.

Lemma 13 Let § be a finite generic object well-formed schedule of M1x. Suppose that
can leave M1x in state s. Let T be a transaction name that is not a local orphan in §,
and let U denote the least ancestor of T such that U € s.write-lockholders. Then s.value(U) =
final-value(y, X), where v is the subsequence of 3 consisting of events = such that transaction(r)
is lock-visible to T in 3.

5.4 Correctness Proof of Read/Write Locking

Consider a generic system in which each generic object is M 1x for the appropriate object name
X. We will use Theorem 8 to prove that every behavior of this system is serially correct for Tg.
The proof relies on first establishing that the system’s behaviors have appropriate return values
and then showing that the serialization graph is acyclic. We show that the system’s behaviors
have appropriate return values by showing that REQUEST_COMMIT events for read accesses
are current and safe.

Lemma 14 Let $ be a generic system where for each object name X, M1y is used as
the corresponding generic object automaton. Let B be a finite behavior of S. If © is a
REQUEST-COMMIT(T,v) event that occurs in visible($3,To) where T is a read access to X,

then 7 is current and safe in serial(F).

Proof: Let §’ be the prefix of 8 preceding 7 and let 8” = §/|M1x. The preconditions of ©
and Lemma 13 imply that v = final-value(y, Sx) where 7 is the subsequence of 3" consisting
of events whose transaction is lock-visible to 1" in #”. Thus, to show that = is current in g, it
suffices to show that write-sequence(y, X) = clean-write-sequence(serial(3'), X).

21

Since T is not an orphan in B, any transaction lock-visible to T in B8” (and hence visible
to T in B) is not an orphan in serial(8'). Therefore, write-sequence(y, X) is a subsequence of
clean-write-sequence(serial(f'), X). On the other hand, consider any
REQUEST_COMMIT(T",v') event in clean-write-sequence(serial(f'), X). Then T' is a write
access and 7" is not an orphan in serial(8’); thus 7' is not a local orphan in 8”x. Since
T’ conflicts with T, Lemma 11 applied to 8" implies that 77 is lock-visible to T in f"r
and hence in B”. Therefore, REQUEST_COMMIT(T",v') occurs in write-sequence(vy, Sx).
Thus, clean-write-sequence(serial(('), Sx) is a subsequence of write-sequence(vy,Sx), so in
fact clean-write-sequence(serial(8'), Sx) = write-sequence(vy,Sx). Therefore, 7 is current in
serial(f).

If clean-last-write(serial(’), Sx) is defined, then Lemma 11 applied to 8"x implies that
clean-last-write(serial(#’), Sx) is lock-visible to T in S”w. Therefore, it is visible to T in
serial(f’). It follows that = is safe in serial(3). O

Proposition 15 Let S be a generic system where for each object name X, M1x is used as the
corresponding generic object automaton. Let B be a finite behavior of S. Then serial(B) has
appropriate return values.

Proof: We claim the following:

1. f = is a REQUEST_COMMIT(T,v) event occurring in wvisible(8,To), and T is a write
access to X, then v = OK.

2. If = is a REQUEST_COMMIT(T,v) event occurring in visible(8,Tp), and T is a read
access to X, then 7 is current and safe in serial(3).

The first of these is immediate, since in the transition relation for each object M1x, v = OK
is a precondition on each REQUEST_.COMMIT(T',v) action where T is a write access to X.
The second follows from Lemma 14. Then the conclusion follows from Lemma 6. o

The following proposition shows that M1x ensures that the serialization graph is acyclic.
The serialization graph consists of two parts, conflict(serial(3)) and precedes(serial((3)). The
proof shows that each of these is consistent with the completion order; i.e., that if (U,U’) €
conflict(serial(3)), the U completes before U’ (and similarly for precedes).

Proposition 16 LetS be a generic system where for each object name X, M1y is used as the
corresponding generic object automaton. Let 8 be a finite behavior of S. Then SG(serial(3))
is acyclic.

Proof: Let T be visible to Tp in 3. We will prove that SG(serial(3),T) is acyclic by show-
ing that both conflict(serial()) and precedes(serial(§)) are subrelations of the partial order
completion(), where (U,U") € completion(f) if U and U’ are siblings such that either 8 con-
tains a completion event for U preceding a completion event for U’ or § contains a completion
event for U and no completion event for U’.

Suppose (T,T') € precedes(serial(3)). Then a report event for T and a
REQUEST_CREATE(T") occur in serial(f), in that order. But there must be a completion
event for T' preceding the report event; moreover, any completion event for 77 must follow the
REQUEST_CREATE(T"). It follows that (T',7") € completion(S).

Now suppose that (T, T") € conflict(serial(3)). Then there are cvents ¢ and ¢’ in
visible(3,15) such that ¢ = REQUEST_-COMMIT(U,v) where U is a descendant of T,

22

¢' = REQUEST_.COMMIT(U’,v") where U’ is a descendant of 7', U conflicts with U’ and ¢
precedes ¢' in visible(f3,Tp). Since U and U’ conflict, there is some object name X such that
U and U’ are both accesses to X. Then B|M1y is a generic object well-formed behavior of
M1x that contains both ¢ and ¢'. Since U = transaction(¢) is visible to Ty in 8 we know
that U is not a local orphan in 8|M1yx. Lemma 11 implies that U is lock-visible to U’ in
the prefix of 8|M1x preceding ¢'. Since lca(U,U’) = parent(T), we see that 8 contains an
INFORM_COMMIT_AT(X)OF(T) event preceding ¢', and thus (since S is a generic behavior)
that a COMMIT(T') event occurs in 3 preceding ¢’. On the other hand, U’ is live in the prefix
of B ending in ¢/, and U’ is not an orphan in § (since REQUEST_.COMMIT(U’,v") occurs in
visible(B3, Top)). Thus T" is live in the prefix of § ending in ¢' so any completion event for 7" in
B must follow ¢’ and thus follow the completion event for T'. That is, (T,T") € completion(g).

o

Now we can prove the main correctness theorem for Moss’ algorithm.

Theorem 17 Let S be a generic system where for each object name X, M1y is used as the
corresponding generic object automaton. Let 3 be a finite behavior of S. Then (3 is serially
correct for Tg.

Proofl: Proposition 15 implies that serial() has appropriate ieturn values. Proposition 16
implies that the graph SG(serial(B3)) is acyclic. Then Theorem 8 implies that 3 is serially
correct for Ty. O

6 Extension to General Data Types

In this section we extend some of the previous results to arbitrary data types. Thus, we allow
serial objects to have arbitrary operations, rather than restricting them to be read/write objects.

6.1 Serialization Graphs

In order to define a serialization graph analogously to our previous definitions, we must know
how to define “conflict edges,” which in turn requires a definition of conflicts between operations
of an arbitrary data type. In order to define conflicts, we use two auxiliary definitions, of
“equieffectiveness” and “commutativity.”

Informally, we say that two finite sequences of external actions of a particular serial object
automaton Sx are “equieffective” if they can leave Sx in states that cannot be distinguished
by any environment in which Sx can appear. Formally, we express this indistinguishability by
requiring that Sy can exhibit the same behaviors as continuations of the two given sequences.
Let 8 and B’ be finite sequences of actions in ezt(Sx). Then § is equieffective to §' if for
every sequence vy of actions in ezt(Sx) such that both v and 'y are serial object well-formed,
B € finbehs(Sx) if and only if 5y € finbehs(Sx).2 Obviously, equieffectiveness is a symmetric
relation, so that if B is equieffective to 3’ we often say that B and 3’ are equieffective. Note
that if 3 and (' are serial object well-formed sequences and 3 is equieffective to §/, then if 3 is
in finbehs(Sx), ' must also be in finbehs(Sy).

A special case of equieffectiveness occurs when the final states of two finite executions are
identical. The classical notion of serializability uses this special case, in requiring concurrent
executions to leave the database in the same state as some serial execution of the same trans-
actions. However, this special case is more restrictive than necessary.

®This definition first appeared in [5].

23

We next define a notion of “commutativity” of operations.!® Let Sy be a serial object
for object name X, and let (T,v) and (71",v') be operations, where 7' and T' are accesses
to X. Then we say that (T,v) and (7”,v") commute backwards provided that for all finite
sequences of operations £ the following holds. If perform(&(T,v)(T’,v")) is a finite behavior of
Sx and both perform(&(T,v)(T,v")) and perform(£(1”,v")(T', v)) are serial object well-formed
then perform(&(T',v')(T,v)) is equieffective to perform(é(T,v)(T',v')) (and hence is also a
behavior of Sx). Note that backward commutativity is a symmetric relation.

We say that two operations (T, v) and (TI”,v') conflict provided that they fail to commute
backwards. We say that two accesses T and 1" conflict provided that there exist v and v’ such
that (T, v) and (T”,v') conflict. We note that the new definition of “conflicts” generalizes the
definition given earlier for accesses to a read/write object (where two accesses conflict unless
both are read accesses).

The following proposition generalizes Proposition 7, which considered only read/write ob-
jects.

Proposition 18 Suppose that £ is a sequence of operations of X such that perform(§) is a
serial object well-formed behavior of Sx. Suppose that) is a reordering of € such that all pairs
of conflicting operations occur in the same order in) and in . Then perform(n) is a behavior

of Sx.

Given the generalized notion of conflict relation defined above and the same notion of
precedes used earlier, we define serialization graphs exactly as before. However, we cannot use
the same definition of appropriate return values, since it relies on the properties of read/write
objects. We generalize it as follows. If 8 is a simple behavior, we say that 3 has appropriate
return values provided that for all object names X, the following is true: perform(operations(y))
is a behavior of Sx, where v = visible(8,To)| X . Notice that Lemma 5 shows that this is indeed
a generalization of the more concrete definition given for systems where every serial object is a
read/write object.

Now we can show our main theorem for arbitrary data types.

Theorem 19 Let § be a finite simple behavior that has appropriate return values. Suppose
that SG(B) is acyclic. Then 3 is serially correct for Ty.

Proof: The proof is essentially identical to the earlier proof for the read/write case. =]

6.2 An Undo Logging Algorithm

Now we use serialization graphs to give a proof of correctness of a particular system, one in
which a general “undo logging” algorithm is used everywhere. This algorithm works for objects
of arbitrary data type.

We model a system using the undo logging algorithm as a generic system in which every
generic object automaton is the “undo logging object automaton” Ux described below. A
state s of Ux consists of four components: s.created, s.commit-requested, s.committed and
s.operations. The first three are sets of transactions, initially empty, and the last is a sequence
(log) of operations of X (recording the sequence of operations that have taken place, but with
operations removed if they are later found to be aborted), initially the empty sequence. The
steps of Ux are as follows:

19The definition of commutativity required herc is slightly different from the one used in [4]. These definitions
and a careful exploration of the differences between them are described in [16].

24

CREATE(T), T an access to X
Effect:
s.created = §'.created U {T}

INFORM_COMMIT_AT(X)OF(T), T # To
Effect:
s.committed = s'.committed U {T'}

INFORM_ABORT.AT(X)OF(T), T # T
Effect:
s.operations =
s'.operations — {(T',v')|T" is a descendant of T}

REQUEST_.COMMIT(T,v), T an access to X and v a value
Precondition:
T € §'.created — s'.commit-requested
(T, v) commutes backward with all (7”,v') in
s'.operations such that some U in
ancestors(T") — ancestors(T') is not
in 8'.committed.
perform(s’.operations(T,v)) is a behavior of Sx
Effect:
s.operations = s'.operations(T, v)
s.commit-requested = s'.commit-requested U {T'}

The algorithm is described very abstractly; for example, the “state” is kept simply as a log
of operations, rather than in some more compact form. Practical implementations would need
to compact the information in the operations log, and rest~': ..e nondeterminism in choosing
which active invocation to respond to. Qur results app.y a fortiori to implementations of the
algorithm in which the state is compacted, . nd in which the nondeterminism is restricted.

Informally, the algorithm works as follows. When an operation is executed (i.e., a
REQUEST_COMMIT occurs for an access), tli» operation is appended to s.operations. A
REQUEST_COMMIT(T,v) is allowed to occur only if it commutes with all operations executed
by transactions that are not visible to T. The commit of a transaction is simply recorded
in s.committed; this component is used in the precondition for REQUEST_COMMIT(T,v)
to determine which transactions are visible to T. When a transaction aborts, all operations
executed by its descendants are removed from the log; this has the effect of “undoing” all the
effects of the transaction.

6.3 Basic Properties of Uy

Here we give some properties of Uy. As before, these can be proved by common techniques
such as invariant assertions or arguments about sequences of actions.

The statements of the results below require some terminology describing what can be de-
duced about the status of transactions from the local behavior of Uy. Let 8 be a sequence of
actions of Ux and let T and T’ be transaction names. We define the notion of a local orphan
as for M1x: we say that T is a local orphan at X in 8 if an INFORM_.ABORT_AT(X)OF(U)
event occurs in 3 for some ancestor U of T. We define a slightly different notior of visibility: we
say that T is locally visible at X to T' in B if § contains an INFORM_.COMMIT_AT(X)OF(U)

25

event for every U € ancestors(T') — ancestors(1"). (Notice the difference with the definition of

lock-vistble, which requires the INFORM_COMMIT events to occur in leaf-to-root order.) If 8

is a behavior of a generic system, we note that T is locally visible to T at X in S8)Ux only if

T is visible to T” in B. Similarly T is a local orphan at X in 8|Ux only if T' is an orphan in 3
The following two lemmas characterize the operations component of the state of Ux.

Lemma 20 Let 8 be a finite generic object well-formed schedule of Ux that can lead to state
s. Then s.operations is exactly the subsequence of operations(f) obtained by removing all op-
erations (T',v) such that an INFORM_ABORT_AT(X)OF(U) for some ancestor U of T occurs
after the REQUEST_-COMMIT(Tv) in §.

Lemma 21 Let § be a finite generic object well-formed schedule of Ux that can lead to state
s. Let T be any set of transaction names such that 7 N s.commiltted = §.

1. If (T', ') precedes (T",v") is s.operations, T’ is a descendant of a transaction in T and
T" is not, then (T',v') commutes backward with (T",v").

2. If & is the sequence of operations obtained by removing the descendants of all transactions
in T from s.operations, then perform(€) is a behavior of Sx.

The next lemma parallels Lemma 11.

Lemma 22 Let 8 be a generic object well-formed schedule of Ux. Suppose distinct events
T =REQUEST.COMMIT(T,v) and n' =REQUEST-COMMIT(T',v') occur in B, where (T, v)
and (T',7'") conflict. If m precedes n' in 3 then either T is a local orphan in ' or T is locally
visible to T' in ', where 3' is the prefiz of B preceding ©'.

6.4 Correctness Proof

First, we show that the condition on appropriate return values is satisfied.

Proposition 23 Let S be a generic system where for each object name X, Uy is used as the
corresponding generic object automaton. Let B be a finite behavior of S. Then serial(8) has
appropriate return values.

Proof: Fix a particular object name X. We must show that
perform(operations(visible(3,To)| X)) is a behavior of Sx. Let s be the unique state of Ux such
that 8 can lead to s. We define 7 to be the set of all transactions other than 7y that are not
committed in 3. It follows that no transaction in 7 can be in s.committed.

Lemma 20 implies that s.operations is exactly the subscquence of operations(§) obtained by
removing all operations (T, v) such that an INFORM_ABORT_AT(X)OF(U) for some ancestor
U of T occurs after the REQUEST_COM_MIT(7T,v) in 3. Let & be the sequence of operations
that results by removing descendants of transactions in 7 from s.operations. We claim that
operations(visible(§, Tp)| X) = €.

The claim is proved as follows: Both sequences are subsequences of operations(f3), and so
common operations occur in the same order. We must show that the same operations appear
in both sequences.

Suppose that (T, v) appears in operations(visible(8,T5)| X). Then no ABORT(U) appears
in 8 for any ancestor U of T, and hence no INFORM_ABORT_AT(X)OF(U) appears in 8.

26

Therefore, (T, v) is in s.operations. Also, T cannot be a descendant of any transaction in T,
since T is visible to Ty in 3. Therefore, (T, v) appears in £.

Now suppose (T, v) appears in £&. Then T is not a descendant of any transaction in 7, so
that all ancestors of T except for Ty are committed in 8. Therefore, T is visible to Ty in 3, and
so (T, v) appears in operations(visible(3,To)| X). This establishes the claim.

Now Lemma 21 implies that operations(visible(8,To)| X) is a behavior of Sx, as needed. O

Next, we show that the serialization graphs are acyclic; the proof of this result is quite
similar to that of Proposition 16.

Proposition 24 Let S be a generic system where for each object name X, Ux is used as the
corresponding generic object automaton. Let 8 be a finite behavior of S. Then SG(serial())
ts acyclic.

Proof: Let T be visible to Tp in 8. We will prove that SG(serial(8),T) is acyclic by show-
ing that both conflict(serial(8)) and precedes(serial(3)) are subrelations of the partial order
completion(().1!

Suppose (T,T’) € precedes(serial(3)). Then a report event for T and a
REQUEST_CREATE(T") occur in serial(f), in that order. But there must be a completion
event for T preceding the report event; moreover, any completion event for 7' must follow the
REQUEST_CREATE(T"). 1t follows that (T, T') € completion(f).

Now suppose that (T,T') € conflict(serial(3)). Then there are events ¢ and ¢’ in
visible(3,Ty) such that ¢ = REQUEST_-COMMIT(U,v) where U is a descendant of T, ¢’ =
REQUEST_COMMIT(U’,v") where U’ is a descendant of 7', U conflicts with U’ and ¢ precedes
¢ in visible(8,Tp). Since U and U’ conflict, there is some object name X such that U and U’
are both accesses to X. Then §|Ux is a generic object well-formed behavior of Ux that contains
both ¢ and ¢'. Since U = transaction(¢) is visible to Tp in § we know that U is not a local
orphan in 8|Ux. Lemma 22 implies that U is locally visible to U’ in the prefix of 3|Ux preceding
¢'. Since lc2(U,U") = parent(T), we see that 8 contains an INFORM_COMMIT_AT(X)OF(T)
event preceding ¢', and thus (since f is a generic behavior) that a COMMIT(T') event occurs
in B preceding ¢'. On the other hand, U’ is live in the prefix of # ending in ¢, and U’ is not an
orphan in g (since REQUEST_COMMIT(U’,v') occurs in visible(B3,Tp)). Therefore T is live in
the prefix of S ending in ¢' so any completion event for 7’ in 8 must follow ¢’ and thus follow
the completion event for T'. That is, (T',T') € completion(f). o

Theorem 25 Let S be a generic system where for each object name X, Ux is used as the
corresponding generic object automaton. Let 8 be a finite behavior of S. Then § is serially
correct for Tp.

Proof: Proposition 23 implies that serial(3) has appropriate return values. Proposition 24
implies that the graph SG(serial(8)) is acyclic. Then Theorem 19 implies that g is serially
correct for Tp. a

7 Conclusions

In this paper we have presented a proof technique for nested transaction systems. Using this
technique, two properties must be demonstrated to show correctness: the return values for

" Recall that (U,U’) € completion(B) if U and U’ are siblings such that either 8 contains a completion event
for U preceding a completion event for U’ or else # contains a completion event for U and no completion event
for U,

27

operations must be shown to be “appropriate,” and a “serialization graph” must be shown
to be acyclic. The first property corresponds to an assumption that is made implicitly in the
classical theory of concurrency control. The second property generalizes the serialization graphs
of the classical theory to nested transactions.

The classical theory has been extended in a variety of ways, for example to model con-
currency control and recovery algorithms that use multiple versions, and to model replication
algorithms.!? It should be possible to develop techniques based on the model presented in this
paper that parallel the techniques used in the classical theory for these other kinds of systems.

Acknowledgements

We thank Michael Merritt for many useful comments that helped improve the content and
presentation of this paper.

References

[1] J. Aspnes, A. Fekete, N. Lynch, M. Merritt, and W. Weihl. A theory of timestamp-based
concurrency control for nested transactions. In Proceedings of 14th International Conference on
Very Large Data Bases, pages 431-444, August 1988.

[2] C. Beeri, P.A. Bernstein, and N. Goodman. A model for concurrency in nested transaction
systems. Journal of the ACM, 36(2):230-269, April 1989.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Conirol and Recovery in Database
Systems. Addison-Wesley, 1987.

(4] A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Commutativity-Based Locking for Nested
Transactions. Technical Memo MIT/LCS/TM-370.b, Massachusetts Institute Technology,
Laboratory for Computer Science, August 1989. To appear in JCSS.

[5] A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Nested transactions and read/write locking. In
6th ACM Symposium on Principles of Database Systems, pages 97-111, San Diego, CA, March
1987. Expanded version available as Technical Memo MIT/LCS/TM-324, Laboratory for
Computer Science, Massachusetts Institute Technology, Cambridge, MA, April 1987.

(6] K. Goldman and N. Lynch. Nested transactions and quorum consensus. In Proceedings of 6th
ACM Symposium on Principles of Disiributed Computation, pages 27-41, August 1987. Expanded
version is available as Technical Report MIT/LCS/TM-390, Laboratory for Computer Science,
Massachusetts Institute Technology, Cambridge, MA, May 1987.

[7] T. Hadzilacos and V. Hadzilacos. Transaction synchronisation in object bases. In 7th ACM
Sympostum on Principles of Database Systems, pages 193-200, Austin, TX, March 1988.

[8] M. Herlihy, N. Lynch, M. Merritt, and W. Weihl. On the correctness of orphan elimination
algorithms. In Proceedings of 17th IEEE Symposium on Fauli-Tolerant Compuling, pages 8-13,
1987. To appear in Journal of the ACM.

(9] B. Liskov. Distributed computing in Argus. Communications of the ACM, 31(3):300-312, March
1988.

(10) N. Lynch and M. Merritt. Introduction to the theory of nested transactions. In International
Conference on Database Theory, pages 278-305, Rome, Italy, September 1986. Also, expanded
version to appear in Theoretical Computer Science.

12These extensions to the classical theory have typically required redefining the notion of correctness (e.g.,
introducing the notion of “l-copy serializability”). In contrast, the definition of correctness used in our work,
namely that a system’s behaviors must be serially correct for 1o, is sufficiently general to apply directly to these
and many other kinds of systems.

28

[11] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. A theory of atomic transactions. In International
Conference on Database Theory, Bruges, Belgium, September 1988. Also, available as
MIT/LCS/TM-362 June 1988.

[12] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proceedings
of 6th ACM Symposium on Principles of Disiribuled Computation, pages 137-151, August 1987.
Expanded version available as Technical Report MIT/LCS/TR-387, Laboratory for Computer
Science, Massachusetts Institute Technology, Cambridge, MA., April 1987.

[13] J.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. PhD thesis,
Massachusetts Institute Technology, 1981. Technical Report MIT/LCS/TR-260, Laboratory for
Computer Science, Massachusetts Institute Technology, April 1981. Also, published by MIT Press,
March 1985.

{14] C. Papadimitriou. The Theory of Concurrency Control. Computer Science Press, 1986.

[15] A. Spector and K. Swedlow. Guide to the Camelot distributed transaction facility: release 1.
October 1987. Available from Carnegie Mellon University, Pittsburgh, PA.

[16] W. E. Weihl. The impact of recovery on concurrency control (extended abstract). In Symposium
on Principles of Database Systems, pages 259-269, Philadelphia, PA, March 1989.

[17] W. E. Weihl. Local atomicity properties: modular concurrency control for abstract data types.
ACM Transactions on Programming Languages and Systems, 11(2):249-282, April 1989.

[18] W.E. Weihl. Specification and Implementation of Atomic Data Types. PhD thesis, Massachusetts
Institute Technology, 1984. Technical Report MIT/LCS/TR-314, Laboratory for Computer
Science, Massachusetts Institute Technology, Cambridge, MA, March 1984.

29

OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office

Defense Advanced Research Projects Agency (DARPA)

1400 Wilson Boulevard

Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street

Arlington, VA 22217

Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 12 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities

1800 G. Street, N.W.

Washington, DC 20550

Attn: Program Director

HEAD, CODE 38 1 copy
Research Department

Naval Weapons Center

China Lake, CA 93555

