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Photon band structures: The plane-wave method
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. 0r ~ isUsing both the plane-wave and the Korringa-Kohn-Rostoker method, the photon band structure
is calculated within the scalar wave approximation for a fcc lattice of dielectric microspheres em-

. bedded within a uniform host medium. The plane-wave method is found to converge fairly rapidly.
WThe optimal volume-filling fraction of spheres for the creation of a gap in the photon density of
C) states is found to vary substantially with the relative dielectric constant r, and this gap persists for r

as small as 3.
/ /

There has been growing interest in studying photon determining the photon band structure and the existence
band structures in three-dimensional periodic dielectric of a gap in the density of states.
media that exhibit a gap in the photon density of Although some of our results are somewhat similar to
states. - 3 There are important motivations for such those reported earlier, there are two significant discrepan.
studies. (1) Since electromagnetic modes are totally ab- cies. First, our results show that the gap persists done to
sent within the band gap, spontaneous emission is there- an r value of about 3. Second, we find that the optimal

l fore strongly suppressed. This ability to inhibit spontane- value of f depends significantly on the value of r, and in
ous emission has some extremely important consequences general decreases with increasing r.
since spontaneous emission plays a fundamental role in Following the previous work,2 we start with the scalar
limiting the performance of many optical and electronic wave equation
devices such as semiconductor lasers, heterojunction bi- 2

polar transistors, and solar cells.1 '4 In atomic physics, b

this phenomenon has in fact been demonstrates. - ' (2) It where the "potential" V is given by
has also been pointed out that the basic properties of
many atomic, molecular, and excitonic systems can be [=k2 1- -L (2)
profoundly modified in a volume of space, where the k '(
most important electromagnetic processes are totally ab-
sent.8 (3) There is also a proposal to study mobility edges with Ea inside the spheres, E=Eb inside the host, and
and Anderson localization of photons within a related kb = V,/iebw/c. Although the equation is of scalar form,
pseudogap in the presence of some randomness.2  and therefore neglects the vector nature of the photon, it

The first calculation of photonic bands exhibiting the retains an important characteristic in that the "potential"
presence of a common gap in the photon density of states is proportional to a 2, and thus vanishes in the long-
was carried out recently 2 based on the scalar wave equa- wavelength limit. This has some very important physical
tion and using the Korringa-Kohn-Rostoker 9'"° (KKR) consequences in the present problem as well as in the
method. The structure consists of a fcc lattice of micro- photon localization problem." I

spheres embedded in a host medium. The main results of The plane-wave method is very straightforward. We
-.. that study were (1) the gap in the photon density of states work in Fourier space, where the Fourier coefficients

persists down to a relative dielectric constant r of about c-ik'r(r) (3)
7.8, and (2) the optimal volume filling fraction f, for the Ck f dre

creation of this gap, is about 11%. In this work, we re- and
port results that are based on the plane-wave method. ± (4)--
Results based on the KKR method are also presented. Vk JdreiKrV(r) (4)
We find that our plane-wave calculation converges fairly cell

L_ rapidly. This is an important finding since the plane- with K as a reciprocal-lattice vector of the fcc lattice, and
wave method is comparatively much simpler than the fl the volume of the unit cell. The scalar wave equation
KKR method, the computer program is much easier to can then be expressed in the form
write, and runs substantially much faster. Moreover, un- [k _[kK12]kk-Kk ,UK-KckK,=O (5)
like the KKR method, which is limited to "muffin-tin"- bkb K

like modulation of the "potential," the plane-wave 2
method can readily handle all sorts of modulations. This where we have defined U = V/kb. This eigenvalue equa-
capability is especially important since we believe that, tion can be recast into the standard form if we divide it
besides requiring a high dielectric contrast, the shape of by k2Ik-KI, let dk-K=lk-K1ck-K, and treat k - 2 as
the dielectric structure is also a very crucial factor in the eigenvalue. The result is
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I-0 Idk-K - , K-K' dk- K 02
Ik-K 12 k~k ' _kK

=0, (6) 0.15

where the prime over the summation sirn signifies that
the K'=K term is to be omitted. The photon band struc- AP,-
ture is then obtained by solving this equation for the ei- SIE 0.1

genvalues kb 2 for each value of k.
Before we give the results of our calculations that are

specific to the present problem, we want to make a few o.05
general remarks on the band structure based on the above
plane-wave band equation. First, it is clear that the equa-
tion has exactly the same form as the corresponding 0

equation for electrons, if we identify (1-U 0 )/Ik-K 2  2 4 6 8 10 12

with the free-particle energy, kb- 2 as the exact energy ei- RELATIVE 0ELECTMCOONSTAT
e genvalue, and UKK,/(Ik-K k-K'I) as the corre- FIG. 2. The optimal volume-filling fraction of spheres for the

0 sponding Fourier element of the electron potential. creation of a gap in the photon density of states is plotted as a
Thus, in the empty-lattice limit, i.e., V-,0, the band function of the relative dielectric constant.
structure can be obtained from most solid-state text-

0

L - books. It is clear that in this limit, most of the levels are

n highly degenerate, especially at high-symmetry points,
and for k varying from the r point to the edge of the

r Brillouin zone, the dispersion curves are straight lines only the coefficient dkK with K=0 is non-negligible.
given by k b = k. Thus one can easily show that

There are two important effects when the "potential" is
turned on. First, depending on the symmetry of V, some Eefr (1 - U0 )Eb • (7)

of these degeneracies are lifted. Second, the levels shift Now we are ready to present our results for the present
up away from zero if Uo is positive, and shift down to- model. For the case of dielectric spheres considered here,
ward zero otherwise. As a result, the dispersion curves

) originating from the F point are linear only near the F we have

z point, where k is small compared with the magnitude of UK =3f( 1-r)g(Ka) , (8)
the smallest K of the lattice, and the slope of the straight
portion is no longer unity, but should be given by where the function g(x)=(sinx -x cosx )/x 3, a is the ra-
t Eb /Eef), where Ceff is the effective dielectric constant of dius of the sphere, and U0 =f (I - r). Using these results
the entire medium in the long-wavelength limit. The ex- and the plane-wave equation, we have calculated the pho-
act expression for Eeff can be easily derived from the ton band structures for various values off and r. We find

plane-wave band equation because at low frequencies and that the results for the lowest-lying bands converge fairly
long wavelengths, where k2 and k are both small com- rapidly. To within an accuracy of 0.1%, we find that 70
pared with the smallest nonzero reciprocal-lattice vector, K points are sufficient for convergence even for r as large

as 12. For r around 3, only 30 points are needed. This

rapid convergence is reasonable because the "potential"
here is very smooth near the lattice points, and does not

, ~ have a highly attractive part as that found in the corre-
a'- sponding solid state's problem. The band structure is

shown in Fig. I for f=0.375 and r=12.25. We have
used reduced units, where kb is measured in units of

#A 21T/c o , and co is the length of the conventional unit cube
of the fcc lattice. We have also repeated the band-

k b iI structure calculation using the KKR method. We find

2 that it is necessary to include terms up to Ima,= 3, espe-
cially for large r values. The KKR results are shown by

a, ' € / the circles in Fig. 1, and are in excellent agreement with
those obtained by the plane-wave method. In addition,

O - xwe have checked that our results in the low-frequency
X U L r X W K and long-wavelength region are, within our numerical ac-

FIG. I. The solid curves give the band structure caiculated curacy, in perfect agreement with our analytical predic-
with the plane-wave method. The volume-filling fraction of tion in Eq. (7).
spheres is 0.375 and the relative dielectric constant is 12.25. From the figure, we see that there is a common indirect
The solid circles are our results calculated with the KKR gap in the band structure. This gap is determined by the
method. top of the "valence band" at the W point and the bottorm
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So negative to positive, and then it reaches a maximum.
Further increases in f then decreases the gap size and
eventually becomes negative again. Using the plane-wave
method, the optimal value of f, fop, is found, and the re-
sult is shown as a function of r in Fig. 2. At r = 3, fo, is
25% and it decreases with increasing r. For large r, we
find that fop, decreases as r - For each r, the size of the

how gap at the optimal volume-filling fraction is calculated,
and is found to increase monotonically with r, as shown

0.15 in Fig. 3. This is clearly expected since the larger r is, the
stronger is the scattering, and therefore the larger is the
gap.

For the full vector wave, the degeneracy factor for all

0.1 1 0 S 1 the levels is double that of the scalar case. Thus a much
10 12 larger value of r is required to obtain a gap, and the lift-

FLATrv DNAf nC OOSTAr ing of the degeneracies due to the polarizations can be-

FIG. 3. The size of the gap at the optimal volume-fillingfrac- come very important. Nevertheless, we can expect the

tion is shown as a function of the relative dielectric constant. plane-wave method to be also effective in the vector case.
Note added in proof After submission of this work, we

became aware of a recent publication with results very
similar to those reported here. In that work, results were
computed only with the plane-wave method. In addition,
the transformation of the band equation into an eigenval-

of the "conduction band" at the L point. According to ue problem was not used and thus a root searching
our numerical results, this is true also for other values of method had to be used for the eigenvalues.
f and r, as long as such a gap is finite. Note that in the
empty-lattice limit, the lowest levels at the W point form ACKNOWLEDGMENTS
a quadruplet, and are higher than those at the L point, We are grateful to Dr. E. Yablonovitch for getting us
which forms a doublet. Thus in order to have a gap, interested in the photon band problem, and for sending
these levels must be splitted and shifted in such a way us experimental results prior to publication. We are also
that the second level at L must be higher than the lowest indebted to Professor A. Maradudin for a very helpful
level at W. We find that the gap persists down to an r conversation, which led to our use of the plane-wave
value as small as 3, in contrast with the value of 7.8 re- method, and to Professor B. Segall for providing some
ported by the earlier study. 2 Clearly at a fixed value of r, unpublished tables of the Cm, IWm; LM coefficients to check
this gap do not exist if either f is too small or too large, a part of our KKR computer program. This work was
because in either limit, the photon simply sees a uniform supported in part by the U.S. Naval Research Laborato-
dielectric medium. But we find that for r > 3, as f is in- ry, the Office of Naval Research, and the Joint Services
creased from zero, the size of the gap first increases from Electronics Program.
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