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Executive Summary

Lightning strikes have caused damage reaching hundreds of millions of dollars
during major unmanned launches, and lightning could lead to loss of life on shuttle
launches. Reliable predictions of lightning strikes would be invaluable. This report shows
the feasibility of using artificial neural systems (ANS) for making predictions of cloud to
ground lighting strikes. ANS provides a tool for cost-effectively building lightning
prediction machines with advantages over standard programming.

ANS designs offer some potentially useful features. First, an ANS predictor can be
incrementally trained for new levels of performance without starting programming from
'scratch' each time the predictor is upgraded. Second, incremental training could proceed
in the field reducing costs and delays of modifications while improving predictor accuracy
by tailoring it to site conditions (i.e. topography, etc.). Third, a trained ANS provides a
ready-made formula for constructing fast parallel, distributed processors. Fourth, the
features built up within the ANS might be analyzed for clues to the physical processes
underlying the partially understood phenomenon of lightning.

Comparisons are made of the performance of an ANS predictor with the state of the
art lightning prediction using a wind convergence based criterion described by Watson et
al. 1987. Using the total area divergence of the winds at the Kennedy Space Center, one
predicts lightning when this quantity is less than a certain negative threshold. An ANS was
trained to wind inputs and known lightning events. Both the ANS and wind total area
divergence methods were applied for similar conditions. The results show that ANS
lightning prediction has achieved performance levels comparable to the previous state of the
art as shown below.

Comparison of this Study's Results with those of Watson et al. (1987)

Type of Measure This Study Watson, et al.

(1987)

Probability of Detection 0.41 0.47

False Alarm Ratio 0.57 0.56

Critical Skill Index 0.26 0.29

Given the complexity of lightning strikes, the current results should be understood
as indicative of a promising initiative and canrvt Se considered definitive. Therefore,
recommendations for future work are made. TI., re-,lts in the Table were obtained using
one day's raw wind speed and direction data as -, ing input to the ANS. A different
day's wind data were used for testing ANS predictions. Synthesis of different data types is
one of the possibilities of employing ANS. It is expected that ANS predictive power will
increase when many inputs (e.g. electric field, wind divergence, temperature, humidity,
satellite cloud altitudes, and radar returns) are simultaneously included in the input.
Predictive power should also improve when many days' data are used in training. A
program of recommended research and development tasks is given for advancing the state
of the art of lightning predictors which use ANS.
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1. Lightning & Missile Launches: A Pilot Study

A lightning strike to a rocket, either on a launch pad or during boost through the
troposphere, could result in a devastating loss. Danger to rocket launches from lightning
first came into prominence when the Apollo 12 Saturn V vehicle was struck twice, at
altitudes of 2 and at 4.2 km (Brook et al., 1970). The second stroke initiated a rapid
tumbling of the inertial navigation subsystem which would have terminated the mission but
for the lucky fact that this subsystem was not in use at that time. The loss of a
communications satellite atop an Atlas Centaur rocket represented a loss of some $160
million (Wilford, 1987; Doherty, 1987). There is also danger to fueling crews and other
ground assets. This situation has led the USAF, NASA and NOAA to consider various
means for reducing the lightning threat.

1.1. Coping with Lightning

Both structural and electrical damage may occur due to lightning striking a rocket
just before or during launch. In the first type, the rocket body and its ionized gas trail (the
rocket exhaust) acts as a 'stationary discharge channel' in which excessive currents bum
out circuits and structural pieces. In the second type, rapidly changing magnetic fields due
to nearby lightning strokes causes EMP (electromagnetic pulse) damage to circuits. Either
type of damage can be reduced by several approaches.

Efforts to cope with the potential of lightning damage appear to fall into one of
several approaches:

(1) Prevention of Damage when Struck - Prevention by better design,
documented by Gabrielson (1988), can be attained using lightning rods and
otherwise heavily shielded installations. In 1982 the shuttle launch tower was
protected from a 29 kA stroke which was grounded by a lightaing rod
protection system (Anon, 1983).

(2) Avoidance of Being Struck - Avoidance methods may be classed in either
flexible or non-flexible approaches. Historical averages of local stroke aciivity
can be used to show which locales ought to be avoided. Historical averages are
of no help when dealing with an existing facility such as The Kennedy Space
Center (KSC).

'Avoidance' could be aided by time-dependent predictions which KSC
operations personnel might use in positioning the rocket and scheduling
launches. One time-dependent approach is the adherence to an inflexible policy
of waiting for 'perfect' conditions (clear sky, low humidity, etc.). Limiting
launches to 'perfect' conditions unnecessarily sacrifices valuable launch
windows, such as those controlled by astronomical events.

A more flexible approach is preferred. One can imagine the value of high
credibility predictions (e.g. >70% chance of a strike at area [ijI in I to 2 hours)
which vary with time (i.e. are 'flexible') as environmental conditions vary.
This type of approach, were its credibility proven, would provide KSC
operations with a rational basis for making decisions as to how to avoid
damage.



Mr. William Jafferis, a NASA program manager, emphasizes the need for lightning
forecasting over the coming 1/2 hr to 3 hr interval at KSC (Fincher, 1988). In sum, a
method for providing time-dependent stroke predictions is clearly of interest.

1.2. Approach of the Pilot Study

The investigation of a time dependent prediction method using artificial neural
systems (ANS) for Kennedy Space Center (KSC) is the subject of this pilot study. KSC is
a particularly challenging launch locale for protection from lightning sir -- it is one of the
most active lightning strike areas in the United States (Doherty, 1987). The attainment of a
prediction capability that is comparable to the current state of the art using ANS is the goal
of this study. Success in this effort would encourage further development of ANS
techniques for building lightning predictors. Two considerations recommend the use of
ANS (often termed 'neural networks'). The first is that one can train a useful neural
network even though our understanding of lightning physics remains incomplete. The
second is the suitability of ANS to the prediction of future events. These two topics are
dealt with in the next two paragraphs.

The extensive data sets at KSC and the partial knowledge of lightning events makes
ANS a suitable tool for building a lightning predictor. This situation is well described by
Caudill (1989): "Neural Networks are extremely valuable for the situation where we don't
know exactly what features are important, but we do have an idea of some likely ones.
When this situation occurs, we can shorten the training needed by the network (sometimes
substantially) by setting up a preset bias toward the features we think are important. This
method is often performed when the network designer has some domain knowledge of the
problem being attacked, and it generally results in better network designs and much faster
training. And in some problems the network designer knows nothing at all about the
problem, so the network has to build the feature detectors from scratch, or rather from a
random set of weights. Such a network could work very well, assuming an appropriate
architecture for the problem is at hand, although it may take longer to train than if the
designer gives it a head start." Therefore, as some understanding of the current knowledge
of lightning is valuable in building ANS, we discuss the phenomenology of lightning in
section 2.0.

Weather is often viewed as a chaotic time series with underlying 'attractors' or a
deterministic 'map' conveying the immanent meteorological physics. We have, in the
previous paragraph, conveyed the notion that, with some understanding of the knowledge
domain under discussion, a good first cut neural network architecture (nodes and link
topology) can be achieved. Lapedes and Farber (1987) have shown the value of ANS used
for predicting the future behavior of complicated systems which appear to behave'chaotically'. Examples of this type of 'deterministic chaos' are turbulence in fluids,
chemical reactions, plasma physics and weather. Lapedes and Farber conclude that
nonlinear ANS perform well in this application as they build very good approximations of
the underlying maps. Performing well means, for Lapedes and Farber, that the ANS
provided 'excellent prediction of complicated, "random," time series'.

A final, compelling consideration for choosing ANS in this pilot study is the
evaluation of the possibility of making a weather data analysis tool which runs on 'off-the-
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shelf hardware (a Macintosh Ilx)l. With a suitable software interface, the design of which
has been guided by meteorologists, a competent meteorologist (not a computer scientist)
would be able to use this data analysis tool in his/her own office to carry out research and
build predictors using his or her own data.

This study had as its primary goal the examination of the feasibility of training ANS
for the prediction of lightning strikes at KSC. Secondarily, some features of a prototype
tool for the use of meteorologists who wish to analyze large masses of data were
investigated. Last, recommendations for subsequent effort were prepared.

2. Prediction: State of the Art

The state of the art of predicting lightning strokes is based upon knowleage of the
physics of charged clouds and familiarity with meteorological data from the locale under
investigation. Lightning physics reviews are available (Williams, 1988; Uman, 1988,
1989). Available prediction studies are described which will be used to benchmark the
results of this study.

2.1. Physics of Lightning

Cloud to ground lightning strokes from convection cells that appear as
thunderclouds (cumulonimbus) are considered here (see Figure 2.1). Snowstorms,
sandstorms, volcanic eruption clouds, and even clear air conditions have produced
discharges (Gabrielson, 1988); these types of lightning are not discussed.

Vertical winds leading to the collision of particles with a consequent charge
separation are the ultimate source of electrified clouds. There is no complete theory of
lightning discharges. Many physical aspects of lightning are not well understood and are
controversial (Anon, 1989b). Extensive anecdotal information and quantitative collections
of related meteorological data are available. An understanding of the general behavior of
lightning is invaluable in designing ANS for predictors of lightning strokes.

A number of relevant observations about the physics of lightning will be valuable
for this study. Thunderclouds are usually isolated 'cells' or lines of cells associated with
advancing cold fronts (Uman, 1986). The isolated cell, shown in Figure 2.1, follows a
typical life cycle: cumulus, mature, and dissipating. As sun-driven thermals rise, humid air
cools at a lapse rate of 3.3 F per 1,000 feet of altitude while surrounding dry air cools at
5.5 F per 1,000 feet of altitude. The lower cooling rate of humid air results from heat
released as water vapor condenses. Under these unstable conditions the humid air
continues to rise until the atmospheric temperature profile reverses at 15 to 20 km and the
cloud top flattens out in its characteristic 'anvil profile'. The upward motion is termed
vertical convection and the cell is sometimes called a 'convection center.' While central to
the storm development, vertical air flow is not measured by Doppler radars that follow the
horizontal flow or 'convergence' winds (see Figure 2.1). Convergence has been emerging
as a key parameter in lightning forecasting.(Lopez et al., 1986a and 1986b).

During formation, the surface (sometimes termed 'low level') winds 'converge' at
the bottom of the cloud (see Figure 2.1) and a cumulus cloud rapidly rises to mature as a
cumulonimbus over a period of an hour. At maturity, precipitation and lightning

l Macintosh is a registered trademark of Apple Computer, Inc.
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discharges are typically most plentiful (Watson et al., 1987, 1989a and b). In its final
stages the cloud collapses, strong surface wind divergence appears and the cell disperses in
about an hour. Advancing cold fronts will bring longer precipitation periods because a line
of cells may pass overhead. It is expected that a lightning prediction method will benefit
from distinguishing between cells (which evolve overhead) and cold fronts which rapidly
pass through one's area. These two regimes are for calm weather (in which stationary cells
develop in one area) and a moving weather (front) 'flow regime'. At KSC the moving flow
regime further subdivides into direction (NE, SE, SW, and NW) with markedly differing
lightning flash results (Holle et al., 1988).

15 -70

Altitude Air Temperature
km degrees C

10 + -50

5 " - -5

Electric
Converging Fields

Surface Winds \ 4 4 43
00 J_

Figure 2.1 Distribution of Thundercloud Charges (Milan 1963) with an Overlay of the
Converging Surface Winds which Feed the Upward Flow.

Thunderclouds contain vertically moving air columns in which rising and falling
particles collide leading to a separation of charges (Williams, 1988). The separated charges
build up in restricted regions, shown in Figure 2.1. As charged clouds form or pass over a
site, changes in the earth's electric field will occur. These can be routinely monitored using
'field mills.' Lightning is the discharge of the charge surplus to the earth or to other
regions within the cloud. A discharge to the ground is initiated by downward 'stepped
leaders' which ionize channels which subsequently carry upward 'return strokes.' Return
strokes carry much larger currents than the stepped leaders and are the principal source of
the flash and thunder. Thunder results from the explosion of air heated by the return
stroke. Lightning discharges also occur within clouds (intra-cloud) while discharges
between clouds (inter-cloud) are infrequent (Uman, 1986). In the temperate zones the
preponderance of all flashes are within clouds.

A wide range of specialized instruments is used to collect needed meteorological
data. Surface wind convergence is deduced from anemometer networks, electric field
behavior from field mills, precipitation from weather radar, and cloud top altitudes from
weather radars and satellites. Rapid response optical detectors have recorded lightning
spectral pulses in central Florida (Cundiff et al., 1986). Lightning flashes have been
counted and their currents measured by networks of detectors intercepting their
electromagnetic (EM) radiation. Transportable lightning EM monitors are available, such as
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Honeywell's LSZ-850 LSS (Lightning Sensor System) for aircraft protection (Anon,
1988). Flashes or strokes can be located by radio direction finders (giving rise to 'sferics'
data bases) and, recently and most importantly, by networks of wide-band, magnetic
direction finders or time of arrival systems.

Modem lightning detection and display systems are impressive and extensive,
rendering substantial service to scientific and commercial weather programs. A French
company, Dimensions, a spin-off of the French national institute for aerospace research
(ONERA), produces SAFIR (Anon 1989c). This system consists sensors which are nodes
in a network that warns of thunderstorm and lightning hazards over ranges up to 300 km.
SAFIR is in operation at the European Space Center in Kourou, French Guiana. In the
United States, a company specializing in such devices is Lightning Location and
Protection, Inc., (LLP) of Tucson, AZ. The R-SCAN Company participated in a national
lightning detection network and evaluated a time of arrival system, LPATS (Lightning
Position and Tracking System) for cloud-ground (CG) reporting (Lyons et al., 1988).
This system is described (Orville et al., 1983) and its scientific output is discussed in many
sources (e.g. Williams and Orville, 1988). Atmospheric Research Systems, Inc.,
developed LPATS and operates a prototype network in Florida. These networks provide
accurate records of strike location, time and strength over ranges of several 100 km.

2.2. The Art of Lightning Prediction

Notwithstanding the limited understanding of lightning, its dramatic aspects and
potential for damage have led to many attempts to predict when and where lightning will
occur. It is worthwhile to briefly discuss two topics. First, the brief review of the physics
of thunderstorms given in the previous section leads naturally to consider the measured
parameters which might have value for predicting lightning strikes. There is an extensive
body of work on thunderstorm statistics and some of the theories advanced for predicting
lightning strikes. These provide a benchmark for judging the quality of predictions.

2.2.1. Predictive Parameters

Complementary with the physics of thunderclouds there are available many
observations that provide some ideas on how to build a prediction technique. Locale and
local structures have long been known to 'attract' lightning strikes. Ancient legend
observes that sacred locations and plants favored by the Gods were more frequently hit by
lightning and therefore Zeus of the thunderbolt favored the oak, an observation confirmed
by measurement (Frazer, 1922). Tall, conductive structures (towers, trees, mountains,
lightning rods) are associated with frequent lightning strikes. The Empire State Building is
hit 20 to 25 times each year (Anon, 1989a). Modem versions of such locale maps of the
frequencies of lightning strikes or thunder days are used to estimate the a priori probability
of lightning strikes at specific locations as shown in Figure 2.2 taken from Uman (1986).
Early 'thunderstorm day' data are in Anon (1952) while recent 'flash density' maps are
given in Holle et al. (1988).

As described in section 2.1, the thundercloud cross section (Milan, 1963), is a
kind of chimney in which air rises vertically carrying smaller particles. Larger particles
falling past the rising particles create static charges which build up in the cloud. At ground
level air 'converges' upon the base of the thundercloud chimney and this wind convergence
is a precursor of thunderclouds (Watson et al., 1987), where the 'convective growth' is
'rooted in the boundary layer' in Florida (Watson et al., 1989a). The taller the 'chimney',
the more intense the displacement of charge by stronger updrafts. The taller the
thunderhead, the more likely the occurrence of lightning strikes. This has led to the
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suggestion that satellite IR maps used to measure cloud top altitudes would be useful in
lightning prediction. Overall the spatial distribution of the flashes is related to the cloud
charge distribution, the motion of the cloud, and the inherent spatial variability of strikes
from a common charge center (Krider, 1988).

The thunderstorm days of Figure 2.2 can be used to make an a priori time averaged
prediction of lightning strikes. Time averaged predictions of lightning strokes per square
mile per year are made using the the mean number of thunderstorm days per year, Nt.
Observations show that the number of lightning strikes (cloud to ground) per square mile
per year is 0.05 to 0.80 times Nt (Uman, 1986). At KSC, where Nt = 90, one expects a
historical rate in the range of 4.5 to 72 strikes per square mile per year. The range in Nt is
modified by topography (for examples see Lopez and Holle, 1986). A historical Tate is
useful for choosing sites for facilities, but is not useful for adjusting rocket launch
operations which are sensitive to weather changes. Other parameters must be taken into
account such as local time. Lopez and Holle (1986) show that the preponderance of KSC
flashes occur from 1400 to 2000 local time. Locale affects lightning strike maps. In the
KSC rgion, Holle et al. (1988) report an average of up to 15 to 25 flashes per square mile
per year based on three years of data.

5 1 2020

40 
20

~30

40

70

80

Figure 2.2 Map of Mean Number of Thunderstorm Days, from (Uman, 1986).

The construction of a lightning predictor should use lightning stroke 'precursors'
based upon the following topological and meteorological data:

(1) Flow regime (calm, NE, SE, SW, and NW);

(2) Humidity of surface air mass;

(3) Locale and local structure,

(4) Wind convergence;

(5) Altitude of thundercloud tops;

(6) Electric fields at ground level.
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It would be encouraging if one or more of these meteorological data sets were used in
showing an ability to predict future lightning strikes. This pilot study uses wind total area
divergence data to lay the ground work for more sophisticated networks simultaneously
using several types of meteorological data sets (see recommendations in 3ection 5.2.)

2.2.2. Predictive Methods

Prediction of lightning strokes has been of two types: (a) a priori predictions based
upon historically based, time-averaged behavior, and (b) dynamic predictions which, being
based upon current meteorological data, are responsive quantitative predictions. An
example of an a priori time averaged prediction has been given in section 2.2.1 in the
estimation of the annual thunderstorm days at KSC. Recent work has focussed on more
time-responsive predictions using larger and more complex data sets (e.g. radar reflectivity,
wind convergence). Some severe storm, thunderstorm, and lightning prediction projects
are listed in Table 2.

Austin (1985), citing many of the workers in Table 2.1, gives a guardedly
optimistic prognosis for forecasting using pattern-recognition of synoptic data sets.
Watson et al. (1987), based upon their 'contingency table', describe their preliminary
results as giving a 1 in 2 chance for forecasting lightning based upon convergence (i.e. data
gathered from synoptic wind measurement networks). Watson et al. (1987) define a
contingency event as "a sustained drop of total area divergence of more than 1.5x10- 4 s-1
for more than 10 minutes" (see also Watson and Blanchard, 1984) This is a substantial
improvement over prediction methods based upon historical rates which do not respond to
the immediately previous weather conditions.

Table 2.1 Studies of Thunderstorm and Lightning Relationships

Individual(s) * Nature of Project

Hu (1963) First ANS trainable forecasting system

Battan (1965) Associates precipitation amount and flash count

Austin & Stansbury (1971) Located lightning by precipitation events seen on radar

Marshall & Radhakant (1978) Lightning indicated using radar precipitation maps

Watson & Blanchard(1984) Divergence and convective precipitation in Florida

Cherna et al. (1985) Satellite lR/visible data for thunderstorm assessments
Watson et al. (1987) Presents convergence/flash contingency table

Holle et al. (1988) Convergence/stroke data correlations with flow regimes

Lampru (1989) Systematic use of ANS for predicting severe storms

Barnes (1989) Prediction of lightning triggered by a rocket aloft
Barnes & Frankel (1990) Study of ANS trained to predict lightning precursors

*Two papers which appear to be relevant but of which copies were not obtained are Bent
and Llewellyn (1976) and Burke (1990).

Forecasters, using a national lightning detection network, project lightning activity
based on viewing maps overlaid with lightning stroke activity which is seen to be moving
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with storm fronts (Lyons et al., 1989). Fincher (1988) has speculated that lightning
prediction will, in a few years, give flash probabilities by locale and time of day. For the
present study, the method of Watson et al. (1987) for predicting lightning strikes as
developed for the KSC region will provide a benchmark against which to compare this
program's results.
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3. Training an ANS Predictor

The design of the ANS for the prediction of lightning required our experience with
ANS, sources of appropriate data sets, and an understanding of the behavior of neural
systems and the physics of thunderstorms. Once the networks were trained, appropriate
and accepted evaluation techniques were used to rank networks by type and training level.
Lastly, attention was given to the design of the man/machine interface which users must
invoke to operate the planned lightning predictor.

3.1. Network Modes and the Uses of Data

There are two modes involved in the use of ANS: the training mode and the actual
use mode (see Figure 3.1). In the training mode, available data are applied to the network,
which then uses learning algorithms to make the desired transformation from inputs to
outputs by adjusting the strength of the dynamic links connecting its processing elements.

Verified Data (Inputs & Outputs Known) Untrained
Network

Training Network
Data Set in

Training

from enso s tFin Network Prdtin/

Figure 3.1 Use of Verified (Well-known) Data to Train and Test an ANS for Predicting
Lightning Strikes Using Subsequently Obtained New Meteorological Data.

Testing the training effectiveness, before actual use, is part of the training mode. In the

actual use mode, the network no longer learns, but rather, it is used to produce outputs
based on new meteorological (the 'met data' in Figure 3.1) inputs. Training periods may
be interspersed with testing periods as the availability of new met data permits.
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During training it is important to keep in mind that data play two different roles in
the ANS as seen in Figure 3.1. The first role data play is as in= (stimuli). Inputs used
during training should be those which are expected to be available when the network is in
actual operation. The second role for data is as outIg.t (responses) during training. In the
backpropagation learning scheme, these outputs are referred to as "target values". During
training, the target value data are used to "teach" the network the output response desired
for a given input. In this study, two different types of data were chosen for use as target
values which resulted in two distinct ANS predictors. First, the occurrence of high electric
field was used as target value, as an indicator both of cloud to ground strokes (Christian et
al., 1989) and as a warning of the danger of triggered lightning (Uman, 1988). Second,
LLP data were used to 'teach' the network to recognize cloud to ground strikes.

Therefore, our ANS predictors were divided into two groups according to the
'training data' chosen (see Table 3.1): (1) electric field predictors, and (2) cloud to ground
strike predictors. An ANS trained to predict cloud electrification would be of value for
quantifying correlations with the input data. On the other hand, the dangers cloud to
ground strikes present to ground personnel, fueling operations, etc., recommended that this
study concentrate on 'training data' (i.e. ANS training 'target' values) consisting of cloud
to ground strikes. Therefore, though it might be harder to attain, an ANS trained to predict
cloud to ground strikes received the emphasis in this study.

Table 3.1. Some Possible Combinations of Network Inputs and Training Data

INPUTS TRAINING DATA

Wind Electric Field

Wind LLP

Wind, Electric Field

Electric Field

Wind, LLP

Electric Field

Wind, Electric Field

Divergence

Wind, LLP

Divergence

Wind, Electric Field

Divergence,

Electric Field

Wind, LLP

Divergence,

Electric Field

Input data for the network could include the wind data, the electric field data,
nearby LLP data and 'products' of these or other data. 'Products' refers to results of

10



processing the raw data in some way to derive a presumably superior quantity. One such
product which has been shown to be of value is the wind Total Area Divergence (Watson et
al., 1987). This product has been shown to predict 50% of cloud to ground strokes at
KSC. The first ANS we tried used only the raw wind data as inputs. Later networks will
include the divergence as input.

3.2. Data Sets

The primary meteorological data obtained from the Kennedy Space Center (KSC)
are the measurements of the Wind Mesonet, the Launch Pad Lightning Warning System
(LPLWS) and the Lightning Location and Protection System (LLP). The first two of these
systems consist of arrays of sensors covering the entire KSC area. The three LLP system
sensors are located outside KSC and cover a much larger area, of which KSC is a part. All
of these data have been recorded and archived on a regular basis by a private contractor,
currently Computer Sciences Raytheon, Meteorology Section (CSR/Weather). Volumetric
radar scans and satellite imagery for the KSC area exist, but their use is beyond the scope
of this pilot project. Table 3.2 summarizes the data available for this pilot study.

Table 3.2. Weather Data Available for this Study.

Sensor System Data Type Data Availability Data Rate

Wind Direction 12, 30, 35, 54, 60, 162,

204, 275, 295, 394, 492

feet

Wind Speed 30, 35, 54, 60, 162, 204,

275, 295, 394, 492 feet

Wind Mesonet Temperature 6, 12, 54, 162, 204, 492 5 minute

feet average

Dew Point 6, 12, 54, 162, 204, 492

feet

Barometric Pressure 6 feet

Humidity 6 feet

LPLWS Electric Field 31 sensors at ground level 3-5 samples

at 10Hz

LLP Lightning Flash Southern Florida irregular

Latitude, Longitude 1 7500/hr max.

The Wind Mesonet consists of an array of sensors mounted at various altitudes on
utility poles or other available structures. These sensors measure wind speed, wind
direction, dew point, humidity, barometric pressure and temperature. Most of the 53 speed
and direction sensors are at 12 and 54 feet above the ground. Temperature is measured
primarily at 6 feet and 54 feet. These wind data are measured several times per second, but
only the five minute average values are available in the archives.
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The hypothesis upon which the lightning prediction methods used as benchmarks
here are based is that thunderstorms induce dramatic changes in wind flow patterns. The
value of wind data can be appreciated by considering the work of Watson et al (1987). In
their work, a "product" of raw wind data has been derived and shown to have value in
predicting lightning strokes. This product is called the rotal Area Divergence'. It is a
measure of the rate at which wind is flowing out of the KSC area. The relationship between
the Total Area Divergence (i.e. the wind field) and thunderstorm electrical activity (i.e.
electric fields) is schematically illustrated in Figure 2.1. In this figure the surface winds are
shown flowing in (a negative Total Area Divergence) toward the base of the thundercloud.
This air mass subsequently rises vertically leading to charge separation and charged regions
which lead to the vertical electric fields shown in Figure 2.1.

At this date, total Area Divergence is the best single lightning predictor available at
KSC at this time. Our results are compared with those of Watson (1989c) who provided us
with data tape containing his calculations of the Total Area Divergence for the period we
have studied. We have recommended that Total Area Divergence be among the inputs to the
version update of this ANS.

The LPLWS system consists of 31 sensors, often referred to as 'field mills', which
measure the vertical component of the local electric field. If properly placed away from
metal structures on the ground, the data from these sensors should give a good indication
of the existence of cloud electrification overhead. Cloud electrification data have two
values. First, they provide a near-term warning of the danger of cloud to ground strokes.
Second, they are an indication that aircraft and rockets launched into those clouds may
trigger lightning. When examined in detail and compared with each other, these data can
also be used to locate nearby cloud to ground lightning flashes.

The LPLWS sensors sample the electric field at 10 Hz, but since the installation of
the Cyber 860 computer system at KSC in 1985, only 3-5 samples per second have been
archived. Even at the reduced data rate, the volume of LPLWS data makes it impractical to
store all of the data indefinitely. Periodically, the volume of stored data is reduced by KSC
personnel. All data are discarded except during periods beginning three hours before and
ending one hour after the issuance of a Meteorological Watch Advisory. During a visit to
KSC in February, 1989, it was learned that the last time this had been done was May,
1988. Therefore, as 24 hour data were still available after May 1988, data during the
succeeding summer, in July 1988, were used in this study.

The LLP data are derived from three magnetic direction finders which respond to
cloud to ground lightning strokes. The strokes' latitude and longitude are determined by
triangulation. These data cover most of southern Florida and capture an estimated 80% of
all flashes (MacGorman and Rust, 1988, Barnes and Metcalf, 1988). The LLP system
does not respond to intra-cloud lightning, nor to strokes which have a large horizontal
component in their path to ground.

After consultation with NASA personnel, the Air Force Air Weather Service and
CSR/Weather, a two week period was chosen during which there were archived data of all
three types for days when there was thunderstorm activity and for days when there was
none. This period was July 12 to July 27, 1988. On some of the data tapes, these days
were denoted by their Julian Day sequence number: 88194 to 88214. In the Julian system,
January 1, 1988, would be 88001 and December 31, 1988, would be 88366.
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3.3. Preprocessing

As with any project which involves analysis of field data from another facility,
significant effort was required to edit the data and put it into the proper form for analysis.
The cooperation and able assistance of CSR/Weather, NASA and Air Force personnel were
essential to the completion of this phase of the project.

The Wind Mesonet data and the LLP data can be obtained from KSC on tape in
ASCII (American Standard Code for Information Interchange) format. In this form, the
data can be examined by any text editing software. The LPLWS data are voluminous. In
ASCII format, a single day's data occupy eleven 9-track tapes. On the other hand, in
binary form (computer internal representation) the storage of one day's data requires only
one tape. Binary format is thus the form of choice for the LPLWS data. Of course, in this
form, the data cannot be examined by word processing software.

Use of the LPLWS data was complicated by several factors. The least difficult of
these to deal with was the fact that the Cyber computer with which they were processed at
KSC uses 12-bit bytes and 60 bit words, while the Macintosh uses 8-bit bytes and 16 or 32
bit words. Much more difficult was the fact that the Cyber computer system inserts a
variable number of housekeeping words at various (unpredictable) points in the data on
tape. Failure to allow for these words results in incorrect reading of the data.

The KSC weather data are stored on 9-track magnetic tapes. The data are not
arranged in the standard tab-delimited form which the LightningLynx©1 system requires its
data to have. Therefore, stand-alone applications have been developed which convert from
binary to ASCII form as necessary and reformat the data into the tab-delimited form. To
facilitate their use the data processing system includes a Qualstar model 1054 9-track tape
drive. This model is equipped with a standard SCSI (Small Computer System Interface)
connector which allows direct transfer of tape resident data to the Macintosh IIx internal
disk drive. The 9-track tape drive and the conversion applications with the
LightningLynx© ANS system comprise the Geophysics Laboratory lightning predictor
system.

3.4. Wind/Lightning Networks

The ANS networks used are three-level backpropagation designs as described in
Rumelhart and McClelland (1986). The number of input nodes is determined by the
arrangement of the types and amount of meteorological data sets chosen for training the
network. In this study 106 input nodes are typically used. The hidden layer nodes are
minimized - within the constraint that network performance is not critically limited. Lastly,
64 output nodes were used, corresponding to 16 lightning strike areas (which are termed
'tiles' here) each with 4 time intervals for prediction. At KSC there are 16 square tiles each
of which is 4.58 nautical miles on a side. The total field covered by the 16 tiles is 21
nautical miles on a side.

The networks are designed to be trained to the correlations among a variety of
meteorological events. Two types of networks were studied: (1) surface winds to electric
fields (E Fields), and (2) surface winds to lightning strokes. The data used have a direct

1 "LightningLynx 0" is a copyright of KTAADN, INC., reserved 1990
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effect on the network layout, i.e. the number of input, hidden, and output nodes. Because
of the meteorological sensor arrangement at KSC, the networks used here typically possess
106 input nodes as determined by the wind tower grid. They possess a varying number of
hidden nodes as determined by the performance requirements. Lastly, these networks use
64 output nodes corresponding to the 4 time windows for the 16 areas ('tiles') defined for
the KSC region in this study, see Figure 3.2.

PREDICTION TIMES (MINUTES FROM NOW):
60-120L 1 30-60

15-30

0-15

34

78

I16

"TILES"

Figure 3.2 Tiles and training periods used in this study. One network output node is
assigned to each of these 64 tiles.

ANS training reduces output errors (defined as the difference between actual and
required responses) by a steepest descent method. Training proceeds in a sequence of
'passes' each of which starts from the level of learning achieved during the previous pass.
The metric used in this method is a summary 'pass error', defined here,

Pass Error = Ir (network output - target value) 2  (3.1)

where the summation ranges over all data samples and all output nodes. Generally, the
pass error decreases toward an asymptotic level as the network approaches its maximum
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performance. If better performance is required, networks with more hidden nodes can be
formed and trained.

The first ANS constructed used the raw wind speed and direction as inputs and the
electric field as output. For each wind sensor, the wind speed and direction were used to
generate two network inputs: the wind components in the north and east directions. This
network was trained to predict electric field values exceeding 500 V/m at the ground. Data
used were from July 18, 1988. An important result of working with this combination of
data was that a three layer backpropagation network with fewer than 70 hidden layer nodes
would not converge to a stable state, while one with 70 hidden nodes would learn stably.

The number of hidden nodes is usually felt to represent the 'features' in the physical
process under study. That is there appear to be a number of approximately 70 features
connecting the wind field with the electric field. Several approaches might be used to
reduce the number of hidden nodes. For example, if the wind divergence is more directly
connected to the electric field, then use of divergence might usefully reduce input and
hidden nodes and reduce the training time required.

3 Layer Network
70 Hidden Nodes

Wind Data Input from 7-18-88

Pa 240 Untrained Network

s 220-
200 Training at 126 passes
180
160

e 140 Training at 348 passes
r 120--
r 100
0 80 . III

r 0 50 100 150 200 250 300 350

passes

Figure 3.3 Training History for a 106/70/64 network using wind as input and electrical
field as target value. As Pass Error A proaches a Constant Value Training is Completed.

The pass error history for a 106/70/641 network is shown in Figure 3.3. Here
history is given in the number of network training passes the network underwent. On the
Macintosh Ix each pass required about 4.5 minutes. The overall decrease in pass error is
indicative of continued improvement of the network performance with each succeeding
pass. Note that the network training was stopped at pass 126 for testing at one level of
performance and later resumed to achieve better performance (i.e. lower pass error). This
shows that predictive ANS may be intermittently trained at higher performance levels as
new weather history is presented. When training with fewer hidden nodes, even as many

This erminology is "input node number/hidden node number/output node number"
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as 65, oscillations in the pass error were seen while no substantial reduction or
improvement in network performance.

The second ANS type used the wind data for input as before, but used LLP data of
cloud to ground lightning strokes to assign target values. Since very few cloud to ground
strokes occurred on July 18, 1988, data from July 24 and 25 were used for training these
networks. Remarkably, much smaller networks could learn stably when LLP data were
used for assigning target values. The smallest such net had only 6 hidden layer nodes.

The training and evaluation of a large number of networks was required to reduce
the results to those given here. A major improvement in the wind field to lightning strike
ANS predictor performance is expected when larger sets of weather (numbers of days for
the same weather regime) are used. Another improvement is expected when network
layouts include several input data types simultaneously (e.g. wind, electric field, satellite
cloud top altitudes, and others).

3.5. Network Interface

A network interface, sketched in Figure 3.4., helps evaluating alternative layouts
for ANS predictors. Users of the projected system must deal with several complex entities:
extensive data bases, training and retraining large ANS and the evaluation of

€USER INTERFACE el--DTABSS

%..,h,..--. -- \ I WindoL

Figure 3.4 Lightning Predictor User Interface Showing its Thre Principal Functions

performance using accepted statistical concepts. These jobs are handled on a Macintosh llx
desktop computer through a comprehensive man/machine interface prepared in this study.
The interface is a screen presentation system which provides the following features:

(1) Convenient program interaction through the use of windows, menus and mouse,
(2) Direct access to large data sets,
(3) Creation, training and retraining of alternative ANS designs, and
(4) Presentation of ANS predictions with standard evaluation measures.
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This lightning prediction system is called LightningLynx© and it is built on the Macintosh
lIx computer with a flexible user screen (see Figure 3.4). A 'bare bones' (Version 1.0) of
the interface is provided. The LightningLynx© interface adheres to Macintosh standards

r * File Edit Map Status Net Run 3:02:26 PM
Lightning Prediction Status KSC 21 m 21 Nautical Miles

Area Predctons Llhtnt•
Networkl t!!!Lel TW Me

I None on
2 Now Non,
3 NoneNon
4 None None
5 l/2hr NO".
6 Non. Non.
7 None. None.

o Non. None.

S13 pa None C 61 n

Sno msSensor Status00

StmsorNtmesSonsw Network "

Status input 0

54VT 0419 Oeonal 054-VT 6917Oprtoa

30VT417 Operational 0
54VT 0415 Operationl [

30VWT *5J13 Operaionl 11 KTAADH Lightning PredictLion

30VT 0312 operational 11
30VT" 0511 Operaionall 0] Pass Ntumber Pass Error

Figure 3.5. Lightning Prediction Screen Display with Its Windows as the User Sees.

via a conventional Macintosh windowing system. The user, with keyboard and mouse,
can gain access to data files, networks and evaluation methods and then initiate training or
testing runs. The user, through the interface, can request data files of the following types:

(1) Meteorological data sets (wind, electrical fields, etc.),
(2) Networks (general types and specific trained networks), and
(3) Network performance output files

The interface software allows the user to create new networks for training.
Networks may be saved on magnetic media at any stage of training through a menu item.
Catalogues of ANS predictor systems can be built for various weather regimes at a
particular site. Saved networks may be recalled, again through a menu item, and trained
further or used as is for lightning prediction. It is expected that user comment will aid
further interface development.
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4. Network Scoring

Appropriate and accepted evaluation techniques are used to rank the performance of
the trained ANS used in lightning prediction. These are presented and applied to a range of
trained ANS predictors in the following sections.

4.1. Evaluation Method

Evaluation of networks in various stages of training must be carried out using a
rigorous, well-accepted methodology. The "receiver-operating-characteristic" (ROC) graph
(Green and Swets, 1966) provides such a technique. The ROC graph is based upon a 2 x
2 stimulus-response matrix such as pictured in Figure 4.1 in which the known stimuli are
row entries and the perceived response options are column outputs. The capital letters (A,
B, C, and D) represent the total number of times each type of event occurred. For
example, A is the total number of times a lightning stroke occurred in a specific tile in a
specific time frame as it was predicted to occur. The conditional probabilities (e.g. P(Yly))
are shown underneath these total numbers of specific occurrences given by the names
underneath the conditional probabilities.

Predicted Alternative

yes no

A B

yes P(Yly) P(Nly)

Hit Miss

C D

no P(YIn) P(NIn)

False Alarm Correct Rejection

P(Yly) + P(NIy) = 1 and P(YIn) + P(NIn) = I

Figure 4.1 Stimulus-Response or 'Contingency' Matrix for Evaluating Networks

The upper left-hand box gives the conditional probability of the network responding
that lightning will occur when it actually occurred. The lower right-hand box is the
conditional probability of the network responding that lightning will not occur in a situation
in which it indeed did not occur. A good lightning predictor would have high probabilities
in these two boxes. The lower left-hand box is the probability that the network would
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predict lightning when it did not occur - the probability of a false alarm (PFA). The upper
right-hand box is the probability of predicting no lightning when it did occur.

A decision evaluation system can be built on conditional probabilities. P(Yly), the
probability of the system predicting Y given that y is observed. The probability that the
decision system response is Y to weather stimuli, y, applies to the period, t to t+dt, and
some specified area, da. If Y is not the response we must choose N. For this reason the
two equations hold:

P(Yly) + P(Nly) = 1 and P(YIn) + P(NIn) = 1 (4.1)

This allows one to plot all the consequences of the decision making on a two degree of
freedom graph, the ROC graph which is pictured in Figure 4.2.

In evaluating lightning detection networks the behavior of the output nodes is used
as a scoring measure. An output node 'activation' level, aX, will vary from 0.1 (event
predicted not to happen) to 0.9 (event predicted to happen). A threshold T has been
adopted for decision making. If the activation level of an output node is greater than T, a >
T, the positive prediction Y is declared; otherwise, T > cc, a negative prediction N is
declared. When evaluating the network, all predictions are compared with the known
results (i.e. observations) y and n in a contingency matrix (see Figure 4.1) as T varies.

Even in high activity regions, lightning strikes are rare. It is important for the
prediction scheme to correctly predict non-lightning events which numerically dominate
stroke 'events'. A lightning predictor would have a high overall correct percentage if it
always predicted 'no strike'. This is the 'play the winner strategy' (Stanski et al., 1989).
The successful predictor must predict the numbers of lightning events. So while a low
false alarm rate is desirable, it is not indicative of predictive power when true alarms are
rare.

Measures of performance are adapted based on the following definitions taken from
the contingency matrix of Figure 4.1 (Stanski et al., 1989) from which the following
performance measures can be defined,

Probability of Detection, PoD = A/(A + B) (4.2)

Probability of False Alarm, PFA = C/(C + D) (4.3)

Miss or Probability of False Dismissal, PFS = B/(A + B) (4.4)

False Alarm Ratio, FAR = C/(A + C) (4.5)

Correct Rejection = D/(C + D) (4.6)

The difference between the Probability of False Alarm PFA defined in Eq. (4.3)
and the False Alarm Ratio FAR in Eq. (4.5) is significant. The PFA is the conditional
probability of (false) positive prediction given that the event was not observed. On the
other hand, the FAR is the ratio of false predictions of the event to all predictions of the
event. The FAR measure is only sensitive to predictions and is a good measure of the
system performance only when false alarms are very undesirable. On the other hand, the
PFA is a better measure of the likelihood of the actual events and should be used for
decision making.
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Two success and skill measures are used. The Critical Success Index (CSI)
introduced by Donaldson, et al., 1975, is a measure of relat've accuracy since it shows the
ratio of predicted cases vs. both predicted and/or observed cases,

CSI = A/(A + B + C) (4.7)

The range of CSI values extends from 0 to 1. CSI differs from FAR and POD because it is
sensitive to both false alarms and missed events. To evaluate the performance of the
network the Heidke skill score is used (Stanski et al., 1989). The Heidke skill score values
range from -00 to +1. Plus one indicates the perfect score and zero means that the number
of correct predictions equals the number of expected correct predictions. Thus the skill'subtracts" the number of correct predictions which would have been obtained merely bychance.

Skill = [A + D - (Yy + Nn)/M]/[M - (Yy + Nn)/M] (4.8)

where M is Total Number of Observations:

M=A+B+C+D (4.9)

Y=A+C (4.10)

N=B+D (4.11)

y=A+B (4.12)

n=C+D (4.13)

The values in the contingency table of Figure 4.1 are used to compute conditional
probabilities in a receiver operating characteristic (ROC) graph illustrated in Figure 4.2.
Overall network performance depends on the value of the threshold, T, chosen by the user.
If T is large then fewer events will be classified as lightning strikes, decreasing PoD and
PFA at the same time. That would be indicated by a point in the lower left side of the ROC
graph of Figure 4.2. Small T will lead to high false alarm rates in the upper right-hand
corner of the graph. For a given network the ROC is a curve between these two extremes.
Setting T is the responsibility of the user who must balance the benefit of a correct
prediction against the cost of a mistake.

When the probability of detection is equal to the probability of a false alarm the
decision-making process is doing no better than it would by guessing. This situation is
shown by the straight line c in Figure 4.2. For a lightning prediction system, one expects
that curve c would be the performance of an untrained network. Increasing levels of
training are shown by the curves a & b which move toward the upper left-hand comer of
the graph. For a given level of training and a series of threshold values (TI, T2, and T3),
one can estimate the ROC curve as shown by b in Figure 4.2. The integral under the ROC
(the shaded area) is a measure of the network's performance. For c the shaded area is zero
corresponding to chance predictions or 'shooting in the dark'. To find an optimal
threshold, To, the user must estimate the benefits and losses of correct and incorrect
predictions, respectively. Having trained a network, one adjusts thresholds until the best
balance is struck between these benefits and losses. An important ANS feature is that, with
the resumption of training, skill level might be incrementally increased at a local
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observation site. It is important to consider the overall process of retraining and resetting
thresholds in the ultimate local user's interface to the processor.

The scoring of the present lightning predictor contains some elements adapted to the
geography and future time intervals of interest for KSC. The geographical breakdown for
KSC is shown in Figure 3.4. For each geographical subdivision, the network has been set
up to predict lightning activity in four future time windows. Prediction for the interval
from the present to 15 minutes in the future is called the 'nowcast.' Predictions for the
interval from 15 minutes to 30 minutes is called 'Time 1/2'; between 30 minutes and 1 hour
is 'Time 1'; and between 1 hour and 2 hours is 'Time 2'. Statistics for each prediction
window are separately compared with each time in the future.

1.0
b

PoD T

T1

0.0
0.0 PFA 1.0

Figure 4.2 ROC Graph Showing the Predictor's Performance at Several Thresholds (TI,
T2, and T3) at one Level of ANS Training, b, among Several Levels (a, b, and c).

The scoring system is conservative. In the event that the network predicts lightning
activity for 'Time 1/2' and no lightning stroke occurs in the 'Time 1/2' window the
network scores zero.. This is so even if subsequently a lightning stroke occurs for that
geographical region at 'Time 1'. Generally, the scoring gives the predictor lower
performance scores than were it credited with subsequently observed strikes for any of its
time windows as it is penalized for predictions which are 'too early' or 'too late.'
Predictions for specific time intervals and tiles are used to construct contingency tables as
the basis for comparison with alternative lightning prediction systems.

4.2. Predictor Performance

The literature on the performance of mathematical correlation schemes for predicting
lightning includes the work of Watson and Blanchard (1984) which associates lightning
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with wind convergence. A quantitative method of Watson et al. (1987) is used in this
study. Essentially, a lightning strike is predicted when wind divergence is less than -1.5 x
10-" sec-1 for at least 10 minutes in the KSC area. This criterion was used by Watson et
al. (1987) to create a contingency table and will be used as a benchmark for judging the
results obtained here using ANS lightning strike predictors.

The lightning strike predictions of this study are compared with the results of
Watson et al. (1987) in Table 4.3 e-xpressed in the scoring parameters Section 4.1.
Lightning prediction using ANS is shown to reach a performance level comparable to that
obtained by Watson et al. In addition, it is important to establish that the assumptions and
measurement conditions of the Watson et al. (1987) study and this study are sufficiently
similar. This comparison is shown in Table 4.4 where it is seen that the parameters of the
two studies are sufficiently alike. In conclusion, the predictions obtained using trained
artificial ANS (as a means for building a lightning flash predictor) and the predictions
provided by the state of the art are close in overall performance measures.

Table 4.3 Comparison of the Results of Watson. et al. (1987) and Those of this Study.

Performance Measure This Study Watson, et al.

(1987)

Probability of Detection 0.41 0.47

Probability of False Alarm 0.57 0.56

Critical Success Index 0.26 0.29

Table 4.4 Similarities and Differences of the Two Studies

Aspect of Study Watson et al.(1987) This Study
Period Studied 42 Days in 1983 7/24,25/88
Prediction Area Mesonet 16 Tiles

21x21 sq. nmi.
Wind Sensors Used 54 feet All

Data Period 5 minute 5 minute
Predicted Value c-g flashes (LLP) c- flashes (LLP)

Prediction Corre, If Convergence precedes flash Flash time and tile correct

The reader may be interested in noting th2 steps in improvement of one of the
artificial neural systems toward the performance figures seen above in Table 4.3. The
results of Table 4.3 were obtained using one day's raw wind speed and direction data as
training input to the networks and a different day's wind data for testing the network's
predictions. Shown in figure 4.4 is a ROC plot of the Probability of Detection vs. False
Alarm Rates for predicting lightning using networks trained and tested on the same and on
different lightning days. The open symbols are for incompletely trained networks (pass
error decreasing rapidly) while filled symbols are for completely trained networks (pass
error decreases slightly with further training). As the data considered are located in the
lower left hand side of the ROC plot only part of the plot is shown. One result is that the
steep (at 45 degrees) straight line c of Figure 4.2 is shown by the slightly sloped straight
line in the lower part of Figure 4.4.
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Tite training behavior reveals several aspects of using an ANS for prediction.
Consider a network trained on one day and tested on another day's data (triangular
symbols). Performance improvement is seen in the upward movement of the PoD from
'slight' training (open symbols) to 'full' training (black symbols) in Figure 4.4 while PFA
increases proportionately less (the black ramp at the bottom of the figure is for equal rates
of increase in PoD and PFA). It is expected that as more is learned about building lightning
predictors using ANS more performance improvements will be realized.

The aparntly better performance in Figure 4.4 when training and testing on the
same day's data (square symbols) results from an unacceptable procedure. A single day's
meteorological data contain a certain amount of idiosyncratic events (e.g. turbulence) that
do not represent the underlying behavior of lightning strikes. To eliminate such an illusion
of good performance, ANS predictors must always be tested on different data. At present
the 'predictive parameters' of Section 2.2.1 are not used as ANS inputs requiring that the
training and testing data be taken from similar 'flow regimes' and so forth. Eventually,
ANS predictors will account for these conditioning effects automatically in the inputs.

1.00 - 00_________________

I0 Trained & Tested
lot, on same day

0.75 - Trained & Tested
Probability",on different days

of Detection tN., 2 HR

0.50 1 HRf

1/2 HR
0.25 . . E AL Full Training

E0 g!N Slight Training

0
0 0.02 0.04 0.06 0.08

Probability of False Alarm

Figure 4.4 Improvements in ANS Lightning Predictor Performance as Training Time is
Increased. Testing Across Different Days has the Effect of Testing for ANS Networks
which Exhibit Some Valid Mapping of the Underlying Correlations Between the Chosen
Inputs and the LLPWS Target Values.

It is expected that significant further improvement in predictor performance can be
obtained. Synthesis of different types of data is one of the strengths of the ANS approach.
Network predictive power can be expected to increase when other inputs (e.g. electric field,
wind divergence, temperature, humidity and radar returns) are included in the input array.
Predictive power is also expected to improve when more than one day's data are used in
training. Recommendations for improving lightning predictors are given in Section 5.
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5. Conclusions

This study investigated the possibility of using field data for specifying and training
an ANS which can be used to forecast severe weather events, specifically the occurrence of
lightning strikes. Comparisons have been made with earlier methods based upon
correlation of wind divergence with the later occurrence of a lightning flash. Using KSC
meteorological data for wind and lightning strikes a state-of-the-art skill level prediction
performance has been attained. Given the complexity of lightning strikes, the current
results should be understood as indicative of a promising initiative and cannot be
considered definitive. Thus, recommendations are made for further investigation.

5.1. Accomplishments

Training ANS for forecasting severe weather events has required that a series of
steps be taken to present a reasonably rigorous evaluation of the program goals. The main
subtasks undertaken and completed are:

(1) Data Reformatting - Reformatting massive weather data sets for input to
ANS has been carried out. The data sets on winds, electric fields, and lightning
strokes were supplied by KSC personnel The reformatting software was
developed at KTAADN, INC.

(2) Predictor Performance Evaluation - A predictor performance
evaluation scheme was created based upon well-accepted procedures useful for
evaluating decision making processes.

(3) Trial Networks - A family of ANS was created and adapted to the
geography of and relevant time scales for KSC.

(4) Storm Physics - Consideration was given to the physics of severe storms
and lightning as a basis for constructing prediction networks.

(5) User Interface - A user interface for invoking the needed items and
functions for building ANS was devised. This interface provided the following
functions: (i) entering reformatted weather data sets, (ii) constructing and
subsequently training ANS predictors, (iii) evaluating the network skill levels
using accepted comparison techniques.

(6) Increased Skill Levels - Training of ANS to significant skill levels
was carried out for the prediction of lightning based upon wind fields. The
networks trained in this project delivered a prediction performance which
compared favorably with the performance described by Watson et al. (1987).

(8) Incrementally Retrainable Weather Event Predictor - The
training of the networks has been stopped and restarted with no observable loss
in the previous level of network performance. This feature is a major advance
over procedurally programmed predictors which often require fundamental
reprogramming when improvements are integrated into the software. Using the
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user interface developed in this study, a meteorologist could resume training of
the predictor by introducing a new data set without needing to know a high level
programming language (such as FORTRAN.)

(9) Turnkey Macintosh IIx Predictor Workstation with User
Interface and Data Files - A prototype operating lightning predictor
workstation has been built with basic functionalities in place.

In sum, this study has provided the following components of an ANS-based
'LightningLynx©' computer man/machine interface program for training lightning
predictors in the KSC environment:

A) Documentation

i) Final report

B) LightningLynx© Software

i) LightningLynx© interface software (source code)

ii) Backpropagation learning run time library (machine code only)

iii) CyberMac and LLP Plotter software developed during the contract period for

reformatting KSC data tapes

iv) Data and network documents created during the contract

C) Hardware

i) Macintosh RIx computer

ii) Apple Color Monitor with stand

iii) Qualstar model 1054 9-track tape transport

iv) Keyboard, mouse and cables for items 1-3

5.2. Recommendations

This examination of the use of ANS for predicting weather events recommends
several major areas for research and development,

(A) Use of Larger Data Sets for Improving ANS Predictor Performance
- Larger data sets of single meteorological inputs would be examined. This task
would investigate ANS trained with large data sets:

(a) Larger wind field and LLP data sets

(b) Larger electric field and LLP data sets

(B) Use of New Combinations of Data Sets and Collateral Data for
Improving ANS Predictor Performance - Watson et al. (1988) state that
"Only through the integration of all the data bases available can the forecaster
make the best possible prediction." This task would address ANS networks
which provide for combining different meteorological data sets. Both ANS
layouts which fuse different types of inputs and ANS training using combined
sets of field data would be carried out. Issues addressed in this task would
improve performance by better utilizing:

(a) Optimum ANS layouts for fusing meteorological data
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(b) ANS predictors trained using wind and electric field inputs with LLP data

(C) Use of the Physics of Storms for Improving ANS Predictor
Performance - This task would consider how new ANS predictors might be
attained using knowledge of the physics of storms regardless of the current
availability of data. Issues addressed in this task would be:

(a) Multi-tiered ANS layouts

(b) Relative value of currently unused types of physical measurements

(D) Development of Processes for Routinely Evaluating Predictor
Performance - For the ranking trained ANS predictors this task would
implement a range of evaluation processes in the User Interface. Issues
addressed in this task would include:

(a) Accuracy or Skill levels

(b) Automatic testing

(E) Investigation of Available Real-Time Processors for an ANS
Lightning Predictor - This task would survey real-time hardware (e.g.
transputer boards) that could support a viable capability at a remote site. Issues
addressed in this task will include1 :

(a) Accelerated workstations (e.g. MacintoshTM fix with transputer boards)

(b) Industrial process control machines (e.g. PIM Tm )

(F) Develop LightningLynx© User Interface in Conjunction with KSC
and Meteorologists - The task would extend and test the User Interface
functionality. This task would address a variety of candidates:

(a) Help menus,
(b) variation of user imposed sensor thresholds,

(c) 'strip chart' display of recent sensor data

(d) implement visible/audible alarm when prediction threshold is exceeded.

(e) Alternative ANS types

(G) Cost/Benefit Ratios vs. Decision Thresholds at KSC - This task would
construct complete ROC graphs by varying decision thresholds. This task will
investigate several issues:

(a) Alternative means for setting the most useful thresholds

(b) Alternative ways of presenting cost/benefits to KSC decision makers

(c) Effects of meteorology on optimal thresholds (i.e. weather regime, etc.)

The goal of the research and development program outlined above is the development of a
robust, reliable lightning prediction system prototype which can be upgraded directly by
meteorologists at remote sites using locally collected data.

PIM is a registered trademark of the Parallel Inference Machine of Flavors Technology of Amherst. NH
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