
ICLE COPY UNLIMITED U

AD.--A 222 657
RSRE

MEMORANDUM No. 4349

ROYAL SIGNALS & RADAR
ESTABLISHMENT

PARALLELISATION OF A DYNAMIC PROGRAMMING
ALGORITHM. SUITABLE FOR FEATURE DETECTION

Author: P G Ducksbury

PROCUREMENT EXECUTIVE,
0 MINISTRY OF DEFENCE,

2 ~R SRE MALVERN,
0 WORCS.

0 DTICzf ELECTE
imJUN14 U%o B -

cc ~UNUMITED-

CON4DTONS OF RELEASE

0066653 BR-l 330

........ DRIC U

COPYRIGHT (c)
1985
CONTROLLER
HMSO LONDON

.......tt~t55* *** ~ DRIC Y

Reports quoted are not necessarily available to members of the public or to commercial
organisations.

R.S.R.E. Memorandum 4349

Parallelisation of a Dynamic Programming
algorithm suitable for feature detection

P. G. Ducksbury
Royal Signals and Radar Establishment.

St Andrews Rd, Malvern,
Worcs., WR14 3PS, UK.

January 1990

Abstract

This paper describes the approaches that were taken to produce a parallel
algorithm that would be suitable for the problem of feature detection. The Full
Image Search (FIS) algoritlun which is based upon the Dynamic Progranming
technique was chosen as being the most suitable starting point for development
on a multiprocessor system.

The concepts behind the Dynamic Programming algoritlu are briefly in-
troduced followed by a description of the different types of inherent parallelism
that exist in the technique. A discussion then follows on which is the most
suitable form of parallelism and how it can be effectively implemented on an
array of transputers. Finally results are given which justify the time spent on
this work together with ideas for future extensions to the work.

Copyright @Controller HMSO, London 1990

1

Contents

1 Introduction 4

2 Dynamic Programming Topics 4
2.1 The Technique.....................................4
2.2 Full Image Search Algorithm........................... 5
2.3 Parallelism in Dynamic Programming...................... 5
2.4 Control-Space Parallelism..............................6
2.5 State-Space Parallelism............................... 6

3 Implementation of State-Space Parallelism 7
3.1 Target Hardware
3.2 Approach for Parallelisation.

3.2.1 Master/Slave Communication. 9
3.2.2 Slave/Slave Communication 9

4 Results 10

5 Summary and Future work 12

A Alternative Data Mappings 14

6 Acoessl@n For
NTIS GRA&I
DTIC TAB0
Unannounced

By
t fIO

tj
m

_

IDistributionI

Avail~ability Codes
Aval ndor7

Dist Special

2

1 Introduction

Feature detection is a vital component of most image processing systems which must
be performed with both accuracy and speed. In this paper the particular feature
detector that is of interest is the location of wheels in urban and semi-urban settings.

The objective of this work is therefore to develop the ability for exploiting the
vast potential that is available through the use of multiprocessor systems to enable
both fast and reliable feature detection. Section 2 of this paper briefly describes the
concept of the Dynamic Programming technique and then goes on to describe how
this can be used in conjunction with the Full Image Search algorithm. The various
forms in which the inherent parallelism of the Dynamic Programming algorithm exist
are then discussed. The following section then describes some detail on the target
hardware which is the transputer and how the transputers features of concurrency
and processor to processor communication can be utilised to achieve the objective.

2 Dynamic Programming Topics

2.1 The Technique

The Dynamic Programming technique is based upon the principle of optimality and
was introduced by Bellman [Bell 57] for the solution of certain classes of non-linear
optimisation problems.

Let us now consider the following multi-stage optimisation problem

N

min gi(xi,, i) (1)

subject to the following constraint

=+1 =f i, ,)

where

z, E Xi i 1ui E U i = ,,.,

here Xi is defined to be the state set, Ui is defined to be the decision (or the control
set), fi is the transition (or production) function and g, is the cost function.

Then the transition function f, relates a state and a decision at a given stage i to
the succeeding stage i+1. The cost function g, gives the rost of taking a particular
decision at a given state and stage.

The problem of minimising equation 1 over all stages subject to the constraints
can be simplified using the principle of optimality (see Dixon [Dixon 72]) which
states that any sub path of an optimal path is itself optimal. The calculation in-
volved in the Dynamic Programming algorithm can now be reduced to the following
recurrance relation which involves the calculation of an optimal value function V.

3

V,(= min [g,(a-, v) + l)-(fi(, ,))] (2)
U, E U.

This effectively states that the optimal value for a sequence of i stages is expressed
in terms of its value for preceeding i-i stages and its value at stage i.

The relation described in 2 is somtimes refered to as the "forward pass" of the
Dynamic Programming algorithm, as opposed to the "backward pass" stage which
generates the paths that have been obtained using the forward pass. We shall in this
article only concern ourselves with possible ways of parallelising the forward pass.

2.2 Full Image Search Algorithm

The FIS algorithm has been reported elsewhere in detail by Series (see [Series 89]
who provides a comparison of three different feature detection procedures). For the
purposes of this description a path will be defined to be a set of adjacent pixels
which provide a good correspondance with the reference model (in this work the
model considered is that of a wheel).

Briefly the algorithm allows an optimal path to move over any pixel in the image.
this being limited only by the choice at each stage of an entry from the set of
productions. The match that is obtained between the image and the reference model
is composed of two sets of terms. The first are the production penalties which relate
the distortions suffered by a path in the image. The second are the local costs
which describe the distance between a point in the image and that in the reference,
these local costs being calculated from the gradient intensity of the image and the
reference model.

The advantages of using the FIS algorithm are that as it is based on the Dynamic
Programming technique it is able to deal with different complex reference shapes
without altering the structure of the algorithm, in addition to this it is possible to
train the algorithm using for example the Viterbi method and hence improve the
efficiency of the feature detector.

2.3 Parallelism in Dynamic Programming
Despite the advantage that Dynamic Programming provides it will be seen that
there is still a considerable amount of computation involved in the calculation, this
will obviously severeley limit its use in certain time critical applications.

The introduction of relatively cheap microprocessors has meant that special par-
allel architectures can be constructed for what would be considered a very nominal
cost. These machines are considered to provide the key to the improvement, in
performance that is required from the Dynamic Programming algorithm.

There have been a number of papers published which have concentrated on the
different types of parallelism that are inherent inside the Dynamic Programming
algorithm, for examples of these see [Dabass 80], [Casti 73], [Bert 84]. For a general

4

paper describing parallel architectures that are suitable for the different levels of
machine vision see [Sanz 89].

If we now consider the Dynamic Programming algorithm then we can see that it
consists essentially of three loops, as follows

Iterate for each stage (N)
Iterate for each state (S)

Iterate for each decision (U)
Evaluate equation 2

As [Dabass 80] correctly points out, that as equation 2 is of a recursive nature
then there would be no advantage in allocating each stage of the optimisation to a
seperate processor as V clearly requires the computation of V _j.

There are therefore two main methods for partitioning the algorithiti which we
will consider, namely parallel control-space and parallel state-space.

2.4 Control-Space Parallelism
In the control-space method each processor has allocated to it a small region of the
control (or decision) space. Therefore each processor will generate a local optiml
to equation 2 for its own limited control space, but over all of the state space.

The disadvantage of this becomes apparent, as at the end of each stage some
master process must then recieve all of these local optima and compare then to
produce a global optima before the next stage can start. As the state space is likely
to be very large we can anticipate that there will be a requirement for a large amount
of communications in this approach.

2.5 State-Space Parallelism
In the state-space method however each processor is allocated a small region of
the state space. As each processor now handles the entire control space the result
will be a global optimum for its particular region of state space. Hence there is
no requirement for any further comparisons to be made by a master process which
would obviously introduce delays into the system. The second advantage of this
approach is that each processor now only requires a reduced amount of information
to be communicated at each stage.

We would naturally expect the latter method to be the most suitable, certainly
for a MIMD type machine which uses local memory and communicates via message
passing.

For readers who are interested in more information on the above two approaches
[Dabass 80] describes them in greater detail and also contains discussions on the
communications issues. For more detailed information on the communications issues
see [Lint and Ager 81].

5

3 Implementation of State-Space Parallelism

3.1 Target Hardware

The target hardware that is being used for this work is the transputer with the
implementation language being Occam. Figure 1 illustrates the simple hardware
arrangement, each processor in the array is a T800 with 1 MByte of memory, whilst
the transputer resident in the host PC is a T414 with 2MByte of memory. As can
be seen transputer 0 is being used as an interface between the array and th - host
PC with the additional task of being responsible for input of the initial image and
output of the final results.

The array is arranged in a simple pipeline structure with input to transputer 1
and output from transputer 16. However by using the fact that the transputers links
are bi-directional we effectively have a two way ring with input to either transputer 1
or transputer 16 and similarly for the output. This two way structure beir g exploited
to the full as will be described latter.

3.2 Approach for Parallelisation

There are a number of different methods for decomposing algorithms into a form
suitable for parallelisation, such as

* Task (or processor) Farm : Each processor executes an identical copy of the
program in isolation from the remaining processors.

" Geometric Parallelism: This can be considered as an extension to the processor
farm approach. Each processor executes an identical copy of the program on
data which is a subregion of the problem and then communicates boundary
data to neighbouring processors.

* Algorithmic Parallelism : Each processor is responsible for a part of the algo-
rithm and all data passes through each processor's code.

In this case it is the geometric parallelism that is considered to be the most
suitable approach. In actual fact this approach could be applied to either the state-
space or the control-space methods, as both rely on partioning the data and hav'ing
the same code on each processor.

Figure 2 shows the top level of a particular slave process which will be resident.
on every processor in the array, in it we see that there are two processes running in
parallel. One of these is responsible for receiving data from either of the previous
processors in the network and then either routing it to the calculator process for
processing or onto either of the next processors in the network if the calculator is
busy.

Given our description of state-space parallelism and considering the structure
of the array the approach adopted will therefore be for each slave processor to be

6

Fiur 1 TpialHadw Resdr ao trasu

Frnnim preiou Hest

procesor Save PocTO

Trom revi left

processor~~~.:.:oro0s$
To nex rihtproeio

pprocessor

... processo

Figure 2: Slam' process

Y

X
pJ-1

J Overlap required
by processor PJ

Pj+ 1

Figure 3: Processor Boundary layout

given responsibility for a _L rectangular portion of the state space. (An altrrniati,(mapping is described in Appendi A) There is now one problem that needs to be

overcome, that is the boundary communication problem. Given that processor j is
calculating Vj at stage i it requires not only ts previous information, namely I1
but also that of its neighbours ie. --I and T'j'j , as can be seen from figure 3.

This common information can be provided to the processors in one of two possible
ways as follows.

3.2.1 Master/Slave Communication

In this case the communication is achieved by each transputer sending its appropriate
overlaps back to the master transputer at the end of every iteration. (ie using a onr
way network) The master transputer then has the sole responsibility for ensuring
that each slave transputer receives the correct information at. the start of the next
iteration. Using this method however we can see that to communicate all data to
the master and back to the slaves requires the use of the order of 2 V'.I i links.
where for P = 16 this means the use of approzimately 272 links

3.2.2 Slave/Slave Communication

In this case the communication is achieved by utilising the two way structure of the
array. Each transputer shifts its data to its right neighbouring processor and then
shifts the data to its left neighbouring processor. Thus the same effect has been
achieved in the use of 2(P - 1) links. This approach has another advantage in that

Figure 4: Top left to bottom right. Initial image, accumulated mrit, angular data
of initial image and the accumulated merit at the mid-point of all paths

once the array has been booted by the master transputer there is no longer any need
for communication between the two, as we could anticipate that this would soon
become a bottleneck.

The former method of Master/Slave communication would indeed be accept able
on a network with a small number of transputers but clearly becomes unacceptable
on a larger network. Hence the latter approach is to be the one that is adopted for
this work.

4 Results

Figure 4 shows the typical output from the algorithm where for both the accumulated
merit and mid-point display the white areas denote regions of high merit (or activity).
As the paths generated will focus in on the strong features of the image the end
points will show a characteristic diffuse pattern. The mid-points of these paths will
however be strongly clustered which can be seen from the very sparse structure of
the midpoint display.

The typical execution times obtained from running the Dynamic PrograniminR

9

Case Sequential Host Multi
Processor transputer transputer

i 313 202 29
ii n/a n/a 16.5

Table 1: Processor Performance figures (Seconds)

P
e
r
f
0
r =
M_ L.ar

a

n
c
e

0 2 4 6 8 10 12 14 16

No of processors
Figure 5: Performance (1/cpu time) v Number of processors

(forward pass) algorithm are given briefly in Table 1, while figure 5 shows the speed-
up obtained with an increasing number of processors

The following points should be noted regarding the results

* All timings are in seconds with all runs using a 128 x 128 image with a 32
stage model.

* The Sequential version used for comparison is in FORTRAN running on a
DEC VAX 11/780.

* Case (i) is using the one way Master/Slave network approach.

" Case (ii) is using the two way Slave/Slave network approach.

As we would expect the two way approach is superior as once the initialisation
has been performed there is no longer a communications bottleneck with the host
transputer. The relationship from figure 5 clearly starts to significantly loose its
linearality as more than 8 processors are incladed in the system.

10

However we should not loose sight of the fact that with the full network of 16
processors the achieved speed-up of approximately 19 times the VAX ' is a significant
and acceptable starting point for this work, further expansion of this point can be
found in the next section.

5 Summary and Future work

This article has briefly described the Dynamic Programming algorithm and how it
can be sucessfully designed to run on a multi-transputer array. The results obtained
are comparable with that of the sequential version but have the added advantage
of the speed improvements that can be gained from the use of a powerfull multi-
transputer array.

There are a variety of ways in which this work can be extended some or all of
which will be considered in the future

" Extensions to incorporate a four-way communications structure for the broad-
casting of the boundary data. (This may reduce some of the idlr time in th
processors, See Apppcndix A for details)

* Extension to run on larger transputer arrays. This should now be achievable
with only reconfiguration and parametric changes to the Occam code.

" Extension to larger images than 128 x 128. This should be possible as with
multiple transputers the large memory requirement can be distributed.

* Parallelisation of the Backward Pass of the algorithm. This can currently trace
back the path for every pixel in the image in approximately 10 seconds on the
host transputer.

References

[Bell 57] Bellman R. E. "Dynamic Programming", Princeton University Press.
Princeton, 1957.

[Dixon 72] Dixon L. C. W. "Nonlinear Optimisation", English Universites Press,
1972.

[Series 89] Series R. W. et.al. "Comparison of Approaches to Feature Detection*',
Alvey Vission Conference, University of Reading 9/89.

[Dabass 80] AL-Dabass D. "Tuwo methods for the solution of the Dynamic Program-
ming algorithm on a multiprocessor cluster", Optimal Control Applications and
Methods, vol. 1, pp 227-238 1980.

t This can only be an approximate estimate due to the difficulty in assessing the speed of a

multiuser system

11

[Casti 73] Casti J. et.al. "Dynamic Programming and Parallel Computers", Journal
of Optimization Theory and Applications, vol. 12, no. 4, 1973.

[Bert 84] Bertolazzi P., Pirozzi M. "A Parallel Algorithm for the Optimal Detection
of a Noisy Curve", Computer Vision, Graphics, and Image Processing, vol. 27,
pp 380-386, 1984.

[Lint and Ager 811 Lint B., Agerwala T. "Communication Issues in the Design and
Analysis of Parallel Algorithms", IEEE Trans. on Software Engineering, vol.
SE-7, no. 2, pp 174 - 188, March 1981.

[Sanz 891 Sanz J.L.C. "Which Parallel Architectures are useful/useless for Vision
Algorithms?", Machine Vision and Applications, vol. 2, pp 167 - 173, 1989.

12

A Alternative Data Mappings

The method that has been described in this paper of giving each processor a number
of rows of the data space may not appear to be the most efficient. An alternative
exists and is described below in comparison with the one used.

The data space could have been subdivided up into small squares rather than
long rectangles. Although the size of the data space would remain the same the
perimeter (or boundary) area would be less. This approach would mean that data
would not only need to be shifted east and west (as is the case with the tu'o u'ay
communications approch) but also north and south, thus we would be utilising a four
way communications approach which would mean that the data would not have to
travel over as many processors to reach its ultimate destination. To consider this
further, let us calculate approximately the amount of data communicated and time
taken for both cases. First we need to state a few assumptions

" The image we are dealing with is 128 x 128 in size.

* There are 16 processors in the system.

* We can ignore the boundary around the complete data space as this is ini-
tialised and is never updated during the algorithm.

" Each packet of the data space requires a boundary of width 2 and 32 bit
arithmetic is being used.

For the two-way communications we have
2(P-1) x (2x128) x 4 bytes/real number = 30.7 KBytes

and for the four-way communications we have
3P x (2x(32+2+2)) x 4 bytes/real number = 13.8 KBytes

Total saving = 16.9 KBytes

In the case of the four-way communication the term 3P is derived from the following
V n(n - 1) where the summation is performed over the north, south, east and west
directions and n is the number of squares in the x and y directions.

If we now assume that are links operate at 20MBytes/s then we are only talking
of a saving of 0.85ms/iteration. If the realistic figure for the links was nearer to
10MBytes/s then this saving would be 1.7ms/iteration. This appears to be only a
very negligable saving that would obviously have to be considered against the extra
time that would be required to produce the code for the four-way communications
structure. 2

2However it should be noted that this time is the theoretical communication time saving over the
actual links. It does not attempt to measure the idle time in the individual processors (dis rvther
to waiting for data or general housekeeptng) thus it may be desirable to consider this approach in
the future.

13

DOCUMENT CONTROL SHEET

Overall security classification of sheetQ i f e4

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter classified information, the box
concerned must be marked to indicate the classification, eg (R), (C) or (S))

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security Classification

Memo 4349 Unclassified

5. Originator's Code 6. Origirnator (Corporate Author) Name and Location
(if known) ROYAL SIGNALS & RADAR ESTABLISHMENT

7784000 ST ANDREWS ROAD, GREAT MALVERN
WORCS WR14 3PS

5a. Sponsonng Agency's Code 6a. Sponsoring Agency (Contract Authority) Name and Location
(if known)

7. Title

PARALLELISATION OF A DYNAMIC PROGRAMMING ALGORITHM
SUITABLE FOR FEATURE DETECTION

7a. Title in Foreign Language (in the case of Translations)

7b. Presented at (for Conference Papers): Title, Place and Date of Conference

8. Author 1: Surname, Initials 9a. Author 2 9b. Authors 3, 4... 10. Date pp. ref.

DUCKSBURY P G 1990.01 13

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution Statement

Unlimited

Descriptors (or Keywords)

Continue on separate piece of paper

Abstoap
This paper describes the approaches that were taken to produce a parallel algorithm that would

be suitable for the problem of feature detection. The Full Image Search (FIS) algorithm which
is based upon the Dynamic Programming technique was chosen as being the most suitable starting

point for development on a multiprocessor system.

The concepts behind the Dynamic Programming algorithm are briefly introduced followed by a
description of the different types of inherent parallelism that exist in the technique.
A discussion then follows on which is the most suitable form of parallelism and how it can be
effectively implemented on an array of transputers. Finally results are given which justify
the time spent on this work together with ideas for future extensions to the work.

S80/48

