

9

N N

## **OFFICE OF NAVAL RESEARCH**

Contract N00014-88-K-0305

**Technical Report No. 21** 

Catalytic Synthesis of Polymethylsilsesquioxanes

Richard M. Laine, Jeffrey A. Rahn, Kay A. Youngdahl, John F. Harrod,

To be published in

Am. Chem. Soc. Symp. Series in press

paper presented at the Am. Chem. Soc. Meeting; April 1990, Boston, MA. Catalysis Secretariat

> Department of Materials Science and Engineering University of Washington Roberts Hall, FB-10 Seattle, WA 98195

Reproduction in whole or in part is permitted ( for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

| REPORT DOCUMENTATION PAGE         REPORT DOCUMENTATION PAGE         In REPORT DOCUMENTATION PAGE         Uniters of the Assistance of the Assis                                                                                                                                                                    | y ••••                                                          |                                                      |                                                          |                                                              |                              |                |                      | j.                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|------------------------------|----------------|----------------------|----------------------------------------|--|
| REPORT DOCUMENTATION PAGE         REPORT DOCUMENTATION PAGE         Inclassification Unclassified         Inclassification Unclassified         Inclassification Unclassified         Inclassification Authomit         Inclassification Authomit         Inclassification Report 20         Inclassification Report 20<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                               |                                                      |                                                          |                                                              |                              |                |                      | <b>.</b>                               |  |
| REPORT DOCUMENTATION PAGE         1:* REPORT SIGURITY CLASSINGATION       1:* REPORT DOCUMENTATION PAGE         2:* SECURITY CLASSINGATION AUTIONITY       1:* DESTINGUED VARIABUTY OF REPORT         2:* DECASSINGATION AUTIONITY       1:* DESTINGUED VARIABUTY OF REPORT         2:* DECASSINGATION REPORT NUMBER(S)       1:* DESTINGUED VARIABUTY OF REPORT         2:* DECASSINGATION REPORT NUMBER(S)       5:* MONITORING ORGANIZATION REPORT NUMBER(S)         3:* ANAME OF PROTOKING ORGANIZATION       6:* OFFICE SYMBOL         University of Washington       6:* OFFICE SYMBOL         Dept. of Materials Science & Engineering       7:* ADDESS (Ory, Sure, and ZP Code)         Office of Naval Research       0:* SPONCABO         2:* ADDESS (Ory, Sure, and ZP Code)       0:* SPONCABO         Office of Naval Research       1:* DEDUCE OF FUNDING NUMBERS         2:* ADDESS (Ory, Sure, and ZP Code)       0:* SPONCABO         Office of Naval Research       1:* SUBJECT VERNON         2:* ADDRESS (Ory, Sure, and ZP Code)       1:* SUBJECT VERNON         Office of Naval Research       1:* SUBJECT VERNON         2:* ADDRESS (Ory, Sure, and ZP Code)       1:* SUBJECT VERNON         Office of Naval Research       1:* SUBJECT VERNON         2:* ADDRESS (Ory, Sure, and ZP Code)       1:* SUBJECT VERNON         Office of Naval Research       1:*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SECURITY CLASSIFICATION OF THIS                                 | PAGE                                                 |                                                          |                                                              |                              |                |                      | <b>?</b>                               |  |
| In REPORT SIGURITY CLASSIFICATION AUTHORITY       Ib AESTRICTIVE MARKINGS         Unclassified       Ib AESTRICTIVE MARKINGS         22 SIGURITY CLASSIFICATION AUTHORITY       Ib AESTRICTIVE MARKINGS         23 DECLASSIFICATION AUTHORITY       Ib AESTRICTIVE MARKINGS         24 SIGURITY CLASSIFICATION AUTHORITY       Ib AESTRICTIVE MARKINGS         25 DECLASSIFICATION AUTHORITY       Ib AESTRICTIVE MARKINGS         26 DECLASSIFICATION AUTHORITY       Ib AESTRICTIVE MARKINGS         26 DECLASSIFICATION AUTHORITY       Ib AESTRICTIVE MARKINGS         26 DECLASSIFICATION AUTHORITY       Ib AESTRICTIVE MARKINGS         27 DECLASSIFICATION AUTHORITY       Ib AESTRICTIVE MARKINGS         28 ADDRESS (CD, State, and ZP Code)       If applicable         29 DECLASSIFICATION       Ib OFFICE SYMBOL         20 ADDRESS (CD, State, and ZP Code)       Office of Naval Research         20 SECOND       Ib OFFICE SYMBOL         20 ADDRESS (CD, State, and ZP Code)       Office of Naval Research         20 SECOND       Ib OFFICE SYMBOL         20 ADDRESS (CD, State, and ZP Code)       Office of Naval Research         20 ADDRESS (CD, State, and ZP Code)       Ib OSECOND         20 ADDRESS (CD, State, and ZP Code)       Ib OSECOND         20 ADDRESS (CD, State, and ZP Code)       Ib OSECOND         20 ADDRESS (CD, Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                                      | REPORT DOCUM                                             | MENTATION                                                    | PAGE                         |                |                      | ······································ |  |
| Unicidary 1140       Itel Signary Construction Authomatry         25. SIGUARY CLASSHCATION AUTHOMITY       Itel Signary Classification Authomatics         25. DECLASSIFICATION AUTHOMATION AUMORADING SCHEDULE       Itel Signary Classification authomatics         25. DECLASSIFICATION AUMORADING SCHEDULE       Itel Signary Classification authomatics         26. DECLASSIFICATION AUMORADING SCHEDULE       Itel Signary Classification authomatics         26. CARDENS CONSTANT AUMORATION       Get OFFICE SYMBOL         26. ADDRES CONSTANT AUMORATION       Get OFFICE SYMBOL         27. NAME OF PERFORMING CREATING REPORT NUMBERS       Technical Report 21         26. ADDRES CONSTANT AUMORATION       Get OFFICE SYMBOL         27. NAME OF MARCH REPORT       BE OFFICE SYMBOL         28. ADDRES CONSTANT AUMORATION OF SCHEMENT       Get Authomatics         29. DECLASSING AUXAINANT OFFICE SYMBOL       The ADDRESS CONSTANT AUMORATION NUMBER         20. States and ZP Codel       DE OFFICE SYMBOL         29. ADDRESS CONSTANT AUXAINANT OFFICE SYMBOL       The ADDRESS CONSTANT AUXAINANT OFFICE SYMBOL         20. ADDRESS CONSTANT AUXAINANT AUXAINANT OFFICE SYMBOL       The ADDRESS CONSTANT ON AUXAINANT OFFICE SYMBOL         20. ADDRESS CONSTANT AUXAINANT AUXAINANT OFFICE SYMBOL       The ADDRESS CONSTANT AUXAINANT OFFICE SYMBOL         20. ADDRESS CONSTANT AUXAINANT AUXAINANT OFFICE SYMBOL       The ADDRESS CONSTANTANT AUXAINANT OFFICE SYMBOL <td>18 REPORT SECURITY CLASSIFICATI</td> <td colspan="5">10 RESTRICTIVE MARKINGS</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 REPORT SECURITY CLASSIFICATI                                 | 10 RESTRICTIVE MARKINGS                              |                                                          |                                                              |                              |                |                      |                                        |  |
| 20. DECLASSIFICATION /DOWNCRADING SCHEDULE       Approved for public release<br>Distribution unlimited         4 PERFORMING ORGANIZATION REPORT NUMBER(S)       5. MONITORING ORGANIZATION REPORT NUMBER(S)         5. MONITORING ORGANIZATION REPORT NUMBER(S)       5. MONITORING ORGANIZATION REPORT NUMBER(S)         5. MONITORING ORGANIZATION<br>University of Washington       60. OFFICE SYMBOL<br>(# applicable)       78. NAME OF MONITORING ORGANIZATION<br>(# applicable)         5. MONITORING ORGANIZATION<br>University of Washington       60. OFFICE SYMBOL<br>(# applicable)       78. NAME OF MONITORING ORGANIZATION<br>(# applicable)         5. MONITORING ORGANIZATION<br>University of Washington       80. OFFICE SYMBOL<br>(# applicable)       78. NAME OF MONITORING ORGANIZATION<br>(# applicable)         5. MONITORING OFFICE SYMBOL<br>(Baseria, LD OBIDS)       80. OFFICE SYMBOL<br>(# applicable)       78. NAME OF MONITORING ORGANIZATION<br>(Dire of Naval Research<br>(# applicable)       78. NAME OF MANUARES         Office of Naval Research<br>800 N. Quincy<br>Aritherdon, VA 22217       18. OFFICE SYMBOL<br>(# applicable)       10. SUBJECT TASK<br>(NOUL4-88       WORK UNIT<br>RACESSION NO<br>Aritherdon VA 22217         Catalytic Synthesis of Polymethylsilsesquioxanes       12. SPECEDAL<br>(* NOUL4-88       K -305       13. PAGE COUNT<br>May 31, 1990         19. ABSTRACT CONNE ON REVERT MERCERSY AND MONESTING<br>(Catalytic Synthesis of Polymethylsilsesquioxane<br>coplymethylsilsesquioxane on reverse H meetasy and Meetaly and Meetaly<br>Hublication       18. SUBJECT TERMS (Continue on reverse H meetasy and Meetaly book number)         77 <td>Unclassified<br/>28. SECURITY CLASSIFICATION AUT</td> <td>HORITY</td> <td></td> <td colspan="6">3. DISTRIBUTION / AVAILABILITY OF REPORT</td>                                                                                                                                                                                                                                                            | Unclassified<br>28. SECURITY CLASSIFICATION AUT                 | HORITY                                               |                                                          | 3. DISTRIBUTION / AVAILABILITY OF REPORT                     |                              |                |                      |                                        |  |
| 4 PERCENNING ORGANIZATION REPORT NUMBER(5)         5. MONITORING ORGANIZATION REPORT NUMBER(5)         5. NAME OF PERFORMING ORGANIZATION         66. OFFICE SYMBOL         10. Inversity of Washington         66. OFFICE SYMBOL         20. ADDRESS (Cry, State, and ZHP Code)         21. INTEL (FR PORT T)         21. ADDRESS (Cry, State, and ZHP Code)         22. PERSONAL AUTHOR(S)         22. PERSONAL AUTHOR(S)         22. PERSONAL AUTHOR(S)         23. The Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26. DECLASSIFICATION / DOWNGRADING SCHEDULE                     |                                                      |                                                          | Approved for public release<br>Distribution unlimited        |                              |                |                      |                                        |  |
| Technical Report 21         S. NAME OF PERFORMING ORGANIZATION<br>University of Washington         Sc. ADDRESS (Gry, State, and ZW Code)<br>Dept. of Materials Science & Engineering<br>Roberts Hall, FB-10         Sc. ADDRESS (Gry, State, and ZW Code)<br>Dept. of Materials Science & Engineering<br>Roberts Hall, FB-10         Sc. ADDRESS (Gry, State, and ZW Code)<br>Dept. of Materials Science & Engineering<br>Roberts Hall, FB-10         Sc. ADDRESS (Gry, State, and ZW Code)<br>Office of Naval Research<br>BOOM, State, and ZW Code)         Sc. ADDRESS (Gry, State, and ZW Code)         OFFICE SYMBOL         Sc. ADDRESS (Gry, State, and ZW Code)         Office of Naval Research<br>BOON, Quincy<br>Allington, UA, 27217         NOD14-88         V. ADDRESS (Gry, State, and ZW Code)         Office of Naval Research<br>BOON, Quincy<br>Defice of Naval Research<br>BOON, Quincy<br>Defice of Publication         Catalytic Synthesis of Polymethylsilsesquioxanes         Catalytic Synthesis of Polymethylsilsesquioxanes         Catalytic Synthesis of Polymethylsilsesquioxanes         Publication         Iss. TWE OF REPORT<br>Publication         Iss. UPPLEMENTARY NOTATION         It. SUBJECT TERMS (Continue on reverse if mecessary and identify by block number)<br>May 31, 1990         It. SUBJECT TERMS (Continue on reverse if mecessary and identify by block number)<br>Publication         It. SUBJECT TERMS (Continue on reverse if mecessary and identify by block number)<br>Publication         It. SUBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4. PERFORMING ORGANIZATION REPORT NUMBER(S)                     |                                                      |                                                          | S. MONITORING ORGANIZATION REPORT NUMBER(S)                  |                              |                |                      |                                        |  |
| Sa. NAME OF PERFORMING ORGANIZATION<br>University of Washington       6b. OFFICE SYMBOL<br>(# applicable)       7a. NAME OF MONITORING ORGANIZATION         Sc. ADDRESS (Cry, State, and ZP Code)       7b. ADDRESS (Cry, State, and ZP Code)       7b. ADDRESS (Cry, State, and ZP Code)         Dept. of Materials Science & Engineering<br>Roberts Hall, FB-10       7b. ADDRESS (Cry, State, and ZP Code)       7b. ADDRESS (Cry, State, and ZP Code)         Office of Naval Research       8b. OFFICE SYMBOL<br>(# applicable)       9b. OFFICE SYMBOL<br>(# applicable)       9b. OFFICE SYMBOL<br>(# applicable)         St. ADRESS (Cry, State, and ZP Code)       10. SOURCE OF FUNDING NUMBERS       00014-88-K-0305         Office of Naval Research       8b. OFFICE SYMBOL<br>(# applicable)       9b. OFFICE SYMBOL<br>(# applicable)       9b. OFFICE SYMBOL<br>(# applicable)         St. ADRESS (Cry, State, and ZP Code)       10. SOURCE OF FUNDING NUMBERS       NOO14-88-K-0305         St. ADRESS (Cry, State, and ZP Code)       10. SOURCE OF FUNDING NUMBERS       NOO14-88-K-0305         Catalytic Synthesis of Polymethylsilsesquioxanes       K-305       NOO14-88       K-305         12. PERSONAL AUTHORGS       TIBE. TIME COVERED<br>Publication       10. DATE OF REPORT       10. DATE OF REPORT       NO.         13. SUPPLEMENTARY NOTATION       10. SUBJECT TERMS (Continue on reverse H mecessary and identify by block number)       15. PAGE COUNT         14. DATE OF REPORT       118. SUBJECT TERMS (Continue on rev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Technical Report 21                                             |                                                      |                                                          |                                                              |                              |                |                      |                                        |  |
| University of Washington       (* Bupicade)         Call Address       (* Bupicade)         Dept. of Materials Science & Engineering<br>Roberts Hall, FB-10       (* Bupicade)         Samet of Audoming Science & Engineering<br>Roberts Hall, FB-10       (* Bupicade)         Samet of Audoming Science & Engineering<br>Roberts Hall, FB-10       (* Bupicade)         Samet of Audoming Science & Engineering<br>Contained Science & Engineering       (* Bupicade)         Samet of Audoming Science & Engineering<br>Contained Science & Engineering       (* Bupicade)         Science & Faval Research<br>B00 N. Quincy       (* Bupicade)         Science & Faval Research<br>B00 N. Quincy       (* Bupicade)         Science & Science & Engineering<br>Catalytic Synthesis of Polymethylsilsesquioxanes       (* Bupicade)         12. PERSONAL AUTHOR(S)<br>Richard M. Laine, Jeffrey A. Rahn, Kay A. Youngdahl, John F. Harrod       (* Date Or REPORT (*er, Month, Day)         13. TWF OF REPORT       (* Bubicade)       (* Date Or REPORT (*er, Month, Day)         13. SUPFLEMENTARY NOTATION       (* Sub-ERCUP       (* Date Or REPORT (*er, Month, Day)         15. SUBJECT TERMS (Continue on reverte if mecessary and identify by block number)       (* Edit)         5FELD       GROUP       (* Sub-ERCUP         19. Addition of the Polymethylisilsequioxane copolymet of the type - (MellSiO) _ 0. (MellSiO) _ 0. (- Cost)       (* Date REPORT (*er, Month, Day)         19. Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6a. NAME OF PERFORMING ORGAN                                    | IZATION                                              | 6b. OFFICE SYMBOL                                        | 7a. NAME OF MONITORING ORGANIZATION                          |                              |                |                      |                                        |  |
| Sc. ADDRESS (Cry. State, and ZIP Code)       7b. ADDRESS (Cry. State, and ZIP Code)         Dept. of Materials Science & Engineering       7b. ADDRESS (Cry. State, and ZIP Code)         Sc. ADDRESS (Cry. State, and ZIP Code)       0ffice of Naval Research         Sc. ADDRESS (Cry. State, and ZIP Code)       7b. ADDRESS (Cry. State, and ZIP Code)         Office of Naval Research       8b. OFFICE SYMBOL       8b. OFFICE SYMBOL         Sc. ADDRESS (Cry. State, and ZIP Code)       10. SOURCE OF FUNDING NUMBER       9pb/Cude)         Office of Naval Research       8b. OFFICE SYMBOL       10. SOURCE OF FUNDING NUMBERS         Sc. ADDRESS (Cry. State, and ZIP Code)       10. SOURCE OF FUNDING NUMBERS       10. SOURCE OF FUNDING NUMBERS         Catalytic Synthesis of Polymethylsilsesquioxanes       10. SOURCE OF FUNDING NUMPCING NU                                                                                                                                                                                                                                                                                                                                                                           | University of Washing                                           | (ir sppiicable)                                      |                                                          |                                                              |                              |                |                      |                                        |  |
| Dept. of Materials Science & Engineering<br>Roberts Hall, ED-10       Office of Naval Research<br>Dept. of the Navy, 800 N. Quincy<br>Arlington. VA 22217         Sa ADM OF (FOR SYMBOL<br>Office of Naval Research<br>& ADDRES(CD, Stree.and 20FC000)       Is. DOFFICE SYMBOL<br>W applic. Dept.       Is. MOCOLA-88-K-0305         Office of Naval Research<br>& ADDRES(CD, Stree.and 20FC000)       Is. SOURCE OF FUNDING NUMBERS       WORK UNIT<br>RELEMENT NO.         Office of Naval Research<br>BOD N. Quincy<br>Arlington. VA 22217       Is. SOURCE OF FUNDING NUMBERS       WORK UNIT<br>RELEMENT NO.         All discound of State State<br>BOD N. Quincy<br>Arlington. VA 22217       NOO14-88 K-305       WORK UNIT<br>RELEMENT NO.         Catalytic Synthesis of Polymethylsilsesquioxanes       FROME<br>To       NOO14-88 K-305         12. PERSONAL AUTHORYS<br>Richard M. Laine, Jeffrey A. Rahn, Kay A. Youngdahl, John F. Harrod       Is. PAGE COUNT<br>May 31, 1990       Is. PAGE COUNT         13. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)       Is. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)       Is. PAGE COUNT         14. Date of the 'y/pe - (MEISIO) _ cyclome's and linear oligome's to produce a polymethylsilsesquioxane<br>copolymer of the 'y/pe - (MEISIO) _ (MESIO) ) A mechanism for this redistribution<br>is suggested, that involves o-boid metathesis promote due to indergoes. The structural<br>evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed<br>using solid state <sup>25</sup> Si NNR. TGA experiments and chemical analysis support the NMR results<br>which indicate that most of the starting monomer is either volatilized                                                                                                                                                                                                                                                                                                                             | 6c. ADDRESS (City, State, and ZIP C                             | ode)                                                 |                                                          | 76. ADDRESS (Cit                                             | ly, State, and ZIP (         | Code)          |                      |                                        |  |
| Samet 12, WA 08105       AT Lington, VA 22217         Ba. NAME OF FUNDING/SYNONSORMS       Bb. OFFICE SYMBOL         Office of Naval Research       Bb. OFFICE SYMBOL         Sc ADDRESS (Gry, State, and ZP Code)       ID. SOURCE OF FUNDING NUMBERS         Office of Naval Research       NO0014-88 -K-0305         Sc ADDRESS (Gry, State, and ZP Code)       ID. SOURCE OF FUNDING NUMBERS         Office of Naval Research       PROGRAM         BOO N. Quincy       NO.         Artington, VA 22117       NO.         III. TITLE (MICLOS Secury Classification)       NO.         Catalytic Synthesis of Polymethylsilsesquioxanes       K-305         III. TITLE (MICLOS Secury Classification)       IB. TIME COVERD         Catalytic Synthesis of Polymethylsilsesquioxanes       NO.         III. TYPE OF REPORT       IB. TIME COVERD         Publication       IB. SUBJECT TERMS (Continue on reverse if metessary and identify by block number)         IVE OF - (MERS10)_ ccyclomers and linear oligomers to produce a polymethylsilsequioxane         copolymer of the type - (MERS10)_ cgl(MES1(0)_ 1, A mechanism for this redistribution         Is suggested, that involves o-boid metathesis primethylsilsesquioxane copolymer as it is heated to 1000°C is followed         using solid state 2951 NMR. TGA experiments and chemical analysis support the NMR results         The active catalyst drived from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dept. of Materials Science & Engineering<br>Roberts Hall, FB-10 |                                                      |                                                          | Office of Naval Research<br>Dept. of the Navy, 800 N. Quincy |                              |                |                      |                                        |  |
| ORGANIZATION<br>Office of Naval Research <i>iii applic.idle</i> )<br>N00014-88-K-0305          BE ADDRESS(Cir), State, and ZPCode)<br>Office of Naval Research<br>800 N. Quincy<br>Arlington, VA 27217           IO SOURCE OF FUNDING NUMBERS<br>PROGRAM<br>K-305          Office of Naval Research<br>800 N. Quincy<br>Arlington, VA 27217           IO SOURCE OF FUNDING NUMBERS<br>PROGRAM<br>K-305          Catalytic Synthesis of Polymethylsilsesquioxanes          PROGRAM<br>K-305           No.<br>K-305          12. FERSONAL AUTHORS)<br>Richard M. Laine, Jeffrey A. Rahn, Kay A. Youngdahl, John F. Harrod           Is. DATE OF REPORT<br>Publication           Is. PAGE COUNT<br>May 31, 1990          13. TYPE OF REPORT<br>Publication           Is. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)           Is. PAGE COUNT          14. DATE OF REPORT<br>Publication           SUB-GROUP           Is. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)          15. SUBPLEMENTARY NOTATION           Is. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)          17. COSATI CODES           Is. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)          18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)          19. ABSTRACT (Continue on r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ba. NAME OF FUNDING/SPONSORI                                    | VG                                                   | 86. OFFICE SYMBOL                                        | Arlington, VA 22217                                          |                              |                |                      |                                        |  |
| 01112 OF INPUT Research       10 SOURCE OF FUNDING NUMBERS         07fice of Naval Research       10 SOURCE OF FUNDING NUMBERS         800 N. Quincy       NO.14200         Arlington, VA 22217       NO.04488         11. THLE Unclude Security Cassification)       NO.14-88         Catalytic Synthesis of Polymethylsilsesquioxanes         12. PERSONAL AUTHOR(S)         Richard M. Laine, Jeffrey A. Rahn, Kay A. Youngdahl, John F. Harrod         13a. TYPE OF REPORT         Publication         Project         13b. TIME COVERED         PROM         14. DATE OF REPORT         Publication         Project         14. DATE OF REPORT (Continue on reverse if necessary and identify by block number)         15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         16. SUBJECT Continue on reverse if necessary and identify by block number)         17.       COSATI CODES         18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         19. ABSTRACT (Continue on reverse if necessary and identify by block number)         Dimethyltitanocene, C.P.JIME, while GO 1, 3, 0, 7.         ND methyltitanocene, C.P.JIME, where CP = C.H., Can be used to promote the redistribution is suggested, that involves o-boid metathesis promoted by a Ti(IV) species. The structural evolution of the polymethylsilsesqui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ORGANIZATION<br>Office of Naval Boson                           |                                                      | (if applicable)                                          | N00014-88                                                    | N00014-88-K-0305             |                |                      |                                        |  |
| Office of Naval Research<br>800 N. Quincy<br>Arlington, VA 22217       PROGRAM<br>ELEMENT NO.<br>NO014-88       PROJECT<br>NO.<br>NO.       TASK<br>NO.       WORK UNIT<br>ACCESSION NO<br>Arlington, VA 22217         II. THLE (include Security Cassification)       Catalytic Synthesis of Polymethylsilsesquioxanes         Catalytic Synthesis of Polymethylsilsesquioxanes         12. PERSONAL AUTHOR(S)<br>Richard M. Laine, Jeffrey A. Rahn, Kay A. Youngdahl, John F. Harrod         13. TYPE OF REPORT<br>Publication         13. TYPE OF REPORT<br>Publication         14. DATE OF REPORT<br>FROM         15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         FIELD         16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         FIELD         17.         COSATI CODES         18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         FIELD         19. ABSTRACT (Continue on reverse if necessary and identify by block number)         FIELD       GROUP         19. ABSTRACT (Continue on reverse if necessary and identify by block number)         FIELD       GROUP         19. ABSTRACT (Continue on reverse if necessary and identify by block number)         FIELD       GROUP         19. ABSTRACT (Continue on reverse if necessary and identify by block number)         FIELD       GROUP <tr< td=""><td>8C ADDRESS (City, State, and ZIP Co</td><td>de)</td><td></td><td>10. SOURCE OF F</td><td>UNDING NUMBER</td><td>s</td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8C ADDRESS (City, State, and ZIP Co                             | de)                                                  |                                                          | 10. SOURCE OF F                                              | UNDING NUMBER                | s              |                      |                                        |  |
| 800 N. Quincy       NO.14-88       NO.       ACCESSION NO.         Catalytic Synthesis of Polymethylsilsesquioxanes       NO.14-88       K-305         11. HTLE (include Security Cassification)       Catalytic Synthesis of Polymethylsilsesquioxanes         12. PERSONAL AUTHOR(S)<br>Richard M. Laine, Jeffrey A. Rahn, Kay A. Youngdahl, John F. Harrod         13. TYPE OF REPORT       18. TIME COVERED<br>FROM       14. DATE OF REPORT (Year, Month, Day)       15. PAGE COUNT         13. TYPE OF REPORT       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)       May 31, 1990         16. SUPPLEMENTARY NOTATION       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)       Image: State Sta                                                                                                                                                                                                                                                                                                                 | Office of Naval Resea                                           | arch                                                 |                                                          | PROGRAM                                                      | PROJECT                      | TASK           |                      | WORK UNIT                              |  |
| 11. HILE (include Security Classification)         Catalytic Synthesis of Polymethylsilsesquioxanes         12. PERSONAL AUTHOR(5)<br>Richard M. Laine, Jeffrey A. Rahn, Kay A. Youngdahl, John F. Harrod         13a. TYPE OF REPORT<br>Publication         13b. TIME COVERED<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800 N. Quincy<br>Arlington VA 22217                             |                                                      |                                                          | N0014-88                                                     | K-305                        |                |                      | ACCESSION NO                           |  |
| Catalytic Synthesis of Polymethylsilsesquioxanes         12. PERSONAL AUTHOR(S)<br>Richard M. Laine, Jeffrey A. Rahn, Kay A. Youngdahl, John F. Harrod         13a. TYPE OF REPORT<br>Publication       13b. TIME COVERED<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11. TITLE (Include Security Classifica                          | tion)                                                |                                                          | <b>.</b>                                                     |                              |                |                      | <u></u>                                |  |
| 12. PERSONAL AUTHOR(S)<br>Richard M. Laine, Jeffrey A. Rahn, Kay A. Youngdahl, John F. Harrod         13a. TYPE OF REPORT<br>Publication       13b. TIME COVERED<br>FROM       14. DATE OF REPORT (Year, Month, Day)       15. PAGE COUNT         13a. TYPE OF REPORT<br>Publication       13b. TIME COVERED<br>FROM       14. DATE OF REPORT (Year, Month, Day)       15. PAGE COUNT         13b. SUPPLEMENTARY NOTATION       15. SUPPLEMENTARY NOTATION       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         17.       COSATI CODES       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         19. ABSTRACT (Continue on reverse if necessary and identify by block number)       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         19. ABSTRACT (Continue on reverse if necessary and identify by block number)       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         19. ABSTRACT (Continue on reverse if necessary and identify by block number)       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         19. ABSTRACT (Continue on reverse if necessary and identify by block number)       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         19. Dimethyltitanocene, Cp_TIMe, where Cp = Cp_H^2, can be used to promote the redistribution is suggested, that involves σ-bond metathesis promoted by a Ti(IV) species. The structural evolution of the polymethylsilsesquioxane coopolymer as it is heated to 1000°C is followed using solid state 2 <sup>9</sup> Si NMR.                                                                                                                                                                                                                                                                                                                                                                                                   | Catalytic Synthesis o                                           | of Polyme                                            | thylsilsesquioxa                                         | nes                                                          |                              |                |                      |                                        |  |
| 13a. TYPE OF REPORT       13b. TIME COVERED       14. DATE OF REPORT (Year, Month, Day)       15. PAGE COUNT         Publication       13b. TIME COVERED       14. DATE OF REPORT (Year, Month, Day)       15. PAGE COUNT         16. SUPPLEMENTARY NOTATION       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)       15. PAGE COUNT         17.       COSATI CODES       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)       15. PAGE COUNT         19. ABSTRACT (Continue on reverse if necessary and identify by block number)       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         19. ABSTRACT (Continue on reverse if necessary and identify by block number)       18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)         19. ABSTRACT (Continue on reverse if necessary and identify by block number)       19. Optimethylistianscene, Cp_2TIMe_2, where Cp = C_5H_5, can be used to promote the redistribution is suggested, that involves σ-bond metathesis promoted by a Ti(IV) species. The structural evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed using solid state <sup>29</sup> Si NMR. TGA experiments and chemical analysis support the NMR results which indicate that most of the starting monomer is either volatilized or undergoes further redistribution, so that by 400°C only polymethylsilsesquioxane remains. The active catalyst derived from Cp_7TiMe_ will also catalyze the alcoholysis of the Si-H bonds in the copolymer producing alKoxy derivates, -{Me(RO)Si0}_0_3^{(MESI(0)1.5}0.7^- (R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize pol                                                                                                                                                                                                                                                                                                                       | 12. PERSONAL AUTHOR(S)<br>Richard M. Laine, Jef                 | ffrey A.                                             | Rahn, Kay A. You                                         | ngdahl, John                                                 | F. Harrod                    |                |                      |                                        |  |
| 17.       COSATI CODES         FIELD       GROUP         SUPPLEMENTARY NOTATION         19. ABSTRACT (Continue on reverse if mecessary and identify by block number)         Dimethyltitanocene, Cp_TIMe_, where Cp = Cp_5, can be used to promote the redistribution of -{MeHSiO}cyclomërs and linear oligomers to produce a polymethylsilsesquioxane copolymer of the 'type -{MeHSiO}_3{MeSi(0)_1 5}, A mechanism for this redistribution is suggested, that involves σ-bond metathesis promoted by a Ti(IV) species. The structural evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed using solid state <sup>29</sup> Si NMR. TGA experiments and chemical analysis support the NMR results which indicate that most of the starting monomer is either volatilized or undergoes further redistribution, so that by 400°C only polymethylsilsesquioxane remains.         The active catalyst derived from Cp_TiMe_ will also catalyze the alcoholysis of the Si-H bonds in the copolymer producing alKoxy derivates, -{Me(RO)SiO}_0.3{MeSi(O)_1.5}0.7^- (R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane oligomers such as -{MeHSINH}or -{H_SiNMe}, but only if some -{MeHSIO} is present.         The ceramic vields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSIO}:-{MeHSINH}_x - were much higher than that found for the pure polysilazane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13a. TYPE OF REPORT<br>Publication                              | 135. TIME C                                          | OVERED<br>TO                                             | 14. DATE OF REPORT (Year, Month, Day)<br>May 31, 1990        |                              | 15. PAGE COUNT |                      |                                        |  |
| Interpretation       Iterpretation       Iterpretation         12       COSATI CODES       Iterpretation       Iterpretation         13       SUB-GROUP       SUB-GROUP       Iterpretation       Iterpretation         19       ABSTRACT (Continue on reverse if mecessary and identify by block number)       Dimethyltitanocene, Cp.2TiMe, where Cp = CrH5, can be used to promote the redistribution of -{MeHSiO}cyclomers and linear oligomers to produce a polymethylsilsesquioxane copolymer of the 'type -{MeHSiO}_3 {MeSi(0)_5}_0 -~. A mechanism for this redistribution is suggested, that involves σ-boid metathesis promoted by a Ti(IV) species. The structural evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed using solid state <sup>29</sup> Si NMR. TGA experiments and chemical analysis support the NMR results which indicate that most of the starting monomer is either volatilized or undergoes further redistribution, so that by 400°C only polymethylsilsesquioxane remains.<br>The active catalyst derived from Cp.7TiMe, will also catalyze the alcoholysis of the Si-H bonds in the copolymer producing alkoxy derivates, -{Me(RO)SIO}_0.3 {MeSi(0)}_1.5^{10.7-} (R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane oligomers such as -{MeHSINH}or -{H_2SINMe}, but only if some -{MeHSIO}:-{MeHSINH} were much higher than that found for the pure polysilazane.         20       DISTRIBUTION/AVAILABLITY OF ABSTRACT         21       ABSTRACT SECURITY CLASSIFICATION         UNCLASSIFIED/UNLIMITED       ARE AS RPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16. SUPPLEMENTARY NOTATION                                      |                                                      |                                                          |                                                              |                              |                |                      |                                        |  |
| <ul> <li>COSATI CODES</li> <li>I8. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)</li> <li>FIELD GROUP SUB-GROUP</li> <li>I8. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)</li> <li>Dimethyltitanocene, Cp_TiMe_, where Cp = C_5He, can be used to promote the redistribution of -{MeHSiO}cyclomers and linear oligomers to produce a polymethylsilsesquioxane copolymer of the 'type -{MeHSIO}{0,2}{MeSi(0)}_{1,5}, -7^{-}. A mechanism for this redistribution is suggested, that involves σ-bond metathesis promoted by a Ti(IV) species. The structural evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed using solid state <sup>29</sup>Si NMR. TGA experiments and chemical analysis support the NMR results which indicate that most of the starting monomer is either volatilized or undergoes further redistribution, so that by 400°C only polymethylsilsesquioxane remains. The active catalyst derived from Cp_TiMe_, will also catalyze the alcoholysis of the Si-H bonds in the copolymer producing alkoxy derivates, -{Me(RO)SiO}_0.3^{{MeSi(0)}_{1.5}}0.7^- (R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane oligomers such as -{MeHSINH}_or -{HeSIMM}_o, but only if some -{MeHSiO}_o = is present. The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSiO}_c =:-{MeHSiNH}_o = were much higher than that found for the pure polysilzane.</li> <li>20. DISTRIBUTION /AVAILABILITY OF ABSTRACT</li> <li>21. ABSTRACT SECURITY CLASSIFICATION</li> <li>22. NAME OF RESPONSIBLE INDIVIDUAL</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                                                      | •                                                        |                                                              |                              |                |                      |                                        |  |
| FIELD       GROUP       SUB-GROUP         19. ABSTRACT (Continue on reverse if necessary and identify by block number)<br>Dimethyltitanocene, Cp_TiMe_, where Cp = C_H_5, can be used to promote the redistribution of -{MeHSiO}cyclomers and linear oligomers to produce a polymethylsilsesquioxane copolymer of the 'type -{MeHSiO}{MeSi(0)_5}_0.7 A mechanism for this redistribution is suggested, that involves σ-bond metathesis promoted by a Ti(IV) species. The structural evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed using solid state <sup>29</sup> Si NMR. TGA experiments and chemical analysis support the NMR results which indicate that most of the starting monomer is either volatilized or undergoes further redistribution, so that by 400°C only polymethylsilsesquioxane remains.<br>The active catalyst derived from Cp_TiMe_ will also catalyze the alcoholysis of the Si-H bonds in the copolymer producing alKoxy derivates, -{Me(RO)SiO}_0.3^{(MeSi(O)}_1.5^{0.7-} (R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane oligomers such as -{MeHSiNH}_or -{H_2SiNMe}, but only if some -{MeHSiO} is present.<br>The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSiO}:-{MeHSiNH} were much higher than that found for the pure polysilazane.         20. DISTRIBUTION/AVAILABULTY OF ABSTRACT       21. ABSTRACT SECURITY CLASSIFICATION         22. NAME OF RESPONSIBLE INDIVIDUAL       22. NEEPHODE (method and for the pure polysilazane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17. COSATI CODES                                                |                                                      | 18. SUBJECT TERMS (                                      | Continue on reverse                                          | e if necessary and           | idem           | tify by bloc         | k number)                              |  |
| 19. ABSTRACT (Continue on reverse if mecessary and identify by block number)<br>Dimethyltitanocene, Cp_TiMe_, where Cp = C_H5, can be used to promote the redistribution<br>of -{MeHSiO}cyclomers and linear oligomers to produce a polymethylsilsesquioxane<br>copolymer of the 'type -{MeHSiO}_0 3{MeSi(0)_1 5 }_0 7 A mechanism for this redistribution<br>is suggested, that involves o-bond metathesis promoted by a Ti(IV) species. The structural<br>evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed<br>using solid state <sup>29</sup> Si NMR. TGA experiments and chemical analysis support the NMR results<br>which indicate that most of the starting monomer is either volatilized or undergoes further<br>redistribution, so that by 400°C only polymethylsilsesquioxane remains.<br>The active catalyst derived from Cp_TiMe_ will also catalyze the alcoholysis of the<br>Si-H bonds in the copolymer producing alkoxy derivates, -{Me(RO)SiO}_0.3{MeSi(0)_1.5}0.7^-<br>(R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane<br>oligomers such as -{MeHSiNH}_or -{H_SiNMe}, but only if some -{MeHSiO} is present.<br>The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSiO}:-{MeHSiNH} were much<br>higher than that found for the pure polysilzane.<br>20. DISTRIBUTION/AVAILABILITY OF ABSTRACT<br>DUNCLASSIFIED/NUMIMITED _ SAME AS RPT DTIC USERS<br>22. NAME OF RESPONSIBLE INDIVIDUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FIELD GROUP SU                                                  | B-GROUP                                              | 4                                                        |                                                              |                              |                |                      |                                        |  |
| 19. ABSTRACT (Continue on reverse if mecessary and identify by block number)<br>Dimethyltitanocene, Cp_TiMe_, where Cp = C <sub>5</sub> H <sub>5</sub> , can be used to promote the redistri-<br>bution of -{MeHSiO}cyclomers and linear oligomers to produce a polymethylsilsesquioxane<br>copolymer of the 'type -{MeHSiO}_0 {MeSi(O}_1,5.}0,7 A mechanism for this redistribution<br>is suggested, that involves σ-bond metathesis promoted by a Ti(IV) species. The structural<br>evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed<br>using solid state <sup>29</sup> Si NMR. TGA experiments and chemical analysis support the NMR results<br>which indicate that most of the starting monomer is either volatilized or undergoes further<br>redistribution, so that by 400°C only polymethylsilsesquioxane remains.<br>The active catalyst derived from Cp_TiMe_ will also catalyze the alcoholysis of the<br>Si-H bonds in the copolymer producing alkoxy derivates, -{Me(RO)SiO}_0.3^{MeSi(O)}_1.5^{}0.7^-<br>(R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane<br>oligomers such as -{MeHSiNH}_or -{H_SiNMe}_r, but only if some -{MeHSiO}_r is present.<br>The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSiO}_r:-{MeHSiNH}_r were much<br>higher than that found for the pure polysilzane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                                      | 1                                                        |                                                              |                              |                |                      | - حالات القام ويقد على توادا           |  |
| <pre>bution of -{MeHSiO}_ccyclomers and linear oligomers to produce a polymethylsilsesquioxane<br/>copolymer of the 'type -{MeHSiO}_0.3{MeSi(0)_1.5}_0.7 A mechanism for this redistribution<br/>is suggested, that involves σ-bond metathesis promoted by a Ti(IV) species. The structural<br/>evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed<br/>using solid state <sup>29</sup>Si NMR. TGA experiments and chemical analysis support the NMR results<br/>which indicate that most of the starting monomer is either volatilized or undergoes further<br/>redistribution, so that by 400°C only polymethylsilsesquioxane remains.<br/>The active catalyst derived from Cp_TiMe_ will also catalyze the alcoholysis of the<br/>Si-H bonds in the copolymer producing alKoxy derivates, -{Me(RO)SiO}_0.3<sup>{MeSi(O)</sup>1.5<sup>}</sup>0.7<sup>-</sup><br/>(R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane<br/>oligomers such as -{MeHSiNH}_x-or -{H_SiNMe}_x-, but only if some -{MeHSiO}_x-:-{MeHSiNH}_x- were much<br/>higher than that found for the pure polysilzane.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19. ABSTRACT (Continue on reverse<br>Dimethyltitanoce           | e if necessary<br>ene, Cp <sub>2</sub> T             | and identify by block m<br>iMe <sub>2</sub> , where Cp = | C <sub>5</sub> H <sub>5</sub> , can be                       | e used to pr                 | omot           | e the re             | edistri-                               |  |
| <pre>is suggested, that involves o-bond metathesis promoted by a Ti(IV) species. The structural<br/>evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed<br/>using solid state <sup>29</sup>Si NMR. TGA experiments and chemical analysis support the NMR results<br/>which indicate that most of the starting monomer is either volatilized or undergoes further<br/>redistribution, so that by 400°C only polymethylsilsesquioxane remains.<br/>The active catalyst derived from Cp_TiMe, will also catalyze the alcoholysis of the<br/>Si-H bonds in the copolymer producing alkoxy derivates, -{Me(RO)SiO}<sub>0.3</sub> {MeSi(O)<sub>1.5</sub>}0.7<sup>-</sup><br/>(R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane<br/>oligomers such as -{MeHSiNH}or -{H_SiNMe}, but only if some -{MeHSiO} is present.<br/>The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSiO}:-{MeHSiNH} were much<br/>higher than that found for the pure polysilazane.<br/>20 DISTRIBUTION/AVAILABILITY OF ABSTRACT<br/>UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS<br/>220 NAME OF RESPONSIBLE INDIVIDUAL<br/>220 DISTRIBUTION/AVAILABILITY OF ABSTRACT<br/>221 ABSTRACT SECURITY CLASSIFICATION<br/>222 NAME OF RESPONSIBLE INDIVIDUAL<br/>224 NAME OF RESPONSIBLE INDIVIDUAL<br/>225 DISTRIBUTION/AVAILABILITY OF ABSTRACT<br/>226 DISTRIBUTION/AVAILABILITY OF ABSTRACT<br/>227 NAME OF RESPONSIBLE INDIVIDUAL</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bution of -{MeHSiO}                                             | -cyclomēr<br>- MeHSi                                 | s añd linear oli.<br>0}{MeSi(0)                          | gomers to pro                                                | oduce a poly<br>echanism for | meth<br>thi    | ylsilse:<br>s redis: | squioxane<br>tribution                 |  |
| <pre>evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000°C is followed<br/>using solid state <sup>29</sup>Si NMR. TGA experiments and chemical analysis support the NMR results<br/>which indicate that most of the starting monomer is either volatilized or undergoes further<br/>redistribution, so that by 400°C only polymethylsilsesquioxane remains.<br/>The active catalyst derived from Cp_TiMe, will also catalyze the alcoholysis of the<br/>Si-H bonds in the copolymer producing alkoxy derivates, -{Me(RO)SiO}_0.3 {MeSi(O)_{1.5}}0.7^-<br/>(R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane<br/>oligomers such as -{MeHSiNH} -or -{H_SiNMe} -, but only if some -{MeHSiO} - is present.<br/>The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSiO} -:-{MeHSiNH} - were much<br/>higher than that found for the pure polysilzane.<br/>20 DISTRIBUTION/AVAILABILITY OF ABSTRACT<br/>UNCLASSIFIED/UNLIMITED D SAME AS RPT DTIC USERS<br/>220 NAME OF RESPONSIBLE INDIVIDUAL<br/>221 NAME OF RESPONSIBLE INDIVIDUAL<br/>222 NAME OF RESPONSIBLE INDIVIDUAL<br/>223 NAME OF RESPONSIBLE INDIVIDUAL<br/>224 NAME OF RESPONSIBLE INDIVIDUAL<br/>225 NELEPHONE further Area Codel 1220 OFFICE SYMPONE</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | is suggested, that in                                           | nvolves o                                            | -bond metathesis                                         | promoted by                                                  | a Ti(IV) sp                  | ecie           | s. The               | structural                             |  |
| <pre>using solid state 2.51 NMR. IGA experiments and chemical analysis support the NMR results which indicate that most of the starting monomer is either volatilized or undergoes further redistribution, so that by 400°C only polymethylsilsesquioxane remains. The active catalyst derived from Cp_TiMe_ will also catalyze the alcoholysis of the Si-H bonds in the copolymer producing alkoxy derivates, -{Me(RO)SiO}_0.3 {MeSi(0)_1.5}0.7^- (R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane oligomers such as -{MeHSiNH}_or -{H_SiNMe}, but only if some -{MeHSiO} is present. The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSiO}:-{MeHSiNH}_x- were much higher than that found for the pure polysilazane. 20 DistRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION 224 NAME OF RESPONSIBLE INDIVIDUAL 225 TELEPHONE further Area Codel 225 OFFICE SYMPONY</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | evolution of the pol                                            | ymethylsi                                            | lsesquioxane cop                                         | olymer as it                                                 | is heated t                  | :0 10          | 00°C is              | followed                               |  |
| <pre>redistribution, so that by 400°C only polymethylsilsesquioxane remains.<br/>The active catalyst derived from Cp_TiMe, will also catalyze the alcoholysis of the<br/>Si-H bonds in the copolymer producing alkoxy derivates, -{Me(RO)SiO}_0.3 {MeSi(O)1.5}0.7^-<br/>(R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane<br/>oligomers such as -{MeHSINH} -or -{H_SINMe} -, but only if some -{MeHSIO} - is present.<br/>The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSIO} -:-{MeHSINH} - were much<br/>higher than that found for the pure polysilzane.</pre> 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT<br>UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | which indicate that i                                           | on NMR.<br>Most of t                                 | he starting mono                                         | mer is either                                                | r volatilize                 | ed or          | underge              | bes further                            |  |
| The active catalyst derived from Cp_TiMe, will also catalyze the alcoholysis of the<br>Si-H bonds in the copolymer producing alkoxy derivates, -{Me(RO)SiO}_0.3 {MeSi(O)_{1.5}}0.7^-<br>(R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane<br>oligomers such as -{MeHSiNH} -or -{H_SiNMe}, but only if some -{MeHSiO} is present.<br>The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSiO}:-{MeHSiNH} were much<br>higher than that found for the pure polysilzane.<br>20. DISTRIBUTION/AVAILABILITY OF ABSTRACT<br>UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS<br>224. NAME OF RESPONSIBLE INDIVIDUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | redistribution, so the                                          | hat by 40                                            | 0°C only polymet                                         | hylsilsesqui                                                 | oxane remain                 | s.             |                      |                                        |  |
| <pre>S1-H Bonds in the copolymer producing alkoxy derivates, -[Me(KO)SIO<sub>0.3</sub> (Me(C)1.5-0.7<br/>(R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane<br/>oligomers such as -{MeHSINH} -or -{H_SINMe} -, but only if some -{MeHSIO} - is present.<br/>The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSIO} -:-{MeHSINH} - were much<br/>higher than that found for the pure polysilzane.</pre> 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 22. NAME OF RESPONSIBLE INDIVIDUAL 22. NAME OF RESPONSIBLE INDIVIDUAL 22. NAME OF RESPONSIBLE INDIVIDUAL 23. NAME OF RESPONSIBLE INDIVIDUAL 24. NAME OF RESPONSIBLE INDIVIDUAL 24. NAME OF RESPONSIBLE INDIVIDUAL 25. TELEPHONE further Area Codel 1220 OFFICE SYMPONIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The active cata                                                 | lyst deri                                            | ved from Cp_TiMe                                         | 2 will also                                                  | catalyze the                 | e alc<br>∢}    | oholysi:<br>SeSi(O)  | s of the                               |  |
| <pre>oligomers such as -{MeHSiNH} -or -{H_SiNMe} -, but only if some -{MeHSiO} - is present. The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -{MeHSiO} -:-{MeHSiNH} - were much higher than that found for the pure polysilzane. 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT OUNCLASSIFIED/UNLIMITED SAME AS RPT. 21. ABSTRACT SECURITY CLASSIFICATION 22. NAME OF RESPONSIBLE INDIVIDUAL 22. DISTRIBUTION / AVAILABILITY OF ABSTRACT 22. NAME OF RESPONSIBLE INDIVIDUAL 22. DISTRIBUTION / AVAILABILITY OF ABSTRACT 22. DISTRIBUTION / AVAILABILITY OF ABSTRACT 23. DISTRIBUTION / AVAILABILITY OF ABSTRACT 24. NAME OF RESPONSIBLE INDIVIDUAL 25. DISTRIBUTION / AVAILABILITY OF ABSTRACT 25. DISTRIBUTION / AVAILABILITY OF ABSTRACT 27. ABSTRACT SECURITY CLASSIFICATION 22. DISTRIBUTION / AVAILABILITY OF ABSTRACT 22. DISTRIBUTION / AVAILABILITY OF ABSTRACT 23. DISTRIBUTION / AVAILABILITY OF ABSTRACT 24. NAME OF RESPONSIBLE INDIVIDUAL 25. DISTRIBUTION / AVAILABILITY OF ABSTRACT 25. DISTRIBUTION / AVAILABILITY / AVAILAB</pre> | (R = Me. Et. nPr. nBi                                           | polymer p<br>u). This                                | same catalvst s                                          | vstem can be                                                 | used to pol                  | ).3<br>.vmer   | ize pol              | vsilazane                              |  |
| The ceramic yields of 1:1, 1:3, 1:9, and 1:T8 ratios of -{MeHS10}:-{MeHS1NH} were much<br>higher than that found for the pure polysilzane.<br>20. DISTRIBUTION / AVAILABILITY OF ABSTRACT<br>UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS<br>22a NAME OF RESPONSIBLE INDIVIDUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oligomers such as -{1                                           | MeHSiNH}                                             | -or -{H <sub>2</sub> SiNMe}                              | , but only i                                                 | f some -{MeH                 | ( <u>5</u> 10) | - is p               | resent.                                |  |
| 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 122c DEEICE SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The ceramic yields o<br>higher than that fou                    | f 1:1, 1:<br>nd for th                               | 3, 1:9, and 1:18<br>e pure polysilza                     | ratios of -<br>ne.                                           | (MeHS10) -:-<br>x            | -iMeH          | SINH} -              | were much                              |  |
| 22a NAME OF RESPONSIBLE INDIVIDUAL 22h TELEPHONE Linguine Area Codel 22h OFFICE CYAABOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20. DISTRIBUTION / AVAILABILITY O                               | 21. ABSTRACT SECURITY CLASSIFICATION                 |                                                          |                                                              |                              |                |                      |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 228 NAME OF RESPONSIBLE INDIV                                   | 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL |                                                          |                                                              |                              |                |                      |                                        |  |
| DD FORM 1473, 84 MAR B3 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DD FORM 1473, 84 MAR                                            | <b>B</b> 3 A                                         | PR edition may be used un                                | til exhausted.                                               | SECURITY                     |                | FICATION C           | DE THIS PAGE                           |  |

## Catalytic Synthesis of Polymethylsilsesquioxanes

Richard M. Laine,\* Jeffrey A. Rahn, Kay A. Youngdahl and John F. Harrod<sup>†</sup> Contribution from the Department of Materials Science and Engineering University of Washington, Seattle, WA 98195 and, the <sup>†</sup>Department of Chemistry, McGill University, Montreal, Canada

Abstract:

Dimethyltitanocene,  $Cp_2TiMe_2$ , where  $Cp = C_5H_5$ , can be use to promote the redistribution of -[MeHSiO]<sub>x</sub>- cyclomers and linear oligomers to produce a polymethylsilsesquioxane copolymer of the type -[MeHSiO]<sub>0.3</sub>[MeSi(O)<sub>1.5</sub>]<sub>0.7</sub>-. A mechanism for this redistribution is suggested, that involves  $\sigma$ -bond metathesis promoted by a Ti(IV) species. The structural evolution of the polymethylsilsesquioxane copolymer as it is heated to 1000 °C is followed using solid state <sup>29</sup>Si NMR. TGA experiments and chemical analysis support the NMR results which indicate that most of the starting monomer is either volatilized or undergoes further redistribution, so that by 400 °C only polymethylsilsesquioxane remains.

The active catalyst derived from  $Cp_2TiMe_2$  will also catalyze the alcoholysis of the Si-H bonds in the copolymer producing alkoxy derivates, -[Me(RO)SiO]\_{0.3}[MeSi(O)\_{1.5}]\_{0.7}- (R = Me, Et, nPr, nBu). This same catalyst system can be used to polymerize polysilazane oligomers such as -[MeHSiNH]\_x- or -[H\_2SiNMe]\_x-, but only if some -[MeHSiO]\_x- is present. The ceramic yields of 1:1, 1:3, 1:9, and 1:18 ratios of -[MeHSiO]\_x-:-[MeHSiNH]\_x- were much higherthan that found for the pure polysilazane. At higher ratios of polysilazane, the apparent ceramic composition was the same as that found for the pure polysilazane.

1



#### Introduction

Silsesquioxanes,  $RSi(O)_{1.5}$ , represent a unique and poorly studied subset of polyalkylsiloxanes. This is despite the fact that they offer many exceptional properties. For example, silsesquioxanes, because of their need to form three Si-O-Si bonds, assume regular polyhedral shapes such as shown for octamethyloctasilsesquioxane:<sup>1</sup>



These polyhedral shapes have geometries very similar to those found for silica and its derivatives. Feher et al<sup>2</sup> have used this similarity as the basis for developing molecular models of silica surfaces. The regular geometry also contributes to such properties as high temperature stability<sup>1</sup> and high hardness.<sup>3</sup> Octamethyloctasilsesquioxane is stable in air to 415°C at which temperature it sublimes.

Polysilisesquioxanes appear to have cage rather rather than ladder structures,<sup>4</sup> wherein the polymer is formed by opening of a polyhedral edge as suggested for polymethylsilsesquioxane:



Polymethylsilsesquioxane, -[MeSi(O)<sub>1.5</sub>]<sub>x</sub>-, is stable in air to temperatures >500°C and, as we will show below, to at least 600°C in nitrogen. The phenyl derivative is reported to be stable to temperatures of 800°C.<sup>1</sup> The cage structrure has been suggested to be useful for making microporous materials.<sup>5</sup>

Polymethylsilsesquioxanes have been used as protective polymer coatings in the electronics industry<sup>6</sup> and as precursors to silica and  $SiO_{4-x}C_x$  glasses:<sup>7</sup>



From an engineering standpoint, these materials offer exceptional properties that should lead to widespread applications. Unfortunately, their propensity for forming gels makes it extremely difficult to prepare useful, processable quantities of any given material.

Until recently, the only method of preparing silsesquioxanes was via hydrolysis of the alkyltrichloro or trialkoxysilane:1,2,5



Separation of the polyhedral or polyalkylsilsesquioxane from the reaction mixture is extremely difficult and the isolable yields for these compounds are quite poor, typically ranging from 15-30%. Consequently, the discovery by one of us that titanium will catalyze the redistribution of alkoxysilanes under extremely mild conditions, reaction (1),<sup>8</sup> suggested that

 $3MeHSi(OEt)_2 = \frac{\langle 0.1 \text{ mol } \% \text{ Cp}_2 \text{TiMe}_2/\text{RT}}{MeSiH_3 + 2MeSi(OEt)_3}$ (1)

it might be possible to synthesize polysilsesquioxanes via a similar route which eliminates the need for a hydrolytic synthesis:

-[MeHSiO]<sub>n</sub>- <u><0.1 mol % Cp<sub>2</sub>TiMe<sub>2</sub>/RT</u> > MeSiH<sub>3</sub> + -[MeSi(O)<sub>1.5</sub>]<sub>x</sub>-

(2)

This reaction works very effectively and we present here an overview of our recent efforts to prepare and characterize the resulting polymers and their properties. The work presented here includes work previously published elsewhere.<sup>9,10</sup>

#### **Results and Discussion:**

Neat mixtures of either cyclic -[MeHSiO]<sub>n</sub>- (n =4,5), or linear oligomeric, Me<sub>3</sub>Si-[MeHSiO]<sub>n</sub>-H (M<sub>n</sub> = 2000 D) with 0.2 mol % ( $\eta^{5}$ -C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>TiMe<sub>2</sub> will turn royal blue (under N<sub>2</sub> at 20°C) following an induction period of ca 15 min. MeSiH<sub>3</sub> is evolved rapidly with stirring and in 5-7 min the solution becomes extremely viscous and gels in 10-15 min. Solid state <sup>29</sup>Si NMR (see below) indicates that the final gel consists of a copolymer of approximate composition -[MeHSiO]<sub>0.3</sub>[MeSi(O)<sub>1.5</sub>]<sub>0.7</sub>. The induction period that precedes reaction appears to be related to free radical promoted decomposition of ( $\eta^{5}$ -C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>TiMe<sub>2</sub> which generates the true catalyst.

Soluble product can be obtained by dilution with toluene. Thus, reaction in a five-fold excess (with respect to added -[MeHSiO]<sub>n</sub>-) of toluene gives a stable solution after 72 h of reaction. Reactions attempted with less than a five-fold excess of toluene lead inevitably to the formation of a gel.

Thin films cast from the resulting copolymer/toluene solution exhibit moderate elastomeric properties, excellent adhesion to glass, carbon, and metal surfaces and, can be heated without significant changes in properties to 250°C. Above this temperature, the polymer becomes more and more

4

brittle; however, no visible degradation occurs up to temperatures of approximately 400°C. However, solid state <sup>29</sup>Si NMR can be used to demonstrate that structural changes do occur on heating.

Because of our continuing interest in polymer precursors to ceramics we followed the structural evolution of the Me<sub>3</sub>Si-[MeHSiO]<sub>n</sub>-H derived copolymer during heating to 1000°C using solid state <sup>29</sup>Si NMR (Figure 1). At room temperature, we see the Me<sub>3</sub>Si (3%) and Me(OH)Si (4%) end caps of the original oligomer together with peaks for -[MeHSiO]<sub>n</sub>- (30%) and -[MeSi(O)<sub>1.5</sub>]<sub>x</sub>- (70%). TGA experiments and chemical analysis<sup>9</sup> support the NMR results which indicate that most of the starting monomer is either volatilized or undergoes further redistribution such that by 400°C only the pure polymethylsilsesquioxane remains. Note that in the NMR the sharp singlet of the [MeSi(O)<sub>1.5</sub>] silicon is present at 600°C but becaomes severely broadened as the polymer is transformed into a glass at 800°C.<sup>10</sup>

#### **Insert Figure 1**

Nearly identical copolymer compositions are obtained from the copolymer generated in toluene as determined following solvent removal. The NMR established composition is confirmed by the chemical analysis.<sup>11</sup> Given the relatively simple <sup>29</sup>Si NMR, the copolymer structure is assumed to be that shown below:



However, it is possible that other polyhedral silsesquioxane structural units also form in the copolymer.

Catalytic redistribution of hydridosiloxanes by transition metals was first reported by Curtis and Epstein.<sup>12</sup> They discovered that iridium complexes promoted redistribution of H-[Me<sub>2</sub>SiO]<sub>x</sub>-SiMe<sub>2</sub>H and proposed the following type of mechanism:



Based on recent work by Tilley et al<sup>13</sup> on the reactions of d° metals with silanes, we believe that a different mechanism is operating here. This mechanism probably involves  $\sigma$ -bond metathesis promoted by a Ti (IV) species generated by decomposition of  $(\eta^5-C_5H_5)_2$ TiMe<sub>2</sub>. The following mechanism is suggested based on the work of Tilley et al; however, substantiation must await detailed kinetic studies.



We propose a Ti (IV) catalytic process despite the royal blue color of the reaction which is typical Ti (III) compounds and despite our having isolated Ti (III) complexes<sup>14</sup> in related systems because of the following discovery.

Because the copolymer -[MeHSiO]<sub>0.3</sub>[MeSi(O)<sub>1.5</sub>]<sub>0.7</sub>- still retains Si-H groups which are susceptible to further modification either by hydrosilylation or alcoholysis, we explored the possibility of changing the copolymer rheological characteristics by reaction with alcohols. We find that addition of alcohols to the toluene reaction solution anytime during the course of reaction leads to very effective alcoholysis of the copolymer:



R = Me, Et, nPr, nBu

The addition of MeOH leads to a rapid color change from royal blue to yellow orange and extremely rapid (almost violent) evolution of hydrogen. The reaction is complete within the time of addition. The other alcohols are less reactive, with the n-BuOH reaction taking 1-2 days at room temperature.

Once solvent is removed, the methoxy derivative will become gel-like in hours to days depending on the temperature of the room. The n-butoxy derivative in contrast is much less susceptible to gelling and will remain as a viscous liquid for periods up to one week. N-propanol solutions of the n-propoxy derivative (25 wt %) will remain stable almost indefinitely. NMR characterization indicates the formation of -[Me(RO)SiO]0.3[MeSi(O)1.5]0.7and confirms the initial copolymer composition.<sup>10</sup> These polymers are actually a masked form of -[MeSi(O)1.5]x- given that addition of water will lead to hydrolysis of the SiOR bond and water can actually be used to cause thermosetting!

The yellow-orange color is typical of a Ti (IV) catalyst and when coupled with Tilley's work suggests the above proposed Ti (IV) promoted redistribution reaction.

#### Polysilazane Polymerizations<sup>15</sup>

The success of this catalyst system suggested that it might also be used

for the catalytic polymerization of polysilazane oligomers such as  $-[MeHSiNH]_x$ - or  $-[H_2SiNMe]_x$ -. This would offer an alternative to the ruthenium catalysts that we have previously used to form tractable silicon nitride preceramic polymers. To our suprise, neither oligomer underwent catalytic redistribution when mixed with  $(\eta^5-C_5H_5)_2$ TiMe<sub>2</sub> despite the fact that the catalyst reacted and some small amount of gas (presumably CH<sub>4</sub>) evolved coincident with reaction.

This result was disappointing; however, we attempted to catalyze the redistribution of -[MeHSiO]<sub>x</sub>- in the presence of -[MeHSiNH]<sub>x</sub>- to explore the possibility of trapping the -[MeHSiNH]<sub>x</sub>- oligomer in the resulting silsesquioxane gel. We used ceramic yield as a measure of our success. Thus, Figure 2 shows TGAs for the copolymer derived from -[MeHSiO]<sub>y</sub>-(74-78% ceramic yield at 900°C in N<sub>2</sub>), pure -[MeHSiNH]<sub>x</sub>- (37% ceramic yield at 900°C in N<sub>2</sub>) and a 1:1 mixture of -[MeHSiO]<sub>x</sub>-/-[MeHSiNH]<sub>x</sub>-. If the 1:1 mixture were to act simply as a physical mixture, then the ceramic yields for the combination should be the arithmetic mean or 56%. Instead, we find that (see Figure 2) the ceramic yield is  $\approx$  72%. This would suggest that we were successful in trapping the silazane in the interstices of the polymethylsilsesquioxane gel. However, an alternate explanation is that in the presence of the hydridosiloxane, the catalyst is now capable of catalyzing redistribution of polysilazanes. To test this, we changed the siloxane:silazane ratio. Table 1 shows both that as the ratio is changed from 1:1 to 1:3 to 1:18 reaction continues to occur, the ceramic yields stay high (relative to pure polysilazane) and the resulting ceramic products begin to look as like the ceramic products obtained from pure -[MeHSiNH]<sub>x</sub>-. Our preliminary conclusion is that titanium catalyzed redistribution of -[MeHSiNH]<sub>x</sub>-requires the presence of some quantity of hydridosiloxane as cocatalyst.15

It is important to note here that the apparent compositions reported in Table 1 are a form of book-keeping that is not truly indicative of the actual nature of the  $SO_{4-x}C_x$  glass.<sup>9</sup> However, these compositions are adequate for describing the selectivity to ceramic products, at 900°C, obtained by pyrolysis of -[MeHSiNH]<sub>x</sub>- and -[H<sub>2</sub>SiNMe]<sub>x</sub>-. The siloxane/silazane mixtures are perhaps better treated as mixtures of silicon oxynitride, Si<sub>2</sub>ON<sub>2</sub> and  $SO_{4-x}C_x$  or Si<sub>2</sub>ON<sub>2</sub> and silicon nitride/carbide depending on the percentage of initial hydridosiloxane.

8

| Compound             | <u>Ceramic</u><br>Vield | Apparent (<br>SioNa | Ceramic Compo | sition<br>C(x's) |
|----------------------|-------------------------|---------------------|---------------|------------------|
| MeHSiNH              | 65                      | 64<br>64            | 25            | 10               |
| H <sub>2</sub> SiNMe | 63                      | 75                  |               | 18               |
| MeHSiO               | 78                      | 70 SiO <sub>2</sub> | 20            | 10               |
| 1:1 MeHSiO/MeHSiNH   | 72                      | 31                  | 20            | 10               |
| 1:3 MeHSiO/MeHSiNH   | 64                      | 43                  | 20            | 10               |
| 1:9 MeHSiO/MeHSiNH   | 64                      | 53                  | 22            | 10               |
| 1:18 MeHSiO/MeHSiNH  | 63                      | 62                  | 19            | 11               |

 Table 1. Apparent Ceramic Compositions for Selected Polysilazanes,

 Polymethysilsesquioxane and Various Mixtures Pyrolyzed to 900°C

in Nitrogen. Heating rate 5°C/min. Apparent ceramic compositions are calculated assuming Si is the limiting element. N is the limiting element when  $-[H_2SiNMe]_x$ - is the preceramic.

### Conclusions

Titanium catalyzed redistribution of  $-[MeHSiO]_X$ - provides a useful route to tractable, processable methylhydridosiloxane-methylsilsesquioxane copolymers. The "Ti" catalyst active in the redistribution reaction will also promote alcoholysis of the resultant copolymers to produce alkoxy derivatives which display equivalent or slightly better, high temperature stability than the starting copolymer and more controllable rheology.

Although  $Cp_2TiMe_2$  will not catalyze the polymerization of pure -[MeHSiNH]<sub>X</sub>-, in the presence of small amounts of hydridosiloxane, it is an active catalyst precursor and permits catalytic redistribution that leads to a high ceramic yield silicon nitride precursor.

#### Acknowledgements

We would like to thank the Strategic Defense Sciences Office through the Office of Naval Research for support through ONR contract No. NOOO14-88-K-0305. RML would like to thank IBM Corp. for partial support of this work. RML and JFH thank NATO for a travel grant.

#### References

- 1. Voronkov, M. G.; Lavrent'yev, V. I. Top. Curr. Chem. 1982, 102, 199.
- (a) Feher, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. 1989, 111, 1741.
   (b) Feher, F. J. J. Am. Chem. Soc. 1986, 108, 3850.
- 3. From data sheet on GE Polyalkylsilsesquioxane (PALS) coatings distributed by General Electric Company.
- 4. Frye, C. L.; Klosowski, J. M. J. Am. Chem. Soc. 1971, 93, 4599.
- 5. Shea, K. J.; Loy, D. A. Chem. Mat. 1989, 1, 572.
- 6. January, J. R. U.S. Patent 4,472,510.
- 7. (a) White, D. .A.; Oleff, S. M.; Boyer, R. D.; Budringer, P. A.; Fox, J. R. Adv. Cer. Mat. 1987, 2, 45. (b) White, D. .A.; Oleff, S. M.; Fox, J. R. Adv. Cer. Mat. 1987, 2, 53. (c) Baney, R. In Ultrastructure Processing of Ceramics, Glasses, and Composites; Wiley and Sons: New York, 1983; pp 245-255.
- 8. Harrod, J. F.; Xin, S.; Aitken, C.; Mu, Y.; Samuel, E. Presented at the International Conference on Silicon Chemistry, St. Louis, MO, June 1986.
- Rahn, J. A.; Laine, R. M.; Zhang, Z. F., Proceedings of the Materials Research Society Symposium on "Polymer Based Molecular Composites" Boston, Dec. 1989, in press.
- 10. Laine, R. M.; Youngdahl, K. A.; Babonneau, F.; Hoppe, M. L.; Zhang, Z. F.; Harrod, J. F., submitted for publication in *Chem. Mat.*
- 11. Found C = 19.4%, H = 5.4%, Si = 41.5%, Calc. for [MeHSiO]<sub>0.3</sub>[MeSi(O)<sub>1.5</sub>]<sub>0.7</sub>, C = 18.5%, H = 5.1%, Si = 43.1%
- 12. Curtis, M. D.; Epstein, P. S. Adv. Organomet. Chem. 1981, 19, 213.
- 13. Woo, H. G.; Tilley, T. D. J. Am. Chem. Soc., 1989, 110, 3757.
- Harrod, J. F.; in *Transformation of Organometallics into Common and Exotic Materials: Design and Activation*," NATO ASI Ser. E: Appl. Sci.-No. 141; Laine, R. M. Ed.; Martinus Nijhoff Publ., Amsterdam 1988, p 103.
- 15. Youngdahl, K. A.; Hoppe, M. L.; Laine, R. M.; Harrod, J. F. *Proceedings of the 3rd International Conference on Ultrastructure of Ceramics, Glasses, and Composites*; Uhlmann, D.; Ulrich, D. R., Eds.; in press.



Chemical Shift (ppm)



Figure 1. Chemical evolution of  $Me_3Si-[MeHSiO]_n$ -H derived copolymer during heating to selected temperatures1000 °C using solid state <sup>29</sup>Si NMR. M = Me\_3SiO; D = Me\_2Si(O)\_2; DH = MeHSi(O)\_2; DOH = MeSi(OH)(O)\_2; T = MeSi(O)\_3; and Q = Si(O)\_4.

# Figure 2. Thermogravimetric Analysis of -[MeSi(O)<sub>1.5</sub>]<sub>X</sub>- (a), -[MeHSiNH]<sub>X</sub>- (c), and a 1:1 Copolymer of -[MeHSiNH]<sub>X</sub>- and -[MeSi(O)<sub>1.5</sub>]<sub>X</sub>- (b). Pyrolyzed under N<sub>2</sub> at a heating rate of 5 °C /min.