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Preface

In this paper we review the denial-of-service problem and introduce a new formal specification and verification

method for the prevention of denial of service. We also use a formal method for establishing the specification-

to-code correspondence. This enables us to verify formally the prevention of denial of service in Ada services

written using the package and tasking semantics. We also illustrate the use of the formal specification and

verification proofs in the formal verification and proofs of denial-of-service prevention for Ada services.

To verify the absence of denial of service, a service specification model is introduced. A key component

of that model is the separation of the service sharing mechanism from the service sharing policy. The need

for specifying fairness and simultaneity conditions formally within the sharing policy is discussed. We argue

that, in contrast with other properties, the prevention of denial of service requires specifications of service

use; i.e., user agreements, which are external constraints on service invocations and which must be obeyed by

all service users. In general, these constraints cannot be converted into internal service-enforced constraints,

such as those for service-sharing mechanisms and policies. We show that the formal specification of sharing

policy and that of user agreements form the basis for proof of denial-of-service prevention. We also explain

why previous methods developed for verification of liveness and safety properties of concurrent programs

cannot be used directly to demonstrate absence of denial of service in shared services. We illustrate the

difference between denial of service, security, and integrity problems and point out that formal specification

_ and verification methods developed for these latter two areas cannot be used to demonstrate absence of

denial of service.

This paper assumes that the reader is a computer science or engineering professional working in the area

of formal specification and verification of security and concurrency properties of code. Numerous literature

citations are made to temporal logic, and familiarity with temporal logic and with its prior use to solving

safety and liveness problems of concurrent programs is assumed. Also, familiarity with Ada semantics,

primarily with the notion of the package and of tasking, is necessary to understand the formal verification

of service written in Ada.
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1. INTRODUCTION

The three major security concerns, namely unauthorized release of information, unauthorized modification

of information, and denial of service, have been addressed to various degrees during the last decade. For

example, security policies and models of authorized release of information exist and seem to proliferate

at a rapid pace. Experience with the formal/informal interpretation of these models in real systems has

also been accumulated to the extent necessary to determine both the models' and their interpretations'

strengths [Landwehr84, Millen84]. Relatively few models of authorized modification of information exist,

and a consensus on their usefulness seems to be more difficult to reach.

In contrast with the areas of (un)authorized release and modification of information, the denial-of-

service area has received little attention in the past. Formal models are conspicuous through their absence

and, until recently not even an acceptable general definition of the problem had been proposed [Gligor83].

The properties of this problem are not well known and misconceptions about it abound among the security

practitioners. In fact, few of these practitioners even consider denial of service a security problem.

The principal goal of this paper is the presentation of a new formal specification and verification method

for the prevention of denial of service and its application to shared services written in the language Ada. These

services use the semantics of the "package" and "tasking" mechanisms of Ada. An additional important goal

is the illustration of the practical use of this method to the formal verification of denial-of-service prevention

in Ada services.

The formal specification and verification method presented here is the only method developed to date

which demonstrates the prevention of denial of service. In this paper we also explain why the previous

methods developed for the verification of liveness and safety properties of concurrent programs cannot

be used directly to demonstrate absence of denial of service in shared services. Also, by explaining the

difference between denial of service, security, and integrity problems we point out that formal specification

and verification methods developed for these latter two areas cannot be used to demonstrate absence of

denial of service.

This paper contains seven sections and two appendices. In the reminder of the introduction we review

the denial-of-service problem and its definition. In Section 2 we explain the differences between denial of

service, security, and integrity problems. In Section 3 we explain the relationship between the denial-of-

service properties and the safety and liveness properties in concurrent programming. We also argue that

current formal methods that help demonstrate the absence of safety and liveness problems in concurrent

programs are insufficient to demonstrate absence of denial of service in shared services that can be invoked

concurrently. In Section 4 we introduce a new formal specification and verification method that helps prove

the absence of denial of service in shared services. The underlying concepts of this method, such as the

model of shared service and the notion of user agreements, are illustrated through a detailed example.



Service and user-agreement specification ace provided using a language based on temporal logic. A complete

formal specifications of a generic resource allocator service that can be invoked concurrently is introduced

and the proof of denial-of-service prevention is provided. In Section 5 we illustrate the use of the formal

specification and verification method in the development of formal proofs of denial-of-service prevention

in services written in Ada. The specification-to-Ada code mapping is presented for the resource allocator

example, and the mapping of the formal specification proofs into the formal correctness proofs on Ada code

are also discussed. Section 6 of this paper contains the conclusion and Section 7 contains the references. The

Appendices include a summary of temporal logic semantics and a list of derived temporal theorems.

1.1. REVIEW OF THE DENIAL-OF-SERVICE PROBLEM AND DEFINITION

In order to define the denial-of-service problem precisely we need to introduce the problem's entities involved

and the relationships among them. The shared service is a generic term that includes programmed access

to shared data, invocation and execution of programs, and use of hardware resources. The designer of each

shared service usually specifies and implements the service sharing mechanism and policy. This mechanism

enforces conventions of service use such as the service-invocation procedure, entry point, number, type, and

order of parameters. The policy determines the maximum number of users, the order of service use in cases

of competitive demand by users, and specifies the intended waiting time for the service in case of competitive

demand. In addition to the mechanism and policy specification, the service specification may also include a

description of the service results as a function of its input parameters. 0

The waiting time for a service is rarely specified explicitly in terminal-oriented, time-sharing operating

systems; i.e., through stated specifications such as "any requesting user will wait no more than 'x' units

of time before the service is granted." Such specifications are typical for real-time system services. Most

often, the waiting time is specified implicitly, through unstated specifications which, nevertheless, imply that

"any requesting user will eventually be granted the service;" i.e., the user will be granted service in a finite

time. This type of waiting time specification is the one assumed throughout this paper. The conditions that

specify the finite waiting time for a service also define the Finite Waiting Time (FWT) policy. We also note

that:

* if the waiting time -- 0, there can be no denial of service because, in essence, the shared service

becomes private, and

" if the waiting time --, o, there can be no denial of service because, by definition, the shared service

is not promised to any user.

For the purposes of this paper, the users are processes which execute instructions on behalf of the human

user. Operating system processes may also be users of various internal operating system services. The users

rely on the service specifications and want to ensure that, among other things, the service is available within

finite time. Users ma, also care about other service features related to the service-scheduling policy, such as

2



average service time, service cost, etc., which are not directly related to the denial-of-service problem.

The service itself may consist of one or more processes. These processes, in turn, may be users of other

services. The only constraint we impose on the relationships among services is that the "use" relationship

[Parnas76, Parnas79] should not lead to cycles - a situation which can always be detected by careful analysis

of the operating system [Neumann et al.75, Schroeder et al.77, Janson76, Haberman76, Osterhout80].

Definition 1. (Denial of Service) A group of authorized users of a specified service is said to deny service

to another group of authorized users if the former group makes the specified service unavailable to the latter

group for a period of time which exceeds the intended (and advertised) service waiting time.

In principle, denial of service can occur only when a group of the service users becomes mores "privileged"

than the rest of the users. More privileged users are those who can gain higher priority or a more powerful

access to the service. Whereupon the more privileged users can exercise their privileges individually, or in

collusion, to prevent other users from accessing a specified service for periods of time exceeding the intended

waiting time or any FWT of that service. Such privileges can be acquired by exploiting various discriminatory

service-sharing policies and flawed service-sharing mechanisms. The less privileged users become dependent

upon the behavior of the more privileged users.

Definition 2. (Interuser Dependency) A user of a shared service is dependent upon another user of that

service if the correct (i.e., intended and advertised) operation of the former requires the correct operation of

the latter.

Some interuser dependencies are legitimate and have desirable effects; e.g., the sharing of some object

provided by service.

Definition 3. (Legitimate Dependency) An interuser dependency is legitimate whenever it results from

user-visible object sharing within the service (and which is explicitly identified within the service specifica-

tion).

For example, if two users share a file within a file-access service, the two users are dependent upon each

other because the data written by one user may affect the correct operation of the other and vice versa

(Figure 1). Furthermore, the concurrency control mechanism used by the service to serialize access to the

shared file may, in some cases, introduce interuser dependencies and cause denial of service. Deadlocks as

well as user attempts to abort their processes (actions which may trigger recovery) may result in delays that

can cause denial of service.

Similarly-defined interservice dependencies are legitimate because they form the basis for hierarchical

service development. For example, the "call" instruction introduces interservice dependencies because the

caller service always relies upon the called service to provide correct results [Parnas76, Parnas79]. This

is illustrated in Figure 1. Other interservice relations-not just the one defined by the "call" instruction-

have been identified and analysed in references [Neumann et al.75, Schroeder77, Janson76, Haberman76].

Failures of a service to meet its specifications cause failures in all services which depend upon it. For example,

3



Service S

"CALL" "RETURN"

Service T

(a) Interservice Dependency - Legitimate (S a T).

User A User B

FILE

(b) Interuser Mutual Dependency - Legitimate (A a B, B a A).

User A User B

(c) Interuser Undesirable Dependency (B a A).

Fig. 1. Dependency Examples (A a B = A depends on B).
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hardware failures due to component decay can cause operating system services to stop functioning causing

a system crash. The crash recovery action results in delays which can cause denial of service.

Legitimate denial of service is a temporary phenomenon which can be dealt with in two ways. The

delays in recovery from such events as deadlocks and crashes can be accounted for in the computation of

the waiting time for each service in the service hierarchy. Although this computation can be nontrivial, it is

always possible. Thus, legitimate denial of service can be prevented by definition. This approach is advisable

whenever the recovery delays are, or can be made, relatively small, i.e., less than a few seconds. For example,

recovery from crashes caused by hardware failures can be made very fast by adding redundant hardware

components, failure detection and reconfiguration logic.

In some cases, however, legitimate denial of service cannot be prevented by definition. The cost of

masking a failure and making recovery fast, or that of deadlock prevention or avoidance may be too high. In

cases when legitimate denial of service cannot be prevented by definition, denial of service may be allowed

to occur. The system and/or the users are relied upon to detect and signal such occurrences.

Detection of denial of service is always possible provided that a Maximum Waiting Time (MWT) is

specified. Service invocations by users can be designed to trigger, in an atomic way [Lampson8l], the setting

of a timer to the sum of the MWT and the maximum service time. Various methods have been routinely

used by designers of real-time systems to compute the maximum service time and, subsequently the MWT

[Gouda79]. Whenever denial of service is detected, the system may be asked to inform the users of the extent

of the (temporary) denial of service, and proceed to recover from it.

Recovery from denial of service may require that a user invokes an alternate service with similar spec-

ifications to those of the service being denied. The alternative of notifying the user of denial-of-service

instances is advisable in case of longer legitimate delays; it also seems to be the one preferred by most

operating systems designers.

Definition 4. (Undesirable Dependency) Any dependency introduced between unrelated users (i.e., users

that do not share explicitly any objects within a service) by service mechanisms and/or policies is undesirable.

For example, a user process which manages to exhaust a resource bound within a service makes other

users dependent upon itself. The dependency occurs because no other user can access the service until the

first user relinquishes at least a part of the resource. Consequently, no user-except possibly the first one-may

operate correctly; e.g., neither the users nor the service can meet their intended specifications, such as their

maximum execution time.

Some undesirable interuser dependencies may appear along with some of the legitimate dependencies

within a service. Therefore, all solutions to the denial-of-service problem (1) must distinguish between legit-

imate and undesirable interuser dependencies within services, (2) must provide detection/recovery mecha-

nisms for denial-of-service instances that might be caused by legitimate dependencies, and (3) must eliminate

undesirable dependencies.



In reference [Gligor83] it is shown that the sources of undesirable dependencies can be traced to discrim-

inatory service-sharing policies, inadequate service-sharing mechanisms, and to combinations of seemingly-

adequate service-sharing mechanismb and policies. For example, Lhe "shortest-job-time-first" policy for

processor scheduling and the "shortest-seek-time-first" policy for disk scheduling are discriminatory sharing

policies.

Among the inadequate service-sharing mechanisms the following have led to the largest numbers of

undesirable interuser dependencies (and consequently to denial-of-service instances): inadequate resource

quotas, inadequate access control mechanisms, inadequate concurrency control mechanisms, and inadequate

combinations of mechanisms. Lack of resource quotas, circumvention of resource quotas, and inadequate

handling of resource-quota exceptions are the most common sources of undesirable dependencies [Gligor83].

Weak access control mechanisms (i.e., those which do not violate controlled sharing policies) may allow built- 0
in system dependencies on users' behaviour within services. These dependencies can also cause undesirable

interuser dependencies. Interuser timing dependencies, such as those leading to individual process block-

ing, are the most common sources of undesirable dependencies caused by inadequate concurrency control

[Gligor83].
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2. DENIAL OF SERVICE VS SECURITY AND INTEGRITY PROBLEMS

In the past few years several misconceptions about denial of service have appeared due to the complexity of

the problem and to its many guises. The relationship between denial of service and other security problems

and the relationship between denial of service and service availability/reliability problems must be clarified

before significant progress can be made towards resolving these misconceptions. Also, the nature of a

Trusted Computing Base that prevents denial-of-service instances must be explained. In this section, several

misconceptions about these issues are addressed in the form of answers to relevant questions.

(1) Is denial of service a security problem?

The answer to this question is unequivocally yes, for at least two reasons. Denial of service can result

in unauthorized disclosure of information. This is the case because ostensibly-confined user programs can

leak information to other user programs by preventing the latter's access to a legitimately-shared service in

an observable way.

0 This observation is more important than it first appears. A large number of denial-of-service instances

are due to lack of resource quotas for various resources. It would be ironic to solve the denial-of-service

problem by placing resource quotas in an otherwise secure system, only to discover that a large number of

covert channels have been introduced. It should not be surprising that the covert channel problem and the

0 denial-of-service problem are related; this is a consequence of the fact that both these problems appear only

in the context of shared resources.

The second observation is that the opposite of the denial-of-service problem, namely the policy of

guaranteed access to data, programs and other services by authorized users, is a problem of controlled-

sharing of information. Because security must handle controlled-sharing problems, denial of service must be

also considered a security problem.

(2) Is denial of service a distinct security problem, or is it a special case of the disclosure or of the

integrity (i.e., unauthorized modification of information) problem?

Denial of service is a distinct security problem, therefore, it should not be expected that it will disappear

by inventing new disclosure or integrity policy models. This statement is based on the following line of

reasoning. Unauthorized disclosure of information does not constitute denial of service. Conversely, it could

be argued that any denial-of-service instance constitutes a disclosure problem because all such instances can

0 provide at least a single, unauthorized, binary answer to an arbitrarily complex question. This can happen

because a user, which is prevented from answering a query from some other users by the security policies

and mechanisms of a system, may nevertheless provide a binary answer to the query by denying (or not

denying) access to the other user to a shared service at predetermined times. Thus, one may argue that

* denial-of-service problem is a subset of the unauthorized disclosure problem and, therefore, denial of service

is not a distinct security problem. However, this argument is misleading for at least two reasons. First, it is

7



also known that not all denial-of-service instances cause integrity problems; but all integrity problems cause

some form of denial of service because some information is corrupted and, therefore, denied to some users

[Gligor83]. Thus, it would follow that all integrity problems are a subset of the denial-of-service problem, 0
and transitively, that all integrity problems are a subset of unauthorized disclosure problems. Therefore,

since we consider integrity a distinct problem from the disclosure problem, the denial-of-service problem

must also be considered to be a distinct problem. Second, from a more practical point of view, none of

the current models that define disclosure policies can also define denial-of-service/guaranteed access policies,

and none of the current integrity models can handle all aspects of denial of service [Millen 84]. Thus, we can

conclude that the denial-of-service problem is a separate security concern that appears even when all users

are legitimately authorized to access and modify data.

(3) Should a practical definition of denial of service be based on the notion of a system crash?

The temptation of defining denial of service in terms of system crashes should be resisted. First, a

crash may or may not cause denial of service. For example, in a network of computer systems, the crash of

one system does not necessarily imply the crash of the entire system. Thus, a user may be able to initiate

and complete his computation within the necessary maximum waiting time advertised by the system. The

crash becomes merely a failure of system component, and the potential denial of service can be prevented

by invoking alternate services, as discussed in Section 1.1 above.

Second, denial of service does not necessarily cause a system crash. Examples of denial-of-service

instances which do not cause crashes either in centralized systems or in networks are presented in [Gligor83].

In fact, it is argued in [Gligor84] that denial of service is not necessarily visible to observers outside of the

group being denied service. This implies that reliance solely on system operators to detect and recover from

instances of denial of service is inadequate. (This approach is attributed by some [Wilkinson82] to Burroughs

large systems and by [Ritchie78] to UNIX.)

Third, the notion of a crash is itself an imprecisely defined notion in most systems. Few systems

distinguish precisely between recoverable failures and disasters (i.e., failures that always lead to crashes).

While such a distinction is an important concern of reliable system design, it is not a direct concern of secure

system design. However, the recovery of a system in a secure state is an important security concern which

is, quite obviously, unrelated to denial of service.

(4) Is denial of service a fundamental problem or is it just an isolated design/implementation problem?

How important is the denial-of-service problem?

If one defines as "fundamental" a problem that persists when the cost of technology decreases to zero,

then the denial of service is a fundamental problem. Denial of service appears because users share local

or remote services, and controlled service-sharing remains an important concern even when the cost of

technology decreases to zero. First, services are not only shared because of the high cost of using them

privately; sometimes they are shared because the servi-e supplier is unique (e.g., no other supplier is creative

8
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enough to provide the required service). Second, the need to share information among several users may

require the sharing of services that make much information available. Thus, denial of service is not an

isolated design/implementation problem that appears in only some systems. It appears in all designs and

implementations where services are shared.

Denial of service, although a fundamental problem, is only of secondary importance currently in both the

security and the high-availability areas of research and development. This is the case because, as suggested

above, a large number of denial-of-service (but not all) instances are eliminated (1) by the use of integrity

models for secure systems, and (2) by the use of designs for high-availability systems. However, when such

models and designs become better understood, the importance of the denial-of-service problem will become

clear.

(5) Are the current Trusted Computing Bases (TCB) [DoD83] structured adequately for the preven-

tion/detection of denial of service?

The answer to this question appears to be no. First, it is well known that a TCB which implements

a disclosure and integrity model may, in fact, not address the denial-of-service problem. For example,

the separation of policy from mechanism in kernel design, which was considered a cornerstone for good

kernel design in the UCLA Secure UNIX and in the Hydra systems [Popek75, Levin75], places the various

resource-allocation-policy modules outside the kernel and trusted processes. These systems admittedly do

not address the denial-of-service problem. However, these examples serve to illustrate the contention that

adequate structuring of the TCB for authorized disclosure and data integrity purposes may be still inadequate

for addressing the denial-of-service problem.

Two misconceptions about TCB structuring for disclosure and integrity purposes are likely to propagate

to the TCB structuring for denial-of-service purposes. First, the notion that security kernels always are (or

can be made) small is mistaken. Practice shows that complex systems have large kernels and simple systems

have small kernels [Janson76]. Second, the notion that for a given system there exists an unchanging TCB

is also mistaken. The size of a TCB, at least in terms of the number of trusted processes, grows with the

number of applications. This is a particularly important observation in the case of denial of service because

shared, application-level services that are implemented outside a disclosiire/integrity TCB may, in fact, have

substantial parts of their implementation inside a denial-of-service-oriented TCB.

9



0

0

0

0

0

0

0

0

0

10

0



3. DENIAL OF SERVICE VS SAFETY AND LIVENESS PROBLEMS

Various safety and liveness properties of shared services or program modules are widely used in the formal

specification and verification of concurrent programs [Owicki82], [Hailpern82l, [Lamport83l, that denial-of-

service problems have been eliminated from shared services. It should be noted that flawed specifications of

concurrency control mechanisms and/or policies are not the only source of denial of service [Gligor83]. Also,

safety and liveness problems that are unrelated to service sharing are irrelevant to denial of service. In this

section, we explain the relationship between denial of service and safety/liveness problems.

3.1. DENIAL OF SERVICE AS A SAFETY/LIVENESS PROBLEM

Denial of service can be both a safety and a liveness problem. It takes place whenever one or both of the

following situations occur:

" Some users prevent some other users from making progress within the service for an arbitrarily long

time.

" Some users make some other users receive incorrect service; i.e., the service does not satisfy its intended

functional specifications for the latter users. The service is disabled in an unauthorized way.

Denial-of-service instances of the first case are liveness problems, whereas denial-of-service instances of the

second case are safety problems. Note that permanent deadlocks between user processes is considered to be

a safety problem.

A user is said to make progress within a service if all of its service invocations will eventually terminate.

Intuitively, a service allows its users to make progress whenever its sharing policies are fair, whenever it is

free from permanent deadlock, and if it is free from starvation. Fairness and freedom from starvation are

liveness concerns. Furthermore, a service performs correctly whenever different user operations within the

service neither interfere with each other nor disable the service, and whenever the effects of a user operation

within the service always persist after the operation is committed by its user. All these properties are safety

concerns.
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3.2. DENIAL OF SERVICE AS A DISTINCT SAFETY/LIVENESS PROBLEM

The major safety properties that have been specified and verified formally in the concurrent programming

area are mutual exclusion, resource invariance, and deadlock freedom. The major liveness properties that

have been formally specified and verified in a general way are termination and fairness. Starvation freedom

is also a liveness property that has been verified formally in some examples. These safety and liveness

properties are the fundamental properties of concurrency control mechanisms within shared services. Since

services may be invoked concurrently, these properties must be used to prevent denial-of-service problems.

However, denial-of-service problems can also be caused by some other sharing problems unrelated to

safety or liveness. Failure to use adequate service sharing mechanisms, such as resource quotas, user identi-

fication, and service policies such as the finite waiting time for individual users, can cause denial of service.

For example, inadequate enforcement of resource quotas may stop the activity of the service [Gligor 83-84];

lack of identification checking may cause resource inconsistency [Welsh 81]; lack of finite-waiting-time spec-

ification may deny service to some users even if a fair scheduling policy is enforced within the service [Yu

87].

One of the reasons why denial of service differs from the typical safety/liveness problems is that it may

result from inadequate use of services by users. Undesirable user behavior can cause some users to receive

incorrect service or prevent other users from making progress within the service. These types of denial of

service may occur because shared services have no control over the users' behavior outside the service. For

example, the service behavior may depend on the order of the entry operations invoked by users. Although

service properties related to the order of service invocations are, in general, safety properties of a given

service, violations of such properties may be caused by violation of liveness properties in services using

the given service. Whenever a service assumes a certain invocation order and the assumed order is not

guaranteed, then denial of service may take place. For example, a malicious user can monopolize a resource-

providing service by requesting a large number of resources without releasing them for an arbitrarily long

time. Although some aspects of user behavior can be checked by other system facilities outside the service

(e.g., through compilation checks), a resource can become unavailable for an arbitrarily long time when the

user holding the resource gets blocked within another service; or when the user aborts before normal service

termination and some of the service operations cannot finish their work on behalf of other users.

Notice that current service models, such as those based on monitors [Hoare 74] and resource controllers

[Ramamritham 85], which are usually used for synchronizing asynchronous users, are unable to protect

against the denial-of-service problems caused by undesirable user behavior. This is because, although current

service models can always schedule the proper order of operations among different users, they cannot always

control the invocation order of individual users. Current service-specification models focus on the integration

of concurrency control into program modules of services, and thus are irrelevant to the user behavior outside

the service.
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4. FORMAL SPECIFICATION AND VERIFICATION METHOD

In this section, we introduce a formal specification and verification method that is suitable for the prevention

of denial f service in computer systems. First, we address the assumptions and properties of shared services

under consideration. Second, we introduce the notion of "user agreement". Third, we present the formal

model for service and agreement specification. Fourth, we apply the formal model to specify the resource

allocator and verify the prevention of denial of service in the resource allocator. Finally, we justify our formal

method and discuss why other methods are insufficient for the prevention of denial of service.

4.1. ASSUMPTIONS

The relations among shared services are specified in the following two axioms:

1) Hierarchical structure axiom: the call relations among shared services are partially ordered; i.e. no

* cycles on all "call" sequences may exist in the systems under consideration.

2) Independence axiom: the sharing mechanism and policy of all services in a system are independent of

each other; i.e., they are uniquely determined in each service.

As mentioned before, denial of service occurs if and only if undesirable interuser dependencies exist; thus the

elimination of undesirable interuser dependencies is sufficient to prevent denial-of-service problems. However,

the elimination of undesirable interuser dependencies is not trivial for complex systems especiall, whenever

the system shared services are not well organized. The above assumptions relating to the shared service enable

us to identify the undesirable in teruser dependencies among users of each individual service without analyzing

other services that may be called from within the services under consideration. The hierarchical structure

axiom eliminates the mutual dependency between operations in a "call" sequence. Without this axiom, it

would appear to be very difficult to analyze the undesirable interuser dependencies. The independence axiom

makes the undesirable interuser dependencies which may exist within a specific service, independent of those

of other services which may be called from within the specific service, if all of these calls are terminated

successfully. These assumptions are also general requirements for constructing well-structured systems such

as the monitor or the abstract type based systems.

0
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4.2. PROPERTIES OF SHARED SERVICES

The shared services under consideration are defined by several sharing-related properties as follows:

" The extent of shared services: Services can be shared locally, remotely, or distributively. Local and

remote services are shared to minimize the high cost of using resources privately. Typically, distributed

services are shared in to increase the availability of resources. All shared services can be accessed

concurrently; thus the specification and use of concurrency control mechanisms and fair sharing policies

is required for all types of shared services.

" Separation of sharing mechanisms and policies from other functionally related mechanisms: Sharing

mechanisms and policies are used for controlled sharing of the service-provided resources, whereas other

functional mechanisms are used for actual manipulation of the resources. Sharing mechanisms and 0
policies regulate the execution of functional operations and thus are the main source of undesirable

interuser dependencies which cause denial of service. In contrast, functional mechanisms determine how

to use the resource and this is unrelated to sharing control; thus they are not the source of undesirable

interuser dependencies within the service. Thus, our service model will emphasize the sharing control

part of the shared services in order to facilitate our analysis of denial-of-service problems, whether

concurrency is actually used or not. Other service models, such as those for monitors [Hoare 74], and

for concurrent programs [Hailpern 82], do not attempt to separate the sharing-control part from the

functional part of shared services. This is because the problems caused by sharing mechanisms and

policies other than concurrency control are irrelevant to those models.

" Non-uniform sharing mechanisms and policies: Depending on the service environment, sharing mech-

anisms and policies are implemented in different ways in different services. Consider synchronization

concerns within a service. The appropriate implementation of synchronization mechanisms can differ

not only for different services, but also for similar services in different environments. For example, tra-

ditional operating system synchronization mechanisms are implemented based on operation atomicity

in the sense that an invocation to a service is considered as a complete unit of work by itself. Thus,

simple mechanisms, such as the mutual exclusion mechanism, are sufficient. In contrast, synchronization

mechanisms for distributed services require transaction atomicity to ensure failure atomicity during the

evolution of a transaction [Gray 78]. During execution, a transaction evolves as a partial order of a set

of related operations on objects of a distributed service to ensure data integrity of the service. Thus,

more complex mechanisms, such as the two-phase locking mechanism, are required.

" System level vs. application level services: The sharing mechanism and policies for system level service

are different from those of application level service. For example, consider the resource allocation

services. Deadlocks are often allowed in application level services because the use of resources may not 0
be determined with certainty. In contrast, deadlock must be prevented in system level services. Thus,
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deadlock detection and recovery mechanisms are required in application level services, whereas certain

constraints on user's behavior to ensure the proper order of invocation to entry operations are required

in the use system level services to prevent the occurrence of deadlocks.

4.3. THE NOTION OF USER AGREEMENT

Denial of service can take place not only by exploiting flawed sharing mechanisms and/or policies within the

service but also by undesirable sequences of service invocation outside the service. Since these constraints

include invocation sequences of multiple service users, they are called the "user agreements". User agreements

for service access must be specified outside the service specifications for two reasons. First, user agreements

must eliminate the undesirable interuser dependencies created by user misbehavior outside the service.

(Other undesirable interuser dependencies created by inadequate sharing mechanisms and policies can also

exist [Gligor83].) Second, user agreements may constrain the use of multiple services, and therefore cannot

be included into any single service specification. For example, Havender's "ordered resource acquisition"

approach to deadlock prevention [Havender68] is an example of a user agreement that spans multiple resource-

providing services inside an operating system.

The specification of user agreements outside a service does not necessarily mean that service users are

trusted to obey them. Whenever compile-time checks on user code are impractical, the user agreements

may be enforced by code outside the service that is executed before the service calls are actually issued.

An example of such code in other areas, such as in the deadlock avoidance area, is that which determines

whether a resource assignment to a user is safe [Habermann 69]. Another example is the code which enforces

that lock requests issued by users are legal, well-formed, and two phase [Gray78].

To define the user agreements for shared services, we have to analyze all possible invocation sequences

that may be issued by each user and all possible invocation sequences that may invoke the shared service.

For convenience, the former sequence is called the U..seq and the latter is called the S-seq. A Ui-seq is a

partial order of service invocations issued by an individual user Ui. A S-seq is a partial order of concurrent

service invocations by many users. Thus, a S-seq is an invocation sequence that interleaves operations of

individual U-seqs and preserves the original partial order of each U.seq. Analysis of U-seq and S..seq allows

us to define user agreements for shared services.
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4.3.1. Safe Service-Invocation Sequence

Operations needed for controlled service sharing can be classified into two categories: (1) the resource

consuming operations and (2) the resource producing operations. For example, the Acquire and Release

operations of resource allocators can be considered the consuming and producing operations, respectively.

Similarly, the Put and Get operations of a bounded buffer service are the consuming and producing opera-

tions, respectively. Some services, such as the resource allocators, require their users to produce resources

that have been previously consumed by the same users. Other services, such as the bounded-buffer services,

allow resources to be consumed and produced by different users. Therefore, we have to define the allowed

types of operations and the allowed order of operations for each user. Let ai be the allowed consuming oper-

ation invoked by user Uj, and bi be the allowed operation that attempts to produce the resources consumed

by user U (note that bi is not necessarily invoked by Ui). The set of allowed operations for U can be defined

as:

Opi-set = {op Iop E Ai or op E Bi}

where Ai represents the set of all allowed a1 , and Bi represents the set of all allowed bj 1, bj2 ,-. • that produce

resources consumed by users Uj 1, Uj2 , . - - respectively. For resource allocators, the set of allowed operations

is Opi -set = {Acquirei, Releasei}, and each user U is allowed to invoke both operations. For bounded-buffer

services, there are two types of users; viz., senders and receivers. The set of allowed operations for the sender

Ui is Opi.set = {Puti}, and for the receiver Uj is Opi.set = {Getij, where Ui is the peer sender of the •

receiver Uj.

The allowed invocation order between two operations can be defined by the partial order relation "<".

The order relation specifies that an invocation of operation op, must precede an invocation of operation op2

and is represented as opi < op2. Given the set of all allowed operations of user U (i.e., Opi-set), the set •

of all allowed invocation orders between every two operations in Opi-set is represented as Ori.set. In the

example of the resource allocator (presented in Section 4.5 below), resources that can be relinquished by

user Ui must be those which are previously acquired; thus for U,, Oriset = {(Acquire, < Releasei)}. For

bounded-buffer services, no ordering constraints exist for its users because the senders may only invoke Put S
operations whereas the receivers may only invoke Get operations. Thus for each user U, Ori.set = { } (an

empty set). To define a safe user invocation sequence, we use the following notation:

Given (op < oP2) E Ori.set

U,(k) is partial sequence of Ui-seq up to, and including, U,(k);

n0pi(k) is the number of operations op, in U,(k),

noP2(k) is the number of operations op2 in Ui(k).

Given Opi-set and Ori.set, the safe user invocation sequence for Ui can be defined as follows:

Definition:
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A user invocation sequence Ui.seq of a specific service is said to be safe if it satisfies the following

conditions:

1) if operation op is in Ui.seq, then op E Opi-set, and

2) if (opi < op2) E Ori.set, then nopt(k) > nop2 (k) for all k.

For example, suppose that the producing operation b of the resource allocator presented in Section 4.5

below produces an amount of resources equal to that consumed by the consuming operation a. Then the

following Ui-seq is safe:
o'i = ai, bi, ai, ai, bi.

In this U-seq, some resources allocated to user Ui are not relinquished before Ui terminates execution (more

ai's than bi's). However, user Uj neither relinquishes resources before it acquires them nor does it relinquish

resources allocated to other users. Therefore, the user invocation sequence is safe in the sense that it will

not cause resource inconsistencies. For the same resource allocator, the following Ui.seqs are not safe:

oi -ai, bi, ai, bj,

o =i ai, bi, bi, ai.

The first Ui-seq is not safe because user Uj attempts to relinquish resources allocated to user Ui. The second

U-seq is not safe because user U attempts to relinquish its allocated resource twice. Both of these two

U-seqs may cause resource inconsistencies.

4.3.2. Live Service Invocation Sequence

Let a be a possible S-seq of a specific service, then the elements of a are the operations that are issued

to the service by all users. The order of operations in a is the same as the real time order of all service

invocations. If ai and bi represent the consuming and producing operations respectively as defined above,

then the following sequence is a possible S-seq:

a = a,a 2 , a ,b1 ,a 4 , a*,b 2 ,bs,b 3 ,...

where a! represents a consuming operation of user U which blocked within the service waiting for certain

service conditions to become true. Conditions are boolean functions of service states such as the resource

state. Conditions may change value only through "calls" to the entry operations. For example, in the

invocation sequence given above, the operation a5 , invoked by user Us, is blocked waiting for some resources

to become available. After the resource consumed by user U2 is relinquished, U5 resumes its operation (since

operation b2 is immediately followed by operation b5 and b5 can appear in the Sseq only after a5 resumes).

For convenience, we use the following notation:

p!(c) is an operation Pi that is blocked for condition c,
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pi(c) is an operation pi that resumes execution after being blocked for condition c.

When condition c become true, p!(c) might not become pi(c) immediately due to the resumption of other

blocked invocations that are waiting for the same condition c. However, a condition may become true several

times during the evolution of a specific Sseq. Given condition c for operation pi, let a0 be the sub-sequence

of a S.seq a from the beginning of a to the blocked operation p!(c). Suppose that aj represents the sub-

sequence of a between (j - 1)-th to j-th time that condition c becomes true after p!(c). Then for operation

Pi:

' = Ot 0 , , . ,

We use the following notation:

P(c)--pi (c)

to represent an invocation pi that is blocked at the end of ao0 and that resumes operation at the end of a1 .

Definition

A service invocation sequence S-seq is said to be live if, for every blocked invocation p!(c), there exists

a set of sub-sequences ao, ai, .-., aj, and a = ao, a1 , a,-.. , such that p!(c) -pi(c).

For example, consider a resource allocator of a single resource. Suppose that each b operation makes

condition c to be true. Let ai - Acquirei and bi = Releasei, then the sequence

ac a, a2(c), bl, b2,..., ak-l, ak(c), b2k-1, b2k,--"

is a live S.seq because ak(c)---ala2k(c) for all k > 1, where a2k(c) occurs between b2k-. and b'k. The

sequence

a = al,a2(c),a(c),b,a*4(c),b3,a(c),b4,-..., a;4 (c), bk,...

is not a live Sseq. This sequence has a*k(c) -,-'ak(c) for all k > 3. However, for a2(c), no aj exists in a such

that a2(c)---a 2(c). Thus, operation a2 is blocked forever.
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4.3.3. User versus Service Invocation Sequences

To obtain appropriate specifications for user agreements of a specific service, the analysis of both U.seq and

S-seq is required. Analysis that is limited to U.seq is insufficient because U..seq provides only information

about what users are allowed to do but not what users must do. Furthermore, analysis that is limited to

S.seq is also insufficient because liveness of a service invocation sequence is meaningless without knowing

that all completed operations in the Sseq have received the intended services.

Analysis of U.seqs cannot determine the liveness property of the entire service invocation sequence for

at least two reasons:

" Resources consumed by a user may not necessarily be produced later by the same user. For example,

users that do a P operation on a certain semaphore may not do a V operation on the same semaphore,

and vice versa. Thus, the availability of the resources protected by the semaphore cannot be determined

by each individual U..seq.

" A user may stop execution in the middle of a U..seq, and thus some operations, which other users

may invoke, cannot finish their work on behalf of their users. For example, some users' invocations

may deadlock each other in several services. The occurrence of such deadlocks cannot be predicted

by analyzing U.seqs separately. Constriction of user agreements based on live S-seqs solves the two

problems described above.

Analysis of S.seqs helps establish liveness properties that cannot be provided by U.seqs. However, a live

S-seq does not guarantee that each individual operation can receive its intended service. An invocation may

return abnormally repeatedly (e.g., an exception is signaled before normal return), or may return normally

with incorrect results whenever sharing control is incorrectly specified. Therefore, the analysis of both U..seq

and S-seq is required to determine appropriate user agreements of shared services. Of course, the appropriate

U-seq and S-seq depend on the sharing mechanisms and policies within the service under consideration.
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4.4. THE MODEL OF SHARED SERVICES

The service-specification model includes two major parts: the service specifications and the user-agreement

specifications. The service specifications describe all the desired operations and properties that must be

provided by the shared service. The user-agreement specifications describe all the desired properties that

must be provided by the users of the shared service.

Given a specific service, the existence of undesirable interuser dependencies (and thus, the potential for

denial of service [Gligor83-84]) is determined by three major concerns:

1) the service shaning mechanisms and policies;

2) the user invocation sequence;

3) the service invocation sequence.

Appropriate internal service specifications are intended to eliminate undesirable interuser dependencies that

may result from the first concern. Appropriate user agreement specifications are used to eliminate undesir-

able interuser dependencies that may result from the second and the third concerns. The service-specification

model separates sharing mechanisms from policy specifications because it distinguishes different types of ser-

vice properties (i.e., safety vs. liveness properties). We adopt a temporal-logic-based specification language

([Pnueli77, 79, 80], [Owicki82]) to facilitate expressing the semantics of sharing mechanisms and sharing

policies within a service and the user agreements for this service. (The semantics of temporal logic are

reviewed in Appendix 1.) However, other specification languages, not necessarily based on temporal logic,

could be used with our specification method.

In the remainder of this section we explain how a specification that guarantees finite waiting for a

service is written. We also explain the rationale for, and the specification of, the Finite Waiting Time

(FWT) policy. Then we introduce a formal specification for shared services that can be invoked concurrently

and a specification of user agreements that describes properties for safe user-invocation sequences and live

service-invocation sequences. Finally, the relationship between different specifications that constitute the

FWT policy is presented. We also discuss their progress implications. 0
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4.4.1. Specification of the FWT Policy

Access to shared services must be guaranteed to authorized users. Thus, a FWT policy must be adopted

in the service model to guarantee individual user progress within a shared service. For the purposes of

this paper, the FWT policy consists of three different, yet mutually-related, specifications: fairness policies,

simultaneity policies, and user agreements. The notion of the user agreement has been introduced earlier in

this paper. The fairness and simultaneity policies are sharing policies specified within a service. The formal

semantics of the fairness and simultaneity policies is presented in the next sub-section, which also introduces

the formal specification of shared services. Informally, the fairness policy states that a user will not be

blocked forever within a service if that user has many opportunities to make progress. The simultaneity

policy states that a user will eventually have all the opportunities needed to make progress within a service

provided that the user agreement of that service can be satisfied.

Whenever a specification implies individual user progress within a service, then the FWT policy for that

service is guaranteed. Thus, if the user agreements for that service can be satisfied, then the simultaneity

policies guarantee the existence of progress opportunities for each user, and the fairness policies, in turn,

guarantee that each user makes progress. The user agreements of a service can be satisfied in one or both of

the following two ways depending on the service environment:

1) apply constraints to all service users so that they obey the user agreements, and

2) provide facilities that enforce the user agreements so that sequences of user invocations are regulated

before the actual calls are issued.

Therefore, the fairness policy and the simultaneity policy plus the user agreements satisfy the FWT policy.

Conversely, if any one of the specifications for fairness and simultaneity policies as well as the user

agreements is not provided, then either the progress opportunities for some users may not always exist or

the service treats some users unfairly. Thus, the enforcement of the FWT policy cannot be guaranteed.

A FWT policy is best specified by using, whenever possible, internal service specifications; i.e., sharing

policy specifications. However, in general, it is impossible for internal service specifications to guarantee

finite waiting times. This assertion is based on the following line of reasoning. First, FWT for a service is

guaranteed only if the service invocation sequences of that service are live. However, a service specification

cannot include the semantics of "live service invocation sequences" because it cannot predict users' behavior

outside the service. Thus, we have to specify the properties required for live service-invocation sequences

outside a service. Second, if we combined the fairness and the simultaneity policies into a single policy,

then the resulting specification would not separate concerns properly and, in general, would become more

complex. Such specification would convey too many properties and would become less comprehensible. This

would make it difficult to implement the service from such a specification. For example, the fairness policy

for users waiting within one entry queue (e.g., the FIFO policy), and the simultaneity policy (e.g., any policy

that prevents individual user starvation) are implemented by different liveness properties. Any specification
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that combines different, unrelated properties at the same level of abstraction would provide too little specific

information for practical implementation of any of the properties. For this reason, we decompose the FWT

specification into different types of specifications. 0

4.4.2. Service Specification

A service specification defines the properties for concurrent service access, and the necessary mechanisms

and policies to enforce the desired properties. The skeleton of a service specification is given in Figure 2.

Note the separation of the sharing mechanisms and policies. Below, we explain each keyword in Figure 2.

" service: This keyword gives the name of the service.

" type: The data types that will be used in the service are specified. Some well-known types such as

integer, boolean are not specified here. All specified types include a type name. If the type name is

self-evident, no further explanation is given. If a given type is a construct of other types, it is specified

explicitly. For example:

type userid

units

index = 1 ... N

" constant: The names of constant values or a group of structured constant values (e.g., constant array)

are specified within the service. An example of constant specification is:

constant size : units

quota : array [userid] of units, Vid : userid, quota[id] < size

Note that constant specifications may be exported through the interface specifications.

" variable: The names of variables are specified. Variables are used to express the states of a service,

such as the state of the shared resource, the number of concurrent users, etc. A variable is specified by

its name, type, and initial value, such as

variable free : units, initially size 0
own : array[userid] of units, initially Vid : userid, own[id] = 0

" hidden operations: The hidden operations are those which are not visible to the users outside the

service. Therefore, users cannot invoke hidden operations. Hidden operations can only be referenced

from within the service. In general, they are used to help describe the behavior of internal operations.

The construct of an hidden operation includes an operation name and the effects of the operation.

" interface operations: A user can access a service only by invoking the interface operations. An

interface operation may include arguments. The identity of the invoking user is assumed to be an 0
implicit argument inherent in every interface operation. The argument of an operation "op" is expressed
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Service Specification

service service-name

type

constant

variable

sharing mechanisms

hidden operations

operation-name (arg1 , arg2 , . . ., argn)

effects :

interface operations

operation-name (argl, arg2 ,..., argn)

exception conditions

effects :

resource constraints

concurrency constraints

sharing policies

fairness

simultaneity

Fig. 2. Service Specification Skeleton.
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as the construct: op.argument. As an example of the resource allocator, Acquire.id represents the

identity of the user process which invokes the "Acquire" operation currently. The construct of an

interface operation includes an operation name (and arguments), exception conditions, and "effects"

of the operation. Exception conditions describe the conditions under which the arguments will cause

errors. The "effects" part describes the normal actions taken by the service when no exceptions occur.

The variables within a service may change values after the execution of an interface operation. In order

to distinguish the value of a service variable before modification from its value after modification, we

add a symbol " ' " to the right of the variable to represent its value after the operation has executed.

For example, the "Acquire" operation of the resource allocator can be specified as follows, where n is

the number of resources requested.

interface operations

Acquire (n : units)

exception conditions : quota[id] < own[id] + n

effects : free' = free - n

id.own' = id.own + n

* resource constraints: The specification of "resource constraints" is essentially the same as that of
"resource invariance", which has been widely used in the literature [Hoare74], [Owicki79], [Hailpern82],

etc. Resource constraints give the properties of the service-provided resource and should always be true

for all service states. For example, in the resource allocation service, one of the resource constraints is

that the number of resource units in the resource pool is always greater than or equal to zero and less

than or equal to the maximum number of resource units of the resource pool:

resource constraints

3 ((free > 0) A (free < size))

* concurrency constraints: Concurrency constraints specify the conditions under which concurrent

operations are allowed to execute within a service. To specify such constraints, we use "#Active"

denoting the number of concurrent active interface operations in the service and "#Activeop" denoting

the number of concurrent active operations "op" in the service. An operation is said to be active if it is

currently performing its computation for changing the resource state. For examples, if mutual exclusion

is required between interface operations for changing the resource state, and if an active operation will

eventually terminate, then the concurrency constraints can be specified as follows: 0

concurrency constraints

1. a(#Active < 1)

2. (#Active = 1) ,,- (#Active = 0)

* fairness: The Fairness policy expresses the behavior required of a service such that no operations which
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satisfy the necessary conditions infinitely often will be blocked forever. For example, in the resource

allocation service, let condition cl denote the statement: "the number of resources currently available is

no less than the number of resources requested", and let condition c2 denote the statement: "there are

no active operations in the service at this time". We need the following fairness policy: if both Cl and

C2 can simultaneously become true infinitely often then the blocked "Acquire" operation will eventually

resume execution and finally terminate. This fairness policy can be specified as follows:

fairness (at(Acquire) Anco ((free > Acquire.n) A (#Active = 0))) - after(Acquire)

where variable free is the number of currently available resources, and n is the argument to "Acquire"

specifying the number of resources requested.

0 simultaneity: The simultaneity policy states that during the waiting period of an invocation, if every

condition requested can be satisfied infinitely often, then all of conditions eventually will be satisfied

simultaneously. For example, let cl and c2 be the same conditions as those used in the description of

fairness policy. The simultaneity policy of the resource allocation service can be described as following

two parts:

1) whenever an invocation to "Acquire" is blocked, if cl can be satisfied infinitely often and so does

c2 then cl and c2 eventually will be satisfied simultaneously.

2) whenever an invocation to "Acquire" is blocked and some users always repeatedly release their

allocated resources until cl becomes true then cl will eventually become true.

In the second part, condition cl is further decomposed into a number of sub-conditions. Each of these

sub-conditions denotes the statement: "one unit of requested resource become available." Thus, the

number of sub-conditions to be fulfilled is the number of resources requested. We specify the simultaneity

policy as follows:

simultaneity

1. (in(Acquire) A (ao (free > Acquire.n)) A (C3o (#Active = 0)))

^-*- ((free > Acquite.n) A (#Active = 0))

2. (in(Acquire) Aoo (#Active_-Release > 0)) -*- (free > Acquire.n)
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Agreement Specification

user agreement service-name

type

variable

internal agreement

safety

liveness

external agreement

safety

liveness
0

Fig. 3. Agreement Specification Skeleton.

4.4.3. Agrnement Specification

As mentioned before, user agreements specify the properties that must be provided by the users of the

shared services to prevent instances of denial of service. Some of the properties describe the actions the

users are allowed to perform. These are safety properties. The others describe those actions which the users

are required to perform. These are liveness properties. The skeleton of the agreement specification is shown

in Figure 3. 9

e internal agreement: Internal agreements are required when a service includes hidden operations that

can only be called from within that service. They specify the safety properties, such as "when a hidden

operation is allowed to call," and/or the liveness properties, such as "when a hidden operation must be

called." The internal operation execution sequences that contain hidden operations must satisfied the

properties of the internal agreements. For example, the "two-phase locking" protocol [Gray 78], which

is used to serialize user transactions in a distributed file access service, is a special form of internal

agreement:

safety Vu : userid,Vf : fileid, in(u)

1. -at(Read(f)) UNTIL after(Lock(f, R))

2. -,at(Write(f)) UNTIL after(Lock(f, W))

3. at(Unlock) o-'at(Lock) 9
4. after(Lock) * (-after(Unlock) UNTIL at(Commit))

liveness Vu : userid,Vf : fileid, in(u) =*
1. afer(Lock(f, R)) ^-). at (Read(f))
2. after(Lock(f, W)) -,- at (Write(f))

3. after(Lock(f, )) - at(Unlock(f))
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In this internal agreement specification, "Read" and "Write" are interface operations, and "Lock" and

'Unlock" are hidden operations. "Read(f)" means to read a file with file name "f", etc. "Lock(f, R)"

means to request a Read lock on file "f". "Lock(f, W)" means to request a Write lock on file "f". If

the "R" or "W" is not specified in a "Lock" operation, it could be a Read lock or a Write lock.

e external agreement: External agreements specify the allowed user operation order and the required

service invocation sequence that must be ensured by users outside the service. As an example of a

resource allocator, in order to guarantee that all users eventually can make progress, service invocation

sequences must preserve a liveness property. Whenever an "Acquire" operation g' ts blocked waiting for

some resources to become available, then a sufficient number of "Release" operations must eventually

become active and finally terminate until sufficient free resource units become available. This allows the

waiting "Acquire" operation to have a chance to make progress. This user agreement can be specified

as:

external agreement

liveness

in(Acquire) -- ((Do (#Active-Release > 0)) V (free > Acquire.n))

The user agreement in the service model is given in an abstract form and is valid for all services of

the same class. However, the possible implementation of user agreements is strongly dependent on the

service environment and thus may differ from each other. In the case of resource allocator, to guarantee

the service invocation sequence to be live, users that share a class of resource allocation service may

be restricted on some allowed operation orders such as the "ordered resource" approach [Havender 68].

Alternatively, service users can be asked to claim the largest number of resource units of each service

that the user will need at one time before any service access, such as the "resource claim" approach

[Habermann 69].
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4.4.4. Progress Implications of Fairness, Simultaneity, and User Agreements

As mentioned earlier in this paper, the FWT is constructed from the fairness policies, the simultaneit4

policies, and the user agreements. After giving the semantics of these properties, we can now present more

detailed discussion about the relationship between the fairness policy, the simultaneity policy, and user

agreement. We also discuss their progress implications.

Informally, a fairness policy states that a user will make progress if it has many opportunities to make

progress. A fairness policy is necessary to allow individual user progress. Without a fairness policy, an

invocation may be blocked forever in the service even if it has many opportunities to make progress. To

illustrate the notion of fairness, let us consider the most popular scheduling policy, the first-in-first-out policy

(FIFO). Is FIFO a fair policy? First, if one defines FIFO according to the overall arrival order of service

invocations, then FIFO is clearly not a fair policy. For example, some invocations of the "Release" operation

of a resource allocator may be blocked forever just because they arrived after a call to "Acquire" that

requested a number of resources which exceeded that of the currently available resources. Thus, invocations

of "Release" are treated unfairly. Second, if one defines FIFO based on invocations of individual interface

operations, then FIFO guarantees fairness only for invocations of the same service operation. It would not

guarantee fairness between different service operations.

An important question is whether a fairness policy specification guarantees individual user progress.

Fairness does not necessarily imply individual user progress because the opportunities for making progress

may not always exist. Progress opportunities can only be provided by the application of simultaneity policy.

Informally, the simultaneity policy states that a user will eventually have all the opportunities it needs to

make progress if the user agreements allow these opportunities to occur. However, a fairness policy together

with a simultaneity policy still cannot guarantee individual user progress because the existence of such

opportunities always depends on user agreements.

To illustrate the necessity for user agreements, let us consider the specification of a fairness policy. The

conditions required for progress within a service are expressed as the hypotheses of the fairness policy. Some

of these conditions can be satisfied only when the service invocation sequence is live. Since shared services

cannot predict users' behavior outside the service, the service specification is unable to include the semantics

of live service-invocation sequences. Thus, in addition to specific sharing policies, some form of agreement

specification is always required.

One may ask: if user agreements allow progress opportunities to be created, do we still need a simultane-

ity policy? The answer is yes. A simultaneity policy is required because, although user agreements can allow

progress opportunities to be created, they may not be able to guarantee that progress takes place within a

service for at least two reasons. First, bhe occurrence of progress opportunities may also depend on other

conditions that can be satisfied only by sharing mechanisms and policies of the service itself. For example,

a service may require mutual exclusion among concurrent service invocations. An operation invocation has
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an opportunity to make progress only when the currently-active operation terminates. Termination would

depend, in this case, upon the mutual exclusion conditions enforced within the service. Thus, the satisfac-

tion of these conditions cannot be determined by the users outside the service. Second, even if individual

conditions requested are all dependent on user agreements, they may not be satisfied simultaneously. This

is because other invocations, which are required to satisfy only parts of these conditions, can make progress

repeatedly. Thus, individual conditions requested by certain users may never become tr,-e simultaneously.

The service invocations of these users will be blocked forever. The individual process starvation problem

[Dijkstra 72] is an example of such a situation.

From the above discussion, it should be clear that the fairness policy, the simultaneity policy, and the

user agreements are all required to guarantee individual progress. Of course, individual progress must also be

supported b, the application of appropriate sharing mechanisms and policies because the liveness property

is dependent on safety properties of sharing mechanisms [Lamport 86].

4.5. APPLICATION OF SHARED SERVICE MODEL

In this sub-section, we apply the model of shared service to specify a general resource allocator. In order to

demonstrate that the service model is appropriate for prevention of denial of service, we will formally verify

that all users of the given resource allocator eventually make progress and receive intended service.

4.5.1. Specification of a Resource Allocator

One of the main shared services of an operating system is the allocation of system resources to users. A

resource allocator consists of a pool of resource units that can be shared by a group of users. Initially, the

pool contains the total number of resource units. To prevent resource monopolization, the resource allocator

maintains a resource quota for each user. Resource quota provides the maximum number of resource units

that can be assigned to each user. The resource allocator also maintains a variable array "own" that specifies

the number of resource units currently assigned to each user. Each user can acquire "n" units of resource

by invoking the "Acquire" operation. Similarly, each user can relinquish "n" units of resource by invoking

the "Release" operation. Based on the model of shared service, the service and agreement specifications of

the resource allocator are shown in Figures 4 and 5 respectively.

The agreement specification of the resource allocator does not include internal agreements because there

are no hidden operations specified in the service specification of resource allocator.
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Service Specification

service resource.-allocator

type userid, units

constant size : units
quota : arrayluserid] of units, Vid : userid, quota[id] < size

variable free : units, initially size

own : array[userid] of units, initially Vid : userid, own[id] = 0

sharing mechanisms

interface operations

Acquire (n : units)
exception conditions : quota[id] < own[id] + n

effects : free' = free - n

own[id]' = own[id] + n

Release (n : units)
exception conditions : n > own[id]

effects : free' = free + n

own(id]' = own(id- n

resource constraints
1. o ((free > 0) A (free < size))

2, Vid c ((own[id] > 0) A (own[id] _ quota[id]))
3. (free = N) = ((free = N) UNTIL (after(Acquire) V after(Release)))

4. Vid (own[id] = M) ,

((own[id] = M) UNTIL (after(Acquire) V after(Release)))

concurrency constraints
1. o(#Active < 1)

2. (#Active = 1) -- - (#Active = 0)
sharing policies

fairness
1. (at(Acquire) Ao ((free > Acquire.n) A (#Active = 0))) -- after(Acquire)

2. (at(Release) Ao (#Active = 0)) -*- after(Release)

simultaneity

1. (in(Acquire) A (oo (free > Acquire.n)) A (ao (#Active = 0)))
-*- ((free > Acquite.n) A (#Active = 0))

2. (in(Acquire) Ao (#Active.Release > 0)) -i-* (free > Acquire.n)

Fig. 4. Service Specification for the Resource Allocator
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Agreement Specification

user agreement resource-allocator

external agreement

liveness

in(Acquire) - (o (#Active..Release > 0)) V (free > Acquire.n))

Fig. 5. Agreement Specification for the Resource Allocator

4.5.2. Formal Verification of the Resource Allocator

A resource allocator is prevented from denial of service if all user invocations which do not cause excep-

tions eventually terminate and receive their intended service. We begin by proving that the specifications of

resource allocator guarantee that user invocations eventually make progress. We next show that the specifi-

cations ensure correct service for individual users. In the following proofs we assume that no user operations

cause exceptions.

4.5.2.1. Progress Proofs

The term "invocations of resource allocator eventually terminate" can be expressed by the following two

temporal formulas:

at(Acquire) -i after(Acquire); (P1)

at(Release) - after(Release). (P2)

We must prove that given the service and agreement specifications of the resource allocator, both (P1)

and (P2) are temporal theorems. We will prove a series of lemmas based on the service and agreement

specifications. To prove that (P2) is a temporal theorem, we first show that the resource allocator is

repeatedly in a state that no operations are in execution (Lemma 1). To prove that (P2) is a temporal

theorem first, we show that a blocked "Acquire" invocation will eventually get a chance to proceed (Lemma

2). Second, we show that if an "Acquire" invocation can be blocked forever then it should have infinitely

many chances to proceed (Lemma 3). Finally, we show that if (P1) is not true then eventually the invocation

will be blocked forever (Lemma 4). A list of derived temporal theorems, which are used in the following

proofs, are given in the Appendix 2 for reference.

Lemma 1. The formula a o (#Active = 0) is a temporal theorem.

Proof. The concurrent constraints of the resource allocator imply

o(- (#Active = 0) * *(#Active = 0))

From the derived theorem (D1) in the Appendix 2, we can conclude

0o (#Active = 0)
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Theorem 1. The formula at(Release) -- after(Release) is a temporal theorem.

Proof. Applying Lemma 1 to the second fairness policy of the resource allocator, we complete the pr3of

.,--I 'iediately.

Lemma 2. The formula in(Acquire) -i- (free > Acquire.n) is a temporal theorem.

Proof From the user agreement specification of the resource allocator and the temporal axiom (A5) in the

Appendix 2, we have 0

a(in(Acquire) =* o((oo (#ActiveRelease > 0)) V (free > Acquire.n))).

From the derived theorem (T3') in the Appendix 2, we have

t(in(Acquire) *=- ((oao (#Active-Release > 0)) V o(free > Acquire.n))).

From the derived theorem (T2') in the Appendix 2, we have

o(in(Acquire) =;. ((co (#ActiveRelease > 0)) Vo(free > Acquire.n))). (L1)

From the simultaneity policy 2 of the resource allocator and the temporal axiom (A5) in the Appendix 2,

we have

o((in(Acquire) A co (#Active-Release > 0)) = o(free > Acquire.n)). Hence

co((in(Acquire)A((o* (#Active -Release > 0)) V o(free > Acquire.n))) *

o (free > Acquire.n)). (L2)

From the temporal formulas (Li), (L2) and the derived theorem (D3) in the Appendix 2, we obtain

o(in(Acquire) => *(free > Acquire.n)).

Thus, we complete the proof.

Lemma 3. The formula o ain(Acquire) => oo ((free > Acquire.n)A (#Active = 0)) is a temporal theorem.

Proof From Lemma 1, the first simultaneity policy of the resource allo'cator implies

(in(Acquire) A to (free > Acquire.n)) ,, ((free > Acquire.n) A (#Active = 0)).

From the derived theorem (D4) in the Appendix 2, we have

(00(in(Acquire) A ao (free > Acquire.n))) =: oo ((free > Acquire.n) A (#Active = 0)).
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From the derived theorems (T4), (T1) and (T2') in the Appendix 2, we have

((ooin(Acquire)) A co (free > Acquire.n)) =:, ao ((free > Acquire.n) A (#Active = 0)). (L3)

Also, Lemma 2 implies

oa(in(Acquire)) =:, 0o (free > Acquire.n). (L4)

From the temporal formulas (L3), (L4) and the derived theorem (D2) in the Appendix 2, we can conclude

oain(Acquire) =:, ao ((free > Acquire.n) A (#Active = 0)).

Lemma 4. Suppose that the temporal formula

o(at(Acquire) A o(- (after(Acquire))))

is true then

or3(in(Acquire)).

Proof From the semantics of the control predicates at, after and in given in the Appendix 1, we have

o (at(Acquire) A o(-(afer(Acquire))))

o (at(Acquire) A c(in(Acquire)))

*0 oa(in(Acquire)).

Therefore, we complete the proof.

Theorem 2. The formula at(Acquire) ---- after(Acquire) is a temporal theorem.

Proof. Suppose it is not a temporal theorem then

o(at(Acquire) A a(-'(after(Acquire))))

From Lemma 3 and 4 we obtain

oo ((free > Acquire.n) A (#Active = 0))

Then, from the first fairness policy, we obtain at(Acquire) - after(Acquire) which is supposed to be

false, a contradiction occurs. Thus, we can conclude the theorem.
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4.5.2.2. Correct Service Proofs

To demonstrate that user invocations receive correct service when they terminate, we show that the following

temporal formulas are temporal theorems.

Vid((own[id] = M) A o(after(Acquire(n)))) *.o(own[id] = M + n), (Cl)

Vid ((own[id ] = M)A o(affer(Release(n)))) : o(own[id] = M - n), (C2)

Vid((own[Id] = M) Ao(-'(after(Acquire)) A -'(after(Release))))

=, o(own(id] = M). (C3)

The proofs are rather straightforward by applying the specification of sharing mechanisms.

Theorem 3. The temporal formulas (Cl), (C2), and (C3) are theorems.

Proof. First, from the concurrency constraints of resource allocator, concurrent invocations are required

to be executed mutual exclusively. Thus, if o(after(Acquire(n))) then the "effects" part of "Acquire"

operation implies (Cl) directly. Similarly, the "effects" part of "Release" operation implies (C2) directly.

Second, applying the temporal axiom (P UNTIL Q) =:. (o-'Q => oP), (C3) is directly implied by the

fourth resource constraint.

4.6. DISCUSSION

We have presented here a formal service model for the prevention of denial of service in computer systems.

We have chosen a specification method based on temporal logic to facilitate the construction of a service

model for two reasons: 1) it has the power of reasoning about "future" events, and thus is particularly suitable

for expressing our notion of progress; 2) it is convenient for expressing the semantics of the invocation order,

and this order relation is an important part of our service model. The advantage of using this specification

method to solve safety and liveness problems is that it states the essential service properties based on the

concept of abstraction. The abstract service specification model must be interpreted differently in different

service environments. Thus this model is appropriate for the prevention of denial-of-service problem because

the problem appears in various guises in practice [Gligor 83].

Other research work also used abstract specification methods to describe required properties [Owicki 82],

[Hailpern 82], [Lamport 83], [Ramamritham 85]. However, these methods are less suitable for the prevention

of denial-of-service problems for the following reasons:

* they do not provide formal specifications of simultaneity policy within a service. (Although in princi-

ple these methods could provide simultaneity policy specifications, they currently do not include such

specifications.)

" they do not specify properties that must be satisfied by users outside the service. (Instead, such proper-

ties usually appear as hypotheses of fairness policies specified within a service. However, user behavior
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outside the service may make these hypotheses false. Therefore, external service specifications are still

necessary.)

To date, only fairness policies have been formally specified and verified in a general way. However, a

fairness policy cannot prevent denial-of-service instances caused by conspiracy among a group of users that

manages to monopolize shared resources. A solution for the prevention of individual process starvation

in a specific service has been proposed informally for the dining philosophers problem [Dijkstra 72] based

on a characterization of simultaneity policies. Our service specification and verification method provides

formal semantics for simultaneity policies that are applicable to all shared services. Simultaneity policies are

necessary but are not sufficient to guarantee individual user progress within a service.

The main reason the current specification methods are unsatisfactory is that they only attempt to

express the properties that must be enforced within a service. User agreement specifications, which are

necessary to eliminate the effects of undesirable interuser dependencies within the service, are conspicuous

by their absence. Therefore, denial-of-service problems cannot be solved by direct application of current

specification methods.
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5. FORMAL IMPLEMENTATION AND VERIFICATION OF ADA SERVICES

5.1. SERVICES IN THE PROGRAMMING LANGUAGE ADA

Ada is a language that addresses many important programming issues including strong typing, data abstrac-

tion, tasking, generic units and exception handling, etc. Ada is an adequate language for the implementation

of shared services due to its strong expressive power. For example, the Ada tasking facility provides syn-

chronization mechanisms and the Ada packaging facility provides a suitable tool for service encapsulation

[Wegner83]. The prevention of denial of service in Ada implementations of shared services is strongly de-

pendent on the semantics of tasking and access types. In this section, we focus on these two issues. For a

general view of Ada, the reader should refer to the Ada reference manual [Goos83].

5.1.1. Ada tasking

The basic synchronization and communication mechanism for Ada tasks is the rendezvous mechanism.

The rendezvous mechanism of Ada represents the action of synchronization followed by communication. A

user task may invoke an Ada service by issuing an entry call to the service task in which the rendezvous

mechanism is provided. A rendezvous between the caller task and service task occurs whenever the caller

invokes an entry call declared in the service task and the service task reaches the "accept" statement for the

entry invoked by the caller. During the rendezvous, the caller task is suspended until the execution of the
"accept body" is completed.

A user call to an Ada task will wait in the related entry queue before it can be accepted for service

rendezvous. User calls within an entry queue are scheduled for service by the order of first-in-first-out

(FIFO). When multiple open entries exist, Ada may select among them in an arbitrary manner. There is

no guarantee of fair selection of open entries in Ada. Thus, to guarantee that each user makes progress, a

fairness policy must be enforced within the service task whenever it schedules user calls among open entries.

The communication mechanism of Ada is asymmetric in that the service task need not know the identity

of its caller. Thus, in general, the service tasks are structured as an endless loop to await open entries.
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5.1.2. Access Type

In Ada, objects of the "access" type provide a means to access other objects and these other objects

must be allocated dynamically from heaps. An access object can be considered to be a pointer to another

object. Tasks can also be created through access types. Tasks created through access types are made active

immediately on the evaluation of the allocator. Such tasks are not dependent on the unit where they are

created. Instead, they are dependent on the unit containing the declaration of the access type itself. Thus, 4

the lifetime of such a task is independent of the lifetime of its creator. This feature enables Ada to cope with

some denial-of-service problems such as abrupt aborts of user tasks that cause data inconsistency within the

service.

5.2. IMPLEMENTATION OF ADA SERVICES FROM SPECIFICATIONS

Based on the formal service specification and the semantics of Ada, we are able to construct Ada ser-

vices that satisfy their formal specifications. Since the Ada tasking provides the rendezvous mechanism for

synchronizing user tasks within the service task, the concurrency constraints of the service specification is

inherently preserved within the Ada tasks. As mentioned before, a fair scheduling policy is inherent within

an entry queue by the FIFO ordering. However, one needs to implement a fair selection policy among open

entries. Except for these features, other properties that are needed to be implemented within the Ada service

for the prevention of denial of service depend on the characteristics and environment of a specific service.

Below, we implement an Ada resource allocator service from its formal specification provided in the

previous section. Two implementations of the resource allocator are given. The first is based on a strict

FIFO order for resource allocation. The second is based on the availability of resources during service request

and thus it does not necessary follow the FIFO order. Both resource allocator implementations include two

parts: the service part, which is constructed from the service specification of resource allocator, and the user

invocation part, which is constructed from the user agreement specification of the resource allocator.

3
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5.2.1. The FIFO Resource Allocator

5.2.1.1. Implementation of the Service Task

The resource allocator with strict FIFO order on resource allocation explicitly ensures the fairness property

of the service. Each user invocation will eventually be granted the service whenever all users obey appropriate

user agreements. The FIFO policy is inherent within individual entry queues. A FIFO policy among open

ACQUIRE calls can be ensured by not accepting other ACQUIRE entry calls for the next rendezvous if the

,urrent ACQUIRE entry call in the rendezvous has not received the requested resources. This is illustrated

in the Ada task of FIFO resource allocator below:

task FIFO-RESOURCE is

ERROR: exception;

entry ACQUIRE(ID: in USERID; N: in UNITS);

entry RELEASE(ID: in USERID; N: in UNITS);
0 end:

task body FIFO-RESOURCE is

FREE: UNITS: = MAX;

QUOTA: constant array (USERID range <>) of UNITS: - ( .);

OWN: array (USERID range <>) of UNITS: = (OWN'RANGE => 0);

begin

loop

begin

select

accept ACQUIRE(ID: in USERID; N: in UNITS) do

if QUOTA(ID) < OWN(ID) + N then

raise QUOTA-ERROR;

end if;

while FREE < N loop

begin
accept RELEASE(RID: in USERID; M: in UNITS) do

if M > OWN(RID) then

raise QUOTA-ERROR;

end if;
FREE: = FREE + M;

OWN(RID): = OWN(RID) - M;

end;

exception

when QUOTA-ERROR =>

null;

end;

end loop;
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FREE: = FREE - N;

OWN(ID): = OWN(ID) + N;

end;

or

accept RELEASE(ID: in USERID; N: in UNITS) do

if N > OWN(ID) then

raise QUOTA-ERROR;

end if;

FREE: = FREE + N;

OWN(ID): = OWN(ID) - N;

end;

end select;

exception

when QUOTA-ERROR =>

null;

end;

end loop;

end FIFO-RESOURCE;

Here, the type USERID and UNITS are declared in a package containing the service task FIFO-RESOURCE.

The USERID defines the type of user identity and the UNITS defines the type of resource unit. The task

FIFO-RESOURCE provides two entries for the service. The ACQUIRE(N) and RELEASE(N) entries can

be invoked by users to acquire and relinquish "N" units of resource respectively. FREE is a variable of type

UNITS that represents the number of resource units available at any instance of time. The total number of

resource units is MAX. QUOTA is a constant array with index of type USERID. Each component of QUOTA

defines the maximum amount of resources that can be allocated to the index user. OWN is a variable array

with index of type USERID. Each component of OWN contains the amount of resources currently allocated

to the index user. If a user attempts to acquire resource exceeding its quota, or if it attempts to relinquish

resources that are not allocated, then the service task raises a QUOTA-ERROR exception. The exception

will propagate to both the service and the invoking task. The exception handlers within the service task

ignore the request and allow the service task to carry on the next rendezvous. Note that the exception

handler within the ACQUIRE operation is indispensable; otherwise, the current ACQUIRE operation in

rendezvous will be biocked forever, and eventually the entire service task will become inactive.
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5.2.1.2. The Implementation of User Agreements

The specification of the user agreements for the resource allocator requires that, whenever a user is waiting

for some resources, some other users relinquish their allocated resources until enough resources are available.

Based on this user agreement, user tasks can be implemented as follows:

task type USER;

task body USER is

ID: USERID;

N: UNITS;

begin

---- other computations not involving ACQUIRE and RELEASE

FIFORESOURCE.ACQUIRE(ID, N);

-- work on the acquired resources with normal termination

FIFO-RESOURCE.RELEASE(ID, N);

-- other computations not involving ACQUIRE and RELEASE

exception

when FIFO-RESOURCE.QUOTAERROR =>

null;

when others =>

JIFORESOURCE.RELEASE(ID, N);

end USER;

The user task implemented above satisfies the user agreement specification because users are required to re-

linquish their acquired resources bcfore the user task terminates. If the user task requests resources exceeding

its quota, then it will receive a QUOTA-ERROR exception from the service task. The exception handler

ignores the invocation and terminates the user task immediately. If the call to ACQUIRE does not cause

exception, then neither does the following call to RELEASE because the RELEASE call just relinquishes

the same amount of resource acquired. If any other exception occurs between the call to ACQUIRE and

the call to RELEASE for any reason, then the exception handler relinquishes the allocated resources and

terminates the user task immediately. If any other exception occurs before the call to ACQUIRE or after the

call to RELEASE, then the exception handler also attempts to relinquish resources as though they have been

allocated. This will not cause allocation problems because the service task will then raise a QUOTA-ERROR

exception and ignore the call. When the user task receives this exception, it also ignores the exception and

terminates.

However, this simple implementation is only feasible in an environment where user processes are well

protected. In an environment, such as application level services, where abnormal termination of a user task

is possible, the above implementation may not sufficient, because an abnormal abort of a user task may
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cause data inconsistency within the service. For example, if the user task is aborted during the call to

ACQUIRE during a rendezvous, then the requested resources will get lost because the service task will carry

on the rendezvous to completion. Similarly, if the user task is aborted during the call to RELEASE before a

rendezvous, then the allocated resources cannot be relinquished because the user task will be removed from

the entry queue of the RELEASE operation.

One way to prevent these inconsistencies is to make a service invocation independent of its caller tasks

so that the calls to the entry operations of the service task will not terminate abruptly even when the caller

aborts. In Ada, the way to achieve such invocation independence is through the use of the access type

introduced before. In the resource allocator, task types ACQAGENT and REL.AGENT can be declared

within a certain package body that contains the task FIFO-RESOURCE. These task types constitute the

agent that actually issues calls to the entries of service task FIFO-RESOURCE.

The service package FIFORESOURCE.ALLOCATOR given below is implemented with the access-type

agent in it. It contains procedures ACQUIRE and RELEASE, which serve as interfaces to the users outside

the package. Every time the ACQUIRE procedure is called, it creates a new ACQ.AGENT task on behalf

of the caller. Since the access type is declared within the package body of the resource allocator, it will not

depend on the caller; thus, the created agent will not be aborted abnormally. If the user task is aborted

during a call to ACQUIRE, the created ACQAGENT will return the acquired resources back to the resource

pool of the service task. Therefore, the use of ACQ..AGENT prevents the loss of resources that would occur

if user tasks could call the ACQUIRE operation of service task FIFO-RESOURCE directly. 9

The ACQUIRE procedure also creates a REL.AGENT before termination. The identity of this agent

(i.e., a pointer) is returned to the the user that called the ACQUIRE procedure. The agent identity is

declared as a private type within the package, thus the value of the agent identity cannot be changed by

the users outside the package although its value can be transferred among user tasks. A user must specify

the agent identity as an argument whenever it invokes the RELEASE procedure. The agent identity enables

the user to release the resources by using the correct agent. This facility guarantees that users can only

relinquish resources they are authorized to release. When the user task is aborted during a call to RELEASE,

the REL-AGENT will not terminate abnormally. Thus, the resources intended to be released can be returned

to the resource pool of the service task successfully. Without access-type agent REL-AGENT, the intended

resource release cannot be guaranteed.

Note that the declaration of QUOTA-ERROR exception is moved from the service task FIFORE-

SOURCE to the package FIFO..RESOURCE..ALLOCATOR. This change enables user tasks to receive the

exception from the package directly.

generic

MAX: NATURAL; 9
type USERID is (<>);
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package FIFO-RESOURCE.ALLOCATOR is

QUOTA-ERROR: exception;

type REFACQUIRE is limited private;

type REF-RELEASE is limited private;

type UNITS is private;

procedure ACQUIRE(ID: in USERID; R: out REF-RELEASE; N: in UNITS);

procedure RELEASE(ID: in USERID; R: in REF-RELEASE; N: in UNITS);

private

type UNITS is INTEGER range O..MAX;

task type ACQAGENT;

task type REL_-kGENT;

type REFAGkCQUIRE is access ACQAGENT;

type REF.RELEASE is access RELAGENT;

task type ACQAGENT is

entry ACQ(ID: in USERID; R: out REFRELEASE; N: in UNITS);

end:

task type RELAGENT is

entry REL(ID: in USERID; R: in REFRELEASE; N: in UNITS);

end;

end;

package body FIFORESOURCEALLOCATOR is

task FIFO-RESOURCE is

entry ACQUIRE(ID: in USERID; N: in UNITS);

entry RELEASE(ID: in USERID; N: in UNITS);

end;

task body FIFO-RESOURCE is

s-- a before

end FIFO-RESOURCE;

task body ACQ-AGENT is

begin

select

accept ACQ(ID: in USERID; R: out REFRELEASE; N: in UNITS) do

FIFORESOURCE.ACQUIRE(ID, N);

-- assume that the boolean variable ABORTED is true

-- if and only if the calling task is aborted;

if ABORTED t-en

FIFO.RESOURCE.RELEASE(ID, N);

else

R: = new REL.AGENT;

end if;

end;

or
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terminate;

end select;

end ACQXGENT;

task body RELA-kGENT is

begin

select

accept REL(ID: in USERID; R: in REF.RELEASE; N: in UNITS) do

FIFO-RESOURCE.RELEASE(ID, N); 0
end;

or

terminate;

end select;

end RELAGENT;

procedure ACQUIRE(ID: in USERID; R: out REF.RELEASE; N: in UNITS) is

A: REFACQUIRE: = new ACQAGENT;

begin

A.ACQ(ID, R, N);

end ACQUIRE;

procedure RELEASE(ID: in USERID; R: in REF.RELEASE; N: in UNITS) is

R.REL(ID, R, N);

end RELEASE;

end FIFO-RESOURCE-ALLOCATOR;

User tasks outside the package cannot call directly the entry operations of the service task FIFO.RE-

SOURCE. Instead they can only access the service-provided resources by issuing calls to the package proce-

dures. Thus, the Ada code of user task USER described before needs to be modified so that the name of the

service task (i.e., FIFO-RESOURCE) referenced within the user task USER is replaced by the the name of

the service package (i.e., FIFORESOURCE-ALLOCATOR) that encapsulates the service task. The identity

of the agent, which actually invokes the service task on behalf of the package user, must also be provided as

an argument whenever a package procedure is called.

In the new version of user tasks given below we assume no abortion occurs between the call to ACQUIRE

and RELEASE. Otherwise, the system must detect the occurrence of the abortion and release the allocated

resources on behalf of the aborted user task. This is true because the service package has no way to detect

user task abortions other than those that occur during service invocations.

task type FIFOYPACKAGE.USER;

task body FIFO-PACKAGEUSER is

ID: USERID;

R: REFRELEASE;

N: UNITS;
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begin

-- other computations not involving ACQUIRE and RELEASE

FIFO.RESOURCE-ALLOCATOR.ACQUIRE(ID, R, N);

-- work on the acquired resources with normal termination

FIFO.RESOURCEALLOCATOR.RELEASE(ID, R, N);

-- other computations not involving ACQUIRE and RELEASE

exception

when FIFORESOURCE-ALLOCATOR.QUOTAERROR =>

null;

when others =>

FIFORESOURCEALLOCATOR.RELEASE(ID, R, N);

end FIFOPACKAGEUSER;
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5.2.2. The General Resource Allocator

5.2.2.1. Implementation of Service Task

A FIFO resource allocator, although easy to implement, is inefficient especially when some users request

a large amount of resources. This is because the computation of other users many be delayed within the

resource allocator for a long time. The general resource allocator will not use the FIFO policy, instead it

will use a general policy that is based on the availability of resource during service request. A non-FIFO

resource allocator may cause an unfairness problem. However, by explicitly setting a maximum waiting time

for each user, individual users are guaranteed to make progress within the service.

Below we provide a non-FIFO task of resource allocator where the maximum waiting time for users is

explicitly defined. Here the maximum waiting time is not expressed as calendar time. Instead it is expressed

as the number of request tries before the request is accepted by the service task.

task RESOURCE is;

QUOTA.ERROR: exception;

entry RESERVE(ID: in USERID; N: in UNITS; OK: out BOOLEAN);

entry TRY(ID: in USERID; N: in UNITS; R: in REFWAIT; OK: out BOOLEAN);

entry RELEASE(ID: in USERID; N: in UNITS);

end;

task body RESOURCE is

FREE: UNITS: = MAX;

QUOTA: constant array (USERID range <>) of UNITS: = ( .. );

OWN: array (USERID range <>) of UNITS:= (OWN'RANGE => 0);

begin

loop

begin

select

accept RESERVE(ID: in USERID; N: in UNITS; OK: out BOOLEAN) do

if QUOTA(ID) < OWN(ID) + N then

raise QUOTA-ERROR;

end if;

if N <= FREE then

FREE: = FREE - N;

OWN(ID): = OWN(ID) + N;

OK: = TRUE;
else

OK: = FALSE;

end if;

end;

or

accept RELEASE(ID: in USERID; N: in UNITS) do
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if N > OWN(ID) then

raise QUOTA-ERROR;

end if;

FREE: = FREE + N;

OWN(ID): = OWN(ID) - N;

end;

for I in 1..TRY'COUNT loop

accept TRY(ID: in USERID; N: in UNITS; R: in REFWAIT; OK: out BOOLEAN) do

while FREE < N and then R.all = MWT do

begin

accept RELEASE(RID: in USERID; M: in UNITS) do;

if M > OWN(RID) then

raise QUOTA.ERROR;

end if;

FREE: = FREE + M;

OWN(RID): = OWN(RID) - M;

end;

exception

when QUOTA.ERROR =>

null;

end;

end loop;

if N <= FREE then

FREE: = FREE - N;

OWN(ID): = OWN(ID) + N;

OK: = TRUE;

else

OK: = FALSE;

end if;

end;

end loop;

end select;

exception

when QUOTA-ERROR =>

null;

end;

end loop;

end RESOURCE;

The service task RESOURCE includes three entries, RESERVE, TRY, and RELEASE. A call to RE-

SERVE or to RELEASE is always accepted assuming no exception occurs. If a call to RESERVE is unsatisfied

(i.e., return with OK = FALSE), the user may request the service task again by invoking the TRY entry.

After a call to RELEASE, the calls waiting on the TRY entry queue are considered since the resources relin-

quished by the RELEASE call may available for one or more waiting TRYs. The waiting queue is scanned
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by doing a rendezvous with each TRY call. Whenever the number of TRY calls issued by a user reaches the

predefined maximum waiting time, the scanning action is delayed until the current user request is satisfied.

This is accomplished by accepting RELEASE calls repeatly until FREE > N; this ensures that no TRY calls

will be delayed forever.

We use a variable of type REFWAIT to denote current number of TRY calls issued by the invoking

user task. If user tasks are allowed to invoke entry operations of the service task RESOURCE directly, then

they are responsible for counting the number of TRY calls; the service only checks whether the number of

TRY calls has reached the preset maximum waiting time. The type REFWAIT is defined below.

type REFWAIT is access POSJNT range 0 .. MWT.

5.2.2.2. The Implementation of User Agreements

Users of service task RESOURCE are responsible for: (1) issuing a RELEASE call if and only if there exists

a satisfied resource request; (2) issuing a RESERVE call only for the first resource request, and then calling

TRY repeatly if the previous request is not satisfied; and (3) counting the number of TRY calls and providing

input to the service using the TRY call. Based on these requirements, user tasks can be implemented as

follows:

task type USER;

task body USER is

ID: USERID; 0
N: UNITS;

PASSED: BOOLEAN;

RWT: REFWAIT: = new POSINT(O);

begin

-- other computations not involving ACQUIRE and RELEASE

RESOURCE.RESERVE(ID, N, PASSED);

while not PASSED loop

RWT.allh = RWT.all + 1;

RESOURCE.TRY(ID, N, RWT, PASSED);

end loop:

-- work on the acquired resources with normal termination

RESOURCE.RELEASE(ID, N);

- - other computations not involving ACQUIRE and RELEASE 0
exception

when RESOURCE.QUOTAERROR =>

null;

when others =>

RESOURCE.RELEASE(ID, N); 0
end USER:
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For preventing abrupt termination during rendezvous, the above user task is inadequate for the same

reasons as those given in the implementation of the user agreement of FIFO resource allocator (Section

5.2.1.2). In order to make the execution of invocations independent of the service user, access-type agents are

still required. The task RESOURCE will be encapsulated in the Ada package RESOURCEALLOCATOR,

which also declares agents ACQAGENT and REL.AGENT. The package has two procedures, ACQUIRE

and RELEASE. The RELEASE procedure calls the RELEASE entry of task RESOURCE directly, whereas

the ACQUIRE procedure encapsulates the RESERVE call, the retry calls, and the retry counting. The

package RESOURCEALLOCATOR is shown below:

generic

MAX: NATURAL;
type USERID is (<>);

subtype POSJNT is INTEGER range O..INTEGER!LAST;

MWT: POS.INT;

package RESOURCEALLOCATOR is

QUOTA-ERROR: exception;

type REFACQUIRE is limited private;

type REF.RELEASE is limited private;

type UNITS is private;

procedure ACQUIRE(ID: in USERID; R: out REF.RELEASE; N: in UNITS);

procedure RELEASE(ID: in USERID; R: in REFRELEASE; N: in UNITS);

private

type UNITS is INTEGER range O..MAX;

task type ACQAGENT;

task type REL.AGENT;

type REF-ACQUIRE is access ACQ.AGENT;

type REF.RELEASE is access RELAGENT;

task type ACQAGENT is

entry ACQ(ID: in USERID; R: out REFRELEASE; N: in UNITS);

end;

task type RELAGENT is

entry REL(ID: in USERID; R: in REF-RELEASE; N: in UNITS);

end;

type REFWAIT is access POSINT range O..MWT;

end;

package body RESOURCE-ALLOCATOR is

task RESOURCE is;

entry RESERVE(ID: in USERID; N: in UNITS; OK: out BOOLEAN);

entry TRY(ID: in USERID; N: in UNITS; W: in REF.WAIT; OK: out BOOLEAN);

entry RELEASE(ID: in USERID; N: in UNITS);

end;

task body RESOURCE is
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-- as before

task body ACQ-AGENT is

PASSED: BOOLEAN;0

RWT: REF-WAIT: = new POS-INT(O);

begin

select

accept ACQ(ID: in USERID; R: out REF-RELEASE; N: in UNITS) do

RESOURCE.RESERVE(ID, N, PASSED);

while not PASSED loop

RWT.afl: = RWT.ali + 1;

RESOURCE.TRY(ID, N, RWT, PASSED);

end loop;

-- Assume that the boolean variable ABORTED is true

-- if and only if the calling task is aborted.

if ABORTED then

RESOURCE.RELEASE(ID, N);

else

R:= new REL-AGENT;

end if;

end;

or

terminate;

end select;

end ACQ-AGENT;

task body REL-AGENT is

begin

select

accept REL(ID: in USERID; R: in REF-RELEASE; N: in UNITS) do

RESOURCE.RELEASE(ID, N);

end;

or

terminate;

end select;

end REL-AGENT;

procedure ACQUIRE(ID: in USERID; R: out REF-RELEASE; N: in UNITS) is

A: REF-ACQUIRE: = new ACQ-AGENT;

begin

A.ACQ(ID, R, N);

end ACQUIRE;

procedure RELEASE(ID: in USERID; R: in REF-RELEASE; N: in UNITS) is

R.REL(ID, R, N);

end RELEASE;

end RESOURCE..ALLOCATOR;
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Given the package RESOURCEALLOCATOR, the user task of the package is:

task type PACKAGE-USER;

task body PACKAGE.USER is

ID: USERID;

R: REF..RELEASE;

N: UNITS;

begin

-- other computations not involving ACQUIRE and RELEASE

RESOURCEALLOCATOR.ACQUIRE(ID, R, N);

-- work on the acquired resources with normal termination

RESOURCEALLOCATOR.RELEASE(ID, R, N);

-- other computations not involving ACQUIRE and RELEASE

exception

when RESOURCE-ALLOCATOR. QUOTA.ERROR =>

null;

when others =>

RESOURCE-ALLOCATOR.RELEASE(ID, R, N);

end PACKAGE.USER;

5.3. FORMAL VERIFICATION OF ADA SERVICES

To show the correctness of preventing denial-of-service problems in Ada services, we need to verify that the

Ada services preserve all the properties specified in the service and agreement specifications. Properties are

expressed by assertions about service states. An assertion is a formula constructed from service entities and

other derived formulas by using predefined formation rules. Entities of a service include types, constants,

variables, operators, and operations. The verification of the Ada services is accomplished by three major

steps:

1) For each entity e, of the service specification we provide an entity e. of the Ada service, called the

representing entity for e, in the Ada service.

2) For each formula S of the service specification we induce a formula A of Ada, called the representing

formula for S in the Ada service, by substituting for individual entities of S their Ada representations.

3) For each representing formula A we verify its validity in the Ada service; i.e., we prove that the repre-

senting formula is a theorem in the Ada service.

This verification method is an inverse of general methods used for verifying the correctness of the

implementation of an specification [Hoare72], [Wulf et al.76], [Walker80]. In these methods, a mapping

function map is used to map any state ai of implementation to the corresponding state t, of specification.

The current state is defined by the values of variables declared. By using valid assertions (e.g., invariants) of
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implementation, the verification shows that for any specification formula S about the states of specification,

S is true of map(a,).

In contrast, the mapping function in this paper is established in the reverse way such that the state a, 0
of the specification is represented in the state ai of the implementation. To accomplish this, a representation

rep is used to map each entity from specification to implementation. Then, each specification formula S

is represented in implementation by substituting for each S entity its implementation representation. The

verification shows that for any representing formula A, A is true of ai. •

The notion of representation used here is not new. It has been used in the Ina Jo specification language

[Scheid et al.86] and, informally, in [Gligor83a]. In the Berry' paper [Berry87], it is argued that the two

verification methods mentioned above imply each other. That is, for any formula S of the specification and

any state a, of implementation, S is true of map(a,), if and only if rep(S) is true of a. Our verification

method, however, will focus on the proofs of liveness assertions that are not provided in the Theorem Prover

of the Ina Jo language, or of any other formal specification language.

5.3.1. Implications of Ada Service Verification 5

In our Ada services verification method, the verification step 3 may not be straightforward because one

may not easy to obtain, at the first try, a correct and (functional) complete implementation from a given

service specification. Thus, after obtaining an Ada implementation, if one finds that some of the representing

formulas cannot be proven in the implementation, then the implementation is incorrect or incomplete. In

practice, one may need to modify the original implementation several times before obtaining a correct and

complete Ada service, an implementation in which all of the representing formulas can be proven.

The main difficulty of obtaining a correct and complete implementation comes from the limitations and

constraints of individual implementation languages. Such restrictions are ignored in service specifications,

which is supposed to be abstract, but must be taken into account for service implementation. For example,

the Ada language requires that an argument-dependent condition to be checked after selecting an opera-

tion (with arguments) for rendezvous. Thus, an Ada service whose sharing policies depend on argument

values must be implemented in a more roundabout manner [Liskov et al.86]. Such Ada limitations are also •

encountered in our Ada implementation of resource allocators. For example, the condition "availability of

resources" has to be checked within the ACQUIRE operation instead of using a more convenient Ada facility,

such as using a "when" clause outside the operation (i.e., before the "accept" clause). This is because the

availability of resources depends on the number of units of resources required, which is an argument to the •

ACQUIRE operation call.
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5.3.2. The Formal Representations

A. Entity Representation

Each entity (i.e., type, constant, variable, operator, and operation) must has a representation in Ada

service. Suppose that ea is the implementation representation for a specification entity e, in Ada service.

Then the mapping from e to ea is related by the representation rep as follows:

rep(e,) = e,

If an entity of specification has parameters, such as an operation, then its representing entity also has parame-

ters. Suppose that the specification entity e, has n parameters of types ti, .-. , tn, then its representing entity

rep(e,) also has n parameters of types rep(ti), ..- , rep(t,,) that are already defined in the representation.

An unary operator is considered an entity with one parameter and a binary operator is an entity with

two parameters. For example, the expression of the logical "and" operator A(ei, e2 ) is equivalent to the usual

form e1 1 e2.Temporal operators are presumed to represented by themselves and thus, o, o, UNTIL, -*- map

to o, o, UNTIL, -v- respectively.

B. Formula Representation

Formulas are constructed from service entities. Let S(ei, ... , e) be a specification formula. Suppose

rep(e, 1 ) = e.l, -.. , rep(en) = ean, where e. 1, "-, esn are entities of service specification and eal,., ean are

entities of Ada services, we define

rep(S(e,,, . e* ,C5,)) = A(e, ,an) if and only if

A(ea,"', ean) = S(rep(C 3 ),.. ., rep(n)).

where A(eai,'", Can) is a formula of Ada service.

Definition:

An Ada implementation is said to satisfy its specification if and only if for any formula S of the

specification its representing formula rep(S) is provable in Ada service.

Most of the specification formulas have the form Si -*- S,. Based on the above definition, an Ada

implementation satisfies the temporal formula Si --) S, if and only if rep(S) ).- rep(So) is a

theorem in Ada service.
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5.3.3. Method for Proving Temporal Formulas of Ada Services

Temporal formulas of service specification include resource constraints, concurrency constraints, fairness

policies, simultaneity policies, and user agreements. Each specification formula has a representing formula

which must be proven in the Ada service. From the semantics of Ada tasking, the concurrency constraints are

automatically satisfied assuming no variables are shared by tasks other than those shared for the rendezvous.

Thus, the concurrency constraints of the service specifications need not to be verified.

(1) Verification of Resource Constraints:

The method for verification of resource constraints is straightforward. Suppose that the resource con-

straints of the service specification are formulas R,1 , .. , R,,, then the proof steps are:

step 1. Develop a resource invariant formula R. from the code of Ada service and from the semantics of

Ada language.

step 2. Verify that the invariant formula R, implies each of the representing formulas rep(R, 1),. .,rep(R,3 )

of the Ada service.

(2) Verification of the Fairness Formulas

Generally, in Ada services, we use Ada tasks to synchronize user tasks during service access. Since the

users waiting in an entry queue are accepted for service in FIFO order, we define:

T - Qe[m] if and only if user task T, is the m-th user waiting in the queue Q, of entry operation "e".

Let T, be the service task, and C represent the requested conditions for the entry operation "e" of the service

task T,. Then, a general fairness formula of Ada service can be expressed as:

((T. - Ts.Qe[m]) A cC) --- *- ((T, accept(e)) A (T, rendezvous(e))) 0

where T,.Qe represents the entry queue Qe of the service task T,. (Ts accept(e)) means that the service

task T, has selected an entry operation "e" for the next execution and accepted the user task at the head

of the entry queue Qe for the next rendezvous. (Tu rendezvous(e)) means that the user task T, begins the

rendezvous with the service task. We also use the variable no-activity to denote that no entry operation is

currently performing its computation for changing the resource state. Note that if currently no rendezvous

takes place, +hen the variable no-activity is true. However, whenever the variable no-activity is true this

does not imply that no rendezvous takes place currently. It is possible that an entry operation gets blocked

during the rendezvous before changing the resource state.

Given the general fairness formula of the Ada service, if we let

1o = ((T, accept(e)) A (Tu rendezvous(e))),

then a fairness formula can be proven by induction as follows:
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step i. prove (T!o-Q;[1j)AooC-* I ;

step 2. suppose (T -- Q, [m]) A o o C -) 10,

then prove (T, - Q,[m + 1]) A oo C 10.

(3) Verification of the Temporal Formula Ii -- - Io

Most of temporal formulas of the Ada services representing formulas for expressing fairness policies,

simultaneity policies, and user agreements have the form of i -+- 1. Except for fairness formulas, other

temporal formulas are proven by the following steps:

step 1. Assume the assertion Ii ^--1- 1o is false; i.e., assume o(I Ao- -Io).

step 2. Show a contradiction from the code of Ada service and from the semantics of Ada language.

5.4. IMPLEMENTATION VERIFICATION FOR THE RESOURCE ALLOCATOR

In this section we will verify formally the correctness of FIFO resource allocator whose implementation is

given in Section 5.2. The verification method presented in Section 5.3 will be used to demonstrate that the

FIFORESOURCE-ALLOCATOR package and its USER-TASK meet the specifications of resource allocator

given in Section 4.5. For the formal verification of the general (non-FIFO) resource allocator, we can apply

the same verification method as that used in this section. Thus, for the sake of brevity that verification is

not included herein.

Based on the verification method, we begin by defining the representing entities for specification of the

Ada service. Then we verify the validity of each representing formula in the implemented Ada service. The

representation for each type, constant, variable, operator, and operation of specification of resource a" cator

in the Ada task FIFO-RESOURCE is given in Figure 6 below. Note that each operation has the user identity

as a parameter, which although implicit in the specification, is explicitly expressed in the Ada service. For

the sake of convenience, in the following proofs we still use the specification operators (i.e., >, <, A, V, -, etc.)

in the formulas of Ada service. However, we shall bear in mind that they are actually the Ada operators

>=, <=, and, or, not, etc.
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Specification Entities Representing Entities

e, rep(e,)

Type integer INTEGER

boolean BOOLEAN

userid USERID

units UNITS

Constant size MAX

quota QUOTA

Variable id ID

free FREE

own OWN 0

operator > (Sl,s 2) > (rep(s), rep(s2))

< (s1,s 2) < (rep(sj), rep(s2))

> (S, S2 ) >= (rep(s1),rep(S2))

S(S1, S2 ) <= (rep(s1), rep(s2))
A(sj, S2) and(rep(s), rep(s 2 ))

V(si, S2) or(rep(si), rep(s2))

-(S) not(rep(s))

S(sl, s2) if rep(s1 ) then rep(s2 )

operation Acquire(n) ACQUIRE(rep(id), rep(n)) •

Release(n) RELEASE(rep(id), rep(n))

Fig. 6. Entity Representations of Resource Allocator
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5.4.1. Verification of the Resource Constraints

step 1:

From the Ada task FIFO-RESOURCE and the semantics of Ada language, we develop the invariant

formula R, = R 1 A Ra2 A Ra3 A Ra4 , where

R~j = O((FREE > 0) A (FREE < MAX)),

R. 2 = 0((OWN(ID) >_ 0) A (OWN(ID) _< QUOTA(ID))),

R. 3 = (((FREE = N) AO(-(afier(ACQUIRE))A

-'(after(RELEASE)))) c(FREE = N))

R. 4 = (((OWN(ID) = M) A (-'(after(ACQUIRE(ID, )))A

-(after(RELEASE(ID, ))))) =: cOWN(ID) = M)).

The fact that the formula Ra is an invariant assertion of Ada task FIFO-RESOURCE is based on the

following reasons:

1) variables FREE and OWN are declared within the service task FIFO-RESOURCE and thus, their values

cannot be changed out side the service task;

2) initially FREE = 0 and for all users OWN(ID) = 0 thus, R, is true the first time FIFO-RESOURCE is

executed;

3) whenever a user request for resources exceeds its quota or tries to release resources not acquired previ-

ously a QUOTA-ERROR exception is raised. Thus, if Ra is true before a rendezvous begin, then Ra

will be true after the rendezvous is finished.

step 2:

From the specification of the resource allocator, let R,1 , R, 2, R,3, R, 4 be the four resource constraints

specified. We obtain their representing formulas as follows:

rep(R,1) = o((FREE > 0) A (FREE < MAX)),

rep(R,2) = o((OWN(ID) > 0) A (OWN(ID) <_ QUOTA(ID))),

rep(R,3 ) = ((FREE = N) =* ((FREE = N) UNTIL

(after(ACQUIRE) v after(RELEASE)))),

rep(R,4 ) = ((OWN(ID) = M) => ((OWN(ID) = M) UNTIL

(after(ACQUIRE(ID, )) V after(RELEASE(ID, ))))).

From the semantics of the UNTIL operator, it is clear that Ra implies rep(R,3 ), rep(R,2 ), rep(R,3 ),

and rep(R,4 ). Thus, the Ada service satisfies the resource constraints of the specification of the resource

allocator.
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5.4.2. Verification of the Fairness Policies

The fairness policies of the resource allocator are:

(at(Acquire) A co ((free > Acquire.n) A (#Active = 0))) - after(Acquire); (Fl)

(at(Release) A o (#Active = 0)) -1- after(Release). (F2)

We must prove that the service task FIFO-RESOURCE satisfies both of the fairness policies. That is, we

must prove the validity of the representing formulas for (Fl) and (F2) in the service task. We only verify

the fairness formula (Fl). The same method can be applied for the proof of fairness formula (F2).

Fairness formula (F) has the form of Si - - S,. By substituting entities of fairness formula (Fl) with

their corresponding Ada entities, we obtain the representing formula rep(St) -. ,- rep(S,) with

rep(Si) = ((Ta at(T,.ACQUIRE(N))) A co ((FREE > N) A no.activity)),

rep(S0 ) = (T. after(T,.ACQUIRE(N))).

where T, represents the service task FIFO-RESOURCE and T represents the user task of T. In order to

prove rep(Si) - rep(S0 ), first consider the temporal formula Ii "--*- I, where 0

i = ((T. - QACQUIRE[m]) A o ((FREE > N) A no.activity)),

I, = ((T, accept(ACQUIRE)) A (T,, rendezvous(ACQUIRE)) A o(FREE > N)).

From the semantics of the Ada task, a call on a task entry operation will be put in its entry queue for future

rendezvous. Thus, rep(Si) Ii is obvious. Suppose 1, is true, then eventually FREE > N when the user

task T is accepted for rendezvous with service task T. Thus, from the Ada code of FIFO-RESOURCE,

neither the accept operation (i.e., the execution statements between key word accept and end) nor the

execution statements following the accept operation will be blocked. Thus, I, --- rep(S) is also true.

We now apply the proof procedures for the fairness formula given in Section 5.3 to demonstrate Ii(v) -.
--- 1, (V).

step 1:

Prove the following temporal formula:

((T. -- QACQUIRE[1]) A ao C) -,- 1, (F3)

where C = ((FREE > N) A no-activity). In order to prove (F3), we first prove the following temporal

formula:

((T. - QACQUIRE(1])A noC) -. *" (I. V ((. - QACQUIRE[1])A (FREE = MAX))) (F4)

If FREE = MAX, then (F4) is automatically true; otherwise, since noC is true, eventually there exists

a positive number k, k < MAX, k > N, and FREE = k. The task selected for next rendezvous will be either

T, or other tasks in the RELEASE queue. Thus,
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((T. - QACQUIRE[II) Ao((FREE = k) A no-activity))

(I- V ((T- - QACQUIRE(l]) A (T, accept(RELEASE)) A (FREE = k)))

-*- (I- v ((T. - QACQUIRE(l]) A (FREE = k + RELEASE.N)))

(1Io V ((T- - QACQUlRE(1]) A (FREE = MAX)))

Note that the above temporal formula expression is based on the following convenient notation:

40( Pi-, P2..-.., Pn)

-((Pl Pf) A (P, P :3) A" .. n (P,--n Pn))

Now, by applying the temporal theorem ((P 1 -*- P,2)A (P 2 - - P3 )) (P1 --- >- P3 ), we complete the proof

of temporal formula (F4). Once FREE = MAX, the user task accepted for the next rendezvous must be the

one at the head of the entry queue QACQUIRE. Thus, the temporal formula (F4) implies

((T. - QACQUIRE[1])A oC) ,, lo.

This completes the proof the proof of temporal formula (F3).

step 2:

Assuming that ((T. - QACQUIRE[m]) A ao C) 1, is true, we want to prove

((T. - QACQUIRE[m + 1]) A o C) - 10. (F5)

Suppose T.' - QACQUIRE[m] when T. - QACQUIRE[M + 1]. Then

((T - QcQuIRE[m + 1]) Ao C)

-(((T.- QcQuIRE[I]) A oo C))

A (T, accept(ACQUIRE)) A (T' rendezvous(ACQUIRE)))

-((T. - QACQUrRE[I]) A oC)

,-. -Io which is implied by temporal formula (F3).

Thus, we have proven the temporal formula (F5). Now, by induction, temporal formulas (F3) and (F5)

imply the temporal formula 1i -- - 1. We conclude that the representing formula rep(Si) -i- rep(So) is

true.
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5.4.3. Verification of the Simultaneity Policies

Let S 1 and S2 be the first and second simultaneity formulas of the resource allocator respectively. By

substituting each service specification entity with the corresponding Ada entity, we obtain rep(S1 ) and

rep(S_), where

rep(S1 ) = (rep(Si . rep(So1 )),

rep(S2 ) = (rep(S 2 ..-- rep(So2 )), and 0

rep(Sni) = ((T. in(T,.ACQUIRE(N))) A (oo (FREE > N)) A (oo no-activity)),

rep(S 1 ) = ((FREE > N) A no-activity),

rep(SQ2 ) = ((T. in(T,.ACQUIRE(N))) A a o (T, accept(RELEASE))),

rep(So2 ) = (FREE > N).

In the above formulas, T, represents the service task FIFO-RESOURCE and T, represents the user task of

T,.

A. Proof of rep(S1 ):

The representing formula rep(S1 ) can be proven true using the following line of reasoning:

1. The temporal formula rep(S 1 ) implies

rep( Sn ) (T,, in(T, .ACQUIRE(N) ) ) ,

rep(Si) = o(FREE> N), and

rep(Sil) o=. no (no-activity).

2. From the code of task FIFO-RESOURCE, noo(no.activity) implies that service task T, is waiting infinitely 0
often for a rendezvous, or control in T, is infinitely often at the beginning of the "while loop" within

the ACQUIRE operation.

3. c:o (FREE > N) implies that control in T, cannot get blocked at the "while loop" when it begins a

rendezvous with any user task that issues the call to ACQUIRE(N) for any value of N. Note that if a

call to ACQUIRE(N) causes the QUOTA-ERROR exception because of an inadequate value of N, then

control in T, will not reach the "while loop".

4. User tasks waiting on an entry queue are selected for rendezvous in FIFO order. Thus, from the

conclusion of point 3 above, once the user task T is waiting on the entry queue QACQUIRE, it will

eventually be selected for rendezvous. Otherwise, some other invocation to ACQUIRE must be blocked

at the "while loop" which contradicts the conclusion of point 3.

5. When the service task T, begins a rendezvous with T , either rep(S 1 ) is true at the beginning of

rendezvous or it will eventually be true when a large enough number of RELEASE calls have relinquished

resources such that FREE > N. We conclude that rep(S1 ) is true. (Note that we have excluded the
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case when T,, causes exceptions during rendezvous. Otherwise, rep(Si) will not be true. However, this

case does not cause denial of service because the service requested by T,, may not necessary be denied

by other users.)

B. Proof of rep(S2):

Suppose rep(S2 ) is not true. Then

-rep(S 2 )

= o (rep(S ) AO-rep(So2))

= 0 ((T in(T,.ACQUIRE(N))) A (ao(T, accept(RELEASE))) A0(FREE < N)).

Hence, the falseness of rep(S2 ) implies that

o((T,, in(T.ACQUIRE(N))) A (,(FREE < N)) Ao (T, accept(RELEASE))). (Mi)

From the code of task FIFO-RESOURCE, a user cannot release resources that are not previously acquired.

Otherwise, the service task will not accept the RELEASE call, and will raise an QUOTA-ERROR exception.

Thus,

(oo(T, accept(RELEASE))) => (oo(T, accept(ACQUIRE))). (M2)

User tasks waiting on an entry queue are selected for rendezvous in FIFO order. Thus, temporal

formulas (Mi) and (M2) imply that the user task T,, will eventually be selected for rendezvous. From the

code of task FIFO-RESOURCE, temporal formulaao (T, accept(RELEASE)) also implies that T,, will not

get blocked within the ACQUIRE operation. Thus, (T,, in(T,.ACQUIRE(N))) ,- (FREE > N). However,

(Ml) implies o((T, in(T.ACQUIRE(N))) A o(FREE < N)), which is a contradiction. We conclude that

rep(S2 ) must be true.
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5.4.4. Verification of the User Agreements

We shall prove that the Ada package FIFORESOURCEALLOCATOR (excluding the service task FIFO_-

RESOURCE) together with the user task USER satisfy the specification of the user agreement. We first

obtain the representing formula by substituting the entities of the service specification with their correspond-

ing representation entities. Let Si -.-- S0 be the specification of user agreement and rep(Si) -*- rep(S) be

the representing formula. Then

rep(Si) = (T, in(T,.ACQUIRE(N))),

rep(So) = ((oo(T, accept(RELEASE))) V (FREE > N)).

Suppose rep(Si) -- - rep(So) is not true. Then o(rep(Si) A o-irep(S0 )), and we have

o((T in(T,.ACQUIRE(N))) A (o(FREE < N)) A ocr-,(T, accept(RELEASE))). (U)

The temporal formula (U1) implies oa-(T, accept(RELEASE)). This formula is true if and only if

1. no other user tasks issue RELEASE calls some time after the user task T has called ACQUIRE, or

2. all calls to RELEASE are either not accepted by the service (i.e., they are waiting on the entry queue

QRELEASE forever) or rejected by the QUOTA-ERROR exception.

Case 1 is not true for the following reasons. First, the temporal formula (U1) implies oa(FREE < N).

Thus, some users must have called ACQUIRE successfully and have not called RELEASE before T calls

ACQUIRE. Second, from the code of user task USER, a RELEASE call always follows a ACQUIRE call.

Thus, eventually some RELEASE calls will be issued after T,, called ACQUIRE.

Case 2 is not true for the following reasons. First, the service task will not always accept user

tasks on QACQUIRE for rendezvous; e.g., when the resource pool is empty. Second, by using the access

type tasks (i.e., the ACQUIRE-AGENT and the REL.AGENT) to represent users outside the package

FIFO.RESOURCEALLOCATOR, the waiting RELEASE calls will not be aborted even when the client

task has been aborted. Third, a RELEASE call will not cause QUOTA-ERROR exception if the client task

has allocated the resources because a user task always release the same amount of resources as that acquired

before.

S" . both case 1 and 2 are not true, the temporal formulaor- (T, accept(RELEASE)) cannot be true,

which is a contradiction. Therefore, we have completed the proof.
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6. CONCLUSIONS

A formal specification and verification method for the prevention of denial of service in shared services

has been presented. The method has been applied to services written in Ada, using the "'package" and

"tasking" concepts. The method includes a service model, the notion of user agreements, and a temporal

logic language. We also showed how the formal service specifications can be mapped in Ada service and how

the formal proofs oi specification can be carried out on Ada code. We conclude that the methods presented

herein are practical and can be used for Ada services as well as for services written in other languages.

Significantly more experience is necessary with the application of this method to distributed services (e.g.,

network access protocols, etc.) before the method can gain wide-spread use.
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Appendix 1

Semantics of Temporal Logic

The use of temporal logic in program specification and verification was first proposed by Pnueli [Pnueli77],
[Pnueli79]. Since then, several versions of temporal logic were proposed in the literature [Lamport80],

[Schwartz81], [Owicki82], [Hailpern82], [Schwartz82], [Lamport83], [Ramamritham83]. Temporal logic adds
operators to the standard logic system for reasoning about future progress of program computations. A
computation is the sequence of states that results from program execution. An operation in the service has a
definite state at any instant of time. The behavior of the user within a service is completely described by the
evolution of the state with time. If concurrency is allowed within a service, the execution state sequence is
modeled by a nondeterministic interleaving of execution of individual user processes within that service. In
general, a temporal logic formula is considered with respect to a reference state called the "now". A temporal
logic formula expresses how program properties can change between the reference state and the set of states,
called the "future", that are accessible from the reference state.

Since temporal logic is an extension of predicate calculus, the usual logic operator A (and), V (or), -,

(negation), and :* (implication) can be included in a temporal logic formula. In general, a temporal logic
formula is constructed from a set of predicates, the usual logic operator, and the temporal operators o, o,
and UNTIL. A predicate is a boolean function of a computation state. The unary nperation a is pronounced
"henceforth". Let P be a predicate, the formula aP means "P is true now and wili r.main true for all future
states in the computation". The unary operator o is pronounced "eventually'. The formula oP means "P"
is true now or will become true sometime in the future". The operators a and o are dual, that is,

o P o ---- P or oP =- c-P

with these unary temporal operator, many properties can be stated. For example, the progress property of
an operation "op" can be expressed by the formula:

at(op) = oafter(op)

Where at(op) and afier(op) are predicates used to keep track of control position of an invocation. The
predicate at(op) is true if and only if control is at the entry point to "op", and after(op) is true if and only
if control is at the exit point of "op". The predicate in(op) must also be introduced. The predicate in(op) is
true if and only if control is anywhere inside operation "op", including its entry point but excluding the exit
point. Hence, if control is currently at the entry point to "op" and never reaches the exit point thereafter,
then control will remain in "op" forever, i.e.,

(at(op) A -after(op)) =. oin(op).

Another useful temporal formula, which states that a property P always causes another property Q to
become true subsequently, can be expressed by:

P -- - Q - 0 (P =:, OQ)

The combination of these two unary temporal operators is also useful. For example, to express that a
property P is satisfied "infinitely often", we can use the formula a o P (infinitely often P). The oo operator is
especially useful for expressing the fairness property within a service whenever concurrent access is allowed.
In particular, if condition P ever becomes false, P is guaranteed to become true again at some later time.
Consequently, if several user operations are simultaneously waiting for the same condition P within a service,
formula c o P states that these operations will eventually pass the condition. The dual of co operator is oa
(i.e., on - -oo -'). The formula oaP (eventually always P) states that there is some point in the future at
which P becomes true and remains true thereafter. The o operator is useful for expressing lack-of-progress
properties. For example, deadlock between operation opl and operation op2 within a service can be expressed
by the formula:

on(in(opl) A in(op2))
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The binary temporal operator U!, TIL is used to express relationships between two points in a compu-
tation (i.e.. to express ordering property). The formula P UNTIL Q means "P is true for all states until the
first state where Q is true"; i.e.,

P UNTIL Q = P remains true until Q becomes true.

This formula does not express the value of P when Q becomes true. a P can be derived in terms of the UNTIL
operator as:

oP - P UNTIL false.

UNTIL operator is generally used for expressing formulas of the form P =* (P UNTIL Q), stating that if P 0
is true "now", it will remain true until Q becomes true. Note that the definition of the UNTIL operator in
this paper does not assert the eventuality property; i.e., P UNTIL Q does not imply oQ, which is different
from that of reference [Pnueli 80].
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Appendix 2

Derived Temporal Theorems

This appendix begins by presenting the syntax of temporal formulas and then derives a list of temporal
theorems that are used in this paper. Some portions of this appendix have been taken from Hailpern's report
'Hailpern82].

1. TLe Syntax of Temporal Formulas

A description of a temporal logic system includes four parts: a list of atomic predicates: a set of formation
rules that define which predicates defined in terms of the atomic predicates are (well-formed) formulas; a set
of formulas, known as axioms; and a set of inference rules that permit operations on the axioms and those
formulas that have been derived from previous applications of the inference rules. The formulas obtained by
applications of inference rules are known as theorems. If formula P is an axiom or a thorem. then de .irite
- P. The syntax of temporal formulas is based on the following rules and axioms:

1) Formation Rules:

* an atomic predicate is a formula;
* if A is a formula then so are -'A, oA, and oA;
a if A and B are formulas then so are (A V B), (A A B), (A B), and (A B).

2) Temporal Axioms:

Let P and Q are formulas, we have the following temporal axioms:

(Al): oP_ -c--P, (Al'): oP = - P;
(A2): oP= P, (A2') P == *P;
(A3): (P Q) :. (P = uQ), (AT): (oP A oQ) O(P A Q);
(A4) :(P UNTIL Q) = (c -,Q = oR);
(.45) :(P - Q) E c(P =: *Q).

3) Inference Rules:

0 (1-- P) A (t-(P =t Q))
(Il): IP)

ZP
(12): -- ;

-OP,

( (P Q)
13 (f(P) f(Q))

2. The Derived Theorems

1) Basic Derived Theorems:

The following theorem has been proven in [Hailpern82]:

(T 1): ooP = oP, (TV') o *o P =- *P;

(T2): ocooP=_ ooP, (T2'): ooo P = oP;
(T3): oPAQ)--(oPAoQ), (T3'): o(PVQ)--(-PvoQ);
(T4): on(PAQ) =(ooPAooQ), (T4'): o (PVQ)- (coPVooQ);
(T5): o(PvQ)z (ooPvooQ), (T5'): (ooPAooQ)=:>o(PAQ);
(T6): o(PvQ) =(oPvoQ), (T6'): (oPAoQ) 'o(PAQ);
(T7): (P =,Q)=((PVR) (Q v7R))
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2) Other Derived Theorems:

The following theorems are used in this paper. Each theorem has a proof followed.
(D1) : o(P =o P) >oo P

(-P => OP) = C(P v oP) (13)

o(P VoP) =* (o PVooP) (T5)
O(P V oP) => (00oPV 00 P) (TV',13)

D7PVoP) COP (13) 0
0(-,P ::> OP) :=> C3 P (13)

(D2): ((P =,.Q) A ((P A Q) => R)) => (P = R)

((P : Q) A ((P A Q) R)) ((P v Q) A (-P v -Q v R)) (3)
((P => Q) A ((P A Q) =:> R)) -(-P V (Q A (- Q v R))) (13)

((P ::- Q) A ((P A Q) R)) (-P V (Q A -Q) v (Q A R)) (13)
((P => Q) A ((P A Q) : R)) (-P V (Q A R)) (13)

((P :> Q) A ((P A Q) R)) ((--,P V ) A (-P v R)) (13)
((-P V Q) A (-P v R)) = ('P V R) 0
((P :: Q) A ((P A Q) => R)) => (P =: R) (13)

(D3): (c(P =€. Q) A o((P A Q2) =:; R)) => o(P => R)

-(((P =:: Q) A ((P A Q) - R)) = (P R)) (D2,12) 0
o((P =: Q ) A (PQ R)) = o(P R) (A3)
(o(P =€. Q) A . '((P A Q) -R)) :Q o(P --- R) (T3, 13)

((4): (PQv-Q)=)(oap=>3Q)

(P * Q) 0(P => oQ) (A5)

((P (Q) 0(- pv OQ) (13)
0(-P v 0Q) = , ((a* -P) v ,',o OQ) (T5)

(P Q) = ((D--,P) Vo<>>Q ) (TV,13)
(P Q () =€. ((-< 0oR) Vo<><>(Q) (A 1,AI1',I13)

(P Q) => ( OoP #=" 0 Q) (13)

(D5): oP => o() -o(*P =>: *(Q)

0(P = o:Q) a0(..-,p v ) (13) 0
0(-,P V oQ) => (Crp v <>() (T6)

o(P => oQ) #- (-.- * P v OQ) (13, AI1')

0(P => OQ() => (*P => *Q) (13)
C3(0(P = 0Q) = (OP ::;, oq)) (12)
(0(P => *Q)) =>€ o(oP =:, *Q) (A3)•

0(P :€ eQ) => o(OP * - eQ) (A3)
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(.OP =OQ) (E?-'P v Q) (Al')

crP -P(A2)

(OP :* OQ) => (P => OQ) (13)

0 ((P Q) ,(P =:>OQ)) (12)
C(OzP =:> OQ) =: O(P ='. cQ) (A3)

(D) (( ) ( P R))( -,- R))=.( ~.R

0(P=>. OQ) A (OQ => oR)) => (P ~-oR)) (12)

0(( =>OQ) A (OQ =; oR)) => o(P *oR)) (A3)
(c(P => OQ) A D(OQ => oR)) =:: o(P => oR)) (T3, 13)

(O(P => OQ) A C(Q =::,oR)) c(P => oR)) (D5, 13)
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