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EXECUTIVE SUMMARY

1. It has been shown both theoretically and experimentally that surface and sub-surface
inhomogeneities have a measurable influence the spectrum of the difference in signals received
by vertically-separated microphones as a consequence of insonification by a point source
positioned so that the point of specular reflection for the ground reflected path to the upper
microphone is close the (horizontal plane) location of the inhomogeneity.

2. The extent of the influence has been found to depend on the shape and size of the scatterer, the
depth of the upper scatterer surface below the ground surface the embedding medium and the
geometry of the level difference measurements. Spheres, spheroids and discs have been
considered. In particular flat-shapes produce a greater effect than spherical shapes for a given
depth and cross-sectional area. The limited experimental and theoretical evidence here suggests
that the minimum detectable scatterer dimension is approximately one quarter of the source-
receiver separation for a surface scatterer.

3. The theoretical analysis developed is capable of extension to take account of more complicated
circumstances than those so far considered including poroelasticity of the embedding medium
and penetrable scatterers.
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Abstract

A theoretical and experimental investigation into the influence of near-
surface inhomogeneities on the reflection of air-borne acoustic fields at a
porous ground surface is conducted. Two theoretical approaches to the
three-dimensional physical problem are presented, both being initially for-
mulated as boundary value problems but with subsequent reformulation as
boundary integral equations via Green's Second Theorem. In the first near-
surface inhomogeneity approach, a rigid inhomogeneity is embedded within
the porous medium and the initial boundary value problem is formulated by
assuming continuity of pressure and normal velocity at the ground surface,
Sommerfeld's radiation conditions, and the Neumann boundary condition
on the surface of the inhomogeneity. In the second surface inhomogeneity
approach, the initial boundary value problem is formulated by assuming an
impedance boundary condition on the plane boundary. Any near-surface in-
homogeneities are assumed to induce a local variation of surface impedance
within the boundary, and analytical expressions for such induced variations
in surface impedance are presented. The resultant integral equations require
knowledge of the Green's function for acoustic propagation in the presence
of a plane boundary but in the absence of the inhomogeneity, and methods
for calculating these Green's function are discussed.

The numerical solution of the boundary integral equations by a simple
boundary element method is described. The solution, which reduces to a
system of linear equations with a block circulant coefficient matrix, is ap-
plicable to any inhomogeneity which is axisymmetric about a vertical axis;
and for the near-surface inhomogeneity approach, the inhomogeneity must
also be smooth. The numerical solutions have shown good agreement with
classical results. The experimental measurements, presented in the form of
spectra of the difference in sound pressure levels received at vertically sepa-
rated points above surfaces of different media containing various scatterers,
are in good agreement with the theoretical predictions.
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Chapter 1

Introduction

1.1 Background

When a porous ground surface is insonified by an air-borne acoustic field,

the air in the pores near the surface, and consequently, through viscous

drag, the porous skeletal frame, are excited. Three different wave types

then propagate in the medium, two dilatational and one shear [1,2]. It has

been shown, for air-filled porous soils, that one of the dilatational wave types

is associated with a propagation mode in which the air and the porous skele-

tal frame are in phase and is called the fast wave [3]; it corresponds to the

P-wave of seismology. In the second type of dilatational wave motion, the

air and porous skeletal frame are out of phase. This propagates primarily

through the air-filled connected pores and is called the slow or acoustic wave.

These wave types have interested geophysicists since the 1950's. The recent

work concerned with this acoustic-to-seismic and acoustic-to-acoustic cou-

pling has involved the analysis of air-borne signals detected by microphones

and geophones buried close to a porous ground surface. These results show

that the fast wave, to which a sub-surface geophone responds, suffers rela-

tively little attenuation with depth, and is non-dispersive [4]. Furthermore,

the structure of the coupled spectrum is dependent upon the seismic struc-

ture of the ground [4], for example, any surficial layering. The spectrum

contains peaks, the magnitude and frequency location of which depend upon

the seismic characteristics of the surficial layer. In contrast to the fast wave,

11
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the slow wave, to which a sub-surface microphone responds, is highly atten-

uating both with increasing frequency and depth [5].

For many purposes, most porous ground surfaces (grassland, forest floor,

bare soil, snow, etc.) can be modelled as modified fluids consistent with the

characteristics of rigid porous media, i.e. where the medium consists of a

rigid porous skeletal frame containing air in the pores. For example, Atten-

borough [6], has shown that, for frequencies above 200Hz, the only wave

possible in a rigid porous material is nearly identical to the slow wave pre-

dicted in a poro-elastic medium with the same pore characteristics. Various

theories are available which predict the acoustical characteristics of rigid

porous media. Delany and Bazley [7] deduced empirical relationships for

the acoustical properties of fibrous absorbent materials and these have been

used successfully in predicting the characteristics of outdoor ground surfaces

[8]. Recently, this empirical model has been replaced by a more rigorous mi-

crostructural model [9]. Here, the acoustical characteristics of rigid porous

media are predicted from four parameters: porosity, flow resistivity, grain

shape factor and pore shape factor ratio. The use of these four parame-

ters for the prediction of the medium characteristics is rather impractical.

However, various approximations to this rigorous theory are available, in-

cluding, one, two and three parameter approximations [9]. The justification

for the extensive modelling of a porous ground as a rigid porous medium

has been verified experimentally by measuring the acoustic field within a

porous ground using a purpose built probe microphone, [10,11,12,13]. The

existence of the seismic wave types has been verified experimentally by mea-

suring time of flight data from above-ground impulsive acoustic sources to

sub-surface geophones, [4,10,14].

The wave type that has the most influence on the reflection of air-borne

acoustic fields at a porous ground surface is the slow wave. The high atten-

uation associated with this wave type within the porous ground means that

only near-surface layering has an influence on the surface-reflected fields, and

that there is a critical depth from the surface, below which such layering has

little effect on the sound field. Consequently, a ground that has near-surface

2
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layering at a depth greater than this critical depth appears acoustically to

be homogeneous. Seismically, as a consequence of the relatively small at-

tenuation of the fast wave, any near-surface layering has an influence on the

surface reflected fields. These effects are seen in natural soils typically at

low frequencies [15], less than 200Hz.

It has been stated above that the reflection of air-borne acoustic fields

at the porous ground surface is influenced by the slow wave type and, to

a limited extent, by the fast wave type, and hence by the variation of the

porous ground structure with depth. Consequently, it is possible that any

inhomogeneitieson or beneath the porous surface, may also have an influence

on the surface reflected acoustic fields. If such an influence exists, how can it

be studied and, to what extent is this influence dependent upon the nature

of the inhomogeneity? Such a problem is considered in this study both

theoretically and experimentally. Similar problems have been considered

before in the literature, and are summarised in the following sections.

1.2 Previous theoretical work

There is considerable literature that considers similar theoretical scattering

problems, using a variety of techniques for solution. Most of this work,

however, has been concerned with the scattering problem from bodies in a

homogeneous fluid medium. This work includes the early work of Faran [16],

Junger [17], Hickling [18], and others [19,20,21,22] and more recent studies

using the T-matrix method [23,24,25,26,27,28], and resonance scattering

theory [29,30,31,32,33,34]. This work involves scatterers that are spherical

or spheroidal in shape. When the obstacle has an arbitrary shape, numerical

methods have been used as opposed to approximate analytical methods.

Such work has involved the use of the T-matrix method, boundary element

methods, and hybrid methods such as the finite element/boundary element

method.

The T-matrix method has been used only to obtain farfield data if the

shape of the obstacle does not deviate substantially from the basic geomet-

3
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rical shape (e.g. a sphere) used and cannot be used to obtain data near

the surface of the scatterer. This situation may be contrasted with integral

equation methods, where there has been a greater degree of flexibility in

its use both in the near- and far-field and in the shape of the scatterers.

Previous work has involved solving problems of scattering from rigid bodies

[35,36,37,38,39,40,41,42] and elastic bodies [43]. Indeed, most of the appli-

cations of integral equation methods to acoustic scattering has been con-

cerned with such scattering problems by finite objects in free space. Survey

monographs and articles include Colton and Kress [44], Filippi [45], and

Shaw [46]. Recently, these methods have been extended to consider acous-

tic scattering by a half space containing some form of local disturbance, for

example, a noise barrier [47,48,49]. Others [50,51,52] have considered the

application of integral equation methods to the case of a surface impedance

variation on a flat boundary.

There are few references that consider the solution of the scattering of

sound waves due to a source in one medium (air) by an inhomogeneity in

another medium. Kristensson and Str6m [53] consider this problem using

the T-matrix method. However, their method still requires further devel-

opment, in particular, with respect to the numerical integration problems.

The method requires the numerical calculation of 0(n 2 ) integrals (see [53],

equations (60) and (65)), where n is the degree of the expansion in spherical

harmonics used to approximate the anomalous scattered field, and the rapid

oscillations of the integrands of these integrals cause difficulties in numeri-

cal evaluation. These problems have only been partly solved by Kristensson

and Strbm, for the special case when source and receiver lie on the plane

boundary between the two media.

1.3 Previous experimental work

Essentially, there are two techniques for analysing the influence of near-

surface inhomogeneities on the reflection of air-borne acoustic fields at the

porous ground surface. The first method involves analysing the acoustic

4
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field reflected from the ground surface and the surface of the inhomogeneity

separately. This has been considered before by Bass, Bolen et at [54], and

involve the use of a pulsed acoustic source to enable the separation of the

two reflected signals. The method, although satisfactory under certain con-

ditions, did not overcome adequately the major problem of separating the

pulses reflected from the ground surface and the surface of the inhomogene-

ity.

The second method considers the analysis of the acoustic fields associ-
ated with the layer between the surface of the inhomogeneity and the ground

surface (i.e. the acoustic fields reflected from the ground surface and the

surface of the inhomogeneity are considered together). This method has

only been considered previously in the context of determining sub-surface

ground layering for agricultural purposes [11]. It involves measuring directly

the acoustic field due to a source obliquely incident on the ground surface by

a microphone placed at a horizontal distance from the source. The direct and
ground surface reflected contributions to the received signal will interfere [8].

The resulting spectrum, of the attenuation in excess of that due to spherical

spreading, (i.e. the ezcess attenuation spectra), after taking account of the

free-field spectrum and directivity of the source, shows one or more minima

depending upon the source and microphone configuration above the ground

surface, the frequency range, and the acoustic characteristics of the ground
considered. Over acoustically hard ground with zero phase change on reflec-

tion, the frequency locations of the minima are determined entirely by the

source-microphone configuration. Over finite impedance ground, the loca-

tion and shape of the first minimum is determined both by the configuration

and the acoustical nature of the ground including its sub-surface structure.

The free-field spectrum and directivity of the source can be either measured

in an anechoic chamber [55] or over a perfectly reflecting plane [56,57].

A refinement of this method is that proposed by Glaretas [58]. Instead
of using one microphone, two vertically separated microphones are used to

receive the acoustic field and the difference in the sound pressure levels (i.e.

the Level Difference between the two microphones is calculated. The re-

5



sulting spectra produce maxima and minima similar to those of the excess

attenuation spectra. However, if the vertical separation of the two micro-

phones is sufficiently small such that the directivity of the source can be

neglected, then the free-field spectrum of the source is directly cancelled

in the calculation of the level difference. The main advantage of measuring

excess attenuation and level difference is that spectra for a broad-band of fre-

quencies are obtained simultaneously. Further, except for the requirement

on the bandwidth of the measurement to include at least the first mini-

mum, there is no restriction on the source-microphone(s) configuration. For

small source-microphone(s) configurations, meteorological effects are unim-

portant, but for large geometries, measurements can be taken only under

calm conditions (a wind speed of less than 2m.s - ') and with a frequency

range of up to 5kHz [59]. For all geometries, the received signals must be

at least 10dB above background noise [60].

1.4 The present work

The purpose of this study is to develop a theoretical description of the influ-

ence of near-surface inhomogeneities on the reflection of air-borne acoustic

fields at a porous ground surface. The frequency range to be considered

is 200Hz to 5kHz, for which seismic effects may safely be ignored and the

porous ground is modelled as rigid porous with only the slow wave considered

within the porous medium. The inhomogeneities that will be investigated

will have a smooth, rigid surface and will be typically - 0.25m in dimension.

This theoretical description is then compared with experimental results.

Two mathematical approaches to this scattering problem are consid-

ered and chapter 2 deals with their mathematical formulation as Boundary

Value Problems and subsequent reformulation as Boundary Integral Equa-

tions. The first approach considers the scattering by a near-surface in-

homogeneity embedded within a rigid porous medium directly, the second

approach assumes the surface impedance of the porous ground surface is

modified locally in a region directly above the inhomogeneity.

6
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The boundary integral equations formulated in chapter 2 require ex-

pressions for the Green's function which is the solution to the simple prob-

lem of acoustic propagation in the presence of a plane boundary separating

two semi-infinite media of different properties with various configurations

of source and receiver. There have been many papers concerned with this

problem, an exact solution of which, for wave propagation between source

and receiver, above a plane boundary was first given by Sommerfeld [61,621.

Later, further advances were made by Van der Pol [63], Norton [64,65],

Rudnick [66], and others [67,68,69,70,71]. The exact solution for the cor-

responding problem with a locally reacting boundary has been given by

Ingard [72], Thomasson [73], and Wenzel [74]. Ingard [72] and Lawhead

and Rudnick [75] have given approximate solutions, whereas Thomasson

[76], Chien and Soroka [77,78] and others [79,80,81,82] have given asymp-

totic solutions. An exact solution for the transmission of sound across a

plane boundary with extended reaction has been given by Richards et al

[5]. The theory is based on the earlier work of Paul [69] and Brekhovskikh

[83]. These various solutions are discussed in chapter 3. Finally, modelling

the effect of the rigid porous ground is discussed and reviewed.

The expressions for the induced surface impedance required for the sec-

ond approach are derived in chapter 4. It will be seen that this second

approach gives more flexibility to the shapes of the scattering surfaces; in-

deed scattering by local surface impedance discontinuities caused by cir-

cumstances other than the presence of an embedded inhomogeneity, may be

considered.

Chapter 5 considers the numerical solution of the boundary integral

equations developed in chapter 2, and presents numerical tests and com-

parisons of the solutions with standard results.

The experimental investigation of this study is introduced in chapter

6, which details the experimental procedure, apparatu3, test scatterers and

media. The experimental results are then presented in chapter 7. The

object of these experiments was to confirm the main qualitative features of

the models developed. The chapter also details a series of theoretical results.

7



In the concluding chapter, chapter 8, a review of the study is presented,

together with limitations and recommendations for future work, and finally,

some concluding remarks.
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Chapter 2

Mathematical formulation

The theoretical problem of determining the influence of near-surface inhomo-

geneities on the reflection of air-borne acoustic fields at the porous ground

surface is described in this chapter. Section 2.1 briefly summarises some

basic acoustic theory relevant to the theoretical problem. The basic the-

oretical problem to be considered is then described in section 2.2, where

two treatments are formulated mathematically as boundary value problems

and subsequently reformulated as boundary integral equations by standard

arguments using Green's second theorem. The final section then briefly

summarises these treatments.

2.1 Basic theory of sound propagation

This study is basically concerned with sound propagation in a fluid medium

above an absorbing boundary. It is assumed that the fluid medium is ho-

mogeneous and, in the absence of the sound field, is at rest; this means that

the prediction of outdoor sound propagation, in situations where wind and

temperature gradients have a significant effect, cannot be considered. Fur-

ther, the flow induced by the sound wave in the fluid medium is assumed to

be inviscid and isentropic, which means that internal energy loss and slight

energy losses due to viscosity and heat conduction associated with bound-

ary layer effects can be neglected [84]. If the above conditions are satisfied

and the perturbations due to the sound field are small, then the theory of

9
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linear sound propagation applies [45], and the perturbation in the pressure

P, satisfies the homogeneous wave equation,

- 1 a 2P (2.1)c 2 at 2

where c is the wave propagation velocity. The sound pressure, in a fluid of

unperturbed density p, is related to the velocity potential <k by

P = -p-l-, (2.2)

and the particle velocity is related to velocity potential by,

V = V4'). (2.3)

The assumption is made throughout this thesis that the sources of sound

are single frequency (though, of course, by Fourier analysis an arbitrary

transient wave can be built up by superposing monofrequency waves) with

wavelength A, corresponding to a frequency f = c/A. With this assumption,

P can be written as

P = Re(pe-'w), (2.4)

where w = 27rf 1c, i = / and the complex acoustic pressure p, which is

independent of t, satisfies the Helmholtz equation

(V 2 + k2 )p = 0, (2.5)

where k = 27r/A is the wave number. Similarly to equation (2.4), it is

possible to write

4 = Re(e-iw), (2.6)

and

V = Re(vet) (2.7)

and equations (2.2) and (2.3) are satisfied provided the complex-valued func-

tions ¢ and v satisfy

p = iwpO, (2.8)

and,

v = Ve. (2.9)

10



The theoretical content of this study is concerned with the solution of

equation (2.5), subject to just sufficient boundary conditions so as to permit

equation (2.5) to have exactly one solution. The appropriate boundary

condition at a rigid surface, for example, is that

v.n- Lo - 0, (2.10)

where n, the unit normal to the boundary directed out of the fluid medium.

On boundaries between two different fluid media, two conditions must be

satisfied: the acoustic pressures on both sides of the boundary and the nor-

mal component of particle velocity, must be equal. The first continuity of

pressure condition, is required so that there can be no net force on the bound-

ary separating the fluids. The second continuity of normal velocity condition

is required so that the fluids remain in contact. In certain circumstances,

these two conditions combined imply that the fluid satisfies approximately

the locally reacting boundary condition, i.e. the pressure in the boundary is

proportional to the normal velocity,

p L Z (2.11)

where the value of the constant Z,, the surface impedance is dependent only

on local surface properties. Z, may vary from point to point on the bound-

ary, but at each point, Z, is independent of the acoustic field above the

boundary. Any boundary to which the boundary condition (2.11) does not

apply (i.e. the surface is not locally reacting) is said to be externally react-

ing. Equation (2.11) can be written as the Robin or impedance boundary

condition ao
-n = ik1 6¢, (2.12)

or,
= ikop, (2.13)

where, 3 = 1/(,, is the normalised surface admittance and C, is the relative

surface impedance, defined by C, = Z,/pc.

In addition to boundary conditions on physical boundaries, a boundary

condition in the far-field must be specified, and this Sommerfeld radiation

11
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condition is
oikp = o(r - ) 1r (2.14)p = o(- - 1

where r is the distance from a fixed origin.

Sound propagation in a homogeneous porous medium has been reviewed

by Attenborough [85], who considers the case of a rigid matrix and that of

an elastic matrix. For the case of the rigid matrix, the acoustic pressure

within the porous medium is shown to satisfy the Helmholtz equation,

(V 2 + k2)p = 0, (2.15)

where kP is a complex function of w, with Re(kp), Im(kp) > 0 and kp = w/cp,

cP being a complex wave propagation velocity. Also,

p = iwpP¢, (2.16)

pP being an effective fluid density, also a complex function of w.

Consider now a plane wave travelling within a fluid medium, incident

upon a plane boundary between the fluid and a porous medium. Let the

boundary have the equation z = 0 (Cartesian coordinates), and assume

that the plane incident wave makes the angle 0 with the z-axis and that the

upper fluid half-space (z > 0) be characterised by characteristic impedance

Z1 and wavenumber k, and the lower porous medium half-space (z < 0)

be characterised by characteristic impedance Z 2 and wavenumber k2 . For

oblique incidence, the incident acoustic field at r = (x, y, z) is given by

pj(r) = el(k ,' - i, 'z) (2.17)

for z > 0, where kl,_ = k1sinO, kl,, = k1 cosO, so that pi satisfies

(V 2 + k 2)p,(r) = 0. (2.18)

The reflected wave is given by

p,(r) = Rpet(k,.z:+k1.*z), (2.19)

12



for z 0, where RP is a plane wave reflection coefficient, and where p,

satisfies
(V 2 + k2)pr 0. (2.20)

The transmitted wave is given by

pt(r) = Tpe(k2" -k2"z), (2.21)

for z < 0, where Tp is the plane wave transmission coefficient, and,

k2( k2 (2.22)

so that pt satisfies

(V 2 + k2)pt = 0. (2.23)

Continuity of pressure at the plane boundary requires,

(1 + Rp)et kl , x = Tpe k2, .
X, (2.24)

which implies that,

k2,= kl,. (2.25)

and,
1 + RP = TP.  (2.26)

Continuity of normal velocity requires,

1 iwp m!Y' a)= I (2.27)

using equations (2.3) and (2.8) and where P, and P2 are the unperturbed

densities, in z > 0 and z < 0, respectively. This gives expressions for Tp and

RP as,
Tp = (1 - Rp) l zi22 (2.28)

k2,zpl

and

R= kl,zP 2 - k2,zpl (2.29)=kl,zP2 + k2,zpl'

Equation (2.29) can be written as,

cosO -,3(0) (2.30)Rp-COSO + 0(0)'

13
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where,

= 1(1 - sin29/n2) , (2.31)

= p1 c1 /p 2c 2 and n = k2/k1 . If In2 > 1, then 0(0) is approximately

independent of 0 and

0(0) -z 0(O). (2.32)

In this case, the boundary is approximately locally reacting with surface

admittance

0 = fl(0). (2.33)

2.2 The theoretical approaches

The previous section has summarised the basic mathematical concepts be-

hind the theoretical study to be discussed in this section, and it is the

purpose of this section to define the mathematical problem of determining

the influence of near-surface inhomogeneities on the reflection of acoustic

fields at the surface of a porous medium. Two approaches to this problem

will be considered. In the first approach, the acoustic fields transmitted

through the plane boundary are incident on the inhomogeneity and scat-

tered, and through the various boundary conditions, the acoustic field at a

receiver in the upper medium will be calculated. In the second approach, any

near-surface inhomogeneity is assumed to induce a local surface impedance

variation at the boundary above the inhomogeneity. In both approaches,

the complex acoustic pressure at a point in the upper half-space is to be de-

termined when the plane boundary is insonified by a monofrequency point

source at a point also in the upper half-space. It will be seen that the first

approach is sufficiently general that the acoustic pressure in the lower half-

space may be calculated also. These approaches are first stated as boundary

value problems with subsequent reformulation as boundary integral equa-

tions by a standard procedure via Green's second theorem.

To formulate the boundary integral equations, the solution to much simn-

pler but related problems are required. These are the determination of

14



Source, ro U+

Air k1 Zj Plane boundary, r

Porous medium k 2Z 2

U-

Inhomogeneity S, with smooth, rigid surface 8S

Figure 2.1 Geometry for scattering by a near-surface rigid inhomogeneity

Green's functions for sound propagation in two half-spaces, separated by

the plane boundary, and these are discussed in the next chapter.

2.2.1 The first approach

The geometry for this first approach is shown in figure 2.1. An inhomo-

geneity, labelled S, with a smooth (Lyapunov), rigid surface 8S, is em-

bedded in a porous half-space, characterised by a complex characteristic

impedance Z 2 , and a complex wavenumber, k 2. The upper half-space, de-

noted U+, contains air, and is assumed to be characterised by real charac-

teristic impedance and wavenumber, Z 1 and k 1 , respectively. To define the

other notation in figure 2.1, U_ := R3\(SU-+) denotes the porous medium,

and F = {(x, y, z) e R 3
1z = 0}, the boundary between the two half spaces.

The complex acoustic pressure is assumed to satisfy the following boundary

value problem:

an inhomogeneous Helmholtz equation for r E U+,

(V 2 + k')p(r, ro) = 6(r - ro); (2.34)

15
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the Helmholtz equation for r E U-,

(V 2 + k2)p(r, ro) = 0; (2.35)

the Neumann boundary condition for r E OS, for a rigid surface on the

inhomogeneity,
Op(r, ro) = 0; (2.36)

iOn(r)

continuity of complex acoustic pressure, for r E r,

p+(r, ro) = p_(r, ro); (2.37)

continuity of normal velocity, for r E r,

aOp+(r, ro) 8p_ (r, ro) (2.38)a z = z '

where a = k2Z2/k1 Z1 , and Sommerfeld's radiation conditions for r E U+

uniformly in r as r := Irl -- cc,

8p(rro)- = o(r-),
p(rro) o(r (2.39)

and for r E Uuniformly in r as r := Irl -o 0,

ep(rro) -ik 2p(r,ro) = o(r- 1 ), }
p(", ro) =  O(r-1). (2.40)

In the above, the subscripts +/- denote the limiting values of a function as

r is approached from the U+/U- side and n(r) denotes the normal to the

surface OS at point r.

Two integral equation formulations of the above boundary value problem

shall now be considered. It will be seen that the first reformulation requires

Green's functions in the presence of plane boundaries, and this reformulation

is quite general. The second reformulation, involving Free-Field Green's

functions, uses some of the results of the first approach and thus, is less

exhaustive.

16
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First integral equation formulation

The first integral equation reformulation of the boundary value problem,

involves letting the Green's function G(r, ro), satisfy the following boundary

value problem, for each r 0 E R 3\r:

an inhomogeneous Helmholtz equation for r E U+,

(V 2 + k')G(r, ro) = b(r - ro); (2.41)

the Helmholtz equation for r E U-,

(V 2 + k2)G(r, ro) = a6(r - ro); (2.42)

the following jump conditions for r E r, the boundary between the two

half-spaces,

G+(r, ro) = -_(r, ro); (2.43)

and
aG+(r, ro) aG- (r, ro). (2.44)

#a z = z

and Sommerfeld's radiation conditions for r E U+, uniformly in r as r

Jrl - oc,
aG(r,ro) - ikG(r, ro) = o(r-1),

G(r,ro) = O(r-1), (2.45)

and for r E U_, uniformly in r as r := Irl oo,

- ik.G(r,ro) = o(r-'),
G(r, ro) = O(r-1). (2.46)

Note that in the case when no inhomogeneity is present

p(r, ro) = G(r, ro) (2.47)

for r E R3 and ro E U+; but G(r, ro) is defined also when r0 E U_. In

physical terms, and for this integral equation reformulation, G(r, ro) is the

complex acoustic pressure at point r in a medium consisting of two half

spaces of different characteristic impedances and/or propagation constants

17



due to a simple point source at point ro of unit volume flux strength; the

point ro may lie in either half space.

The integral equation for this first reformulation may be obtained by

considering regions V1 and V2, V1/IV 2 consisting of that part of U+/U_ con-

tained within a large hemisphere of surface, E and radius R, centred on the

origin, and the boundary, 1, but excluding small spheres, 0r, and o of radii

e, centred on r and r 0 . The interiors of the spheres a, and a,, are excluded

so that the conditions of Green's second theorem are satisfied by p and G

in regions V, and V2. Applying Green's second theorem to regions /, and

V2, the following two equations are obtained:

., 8G(r,, r) G(r, ap(r, r0) ..

]a n(r ) 9n(r.-))

(p(r., ro) Vr G(r,, r) - G(r,, r)% Vp(r,, ro))dV(ro) (2.48)

and

J (r,, ,, , r) ap(r., ro) )d(r,) =
Ja r, ro) an(r,) r, n(r)

J(p(ro, ro) V2 G(ro, r) - G(r., r)Vr p(r8 , r0))dV(r8 ), (2.49)

for ro E U+ and r E R3 and where V2 . - i 2 /9X + a2 /ay2 + 82/aZ, ds(ra)

denotes an element of surface area at the point r, on 81Vt and 81V2, and

dV(r) denotes an element of volume at the point r,. (In each equation, the

normal n is directed out of V 1/V 2 ).

Since p(r,, ro) and G(r,, r), both considered as functions of r., satisfy

Helmholtz's equation in V, and V2, the integrals over volumes V1 and V2 in

equations (2.48) and (2.49) are equal to zero. Thus, equations (2.48) and

(2.49) reduce to

(p(r., ro)9G(r,, r) G(r.,-) p(r, ro) )ds(r.) = 0 (2.50)

faV, 8n(r.) - n(r.)

and

(p(r,,ro) G(.,r) G(r,, r) 8p(r, ro) )ds(r) = 0, (2.51)

18 V2 ro 8n(r.) r 1 ,, n(r,) -, (.1

for r 0 E U+ and r E R3 . These two integrals are now considered in turn.
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Integral over aVl Equation (2.50) is considered for three different cases:

r E U+, r E r, and r E U_.

For r E U+ the region V, is bounded by the hemispherical surface E, of

radius R, the plane boundary r, and the surfaces of the spheres ar and ar0
of radii e. The integral (2.50) is now evaluated with the radius of the surface

E taken to the limit R --+ o, and the radii of the surfaces ar and ar0 taken

to the limit c --+ 0. The integral (2.50) can now be written as

1U+ + = 0, (2.52)

where I represents the limiting values of the integral (2.50) over the surfaces

r, E, ar0 , and ar respectively. The superscripts denote the integrating

volume and the position of r. It is assumed that these limits exist, which

will be shown to be the case. The contributions If +, 1U+ and U+ to

equation (2.52) will now be evaluated.

The limit I' U+ is given by

i1 u+ = lir (p(r., ro) G ( r s' r ) _ G(r,r) p(r'r°))ds(r.). (2.53)
R-ooE a (r,) an(r.)

jand may be written as

41U+ = lim p(r,, ro) 8G(r, r)
R-o J ' 8r,

-G(r,, r) (p(r,,ro) _ ikip(r,ro)) ds(r), (2.54)

since OG(r,, r)/On(r.) = 8G(r,, r)/8r, on E. This may now be evaluated by

utilising the Sommerfeld radiation conditions for G with ra E U+ uniformly

in r, as r, := Ir.l - o

ikG(rr) = o(r;',}8-)(2.55)

G(r., r) = O(r.;),

and p with r, C U+, uniformly in r, as r, := 1r51 - 0o

r - ikp(r, ro) = o(r;1), 5

p(r.,ro) = O(r').
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These conditions imply that there exist constants CsG and C~p and func-

tions CSG(r,) and csp(r8 ) defined for r, > 0 and such that cSG(r.) and

CSP(r,) --+ 0 as r, - 00 giving

r3  C:r ikG (r,, r)~ CSG(r), (.7

r. IG(r., r)I CSG, J
and

r.,Ia3 -o - ikip(rs, ro) Kcsp(r.), (.8

r. Ip(r., ro)j I Dsp.J

Utilising these inequalities in equation (2.54) gives

I": K i urn sp'-5LiV) + Csccsp(R))/R'di(r9 ,),
R-co fT

li Jr 2,r(Cspcsc(R) + CSGcsp(R))},
-R-oo

=0. (2.59)

The limit I'Cr0 is given by

1ijU+ = lim (pr, G(r, r) _G(r,r) 9p(r,, ro))ds(rs). (.0o C-O JZro 9nr, 0  (r) -9(r) (.0

This may be evaluated by writing p(rj, ro) as the sum of the free-field Green's

function,

GF~r., ro) k, Jr. -ro 1(.1
GF~r8 ,ro) 47r 1r, - rol' 2.1

plus a correction term, gF(ra ro), i.e.,

p(ra, ro) = GF(r5, ro) + gF(r., ro), (2.62)

where gF(r5 , ro), considered as a function of r1, is continuous and has con-

tinuous partial derivatives of all orders in U4, so that, for small enough 6,

and for all r, on a'rc,

g9F(r., ro)I 1 CF, (2.63)

and,

Ogp.(rs, ro)1  CF, (2.64)
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where CF is a constant. Also, for r. on Or,

IGF(r.,ro) I = 1, (2.65)

and
i9GF(r3 , ro) + g * (s o,(.6

ean(r,) 4-7 g(ro) 2.6

where
C.

g(r.,ro)I 5 - (2.67)

C* being a constant. Further, G(r., r) and VrG(r., r) are continuous func-

tions of r, in a neighbourhood of ro. Thus, there exists a constant Cg such

that, for all small enough c, and all r, on ar0 ,

IG(r., r) 1 : CG, (2.68)

anaG(r,r) <5 IV r. G(r, r) I ! CG. (2.69)

,9n(r5 ) I

Substituting equation (2.62) into (2.60) gives

Ij1U+ = liM(Ii + 12 + 13 + 14), (2.70)
Cro C-

where

I, = J GF(r3 , ro) OG(r,, r) ds(r,), (2.71)
Zr0  iJnkr5 )

12 = F(r., ro) aG(r., r) da(r), (272)
Zro an(r.)

13 = I G(r,, r)GF(rs, ro ) s(),2.3
Lro ,r an(r.) d~ 3 ,(.3

and,

14-, r G(r., r) 19(rsro) ds (r,). (2.74)

Now,

IIiI S IGF(r., ro)I 49G~i,)~ ds(r,

<_ CGIS, (2.75)
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using inequalities (2.65) and (2.69). Also,

12 gF(r, ro)I aG(r,, ) ds(r,

< CFCG4re2 , (2.76)

using inequalities (2.63) and (2.69). And

1141 J IG(r,,r) i9F(rsro) ds(r,)
roan(r 8 )

CGCF4rc2  (2.77)

using inequalities (2.64) and (2.68). Thus, II, 1121, and 1141 -* 0 as e --- 0.

Finally, 13 can be expanded to give,

13 = J G(r.,r)/47re 2ds(r,)

aro

+ J G(r., r)g*(r,, ro)ds(r,), (2.78)

using equation (2.66).The magnitude of the second integral of equation

(2.78) is given by

Iro IG(r.,,r)jIg*(r,,ro)jds(r,) < 47rCGC*c. (2.79)

Now,

lim J G(r,, r)/47rc 2ds(r,) = G(ro, r). (2.80)C- Z0Jro

Thus, the limit U is given by

i + = G(ro, r). (2.81)

The limit CrU is given by,

Im (p(r G(r, r) G(r,, r) p(r. r°)ds(r). (2.82)rU 0lir r  (9n(r,) c8n(r,)
and is evaluated in the same manner as ro r)

the sum of the free-field Green's function

_ek1 Ir,-r
GF(r,, r) = 4ir r - rl' (2.83)
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plus a correction term, gF(r,, r),

G(r., r) = GF(r,, r) + gF(rs, r), (2.84)

where 9F(r,, r), considered as a function of r,, is continuous and has contin-

uous partial derivatives of all orders in U+. Also, p(r 8 , ro) and Vr.p(r., ro)

are continuous functions of r, in a neighbourhood of r. Thus, it can be

shown that
I1U+ --p(ro, r). (2.85)

By applying equations (2.59), (2.81), (2.85), equation (2.52) reduces to,

p(ro, r) = G(ro, r) p+(r., ro) OG+(r, r)

- r, rs+r a 9n(r,)
,r) p., as(r,) (2.86)

-G+(r~rr)

for ro E U+ and r E U+.

For r E r the region V is again bounded by the hemispherical surface E,

of radius R, the plane boundary r, the surface of the sphere aro, of radius e

and, in this case, the hemispherical surface ar of radius e, as r E r. Again,

as for the case with r E U+, integral (2.50) is evaluated with the radius of

the surface E taken to the limit R -* oo and the radii of the surfaces er and

ar0 taken to the limit e -- 0. Integral (2.50) can now be written as,
ir +I.r r0 + ,,r = 0, (2.87)
II+ + I ro or

with the similar notation of I as previously. The contributions I r,, and
Ir to equation (2.87) will be identical to those of tU+ and 1U+ obtained
previously. However, it is found that the contribution I'r is

= - p(ro r), (2.88)

r 2

and equation (2.87) reduces to

1p(ro, r) G(ro, r) + p(r, ro)G+(rr)
2 Jr 9n(r,)Gro (r., r p+ (r., ro) da--r') (289

anp(r.~r).
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for ro E U+ and r E r.

For r E U- the region V is again bounded by the hemispherical surface

E, of radius R, the plane boundary r, and the surface of the sphere aro of

radius c. As r E U-, a surface O'r is absent. Again, as for the cases with

r E U+ and r E F, equation (2.50) is evaluated with the radius of the surface

E taken to the limit R - oo, and the radius of the surface ar0 taken to the

limit c -+ 0. The integral (2.50) can now be written as

1 U-- lU - + flu- 0, (2.90)

with the similar notation for I as previously. The contributions IF - and
ISUr to equation (2.90) will be identical to those of r . and equation

(2.90) reduces to

0 =G(ro, r) + frP+(r., "o aG+(r,, r) _ +(,,r p+(r., rO) ds(r.,), (.1
0 +(,)O) (2.91)

for ro E U+ and r E U-.

The results of evaluating equation (2.50) for the three different cases,

r E U+, r E F, and r E U-, i.e., equations (2.86), (2.89) and (2.91) may

now be combined to give the following integral equation for for ro E U+ and

r E R 3 ,

K_(r)p(rro) G(ror)+jp+(r,ro)9G(r,, r)

G +(rsro)ds(r,) (2.92)

where ni(r) := 1 for r E U+, 1/2 for r E r, 0 for r E U-. In the above

equations (2.86), (2.89), (2.91) and (2.92), the subscript + implies that p

and G are calculated on the U+ side of the boundary F, for r, E r.

Integral over aV2 Equation (2.51) is considered for the three different

cases, r E U_, r E FU8S, and r E U+.

For r E U- the region V2 is bounded by the hemispherical surface E of

radius R, the plane boundary r, the surface of the sphere ar of radius C

and the surface of the rigid inhomogeneity, aS. As r0 E U+, a surface aro
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is absent. The integral (2.51) is evaluated with the radius of the surface E

taken to the limit R -+ oo, and the radius of the surface ar taken to the

limit e -* 0. Equation (2.51) can now be written as

1 2U- + 1 2U - + p2U - + 2U- = 0, (2.93)

2Uwith the similar notation for I as previously and Ijs - represents the integral
2U

in (2.51) over the surface 8S. The contribution Ij - to equation (2.93) will

be identical to that of I'~U obtained previously. The evaluation of Irj-€ U+
follows that o Ilr0 except here, the Green's function G(r8 , r) can be written

as

G(r,, r) = aGF(r,, r) + 9F(r,, r), (2.94)

where GF(r,, r) is the free-field Green's function, and gF(rs, r) is a correction

term, which considered as a function of r, is continuous and has continuous

partial derivatives of all orders in U__ Thus, it is found that

2U'r- -ap(ro, r). (2.95)

2UThe limit I;s - is given by

2 _  (p(r.,ro) G(r,,r)_ G(r, ")p(rrollds(r.)s ( P J ' r ° in(r,) d( -(r

Jas o)a(r, (2.96)= As ( r r ° On(r,) sr)

using the boundary condition, equation (2.36), on 9S.

So, equation (2.93) reduces to

f ,G._(r,, r) 0_r,)p-(r. ro) d~,
atp(ro, r) p-(r.,° a-(rr) -(r,,r) O (r, 8)

fO n(r8 ) iOn(r8 )

+ , oiG(r,, r) (2.97)
+f]asPro° 4n(r,) ds(r,

for ro E U+ and r E U-.

For r E r U OS, the region V2 is bounded by the hemispherical surface E

of radius R, the plane boundary r, the surface of the rigid inhomogeneity aS

and the hemispherical surface ar of radius e.The integral (2.51) is evaluated

with the radius of the surface E taken to the limit R o o, and the radius of
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the surface or taken to the limit c -- 0. Equation (2.51) can now be written

as
12r + 12r + i r  r = 0, (2.98)

with the similar notation for I as used previously. The only contribution

that will be affected by imposing r E r u S, is I' r , for which the integrating

surface is a hemisphere, and it is found that,

2r= 1
r 2 p(ro, r) (2.99)

So, equation (2.98) reduces to,

1rp(rr) p- (, o G (r, r) G (r, r) p-(rsro)ds(r)
2 pr 8n(r,) rn(r 3)

+ jp(r,,ro) G(r,, r)(,), (2.100)
Ja s 9n(r,)

forr 0 E U+ and rE rues.
For r E U+ the region V2 is bounded by the surface E, of radius R, the

plane boundary r and the surface of the rigid inhomogeneity S. As r E U+,

a surface ar is absent. The integral (2.51) is evaluated with the radius of the

surface E taken to the limit R -* oo. Equation (2.51) can now be written

as
12U++ I+ + 1 2U+ 0

jas+ a + (2.101)

with the similar notation for I as used previously. The contributions I+
2U 2Uand ,, to equation (2.101) will be identical to those of I47-, ZSg-. So

equation (2.101) reduces to

p-(rro)G_(r,, r) )- OP-(rr°)ds(r.)

(r a ) n(,.)
8G(r,, r

+ P(r.,ro) 8 ds(r,), (2.102)

forr 0 E U+ and rE ruU+.

The results of evaluating equation (2.51), i.e. equations (2.97), (2.100)

and (2.102) for the three different cases r E U-, r E ruos and r E U+ may
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be combined to give the following integral equation for aV2 , for ro E U+ and

rE R3 ,

arK2 (r)p(r,ro) = (p_(rs, ro) G - (r,r) _ G_(r.,r)P- (r ro) )ds(r5 )
fr a~r, r),

+ (p(rs, ro) -G-(r, r) )ds(rs), (2.103)
an(r8 )

where i 2 (r) := 1 for r E U-, 1/2 for r E rFU S, 0 for r E U+. In the above

equations (2.97), (2.100), (2.102) and (2.103), the subscript - implies that

p and G are calculated on the U_ side of the boundary r for r, E 1.

The final integral equation Equations (2.92) and (2.103) can now be

combined to give a single integral equation. Multiplying equation (2.92)

by a, and subtracting equation (2.103) from this, and making use of the

conditions on r satisfied by p and G (equations (2.37), (2.38), (2.42) and

(2.43)), gives, for r0 E U+ and r E R3 ,

arK(r)p(r, ro) = aG(ro, r) + f sP(r,, ro) aG(rs ) ds(r,) (2.104)

where K(r) := 1 for r E R3 \S, 1/2 for r E aS. This integral equation is

completely equivalent to the original boundary value problem, i.e. the inte-

gral equation has exactly one solution, and the solution satisfies the original

boundary value problem. This equation has been presented previously in

[86] though without such a thorough derivation.

Reciprocity of the Green's function The arguments to derive equation

(2.104) via equations (2.92) and (2.103), can be used to show that G satisfies

reciprocity, i.e. G(r, ro) = G(ro, r). Equations (2.50) and (2.51) hold good

with p(rs, ro) replaced by G(r 8 , ro). Thus, and by letting the surface of the

inhomogeneity S become negligibly small,

f (G(rro) aG(r,, r) _ G(r, p(r, ro))ds(r) = 0, (2.105)a0,e r'~ Vr, r)r, 8-n(r.)jst.=, 215

for i = 1,2 and r, ro E R3\r. V2 is now defined to be that part of

R3 \(U+ U r) contained within a large sphere, excluding small spheres about
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r and ro. Following the procedure which gave equation (2.92), gives

el(r)G(r, ro) = cj(r)G(ro, r)- j (G+(r., ro)aG+(rs r)

-G+(r,, r) aG+(r, r°) )ds(r8 ), (2.106)

for r, r0 E R3 \r and q(r) = 1 for r E U+, 0 for r E U_.. Similarly, following

the procedure which gave equation (2.103), gives, -

af2 (r)G(r, ro) = a 2 (r)G(ro, r) + j(G_(r,, ro) az,

-G (r,, r) o))ds(r,), (2.107)

for r, ro E R3\r and cl(r) = 1 for r E U-, 0 for r E U+. Multiplying

equation (2.106) by a and adding to equation (2.107), and making use of

the boundary conditions on F, equations (2.42) and (2.43), gives,

aG(r, ro) = aG(ro, r), (2.108)

a statement of reciprocity.

Second integral equation reformulation

The second integral equation formulation of the boundary value problem

has been proposed by Chandler-Wilde, (87], and will be presented here for

completeness. This makes use of the Green's functions, G1 and G2 , given

by,

G(r, ro) e e(ik Ir-ro 1) (2.109)
4rIr - rol

where r, r0 E RI3 for j = 1,2. These functions satisfy the inhomogeneous

Helmholtz equation,

(V 2 + k')G,(r, ro) = 6 (r - ro), (2.110)

for j = 1,2, and also the Sommerfeld radiation conditions, with r E U+,

uniformly in r as r := In - oo,

aG(rr-) ikC(r, ro) = o(r-1),
(28 (2.111)
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The same procedure as in the first formulation, is now followed, i.e. consider

regions V1 .and V2, V 1/V 2 consisting of that part of U+/U- contained within a

large sphere of radius R, centred on the origin, but excluding small spheres of

radius e, centred on r and r0 . Applying Green's second theorem to regions V

and V2 and using the Helmholtz equations satisfied by p and Gi , equations

similar to equations (2.50) and (2.51) are obtained,

(prro)iG 1 (r,, r) _ G, (r,r) -9p(r., ro) )ds(r.) =0, (2.112)

a V, n(r,) i8n(r,)

and,

(p G2, oc(r,, r) G o(r,, p(r8 ro)
I v ( r ,ro n(r ) ( , n(r,) )ds(r) = 0, (2 113)

for r0 E U+ and r E R3.Letting the radius of the small spheres, e - 0, and

the radius of the large sphere, R - oo, and using the Sommerfeld radiation

conditions satisfied by p and G1 , in a similar manner to the first formulation,

the following pair of equations is obtained,

Ki(r)p(r,ro) = Gl(ror)- p+(r. , ro) G(r,, r)
-~+(. r)

-G (r,, r) P+(" ro)ds(r,), (2.114)

and

2 (r)p(r, ro) = P-(r,,ro) G2(rr) G2(r,, 9p(r,, ro)d(

+ p(rs, ro) 8G2(r,, r)ds(rs), (2.115)

fa s in(r,)

for ro E U+ and r E R3 , where the normal, n on 9S is directed into S, ri

and K2 being defined previously as rl(r) := 1 for r E U+, 1/2 for r E r, 0

for r E U- and 2 (r) := 1 for r E U-, 1/2 for r e rUaS and 0 for r E U+.

A further equation is obtained by adding equations (2.114) and (2.115) and

using the boundary conditions (2.37) and (2.38) on r, giving,

(r)p(r,ro) = GI(ro,r)+jp+(r.,ro) 8G2(rar) iG,(r: r)

+ 9p+(r., ro) (GI(r, r) - cG 2 (r., r)) ds(r,)az,

f, 8G2(r,, r)
+ Jp(rs,,ro) On(r,) ds(r,), (2.116)
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for r 0 E U+, r E R3 \S, again, r,(r) has been defined previously as x(r) 1

for r E R3\S, 1/2 for r E aS. Note that the derivatives 8Gj1/9z,, i = 1, 2 in

equation (2.116) vanish when r E r. Taking the derivative with respect to

z of equation 2.116, gives,

(r),p ro) = .G,(ro, r) + jp+(rs, r) az(G2(rr) G,(r,, r)°ds'r.)+8 op+(r., ro)(O1(r,, r) CG2(r,, r) )ds(rr)

r z' az az'
f _ _ ,a2G2(r,, r) G(,

+ / p(ra, ro) r(2.117)
JIs 8zan(r3,) d~

for r0 E U+, r E R3\(sur). Letting z --+ 0+ in equation 2.116, gives,

I(l+Q)p+(rrO) - cGI(ro,r)2 1 z az

+ p+(rs, - ) a -(G 2(r., r) aG1(r,r))d()

+ /p(r,, ro) aG2(rs rds(r) (2.118)

Jas z.1n(r.)
for r c r, ro E U+. A system of three equations has been obtained, in which

the unknown functions are p and 9 p/Oz on r, and p on aS. These equations

are (2.116) restricted to r, and (2.118) and (2.116) restricted on aS, and as

for the first integral equation formulation, they are completely equivalent to

the original boundary value problem, i.e. the combined integral equations

have exactly one solution, and the solution satisfies the original boundary

value problem.

Comparison of formulations

It is quite apparent that when the integral equations from the two formula-

tions are considered, the solution of the system of three integral equations

from the second formulation will be seen to have several disadvantages in

comparison to the single integral equation of the first. Firstly, having a sys-

tem of coupled equations to solve in contrast to the single equation of the

first formulation will tend to a more computationally expensive solution.

Secondly, in all of the three coupled integral equations, there is an inte-

gral having an infinite region of integration, r, making, again, computation
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Source, ro * • Receiver, r U+

Air k1 Z1  Plane boundary, I

Surface inhomogeneity

Figure 2.2 Geometry for scattering by a surface inhomogeneity

expensive. Nevertheless, the Green's function involved in the second formu-

lation are straightforward conceptually, and easy to calculate. The Green's

functions for the first formulation are less straightforward, since they in-

volve the plane boundary, r. But, under certain circumstances (e.g. locally

reacting conditions), they yield simple expressions. In view of this and the

disadvantages associated with the second formulation, the second formu-

lation shall be discarded in favour of the first formulation, in the present

study.

2.2.2 The second approach

Here, the basic concept behind this second approach is that the embedded

inhomogeneity is assumed to induce a variation in the surface admittance

directly above it. This implies that knowledge of any sub-surface structuring

is not required, and that all acoustic information in given by the surface

impedance. This approach therefore gives more flexibility to the types of

surface and near-surface inhomogeneities considered.

The geometry for this second approach is shown in figure 2.2. An irreg-

ular patch, S, of normalised surface admittance, 6, is embedded in a plane

of homogeneous admittance, characterised by a constant normalised surface

admittance, 0,. As for the first case, the upper half-space is again denoted

U+, contains air, and is assumed to be characterised by real characteristic

impedance and wavenumber, Z, and kj, respectively; the boundary between

the upper and lower half spaces is denoted by r {(x, y, z) E R3
1z = 0}.
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The surface r is assumed to be locally reacting, i.e. In2I > 1. The com-

plex acoustic pressure is assumed to satisfy the inhomogeneous Helmholtz

equation,

(V2 + kf)p(r, ro) = 6(r - ro), (2.119)

for r, r0 E U+. This equation is to be satisfied subject to the impedance

boundary condition, equation (2.13),

8p(r, ro) + ikl/(r,)p(r, ro) = 0, (2.120)
iz

for r E r, where O(r) = 1 for r E r\S, and Sommerfeld's radiation condi-

tions with r E U+, uniformly in r as r := Irl --+ co

ap(rro) _ iklp(r,ro) = o(r-1), 1
p(rro) = 0(r1)_ (2.121)

This boundary value problem is now reformulated in terms of an in-

tegral equation. As for the first approach, the formulation of an integral

equation from the boundary value problem via Green's second theorem, in-

volves letting the Green's function, G(r, ro), satisfy the following boundary

value problem, for each r 0 , r E U+: an inhomogeneous Helmholtz equation,

(V 2 + k2)G(r, ro) = 6(r - ro), (2.122)

subject to the impedance boundary condition,

aG(r, r 0 )(223+ ikOG(r, ro) = 0, (2.123)

and Sommerfeld's radiation conditions with r E U+, uniformly in r as r :=

Irl - o,
aGr.) - ikG(r, ro) = o(r'1),

G(r, ro) = o(r-'), J (2.124)

Now consider the region V consisting of that part of U+ contained within

a large hemisphere of surface E and radius R centred on the origin, and the

boundary r, but excluding small spheres ar and a,, of radii f, centred on r

and ro. Applying Green's second theorem to the region V1, and noting that
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p(r8 , ro) and G(r,, r) satisfy the Helmholtz equation, the following equation

is obtained for r, r0 E U+,

p(r, ro) = G(ro, r) +fp(r ro) OG(r,, G(r., p(r.ro) ds(r,).
rs, an(r,) r n(r8)

(2.125)

Substituting the impedance boundary conditions (2.120) and (2.123) into

equation (2.125) gives for r, r0 E U+,

p(r, ro) = G(ro, r) - ik, L p(r,, ro)G(r., r) (/3(r.) - /3) ds(r.). (2.126)

This integral equation is a completely equivalent to the original boundary

value problem, i.e. the integral equation has exactly one solution, and the

solution satisfies the original boundary value problem. This integral equa-

tion is, of course, not new, and is stated in [84] but without a rigorous

derivation.

2.3 Summary

This chapter has been concerned with describing mathematically the influ-

ence of near-surface inhomogeneities on the reflection of air-borne acoustic

fields at a rigid porous ground surface, and two approaches to the problem

were considered. In both approaches, the complex acoustic pressure at a

point in the upper half-space was determined when the plane boundary was

insonified by a monofrequency point source at a point also in the upper

half-space. In the first approach, the transmitted acoustic fields that be-

come incident on the inhomogeneity are scattered, and the boundary value

problem could be stated through the various boundary conditions on the

inhomogeneity, the plane boundary and in the upper and lower media. The

surface of the inhomogeneity was assumed smooth and rigid. Two integral

equation reformulations of this boundary value problem were considered, but

the second was discarded in favour of the first for the reasons mentioned in

section 2.2.1.

In the second approach, any near-surface inhomogeneities were assumed

to induce a surface impedance at the plane boundary above the inhomo-
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geneity. With the condition of local reaction at the plane boundary, the

boundary value problem could be stated through the boundary conditions

at the plane boundary and in the upper medium. The reformulation of this

boundary value problem in terms of an integral equation was straightfor-

ward.

It has been seen in these two approaches, that Green's functions are

required for a various source and receiver configurations, and these are dis-

cussed in the next chapter.
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Chapter 3

The Green's functions

It was seen in the previous chapter that Green's functions and their deriva-

tives for sound propagation in the presence of two media for various source

and receiver configurations were required. It is the purpose of this chapter

to derive expressions for these, and the chapter begins with a formulation of

the Green's functions in terms of a boundary value problem with subsequent

reformulation as integral representations. Although this is quite standard

material, it is instructive in that it explains the basis for the various start-

ing points adopted by many of the authors. Irrespective of their manner of

formulation, it turns out that the integrals cannot be expressed in terms of

known functions, and approximate methods of evaluation have to be em-

ployed. The following two sections then derive approximate expressions for

the reflected and transmitted fields in porous media respectively, consider-

ing both externally reacting and locally reacting boundaries. A discussion

of how ground acoustic characteristics are modelled then follows, with the

chapter being concluded by a brief summary.

3.1 Formulation of the Green's functions

Let U+ be the upper half-space, characterised by real impedance and wave

number, Z1, kj, respectively. Let U_ := R3 \U+ denote the porous medium

characterised by complex impedance and wavenumber, Z2 , k2 respectively,

and r := {(x,Y,z) E R3 z = 0}, the boundary between the two half-spaces.
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It is intended to determine the value of the complex acoustic pressure,

G(r, ro) at the point r E R3 , given a monofrequency point source at ro E R3 .

The complex acoustic pressure is assumed to satisfy the following boundary

value problem:

an inhomogeneous Helmholtz equation for r E U+,

(V 2 + k2)G(r, ro) = 6(r - ro), (3.1)

a homogeneous Helmholtz equation for r E U_,

(V 2 + k2)G(r, ro) = c6(r - ro), (3.2)

where a = (Z 2k2)/(Zlkl), and the boundary conditions of continuity of

complex acoustic pressure for r E r,

G+(r, ro) = G_-(r, ro), (3.3)

continuity of normal velocity for r E r,

aG+(r, ro) =_ (r, ro) (3.4)
a 9 a

Finally, the Sommerfeld radiation conditions, that, for r C U+, uniformly in

r as r := Ir -- oo,

- ikG(r,no) = o(r-'), (.

G(r, ro) = o(r-1), (

and for r E U-, uniformly in r as r := Ir l oo,

- ik2G(r, ro) = o(r-), (3.6)

G(r,ro) = o(r-). (36

The above boundary value problem completely defines G(r, ro) for all pos-

sible configurations of source and receiver.

Due to the cylindrical symmetry of this problem, the above equations can

be re-expressed in terms of cylindrical coordinates, and the problem can then

be reformulated as integrals by applying the Hankel transform. For brevity,
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the reformulation is restricted here to the case when r0 E U+. Equations

(3.1) and (3.2) can be written as, assuming, without loss of generality, that

r = (,0, zo), and writing G(r, z) for G(r, ro),

(2 82 1 8 k2 G(r, z) = 6()6(y)b(z - zo), (3.7)

for z > 0, and, ( 82 82 18 )
a2 9 1 a + k2 G(r, z) = 0, (3.8)

for z < 0, where the Laplacian has been written in cylindrical polar co-

ordinates, in which there is no 0 dependence due to the symmetry. Also,

equations (3.2) and (3.3) can be written as,

G+(r,0) = QG_(r,0), (3.9)

and,
aG+(r, o) a_ (, 1)

=z z(3.10)Oz az
Applying the Hankel transform to equation (3.8) gives,

2  z + 2G(r, z) + 1 LzG(r, z) =, (3.11)

where the Hankel transform is defined as [881,

f(K, z) = F(f(r, z)) = - rf (r, z)Jo(Kr)dr, (3.12)

and the inverse Hankel transform as,

f(r, z) = Y-'((K,z)) = 27r fo( ° gf(K,z)Jo(Kr)dK. (3.13)

Expanding the second term on the left hand side of equation (3.11) and

making use of Bessel's equation which gives that,

K 2 r 2 Jg(Kr) + KrJo'(Kr) + K 2 r2 JO(Kr) =0, (3.14)

reduces equation (3.11) to,

82 d(r, z) + (k - K 2 )d(r, Z)= 0, (3.15)
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for z < 0, and where d is the Hankel transform of G. From the standard

solution for differential equations of this form,

¢( K, z) = A(K)e -'  + B(K)e- z, (3.16)

where v 2 = (k' - K2)1. If v2 is defined so that Imv 2  _ 0 and Rev2  ! 0, the

Sommerfeld radiation condition is satisfied only if A(K) = 0, which gives

for z < 0,

G(K,z) = B(K)e - '~. (3.17)

Following a similar procedure, C(K, z), for z > 0, is given as,

eivIZ-0zo
G(K, z) = A(K)ez"'lz + 2i- ' (3.18)

where vi = (k2 - g2)1, lmV, 0 and Rev, > 0 The functions A(K)

and B(K) in equations (3.17) and (3.18) are obtained through applying the

Hankel transform to the boundary conditions, equations (3.9) and (3.10),

on IF. Applying the Hankel transform to these equations gives,

G+(K,0) = aG(K,0), (3.19)

and,
,9d+(K,0) -_(K,0)-za (3.20)

Oz 8z

By substituting equations (3.17) and (3.18) into equations (3.19) and (3.20),

A(K) and B(K) are determined to be,

(K).1 (a -. -1V) e,"0, (3.21)
2i (v2 + via)

and, 1

B(K) i( 2 + ) (3.22)

Equation (3.18) may now be written,

G(K, z) 1 (a - V2 /v l)e 1(zo+z) + e2' iz - °  (3.23)
2i (V2 + V1 a) 2i
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and applying the inverse Hankel transform gives,

1 (a - 2 /v 1 )eI(ZO+z) + eJl1z o(I I dK;
G(r,z) 27r f K 2i (L'2 +Va) 2iv1  JO(Kr)

(3.24)

for z > 0; also, equation (3.17) may be written,

e i(L, zo -V2 z)

G(K,z) = i(v2 + via)' (3.25)

and again, applying the inverse Hankel transform gives,

G(r,z) = 2 r K Jo(Kr)dK. (3.26)
JO K.(2 + Vla)

for z < 0. Integral representations have thus been formulated for the Green's

functions for the problem of sound propagation in two media, where the

source is positioned in the upper medium. Approximations to equations

(3.24) and (3.26) are now considered in detail.

3.2 The reflected wave field

This section considers the approximate solutions to equation (3.24) for the

total field above the plane surface firstly, when it is externally reacting

and secondly, when it is locally reacting. It will be seen that the result

for a locally reacting boundary may be deduced, under the approximation

in2 1 > 1, from that for a semi-infinite externally reacting half space.

Rewriting equation (3.23) slightly differently and then applying the in-

verse Hankel transform gives equations that have been obtained by Rudnick

[66], and Briquet et al [67], and alternative forms have been used by other

authors [69,73,74,77], where they have separated out reflected components

either from a rigid boundary or a pressure release boundary. The method of

subtraction of the pole has been used by several authors for solution of these

equations [69,77]. Attenborough et al [71] have given expressions for the

results of this procedure for a porous lower half space, and also, if k1 R1 > 1,

then the results reduce to (see figure 3.1),
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Source, ro

Receiver, r

Air k, Z, Air l ZI 1 ! Plane boundary, r
Porous medium k2 Z 2  

- P

I - -- -- --- -- -- .Ii
R* U _

Figure 3.1 Geometry for propagation over a plane boundary

( ekR eikR' eiklR'
G(r, ro) = 4-r- + R --- + B(1 - Rp)F(w) 4rR' , (3.27)

where, RP is the plane wave reflection coefficient defined by equation (2.29),2 + ' (Z -_ Z ) )
R= Ir - rol = (R -2 + (z - zo)2)2, and R?' = fr- r-', = (R * + ro) ) '

being the image of ro in the boundary, and R* = ((z - Xo) 2 + (y - yo)2)1,

B = BN (3.28)

where,

BN (cosO + )(1 -n-) a-2)
1

1 ~ + )(i OS + Q-2 2)1 2
+an( - n2)cosO + sin(l - a2n2)j , (3.29)

and, ft

B = (Soe + ,-2(( 2  1)/ - 2))

x(1 - sin20/n2)(1 2(2sin)(1 n 4 (3-30)

F(w) = 1 + ir 2we-'2 erfc(-iw) (3.31)

erfc being the error function, and the numerical distance w is defined by,

2 -. ikRicoso + 0,(1 - n-2) /(1 - a2) I2. (3.32)
2
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Away from grazing incidence, the third term in equation (3.27) (the so-

called ground wave term) is negligible, and a simple approximation to this

equation is,
l euliaR eikl R'

G(r, ro): - 4i-R + RP " RI (3.33)

By a simple manipulation of equation (2.30), Rp is calculated by,

R acosO - (n2 - sin2 O) (.)
acosO + (n 2 - sin2O) '

where cosO = (z + zo)/R', sinO = R*/R'. G(r, ro) of equation (3.33) along

with equation (3.34) for RP is calculated by subroutine Gil found in ap-

pendix D. If both source and receiver are in the lower medium (z, zo < 0)

then,
(&k 2R R N2 "

G(r, ro) = - \-arR + R4i2R') (3.35)

and in this case,R, is calculated by,

of-cosO - (n
- 2 - sin29)

RP= (3.36)
a- IcosO + (n - 2 - sin20)'2

G(r, ro) of equation (3.35) along with equation (3.36) for Rp is calculated

by subroutine G22 found in appendix D.

The first derivative of G(r, ro) for r0 , r E U_ as defined by equation

(3.35) can be written as,

VG(r, ro)- [7 R +V (R ' (3.37)

Writing,

i?) - (3.38)

where, ii = R or R',

Vf(R)- f(R)vR,aR

= (ik 2R - 1) eik2R[(x _ Xo), (y- yo), (z- zo)IT, (3.39)
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where T is the transpose, and,

V(Rpf(R')) = RpVf(R') + f(R')VRp,.

Sf(R')VR' + f(R') P-VO, (3.40)
aR' d

8f(R') _ ik2 R'- lezk2 A (3.41)
aR' sin 20
1

VR' = [(x - Xo), (y - YO), (z - Zo)]T, (3.42)

dR - 2asin W ( 2 _ sn2o) C s 20

(cosO ± a(n-2 - sin28)12)2 I(n- 2 - sin20) '
(3.43)

and,
l [ cosO .cosO Y ]fl T 3.4VO = - co--s-(x - xo),---o--(y - yo),sinO . (3.44)

VG(r, io) of equation (3.37), along with the expression for Rp given by

equation (3.36) is calculated using subroutine G22DER found in appendix

D.

3.2.1 The locally reacting boundary

If In2[ > 1 (so that as was seen in section 2.1, the boundary is locally

reacting), and if In/al < 1, lai > ', then it is possible to obtain an expres-

sion similar to that of (3.48) of reference [89]. Further approximations for

In/al < 1 and 0 ; r/2 gives,

G(r, r0) - 4 R----I + [Rp + (1 - Rp)F(p , 4R2(4
7O 4RR" '47rR 2 ' (45

where F is defined as above with pC given by,

2 = ik 1 R2CSO+0,
PC 2 (cosO+/3c)2 (3.46)

replacing w and,

RP = cosO -/ (3.47)
coso ±+3

This form of solution is known as the Weyl-van der Pol solution. It was

first suggested by Rudnick [66], based on the earlier work of Norton [64,65]
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and others [90]. G(ro, r) is calculated by equation (3.45) using subroutine

G11WVDP found in appendix D.

Integral representations for the reflected wave field, similar to equation

(3.24), may be obtained by applying a Hankel transform to the bound-

ary value problem in the locally reacting case. Various authors have stud-

ied the reformulation of the inverse Hankel transform representation into a

form where the integrand is more suitable for numerical integration, notably

Thomasson [73]. Recently, Chandler-Wilde [91,92] has proposed a repre-

sentation for grazing incidence which can be evaluated accurately, provided

kR > 0.5, using numerical integration, i.e.,

eikR kf3etkR f 00 t- e-kRtg(t)dt

G(r, ro) - 2rR +
2rR 27r Jo

+ 4d Hl()k R 1 - 2)erfc(e_4-vl-kR -, (3.48)

where,

2 r/e-ikRVr16H()(kRv11 - /02)
(t - ia+) (3.49)

a+=1- V1 /2, (3.50)

and,Re(,/a-), Re(V1 - 02) > 0, and the integral in equation (3.48) is eval-

uated essentially by Gauss-Laguerre quadrature, by the subroutine PBETA3

[93].I
3.3 The transmitted wave field

This section considers the approximate solutions to equation (3.26) for the

total field beneath the plane surface.

Starting from the inverse Hankel transform given in equation (3.26),

Richards et al [5] show, via a deformation of the path of integration to a

steepest descent path, that if n has an appreciable imaginary component,

G(r, ro) - exp I-iklz(n 2 - sin 20)] G(rr, ro) (3.51)

43



where z is the depth beneath the plane boundary to the receiver point,

Gik, e 
r epik Rr

G(rr, r0) 74rRr + RP 47rRr (3.52)

and,

-( - Xo) 2 + (y - yo) 2 + z0) O, (3.53)

R, is defined as in equation (3.34).

The first derivative of G(r, ro) for ro E U+, r E U_ can be written as,

OG 2k (n2
VG(r, ro) = 5-FVR -  -sin O)2G(rr, ro), (3.54)

where,

8G(r, ro) sinO
G(r, ro)(-Rr (iK1Rr - 1)- 12OR acosO + (n 2 - sin2 0)3

r sinO 2 2_ _ 1 cos
(n sin -sincosO-

Rr (n2 - sin2o)2
1 . cosO

+ ikjzsinOcosO 6-- (3.55)(n2 - sin2o) 1R

VR' 1 1-(x - Xo), (y - Yo)I, (3.56)

and,

R = ((x Xo) 2 + (y - y)2) (3.57)

The calculation of G(r, ro) and VG(r, ro) using equations (3.51) and (6.3)

are carried out by subroutines G12 and G12DER respectively, found in

appendix D.

3.4 The ground acoustic characteristics

The Green's functions derived in the previous section can only be calculated

with knowledge of the propagation characteristics of the porous media. It is

the purpose of this section to describe how the acoustical properties of such

media may be modelled.

Delany and Bazley [94], by making measurements on many different fi-

brous sound absorbent materials whose porosities (0), were near unity, and

44

I

I



I

whose specific flow resistivities (a) varied between 2000 and 80000 N.s.m- 4 ,

were able to find a dependence of both the propagation constant and char-

acteristic impedances of these materials on frequency, i.e.,

k2 = 1 + 0.0978 + 0.189 i, (3.58)

and,

(Jo -0.754 (LP) -0.732
Z' = 1 + 0.0571 - + 0.087 r. (3.59)

These relationships are semiempirical, in that power laws with (f/flu) were

expected from the theory for rigid porous media derived by Zwikker and

Kosten [95]. Since fi z 1, for the fibrous materials under investigation,

Delany and Bazley were able to replace the effective flow resistivity by the

actual flow resistivity. The range of validity of equations (3.58) and (3.59)

was stated originally as 0.01 < fp/a < 1. In a subsequent paper [96],

Delany and Bazley proposed using equations (3.58) and (3.59) to model

outdoor ground surfaces. In applying these equations, Delany and Bazely

[7] and subsequent authors do not use the measured flow resistance, but

rather a so-called effective flow resistance, a,. The effective flow resistiv-

ity may be quite different from the actual flow resistivity, and is estimated

empirically from acoustical measurements. The effective flow resistivities of

outdoor ground surfaces vary from 10000N.S.m - 4 for loosely packed snow

to over 25000000N.s.m - 4 for Asphalt. A typical value of effective flow resis-

tivity for grass covered ground might be 300000N.s.m- 4 . For this value, the

criterion f/a > 0.01 would imply a lower limiting frequency for application

of equations (3.58) and (3.59) of 2500 Hz.

The Delany and Bazley model has proved quite successful in describing

the variation with frequency of the surface admittance of outdoor ground

surfaces, see Chessell [35], Attenborough [97], and Embleton [98]. However,

some surfaces are not modelled adequately by this model, and Attenborough

[3] has proposed a microstructural model for ground surfaces. This study has

taken the classical approach pioneered by Lord Rayleigh and by Zwikker and

Kosten based upon a conceptual model of parallel cylindrical pores running

normal to the surface of a rigid porous medium. Subsequent modifications
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[3] have made possible inclusion of the effects of random pore orientation

or deviations of the pore axes from straight lines along their lengths, (i.e.

their tortuosity, q) and departures of the pore cross - section from that of

a circular cylinder. The dependence of the characteristic impedance and

propagation constant on frequency after these modifications are given as,

2(ii 2
q'[1 + 2(v - 1)(Np2,Av/'%)-1T(NIAv'i)]

k + [1 - 2(f)(A)] ' (3.60)

and,

= , (3.61)k2

where,

P2 ()PO[l - 2()TA~],(3.62)

and q2 = n,', n' being a grain shape factor, T(x) = J1 (x)/Jo(x), Jo and J1

being cylindrical Bessel functions of the zeroth and first order respectively,

v(;z: 1.4) is the ratio of specific heats in air, Np,(-z 0.72) is the Prandtl

number, A = (l/sf)(poq2w/1O.,) , sj being the pore shape factor ratio.

k2 , p2(w) and Z2 are calculated by subroutines PC, CD and ZC found in

appendix D.

Extreme pore shapes were considered to be those of a circular capillary

and of a parallel - sided slit of infinite extent. Given those extremes, 1 >

s] > 0.6. The lower limiting value has been found appropriate for lead shot

and sand, where the grains are nearly spherical, whereas values from the mid

range to the upper limiting value, together ": ith n' = 1, model various soils,

[9]. The equations (3.60) and (3.61) depend or four physical parameters

which characterise the properties of the ground matrix, namely, Q, n', sjf

and a. However, the use of four parameters is rather impractical for ground

effect prediction, and Attenborough, [9], has deduced two pairs of simpler

expressions, for A2 < 1. This condition corresponds to low frequency and/or

high flow resistivity, and gives,

Z2 ) i , (3.63)
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and,
2

k2~ ( 1 yl) ) NP'.) .- + . (3.64)

Further approximations can be made for high flow resistivity and low fre-

quency to these expressions, giving,

Z2 = 
L2 = (2-yQ)-2s(a/wp)4 (1 + i). (3.65)

If an effective flow resistivity ae = Sa/ is introduced, equation (3.65) may

be written as,

Z2 = (47rvp)-1(o/f)- (1 + i). (3.66)

3.5 Summary

The Green's functions for propagation in the presence of a plane boundary

have been presented, and table 3.1 is a summary of those derived , along

with the names of the subroutines found in appendix D for their calculation.

r o  r G(ro, r) VG(ro, r)

U+ U, (3.33) GIl Not required
(3.45) GiIWVDP

U+ U_ (3.51) G12 (6.3) G12DER

U_ U+ (3.51) G12 (6.3) G12DER

U_ U_ (3.35) G22 (3.37) G22DER

r r (3.48) PBETA3 Not required

Table 3.1 The Green's functions and the subroutines for their calculation.
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The Green's functions have all involved the plane wave reflection coeffi-

cient and for the case of the reflected wave, the ground wave term has been

neglected. For the source/receiver geometries used in the numerical solu-

tion, this neglect is justified. This has resulted in simple expressions for the

first derivatives of the Green's functions. An integral expression has been

considered appropriate for the prediction of propagation from point to point

on a locally reacting boundary.

Finally, this chapter considered the modelling of ground acoustic char-

acteristics, with particular emphasis on the Four parameter model of Atten-

borough, that will be used extensively later.
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Chapter 4

Induced surface impedance models

It was seen in chapter 2 that the second surface inhomogeneity approach to

the theoretical problem regarded the near-surface inhomogeneity as inducing

a variation in the surface impedance directly above it. The purpose of this

chapter is to derive expressions for such induced surface impedance due to

firstly, a layer, and secondly, due to an embedded sphere.

4.1 Rigidly backed layer

The simplest form of sub-surface structuring is that of a single layer above a

semi-infinite medium. The surface impedance induced by such a layer can be

deduced by following the analysis of Brekhovskikh [83], where plane waves

are incident on a layer of thickness d, at an arbitrary angle of incidence.

In the steady state, as a result of multiple reflections at the boundaries of

the layer, two waves with different directions of propagation result in the

layer. By considering the boundary conditions of continuity of pressure and

normal particle velocity, and restricting analysis to normal incidence, the

surface impedance can be shown to be given by,

Z = z2coth(-ik2 d). (4.1)

The induced surface impedance by a rigidly backed layer is calculated using

subroutine ZL, found in appendix D.
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Air kl Zj -Plane boundary, r

Porous medium k 2 Z 2
Incident planewaves /

D

Rigid sphere

r/

Figure 4.1 Reflection from the plane of a rigid porous half-space containing
a rigid sphere

4.2 Medium containing a rigid sphere

Consider now the surface impedance induced by a near-surface rigid sphere.

Figure 4.1 shows a rigid sphere labelled S, with surface OS, embedded in a

porous half-space, characterised by a complex impedance Z 2 and a complex

wavenumber, k 2.

The upper half-space, denoted U+, contains air, and is assumed to be

characterised by real impedance and wavenumber, Z, and kj, respectively.

The lower porous half-space, is denoted U_ := R3\(SU Uk). The boundary

between the upper and lower half spaces is denoted by: r = {(x, y, z) E

R3
1z = -D}, the sphere being centred on the origin. The boundary is

assumed to have a sufficiently large complex refractive index such that the

boundary is locally reacting.

Consider a plane wave incident on the plane boundary. The plane wave

gives rise to a transmitted plane wave that propagates normal to the bound-

ary with complex acoustic pressure pt(r) given by [84],

pt(r) = e k
2

,  (4.2)
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or, expressed in spherical coordinates (see figure 4.1),

pt(r) = e ki2r coe,
00

=- (2m + 1)i'Pm(cosgO)jm(k2r), (4.3)

where j, denotes the spherical Bessel function of order m and P,(x) denotes

the Legendre polynomial of degree m, as defined in Abramowitz and Stegun

[99]. The corresponding velocity is given by,
vt(r) a 9 _1 [a pt(r)

ar r 0 + ~ O )(4.4)

where i, 0 and € are the unit vectors in the three axial directions. Due to

the symmetry, pt(r) is independent of 0, and so,

vt(r) E (2m + 1)i M [iP,(CO.O)k2j (k 2r)

Z2k2 m=_

-iPL(cosO)sinjm(k2r)/r] , (4.5)

The field scattered from the sphere can be written in the form [84],

p 0(r) = E aP,(cos9)hM)(k2 r), (4.6)

M'=O

where hW) denotes the spherical Hankel function of the first kind of order

m, and the corresponding velocity is,
co

v,(r) - Z[k 2  [Pm(cose)k2 hW'(k 2 r)

-jP (cose)sinOh(1)(k2r)/r] . (4.7)

The constants am can be determined by considering the boundary condition

on the surface of the sphere. Insisting that the normal component of velocity

is zero on the surface of the sphere, i.e.,

i.(vt(r) + v.,(r)) = 0, (4.8)

for r E aS, gives,

Zo[(2m + 1)inPm(cosO)j (k2R) + aPn(cosBV4Q'(k2R)= 0, (4.9)
M =0
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for 0 < 0 < ir, and thus,

j' (k 2R)
a, -(2m + 1)i- n(k 2 R)4.10)

for m = 0, 1. The induced surface impedance at the point r E r is given

by,
Z(r)- p(r) (4.11)

n.v(r)(

where n is the downward normal to the surface r, and, for r E r,

p(r) = pt(r) + p.(r)(i + Rp)

= k
- 2 + 1_ P,(cosO)ah(')(k2 r)(1 + Rp), (4.12)

mn=O

and, for r E U-,
i

n.v(r) - k2 Z2 n. [Vpt(r) + Vp,(r) + V(Rpp,(r))], (4.13)

where p,(r) denotes the wave that would be reflected back from the interac-

tion of the scattered wave with the boundary if the boundary were perfectly

rigid. Now, since for r E F,

n.Vp,(r) -n.Vp,(r), (4.14)

and,

p,(r) pT(r), (4.15)

n.v(r) -- k2 n. [Vpt(r) + Vp.(r)(1 - Rp) + pa(r)VR],. (4.16)

Now here, the plane wave reflection coefficient, RP is defined as,

a-cosO - (n- 2 
- sin20)iRP =: i (4.17)a-cosO + (n - 2 - sin20)1(7

where E is as defined in figure 4.1, so that,

VR = R VO (4.18)

Also, for r E F,

S= - 0,(4.19)
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and,

VE = -V =- (4.20)
r

Thus, for r e F,

n.v(r) l j ieik2Z + (1 - Rp) E a, [cOs8P,(cosO)k2h$Q''(k2r)

+P (cosO)sirt29h('(k 2r)/r]

sinO dRP a s)h,()(k2r) (4.21)
r dO J,n

M=0

Z(r), defined by equation (4.11), can be calculated using subroutines

PLNSCATCOE and ZSPHERE found in appendix D.

Figure 4.2 shows the variation with radius of the surface impedance in-

duced by an embedded rigid sphere, at the point directly above the sphere,

where the depth (the closest point of the sphere to the plane boundary) is

kept constant. Also shown is the surface impedance induced by a rigidly

backed layer, and the impedance for a homogeneous medium. It can be

seen that with increasing radius of the sphere, (for very small radii, the

induced surface impedance in indestinguishable from that for the homoge-

neous medium), there is a gradual convergence to that for the rigidly backed

layer case.

Figure 4.3 shows the variation with position of the surface impedance at

1kHz, induced by an embedded rigid sphere with different depths. It can be

seen that the induced surface impedance due to the sphere is a very local

effect, not surprisingly, at a position directly above the sphere.

4.3 Summary

Expressions for the induced surface impedance due to two different types

of near-surface inhomogeneities have been presented. In the first section,

the surface impedance induced by a rigidly backed layer of infinite extent

was discussed and presented. The second section considered the surface

impedance induced by an embedded finite sized inhomogeneity: a rigid
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Figure 4.2 Variation with radius of the surface impedance induced by
an embedded rigid sphere. The medium is characterised by the four
parameters, a = 300,OOON.s.m - 4 , fj = 0.4, sf = 0.75 and n' = 1.
Depth, d =0.01m. (a) Homogeneous (dashed), (b)radius=0.0125m,
(c)radius=0.025m, (d)radius=-0.05m, (e)radius=0.1m, (f)radius=0.2m, and

(g)rigidly backed layer.
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Figure 4.3 Variation with position of the surface impedance at 1kHz,
induced by an embedded rigid sphere with different depths. Sphere ra-
dius = 0.125m. The medium is characterised by the four parameters,
a =300, OOON.s m-4 S = 0.4, sf = 0.75 and n' = 1. (a) Homogeneous
(dashed), (b)depth, d = 0.O1m, (c)depth, d = 0.015m, (d)depth, d =O.02m,
and (e)depth, d = 0.04m.
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sphere. In both sections, the theory considered plane wave incidence with

the first section considering the steady-state conditions; in the second, only

the first interaction of the scattered wave from the rigid sphere with the

plane boundary F was considered, and this interaction was approximated

by using the plane wave reflection coefficient. Use of the more accurate

spherical wave reflection coefficient would have resulted in some difficult

algebra, and has not been pursued in this study.

Some results of calculating the surface impedance induced by a sphere

were also presented. It was seen that there was convergence to the surface

impedance induced by a rigidly backed layer, for ncreasing sphere radius.
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Chapter 5

Solution of the boundary integral

equations

In chapter 2, the mathematical formulation of the theoretical problem of

acoustic scattering by a near-surface inhomogeneity was presented. The

two treatments of the problem were first stated as boundary value prob-

lems, and then subsequently reformulated as boundary integral equations.

The Green's functions and the models based on induced surface impedance

arising from these formulations, were then presented in chapters 3 and 4. It

is the purpose of this chapter to detail the solution of the boundary inte-

gral equations. The chapter considers the integral equations from the two

approaches separately, including details of the scattering surfaces and the

coefficient matrix structure and its solution. A section on the numerical

tests and comparisons of the two approaches then follows with, finally, a

brief summary of the chapter.

5.1 The numerical solution

Equations (2.104) and (2.126), restricted to r E r, are particular examples

of weakly singular Fredholm integral equations of the second kind. These

equations are not, in general, amenable to analytic solution and numerical

methods must be considered. A numerical solution, by a simple quadra-

ture method as described by Mayers [100], can be obtained as follows. The

range of integration is split into T sub-regions (boundary elements) , and
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the values of the pressure field at the midpoints of these boundary elements

are determined by producing and solving a set of linear equations obtained

by making approximations for the acoustic field within each element in the

integral equation, the number of linear equations being equal to the num-

ber of elements into which the integrating surface is split. The values of

the pressure field on the integrating surface are then substituted back into

the approximated integral equation to obtain values of the pressure field

elsewhere.

For large problems, the major part of the computational labour required

to calculate the solution is the solution of the linear equations, this stage

becoming more labour intensive as the number of equations increases. The

available solution techniques can be divided into two classes, 'direct' and 'it-

erative' methods. The iterative methods include Gauss-Seidel iteration and

multigrid methods [101]. The direct methods can be divided into meth-

ods of general application (for example Gaussian elimination) and methods

which use the structure of the coefficient matrix. It is this last category of

methods of solution that is the most applicable to the sets of linear equations

generated for axi-symmetric scattering surfaces.

The numerical solution of the integral equation for scattering by a near-

surface rigid inhomogeneity has been confined here to inhomogeneities that

are axisymmetric about an axis perpendicular to the plane boundary, and

those considered in this study were spheroids. The advantage of choosing

this shape was that its ellipticity or flattening could be varied while still,

of course, maintaining its basic shape. Thus, the variation of the results

for gradually flattening a sphere to the oblate spheroid shape could be ob-

tained. Furthermore, results for oblate spheroids could be compared with

other, more standard, results such as those for rigidly backed layers. The

numerical solution of the integral equation for scattering by a surface inho-

mogeneity was confined to a finite circular surface inhomogeneity that were

axisymmetric about an axis perpendicular to the plane boundary. The ge-

ometric restriction for both approaches simplified the numerical implemen-

tation and lead to structured matrices that were block circulant. Standard
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packages are available for the solution of linear systems with this type of

coefficient matrix as will be discussed later.

5.1.1 The first approach

The difficulty in the numerical solution of the integral equation (2.104) is

that the kernel function tends to infinity as r approaches r,. This difficulty is

resolved by applying the following modification of Burton [102]. For r E OS,

equation (2.104) is written,
-~rrr) rG0(rs,

aIp(r, ro) = aG(ro, r) + p(r,, ro) 9n(r,) p(r, ro) an(r,)r)ds(r.)

+p(r,r o) / 9 Go(r,, r)d() (5.1)

fas an(rs)

where Go(rj, r 2 ) = -a/(4rlr, - r[) is the principal singularity of G(r,, r).

From Gauss' theorem, the last integral can be integrated exactly giving,

as i9n(r,) dsr ') (5.2)

for r E -9S, and hence, equation (5.1) can be written as,

ap~~~~rf ro Grr ~. O)G(r,,, r) _pr oi9Oo(r,, r) ds(r,).
ap(r,ro) =a(ro,r) + 9np(rs' r° ) n(rs) 9n(r,)

(5.3)

According to Burton [1021, the new integrand, taken as a whole, remains

finite as r approaches r,. Now, if the surface aS is split into T boundary

elements, 8S, 4S 2 ,..., aST, then from equation (5.3) it follows that,

T

ap(rj, ro) = aG(ro, rj) + E ik, (5.4)
k=1

for j = 1(1)T, where r, is the midpoint of area element OSj, and,

Sp(rro)OG(rs, ri ) OGo (r, rj)lk
= askPrro iOn(r,) p8ir0 n(r,' "d, s. 55

For j i k, the approximation can be made that,

tAk p(rk, ro) On(rk) -p(r, r0) On(rk) (5.6)
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where Ak is the area of 8Sk, and for j = k,

Ijk ;z' 0. (5.7)

Thus the following linear equations are satisfied approximately by the un-

known values p(rj, ro):

T ( aG(rk, r j)
ap(r,ro) = aG(ro, r3 )+ Ak (p(rk, ro) -(rk)

-p8r, roGi9Go(rk, 7r) (5.8)

for j = 1(1)T. These approximately satisfied set of T linear equations for

the values of p at the midpoints ri of aSk can be written in the standard

form,
T

Sa ,kp(rk, ro) = aG(ro, r,), (5.9)
k=1

for j = 1(1)T and where,

aik + E 9n(r,) A] 6jk

-(1- (,1k) G (r )A(.)
)a(rk, r)-( 1 , o;- )A, (5.10)

where 6,k is the Kronecker delta.

Once values of ajk are determined, the values of p at the midpoints of

the elements can be calculated. It is then a simple task to calculate values

of p(r, ro) for r E U+ by simple substitution into,

T aG(rj, r)
ar(r)p(r, ro) = aG(ro, r)+ Z- p(rj,ro) a(Tj) Ai. (5.11)

3=1

The scattering surface

Here, only spheroidal scatterers are considered, and expressions for the area

of each of the boundary elements along with expressions for the coordinates

of the midpoints of these elements, and the inward normals at these mid-

points are derived in this section.
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Figure 5.1 Section through an oblate spheroid scatterer

The mesh generation on the surface of the spheroid must be such that

the maximum boundary element diameter is to be no greater than a value h,

dependent upon the wavelength of the acoustic field. Consider the diagram

in figure 5.1, which shows a section through the centre of an oblate spheroid.

The spheroid is formed by rotating an ellipse about the z-axis, and the

boundary elements are formed by first dividing the ellipse into elements, each

of which subtending the same angle 60 at the origin. The arc length of ellipse

corresponding to a typical element will be 6s ;t 60ds/dO, where 0 and s are

the angle and arc length indicated in the figure. Thus, the maximum element

length will be, approximately, 60(ds/dO),,x, and to ensure an element length

no greater than h, the angle divisions must be no greater than,

60= hl (ds (5.12)

To determine dsldO and (dsldO),,,, consider the point P. ds/dO is given

by,
s d / d9 (5.13)

From the defining equation for an ellipse,

a 2  2 1  
(5.14)

dz xb 2-z xb (5.15)

61

I . ...



Now,

ds +dz 1
S2 1 aZ 2 + b4 X2. (5.16)

dx V dx a2Z

Also,

0 = tan-'(z/x) + nir, (5.17)

and, using equation (5.15),

dO b2

dx z(x 2 +z 2 ) (5.18)

Thus, since dsidO > 0,

ds (x 2 (a 2 - b2) + b2a) )

dO a4 b a + X2(b2  a2).

Letting A = a 2 , B b2 , and X = x 2 , then,

d (ds_ (A - B)(A(2A - B) + 3X(B - A)] (5.20)

Clearly, this is continuous in the range 0 < X < A, and,

d (e s 0, (5.21)

in this range only possibly at X = A(2A - B)/3(A - B). Also,

d(ds (A- B)(2A - B)

dX - 2A 2b > 0, (5.22)

at X = 0 and,
d( ds - (A - B)(2B - A) (5.23)

dX dO 2ABa
at X A. Now, if 2B > A > B, then ds/dO is strictly increasing as X

increases from 0 to A, and thus ds/dO achieves its maximum at X = A. If

A > 2B then,

d ds I > 0 for0< X < A(2A - B)/3(A- B) (5.24)

dX dO < 0 for A > X > A(2A - B)/3(A - B)

where A(2A - B)/3(A - B) lies in the range [0, A], and thus, ds/dO achieves

its maximum value at X = A(2A - B)/3(A - B). Thus, if 2B > A > B

then,

). a (5.25)
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M+I

longitudinal band

3+

latitudinal band

2M

Figure 5.2 Element configuration for a sphere, including numbering system
for the elements

and if A > 2B, then,

ds 2 (a2 + b2) 3 / 2

Equation (5.12), along with equations (5.25) and (5.26) the values of h, can

be used to calculate the maximum values of 60. The spheroid is now divided

up into a number M, of latitudinal bands, and a number N, of longitudinal

bands, see figure 5.2 for a sphere, (A = B). The minimum number, M,

of latitudinal bands running around the z-axis of the spheroid, for a given

maximum value of h, i.e. in effect, the minimum number of arcs of length

.s, will then be,

M =~ (5.27)

To have elements that have a diameter no bigger than h, the minimum

number N , of longitudinal bands must be,

N = 2M. (5.28)

The area of each boundary element, A., can b.- calculated by determining

the total area of the latitudinal band it is in, and dividing by the total
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number of longitudinal bands, N, i.e.,

Aj = -- 8 RsinORdO z 27rRsinO6s, (5.29)
N1

where R in the distance from the centre of the spheroid to the midpoint

of the boundary element. Thus, the area of each boundary element in any

latitudinal band will be equal. Using the numbering system of the boundary

elements as in figure 5.2, where the example in the figure is that of a sphere,

the coordinates of the midpoint of element j (the mth latitudinal band

crossed with the nth longitudinal band) is calculated by,

xj = RsinO,coso,,

Y1 = RsinO,sir ,

zi = RcosO,, (5.30)

for m = 1(1)M, n = 1(1)N and where 0m and 0, are the angles subtended

by the midpoint of the element from the z-axis and the x-axis in the xy

plane, respectively, calculated by,

1
0G ( + (m - 1))60, (5.31)

2

and,

= ((n - 1))6€. (5.32)

Thus, the midpoints of the first longitudinal band are positioned along the

zz plane. the first boundary element of this band being positioned at 0 =
01 = 60/2. Furthermore, the components of the inward normal (i.e. the

normal directed towards the centre of the spheroid) at these midpoints, are

calculated by,

-(1 + (Vn)2)2cosOni,

= -(1 + (Vn)2 sino,.j,

and, n, - Vn(1 + (Vn)2,i COS¢,i

(5.33)
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where the gradient of the normal Vn is calculated by,

Vn = Zm,"A 2  (5.34)
B2 (~ 2(mn+ yL )

Subroutine GEOSPHEROID found in appendix D calculates values of area,

the coordinates of the midpoints and normals at the midpoints for the

boundary elements of a spheroid, of major axis radius A, and minor axis

radius B.

5.1.2 The second approach

As for the previous section, the surface S is split into T boundary area

elements, S, S2,..., ST, and equation (2.126) can be written,

T

p(r, ro) = G(ro, r) - ik, ZL p(r,,ro)G(r3 , r)(i3(r,)- 3,)ds(r,), (5.35)
k=1 Sk

for r E UI+7. If the maximum dimension, h, of each boundary area element

is small enough so that p(r, ro) and O(r) are approximately constant over

each element, then equation (5.35) can be approximated as,

T

p(r, ro) = G(ro, r) - ik, 1 p(rk, ro)(/3 (rk) - /3,)] G(r 8 , r)ds(r,). (5.36)
k=1a

Now, for r 5 rk,

fs G(r,, r)ds(rk) - AkG(rk, r), (5.37)

where Ak is the area of element Sk. For r = rk,

G(r, r)ds(rk) f - rkl ds(r), (5.38)

since, 1 1

G(r, rk) r - rkl (5.39)

for r, e Sk. Analytical expressions for the integral (5.12) when Sk is a

polygon have been given by Birtles [103] and Chandler-Wilde [91].
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Thus, the following linear equations are satisfied approximately by the

unknown values of p(ri, ro),

p(rk, ro) G(ro, rk) + i -p(rk, ro)(O(rk) - 0,) ds(r5 )

T

-ik, 1 Akp(rk, ro)G(rk, rj)(O(rk) - /3), (5.40)
k=1(/cjj)

for j = 1(1)T. The values of p at the midpoints rk of Ak are determined by

solving the set of T linear equations,

T

Eajkp(r, ro) = G(ro, rj), (5.41)
k=l

for j = 1(1)N and where,

aj , - i2,(f3(rk) - 0)L Ir-rIds(r)] 63 k

+ikAkG(rk, rj)(3(rk) - Ol)(1 - 6jk). (5.42)

The integral over Ak in equation (5.42) is approximated as,

Lk r, - rkl A lr, - rjl

= j drdO

2irR, (5.43)

where A, is a circle centred on rj of the same area as A., i.e. Aj has radius

R= A,/r.

Again, as for the previous section, once values of , are determined, the

values of p at the midpoints of the elements can be calculated. It is then a

simple task to calculate values of p for r C U+ by substitution into,

T
p(r, ro) = G(ro, r) - ik, E p(r,, ro)G(rj, r)(O(rj' - 0,)A3. (5.44)
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The scattering surface

Here, only circular surface inhomogeneities are considered, and expressions

for the area of each of the boundary elements along with expressions for the

coordinates of the midpoints of these elements, are derived.

The mesh generation on the circular surface inhomogeneity must be such

that the maximum boundary area element diameter is to be no greater than

a value h, dependent upon the incident acoustic field; values of which shall

be considered in chapter 6. Consider the diagram in figure 5.3. The mesh

on the circular surface is formed by dividing the surface into circular bands

and sectors. In cylindrical coordinates, where the origin is taken to be at

ircular surface inhomogeneity

Figure 5.3 Element configuration for a circular surface inhomogeneity in-
cluding numbering system for the elements

the centre of the circular patch, the circular bands a:e formed as follows.

The interval [0, rc] is split into M subintervals, I1,12,..., IM, where,

Ii = [(i - 1)h, ih], (5.45)
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for i I(1)M and h = rc/M. The sectors are formed by dividing the

interval [0, 27r] into N subintervals JI, J 2 ,. . ., JN, where,

Jj = [(j - 1)O,jO], (5.46)

for j = 1(1)N and 0 = 27r/N. The area of each element is given by,

Ai+(jl)m = O(i - 2)h2, (5.47)

for i = 1(1)M, j = I(1)N. The coordinates of the midpoint of the boundary

element j are,

x, = RcosOm, (5.48)

yj = RsinOm, (5.49)

and,

zj = o. (5.50)

Subroutine GEOCIRCLE found in appendix D calculates values of area and

the coordinates of the midpoints for the boundary elements of a circular

surface inhomogeneity.

With the circular scattering surface used together with an induced sur-

face impedance within this surface due to a rigidly backed layer, the bound-

ary element method effectively calculates the scattered field due to a disk

embedded within the porous medium. This type of scatterer will be used

extensively later in this chapter and chapter 7.

5.1.3 Matrix structure and solution

With the numbering of the boundary elements of the spheroid as in figure

5.2, and that of the circular surface scatterer as in figure 5.3, then the

matrices [alk] for the solution of the two integral equations, have the same
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structure, and are in fact block-circulant [104], i.e., they are of the form,

A, A 2  ... AT

AT A1  AT-1

[aik] = (5.51)

A 2 A 3  ... A1

where each entry of the matrix is itself a square matrix (of dimensions M x

M). It is easy to see that a necessary and sufficient condition for a matrix

of order T = M x N to be block circulant, with block entries of order M, is

that,

ajk = a(j+M),,od , (k+M)- od ,  (5.52)

for j,k = 1(1)T and where,

modTi i for i = 1(1)T

m i - T for i = T+ 1,...,T+ M

To show that a, of equation (5.10) satisfies this condition, consider the

element a(j+M),,doa(k+M),od (j, k = 1(1)T). For brevity, writing (j + M)

for (j + M)modT, etc, and noting that 6(j+M),(k+M) = bj,k,

z o(r,r(3+M)
a(,+M),(k+M) a T GO(ri () Ai j,k

) G(r(k+M), r(j+M)) Ak+M. (5.54)
-(1 -

6 ~k) .z9 n(r(k+M))

Due to the axi-symmetry of the problem, and the ordering adopted by the

elements,

A( +M) = Ai, (5.55)

aGo(r(,+M), r(,+M)) _ 9Go(r, rj) (5.56)

an(r(,+M)) 0n(r,) (

for i,j = 1(1)T, so that,

T aG0(r,, r(+M)) T+M aGO(r,, r+M)) A,
E Znr, E n(r,)

t=1(%0(j+M)) 8n(r,) 0ntr,)
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T c9Go(r 1, r1 )
Z 9n(r,) (5.57)

Thus,

a(j+AM)-odT,(k+M),,o)dT = a,k. (5.58)

A similar argument shows that aik of equation (5.42) satisfies the con-

dition for the block circulant structure.

The solution of this matrix type can be carried out using the subroutine

CGSLC of the Toeplitz package, from the Argonne National Laboratory

[1051.

The boundary element methods detailed above are implemented in a set

of subroutines in appendix D. For the first approach, subroutines FSURSPH

and FRECSPH found in appendix D calculate values of pressure on the sur-

face of a spheroid and at a receiver point in the upper medium, respectively.

For the second approach, subroutines FSURCIR and FRECCIR calculate

values of pressure on the surface of a circular surface inhomogeneity and at

a receiver point in the upper medium, respectively.

5.2 Numerical tests and comparisons

5.2.1 Effect of element sizes

It has been seen that the boundary element methods for the solution of the

boundary integral equations require that the scattering surfaces are divided

into a number of elements, and that with correct numbering of these ele-

ments, matrices are produced that have a particular useful structure. The

order of each matrix is equal to the number of elements on the scattering

surface, and it will be seen that the number of elements in turn, is depen-

dent upon the frequency of the acoustic field being considered. Thus, it

is important to establish the element sizes on the scattering surfaces that

allow accurate calculations to be made. Element sizes that are too small,

although giving accurate results, would result in a large number of matrix

elements, involving a large computational cost for solution; on the other

hand, elements that are too large would give inaccurate results.
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Incident plane waves

X Receiver r

Figure 5.4 Theoretical source/receiver configuration for comparison of a
boundary element method with classical scattering by a rigid sphere. The

sphere has a radius of 0.5m, the propagating medium having a wavenumber

k = (5.0 + 0.05i)/m.

The method used here, to establish reasonable element sizes, is to com-

pare numerical results with classical theory; and here, the classical theory

is that of scattering of an incident plane wave by a rigid sphere in an infi-

nite homogeneous medium [84], expressions for which have been presented

in appendix B. If, in equation (2.104), k1 = k2 and Z, = Z 2 , then this

equation predicts the scattering of an incident spherical wave by a rigid in-

homogeneity in an infinite homogeneous medium (appendix A gives a full

derivation of the boundary integral equation assuming at the start that the

rigid inhomogeneity is in an infinite homogeneous medium). This means

that if the source is positioned sufficiently far from the inhomogeneity, such

that the incident field at the inhomogeneity is effectively plane, then a di-

rect comparison with the results from classical theory can be made. Figure

5.4 shows the source/receiver configuration for a rigid sphere in an infinite

homogeneous porous medium used, and table 5.1 shows values of the ratio

of the scattered field to the direct field at several points close to a rigid

sphere of radius 0.5m in an infinite absorbing medium having a propagation

constant of k = (5.0 + 0.05i)/m, calculated by numerically solving the inte-

gral equation A.7. The coordinates of the source, in metres, is (-1000,0,0),

where the centre of the sphere is taken as the origin. Also shown in this table
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0.0 EInt size / wavelength 1.130

Figure 5.5 Error in the boundary element method versus element size for
a rigid sphere in an infinite absorbing medium

is the relative error, EBC in the scattered field calculated by the boundary

element method, i.e.,

EBC PbCP (5.59)

where p, and pc are the scattered pressures calculated by the boundary

element method and the classical theory respectively. The graph in figure

5.5 shows this error versus element size for the receiver position (1,0,0). It

can be seen that the graph is not smooth. This is due to the fact that

the number of elements M, is calculated by taking the modulus of a real

number, giving the stepped feature of the graph.

It can be seen that as the element sizes are decreased, there is a grad-

ual convergence of values to those calculated by the classical results, i.e.

for small enough element sizes, the boundary element method compares

favourably with the classical results. Furthermore, element sizes of the or-

der 0.2A have an error ; 0.01, sufficient to give reasonable results.

Now consider the source/receiver configuration of figure 5.6, which shows

the side elevation and plan view of a sphere of radius 0.125m, embedded

within a rigid porous medium characterised by the four parameters o =
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100000n.s.m - 4 , f = 0.4, sf = 0.75 and n' = 1. At the frequency of 500Hz,

the refractive index has a value of n = 2.5703 + 1.6575i. Table 5.2 shows the

results of the ratio of the scattered field to the direct field Ps/Pd calculated

at several points near to the plane boundary above the embedded sphere.

Also shown is the relative error EBB in the scattered field calculated by the

boundary element method, i.e.,

EBB p . p (5.60)
Ps

where pbf is an accurate boundary element method calculation of the scat-

tered pressure using a very small element size of h = 0.0625A. (The com-

parison with this fine mesh boundary element method result is made in the

absence of a comparable classical or analytical result.) It can be seen, in

table 5.2 that the ratio P,/Pd gradually converges with decreasing element

size. Futhermore, as indicated by the initial test for scattering of plane

waves by a sphere in an infinite medium, element sizes with h Z 0.2A are

adequate in terms of accuracy and computational time. Similar results can

be obtained for a disk embedded within a rigid porous medium, giving simi-

lar conclusions. The suggestion that an element size of h ; 0.2A is adequate

has, of course, been made previously [91].

5.2.2 Validation of the boundary element methods

It was seen in the previous section that the numerical methods converged for

decreasing element size. This does not mean necessarily that the methods

are giving correct and meaningful results, and it is the purpose of this section

to validate these methods.

Table 5.3 and 5.4 show the results of calculating the ratio of the total to

the direct pressure field using the boundary element methods for a sphere

and for a disk embedded within a rigid porous medium for various radii of

both sphere and disk with a constant depth as shown in figure 5.7.

Ratios at two receiver positions are calculated, the first at a position

of 0.2m above the plane boundary and the second at the midpoint of the
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Scurte point Receiver points

Air k Z, Plane boundary, r

Porous medium k 2Z 2

Side elevation

I I

I(I / Sphere

I I

0Plan

Figure 5.6 Theoretical source/receiver configuration for testing of conver-
gence for the boundary element method for scattering by a sphere embedded
within a rigid porous medium
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Source point

Air kjZ, Receiver points,
Plane boundary,r

Porous medium k2 Z2  D~Disk

Sphere

Figure 5.7 Theoretical source/receiver configuration for testing of con-
vergence of the boundary element methods to simple results for increased
scatterer radius

first element of the meshes used in both numerical solutions. This means

that this second receiver point varies slightly with position according to the

radius of the scatterer considered; however, initial tests have shown that this

variation is small and can be ignored here. With the source positioned at

z=100.0m, comparisons can be made with values of ratios calculated using a

simple (plane wave) theory for transmission through a layer [106] (Approx.1

in the tables), and secondly, a theory which considers a boundary integral

equation for scattering by an embedded sphere of infinite radius [107], which

is summarised in appendix A.2 (Approx.2 in the tables).

Table 5.3 shows the results for the special case where the refractive in-

dex n = 1 and the relative impedance C = I. For comparison, equivalent

results for a sphere in an infinite medium calculated by solving the inte-

gral equation (A.7) are shown. The calculation of pressure fields using this

method involves using free-field Green's functions, whereas the method here

involves the Green's function for transmission across a plane boundary. This

approximation requires that In2I 7>' 1, which, of course is not satisfied. It
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Radius / m Position (a) Position (b)

Tw media case One medium came Two media Case One medium case

I X 10-
5  

1.0000 + 0.0000, 1.0000 + 0.0000, 0.9999 + 0.0001, 1.0000 + 0.0000,

I X 10
- 4  

1.0000 + 0.0000t 1.0000 + 0.0000, 0.9999 + 0.0001t 1.0000 + 0.0000.

1 x 10-
3  

1.0000 + 00000, 1.0000 + 0.0000, 0.9999 + 0.0001 1.0000 + 0.0000

1 0
- 2  

0.9922 - 0.0020, 0.9920 - 0.0099, 0.9995 4 0.0001, 0.999? - 0.0002.

I X 10-
1  

1.5104 - 0.4358, 1.5099 - 0,4359, 1.1325 + 0.0539, 1.1143 + 0.0833,

2 x 10
-

1 1 7613 - 0.3367, 1 .7?594 - 0.3393, 1.2552 4 0.2963. 11493 4 0.2595,

4 x 10
-  

1.9195 - 0.2321t 19068 - 0.2315, 1.3454 + 0.3047, 1.1791 + 0.4218t

8 x 10
-

1 2 .9670 - 0.1683, 1.9520 - 0.1363, 1.3540 + 0.5914t 1.1522 + 0.6061,

Approu.1 2.0000-0.0000 T 1.6453+0.7640i

Table 5.3 Variation of the ratio of the total to direct pressure field at two
receiver positions. Position (a) is at the midpoint of the first element of
the sphere; position (b) is at 0.2m above the plane boundary. For the two
media case, the refractive index, n = 1, and the relative impedance ( = 1.
For comparison, Approx.1 is a simple calculation for transmission through
a layer assuming plane wave incidence.
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Radiu. / n Position (.) Position (b)

Sphere TDisk Sphere Disk

I X 10
-

5 1.4471 + 0.3186. - 0.4404 - 0.4658, 0.4404 -0.4660.

1 X 10
- 4  

1.4447 + 0.3201% - 0.4404 - 0.4658, 0.4404 - 0.4660,

I X 10
- 3  

1.4214 + 0.3313s - 0.4404 - 0.4858 0.4404 - 0.48M

1 X 10-2 1.2115 + 0.4523t - 0.4405 - 0.4668, 0.4402 - 0.466S,

1 X 10
- ]  

1.7600 + 0.0621, - 0.4231 - 0.4599. 0.4193 - 0.4160t

2 X 10
-

1 1.7269 + 0.0028, - 0.4045 + 0.4587, 0.3135 - 0.3136,

4 x 10
- I  

1.6897 - 0.0152S - 0.3750 - 0.4594, -0.0333 - 0.4402,

8 x 10-
1  

1.8684 - 0.01751 0.3359 - 0.4651, 0.4904 - 0.5594t

Approx.1 2.0189-0.0115 0.196-0.5767

Approx.2 1.7870-0.0160i

Table 5.4 Variation with radius of embedded scatterer of the values of
the ratio of the total to direct field at two receiver positions. Position (a)
is at the midpoint of the first element of the scatterer; position (b) is at
0.2m above the plane boundary of a rigid porous medium characterised by
the four parameters o = 100,000N.s.m - 4 , S1 = 0.4, sf = 0.75 and nI = 1.
Depth, d = 0.01m, frequency=500Hz. For comparison, Approx.1 is a simple
calculation for transmission through a layer assuming plane wave incidence;
Approx.2 is an approximation for an embedded sphere of infinite radius.

can be seen that with increasing sphere radius, there is gradual convergence

of values to that for the simple plane wave theory.

Table 5.4 shows the results for a sphere and disk embedded within a rigid

porous medium, characterised by the four parameters a = 100, OOON.s.m- 4 ,

Q = 0.4, sf = 0.75 and n' = 1, at the frequency of 500Hz. For position (a),

the results for the sphere show a gradual convergence to that for the simple

plane wave theory (Approx.1) and to the value for the approximation for

an embedded sphere of infinite radius. For position (b), the results for the

sphere also show a convergence, but fall well short of Approx.1. For the

receiver at position (b), the sphere must have a significant radius for the

results to approach the approximation. The results for the disk do not show

a smooth convergence to that of Approx.1.
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5.3 Summary

This chapter has been concerned with the numerical solution of the boundary

integral equations derived in chapter 2, using a simple boundary element

method, and the solution to both approaches were considered separately.

It is seen that with careful choice of the shape of the scatterers, and with

correct numbering of the elements on the scatterers, the resulting linear

equations had a coefficient matrix that was shown to be Block-Circulant.

This meant that solutions could be obtained using standard routines.

The scatterer shape chosen for the first approach was a spheroid, and

for the second, a circular surface inhomogeneity. These choices gave scope

for testing the theory with classical results. Such test were presented in

section 5.2. The first test, which gave an indication of the size of elements

to be used, involved comparing a boundary element method for calculating

the field scattered by a sphere in an infinite absorbing medium, with values

calculated by classical results. With the source for the boundary element

method positioned sufficiently far from the sphere, such that the incident

field at the sphere was effectively plane, such a comparison with the classical

results, which involved plane wave incidence, could be made. It was seen that

for the different receiver positions, there was convergence of the boundary

element method with the classical results. A similar test was then carried out

for a sphere embedded within a rigid porous medium and it was confirmed

that an element size of h = 0.2A was sufficient for calculations.

With the element size determined, section 5.2.2 set out to validate the

boundary element methods, involving a straightforward comparison with

some simple plane wave theory approximations and an approximation for

an integral equation for an embedded sphere of infinite radius. These limited

tests demonstrated that the boundary element methods may be used with

some confidence.

80



Chapter 6

Experimental method

In this and the following chapter, a description of the experimental part

of this study is given. The actual experiments and their results together

with the comparison with theory are left to chapter 5. In this chapter, the

equipment, its specification, arrangement, and calibration are described.

6.1 Experimental procedure

The aim of the experiments was to investigate the accuracy of theoretical

predictions of sound scattering by semi-oblate spheroids and circular disks

embedded within various test media. The choice of the various experimental

parameters was such as to allow direct comparison, as far as posr*'<"e, with

the theoretical predictions, whilst being constrained by the physi-al limits

of the sample tray and anechoic chamber.

The experimental procedure used was to measure and then Fourier anal-

yse, the instantaneous difference in sound pressure between two vertically

separated microphones at a horizontal distance from a sound source ever the

surface of interest (see figure 6.1), thus obtaining a level difference spectrum.

The level difference (L.D.) is defined as,

[ Sound pressure at upper receiveri
L.D. = 20loglo Sound pressure at lower recciver j1

and is determined, at any particular frequency, by calculating the difference

in the sound pressure levels between the two microphones, i.e. the magni-

81



Source , _s, Receivers

K I
• I

20 1 i1
Porous medium

Figuare 6.1 Source/receivers configuration for the measurement of level
difference over a porous medium

tude of the transfer function between the two microphones. It is related to

the excess attenuation (E.A.) from a point source, by,

L.D. = E.A.Top receiver - E.A.Bottom receiver, (6.2)

excess attenuation being defined as,

E.A. = 20ogio Total sound pressure at receiver (6.3)
[Direct sound pressure contribution at receiver] "

Figure 6.2 shows experimentally measured level difference spectra over

a rigid (acoustically hard) surface using the configuration of figure 6.1. Two

vertically separated microphones, with the top microphone at a fixed height

of zb =0.2m above the rigid surface were placed at a horizontal distance of

s = 0.4m from a source of sound, also at a fixed height of zo =0.2m above

the rigid surface, emitting a continuous broadband signal. It can be seen

that increasing the height of the lower microphone, results in considerable

changes in the spectra.

The observed maxima and minima are the result of interference between

the direct and surface reflected path contributions, and so changes in the

interference are due to the source or microphone heights. This becomes more

clear by first considering excess attenuation spectra, where R1 and R 2 are

as defined in figure 6.3. At certain frequencies, the path length difference

R 2 - R1 will be such that there will he more or less complete destructive
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i

Figure 6.2 Variation of experimentally measured level difference spectra
with the lower microphone height, Za, for propagation over a rigid surface.
Source/receivers configuration as for figure 6.1 with zo =0.2m, s =0.4m,

zb =0.2m, and Za (a) O.05m, (b) O.im and (c)O.15m.

Source Receiver

20

I I Plane boundary

I -

Figure 6.3 Direct and surface refdectc ve ray paths
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interference; these frequencies, f, can be calculated using the expression,

valid for a rigid reflecting surface,
2rf (R2 - R1) = nir, (6.4)

c

for n = 1, 2,.... If the surface is porous, a phase term ¢(f) has to be added

to the left hand side of equation (6.4). Depending on the position of the

lower and upper receivers, it is clear that the level difference spectra will

also give such minima and maxima.

Figure 6.4 shows what happens to the excess attenuation spectrum when

the receiver height is varied. It can be seen from figure 6.3 and equation

(6.4),that decreasing the receiver height reduces the path length difference

between the direct and reflected paths, thus shifting the minima and maxima

to higher frequencies, and this is what is shown in figure 6.4 (b) where

decreasing the receiver height, reduces the path length difference. Also

shown are the resultant level difference spectra calculated from subtracting

the excess attenuation spectra at the lower receiver positions from that at

the higher position; these level difference spectra can be compared directly

with the experimental results in figure 6.2. For a very low receiver height,

the first minimum in the excess attenuation spectrum is at a high frequency.

This means that the level difference spectrum that most resembles the excess

attenuation spectrum for the top receiver is when the lowest receiver is at

its lowest position. This observation has been made previously by Embleton

et al [981.

In the theoretical calculations, the source is assumed to be a perfect

monopole source of sound, with no variation in directivity, and to emit

a white noise spectrum. In contrast to this, the sound source used for

the experiments will have some variation both in its directivity and in its

frequency range. These effects cancel when measuring level difference but

must be considered when measuring excess attenuation.

Using the same source/receivers configuration, the level difference spec-

tra will vary for different ground types. Not only will the maxima and

minima in the spectra for the absorbing ground shift in frequency, but the

magnitudes of the maxima and minima will also vary compared to those
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Figure 6.4 Variation of theoretical excess attenuation spectra with height
of the receiver for propagation over a rigid surface. Source/receiver config-
uration as in figure 6.3. (a) zo =0.2m, 5 =0.4m and z =0.2rn;(b) zo =0.2m,

ference spectra zo =0.2m, s =0.4m, zb =0.2m and z, (1)0.05m, (2)0.1m
and (3)0.15m
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for a rigid surface. It will be seen in the following chapter that for given

source/receiver configurations, the level difference spectra above the surfaces

of the three different propagating media considered, vary quite considerably.

It has been argued that the level difference spectrum displays a series of

maxima and minima, the frequency positions of which are dependent upon

the source/receiver configurations and ground parameters. Further, it is

the maxima and minima of the spectra that are most sensitive to variation

in the ground parameters. For the purposes of the present study the first

minimum was to occur at approximately 1kHz.

This imposed the first constraint on the source/receiver configuration.

The next constraint was size. The size of the sample tray was designed so

that it fitted snugly and centrally in the anechoic chamber, the plan dimen-

sions of the sample tray being 1.8 x 1.2m 2 , with a depth of 0.3 m. The

maximum usable area, however, was much reduced to avoid spurious reflec-

tions from the tray edges. Thus, the test scatterers had to have a horizontal

dimension of much less than 1.2m and a vertical dimension of much less than

0.3m. Furthermore, as noted in the last chapter, the source/receiver sepa-

ration must be of a similar dimension as the test scatterers. Bearing these

constraints in mind, a source/receiver configuration of z0 =0.2m, s =0.4m,

zb =0.2m, and z, =0.05m was chosen for the present study. Such a config-

uration has been used in the examples of this section.

6.2 Experimental apparatus

6.2.1 The sample tray and gantry

All experiments were performed in the Faculty of Technology anechoic cham-

ber at the Open University. Figure 6.5 shows a floor plan of the anechoic

chamber including the position of the sample tray. Figure 6.6 shows the

experimental arrangement of source, microphones,sample tray and gantry

arrangement within the anechoic chamber. Within the anechoic chamber

was positioned a sample tray 1.8 x 1.2m 2 , the depth being 0.3m. On two

rails running the length of the tray was mounted a gantry. The gantry
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Figure 6.5 Floor plan of the Faculty of Technology anechoic chamber.

comprised two trolleys, one moving the length of the tray, and a second,

mounted on the first, running the width of the tray. From this second

trolley, a vertical shaft supported the speaker and from the first trolley, a

vertical shaft supporting two microphones. This arrangement allowed the

source and microphones considerable freedom for movement.

With the exception of th, vertical motion, the position of the source

and receivers was controlled by stepping motors instructed by computer.

This allowed measurements to be made at numerous locations swiftly and

accurately. The relative linear accuracy of the source/receiver position was

0.005m. Absolute accuracy was ensured by linear scales, positioned adja-

cent to the rails and by a mechanical stop. All -upports for the source

and microphones were designed so as to minimize rK:ective surfaces, whilst

maintaining a rigid structure. Before any experimL..s with test media and

scatterers were performed, measurements were carried out to check that the

structure did not give spurious reflections.

The author was fortunate enough to inherit the main sections of the

gantry system. Supports for the microphones and speaker were designed
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Figure 6.6 Photograph of the sample tray and gantry arrangement.
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to the author's specification. Full details of the gantry and the anechoic

chamber may be found in [108].

6.2.2 The transmission and reception system

A schematic diagram of the the transmission and reception system used for

this study is shown in figure 6.7.

Arechoic Chaffer

S*K 2706
PPo-er

Apli ier

6 * K 56612
spectt'.s
5traer

ONO-S'oI CF-9 X 14,05AO
Soectrum Analyser Ise Source

Figure 6.7 Schematic diagram of the transmission and reception system

The transmission system

For the measurement of level difference, the sound source had to emit an

axisymmetric sound field, with a broad-band signal sufficiently above back-

ground and electronic noise.

For the purpose of this study, the white noise from a Briiel and Kjar

type 1405 noise generator was used to generate this signal. This generator

was able to produce a white noise output over the frequency range 20Hz to

100kHz, which was more than sufficient. The output from this generator
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was then passed to a Briiel and Kjar type 5612 spectrum shaper set with a

bandpass of 100Hz to 10kHz. Amplification of this signal was then provided

directly by a 75 W, 0-40dB variable gain Briiel and .Kjar power amplifier,

having a fiat transfer function over the frequency range 10Hz to 20kHz,

which was again, more than sufficient. Finally, The sound source used, to

which the amplified signal was passed, was a 40W Tannoy P4 driver unit

with the exponential horn removed and replaced by an acoustically-damped

hollow brass tube, as shown in figure 6.8. The tube consisted of a main shaft

with an internal diameter 1.7cm, external diameter 1.9cm. For comparison

Figure 6.8 Section through the sound source and brass tube

of measured and theoretical level difference spectra, it is required that the

field emitted by the source is spherical or omnidirectional. In practice,

such perfect omnidirectional sources do not exist. The brass tube used here

produced an axisymmetric field, and this property is used to minimise the

distortion in the measured level difference due to departure from perfect

sphericity.. Figure 6.9 shows the direct and reflected rays arriving at the

two microphones in propagating over a homogeneous surface from the tube

source. The angle the axis of symmetry subtended to the vertical, 40, was

chosen so that "yj and 72 were approximately equal. For the configurations

used, this angle was approximately 67.5 degrees.
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Figure 6.9 Source and axis of symmetry for the level difference technique

The reception system

For reception of signals in the frequency range 100Hz to 10kHz, Briiel and

Kjar 4165 0.5 inch measuring microphones were used. The size refers to the

nominal diaphragm diameter. This choice was made because the diaphragm

size was small compared with the wavelength of the received sound wave

(34.3 mm at 10kHz) to ensure omni-directional reception and that changes

in the sound pressure field are small over the diaphragm area, but large

enough to ensure good sensitivity. The Frequency response is quoted as ±2

dB over 2.6Hz to 20kHz, more than adequate. The microphones were used

in conjunction with Briiel and Kjar 2619 microphone preamplifiers having

a frequency range 2Hz to 200 kHz.

The preamplifiers were connected to a Briiel and Kjwr 2807 microphone

power supply, which provided the necessary polarization voltage to the mi-

crophones. The amplified signals were then passed to the Ono Sokki 920

dual channel FFT analyser, which, at the frequency range 100Hz to 10kHz

used in this study, samples the input voltage at 25.6 kHz. After reading in

1024 samples, (x.e. after about 0.04 seconds at this sampling rate) there is a

pause in data collection while the fast fourier transform is calculated. The

continuous nature of the analysed signal required the use of the Hanning

window. A 400 line power spectrum is then calculated i.e. the voltage in

adjacent 25Hz bands are calculated from 0 to 10kHz. The transfer function
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is subsequently calculated from the two signals. For the experiments per-

formed in this study, 64 consecutive transfer function spectra were averaged,

to eliminate the effects of noise, such as source spectrum variations, receiver

noise, etc.

The complete reception system was calibrated using a Briiel and Kjar

4230 calibrator, providing a 1kHz tone at a sound pressure level of 94dB.

6.3 The scatterers

The scatterers were designed and made to the author's specification.Two

types of scatterers were made to enable direct comparison with the theory

for scattering by embedded spheroids, and with that for scattering by disks.

Figure 6.10 shows an example of the semi-oblate spheroids constructed

by the Engineering Mechanics Discipline workshop, from laminated wood.

The photograph in figure 6.11 shows the laminated wood construction. All

2.5cm to 12.5cm

25cm -

Figure 6.10 Dimensions of the semi-oblate spheroids used

the semi-oblate spheroids used had a fixed major radius of 12.5 cm with

the minor radius varying from 2.5cm to 12.5cm in 2.5cm increments. The

tolerance was quoted as 0.25cm either side of the 'true' shape.

The second type of scatterer was constructed from 1.25mm thick mild

steel sheets cut into circular disks of radii 5cm to 12.5cm in 2.5cm incre-

ments. A photograph of a typical circular disk used is shown in figure 6.12.
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Figure 6.11 Photograph of an example semi-typical oblate spheroid used
in this study

Figure 6.12 Photograph of an example mild steel circular disk used in this
study.
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6.4 The propagating media

Three different propagating media were used in this- study, the physical

properties of which are shown in table 6.1. The flow resistivity and porosity

Gravel Foam Fibreglass

a 9568.0 4090.0 28660.0

91 0.4 0.9 t 0.8 t

n' 0.5 t 1.0 t 1.0 t

Sf 1.0 t 1.0 t 1.0 t

Table 6.1 Measured and assumed constants of the propagating media.
a=flow resistivity, SI = porosity, n'=grain shape factor, sf=pore shape
factor ratiot= predicted.

of each medium was measured using the methods described in Hess [13],

and the results for these measurements are shown in table 6.1, along with

the assumed values of grain shape factor and pore shape factor ratio.

The gravel used was supplied by Erith Building Supplies, Bletchley, Mil-

ton Keynes, and was a pea-gravel of nominal grain diameter 3/8 inch. This

was found to be acoustically heterogeneous, a continual problem during the

experiments being its uneven settling. To provide as uniform and consistent

a gravel bed as possible, before all measurements were performed and each

time the gravel was disturbed as a result of burying the test scatterers, the

gravel in the vicinity cc the test scatterers was loosened with a fork. Al-

though tedious, this ensured that the gravel was gave consistent results for

each set of measurements. The gravel was contained within and completely

94



filled the sample tray.

The fibreglass used in this study consisted of 1.2 x 0.9m2 , 0.05m thick

Pilkington S300 Crown slabs. To give as homogeneous a propagating medium

as possible, twelve slabs were placed adjacent to each other on two sheets of

perspex on top of the sample tray, within the anechoic chamber, as shown

in figure 6.13. The slabs were sufficiently uniform in shape that they could
_FLbre-glass slabs

Perspex sheets

Sample tray

-- 0.9 M -- 0.9m

1.2m

Figure 6.13 Side elevated and plan view of the fibreglass slabs

be placed adjacent to each other. Section 6.3 described the circular disks

used; these were designed such that they could be inserted between the lay-
ers of fibreglass with ease, eliminating the necessity to modify the slabs to

accommodate the disks. To bury the disks to a fraction of a slab thickness,

grooves were cut into the slabs using a sharp knife, and the di-sks carefully

inserted into these.

The polyurethane foam used in this study consisted of two 0.98 x 0.67m 2,

0.2m deep slabs, and were sufficiently uniform in shape that they could be

placed on the perspex sheets on the top of the sample tray.

Again the circular disks were used in conjunction with the foam as the

test scatterers. Here though, two semicircular shapes of radius 12.5 cm were

cut out of the two adjacent slabs. The two semi-circular shapes were then

cut into slices, the circular disks then being inserted between these foam

slices.
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0.67-- 067m- Sample tray
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O.98m

Figure 6.14 Side elevation and plan view of the polyurethane foam slabs

96



Chapter 7

Results

In this chapter, the experimental measurements of the field scattered by

the scatterers embedded within the various media described in the previous

chapter, are presented. The measurements were designed to test the validity

of the theory in the light of the various approximations made.

Prior to these measurements, a series of numerical tests were conducted

on the models, to assess their validity under various limits, in particular

that:

1. the prediction of excess attenuation spectra above spheroids and

disks in rigid porous media, with large values of radii converge to

known results for a rigidly backed layer; and that for small values

of radii, the predictions converge to that for the homogeneous

case;

2. the prediction of excess attenuation spectra above spheroids and

disks in rigid porous media converges to that for the homogeneous

case as the depth of the upper scatterer surface is increased.

and section 7.1 considers these tests. This section is then followed by a

description of experimental results with the chapter being concluded by a

discussion and summary.
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7.1 Theoretical results

Chapter 5 has shown that when the source is taken to a significant distance

above the plane boundary, the ratio of scattered to direct pressure field

is observed to converge to simple results using plane wave theory. The

purpose of this section is to determine the influence of the near-surface

scatterers when the source and receiver are close to the plane boundary,

and figure 7.1 shows the source/receiver configuration that is going to be

considered throughout this section. The source and receiver are at heights

Zo and zb respectively above the plane boundary, separated by a distance,

s. A spheroid is embedded within the rigid porous medium, centred on

the origin, at a depth, D, beneath the plane boundary. Also shown, is the

depth, d, which represents the closest point of the scatterer surface to the

plane boundary. A rigid disk is also shown in the diagram.

Using the dependence of boundary properties given by the four parame-

ter model, (equations (3.60),(3.61) and (3.62)), it has been shown [13], that

the most important parameter on these equations is the flow resistivity, a.

In these initial tests of the models, a standard medium was given as: poros-

ity 1 = 0.4, flow resistivity, c = 10,OOON.s.m. - 4 , grain shape factor, n' 1 1

and pore shape factor ratio, sp = 0.75. Attenborough [97], gives a value of

a = 100, OOON.s.m. - 4 to be that typical of soils. This value, however, results

in too high an attenuating medium for the present study; the scattered field

is too weak for consideration.

Firstly consider the variation of the magnitude of the ratio of the scat-

tered field to the total field with source/receiver separation, at a frequency

of ikHz, calculated by,

Magnitude = 2 0.0loglo P, (7.1)

Pdtr

It can be seen that when the separation is small, the ratio has a very small

value, but as the separation is increased, this ratio increases, eventually

tailing off with further increase in separation. This is straightforward to in-

terpret. For small separations, the field at the receiver is dominated by the

direct fieid, swamping any other contributions. With increasing separation,
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Figure 7.1 Theoretical source/receiver configuration for the prediction of
excess attenuation

the direct field diminishes as -6dB per doubling of distance and other con-

tributions including that from the scatterer become more important. With

a source/receiver height of 0.2m, the greatest contributions occur when the

source/receiver separation s = 0.4m. This probably corresponds to the ge-

ometry at which direct and ground reflected components interfere destruc-

tively. Consequently, this source/receiver configuration has been chosen for

a series of numerical tests to determine the influence of near-surface inho-

mogeneities below a porous ground surface on the sound propagation from

point source to receiver.

Consider first, the case of propagation over a rigidly backed layer. Figure

7.3 shows the variation of excess attenuation spectra as the layer thickness

is varied, where the flow resistivity has a value of 10, OOON.s.m - 4 . It can

be seen that with increasing layer thickness, from 0.01m to 0.16m, the fre-

quency of the first minimum decreases and becomes more shallow. It is

also observed that the second minimum becomes less pronounced but in-

creases in frequency. Eventually, with increasing depth, the excess atten-
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Figure 7.2 Variation of the scattered field to the direct field at 1kHz
with source/receiver configuration. The medium is characterised by the
four parameters, a = 10000N.s.m - 4 , f = 0.4, si = 0.75 and ' = 1. (a)
Source/receiver height=o.4m, (b) source/receiver height = 0.2m, and (c)
source/receiver height = 0.lm

uation spectrum above the rigidly backed layer converges to the spectrum

for the homogeneous case. In contrast to this, figure 7.4 shows similar re-

sults but for a medium in which the flow resistivity has been increased to

a value of 100,OOON.s.m - 4 . The higher attenuation associated with this

higher flow resistivity, means that the excess attenuation spectrum above

a layer thickness of 0.16m or greater is almost indistinguishable from that

of the homogeneous case (and is not shown in the diagram). The greatest

depth shown is d = 0.04m. The same trend as for the lower flow resistivity

case occurs, but much more rapidly.

Under certain conditions, the excess attenuation spectra for for propaga-

tion above a rigid porous medium in which is embedded an oblate spheroid

show similar results to those for the rigidly backed layer. Figure 7.5 shows

the variation of excess attenuation spectra as the major axis radius of the

spheroid is increased, from 0.05m to 0.2m, while keeping the minor axis

radius constant at 0.05m and the depth d constant at 0.01m. This, in ef-

fect, is flattening the spheroid. Also shown are the spectra for propagation

above a homogeneous medium and above a rigidly backed layer, with the

layer thickness, d. When the major axis radius has its smallest value and
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Figure 7.3 Variation of theoretical excess attenuation spectra with layer
thickness for a rigidly backed layer. The coordinates, in metres, of the source
and receiver are (-0.2,0.0,0.2) and (0.2,0.0,0.2), respectively. The medium is
characterised by the four parameters, o = 10000N.s.m - 4 , 11 = 0.4, sj = 0.75
and n' = 1. (a) Homogeneous (dashed), (b) layer thickness=O.Olm, (c) layer
thickness=0.04m, and (d) layer thickness=0.16m.

15.110 l

-15.00

500.00 Frequmniy / Hz 5000.00

Figure 7.4 Variation of theoretical excess attenuation spectra with layer
thickness for a rigidly backed layer. The coordinates, in metres, of the
source and receiver are (-0.2,0.0,0.2) and (0.2,0.0,0.2), respectively. The
medium is characterised by the four parameters, u = 100,OOON.s.m - 4 ,
f2 = 0.4, sf = 0.75 and n' = 1. (a) Homogeneous (dashed), (b) layer thick-
ness=0.01m, (c) layer thickness=0.02m, and (d) layer thickness=0.04m.
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the the scatterer is spherical, the excess attenuation spectrum is almost in-

distinguishable from that of the spectrum above a homogeneous medium.

However, -as the radius of the oblate spheroid is increased, it can be seen

that the first and subsequent minima in the excess attenuation spectra be- I
come deeper and converge to those predicted for propagation above a rigidly

backed layer.

15. 0

-15.00

500.00 Frequmny / Hz 500. 00

Figure 7.5 Variation of theoretical excess attenuation spectra with major
axis radius for an oblate spheroid embedded within a rigid porous medium.
The coordinates, in metres, of the source and receiver are (-0.2,0.0,0.2) and
(0.2,0.0,0.2), respectively. The medium is characterised by the four pa-
rameters, a = 10,000N.s.m - 4 , fl = 0.4, if = 0.75 and n' = 1. Minor
axis radius=0.05m.(a) Homogeneous (dashed), (b) major axis radius=0.05m
(spherical), (c) major axis radius=0.1m, (d) major axis radius=0.15m, (e)
major axis radius=0.2m and (f) rigidly backed layer. Depth, = 0.01m.

Figure 7.6 shows how the excess attenuation spectra vary as the oblate

spheroid is flattened, i.e. the minor axis radius is reduced from 0.1m to

0.025m, while keeping the major axis radius constant at 0.125m, and the

layer depth constant at 0.01m. This represents a different situation to the

previous one. The major axis radius is kept constant, and so any effects in

the resultant spectrum will be due purely to the sphericity of the scatterer

rather than to change in cross-sectional aspect. For the source/receiver

configuration used here (where the source/receiver separaition is 0.4m, and
the major axis radius is 0.125m), the oblate spheroid represents only a small

fraction of the total separation. At large values of the minor axis radius,
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where the oblate spheroid is least flattened (near-spheroidal), the excess

attenuation spectra only differ slightly from that of the homogeneous case.

Decreasing this radius does bring about a deepening of the first minimum,

but only to a limited extent; the second minimum seems unaffected.An

increase in the major axis radius, with the value of the smallest minor axis

radius, would result in spectra being observed as in figure 7.5.

-15. 00

500.00 Frequenicy/ Hz 5=000

Figure 7.6 Variation of theoretical excess attenuation spectra with minor
axis radius for an oblate spheroid embedded within a rigid porous medium.
The coordinates, in metres, of the source and receiver are (-0.2,0.0,0.2) and
(0.2,0.0,0.2), respectively. The medium is is characterised by the four pa-
rameters, a = 10, OOON.s.m - 4 , l = 0.4, s = 0.75 and n' = 1. Major axis
radius = 0.125m. (a) Homogeneous (dashed), (b) minor axis radius=0.lm,
(c) minor axis radius=0.05m, (d) minor axis radius=0.025m, and (e) rigidly
backed layer. Depth, d= 0.01m.

Figure 7.7 shows the variation of theoretical excess attenuation spectra
for an oblate spheroid of major axis radius 0.125m, and minor axis radius

0.025m, with depth,d. A similar trend in the excess attenuation spectra is

observed to that for the rigidly backed layer case in figure 7.3. It can be

reen that as the depth, d is varied, from 0.01m to 0.16m, the frequency of
the first minimum decreases and becomes more shallow. It is also observed

that the second minimum becomes more shallow and increases in frequency.

At the depth d=0.16m, the excess attenuation spectrum varies only slightly

from the spectrum of the homogeneous case.

If now the oblate spheroid is replaced with a circular disk, and the
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Figure 7.7 Variation of theoretical excess attenuation with layer thick-
ness for an oblate spheroid embedded within a rigid porous medium. The
coordinates, in metres, of the source and receiver are (-0.2,0.0,0.2) and
(0.2,0.0,0.2), respectively. The medium is characterised by the four pa-
rameters, a = 10, OOON.s.m- 4 , Ql = 0.4, sf = 0.75 and n' = 1. Major axis
radius=0.125m, and minor axis radius=0.025m. (a) Homogeneous (dashed),
(b) depth, d=0.01m, (c) depth, d=0.02m, and (d) depth, d=0.04m.

medium is assumed to be locally reacting, then similar graphs of excess

attenuation spectra can be produced for comparison. Figure 7.8 shows how

the excess attenuation spectra vary as the radius of the circular region is

increased from 0.05m to 0.15m, while keeping the depth of the disk constant

at d=0.01m. At small values of radius, the excess attenuation spectrum

differs only slightly from that for propagation over a homogeneous medium.

With increasing radius however, the first minimum becomes deeper and

approaches that for the rigidly backed layer case. The subsequent minima,

however, become deeper. With increased depths, these minima become shal-

lower with eventual convergence to that for excess attenuation over a rigidly

backed layer.

Figure 7.9 shows the variation of theoretical excess attenuation for a

circular inhomogeneity of radius 0.125m, with depth, d. A similar trend in

the excess attenuation spectra is observed to that for results for a rigidly

backed layer in figure 7.3. It can be seen however, that with increasing

depth, from 0.Olm to 0.16m, the frequency of the first minimum decreases
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Figure 7.8 Variation of theoretical excess attenuation spectra with circu-
lar disk radius embedded within a rigid porous medium. The coordinates,
in metres, of the source and receiver are (-0.2,0.0,0.2) and (0.2,0.0,0.2),
respectively. The medium is is characterised by the four parameters,
a = 10,OOON.s.m - 4 , S1 = 0.4, sf = 0.75 and n' = 1. (a) Homogeneous
(dashed), (b) radius=0.05m, (c) radius=0.1m, (d) radius=0.15m, and (e)
rigidly backed layer. Depth, d= 0.01m

and becomes deeper before it becomes more shallow. It is also observed

that the second minimum becomes more shallow and increases in frequency.

At the depth d=0.16m, the excess attenuation spectrum varies only slightly

from the excess attenuation spectrum for the homogeneous medium.

7.2 Experimental results

Using the experimental equipment and procedure described in chapter 6,

level difference spectra were measured over the pea-gravel, fibreglass and

polyurethane foam containing the different test scatterers. The source /

receiver configuration of figure 6.1 was used to measure the level difference

spectra.

Figure 7.10 shows both the experimental and predicted level difference

spectra for the homogeneous media, the predictions being calculated by

equation (3.33) for the low flow resistivity and high porosity polyurethane

foam, and by equation (3.45) for the pea-gravel and fibreglass. It can be seen

that the three media display quite different spectra, with the polyurethane
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Figure 7.9 Variation of theoretical excess attenuation spectra with depth
for a circular disk embedded within a rigid porous medium. The coordinates,
in metres, are (-0.2,0.0,0.2) and (0.2,0.0,0.2), respectively. The medium
is characterised by the four parameters, a = 10, 000N.s.m - 4 , n = 0.4,
s! = 0.75 and n' = 1. Major axis radius=0.125m, and minor axis ra-
dius=0.025m. (a) Homogeneous (dashed), (b) depth, d=0.01m, (c) depth,.
d=0.04m, and (d) depth, d=0.16m.

foam showing weak interference minima, with more defined minima for the

pea-gravel. This variation of the spectra according to the type of medium

being considered, has been used as the basis for the studies of soil type.

[13]. These spectra can now be compared with spectra measured over media

containing the various scatterers.

Predictions have shown that the presence of oblate spheroids results in

deepening of the first minimum of the excess attenuation spectra and that

the more oblate the spheroid becomes, the deeper the minimum becomes.

Figure 7.11 shows how experimental and predicted level difference spectra

vary as a spheroid of major axis radius 0.125m, is flattened, i.e. the minor

axis radius is reduced from 0.05m to 0.025m while keeping the depth con-

stant at d=0.025m. It can be seen that the experimental results show that

the first minimum becomes deeper with decreasing minor axis radius, but

overall, the variations in the spectra associated with the spheroids are not

predicted.

The comparison of predicted and experimental level difference spectra is
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Figure 7.11 Variation of experimental and predicted level difference spec-
tra with ablate spheroid minor axis radlius in gravel. The coordinates, in
metres, of the source and microphones are (-0.2,0.0,0.2), (0.2,0.0,0.05) and
(0.2,0.0,0.2); solid line - predicted, dashed line - experimental; major axis
radius = 0.125m; depth, d=O.015m. (a) Minor axis radius=0.05m, (b) minor
axis radius=0.025m.
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much better in figure 7.12 which shows the variation of spectra with radius

of an embedded metal disk . Three different disk radii are considered, all at

a layer depth of 0.015m within the gravel. The spectra display quite marked

maxima and minima, in contrast to those observed in figure 7.11. Indeed,

observable differences, compared to that of the homogeneous case, occur

with a disk radius of 0.15m. Figure 7.13 shows similar results for fibreglass.

Here, however, with the higher value of flow resistivity, the changes in the

spectra compared to that of the homogeneous case are less marked and only

results for disk radii of 0.25m and 0.2m are presented. Figure 7.14 shows

again, similar results for polyurethane foam. The very low flow resistivity

and porosity associated with this medium implies considerable extended

reaction, and hence, due to the basic conditions set out in the boundary

value problem, no predictions of these spectra will be valid. However, it is

observed that the general trend of the spectra with decreasing disk radii is

similar to that for the pea-gravel and fibreglass.

The previous figures have shown that the largest changes in the level

difference spectra occur when, for a given depth, the radius of the disk is

large, or, for the case of spheroids, when the major axis radius is large,

and the minor axis radius is small. Figure 7.15 shows the variation of level

difference spectra with position above an embedded oblate spheroid of major

axis radius 0.125m, and minor axis radius 0.025m. As the point of specular

reflection (for the upper microphone) moves progressively further away from

the centre of the spheroid, the minima become less deep. Figure 7.16 shows

a similar results above a disk of radius 0.125m embedded at a depth of

0.015m in gravel. The variation in the maxima and minima are adequately

predicted by the theory. Finally, figure 7.17 shows results above a disk of

radius 0.125m embedded at a depth, d=0.025m in foam.

7.3 Summary

The theoretical and experimental results of this study have been presented

in this chapter, and the chapter first considered theoretical predictions in
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Figure 7.13 Variation of experimental and predicted level difference spec-

tra with disk radius in fibreglass. The coordinates, in metres, of the source

and microphones are (-0.2,0.0,0.2), (0.2,0.0,0.05) and (0.2,0.0,0.2); solid line -

predicted, dashed line - experimenta; depth, d=0.025m. (a) Radius--0.25m
and (b) radius--0.20m.
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Figure 7.15 Variation of experimental and predicted level difference spec-
tra with position above an ablate spheroid in gravel. Major axis ra-
dius=O.125m, minor axis radius=O.025m, layer depth=O.015m. The coordi-
nates, in metres, of the source and microphones are (-0.2,Y,0.2), (0.2,Y,0.05)
and (0.2,Y,0.2); solid line - predicted, dashed line - experimental. (a) Y=0.0,
(b) Y=0.05, (c) Y=O.1 and (d) Y=0.2.
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Figure 7.16 Variation of experimental and predicted level difference

spectra with position above a disk in gravel. Radius=0.125m, layer

depth=0.015m. The coordinates, in metres, of the source and microphones

are (-0.2,Y,0.2), (0.2,Y,0.05) and (0.2,Y,0.2); solid line - predicted, dashed

line - experimental. (a) Y=0.0, (b) Y=0.05, (c) Y=0.1 and (d) Y=0.2.

114

U1



-15.00

" 4 r , .. "' I '

-15.0

1500 j '''15.0M

abovex .

CiD

-15.00

500.00n Frequmoy / z 50M0.0

Figure 7.17 Variation of experimental level difference spectra with position

above a disk in polyurethane foam. Radius=O.125m, layer depth=O.015m.
The coordinates, in metres, of the source and microphones are (-0.2,Y,0.2),
(0.2,Y,0.05) and (0.2,Y,0.2); solid line - predicted, dashed line -experimen-
tal. (a) Y=O.O, (b) Y=O.05, (c) Y=O.1 and (d) Y=0.2.
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the form of excess attenuation spectra. These results showed that there
was reasonable convergence of the methods with that for a rigidly backed

layer, for varying disk and spheroid sizes and shapes. With the confidence

in the theory gained by these tests, the theory was then compared with

experimental data. Measurements were conducted with oblate spheroids and

disks in gravel and disks in fibreglass and polyurethane foam, with theory
being compared with all results apart from those for the polyurethane foam.

It was surprising that there was such good agreement of experimental

results with the predictions of the theory, for the case of disk embedded

within the gravel. The low value of flow resistivity of the gravel meant

that the gravel was at the limit of the locally reacting condition. Agreement

with predictions and experimental results for the oblate spheroids embedded

within the gravel less good. Several reasons are proposed for this. Firstly,

the transmission Green's functions used in the boundary element method

were at the limit of their validity for the low flow resistivity of the gravel,

which would result in slightly inaccurate predictions; the second reason is

an experimental one i.e. the measurements were constrained practically by
the dimensions of the tray containing the gravel, resulting in possible stray

reflections its base and sides i.e. the gravel was not behaving as semi-infinite.

This seems more likely in the case of the measurements over the spheroids,

where their influence on the reflected field is much weaker than that from

the disks, making the measurements more susceptible to stray reflections.

A final reason is that the spheroids were made of wood, and were possibly
not exhibiting the required rigid surface that was being modelled.

It is proposed that the poor agreement of the predictions with the results J
of the disks in fibreglass was due to the anisotropic nature of the medium.

With the the thickness of fibreglass medium used (- 30cm) it was assumed

that the medium was behaving as semi-infinite. The layered nature of the

medium, where it was made up of six separate sheets placed on top of each

other, may have contributed to an unusual behaviour.

With the low flow resistivity of the polyurethane foam, no reasonable

theoretical predictions could be made. However, similar trends in the ex-
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perimental results to those of the gravel -nd fibreglass were observed.
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Chapter 8

Discussions and conclusions

The various theoretical and experimental results were described in the pre-

vious chapter, and a discussion of their particular significance was given. In

this concluding chapter, a review of these results, together with a discussion

of the limitations and future extensions of the mathematical model and ex-

perimental investigation, are considered, and the chapter is completed with

some general conclusions.

8.1 Review of present study

The aim of this study was twofold. Firstly, to provide a theoretical de-

scription of the influence of near-surface inhomogeneities on the reflection

of acoustic fields at the surface of a porous medium. Secondly, to com-

pare quantitively these theoretical predictions with measured acoustic fields

across the surfaces of porous media containing embedded inhomogeneities

so that the practical usefulness of the theory could be tested.

The theoretical development of the problem was straightforward, start-

ing with its mathematical formulation in chapter 2. Two separate ap-

proaches were considered. The first approach, that of considering a scat-

terer within the rigid porous medium, was first stated in terms of a bound-

ary value problem. The development here assumed that the scatterer was

rigid, i.e. that the Neumann boundary condition applied on its surface.

Two reformulations of this boundary value problem in terms of integral
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equations via Green's second theorem were then presented, both reformu-

lations requiring the Green's function solutions to much simpler problems;

in the first, the problem involved the complicated calculation of Green's

functions for propagation in the presence of a plane boundary separating

two semi-infinite homogeneous media; in the second, the simpler calculation

of Free-field Green's functions sufficed. The resultant integral equation for

the first reformulation was conceptually simple, involving one integral term

solely over the surface of the scatterer. In contrast, the second reformula-

tion, involved a set of coupled integral equations with an integral having an

infinite region of integration. Due to the difficulty of solving such a set of

equations, the first integral equation was chosen for solution.

The second approach to the theoretical problem considered scattering

by a small finite region in the plane boundary having a surface impedance

different to that of the surrounding area. The boundary was assumed to

be locally reacting, and as such, the details of the sound propagating in the

lower medium could be ignored, and the sound propagating in the upper

medium could be determined by the boundary's surface impedance. The

reformulation of the boundary value problem in terms of an integral equation

was similar to that of the first approach, requiring the Green's function

solution of the much simpler problem of sound propagation in the upper

medium only. The resultant integral equation involved a simple integral

over the scattering surface.

The numerical solution of the integral equations requires Green's func-

tions and their first derivatives for various source and receiver configurations

and chapter 3 derived simple expressions for these. For the first approach,

with the source and receiver configurations considered, approximations to

the integral representations of the Green's functions involved just two terms,

a direct component and a plane wave reflected component. Ignoring higher

order terms, the first derivatives of these Green's functions were simple. The

approximation to the transmitted Green's function used a simple expression

combining the incident field at a point directly above the receiver point with

an exponential term. This approximation required that the imaginary com-
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ponent of the refractive index was large. For the second approach, where

the boundary was assumed to be locally reacting, the Green's function for

propagation from one point to another in the upper medium was given by

the Weyl-Van der Pol equation.

In a sense, the second approach considers a more general problem than

the first, in that the surface impedance within the finite region could take

any form. The simplest situation that could have been considered was that

of sound propagation over a finite region where the surface impedance within

the region was modelled as homogeneous but different from the surrounding

area. However, the impedance types considered in this study, were firstly,

that due to a finite rigidly backed layer, i.e. in effect, a disk embedded

within the porous medium; and secondly, that induced by an embedded rigid

sphere. The expressions for these impedance types were considered in chap-

ter 4. The derivation for the expressions for the induced surface impedance

due to an embedded srhere were based on a number of assumptions:

1. tha t' ._ incident waves on the plane boundary were the source

. plane waves being transmitted normally in the lower medium;

2. that only one interaction with the spherical scatterer occured (i.e.

that there was no multiple scattering);

3. that the interaction of the scattered wave with the plane bound-

ary was expressed in terms of the plane wave reflection coefficient.

Other impedance functions within the region could have been considered

such as that induced by a spheroid (which would have involved a spheroidal

system). However, these expressions would have required further derivation,

and were beyond the scope of this study.

Chapter 5 considered the numerical solution of the integral equations

Irom both approaches, using a simple boundary element method. The so-

lution method was straightforward: firstly, the values of complex pressure

were determined on the scattering surface by letting the receiver point to

be on the surface of the scatterer. This resulted in a set of simultaneous

linear equations, efficient solution of which could only be carried out if the
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scattering surfaces were axisymmetric about the vertical axis through their

centres. With this condition, it was seen that the resultant matrices were

block-circulant, a structure for which standard routines are available for

solution. With these values of pressure on the surfaces of the integrating

surfaces, the complex pressure at points away from the scatterers could be

calculated by substitution back into the original equations.

A particular difficulty involved in the solution of the integral equation

from the first approach was that the kernel function of the integral tended

to infinity as the receiver point approached the source points on the surface

of the scatterer, and a simple modification of the original integral equation

was required. This resulted in a slightly more complex integral equation,

but the block-circulant structure of the matrices is maintained.

In both approaches the scattering surfaces were divided into a number

of boundary elements, and expressions for the normals, positions of the

midpoints, and areas of the elements were derived. For the first approach,

the scattering surfaces were restricted to spheroids, which meant that the

basic shape of the scatterer could be varied from an oblate spheroid to a

sphere without requiring extra subroutines. For the second approach, the

scattering region, to satisfy axi-symmetry, was circular.

The experimental method for measuring level difference 3pectra over

the scatterers embedded within the three different media was presented in

chapter 6, describing in detail, the experimental procedure and apparatus,

the scatterers and media. This chapter was then followed by a presentation

of the results in chapter 7, with a discussion of the main conclusions to be

drawn.

8.2 Limitations and future work

The major limitation of the surface inhomogeneity approach theory pre-

sented here is that it has not been possible to make any predictions when

the medium is externally reacting. The initial boundary conditions of the

boundary value problem involved the Robin boundary condition, thus im-
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posing the condition of local reaction straight away. This is an omission

of some importance for as might be expected, the greatest contribution of

the scattered field occurs when the medium has a low flow resistivity, and

hence is externally reacting. This problem is much more involved than those

considered and is beyond the scope of this study.

However, an experimental investigation of the scattering from disks em-

bedded in polyurethane foam was carried out, showing that the influence of

the scatterer was quite dramatic and has a similar form to that observed in

gravel.

The restriction on the lower frequency of interest to that of 500Hz has

meant that the considerations have been made purely of rigid porous media,
i.e. that the reflection of sound from a rigid porous half space is governed by

the slow wave in the interconnected pores. No consideration of the seismic

contributions has been considered.

Essential to the calculation of the boundary integral equation methods

developed, is the ability to calculate, accurately and efficiently, the propaga-

tion of sound from a point source above and across a plane boundary. With

the simple expressions for these Green's functions used, using just plane

wave reflection coefficients and a large refractive index approximation (in

the case of transmission), a certain amount of inaccuracy in the boundary

integral equations methods will arise, but this has not been assessed in the

study.

This study has not concerned itself with the prediction of acoustic fields

in the lower medium in the pesence of a near-surface scatterer. The study

has been concerned purely with the influence of near-surface scatterers on

the reflection of sound from the plane boundary. However, the the boundary

element method lends itself just as easily to the analysis of fields in the

lower medium as it does to the upper medium. It has not been pursued

for the obvious reason that experimental comparison with the theoretical

predictions would prove difficult.

With these limitations of the study in mind, the following suggestions

for future work seem to be most appropriate:
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1. further development of expressions for the Green's functions and

their first derivatives for the propagation in the presence of an

externally reacting medium and penetrable scatterers;

2. extension of the theory to predicting the influence of near-surface

inhomogeneities on the reflection of acoustic fields from poro-

elastic media;

3. further experimental investigation of the influence of near-surface

and surface inhomogeneities on the reflection of acoustic fields

from porous media, with a natural progression to measurements

of seismic as well as acoustic influences.

8.3 Conclusions

The aim of this study was both to investigate theoretically and experimen-

tally the influence of near-surface inhomogeneities on the reflection of acous-

tic fields at the surface of a porous medium. The majority of the study has

been devoted to the development of the boundary integral equation method

for the theoretical investigation. The boundary integral equation method

has been shown by many authors, to be very effective for the calculation of

acoustic fields over terrains of variable height and surface impedance. There

is no doubt that application of the method to the problem of this study is

appropriate. That there is an influence on the reflection of acoustic fields

at the surface of a porous medium by a near-surface inhomogeneity is ar-

guable intuitively. However, this study has shown both theoretically and

experimentally that this influence is highly dependent on the medium char-

acteristics and the shape and size of the scatterer. In particular, it has been

shown that a near-surface embedded inhomogeneity with a spherical shape

has a negligible influence on the level difference shape unless its radius is

large. Furthermore, it has been shown that the more oblate the spheroid,

the greater the influence on the level difference spectrum for a given cross

sectional area of the spheroid.

The study can have wider implications. The theory could be adapted
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to the problem of longer range sound propagation over inhomogeneous me-

dia. At present, models are only available for predicting sound propagation

over infinite strips, as in the case of determining the noise from roads near

grasslands [91]. For the case of architectural acoustics, the theory could be

developed for determining the effect of absorbing patches in rooms. Finally,

the use of this theory in non destructive testing can only be hinted at.

The results of this study should help to understand the behaviour of

acoustic fields above inhomogeneous media containing near-surface scatter-

ers, and to provide expressions for their prediction under certain restrictions.

However, there is considerable scope, through a consideration of more accu-

rate Green's functions, for providing a more accurate picture of the theoret-

ical problem and to provide general rules to achieve certain specifications.

With the high dependence of the scattered field on the medium properties,

and the scatterer shape, it remains to be seen whether a successful applica-

tion will be found.
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Appendix A

Formulation of a boundary integral
equation for scattering by a sphere in an
infinite homogeneous medium

A sphere, labelled S, with a rigid surface OS, is embedded in an infinite porous
medium, characterised by a a complex wavenumber, kj. The complex acoustic
pressure is assumed to satisfy the following boundary value problem:
an inhomogeneous Helmholtz equation,

(V2 + k2)p(r, ro) = 6(r - ro); (A.1)

the Neumann boundary condition for r E OS, for a rigid scatterer,

Op(r, ro) --nr)- 0; (A.2)an(r)

and Sommerfeld's radiation conditions,

8r -ikip(r,ro) = o(r- ), (

p(r,ro) = O(r-4), A

uniformly in r as r := Irl - oo In the above, n(r) denotes the normal to the surface
aS at point r.

To formulate the integral equation, let the Green's function G(r, ro), satisfy the
following boundary value problem, for each r0 E R3\r:
an inhomogeneous Helmholtz equation,

(V2 + k?)G(r, ro) = 6(r - ro); (A.4)

and Sommerfeld's radiation conditions,

orr-ikG(r,ro) = o(r-1), (.

G(r,ro) = O(r-i), (A.5)

uniformly in r as r := rn oo Note that in the case when no obstacle is present,

p(r, ro) = G(r, ro), (A.6)
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for r, r0 E R
3 .

Now consider region V consisting of that part of U contained within a large
sphere of surface, E and radius R, centred on the origin, but excluding small spheres,
0'r and 0r of radii c, centred on r and r 0 . The interiors of the spheres o, and o,,,
are excluded so that the conditions of Green's second theorem are safisfied by p and
G in the region V. Applying Green's second theorem to the region V, ard noting
that p(r,, ro) and G(r., r) satisfy Helmholtz equation, the following equation is
obtained for r, ro E R 3 ,

p(r, ro) =G(ro, r)+ p(r.,ro) aG(r- r) _G(r,,r) p(r,)ds(r,), (A.7)

18r 5  ds(r., rr) (

for r, r0 E U+.

The numerical solution of equation (A.7) is carried out using subroutines GEO-
SPHERE, FSURSPHIM and FRECSPHIM found in appendix D.
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Appendix B

Analytical expression for the scattered
field by a rigid sphere

Plane waves are travelling to along the the polar axis are incident on a rigid sphere
centred on the origin. The incident acoustic pressure is given by,

00
Ai = E (2m + 1)i*P.,(cos8)j,(kr), (B. 1)

M=0

where j, denotes the spherical Bessel function of the first kind of order m, defined
in terms of a Bessel function of fractional order by,

j, (Z) = z + () (B.2)

and P, (x) is the Legendre polynomial of degree m, defined for n = 0, 1, by Po(z) =
1 and Pi(z) = x and for m > 1 by the recurrence relation,

(n + 1 )P,+ 1(z) = (2n + I)zP,(z) - nP,(x), (B.3)

for n = 1, 2. It is assumed that the scattered wave has the form,

00

P, = E aP,(cosG)h($1)(kr) (B.4)
0

where the spherical Hankel functions of the first kind, h2 ), are defined by,

h(l)(z) =- ) 1 H (1) z (B.5)

Insisting that the normal velocity is zero on the surface of the sphere leads to
expression for the coefficients am,

a. = -(2m + 1)i "m j,, (kR) (B.6)h2)'(kR)

a, and p, given by equations (B.6) and (B.4) are calculated using subroutine
PLNSCATCOE and complex function PLNSCATFLD found in appendix D.
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Appendix C

Boundary integral equation formulation
for sound propagation over a half-space
containing an embedded sphere of
infinite radius

A sphere, labelled S, with rigid surface 8S, is embedded in a rigid porous (lower)
half-space, with the upper-half space containing air. The boundary value problem
of equations (2.34 to 2.40) which give the associated boundary integral equation
(2.104), define this problem if the integrating surface is replaced by a sphere. With
this modification, if the radius is now allowed to tend to infinity while keeping the
depth, d, constant, and r and r0 directly above r;, the highest point on the surface
aS, the integral equation becomes,

aK(r)p(r, ro) = aG(ro, r) - p(r,,ro)8 G2r)dA(r.) (C. 1)

where aS is now a plane at a depth d beneath the ground surface r and S is the
region below this plane; K(r) := 1, for r E j3\g, 1/2 for r E OS. Introducing
polar coordinates in the surface OS, with the origin of the coordinates at r; and R
defined as Jr. - r; , this integral equation can be written,

QK(r)p(r, ro) = cG(ro, r) - 27r p(r., ro) OG(r.,r)RdR (C.2)

Now, letting ro get further and further away from r, (i.e. letting z0 - +oo), the
pressure p(r,, ro), assumes an almost constant value Pc in a larger and larger region
surrounding the point r;. Putting r = r; in equation (C.1) gives a value for p, as,

Cra9(r., r;)Rd C3
P, = QG(ro, r;) [2+ 27r "G rzrRdR] (C.3)

The pressure at a point r above r; in the upper half-space, is then given by,

ap(r, ro) = QG(ro, r+) - p,2r i9G(r., r+) RdR. (C.4)
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The integral in equation (C.3) can now be calculated numerically by standard
teci.,viques. The integral in equation (C.4) is a little more tricky to calculate , the
problem being that the integrand tends to zero very slowly. as R increases, being
of the order O(R-1 ). With reference to the notes of Chandler-Wilde 1107), this
problem is overcome by analysing the asymptotic behaviour of the integrand.

Letting f (R) =-27rR8G(r5, r)/8z, and replacing G by the approximations
(3.51), f(R) can be written,

f() ikjacRcosV 2 8 ik __,26_(C.5

f() r(acosO + v/n2 
- sin2 O) exrd/'an9 C5

where r =Irr - ri, and 6 = cos-(z/r), rr being the point on the boundary r
directly above r,. Now RcosO = z and if n 36 1, then,

V2- sin2 6 = v2- 1(1 + O(r-2 )), (C.6)

as R -. co, and also,

acoso + V 
2 

- -i~ = 1~n + 0(r-'). (C.7)

Thus, making use of equations (C.6) and (C.7), equation (C.5) can be written,

fAr,) =g(r,) + O(r-2), (C.8)

where,

g(r5 ) =- [4Iklr etdnl e'. (C.9)

Equation (C.4) may now be written,

crp(r, ro) = crG(ro, r) + p, 100 g(R)dR + j0 f (R) - g(R)dR] , (C. 10)

where f (r.) - g(r.) = O(r -2) as r, -~ oc. 9(r,) behaves as 0(r-1) but is straight-
forward to integrate:

j g(R)dR = 'r'cek d/;-2 1H()( ) (C. 1)

Equation (C.4) has now thus been reduced to a form more amenable to numerical
integration.
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Appendix D

Listings of FORTRAN 77 subroutines
referred to in the text

This appendix lists all of the FORTRAN 77 subroutines and functions that are
mentioned in the text. Documentation is included for each.

D.1 Complex function CCOTH

CCOTH calculates the hyperbolic cotangent of a complex number. There are no
subprograms referenced.

I
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COMPLEX FUNCTION CCOTH(Z)
COMPLEX Z

C
C CALCULATES THE HYPERBOLIC COTANGENT OF A COMPLEX NUMBER
C IF THE REAL PART OF Z IS
C LARGE THEN CCOTH(Z) IS EQUAL TO 1 + 10
C
C 0 ENTRY:
C
C Z COMPLEX

THE COMPLEX ARGUMENT

C
C INTERNAL VARIABLES
C

REAL RZ2,AZ2,CI
COMPLEX I

C
I-CMPLX(O.O,1.0)
IF (REAL(Z) .GT. 44.3) THEN
CCOTR-(1.0,O.O)

RETURN
ELSE
RZ2=2.eREAL(Z)
AZ2-2.*AIMAG(Z)

CI-COSH(RZ2)-COS(AZ2)
CCOTH-(SIH(RZ2)-I*SIN(AZ2))/C1

END IF
RETURN
END
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D.2 Subroutine CD

CD calculates value of complex density using equation. (3.62). Reference to
other subprograms are:

e CMPBJ: a subroutine from Sastry [109].
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SUBROUTINE CD(F,NPR,SFR,SIGMA,POROS ,CDESS)

COMPLEX *8 CDENS
REAL*+. F,NPR,SFR,SIGMA,POROS

C CD CALCULATES A SINGLE VALUE OF COMPLEX DENSITY
C USING THE FOUR PARAMETER MODEL.
C
C ON ENTRY

C F REAL
C FREQUENCY
C
C NPR REAL
C GRAIN SHAPE FACTOR
C
C SFR PORE SHAPE FACTOR RATIO
C
C SIGMA REAL
C FLOW RESISTIVITY
C
C POROS REAL
C POROSITY
C
C ON EXIT
C
C CDENS REAL
C COMPLEX DENSITY

C
C THIS VERSION DATED 7TH DECEMBER. 1989.
C
C ROUTINE CMPBJ IS CALLED

C
C INTERNAL VARIABLES
C

COMPLEX48 I,YP,TP,JO,Jl
INTEGER*2 Ni
REAL*4 LAMBDAP,QPI ,CFGAMNA ,PRANDTL,RHOF,AE,ONEGA

C
Q-SQRT(POROS**-NPR)
PI-4 .O*ATAN(1 .0)
I-CMPLX(0.0,1 .0)
CF-343.0
GAMMA-1.4
PRANDTL-O .76
RHOF-1 .2
AE-SQRT(8.0(Q..2)/(POROS.SIGMA))
OMEGA-2.0.PI*F
LAMBDAP-(AE/SFR).( (OMEGA*RHOF)..0. 5)
YP-LAMBDAP.(I*.O .5)
N 1-0
CALL CMPBJ(YP,N1,JO)
N1-1
CALL CMPBJ(YP,N1,J1)
TP-J1/J0
CDENS-Q..2.RHOF/((1 .0-(2 .0fYP)*TP)*POROS)
RETURN
END
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D.3 Complex function FFG

FFG calculates the free field G-een's function. There are no subprograms
referenced.
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COMPLEX FUNCTION FFG(X,K)

COMPLEX*8 R
REAL.4- X

C
C FF0 CALCULATES THE FREE-FIELD GREEN'S FUNCTION GIVEN THE MAGNITUDE
C OF THE VECTOR BETWEEN TIE TWO POINTS, AiD THE COMPLEX PROPAGATION
C CONSTANT.
C
C ON ENTRY:
C
C X REAL
C MAGNITUDE OF THE VECTOR BETWEEN THil TVO POINTS
C
C K COMPLEX
C COMPLEX PROPAGATION CONSTANT
C

COMPLEX*8 I
REAL*4 PI

C

I-CNPLX(0.0,1.0)
PI-3.141592653
FFG--CEXP(I*K*X)/(4.0*PI*X)
RETURN
END
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D.4 Subroutine FRECCIR

FRECCIR' calculates values of acoustic pressure at the receiver point in the
upper medium using equation (5.44). Reference to other subprograms are:

* G11WVDP: see section D.14.
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SUBROUTINE FRECCIR(RCOOR,SCOOR,COOR,X1,K2,AREA,PRXRO|,N,
A SCATT,GROR,PRRO,Z,ZC)
PARAMFTER(NMAX200, MAX100,NKMAX.NMAX*MMAI, MAX=MMAX*MMAX)
COMPLEX*8 PRKRO(NMMAX),PRRO,Z(NMMAX),ZC,GROR,SCATT,K2

INTEGER*2 N,M
REAL*4 K1,RCOOR(3),SCOOR(3),COOR(3,NMMAX),AREA(IMMAX)

C
C FRECCIR CALCULATES THE VALUES OF THE PRESSURE FIELD

C AT THE RECEIVER POSITION IN THE UPPER MEDIUM.
C
C 0 ENTRY
C
C RCOOR REAL(3)
C ARRAY CONTAINING THE COORDINATES OF THE RECEIVER.
C RCOOR IS UNCHANGED ON EXIT
C
C SCOOR REAL(3)

C ARRAY CONTAINING THE COORDINATES OF THE POINT SOURCE.
C SCOOR IS UNCHANGED ON EXIT
C
C COOR REAL(3,N*M)
C ARRAY CONTAINING THE COORDINATES OF THE MIDPOINTS OF
C THE BOUNDARY ELEMENTS.
C COOR IS UNCHANGED ON EXIT
C
C Ki REAL
C PROPAGATION CONSTANT OF THE UPPER MEDIUM.
C N.B. TIME DEPENDENCE EXP(-I*W*T) ASSUMED.
C K1 IS UNCHANGED ON EXIT.
C
C AREA REAL(N.M)
C VALUES OF THE AREA OF EACH BOUNDARY ELEMENT.
C AREA IS UNCHANGED ON EXIT.
C
C PRARO COMPLEX(N*M)
C ARRAY CONTAINING THE VALUES OF THE PRESSURE FIELD AT
C THE MIDPOINTS OF THE ELEMENTS.
C PRKRO IS UNCHANGED ON EXIT.
C
C N INTEGER
C THE CIRCULAR REGION IS DIVIDED INTO N SECTORS.

C N IS UNCHANGED ON EXIT.

C M INTEGER
C THE CIRCULAR REGION IS DIVIDED INTO H ANNULI.
C M IS UNCHANGED ON EXIT.

CI
C Z(HeM) COMPLEX

C INDUCED SURFACE IMPEDANCE AT THE MIDPOINTS OF THE BOUNDARY
C ELEMENTS.

C Z IS UNCHANGED ON EXIT.
C
C ZC COMPLEX
C CHARACTERISTIC IMPEDANCE OF THE SURROUNDING AREA.
C ZC IS UNCHANGED ON EXIT.
C
C OH EXIT
C
C SCATT COMPLEX
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C THE SCATTERED FIELD.
C
C GROR COMPLEX
C THE GREEN'S FUNCTION FOR A HOMOGENEOUS HALF SPACE.
C
C PRRO COMPLEX
C THE CALCULATED PRESSURE VALUE.
C
C THIS VERSION DATED 7TH DECEMBER, 1989.
C
C ROUTINE GliWYOP IS CALLED.
C
C INTERNAL VARIABLES
C

COKPLEX*8 GRKR,I ,RI
INTEGER*2 NM,K
REALe4 AXCOOR(3) ,DEPTH

C
IN-N.M
I-(0.0,1 .0)
RI-12/91
DEPTH0.0
CALL GIIVVDP(RCOOR,SCOOR,K1 ,RI,ZC,GR0R,DEPTH)
SCATT-CHPLX(0 .0,0.0)
DO 010 K-1,lM
ARCOOR(l)-COOR(1 .1)
ANCOOR(2)-COOR(2 ,X)
AICOOR(3)-COOR(3 .1)
CALL G11VVDP(AKCOOR,RCOOR,1,RI ,ZC,GRKR,DEPTH)
SCATT.SCATT+PRKRO(K)*GRKR*AREA(K)*(1 .0/1(K)-I .0/ZC)

010 CONTINUE
SCATT-I*XZ*SCATT
PRRO-GROR-SCATTI RETURN

END
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D.5 Subroutine FRECSPH

FRECSPI- calculates values of acoustic pressure at the receiver point in the
upper medium using equation (5.11). Reference to other subprograms are:

" Gl1: see section D.10;

" G12DER: see section D.12.

I
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SUBROUTINE FRECSPH(L,RCOOR,SCOOR,COOR,NORM,PROP,AREA,PRKRO,N,M,

& SCATTGROR,PRRO,ZETARI,DEPTH)

PARARETER(NMAX=200,MMAX-100,INMAXRNHAX*MAX,MNAX-NAX*NKAX)

INTEGER*4 N,M,L

REAL*4 RCOOR(3),SCOOR(3),COOR(3,NMJAX),AREA(NHMAX)

REAL*4 NORI(3,NMMAX),DEPTH

COMPLEX*8 GROR,PROP,PRKRO(NNAX),PRRO,ZETA,RI,SCATT

C

C FRECSPH CALCULATES THE VALUES OF THE PRESSURE FIELD AT THE

C RECEIVER POSITION.

C

C ON ENTRY

C
C RCOOR REAL(3)

C ARRAY CONTAINING THE COORDINATES OF THE RECEIVER.

C RCOOR IS UNCHANGED ON EXIT

C

C SCOOR REAL(3)

C ARRAY CONTAINING THE COORDINATES OF THE POINT SOURCE.
C SCOOR IS UNCHANGED ON EXIT

C
C COOR REAL(IAX)
C ARRAY CONTAINING THE COORDINATES OF THE CENTROIDS
C OF THE AREA ELEMENTS.
C CCOOR IS UNCHANGED ON EXIT
C
C NORM REAL(3.NMMAX)

C ARRAY CONTAINING THE NORMAL VECTORS AT THE CENTROIDS
C NORM IS UNCHANGED ON EXIT
C
C PROP COMPLEX

C PROPAGATION CONSTANT.

C N.B. TIME DEPENDENCE EXP(-I*W*T) ASSURED.

C PROP IS UNCHANGED ON EXIT.

C

C AREA REAL(WNM)

C ARRAY CONTAINING THE VALUES OF THE AREA OF EACH AREA ELEMENT
C ON THE SPHERE.

C AREA IS UNCHANGED ON EXIT
C
C PRKRO COMPLEX(N*M)

C ARRAY CONTAINING THE VALUES OF THE PRESSURE FIELD ON THE

C SURFACE OF THE SPHERE.

C PRKRO IS UNCHANGED ON EXIT

C

C N INTEGER

C THE SURFACE OF THE SPHERE IS DIVIDED INTO N LONGITUDINAL

C HANDS.

C N IS UNCHANGED ON EXIT

C

C M INTEGER
C THE SURFACE OF THE SPHERE IS DIVIDED INTO M LATITUDINAL
C BANDS.

C M IS UNCHANGED ON EXIT

C
C ZETA COMPLEX

C THE IMPEDANCE OF THE MEDIUM.

C ZETA IS UNCHANGED ON EXIT

C
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C RI COMPLEX
C THE REFRACTIVE INDEX AT THE SURFACE GAMMA.
C RI IS UNCHANGED ON EXIT
C
C DEPTH REAL
C THE DISTANCE FROM THE CENTRE OF THE OBSTACLE TO
C THE BOUNDARY GAMMA.
C DEPTH IS UNCHANGED ON EXIT
C
C ON EXIT
C
C SCATT COMPLEX
C THE CALCULATED SCATTERED FIELD.
C
C GROR COMPLEX
C THE GREEN'S FUNCTION FOR A HOMOGENEr HALF SPACE.
C
C PRRO COMPLEX
C THE CALCULATED PRESSURE VALUE.
C
C THIS VERSION DATED 3RD DECEMBER, 1989.
C
C SUBROUTINES Gil AND G12DER ARE CALLED.
C
C INTERNAL VARIABLES
C

REAL*4 AKCOOR(3) .AKNORM(3) ,Rl
INTEGER*4 NM,K
COMPLEX*8 NDG,ALPHA,GG,GX,GY,GZ

C

KR=REAL(PROP/RI)
ALPHA-ZETA*RI
INMU*M
CALL Gll(RCOOR,SCOOR,R1,RI,ZETA,GG,DEPTO)
GROR=GG
SCATT=CMPLX(0.0 ,0 .0)
DO 010 R1I,NM
ARCOOR(1W-COOR(1 ,K)

ARCDOR(2)-CO0RC2,K)
AKCODR(3)-COOR(3 ,K)
AKNORM(l).NORC1 ,K)
ARNORLM( 2) -NORM (2 , )
AKNORN(3)-NORMq(3 1)
CALL G12DER(AKCOOR,RCOOR,I1,RI,zETA,GG,GX,G:,GZ,DEPTH)
NDG=AKNORNM(1) *GX4AKNORLM(2) *GY+AXNORN(3) .GZ
SCATT-SCATT+PRKRD(R) .NDG*AREA(K)

010 CONTINUE

SCATT-SCATT/ALPHA
PRRO-GROR+SCATT
RETURN
END
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D.6 Subroutine FRECSPHIM

FRECSPHIM calculates values of acoustic pressure at the receiver point in
the infinite medium for the numerical solution of equation (A.7). Reference
to other subprograms are:

" FFG: see section D.3;

" NDFG: see section D.20;

" RMAG: see section D.24.
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SUBROUTINE FRECSPHIM(RCOOR,SCOOR,COOR,NOR,PROP,AREA,PRKRO,N,M.

i SCATTGRORPRRO)

PARAMETER(INAX=200,KMJAX100,NMNAX=NMAXMNMAX,MJO'AX-MMAX*MNAX)

INTEGER*2 I,M

REAL*4 RCOOR(3),SCOOR(3),COOR(3,NMMAX),AREA(INNAX)

REAL*4 NOR(3,NMNAX)

COMPLEX*8 PROP,PRKRO(NMNAX),PRRO,SCATT

C

C FRECSPHIM CALCULATES THE VALUES OF THE PRESSURE FIELD

C AT THE RECEIVER POSITION.

C

C ON ENTRY
C
C RCOOR REAL(NMNAX)
C ARRAY CONTAINING THE RECEIVER CARTESIAN COORDINATES.
C RCOOR IS UNCHANGED ON EXIT.
C

C SCOOR REAL(3)
C ARRAY CONTAINING THE SOURCE CARTESIAN COORDINATES.
C SCOOR IS UNCHANGED ON EXIT.
C
C COOR REAL(NMMAX)
C ARRAY CONTAINING THE COORDINATES OF THE CENTROIDS.
C COOR IS UNCHANGED ON EXIT.
C
C NORM REAL(NMIIAX)

C ARRAY CONTAINING THE NORMAL VECTORS AT THE CENTROIDS.
C NORM IS UNCHANGED ON EXIT.
C
C PROP COMPLEX

C PROPAGATION CONSTANT.

C N.B. TIME DEPENDENCE EXP(-I*W*T) ASSUMED.
C PROP IS UNCHANGED ON EXIT.
C
C AREA REAL(IMMAX)

C ARRAY CONTAINING THE THE AREA OF EACH ELEMENT.
C AREA IS UNCHANGED 0 EXIT.
C

C PRKRO COMPLEX(NaM)
C ARRAY CONTAINING THE VALUES OF THE PRESSURE FIELD ON THE
C SURFACE OF THE SPHERE,
C PRKRO IS UNCHANGED ON EXIT.
C
C I INTEGER
C THE SURFACE OF THE OBSTACLE IS DIVIDED INTO N LONGITUDINAL
C BANDS.

C N IS UNCHANGED ON EXIT.

C
C M INTEGER

C THE SURFACE OF THE OBSTACLE IS DIVIDED INTO M LATITUDINAL
C BANDS.

C N IS UNCHANGED ON EXIT.

C
C oN EXIT
C
C SCATT COMPLEX
C THE CALCULATED SCATTERED FIELD.
C

C GROR COMPLEX
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C THE CALCULATED FREE FIELD.

C
C PRRO COMPLEX
C THE CALCULATED PRESSURE VALUE.
C
C THIS VERSION DATED 11th RAY, 1989.

C
C ROUTINES FFG, NDFG AID RMAO ARE CALLED.

C
C FUNCTION TYPE DECLARATION
C

REL4 RM&G,kiRCOOR(3) ,LKNORMC3)
COMPLEX*8 FFG, NDFG

C
C INTERNAL VARIABLES

C
REAL*4 I
IITEGER*2 NN,K

COMPLEX.8 GROR ,NDFFG
C

IN-N*M
X-RNAG (SCOOR ,RCOOR)

GROR-FFG(X ,PROP)
PRRO-CMPLX(0.0,O .0)

DO 010 R=1,NM
AXCOOR(1)-C0ft(1,X)
AKCOOR(2)-COOR(2 .R)

AKCOOR(3)-COOR(3 ,K)
AKNORK(l).NORM(1,g)
AKNORM(2)=NORM(2,K)
AKNORM(3)=N0M(3 ,K)

I-R1HAG(ARCDOR ,RCOOR)
NDFFG-NDFG (I,PROP, ARCOOR ,RCOOR ,AKNORN)
PRRO-PRRO+PRRRO(K) SNDFFG*AREA (K)

010 CONTINUE

SCATT=PRRO
PRRO.OROR+SCATT
RETURN
END
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D.7 Subroutine FSURCIR

FSURCIR calculates values of pressure at the midpoints of the boundary

elements of a circular surface inhomogeneity, using the theory of section
5.1.2. Reference to other subprograms are:

" CGSLC: a subroutine from Argonne National Laboratory's Toeplitz
package [105];

" G11WVDP: see section D.14;

* PBETA3: a subroutine from the PROPLIB package [93];

" RMAG: see section D.24.

1
I

156

I
1



SUBROUTINE FSURCIR(KI,X2,N,M,G,AREA,SCOOR,COOR,Z,ZC)

PARAMETER(NMAX200,NAX-100,NKMAX=-NAX*eMAX,PMMAX.MMAXeMMAX)
COMPLEX*8 Z(NMMAX),ZC,G(NHMAX),K2
INTEGER*2 NM
REAL*4 SCOOR(3),COOR(3,NMMAX),AREA(NMMAX),Kl

C
C FSURCIR CALCULATES THE PRESSURE VALUES AT THE MIDPOINTS
C OF THE BOUNDARY ELEMENTS OF A CIRCULAR SURFACE INHOMOGENEITY.
C
C ON ENTRY
C
C KI REAL
C PROPAGATION CONSTANT OF THE LOWER MEDIUM.
C N.B. TIME DEPENDENCE EIP(-I*W*T) ASSUMED.
C K1 IS UNCHANGED ON EXIT.
C
C R2 COMPLEX
C PROPAGATION CONSTANT OF THE UPPER MEDIUM.
C N.B. TIME DEPENDENCE EIP(-I*W*T) ASSUMED.
C K2 IS UNCHANGED ON EXIT.
C
C N INTEGER
C THE CIRCULAR PATCH IS DIVIDED INTO N SECTORS.
C I IS UNCHANGED ON EXIT.
C
C M INTEGER
C THE CIRCULAR PATCH IS DIVIDED INTO M ANNULI.
C M IS UNCHANGED ON EXIT.
C

C AREA REAL(M*N)
C ARRAY CONTAINING VALUES OF THE AREA OF THE
C M*N BOUNDARY ELEMENTS.
C AREA IS UNCHANGED ON EXIT.
C
C SCOOR REAL(3)
C THE CARTESIAN COORDINATES OF THE SOURCE
C WITH THE ORIGIN AT THE CENTRE OF THE CIRCULAR
C INHOMOGENEITY.
C SCOOR IS UNCHANGED ON EXIT.
C
C COOR REAL(3)
C THE CARTESIAN COORDINATES OF THE MIDPOINTS
C OF THE BOUNDARY ELEMENTS.
C COOK IS UNCHANGED ON EXIT.
C

C COMPLEX(MoN)
C THE INDUCED SURFACE IMPEDANCE WITHIN THE
C CIRCULAR PATCH.
C Z IS UNCHANGED ON EXIT.
C
C ZC COMPLEX
C THE CHARACTERISTIC IMPEDANCE OF THE SURROUNDING AREA.
C ZC IS UNCHANGED ON EXIT.
C ON EXIT
C
C G COMPLEX(ISTEP)
C A VECTOR CONTAINING THE CALCULATED PRESSURE VALUES
C AT THE MIDPOINTS OF THE BOUNDARY ELEMENTS.
C
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C THIS VERSION DATED 7TH DECEMBER, 1989.
C
C ROUTINES CGSLC,G11VVDP, PBETA3 AND RAG ARE CALLED.

C FUNCTION TYPE DECLARATION
C

REAL*4 RMAG
COMPLEX*8 PBETA3

C INTERNAL VARIABLES
C

COMPLEX.8 AJK,R(MAX(MNAX,2*NMAX)) ,A(NMAX,NNAX) ,GR.RJ,I,RI,GG
INTEGER*2 K,J,KK,HMJJ,BN
REAL*4 AJCDOR(3) ,AKCOOR(3) ,X,PI,DEPTH

C
IF(N.GT.MAX.OR..GTMMAX)T9El
WRITE(6,500)

500 FORMAT(' *ERROR* MAXIMUM ARRAY SIZE EXCEEDED')
STOP

ENDIF
NM-NoN
PI-4.0ATANC1 .0)
I.CMPLX(O.O,1 .0)
D0 010 K-1,NM
DO 020 J=1,N
AJCDOR(1)-COOR(1 ,J)
AJCOOR(2)-COORC2 .3)
AJCOOR(3)-COOR(3 .3)
ARCDOR(1)-COOR(1 ,R)
ARCDOR(2)=COR(2,R)
ARC~oR(3)=COORC3 ,R)
XF(3.FQ.Ik)71EN
AJK=1.0-I.K1*SQRT(AREA(K)/Pl).(l.0/Z(K)-1.0/ZC)

ELSE
X=RMlG(AKCOOR ,AJCOOR)
GRRRJ-PBETA3(X,KlI 1.0/ZC)
GRKRJ-GRRRJ-EXP(I.K1.X)/(2 0*PI*X)
h3K.ISKI.GRRJi(1 .0/Z(K)-1 .0/ZC)*AREA(R)

ENDIF

KINT((K-l )/M)+l
A(JJ ,Kg)-AJK

020 CONTINUE
RI-K2/KI
DEPTH- 0
CALL GIIVVOP(AKCOOR,S-ODR,K1 ,RI ,ZC,GG,DEPTH)

G(K)GGI

,ALL CGSLC(A,GR,MNM,N,MMAX)
iaETURN
'3ND
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D.8 Subroutine FSURSPH

FSURSPH calculates values of pressure at the midpoints of the boundary
elements of a spheroid, using the theory of section 5.1.1. Reference to other
subprograms are:

* CGSLC: a subroutine from Argonne National Laboratory's Toeplitz
package [105];

e G12: see section D.11;

* G22DER: see section D.13;

* GDER: see section D.15.
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SUBROUTINE FSURSPH(PROP,N,M,G,AREA,SCOOR,COOR,NORM,ZETA,RI,
* DEPTH)
REAL*4- DEPTH
INTEGER*4 N,M
COMPLEX*8 PROP,ZETA,RI

C
C FSURSPH CALCULATES PRESSURE VALUES ON THE SURFACE
C OF A RIGID OBSTACLE, IN A RIGID POROUS MEDIUM.
C
C ON ENTRY
C
C PROP COMPLEX
C PROPAGATION CONSTANT OF THE LOWER MEDIUM.
C N.B. TIME DEPENDENCE EXP(-IWe*T) ASSUMED.
C PROP IS UNCHANGED ON EXIT.
C

C N INTEGER
C THE SURFACE OF THE OBSTACLE IS DIVID7D INTO I LONGITUDINAL
C BANDS.
C N IS UNCHANGED ON EXIT.
C
C M INTEGER
C THE SURFACE OF THE OBSTACLE IS DIVIDED IbTO M LATITUDINAL
C BANDS.
C M IS UNCHANGED ON EXIT.
C
C AREA REAL(NMMAX)

C THE SURFACE OF THE OBSTACLE IS DIVIDED INTO N*M
C BOUNDARY ELEMENTS.
C AREA IS UNCHANGED ON EXIT.
C

C SCOOR REAL(3)
C ARRAY CONTAINING THE SOURCE COORDINATES.
C SCOOR IS UNCHANGED ON EXIT
C
C COOR REAL(NMMAX)

C ARRAY CONTAINING THE COORDINATES OF THE CENTROIDS.
C COOR IS UNCHANGED ON EXIT.
C
C NORM REAI(IMMAX)
C ARRAY CONTAINING THE NORMAL VECTORS TO THE SURFACE AT THE
C CENTROIDS.
C NORM IS UNCHANGED ON EXIT.
C
C ZETA COMPLEX
C THE IMPEDANCE OF THE MEDIUM.
C ZETA IS UNCHANGED ON EXIT.
C
C RI COMPLEX
C THE REFRACTIVE INDEX AT THE SURFACE.
C RI IS UNCHANGED ON EXIT.

C DEPTH REAL
C THE DISTANCE FROM THE SURFACE GAMMA TO THE CENTRE OF THE
C OBSTACLE.
C DEPTH IS UNCHANGED ON EXIT.
C
C ON EXIT
C
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C G CONPLEX(ESTEP)
C A VECTOR CONTAINING THE CALCULATED PRESSURE VALUES.
C
C THIS VERSION DATED 3RD DECEMBER, 1989.
C
C ROUTINES GDER,G22DER,G12 ARE CALLED.
C THE TOEPLITZ ROUTINE CGSLC IS ALSO CALLED.
C
C INTERNAL VARIABLES
C

PARAMETER(IMAX.200,MMAX-100,MAX.NMAI*MAX ,MMAX-MNAX*MMAX)

REAL*4 SCOOR(3) ,COOR(3,WMMAX)
REAL*4 NORJI(3,MMAX) ,AREA(NMHAX) ,AIORM(3)
REAL*4 AJCOOR(3) ,AKCOOR(3) ,X,AICOOR(3) ,AIIORMq(3) ,KI
IITEGERS4 J,N,M,K,JKL,X9,JJ,KMN
CONPLEX.8 AJR,R(MAX(MNAX.2.IWAX)) ,NDG,GG,GXGY,GZ
COMPLEX08 A(MMAX,NMAX) ,G(INAX*MNAX) ,ALPHA

C
IF(l.GT.NMAX.OR.M.GT.MNAX)THEN
WRITE(6,*500)

S00 FORMAT(' I ERROR* MAXIMUM ARRAY SIZE EXCEEDED')
STOP

ENDIF
K1-REAL(PROP/RI)
ALPHA-ZETA*Rl
NMNl*M
MMMM
DO 010 K1l,NM
DO 020 J1I,M
AJCOOR(l)-COOR(1 ,J)
AJCOOR(2)-COOR(2 ,J)
AJCOOR(3)-COOR(3 ,J)
AKCOOR(IPCOOR(1,K)
AKCOOR(2)-COOR(2 .1)
AKCOOR(3)-COOR(3,K)
AKNORJ(1)NORMq10,K)
AKNORJI(2)NORH(2 .)
AKNOM(3).UORK03,K)
IF(J .EQ.R)THEI
AJ-(1 .0,0.0)
DO 600 I-1,NM
IF(I.NE.J) THEE
AICOOR(1)COOR(1,I)

AICOOR(2).COOR(2 .1)
AICOOR(3)-COOR(3 ,I)
AINORK(1)-BORR(1 .1)
AINORN(2)-EORM(2 .1)
AINORN(3).ORM(3,I)
CALL ODER(AICOOR,AJCOOR,GG,GX,GY,GZ)
NDG.AINORM( 1) *GXAINORM(2) .GY+AINORM(3) eGZ
AJKsAJK+AREA (I) slOG

ENDIF
600 CONTINUE

AJK AJK*ALPHA
ELSE
CALL O22DER(AKCOOR,AJCOOR,K1,RI,ZETA,GG,GX,GY,GZ,DEPTH)
NDG-AENORM(1 ).GX+AKNOM(2).GY+AINORI(3)*GZ
AJK.-NDG*AREA (K)

ENDIF
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JJ=J+( (K-(IIT( (K-1)/M) )*M)-l)*N

RK INT((K-1)/M)41
A(JJ,KX)=AJK

020 CONTINUE
CALL G12(AKCOOR,SCOOR.R1 ,RI,ZETA,GG,DEPTH)
G(K)-GG
G(K)-ALPHA*G(K)

010 CONTINUE

CALL CGSLC(A,G,R,NN1M,N,NNNAX)
RETURN

ENDj
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D.9 Subroutine FSURSPHIM

FSURSPHIM calculates values of pressure at the midpoints of the boundary
elements of a sphere, for the numerical solution of equation (A.7). Reference
to other subprograms are:

" CGSLC: a subroutine from Argonne National Laboratory's Toeplitz
package [105];

" FFG: see section D.3;

" NDFG: see section D.20;

* RMAG: see section D.24.
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SUBROUTINE FSURSPHIN(PROP,N,M,G,AREA,SCOOR,COOR,NORM)

COMPLEX*8 PROP

INTEGER*2 N,M

C

C FSURSPHIN CALCULATES PRESSURE VALUES ON THE SURFACE

C OF A RIGID OBSTACLE, IN A RIGID POROUS MEDIUM.

C

C 01 ENTRY

C

C PROP COMPLEX

C PROPAGATION CONSTANT.

C N.B. TINE DEPENDENCE EXP(-I*W*T) ASSUMED.

C PROP IS UNCHANGED ON EXIT.

C

C N INTEGER

C THE SURFACE OF THE OBSTACLE IS DIVIDED INTO N LONGITUDINAL

C BANDS.

C N IS UNCHANGED ON EXIT.

C

C N INTEGER

C THE SURFACE OF THE OBSTACLE IS DIVIDED INTO N LATITUDINAL

C BANDS.

C N IS UNCHANGED ON EXIT.

C

C AREA REAL(NNMAX)
C ARRAY CONTAINING THE THE AREA OF EACH ELEMENT.

C AREA IS UNCHANGED ON EXIT.
C
C SCOOR REAL(3)

C ARRAY CONTAINING THE SOURCE COORDINATES.
C SCOOR IS UNC(ANGED ON EXIT.
C
C COOR REAL(NNIMAX)
C ARRAY CONTAINING THE COORDINATES OF THE CENTROIDS.

C COOR IS UNCHANGED ON EXIT.
C
C ORKM REAL(NMNAX)
C ARRAY CONTAINING THE NORMAL VECTORS AT THE CENTROIDS.
C NORM IS UNCHANGED ON EXIT.
C
C ON EXIT
C
C G COMPLEX(NMNAX)
C A VECTOR CONTAINING THE CALCULATED PRESSURE VALUES.
C
C THIS VERSION DATED 17th FEBRUARY, 1989.

C

C ROUTINES FFG, NDFG AND MRAG ARE CALLED.

C THE TOEPLITZ ROUTINE CGSLC IS ALSO CALLED.

C

C FUNCTION TYPE DECLARATION

C

REAL*4 RMAG
COMPLEX*8 FFG,NDFG

C

C INTERNA! VARIABLES

C

PARAMETER(NNAX=200,NMAX-100, MIXAXNMAX*NNAX,MMNAX.NIAX*MNAX)
COMPLEX*8 G(NMAX*KMAX)
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REAL*4 AJCOOR(3) ,AKCOOR(3) ,X,AICOOR(3)
REAL*4 SCOOR(3) ,COOR(3,NNNAX) ,AINORM'3) ,AKIORR(3)
RELL*4 NORN(3,IMNAX) ,AREA(NMAX)
INTEGER*2 J,NN1, MM,K, JKL,KK, JJmm
COMPLEX*8 A(KMLXA,NMAX) NIDFFG,AJK,R(tAX(KMAX,2*§KAX))
IF(N.GT.NMAX.OR.M.GT.MNAX)THEN
VRITE(6,S00)

S00 FORMAT( *ERROR* MAXIMUM ARRAY SIZE EXCEEDED')
STOP

ENDIF
NM-N-N

DO 010 K£1,NM
DO 020 J-1,M
AJCOOR(1)-COOR(1 ,J)
AJCOOR(2)-COOR(2 ,J)

AJCOOR(3)=COOR(3,J)
AKCOOR(1)-COOR(1,R)
AKCOOR(2)-COOR(2 ,R)
AKCOOR(3)=COOR(3 ,K)
AKNORK(l1WNORN(1 ,K)

AKNORM(2)=NORI(2 .1)
AKNORM(3)NORM03,K)
IF(J.EQ.K)THEN
AJR=(1 .0,0.0)
DO 600 I=1,IM
IF(I.NE.J) THEN
AICOOR(1)-COOR(1 ,I)
AICOOR(2)-COOR(2 .1)
AICOOR(3)-COOR(3 ,I)

AINORK(1)-NORMq(1 .1)
AINORjq(2)-NORLM(2 .1)

AINORIIC3)-NORM(3 .1)
X=RNAG (AICOOR, AJCOOR)
IDFFGNEDFG(X,(0.0,0.0),AICOOR,AJCOOR,AINORM)

AJK-AJX+AREA (I) -NOFFG
ENDIF

600 COITIIUEI ELSE
-RN AG (A ICOOR , hiCOOR)
NDFFG-NDFG(X ,PROP,AKCOOR,AJCOOR,AKNORMq)
AJK-NIDFFG*AREA(K)

ENDIF

iJ-j.((R-(INT((K-)/M))M)-1)*M
KK-INT( (K-i)/M)e1
£03 ,KK)-AJR

020 CONTINUE

X-RMAG(AKCOOR ,SCOOR)
G(R)-FFG(I.PROP)

010 CONTINUE

mNNM
CALL CGSLC(AO,R,.MN,B,NNNAX)
RETURN
END
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D.10 Subroutine Gl1

G 11 calculates the acoustic pressure at a receiver point in the upper medium

due to a point source on the same side of the boundary, using equation (3.33).
There are no subprograms referenced.
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SUBROUTINE G11(X2,X1,Kl,N,ZETA,G,DEPTH)

C

C THIS SUBROUTINE CALCULATES AN APPROXIMATION FOR THE ACOUSTIC

C PRESSURE ON ONE SIDE OF Al INTERFACE DUE TO A POINT SOURCE ON

C THE SAME SIDE OF THE INTERFACE. CARTESIAN COORDINATES (X,Y,Z)

C ARF USED, TgE INTERFACE HAS THE EQUATION Z-DEPTH, AND THE MEDIUM

C OCCUPYING Z > DEPTH IS CALLED MEDIUM 1, THE MEDIUM OCCUPYING

C Z < DEPTH IS CALLED MEDILM 2. BOTH SOURCE AID RECEIVER ARE ASSUMED

C TO BE IN MEDIUM 2.

C

C LET El, K2 DENOTE PROPAGATION CONSTANTS IN THE TWO MEDIUMS, AND

C LET ZI, Z2 DENOTE THE IMPEDANCES OF THE TWO MEDIUMS. NOTE THAT THE

C INCIDENT WAVE IS ASSUMED TO BE

C

C -EXP(I*KI*R)/(4*PI*R),

C

C WHERE R IS THE DISTANCE FROM THE SOURCE, AND

C I = SQRT(-1).

C

C ON INPUT

C

C 12(l), REAL(3)

C T=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE

C OR THE RECEIVER.

C X2 IS UNCHANGED ON EXIT.

C

C Xi(I), REAL(3)

C 1=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE

C OR THE RECEIVER. (EITHER Xl CONTAINS THE SOURCE COORDINATES

C AND 12 THE RECEIVER COORDINATES OR VICE VERSA.)

C XI IS UNCHANGED ON EXIT.

C

C Kl REAL

C IS THE PROPAGATION CONSTANT OF MEDIUM 1
C 91 IS UNCHANGED ON EXIT.

C

C N COMPLEX

C N K2/Kl IS THE REFRACTIVE INDEX.

C N IS UNCHANGED ON EXIT.

C

C ZETA COMPLEX

C ZETA = Z2/Zi IS THE IMPEDANCE RATIO

C ZETA IS UNCHANGED 0 EXIT

C

C DEPTH REAL

C IS THE Z-COORDINATE OF THE BOUNDARY BETWEEN MEDIA 1 AND 2.

C DEPTH IS UNCHANGED ON EXIT.

C

C ON OUTPUT
C

C G COMPLEX

C IS THE ACOUSTIC PRESSURE AT THE RECEIVER.

C

C

REAL XI(3),X2(3),R1,DEPTH

COMPLEX N,ZETA,G

C
COMPLEX ALPHA,Q,AC,RP

COMPLEX FR,FRDASH
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C
PI - 4.O*ATANI.O)

ALPHA vN*ZETA
XD = 12(1)-XI(1)
YD = X2(2)-11(2)
ZI - XI(3-DEPTH

Z2 - X2(3)-DEPTH
ZD = Z2-Z1
ZSUN - Z2+ZI
RSTS - XD*ID+YD*YD

RST - SQRT(RSTS)
Rt - SQRT(RSTS+ZD*ZD)
RDASH - SQRT(RSTS+ZSUM*ZSUM)
S - RST/RDASH
C = ZSUM/RDASH

Q = CSQRT(M*N-S*S)
AC - ALPHA*C

RtP = (AC-Q)/(AC+Q)
FR = CEXP(CRPLI(O.O,91*R))/R
MRASH - CEXP(CMPLX(O.O,K1*RDASH))/RDASH

G = (-1.o/(4.O*PI))*(FR+ RP*FRDASH)
RETUJRN
END
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D.11 Subroutine G12

G12 calculates the acoustic pressure transmitted across the plane boundary
from a point source on the other side of the boundary, using equation (6.1).
There are no subprograms referenced.
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SUBROUTINE G12(X2,XI,K1,N,ZETA,G,DEPTH)

C
C THIS SUBROUTINE CALCULATES AN APPROXIMATION FOR THE ACOUSTIC
C PRESSURE TRANSMITTED ACROSS AN INTERFACE FROM A POINT SOURCE ON
C THE OTHER SIDE OF THE INTERFACE. CARTESIAN COORDINATES (X,Y,Z)
C ARE USED, THE INTERFACE HAS THE EQUATION Z=DEPTH, AND THE MEDIUM
C OCCUPYING Z > 0 IS CALLED MEDIUM 1, THE MEDIUM OCCUPYING Z < 0
C IS CALLED MEDIUM 2.
C
C LET KI, 12 DENOTE PROPAGATION CONSTANTS IN THE TWO MEDIUMS, AND
C LET Z1, Z2 DENOTE THE IMPEDANCES OF THE TWO MEDIUMS. NOTE THAT THE
C INCIDENT WAVE IS ASSUMED TO BE
C
C -C*EXP(I*K*R)/(4*PI*R),
C
C WHERE K = K1 (12) IF THE SOURCE IS IN MEDIUM 1 (2),
C C = I (ALPHA) IF THE SOURCE IS IN MEDIUM 1 (2),
C R IS THE DISTANCE FROM THE SOURCE, AND
C I = SQRT(-I).
C
C ON INPUT

C

C X2(I), REAL(3)
C I=1,2,3 ARE THE X,YZ CARTESIAN COORDINATES OF WHICHEVER OF SOURCE/
C RECEIVER IS IN MEDIUM 2.
C X2 IS UNCHANGED ON EXIT
C
C Xf(I), REAL(3)
C I=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF WHICHEVER OF SOURCE/
C RECEIVER IS IN MEDIUM 1.
C Xl IS UNCHANGED ON EXIT
C

C K1 REAL

C IS THE PROPAGATION CONSTANT OF MEDIUM 1.
C K1 IS UNCHANGED ON EXIT
C
C N COMPLEX
C N = K2/11 IS THE REFRACTIVE INDEX.

C N IS UNCHANGED ON EXIT
C
C ZETA COMPLEX

C ZETA = Z2/Z1 IS THE IMPEDANCE RATIO.

C ZETA IS UNCHANGED ON EXIT
C
C DEPTH REAL

C IS THE Z-COORDINATE OF THE BOUNDARY BETWEEN MEDIA I AND 2.

C DEPTH IS UNCHANGED ON EXIT
C
C Of OUTPUT

C G COMPLEX

C IS THE ACOUSTIC PRESSURE AT THE RECEIVER.

C

REAL Xl(3),X2(3),Kl

COMPLEX N,ZETA,G

C
COMPLEX ALPHAQ,P

C
PI - 4.0*ATAN(1.0)
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ALPHA - UsZETA
ID - 12(1)-XIl)
YD 12(2)-I(2)
Zi - X1(3)-DEPTH

Z2 - 12(3)-DEPTH
RST - SQRT(XD*XD+YD*YD)
R = SQRT(RST*RST+ZI*ZI)
S - RST/R
C = Z1/R
Q= CSQRT(I*N-S*S)
P = ALPHA*C+Q
G = (-C/(2.0*PIsR))*ALPHA*CEXP(CNPLX(O.O,K)*(R-Z2*QJ))/P
RETURN
END
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D.12 Subroutine G12DER

G12DER calculates the components of the gradient of acoustic pressure
transmitted across the plane boundary from a point source on the other side
of the boundary, using equation (6.3). There are no subprograms referenced.
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SUBROUTINE G12DER(X2,XI,K1,N,ZETA,G,GX,GYGZ,DEPTH)

REAL DEPTH,Xl(3),X2(3),K1
COMPLEX N,ZETA,G,GX,GYGZ

C

C THIS SUBROUTINE CALCULATES AN APPROXIMATION FOR THE COMPONENTS OF THE

C GRADIENT OF THE ACOUSTIC
C PRESSURE TRANSMITTED ACROSS AN INTERFACE FROM A POTIT SOURCE ON
C THE OTHER SIDE OF THE INTERFACE. CARTESIAN COORDINATES (X,Y,Z)
C ARE USED, THE INTERFACE HAS THE EQUATION Z-DEPTH, AND THE MEDIUM

C OCCUPYING Z > 0 IS CALLED MEDIUM 1, THE MEDIUM OCCUPYING Z < 0
C IS CALLED MEDIUM 2. THE SPATIAL DERIVATIVES OF THE APPROXIMATION

C ARE ALSO CALCULATED.

C

C LET 11, K2 DENOTE PROPAGATION CONSTANTS IN THE TWO MEDIUMS, AND

C LET Z1, Z2 DENOTE THE IMPEDANCES OF THE TWO MEDIUMS. NOTE THAT THE

C INCIDENT WAVE IS ASSUMED TO BE

C

C -C*EXP(I.K*R)/(4*PI*R),
C
C WHERE K = KI (K2) IF THE SOURCE IS IN MEDIUJ4 1 (2),
C C = I (ALPHA) IF THE SOURCE IS IN MEDIUM 1 (2),
C R IS THE DISTANCE FROM THE SOURCE, AND
C I = SQRT(-1).
C
C ON INPUT

C

C X2(I), REAL(3)
C 1=1,2,3 ARE THE XY,Z CARTESIAN COORDINATES OF WHICHEVER OF SOURCE/
C RECEIVER IS IN MEDIUM 2.
C X2 IS UNCHANGED ON EXIT.
C
C x1(I), REAL(3)
C 1-1,2,3 ARE THE 1,Y,Z CARTESIAN COORDINATES OF WHICHEVER OF SOURCE/
C RECEIVER IS IN MEDIUM 1.
C XI IS UNCHANGED ON EXIT.
C
C K1 REAL

C IS THE PROPAGATION CONSTANT OF MEDIUM 1.
C K1 IS UNCHANGED ON EXIT.
C
C N COMPLEX

C N - K2/11 IS THE REFRACTIVE INDEX.

C N IS UNCHANGED ON EXIT.
C
C ZETA COMPLEX

C ZETA - Z2/Z1 IS THE IMPEDANCE RATIO.

C ZETA IS UNCHANGED ON EXIT.
C
C DEPTH REAL

C IS THE Z-COORDINATE OF THE BOUNDARY BETWEEN MEDIA I AND 2.

C DEPTH IS UNCHANGED ON EXIT
C

C ON OUTPUT

C

C G COMPLEX
C IS THE ACOUSTIC PRESSURE AT THE RECEIVER.

C

C GX,GY,GZ COMPLEX

C ARE THE DERIVATIVES OF G WITH RESPECT TO 12(1) .12(2) 12(3).
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C
C INTERNAL VARIABLES

C

PI - 4.0*ATAI(l.0)
ALPHA - I*ZETA
ID - 12(1)-Ili)
YD = X2(2)-11(2)
Z1 - X1(3)-DEPTH
Z2 = 12(3)-DEPTH

RST - SQRT(XD*XD+YD*YD)
ft = SQRT(ftST*RST+ZI*Z1)
S = 1ST/ft
C -Z1/R
SI = SIR
Cl -C/ft

Q -CSQRT(I*I-S*S)
P = ALPHA*C+Q
G -(-C/(2.0=PI*ft))*ALPHA=CEXP(CNPLX(o.0,Kl)(t-Z2*Q))/P
DQDTH =SC/
DGORST =G*(CNPLX(-S1 ,S1.K1.f)-(S1.Q+C1.DQDTH)/P

+ -CHPLX(0.0,Kl*Z2*C1)*DQDTH)
IF(ftST.GT.0.0) THEN

GX = DGDftST*(XD/ftST)
GY -DGDftST*(YD/tST)

ELSE
GX - (0.0,0.0)

GY = (0.0,0.0)
ENDIF
GZ = CKPLI(O0,-R1).iJ.G

RETURN
END
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D.13 Subroutine G22DER

G22DER calculates the components of the gradient of the acoustic pressure
at a receiver point in the lower medium due to a point source on the same side
as the medium, using equation (3.37). There are no subprograms referenced.
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SUBROUTINE G22DER(X2,X1,Ki,N,ZETA,G,GX,GY,GZ,DEPTH)

REAL X1(3),X2(3),K1
COMPLEX N,ZETA,G,GXGY,GZ

C THIS SUBROUTINE CALCULATES AN APPROXIMATION FOR THE GRADIENT OF
C THE ACOUSTIC PRESSURE O ONE SIDE OF AN INTERFACE

C DUE TO A POINT SOURCE ON THE SAME SIDE OF THE INTERFACE.
C CARTESIAN COORDINATES (X,Y,Z)

C ARE USED, THE INTERFACE HAS THE EQUATION Z-DEPTH, AIND THE MEDIUM
C OCCUPYING Z > DEPTH IS CALLED MEDIUM 1, THE MEDIUM OCCUPYING
C Z < DEPTH IS CALLED MEDIUM 2. THE SPATIAL DERIVATIVES OF THE
C APPROXIMATION ARE ALSO CALCULATED. NOTE THAT BOTH SOURCE AND
C RECEIVER ARE ASSUMED TO LIE IN MEDIUM 2.
C
C LET 11, 12 DENOTE PROPAGATION CONSTANTS IN TEE TWO MEDIUMS, AIND
C LET Z1, Z2 DENOTE THE IMPEDANCES OF THE TWO MEDIUMS. NOTE THAT THE
C INCIDENT WAVE IS ASSUMED TO BE
C
C -ALPHA*EXP(I*92*R)/(4*PI*R),
C
C WHERE R IS THE DISTANCE FROM THE SOURCE, AIND
C I = SQRT(-1).
C
C ON INPUT
C
C 12(I), REAL(3)
C 1-1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE
C OR THE RECEIVER.

C X2 IS UNCHANGED ON EXIT
C
C Xl(I), REAL(3)
C 1=1,2,3 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE
C OR THE RECEIVER. (EITHER XI CONTAINS THE SOURCE COORDINATES
C AID X2 THE RECEIVER COORDINATES OR VICE VERSA.)
C XI IS UICHAINGED 0 EXIT
C
C K1 REAL
C IS THE PROPAGATION CONSTANT OF MEDIUM 1.
C K1 IS UNCHANGED ON EXIT
C
C N COMPLEX
C N = K2/Ri IS THE REFRACTIVE INDEX.
C N IS UNCHANGED ON EXIT
C
C ZETA COMPLEX
C ZETA = Z2/Z1 IS THE IMPEDANCE RATIO.
C ZETA IS UNCHANGED ON EXIT
C
C DEPTH REAL
C IS THE Z-COORDINITE OF THE BOUNDIRY BETWEEN MEDIA 1 AND 2.
C DEPTH IS UNCHANGED ON EXIT
C
C ON OUTPUT
C
C G COMPLEX
C IS THE ACOUSTIC PRESSURE AT THE RECEIVER.
C
C GX,GY,GZ COMPLEX
C ARE THE DERIVATIVES OF G WITH RESPECT TO X2(1),12(2),X2(3).
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C
COMPLEX ALPHA,NINlVK2,Q,AQ,PRP,COl,IRK2jIRDK2,EXPI ,EXP2

COMPLEX FR,FRDASH ,GR,GRDASH,DRPDTH ,A
C

PI = 4.O*ATAN(I.O)
ALPHA = *ZETA
liv =(1.0,0.0)/I
K2 = RisE
XD - 12(l)-X1(l)
YD - 12(2)-X1(2)
ZI = X1(3)-DEPTH
Z2 = X2(3)-DEPTH
ZD = Z2-Zl
ZSUM = Z2+Z1
lISTS - XD*XD+YD*YD
RST - SQRT(RSTS)
R - SQRT(RSTS+ZD*ZD)
RDASH - SQRT(RSTS+ZSUM*ZSUM)
S = RST/RDASH
C - -ZSUN/RDASH
Q -CSQRT(IIEVNIV-SsS)
AQ = ALPHA*Q
P = C+AQ
RtP = (C-AQ)/P
CON (-1.O/(40PI))ALPHA
IRK2 =CMPLX(O.O,R)5R2
IRDK2 =CNPLX(0.0,RDASH)*K2

EXPi= CEXP(IRK2)
EXP2 -CEXP(IRDR2)
FR - EXPI/lI
FRDASH - EXP2/RDASH
G = COI.(FR + RP*FRDASH)
GR - (1RK2-(1.0,00O))*FR/(R*R)
GRDASH - (IRDR2-(I .0,0.0))*FRDASH/(RDASH*RDASH)

DRPDTH = (-(S+S))*ALPHA*(Q-(C.C)/Q)/(P*P)
IF(RST.GT.0.0) THEE

A = CON*(GR + RP*GRDASH - (C/(RST-R))*FRDASH*DRPDTH)
ELSE

EIF= COI.(GR + RP.GRDASH)

GY A AYD

GZ =CGlo(GR*ZD +RP*GRDASH*ZSUM + (S/ILDASH)*FRDASH.DRPDTH)

END
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D.14 Subroutine G11WVDP

G11WVDP calculates values of pressure at a receiver point due to a point
source above an impedance boundary, using the equation (3.45). The sub-
program that is referenced is:

e W: a subroutine to calculate the error function, erfc, see Price [110].
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SUBROUTINE G11WVDP(X2,XI,1,N,ZETA,G,DEPTH)

C

C THIS SUBROUTINE CALCULATES AN APPROXIMATION FOR THE ACOUSTIC

C PRESSURE O ONE SIDE OF AN INTERFACE DUE TO A POINT SOURCE ON

C THE SAME SIDE OF THE INTERFACE.

C CARTESIAN COORDINATES (X,Y,Z)

C ARE USED, THE INTERFACE HAS THE EQUATION Z-DEPTH, AND THE MEDIUM

C OCCUPYING Z > DEPTH IS CALLED MEDIUM 1, THE MEDIUM OCCUPYING

C Z < DEPTH IS CALLED MEDIUM 2. BOTH SOURCE AND RECEIVER ARE ASSUMED

C TO BE IN MEDIUM 1.

C

C LET KI, X2 DENOTE PROPAGATION CONSTANTS IN THE TWO MEDIA, AND

C LET Z1, Z2 DENOTE THE IMPEDANCES OF THE TWO MEDIA. NOTE THAT THE

C INCIDENT WAVE IS ASSUMED TO BE

C

C -EIP(I.KIR)/(4*PI*R),
C

C WHERE R IS THE DISTANCE FROM THE SOURCE, AND I - SQRT(-1).

C

C ON INPUT

C

C 12(I), REAL(3)

C 1-1,2,3 12 ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE

C OR THE RECEIVER.

C X2 IS UNCHANGED ON EXIT.

C

C 1(I), REAL(3)

C 1-1,2,3 Xl ARE THE X,Y,Z CARTESIAN COORDINATES OF EITHER THE SOURCE

C OR THE RECEIVER. (EITHER Xl CONTAINS THE SOURCE COORDINATES

C AND X2 THE RECEIVER COORDINATES OR VICE VERSA.)

C 11 IS UNCHANGED ON EXIT.

C

C Ki REAL

C K1 IS THE PROPAGATION CONSTANT OF MEDIUM 1.

C [1 IS UNCHANGED ON EXIT.

C

C N COMPLEX
C I = 12/K1 IS THE REFRACTIVE INDEX.
C I IS UNCHANGED ON EXIT.

C

C ZETA COMPLEX

C ZETA - Z2/Z1 IS THE IMPEDANCE RATIO.

C ZETA IS UNCHANGED 01 EXIT.
C

C DEPTH REAL

C IS THE Z-COnRDINATE OF THE BOUNDARY BETWEEN MEDIA 1 AND 2.

C DEPTH IS UNCHANGED ON EXIT.

C
C ON OUTPUT

C
C G COMPLEX

C IS THE ACOUSTIC PRESSURE AT THE RECEIVER

C

C THIS VERSION DATED 3RD DECEMBER, 1989

C

C ROUTINE W IS CALLED
C

REAL II(3),X2(3),Kl,DEPTH

COMPLEX N,ZETA,G,I,RP,BETA,PE,PE2,WIZ,F
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C
BETA1 .0/ZETA
I-CKpLZ(O.0,1 .0)
PI-4.O.ATAN(1 .0)

YD-X2(2)-Xl(2)
ZI=X1(3)-DEPTH
Z2-12(3)-DEPTH
ZD-Z2-ZI
ZSUN*Z2+Zl
RSTS=ID*XD+YD*YD
RST-S ci T ( STS )
R-SQRT(RSTS+ZD*ZD)
RDASH=SQRT(RSTS+ZSUM*ZSUN)
CTH-ZStJN/RDASH
RP-(CTH-BETA) /(CTH+BETA)
G--CEXP(I*K1*R)/(4.0*PI*R)-RP*CEXP(I*Ri.RDASH)/(4.0PI*RDAS)
PE-CSQRT(I.Kl*RDASE/2 .0)*(CTH+BETA)
PE2--I*PE
CALL V(PE2,VIZ)

F-i .0.I*SQRT(PI)*PE*HIZ
G-G-(1 .0-RP)*F*CEXP(I*K1*RDASH)/(4 .0*PI*RDASH)
RETURN

END
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D.15 Subroutine GDER

GDER calculates the magnitude of the principal singularity of equation
(5.1) and also the components of its gradient. There are no subprograms
referenced.

1

181

f



SUBROUTINE GDER(X2,X1,G,GX,GY,GZ)

REAL 11(3),X2(3)

COMPLEX G,GX,GY,GZ

C

C GDER CALCULATES THE MAGNITUDE AND THE COMPONENTS OF THE GRADIENT

C OF THE PRINCIPAL SINGULARITY, EXCLUDING THE FACTOR ALPHA.

C

C ON ENTRY

C

C X2(3) REAL

C CARTESIAN COORDINATES OF THE RECEIVER POINT

C Xl IS UICHANGED 01 EXIT.

C

C X1(3) REAL

C CARTESIAN COORDINATES OF THE SOURCE POINT

C Xl IS UNCHANGED ON EXIT.

C

C ON EXIT
C

C G COMPLEX

C THE MAGNITUDE OF THE PRINCIPAL SINGULARITY

C

C GI COMPLEX

C THE I COMPONENT OF THE GRADIENT OF THE

C PRINCIPAL SINGULARITY

C
C GY COMPLEX

C THE Y COMPONENT OF THE GRADIENT OF THE

C PRINCIPAL SINGULARITY

C

C GZ COMPLEX

C THE Z COMPONENT OF THE GRADIENT OF THE

C PRINCIPAL SINGULARITY
C
C INTERNAL VARIABLES

C

REAL CON,R,RINV,XD,YD,ZD,

C
CON - -7.957747155E-02

C CON - -1/(4*PI)
ID - I1(1)-X2(1)

YD - I1(2)-X2(2)

ZD - XI(3)-X2(3)

R - SQRT(XD*XD+YD*YD+ZD*ZD)

RINV - 1.O/R

G - CON.RINV

CON - CON*RINV*RIIV*RINV
GI CON*XD

GY * COleYD
GZ = CON*ZD

RETURN

END
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D.16 Subroutine GEOCIRCLE

GEOCIRCLE calculates values of area and the coordinates of the midpoints
of the boundary elements of a circular surface inhomogeneity using the the-
ory of section 5.1.2. There are no subprograms referenced.
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N%67

SUBROUTINE GEOCIRCLE(RAD,MN,,A.COOR)
PARAMETER(IMAX=200 ,MMAXIOO0,NMMAX-NMAX*MMAX)
REAL** RADAC(IMMAX) , COOR (3, NMAX)
INTEGER*2 M,N

C GOICECALCULAIES THE ARAOF ELEMENT J FOR A CIRCLE, THE
C COORDINATES OF THE MIDPOINTS.
C
C ON ENTRY
C
C RAD REAL
C THE RADIUS OF THE CIRCLE.
C RID IS UNCHANGED ON EXIT.
C
C M INTEGER
C THE CIRCULAR PATCH IS DIVIDED INTO N ANULI.
C N IS UNCHANGED ON EXIT.
C
C N INTEGER
C THE CIRCULAR PATCH IS DIVIDED INTO I SECTORS.
C N IS UNCHANGED ON EXIT.
C
C ON EXIT
C
C A REAL
C THE AREA OF ELEMENT J.
C
C COOR REAL
C THE CARTESIAN COORDINATES OF THE MIDPOINT OF ELEMENT J.
C
C INTERNAL VARIABLES
C

REIL.4 P1 ,THET ,RFRAC
INTEGER.2 11,12,J

C
PI-3-141592653
RFRAC-RAD/M
TNET-2 .0.PI!N
DO 030 11-1,1
DO 040 12-1,M

COOR(1 ,J)-(I2-O.5).RFRAC*COS((Il-0.5).THET)

COOR(2 ,J)=(I2-0.5).RLFRAC.SIN((Il-o.5).THET)
COOR(3,J)-0.o
A(J)0 . 5*THET*( (I2.RFRAC)..2-( (I2-1).RFRAC)..2)

040 CONTINUE

030 CONTINUEI

END
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D.17 Subroutine GEOSPHERE

GEOSPHERE calculates values of area, the coordinates of the midpoints
and the normals of the boundary elements of a sphere for the numerical
solution of equation (A.?). There are no subprograms referenced.

i
I
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SUBROUTINE GEOSPHERE(RAD,MN.A,COORNORM)
PARAMETER(NMAX=200 ,MMAX-100 ,NMMAX.NMAX.MMAX)
REAL.4- RADA(NAX) ,COOR(3,NMMAX) ,NORM(3,NMMAX)
INTEGER.2 M,N

C
C GEOSPHERE CALCULATES THE AREA OF ELEMENT J FOR A SPHERE, THE
C COORDINATES OF THE MIDPOINTS AND THE NORMAL VECTORS TO THE MIDPOINTS.
C
C ON ENTRY
C
C RAD REAL
C THE RADIUS OF THE SPHERE.
C RAD IS UNCHANGED ON EXIT.
C
C M INTEGER
C THE SURFACE OF THE SPHERE IS DIVIDED INTO K LATITUDINAL
C BANDS.
C M IS UNCHANGED ON EXIT.
C
C N INTEGER
C THE SURFACE OF TEE SPHERE IS DIVIDED INTO N LONGITUDINAL
C BANDS.
C N IS UNCHANGED ON EXIT.
C
C ON EXIT
C
C A REAL
C THE AREA OF ELEMENT 3. ONLY THE FIRST M ELEMENTS ARE
C CALCULATED.
C
C COOR REAL
C THE CARTESIAN COORDINATES OF THE KIDPOINT OF ELEMENT 3
C
C NORM REAL
C THE NORMAL VECTOR AT THE MIDPOINT OF ELEMENT J DIRECTED
C INTO THE SPHERE. ONLY THE FIRST M ELEMENTS ARE CALCULATED.
C
C INTERNAL VARIABLES
C

REAL*4 COZ(NMMAX) ,PI ,THET,ANG ,AI ,A2
INTEGER*2 11.12.3

C
P1=3.141592653
ANG-2.O*PI/l
THET.PI/M
DO 030 I1.1,1
DO 040 12-1,M
J-(I1-l).M+I2
ANl-(O.6.FLOAT(I2-1))*THET
AN2-FLOAT(I1-1 ) ANG
COOR(1 ,J)-RAD*SIN(AN1)*COS(AN2)
COOR(2 ,J)-RAD.SIN(ANI).SIN(AN2)

IF(I1 .EQ.1)THEN
AI.2*PI*RAD.RAD
A2.COS(FLOAT(12-1 ).THET)-COS(FLOAT(12)'THET)
A(J).A1.A2/N
COZ(J).RAD.COS( (O.5+FLOAT(I2-1)).THET)

ELSE
A(J)-A(12)
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COZ(J)=COZ(I2)
ENDIF
COOR(3 ,j)-COZ(J)
3031(1 ,J)-COOR(1 ,J)/RAD

3031(2 ,3)--COOR(2 ,J)/RAD
NORN(3,J)=-COOR(3 ,J)/RAD

040 CONTINUE
030 CONTINUE

RETURN
END
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D.18 Subroutine GEOSPHEROID

GEOSPHEROID calculates values of area, the coordinates of the midpoints
and the normals of the boundary elements of a spheroid using the theory of
section 5.1.1. There are no subprograms referenced.
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SUBROUTINE GEOSPHEROID(A,B,M,B,AREA,COOR,NOR,TESTRAD)

PARAMETER(IMAX-200,NMAXSOO,NMNAX-NMAX.MAX)
REAL*4 AB,AREA(NNKuX),COOR(3,NNmAX),NORM(3,NMNAX)
REAL*4 TESTRAD(NMAX)
IUTEGER*4 M,N

C
C GEOSPHEROID CALCULATES THE AREA OF ELEMENT J FOR AN OBLATE SPHEROID,
C THE COORDINATES OF THE MIDPOINTS AND THE NORMAL VECTORS TO THE MIDPOINTS.
C
C ON ENTRY
C

C A REAL
C THE MAJOR AXIS OF THE OBLATE SPHEROID.
C A IS UNCHANGED O EXIT.
C
C B REAL
C THE MINOR AXIS OF THE OBLATE SPHEROID.
C A IS UNCHANGED ON EXIT.
C
C N INTEGER
C THE SURFACE OF THE SPHEROID IS DIVIDED INTO M LATITUDINAL
C BANDS.
C M IS UNCHANGED ON EXIT.
C
C N INTEGER
C THE SURFACE OF THE SPHEROID IS DIVIDED INTO I LONGITUDINAL
C BANDS.
C N IS UNCHANGED ON EXIT.
C
C ON EXIT
C
C AREA REAL
C THE AREA OF ELEMENT J. OILY THE FIRST M ELEMENTS ARE

C CALCULATED.
C
c NORM REAL

C THE NORMAL VECTOR AT THE MIDPOINT OF ELEMENT I DIRECTED
C ITO THE SPHERE. ONLY THE FIRST M ELEMENTS ARE CALCULATED.

• C

C COOR REAL
C THE CARTESIAN COORDINATES OF THE MIDPOINT OF ELEMENT 3
C
C INTERNAL VARIABLES
C

REAL*4 COZ(NNAX),PI,THET,ANG,AI,A2,A12,BN2,THBIG(NNAX),ARC
REAL.4 ALBIG,RAD(WNAX),XHAT,ZHAT,XDASO.COORI(3),COOR2(3)
REAL*4 RAD1,RAD2
IITEGER*4 II,I2,J

C
REAL*4 RHAG

PI-3.141692653
AIG*2.0*PI/I
THET=PI/M
AM2.1.0/(A.A)
BM2-1.O/(BeB)
DO 030 I11,1
DO 040 12=1,M
J=(II-1)*M I2

ALBIOG(FLOAT(II-1)).ANG
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IF(I1.EQ.1)THEI
TBBIG(I2)=(0. S+FLOAT(I2-1) )*THET
RAD<12)=1 .0/SQRT(AM2*SIB(THBIG(I2))**2+

A BN2*COS(THBIG(I2))**2)
RAD1=1 .0/SQRT(AN2*SIN((FLOAT(I2-1))*THET)**2+

A BM2*COS((FLOAT(I2-1))*THET)**2)
RAD2I .0/SQR1(AN2.SIN((FLc3AT(I2))*THEr)**2+

at BM2*COS((FLOAT(I2))*THET)**2)
COORIi1)-RADI*SII(FLOIT(I2-1 )*TBET)
COOR1(2)0.0
COORi (3)-RAD1*COS(FLOAT(I2-1 )*THET)
COOR2(1)-RkD2*SII(FLOLT(I2) *TRET)
COOR2 (2) =0.0
COOR2 (3)=RAD2.COS (FLOAT(I2) eTHET)
ARC-RAAG (COOR2 ,COOR1)
AREI(12)-2*PI*RAD(I2)*SII(THBIG(I2) ).ARC/N
COZ(I2)=RAD(I2)*COS(TBBIG(I2))

ELSE
AREA(J)AREA(12)
COZ(J)-COZ(I2)

ENDIF
COOR(1 ,J)=RAD(I2)*SII(THBIG(I2))*COS(ALBIG)
COOR(2 3)-RAD(I2)*SIN(TBBIG(I2) )*SIN(ALBIG)
CODR(3,j)=COZ(J)
IDASH-SQRT(COOR(1 ,J)**2+COOR(2 ,J)**2)
IF ((I0.tSHOXDASH)/(A*A).GT.1.0) THEN
AhO0.0

ELSE
AA-SQRT(1 .0-(XDASH*XDASH)/(A*A))*A*A/(B*IDASH)

EIDIF
XHAT-SQRT(1 .0/(1 .0+AA*AA))
ZHAT-SQRT(AA*AA/((A.A)+I .0))
IF (COnR(l,J).GT.0.0) XHAT--XHAT
IF (COOR(3,J),GT.o.O) ZHAT--ZHAT
NIRM(1 ,J)=XHAT.ABS(COS(ALBIG))
IaRN(2 ,J)-XHAT*ABS(SII(ALBIG))
IF((CaOR(1 ,J) .GT.0.0) .AND. (COOR(2,J) .LT.0.0))

a NORM(2,3)=-NORM(2,J)
IF((CODII(1,J).LT.0.0).AID. (COOR(2 ,J).GT .0.0))

A NORNl(2,J)--IfORM(2,J)

NOIW(3,J)-ZHAT
040 CONTINUE
030 CONTINUE

RETURN
END
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D.19 Subroutine LEGNDR

LEGNDR calculates values of the Legendre polynomial and its derivative.
There are no subprograms referenced.

1I
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SUBROUTINE LEGNDR(X ,N,P,PDER)
INTEGER I
REAL X, P(N+1),PDER(N+1)

C
C THIS SUBROUTINE CALCULATES P(I,X) AID ITS DERIVATIVE,
C FOR I - 0,1 ,..., N, WHERE P(I,X)
C DENOTES THE LEGENDRE POLYNOMIAL OF DEGREE I AND ARGUMENT 1, AS
C DEFINED IN CHAPTER 22 OF [1] . THE METHOD OF CALCULATION USED IS
C FORWARD RECURRENCE, WHICH IS STABLE IF I LIES BETWEEN -1 AND 1.
C
C ON ENTRY:
C
C X REAL
C I SHOULD LIE IN THE RANGE 0 -LE. I .E. 1.
C
C N INTEGER
C N IS THE ORDER OF THE LARGEST DEGREE LEGENDRE POLYNOMIAL WHICH
C IS TO HE CALCULATED. N MUST BE A POSITIVE INTEGER.
C
C X, N ARE UNCHANGED ON EXIT.
C
C ON EXIT:
C
C P REAL(N+1)
C P(I+l) IS EQUAL TO P(I,X), FOR I =0,1..N.
C
C PDER REAL(N+1)
C THE DERIVATIVE OF P
C
C THIS VERSION DATED 9TH JANUARY 1990
c
C REFERENCE;
C
C [1] M ABRAMOWITZ AND I A STEGUN 'HANDBOOK OF MATHEMATICAL FUNCTIONS'
C NEW YORK: DOVER.
C
C NOW CARRY OUT THE FORWARD RECURRENCE TO CALCULATE P.
C

P(l) = 1.0
P(2) = X

PDER()0.0o
PDER(2)-l .0

DO 10 1 - 2,1
C
C THE FOLLOWING EQUATION, USED TO CARRY OUT THE FORWARD
C RECURRENCE, IS A REARRANGEMENT OF EQN. (8.5.3) IN EI] .

C I(~)-(Ill**(I II*~-)/
IF(I.EQ.1 .0)THEN

PDER(I+1)=I.(I+1 .0)12.0
ELSEIF(I.EQ.-1.0)THEN
PDER(I+)((-).(I+1)).I.(I1 1.0)/2.0

ELSE
PDER(I+)1.*(X*P(1+1)-P(I))/(X*X-1 .0)

ENDIF
10 CONTINUE

END
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D.20 Complex function NDFG

NDFG calculates the normal derivative of the free field Green's fuction.
There are no subprograms referenced.

I
I

193



COMPLEX FUNCTION NDFG(X,K,BCOOR,ACOOR,IOR)

COMPLEX*8 K
REAL*4-1

C NDFG CALCULATES THE NORMAL COMPONENT OF THE FIRST DERIVATIVE OF THE
C FREE-FIELD GREEN'S FUNCTION GIVEN THE MAGNITUDE OF THE VECTOR
C BETWEEN THE TWO POINTS AND THE COMPLEX PROPAGATION CONSTANT.
C

C O1 ENTRY:
C
CX REAL
C MAGNITUDE OF THE VECTOR BETWEEN THE TWO POINTS
C
C K COMPLEX
C COMPLEX PROPAGATION CONSTANT

COMPLEX*8 I,DFG
REAL*4 PI,MGI,MGJ,MGK,BCOOR(3),ACOOR(3),NOR(3)

C
I-CMPLX(0.O,1.0)
PI-3.141592653
DFG-(1.0-(I*K*X))*CEIP(I*K*X)/(4.0*PI*X*X)
MGI-(BCOOR(1)-ACOOR(1))*NORM(1)
MGJ-(BCOOR(2)-ACOOR(2))*NORM(2)
NGK-(BCOOR(3)-ACOOR(3))*NORN(3)
NDFG-DFG*((MGI+MGJ+MGR)/X)
RETURN
END
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D.21 Subroutine PC

PC calculates value of complex propagation constant for the lower medium
using equation (3.60). Reference to other subprograms are:

e CMPBJ: a subroutine from Sastry [109I.

I

I
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SUBROUTINE PC(F,NPR,SFR,SIGNA,POROS,PROPC)A
REAL*4 F, NPR, SFR, SIGMA, POROS
CONPLEX*8 PROPC

C PC CALCULATES A SINGLE VALUE OF COMPLEX PROPAGATION CONSTANT
C
C ON ENTRY
C

C F REAL
C FREQUENCY
C
C NPR REAL

C GRAIN SHAPE FACTORI

C SF1 REAL
C PORE SHAPE FACTOR RATIO. N.H. THIS IS DOUBLE
C THE VALUE USED IN THE OLD PREDICTION ROUTINES.

C SIGMA REAL

C FLOW RESISTIVITY
C
C POROS REAL
C POROSITY
C
C ON EXIT
C
C PROPC REAL
C UN-NORMALISED PROPAGATION CONSTANT
C
C2 ROUTINE CMPBJ IS CALLED
C
C THIS VERSION DATED 8TH JANUARY, 1990.
C
C INTERNAL VARIABLES
C

REAL*4 LAMBDAP,PI,CF,GAMMA,PRANDTL,Q,SQRTNP,RHOF,AE,OMEGA
COMPLEX*8 I,Y,T,YP,TP,ZKKB,JO,JI
INTEGER*2 NI

C
P1-4.0.ATAN(l .0)
I-CHPLX(0.0,1 .0)
CF-343.0
GMMI-1 .4
PRANDfL-0.76
Q-SQRT (POROS..-NPR)
SQRTNP-SQRT (PRANDTh)

RHOF*1 .2
AE.SQRT(8.0.(Q.*2)/(POROS.SIGMA))
OKEGA-2 .0PI.F
LAMBDAP-(AE/SFR).((OMEGA.RHOF)..0 .S)
Y-SQRTNP*LAMBDAP.(I*.0. 5)

CALL CMPBJ(Y.51,JO)
111
CALL CMPBJ(Y,NI,JI)
T-J 1/JO
YP-LAMBDAPO(I..O .5)

CALL CMPBJ(YPNI ,JO)
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CALL CNPBJ(YPN1,Ji)
TP31 /30
PRDPC-((1.0+2.0((GAIJU-1.0)/Y)*T)/(1 .o-(2.0/YP)*TP)
A *(Q*OHEGA/CF)**2)**o.5
RETURN
END
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D.22 Subroutine PLNSCATCOE

PLNSCATCOE calculates values of the complex coefficients using equation i
(B.6). Reference to other subprograms are:

" SPHBES: see section D.25; I
" SPHHNK: see section D.26.

1
I
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SUBROUTINE PLNSCATCOE(X,AN)

INTEGER I
COMPLEX X,A(1+1)

C
C PLBSCATCOE CALCULATES THE COEFFICIENTS FOR CALCULATION

C OF THE SCATTERED FIELD BY A RIGID SPHERE IN AN INFINITE
C HONOOEEOUS MEDIUM.
C
C O ENTRY:
C
C X COMPLEX
C THE ARGUMENT KSR
I X IS UNCHANGED 0 EXIT.
C
C I INTEGER
C N IS THE ORDER OF THE LARGEST ORDER AND MUST BE
C A POSITIVE INTEGER.
C I IS UUCHANGED ON EXIT.
C
C ON EXIT:
C
C A COMPLEX
C THE COEFFICIENTS AN.
C
C ROUTINES SPHBES AND SPHHNK ARE CALLED.

C
C INTERNAL VARIABLES
C

COMPLEX IM,H(1000),HDER(1000),3(1000),JDER(1000)

INTEGER L,M
C

R-10
CALL SPBBES(X,N,M,J,JDER)
CALL SPHHNK(X,N,HHDER)
IN = (0.0,1.0)

A(1)--JDER(1)/HDER(1)
A(2)-(O.O,-3,.0)JDER(2)/BDER(2)
DO 010 L-3,1+1
ML-1

IM-CMPLX(-AIAG(IM),REAL(IM))
A(L)--(M+M+I)eIM.JDER(L)/HDER(L)

010 CONTINUE
END
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D.23 Complex function PLNSCATFLD

PLNSCATFLD calculates value of pressure field using equation (B.4). Ref-
erence to other subprograms are:

* LEGNDR: see section D.19;

* SPHHNK: see section D.26.
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COMPLEX FUNCTION PLNSCATFLD(Z,THETA ,AN)
INTEGER I
COMPLEX 1(5+1),Z
REAL THETA

C
C PLNSCATFLD CALCULATES THE SCATTERED FIELD AT THE RECEIVER BY A
C RIGID SPHERE IN AN INFINITE HOMOGENEOUS MEDIUM.
C
C O1 ENTRY:
C
C Z COMPLEX
C VALUE OF HeR.
C Z IS UNCHANGED ON EXIT.
C
C THETA REAL
C ANGLE OF THE RECEIVER POINT.
C THETA IS UNCHANGED ON EXIT.
C
C A COMPLEX
C THE ARRAY CONTAINING THE COEFFICIENTS CALCULATED BY
C SUBROUTINE PLNSCATCOE.
C A IS UNCHANGED 01 EXIT.
C
C N INTEGER
C N IS THE ORDER OF THE LARGEST ORDER.
C I RUST BE A POSITIVE INTEGER.
C N IS UNCHANGED ON EXIT.
C
C ROUTINES LEGNDR AND SPHHNK ARE CALLED.
C
C INTERNAL VARIABLES
C

COMPLEX fl(1000) ,EDEt(100O) ,SUlq

C REAL 1,P(1000)

X - COS(THETA)
CALL LEGNDR(X,N,P)

CALL SPHHR(Z,N,H.HDER)

SUN=(0.O,O.0)
D0 010 M - 1,1+1
SUm=SUN+A(R) .P(M)*H CM)

010 CONTINUE
PLISCATFLD-SUN

EUD
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D.24 Function RMAG

RMAG calculates the distance between two points, both in cartesian coor- f
dinates. There are no subprograms referenced.

2
I
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FUNCTION RA G(RA ,.B)
REAL*4 RA(3),RB(3)

C
C REAG CALCULATES THE MAGNITUDE OF THE VECTOR (RB - SA)

C
C ON ENTRY

C
C RA(3) REAL

C CARTESIAN COORDINATES OF THE FIRST VECTOR

C

C RB(3) REAL
C CARTESIAN COORDINATES OF THE SECOND VECTOR

C
REAL*4 R1,R2,R3

C
R.(RB(1)-RA(1))*.*2

R2-(RB(2)-RA(2))**2

,3=(RE(3)-PLA(3))**2
RJMAG-SQRT(RI+R2+R.3)

RETURN

END

I
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D.25 Subroutine SPHBES

SPHBES calculates values of the spherical Bessel function and its derivative.
There are no subprograms referenced.
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SUB ,OUTINE SPHBES(Z,N,M,BES,BESDER)

INTEGER N, M
COMPLEX Z, BES(N+I), BESDER(N+)

C
C THIS SUBROUTINE CALCULATES AN APPROXIMATION TO J(I,Z) AND JD(I,Z),
C FOR I = 0,1 ,...,N, WHERE J(I,Z) DENOTES THE SPHERICAL BESSEL
C FUNCTION OF THE FIRST KIND OF ORDER I AND ARGUMENT Z, AS DEFINED
C IN 10.1.1 OF [1], AND 3D(I,Z) DENOTES ITS FIRST DERIVATIVE
C WITH RESPECT TO Z. THE METHOD OF CALCULATION OF J(I,Z) IS BACKWARD
C RECURRENCE. THE RECURRENCE IS STARTED FROM I = 52 :- ABS(Z)+N+10,
C USING THE STANDARD LARGE ORDER APPROXIMATION FOR J(N2,Z) AND

C J(N2-1,Z) ([I], EQUATION (9.3.1)).
C

C 0 ENTRY:
C
C Z COMPLEX
C Z SHOULD LIE IN THE HALF-PLANE RE Z GE. 0, AND THE ALGORITHM
C WILL CALCULATE MORE ACCURATELY THE NEARER Z IS TO THE REAL AXIS.
C
C N INTEGER
C N IS THE ORDER OF THE LARGEST ORDER BESSEL FUNCTION WHICH IS TO

C BE CALCULATED. I MUST BE A POSITIVE INTEGER.

C

C M INTEGER

C THE LARGER M IS, THE MORE ACCURATE ARE THE APPROXIMATIONS TO

C THE BESSEL FUNCTIONS CALCULATED, BUT TOO LARGE A VALUE WILL

C INCREASE THE COMPUTER TIME USED UNNECESSARILY, AND MAY
C LEAD TO UNDERFLOW. A VALUE IN THE RANGE 0-10 IS SUGGESTED.

C

C Z, 1, M ARE UNCHANGED ON EXIT.
C
C ON EXIT:
C
C BES COMPLEX(N+1)

C BES(I+) IS AN APPROXIMATION TO J(I,Z), FOR I = 0,1,...,N.

C

C BESDER COMPLEX(N+1)
C BESDER(I+I) IS AN APPROXIMATION TO JD(I,Z), FOR I - 0,1,...,N.
C
C REFERENCE:

C

C [1] M ABRAMOWITZ AND I A STEGUN 'HANDBOOK OF MATHEMATICAL FUNCTIONS'
C NEW YORK: DOVER.

C

C INTERNAL VARIABLE DECLARATIONS

C

REAL E

INTEGER 55,12,I,I1

COMPLEX ZZ,JI,JO,JTEMP,ALPHA

C
C THE FUNCTION JAPPRX(NN,ZZ) DEFINED BELOW IS THE LARGE ORDER
C APPROXIMATION TO J(NN,ZZ), GIVEN AS EQUATION (9.3.1) IN (I).
C

COMPLEX JAPPRI

JAPPRX(11,ZZ) = 0.5*(ZZ*(E/(N+1+1)))**(NN+O.5)/SQRT(1N*ZZ)

E - EXP(1.O)
C
C NOW START THE BACKWARD RECURRENCE WITH THE APPROXIMATE CALCULATION
C OF J(N2,Z).
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C
C

N2-MAX(NIIT(1 5*ABS(Z)) ,N)+5

C 32 - .SOABS(Z)+M+!0
31 - JAPPRX(N2,Z)
JO - JAPPRX(N2-1,Z)
DO 10 1 - 2-2,1-1,-i

C
C THE FOLLOWING EQUATION, USED TO CARRY OUT IHE BACKWARD
C RECURRENCE, IS A REARRANGEMENT OF EQI. (10.1.19) IN (1).
C

JTEMP = (I+I+3)*JO/Z - 31
J1 = Jo
J0 = JTEMP

C
C AT THIS POINT JO AND 31 APPROXIMATE 3(I,Z) AD J(I+1,Z),
C RESPECTIVELY.
C
10 CONTINUE

BES(N+1) = 31
BES(NM JO
DO 20 I 5 -2,0,-i

C THE FOLLOWING EQUATION, USED TO CARRY OUT THE BACKWARD
C RECURRENCE, IS A REARRANGEMENT OF EQI. (10.1.19) IN [1J.
C

BES(I+l) = (I+1+3)*BES(I+2)/Z - BES(I+3)
20 CONTINUE
C
C TO CORRECT ERRORS IN BESCI) CAUSED BY USING AN APPROXIMATION TO
C START THE BACKWARDS RECURaENCE, THE VALUES BES(I). I 1 1,2-.. N+l,
C ARE NOW NORMALISED.
C

Jo c SIl(Z)/Z
C
C THIS IS THE EXACT VALUE OF i(O,Z).
C

ALPHA = 3/BES(l)
BES~i) =JO

DO 30 I1 2,5+1

BES(I) - ALPHA*BES(I)
30 CONTINUE
C
C THE EVALUATION OF THE ARRAY DES IS NOW COMPLETED. THE DERIVATIVES
C OF THE BESSEL FUNCTIONS ARE NOW CALCULATED, USING EQUATION (10.1.20)
C iN (1].
C

BESDERMi - -BES(2)
DO 40 1 - 1,5

BESDER(I1) - BES(I) - I1.BESCI1)/Z
40 CONTINUE

END
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D.26 Subroutine SPHHNK

SPHHNK calculates values of the spherical Hankel function and its deriva-
tive. There are no subprograms referenced.

I
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SUBROUTINE SPHHIK(Z,N,HIK,HNKDER)
INTEGER I
COMPLEX Z, HNK(N+1), HNKDER( I+)

C
C THIS SUBROUTINE CALCULATES AN APPROXIMATIOI TO H(I,Z) AND HD(I,Z),
C FOR I = 0,1,...,N, WHERE H(I,Z) DENOTES THE SPHERICAL BESSEL
C FUICTIOI OF THE THIRD KIND OF ORDER I AID ARGUMENT Z, AS DEFINED
C IN 10.1.1 OF [1] (H(I,Z) :- J(I,Z) + II*Y(I,Z), WHERE J(I,Z) AND
C Y(I,Z) DENOTE THE SPHERICAL BESSEL FUNCTIONS OF FIRST AID SECOND
C KINDS RESPECTIVELY, AIND II = SQRT(-1)). HD(I,Z) DENOTES THE FIRST
C DERIVATIVE OF H(I,Z) WITH RESPECT TO Z. THE METHOD OF CALCULATION
C OF H(I,Z) IS FORWARD RECURRENCE, WHICH IS STABLE AT LEAST PROVIDED
C Z IS NOT TOO FAR FROM THE POSITIVE REAL AXIS.
C
C ON ENTRY:
C
C Z COMPLEX
C Z SHOULD LIE IN THE HkLF-PLANE RE Z GE. 0, AND THE ALGORITHM
C WILL CALCULATE MORE ACCURATELY THE NEARER Z IS TO THE REAL AXIS.
C
C N INTEGER
C I IS THE ORDER OF THE LARGEST ORDER BESSEL FUNCTION WHICH IS TO
C BE CALCULATED. N RUST BE A POSITIVE INTEGER.
C
C Z, N ARE UNCHANGED ON EXIT.
C
C ON EXIT:
C
C HNK COMPLEX(N+1)
C HNK(I+l) IS AN APPROXIMATION TO H(I,Z), FOR I = 0,1,...,N.
C
C HERDER COMPLEX(N+1)
C HIRDER(I+1) IS AN APPROXIMATION TO BD(I,Z), FOR I = 0,1. N.
C
C REFERENCE:
C
C [1] M ABRAMOWITZ AND I A STEGUN 'HANDBOOK OF MATHEMATICAL FUNCTIONS'
C NEW YORK: DOVER.
C
C INTERNAL VARIABLE DECLARATIONS

C
INTEGER I,1

C
C NOW CARRY OUT THE FORWARD RECURRENCE TO CALCULATE HEK.
C

HNK(l) = (O.O,-1.O)*EXP((O.O,1.0)*Z)/Z

HIK(2) = HNI(1)*((1.0,O.O)/Z-(O.O,1.0))
DO 10 I - 2,N

C
C THE FOLLOWING EQUATION, USED TO CARRY OUT THE FORWARD

C RECURRENCE, IS A REARRANGEMENT OF EQN. (10.1.19) IN [1.
C

HNK(I+1) - (I+I-1)*HNK(I)/Z - HNK(I-l)
10 CONTINUE
C
C THE EVALUATION OF THE ARRAY HNK IS NOW COMPLETED. THE DERIVATIVES
C OF THE BESSEL FUNCTIONS ARE NOW CALCULATED, USING EQUATION (10.1.20)
C IN [1].
C
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iIURDERt(1) - -uUK(2)
DO 20 1 - i.E

Ii - 1+1
RNKDER(1l) = ilK(I) -I1.HNK(I1)/Z

20 CONTINUE
END
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D.27 Subroutine ZC

ZC calculates value of characteristic impedance as given by equation (3.60). i
There are no subprograms referenced.

[

I

i
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SUBROUTINE ZC(F ,PROPC ,CDENS .ZR)
REAL*4 F
COMPL6X'B PROPC ,CDENSZR

C
C
C ZC CALCULATES A SINGLE VALUE OF CHARACTERISTIC IMPEDANCE,
C
C ON ENTRY
C
C F REAL
C FREQUENCY
C
C PROPC COMPLEX
C COMPLEX PROPAGATION CONSTANT
C
C COENS COMPLEX
C COMPLEX DENSITY
C
C ON EXIT
C

C ZR COMPLEX
C RELATIVE (I.E. NORMALISED WRT AIR) CHARACTERISTIC IMPEDANCE
C
C THIS VERSION DATED 8TH JANUARY, 1990.
C
C INTERNAL VARIABLES
C

COMPLEX*8 I
REAL.4 P1 ,RHOF ,OMEGA ,CF

C
PI-4.O.ATAN(1 .0)
I-CPLX(0.0,1 .0)
RHOF1 .2

OMEGA;2.0*PI*F
CF-34 .
ZR-(CDENS*OUEGA)/ (PROPCeRHOF.CF)
RETURN
END
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D.28 Subroutine ZL

ZL calculates value of the surface impedance of a rigid-backed layer as given
by equation (4.1), with Z2 given by equation (3.61). Reference to other
subprograms are:

* CCOTH: see section D.1

I
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SUBROUTINE ZL(F,PROPC,CDENSSD,ZR)
COMPLEX*8 PROPC.CDENS ,ZR
REAL.'. F,D

C
C ZL CALCULATES A SINGLE VALUE OF THE SURFACE IMPEDANCE OF A
C RIGIDLY-BACKED LAYER.
C
C ON ENTRY
C
C F REAL
c FREQ~UENCY
C
C PROPC COMPLEX
C COMPLEX PROPAGATION CONSTANT
C
C CDENS COMPLEX
C COMPLEX DENSITY
C
C D REAL
C LAYER DEPTH
C
C ON EXIT
C
C 11. COMPLEX
C SURFACE IMPEDANCE
C
C THIS VERSION DATED STH DECEMBER, 1989.
C
C SUBROUTINE CCOTB IS CALLED.
C
C INTERNAL VARIABLES
C

COMPLEX*8 I,IKD,IKD1 ,ZC,CCOTH
REAL*4 P1 ,RHOF,OMEGA .CF
P1-4.O.ATAN(1 .0)
I.CHPLX(0.O,1 .0)
RHOF-1.2
ONEGA.2 .0*PI*FI CF-343 .0
ZC-(CDENS.ONEGA)/ (PROPC.RHOF.CF)
IKD--I*PROPC*D
I D .CCOTH(IKD)
ZR.IKDI.ZC
RETURN
END
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D.29 Subroutine ZSPHERE

ZSPHERE calculates value of the surface impedance induced by a rigid
sphere embedded within a rigid porous medium as given by equation (4.11).
Reference to other subprograms are:

* LEGNDR: see section D.19;

" SPHBES: see section D.25;

" SPHHNK: see section D.26. I
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SUBROUTINE ZSPHERE(KI,K2,R,ZI,Z2,THETAA,N,RADIUS,Z)
INTEGER I
COMPLEX A(N+I),12,Z2,Z
REAL K1,THETA,R,RADIUS,ZI

C
C ZSPHERE CALCULATES VALUES OF INDUCED SURFACE IMPEDANCE DUE TO AN EMBEDDED
C SPHERE.
C
C ON ENTRY:
C
C K1 REAL
C PROPAGATION CONSTANT OF THE UPPER MEDIUM
C 11 IS UNCHANGED ON EXIT.
C
C 12 COMPLEX
C PROPAGATION CONSTANT OF THE LOWER MEDIUM
C 12 IS UNCHANGED ON EXIT.
C
C REAL
C DISTANCE TO THE MEASUREMENT POINT
C R IS UNCHANGED ON EXIT.
C

C Z1 REAL
C IMPEDANCE OF THE UPPER MEDIUM
C ZI IS UNCHANGED ON EXIT-
C
C Z2 COMPLEX

C IMPEDANCE OF THE LOWER MEDIUM
C Z2 IS UNCHANGED ON EXIT.
C
C THETA REAL

C ANGLE
C THETA IS UNCHANGED ON EXIT.

C
C A COMPLEX
C COEFFICIENT ARRAY
C A IS UNCHANGED ON EXIT.
C
C N INTEGER

C I IS THE ORDER OF THE LARGEST ORDER.
C N MUST BE A POSITIVE INTEGER.

C N IS UICHANGED O EXIT.
C
C RADIUS REAL
C RADIUS OF THE SPHERE
C RADIUS IS UNCHANGED ON EXIT.
C

C Z COMPLEX
C INDUCED RELATIVE SURFACE IMPEDANCE
C Z IS UNCHANGED ON EXIT.
C
C THIS VERSION DATED 16TH JANUARY, 1989.
C
C CALLS SUBROUTINES LEGNDR, SPHBES, SPHHNK.
C
C INTERNAL VARIABLES
C

COMPLEX ALPHA,ALPHAINV,DRPDZ,H(1000).HDER(1000),I,IM,J(1000)
COMPLEX JDER(1000),PRS,RI,RI2INV,RP,RPIM,RPIP,PP,QQ
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COMPLEX VRSA,VRSB,VRSCX,VRSCN,VRSCZ,VRS .1121
REAL C,CT,P(1000),PDER(1000),PI,S,ST,ST2

C

PI-4.0*ATAN(1 .0)

CT-COS(CTHETA)
ST-SIN(THETA)
C-COS (P1-THETA) S-SI(PI-HETI
I=(0.0,1 .0)
R1.12/11

THETAC-ASII(ABS(KI/K2))
R121EV-1 .0/(R1*Rl)I
Z12R-12*R
ALPHA-(Z2*12)/(Z1* 11)
ALPHAIIV.1 .0/ALPHA

RP-(ALPHAINV.C-SQRT(RI2INV-S**2) )/(ALPHAINV.C+SQRT(RI2INV-S**2))
RP1P=1 .0+11'

QQ-CSQRT(R1215V-S*S)
PP-C+ALPBA*QQ
DRPDZ--((S+S).ALPHA* (QQ-(C*C)/QQ)/(PP*PP) )*S/R

CALL LEGNDR(CT,N ,P,PDER)
CALL SPHBES(ZI2R,N ,N,J ,JDER)
CALL SPHHNK(ZX2R.N .H,HDER)
VRSA-P(I) *12* (JDER(1)+A (1) HDERC 1) RPIN)
VISA-VRSA+P(2).12. (3 .0*I.JDER(2)+A(2)*HDER(2)*RPIM)
VRSB-PDERC1).ST*(J (1)+A(1).H(1)*RP1N)/R
VRSB-VRSB+PDERC2)*ST.(3 .0*I*3(2)+A(2).H(2)*RPXN)/R
VRSCZ-A C ) .1 C ) 1(1) +A (2) *P(2) *H(2)
PRS-P(1)*(J (1)+A(1 ).H(1).RP1P)
PRS-PRS.PC2)0C3. 0*I*J(2)+A(2)*H(2)*RPIP)

DO 010 M - 3,1+1

IN-CMPLX(-AIMAG(IM) ,REAL(IM))
VRSA.VRSA+P(M)*12*((2*M+1 .0)*IM*JDER(N'+A(M)*HDER(N)*RPIM)
VfSBVRSB+PDER(N)*ST*((2.M+1)*IM.3(M>.+A(M)*H(N)*RP1M)/R
VRSCZ=VRSCZ+A(M) *P(M) SH(N)
PRS-PRS+P(M).((2.0.M+l .0)*IM*J(N)+A(N)*H(M).RPIP)

010 CONTINUE
V RSCZ-VIS C * DRPDZ
VRS*-I. (-VRSA.C+VRSB*S+VRSCZ) / (2*12)
Z-PRS/VRS
z-z/z1
END
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Appendix E

Surface waves at an interface between air
and a poroelastic medium
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ABSTRACT

I
Using a modified Biot theory dispersion equations are derived both for a rigid
porous half space and for a poroelastic half space. That for the former case has
a single solution corresponding to the surface wave excited by a point source
over rigid porous ground. Numerical search shows that, for parameter values
char3cteristic of a dry soil, the dispersion equation for the interface between air
and air-filled poroelastic half space has three possible solutions corresponding
to the rigid porous case, an air-coupled pseudo-Rayleigh mode and a new fast I
surface mode with a speed slightly less than the bulk P-wave speed. The
sensitivities of these three modes to porosity, and elastic parameters are
investigated.
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INTRODUCTION

Considerable effort has been devoted in the literature on the surface
wave component that emerges from analysis of the field due to a point
source above an absorbing plane [1,2] whose acoustical properties are
provided, either by a rigid-framed porous ground model or by empirical
relationships. A relatively straightforward deduction of the existence of
such a surface wave type solution at a plane interface in air has been
restricted to that over a rigid comb-like structure [3]. Most ground surfaces
are both porous and elastic. Indeed a simple double layer poroelastic
model of the ground structure has been used successfully to account for
the magnitude and frequency dependence of acoustic-to-seismic
coupling [4]. The possibility of an air-coupled elastic Rayleigh-type wave
at the ground surface has been admitted by seismologists for several
decades [5-7].

It should be straightforward to show the possibility of both types of surface
wave at an air/air-filled poroelastic granular interface corresponding to a
soil surface. It is the purpose of this paper to provide such a
demonstration where the lower medium is simply a poroelastic half space
and where the roots of the appropriate dispersion equation are found by
numerical search.

Surface waves on a poroelastic half space have been studied
theoretically for many years. A frequent starting point has been Biot's
phenomenological theory for wave propagation in a fluid-saturated
poroelastic medium [9]. This predicts the existence of two longitudinal
wave types and one transverse wave type. All the waves represent
inertial and viscous coupled motion of the fluid and solid constituents. An
early study was presented by Jones [8]. He examined surface waves in a
poroelastic half space in contact with a vacuum by considering the
coupled transverse wave and only one of the two possible longitudinal
waves. It is well known that in general the slower longitudinal wave is
highly attenuated, so a surface wave containing only the transverse wave
and the faster longitudinal wave can be regarded as a far field
approximation. Under such an approximation Jones showed the
existences of Rayleigh type waves on a poroelastic half space.
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Later, Tajuddin [10] presented a study of poroelastic Rayleigh waves
containing all three types of bulk waves, ie the transverse wave, the slow
and fast longitudinal waves. But in his study, he neglected the damping
terms in the Biot's equations of motion [6] for poroelastic media. With this
assumption, Tajuddin found that only one surface wave type, again a
Rayleigh type wave, is possible on a poroelastic half space.

More recently, Feng and Johnson [11] have predicted that three surface
modes are possible when the effect of a fluid above a fluid-saturated
poroelastic half space is considered. They examined the high frequency
case so that the frequency correction function for viscosity is assumed to
be a constant. According to Feng and Johnson, the three possible modes
may be identified as a true surface mode, a pseudo-Stoneley mode and a
pseudo-Rayleigh mode respectively. The true surface mode always has
a speed less than that of the slowest bulk wave speed, ie that of the slow
longitudinal wave. The speed of the pseudo-Stoneley mode is predicted
to be faster than that of the slowest bulk mode but slower than the rest of
the bulk modes. The predicted pseudo-Rayleigh mode at a fluid/porous
medium boundary has a speed faster than those of the slowest bulk
poroelastic mode and the bulk fluid mode, but slower than the bulk shear
mode.

A subsequent experimental study by Mayes et al [12] of waves at a
water/water-saturated glass beads interface at ultrasonic frequencies (of
the order of MHz) has validated the prediction of these three surface
modes. However, they find that the fastest surface wave mode,
corresponding to the mode identified as a pseudo-Rayleigh mode by
Feng and Johnson [11] consistently has a higher speed than that of the

bulk shear mode.

Through a study of the incidence of a spherical surface wave on a
poroelastic half space, Attenborough et al [12] predicted that in the light
fluid limit, such that the density and stiffness of the entrained fluid are
considerably less than those of the sound, there are two surface modes.
One corresponds to Rayleigh waves in an equivalent elastic medium.
The other corresponds to the surface wave predicted above a rigid
porous half space.
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In this paper, we shall begin with a brief derivation of the dispersion
equation for the surface waves at an interface between air and a semi-
infinite rigid porous medium. This is followed by a similar derivation for a
poroelastic half space. Modified Biot's equations of motion are used for
the latter problem and we shall not confine our considerations to either
the low or high frequency case where the frequency correction function is
a constant. An explicit expression of the dispersion equation is
presented. This expression and its high frequency limit can be found in
[111 and [12] respectively in implicit forms. Finally, some numerical results
are given appropriate to parameters typical of a dry soil. Three surface
modes are predicted. In addition to the expected two modes described by
Attenborough et al [12], a third surface mode with a speed which is
slightly slower than that of the fast longitudinal wave is predicted. For an
air/dry soil boundary the slowest surface mode is a true surface mode
defined according to [10]. The speeds of the surface modes are predicted
to be almost independent of frequency while the attenuations along the
propagation direction are predicted to increase with the increasing
frequency, the attenuation of the slowest surface wave being the highest.

2 THEORY

For the modified Biot's theory [14], the properties of a poroelastic
medium are specified by ten parameters. These are the bulk modulus of
individual grains Kr, the bulk modulus of the fluid filling the pores, which
we assume to be air, Kf*, the shear modulus Gb, the bulk modulus of the
assemblage of particles Kb, the average bulk density p, the fluid density
pf, the porosity L, the flow resistivity a, the tortuosity q and the pore
shape factor ratio Sp.

A rectangular coordinate system is used. The origin is set on the

interface between the two media. The positive z-axis points upwards

into the air. We assume that the wave propagates in the positive x-

direction.
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2.1 Surface Waves on Rigid Porous Half Space

In air, the equation of motion is given by

V1 = C 12 -2 (1)

where C1 = 4/ and 01 is a potential function of displacement

field in air such that the displacement is given by

ul = Vi(2).

In a rigid porous medium, when the time harmonic motion
(exp(-iot)) is assumed, the equations of motion may be written [14]

1 a202
V2 2=02 2 (3)

where 02 is a potential function of displacement field and

C2 = Kf-/pc

Pc = q2pf/[Q(1 - 2T(?,)/X)]
X, = (2q2(opfi/QO)12/Sp
T(X) = JI(.)/Jo(X)

Kf* = Kf/[1 + 2(y- 1)T(X45- )/(- i pr)]

Kf = the adiabatic bulk modulus for air
Y = the ratio of specific heats for air
Npr = the Prandtl Number for air
(0 = angular frequency.

The displacement vector of fluid particles in the rigid porous solid,
in terms of the potential functions, is given by

u2=Vp (4)

In Air, the expression of pressure in terms of the potential function
is given by
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P1 = -KfV24 1  (5)

The pressure in the pores is given by

P2 = -Kf* V2 2  (6)

On the interface between the air and the porous medium pressure
continuity requires

P1 = P2  (7).

Continuity of the z-component displacement requires

Ulz = U2z (8).

We seek a general solution of the equations of motion in air of the
form

01 = Ae'kqlZ e(ikx - i(ot) (9)

where A is arbitrary constant independent of time and position, ql
= 1- (V/C1)2, the complex phase velocity V = wo/k and k is the

complex wavenumber.I
In the rigid porous half space, the potential function of the wave

field may be written

0 = Bekq2Z eikx - iot (10)

where B is constant and

q2 = N1 - (V/C 22)

After substituting the general solutions into the boundary
conditions and using the constitutive equations, we can obtain a
system of two homogeneous equations in unknowns A and B. The
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condition for existence of non-trivial solution requires that the
coefficient determinant is zero which gives the relationship

between the frequency and the complex wavenumber

qlpc + q2P1 =0 (11)

Eq (11) represents the dispersion equation for surface waves at a

boundary between air and a rigid porous half space.

For the parameters values (in MKS units)

Kf=1.4x10 5  Pa = 1 .2  y =1.4

pt=l.2 1 =0.4 Npr=0. 7

a =3x10 5  Sp=0.5

q = F2. co = 2W500,

the surface wave speed (m/s) is given by

Vsurf = oi'Re(k)

and the corresponding attenuation constant (nepers/m) is given by
lm(k) The frequency dependence of these quantities is shown in

Figure 1.

We note that below 400 Hz the surface wave speed for the above

parameter values somewhat higher than the sound speed in air

which is

Ca = 341.57

2.2 Surface Waves on a Poroelastic Half Space

In a poroelastic medium, when the time harmonic motion (exp(-icot))

is assumed and there is no displacement in the y direction, the

equations of motion may be written

oa2

V2(H$ + al 2 )= (03 + Pf k)
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j)2
V2(aW3 + if) = a (pf $3 + Pc $2) (12)

1 a24
V2 4 = C4 2 o~t2

where O2, 03, 04 are potential functions of displacement field and

H (Kr - Kb)2/(D - Kb) + Kb + 4Gb/3
aM = Kr(Kr - Kb)/(D - Kb)

M =Kr2/(D - Kb)
D Kr(1 + Q(Kr/Kt- 1))
C4 = (Gb/(p - pf2/pc))'2

The displacement vector for particles in solid, in terms of the
potential functions, is given by

Us = V$ + VxX 3  (13)

and X3 = . The relative displacement of fluid and solid is

defined as

= Q=Us -h) (14)

In terms of the potential functions, W can be written as

W = V0 2 +VxX 2  (15)

where X - - X3.
Pc

In terms of the potential function the pressure in air is given by
equation (5). Stresses in the poroelastic half space are obtained in
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terms of displacements from the constitutive equations. The

constitutive equations are given by [13]

tii = He - (lMl - 2Gb(ei + ekk)

tij = Gbeij (16) I
Pf = M - aMe

where tij are total stresses, Pf is pressure in the pores, and eij are
strain components, given by

e = Vus and W = .

On the interface between the air and the poroelastic medium as
with the rigid porous case, the pressures in the air and in the pores
are equal (equation (7)). This is equivalent to the open pore
condition used by Feng and Johnson [11].

The total stress in the z-direction is equal to the pressure of air.

tzz = P1  (17)

The shear stress tzr vanishes since air cannot sustain shear stress.
Hence

tzx = 0 (18)

The condition of the z-component displacement continuity requires

[7]

Uzl = Uz2 - Wz2  (19).

We seek a general solution of the equations of motion in air in the

form given by equation (9).
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In the half space, the potential functions of wave field are written as

I2 = (A2 e kq+z + A30-ekqz)(ix - icot)

03 = (A3e kq' z + A2Q+ekq+z)e(ikx - i(ot) (20)

N = iAe kq 4z e (ik - imt)

where A2, A3, A4 are constants and

q. = -1i - (V/V+) 2

q. = - (V/V.) 2

q4 = 4l -(V/C 4 )2

V± = [2N(-B±-'W- 4AC))] (21)V-

A =(acM) 2 -HM
B =Ppc+Mps-2aMpf
C = pf2 PPc
Q+ = (aMN+2 - pf)/(p - HN+2)
0. = (HN. 2 - p)/(pf - (XM/V2)

In the present problem, the wavenumber is always complexJvalued, so a surface speed is given by Vsurf = w/Re(k) rather than

the real part of the complex phase velocity V. The condition for
exponential decay in the direction of the negative z axis requires
that Re(kqj) > 0. For attenuation in the positive x direction, we
require also that lm(k) must be greater than zero. These are
different conditions to those imposed by Feng and Johnson (11]
who require only that Re(kqi ) 2t Im(kqi).

After substituting the general solutions into the boundary
conditions by means of the constitutive equations, we obtain a
system of 4 homogeneous equations in unknowns A1 , A2, A3 and
A4. The condition for existence of non-trivial solution requires that
he coefficient determinant is zero which gives the relationship
between the frequency and the complex wavenumber as follows:
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q, q+(Q+ - 1) q.(l - O-) (R + 1)

V 2 ) 2 2

=0
0 -2q+Q+ -2q. (1 + q42)

2) v \

(V) 2 G ( V (M -Q~aM)IG (- 2 M. M/

where R = Pf/Pc. Eq (22) represents the dispersion equation for
interface waves between air and a poroelastic half space.

For given material constants, we can solve the dispersion equation
(22) numerically. As Eq (22) is a complex equation, the equating of
the real part and the imaginary part of the equation to zero
respectively gives two simultaneous equations. We fix (o and solve
the simultaneous equations to obtain the corresponding values of
Re(k) and lm(k).

The parameter values chosen correspond to an acoustically-hard
(high flow resistivity, high p-wave speed) soil or sand [4,14]. In inks
units the values for the poroelastic half space may be written as
follows:-

Kr =3x1010  Kb =8x10 8

Gb = Kb p = 1 x 103

and other parameter values are as stated previously for the rigid
porous half space example.

We consider the frequency range from 100 Hz to 500 Hz.

For the parameters we have chosen, the bulk speeds are given by

C+ = (/Re(k+) = 1366 Fast longitudinal speed
Cs = o/Re(k4) = 894 Transverse speed
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Ca = 341 - Sound speed in air
C. = o/Re(k.) = 38-81 Slow longitudinal speed

Over the whole frequency range, three surface modes can be
found (Figure 2). One mode which maybe called a pseudo-
Rayleigh mode has a speed just slower than the transverse bulk
wave speed and is very close to the Rayleigh wave speed
predicted for the poroelastic solid. The other mode has a speed
approximately equal to the sound speed of air and may be called a
pseudo-Stoneley mode. Although it is numerically similar to the
surface wave predicted on a rigid porous surface, there are
significant differences in the predicted frequency dependences of
the phase speed sand attenuation constants.The third surface
wave mode has a speed just smaller than that of the fast bulk
mode. It is similar to the fastest mode found experimentally by
Mayes et al [12]. Strictly, since the speed is greater than that of the
bulk shear wave, the fast surface mode may not be called a
pseudo-Rayleigh wave. The three speeds are predicted to be
almost independent of the frequency, and the attenuation of the
fast surface mode is negligible. However the attenuations of the
other two surface modes change from the order of 10-4 to 10-2

nepers
im-1 over the frequency range 100-500 Hz.

For this half space model and for these parameters, it is not

possible to find a 'true' surface mode with a speed slower than any
of the body wave speeds.

We investigate also the sensitivity of the results to change in
material constants. Change in the pore shape factor has negligible
effect on the surface modes. But the attenuation of the pseudo-
Stoneley mode is dependent on porosity (and flow resistivity).
High porosity results in rapid attenuation and a strong dependence
on frequency. Change in Gb effects the pseudo-Rayleigh mode but
has little influence on the pseudo-Stoneley mode. The results are
shown in Figures (3) to (5).
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4 CONCLUDING REMARKS

A slow surface wave mode has been predicted on both a rigid porous
and a poroelastic half space using parameter values typical of an
acoustically hard soil. Even with such a relatively stiff solid frame, its
elasticity is predicted to have a significant effect on this surface mode. It
should be noted that since the rigid porous boundary model predicts an
impedance such that the resistance exceeds the reactance at all
frequencies, this slow mode would not be excited by a point source [1,2].
Further research is required to confirm whether the corresponding wave
would be excited by a point source over a poroelastic half space as
predicted elsewhere after various approximations [13].

The main result of this paper is the prediction of the possibility of two
additional types of surface wave at such an air/air-filled poroelastic half
space. As explained in the introduction, this is not the first such
prediction for a fluid/poroelastic interface, but the results for the
parameter range considered here have potentially a wide significance
for studies of outdoor sound propagation. Two of the surface modes are
well known as the surface wave over a rigid porous half space and as
the air-coupled Rayleigh wave respectively. Particularly interesting is
the prediction of a fast surface mode with a speed slightly less than that
of the highest speed bulk mode. This represents a surface wave
possibility that has not been suspected before.

The predicted high attenuation of the pseudo-Stoneley mode makes its
existence difficult to verify experimentally. The fast surface mode, if
excited significantly, is predicted to travel with little attenuation, but will
lose energy by radiating into the air. Further work is required to
determine the extent to which it may be excited by an airborne source.
On the other hand the experimental evidence for the existence of an air-
coupled pseudo-Rayleigh wave is overwhelming, albeit for rather more
complicated ground structures than a half-space.
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LIST OF FIGURES AND CAPTIONS

Figure 1 (a) phase speed and (b) attenuation constant of the surface wave
mode at the interface of air and an air-filled rigid porous half space

for the parameter values given in the text.

Figure 2 (a) phase speeds and (b) attenuation constant as a function of
frequency for the three interface waves predicted at an air/air-filled
poroelastic half space boundary given the parameter values stated
in the text.

Figure 3 Sensitivity of slow surface wave mode to porosity (a) phase speed,

(b) attenuation constant. Parameters are as given in the text
except for the porosity values which are indicated on the figure.
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Figure 4 Sensitivity of the attenuation constant of the pseudo-Rayleigh

mode to bulk rigidity modulus. Parameters are as given in the text
except for rigidity moduli indicated on the Figure. The phase
speed is approximately constant at 1269 m s- 1 over the given
frequency range for Gb = 2 x 109 mks units.

Figure 5 Sensitivity of the attenuation constant of the fast surface mode to
rigidity modulus. Parameters are as given in the text except for
those indicated on the Figure. The phase speed is approximately
constant at 2160 m s-1 for Gb = 2 x 109 mks units.
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