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I. INTRODUCTION

The primary objective in this work is to develop an engineering analysis model for
the M864 base bieed/burn projectile flight performance. This model includes analyses of

all three elements of the problem; namely: gas generation, effect of bleed on aerodynamic
drag, and a trajectory model. Because each of the above elements is time dependent, all
three elements must be solved simultaneously. This is in contrast with the conventional
projectile where the aerodynamic coefficients can be determined independent of any specific
trajectory. The analysis will be based on much of the existing experimcntal and numerical
data obtained as part of the M864 program. However, the techniques developed are easily
adapted to other designs.

A secondary objective is to determine how the numerical solutions to the Navier-Stokes
equation can be applied to the problem. At present these computations do not account
for the time dependent nature of the gas generator and changing free-stream conditions
along the trajectory. Furthermore, the codes used in these studies do not provide for
gas properties different from air which is treated as a perfect gas. Thus, steady state
solutions are obtained for specific free-stream conditions with equivalent air mass flow and
temperature imposed as boundary conditions at the exit of the gas generator. The results
of these computations are correlations of base pressure as a function of injected mass flow
and temperature.

II. BACKGROUND LITERATURE

A broad survey of the aerodynamics of base bleed/burn was performed for a meeting
in 1974.1 The Proceedings of that meeting contained an extensive bibliography of work
reported to that time. Since 1974, much new work has been carried out, particularly in
developing and testing practical projectile designs using base burn, such as the U.S. Army's
M864. 2,3,4,s.6, 7,s,9 Figure 1 shows the configuration of the M864 and describes its physical
properties. The National Defense Research Institute (FOA) of Sweden also has developed
a family of projectiles'0.11 , 2,13,14 similar to the M864. They have published a number of
reports describing their analytical techniques used in the projectile design. The work of
Gunners, Andersson, and Hellgren 14 provides the most comprehensive discussions of their
results. The analysis developed at BRL is quite similar to the Swedish work and to that of
Hudgins15 except for the use of Navier-Stokes computations to evaluate the effects of bleed
on the base pressure and drag. The results of the laboratory spin fixture tests also permit a
more detailed analysis of the gas generator performance than has been possible previously.
Additional references to the current international base bleed/burn projectile literature are
contained in the Proceedings of the First International Symposium on Base Bleed 16 and
in other journal reports. 17,18,19,20,21,22 Additional recent studies specifically directed at
combustion in the wake are contained in the work of Schetz, et al,2324,25 Hubbartt, Strahle,
Neale and their co-workers, 26.27 ,28 .29 and Schadow and Chieze. 30,31



I
Dimensions

Length of Projectile calibers 5.79

Nose Length calibers 3.42

Cylinder Lecng-th crd!ibcrs 1.SG

Boattail Length calibers ..50

Boattail Angle dc.-rees 3.00

Mlass Properties

M ass kgs 46.05
(Ibs) 103.5

Idass of Fuel k-S 1.21
(Ibs) 2.67

Center of Gravity cin from nose 5S.3
(in from nose) 23.16

Moments of Inertia

Axial kgr-in 2  .15S
(lb-ft2) 3.75

Transverse k-f-m 2 167

(lb-ft 2 ) 3 9.3 2

Figure 1: Physical Characteristics of the 155mm, DPICM, M864 Projectile
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III. GAS GENERATOR

The gas generator for the M864 base bleed projectile is housed in the afterbody which
is shown in cross section in Figure 2. The gas generator consists of two identical solid
propellant grains as shown in Figure 3. These two elements provide an inner cylindrical
burning surface and four planer surfaces separated by a 3 mm slot. The slot is held open
during launch by four spacers. In these calculations the regression rates on the cylindrical
surface and on the slot surfaces are assumed uniform over the surfaces but not necessarily
equal.

The geometry of the grain shown in Figure 3 can be described in terms of five dimen-
sions (initial dimensions are designated with subscript i):

li=the maximum length of the grain

ri=the inner radius of the cylindrical center hole

r,..-=the maximum radius of the grain

r.=the radius of the curved ends of the cylinder

wi=the half thickness of the slot

Measurements of the propellant (designated AP-2) burning rate have been obtained
by Miller and Holmes32 using a strand burning technique. Tests were performed over a
range of chamber pressures and the results are shown in Figure 4. The strand burning
rate, i., can be written as:

o = kP(1)
where P, is in bars. The values found by Miller for the AP-2 propellant are: k=0.0009132
m/s and n=0.6655.

Let the burning rate on the cylindrical surface be , and on the slot surface be ,.
The radius change of the cylinder at any instant is:

dr = ,dt,

and the regression of the slot is:

dw = ,dt = :-dr.
r,

If the ratio -- is a constant throughout the burn, then the burning surface areas, a, and a8,

can be defined in terms of r, the cylinder radius. The formulas which are used to compute
the surfaces at any instant, where the cylindrical surface radius is r, are:

a= [2vr - 4 sin-'(W )]r/,(2

where.

I =



BASE CLOSURE

1, BASE

-MAG-TEFLON
IGNITER

IGNITER HOUSING

PROPELLANT GRAI --"'/

Figure 2: Base, Propellant, Igniter for M864
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Figure 3: Propellant Grain Geometry
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Figure 4: Experimental Strand Burning Rate, (Ref. 32)

w = wt + -:-(r - ri),T"c

and,
* < (r. - r.) then j = 1,
r > (r,, - r,) then j = O.

The slot area can be computed from:

a. = 4a,1 + 8a.2 + 8a.3 , (3)

where,

a., (1, - 2 r.)(/r:. -w2 - /r2 W), (4)

a,2 = 2,(/(Tm: - ,)2 -to 2 -W /2_)J, (5)

a,3  = ] MX-- ( .VZ 2 +W 2 ' -Tm. +T)] dz,(6

and where f = r unless

r< (r., - r.) then ; = (r - r.).

Note that in equation 6, the integral can not be written in closed form and thus it has
been evaluated numerically using the trapezoidal rule. This area is the contribution from
the curved end corners of the grain.
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Figure 5: Grain Burning Surface Areas As A Function of Cylindrical Radius

Figure 5 shows the two surfaces a, and a. and their sum for the M864 grain assuming
the special case of r, = r. Note that the mass flow generated by the burning propellant
is:

rh = p,[acic + ao. ] (7)

where p. is the solid propellant density (AP-2 propellant p.=15 3 2 .0 kg/m 3).

1. TESTS IN A GROUND BASED SPIN FIXTURE

Tests of the gas generator have been performed in ground facilities where an actual
motor was mounted on a spin fixture.5 These tests measured the chamber temperature,
chamber pressure and burn time for various rates of spin as shown in Figures 6 and 7 and
Table 1, respectively.

The following section analyzes these tests in an attempt to show that simple analytical
relationships describe the performance of the gas generator. The gas generator output mass
flow depends on the chamber pressure, the pressure into which it exhausts, time and spin
rate. The measured chamber pressure-time histories, indicate to this author, that there is a
difference between the burning rate on the cylindrical surface and on the surface of the slot.
The chamber pressure is directly an indication of the exit mass flow. If the burning rates
are equal on the two surfaces then the chamber pressure should decrease monotonically
with time, after an initial transient. This is indicated in Figure 5 and for the zero spin case
in Figure 7. As shown in Figure 7, at high spin rates the pressure initially increases and

6
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Figure 6: Chamber Temperature Measurements, AP-2 Propellant, (Ref. 5)

then falls off, indicating that the cylindrical surface is more important in determining the

mass flow, and thus chamber pressure than the monotonically varying slot contribution.

To show this more explicitly consider the following analysis.

The mass flow is assumed subsonic and a modified form of the incompressible Bernoulli
equation is applied:

1 C 2PP. - P. - p

TABLE 1: SPIN FIXTURE BURN TIME DATA - AP-2 PROPELLANT

RUN SPIN BURN TIME
RPS SEC.

2 0 40.0
3 99 31.9
4 142 29.0
5 176 27.4
6 199 26.0
7 226 23.9
8 253 22.8

7



(where C,, is a discharge coefficient) along with the continuity equation:

rh = peueAe

which can be combined to give:

mh= fC~AV2pJPe ~ 1 (8)

The discharge coefficient is assumed to be constant in this case. Initially when the
radius of the grain equals the orifice radius, there are negligible orifice losses and C,, is
infinite. This corresponds to negligible chamber pressure relative to exit pressure required
to drive the flow. Practically, however, there is an ignition process involving the spreading
of the flame and some flow from the slots for which the orifice represents an obstruction.
Since these factors can not be analyzed, the approach used here is to take C,, constant
based on the data observed after the initial transient and to assume the same value applies
duiing the start-up phase. The effect of the variable discharge coefficient is partly hidden
in the form assumed for the burning rate during ignition.

In the spin fixture experiment, the gas generator exhausted into the atmosphere,
and thus the exit pressure is sea level ambient for the assumed low speed injection. The
exit density is assumed to be a function of the gas exit pressure, molecular weight and exit
temperature. Since the speed is assumed to be low subsonic, there is relatively little kinetic
energy in the gas and the exit temperature can be considered the same as the chamber
stagnation temperature. Thus, it is concluded that all the factors in the following term
are approximately constant after the initial transient in the laboratory tests:

K - C,,A,[/ee. (9)

In the zero spin case, the regression rates are presumed to be the same on both surfaces
since the chamber pressure history is basically monotonically decreasing with time.

Equation (8) shows that the the mass flow, rh, varies as Pc/Pe - 1. If this is considered
combined with equation (7) for the production of mass from the burning propellant, then
the observed zero-spin chamber pressure distribution can be used to determine the constant
K. The test data,5 at zero spin, results in a value of K of 0.189 kg/s. In these computations,
the burning rates are assumed proportional to those measured by Miller. The strand
burning rate is increased by a small constant factor, fo, of 1.07 in order to obtain agreement
with the ground based tests with zero spin. Taking into account the different conditions
of the spin fixture and strand burning tests and the experimental accuracy, no significance
is attached to the 7 per cent disagreement between the actual gas generator performance
and the strand burning tests.

It should be noted here that there is an alternate explanation for the effect of spin on
the pressure-time history. The burning rates could be a function of time or rfl, increasing
and decreasing in such a way as to produce the chamber pressure variation. However,
the regression rates of most homogeneous solid propellants are found to be only functions
of pressure and initial propellant temperature and are independent of time exeept for an
initial or final transient phase.

8
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Figure 7: Effect of Spin on Chamber Pressure, AP-2 Propellant, (Ref. 5)
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Figure 8: Computed Chamber Pressure Versus Time for Various Spin Rates.
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2. EFFECT OF SPIN

In the following, provision is made for the possibility that the two propellant surfaces
burn at different rates with spin,

i'e =/p)o

r8 = fo(p) o,

where f, and f, are factors related to the rate of spin.

First, it is observed (see Figure 7) that there is an initial transient which is relatively
independent of spin. The pressure is 3.3 per cent higher than ambient at 3.3 seconds after
ignition for all spin rates. After that point, the chamber pressures diverge, depending on
spin. The calculations were performed during the initial transient phase, t<tl, assuming
identical but time varying regression rates of,

c = fo sin(--l ) "o,
2t,1

o= f0 s i n( o.

The radial thickness of the grain is the smallest dimension; thus, it determines the
overall burn-time. As a result, fc can be determined as a function of spin rate from the
measured burn times. The mass flow, equation (7), is integrated over time for the known
amount of propellant using different f, values until the calculated burn-time matches the
measured time.

The slot contribution affects the magnitude of rh but does not affect the burnout time
as long as the value of f. is not too large. Conditions at the end of the initial transient
phase define the burning rate of the slots. A trial and error search at each spin rate with
various values of f° was performed until Pc=1.033 at t1 =3.3 seconds. This is equivalent
to assuming that the mass flux from the gas generator is independent of spin at the end
of the initial transient phase. If the magnitude of f. is not selected consistent with this
condition, then a discontinuous change in pressure is calculated at tj.

Because the mass flow is constant at ti, any increase in the cylindrical surface burning
rate is matched by a corresponding decrease in the rate in the slots. Note that during the
initial phase, the cylindrical and slot areas are about the same (see Figure 5). It is not
clear what will happen at high spin rates if the flux from the slot goes to zero. Additional
tests are needed in this range of spin rates which correspond to launch Mach numbers
above 2.4.

The results are shown in Figure 8 where the predicted chamber pressure is plotted
against time for the various spin rates of the spin fixture tests. This figure can be compared
to Figure 7. Very good agreement is obtained during the early period when the effect of
the different spin rates is being observed. At later times, there are some discrepancies
which occur near the time when the curved surfaces, defined by r,, affect the length of the
grain.

10
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Figure 9: Effect of Spin Rate on Burn Rate for The Cylindrical and Slot Surfaces

The most important result, for subsequent calculations of the flight case, is the effect
of spin on the burn rate. Figure 9 shows the spin factors, f, and f., plotted versus the spin
rate. Two empirical formulas that describe the spin rate effect are shown on the figure.

Comments:

1. The above results were obtained taking the ignition transient time of 3.3 seconds
into account. Flight tests seem to indicate a shorter ignition transient delay probably
because of the pre-conditioning of the propellant by the gun gases.

2. The dimensions r, , r. and 1i as shown in Figure 3 were reduced by 1.0 mm (2.0
mm for 1i) to account for the inhibitor which coats the surfaces adjacent to the motor case.
The coating prevents combustion on these surfaces. The specifications for the propellant
call for an inhibitor thickness from 0.5 to 1.3 mm.

3. APPLICATION TO FLIGHT TESTS

In applying the above analysis to the flight situation, it is assumed that the exit
pressure, P., becomes the base pressure, P 6, thus:

Pot P0.'



and

0 P. 6  PC-/P 1. (10)
P., P.. Pb/P.c

The above formula is based on assuming incompressible flow, which is correct if the ambient
pressure is high as it is in the ground based tests. A more general formula applicable to
compressible flow in the gas generator can be written as:

rh oK c (Lb (-t-l)()"v 1
P.) I(k) 1)

Note that the magnitude of yt is unimportant except when the exit velocity is close to
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Figure 10: Sketch of The Solution Technique

conditions which choke the exit. A value of 1.25 has tenatively been assumed. If the
pressure ratio P/Pb becomes large enough, the exit Mach number becomes sonic and the
pressure ratio appearing in equation (11) can be written:

719

If the flow chokes because of a low base pressure and the resistance of the orifice, which
can occur at high launch Mach number or high altitude, consideration should be given to
the variation of the discharge coefficient (i.e., K). The result is to increase the discharge
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coefficient3.34 in the range of 10 to 40 per cent as the pressure ratio, P/Pb, increases to

- 5.0 after which the C,, remains constant. In this report the focus is on low injection rates
and therefore C. is take as constant.

The mass flow generation formula, equation (7), remains the same: Equations, (7)
and either (10) or (11), may be considered, at each point in time, as two equations with

four unknowns, rh, Pb/Poo, P/P,, P,,/Po1 . At a point along the trajectory M, and

Poo/Poi would be known, and aerodynamic theory gives a third relation between rm and

Pb/Pl (also involving M, and Po/P 1 ) which determines the solution at each point in

time. Figure 10 sketches the solution technique.

4. IGNITER

The solid propellant fuel is relatively difficult to ignite and, therefore, the gun gases are
supplemented by an independent igniter. This consist of two 6.2 gram cylindrical pellets
of magnesium-teflon, see Figure 2. It has been estimated that this material is consumed
in approximately two seconds. At that rate and considering the high temperature of these
gases, the igniter contributes significantly to the flow from the device in the first seconds
of flight. The temperature of the the igniter products is estimated at 3000 K. It is assumed
that there is a linear build-up of mass flow for 0.25 seconds followed by a constant flow
of igniter material until it is consumed. In computing the injection parameter, I, the
igniter mass flow is added to that of the main propellant. The temperature of the exhaust
is estimated as the mass average for the purposes of determining the slope of the base
pressure as will be discussed in the next section.

IV. AERODYNAMICS OF BASE INJECTION

It is customary when considering base bleed or burn to define a nondimensional in-
jection parameter, I:

1- (13)
poouooAre/

In the M864 case, the average value of this parameter is,
0.00432

I=Moo(poo/pai)'

(assuming a fuel mass=1.21 kg and a burn time=33.0 seconds). Thus, it is concluded that
a typical value for I at launch is about 0.002 and that I increases as the Mach number
decreases and as the altitude increases. Note that the most significant potential drag
reduction occurs during the early, supersonic phase of flight.

It is possible that I, the injection parameter as defined above, is not the appropriate
parameter with which to correlate these results. A nondimensional injection parameter
based on the momentum flow in the attached boundary layer before separation has been
suggested by Collins, et a135 as being more representative of the free shear layer charac-
teristics. One can also speculate that the base pressure is affected by an incrr,'.e in the
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volume of the wake as a result of two effects. First, there is the direct effect of volume of
the added mass, and second, there is the effect of heating the wake air. Thus a volume
injection parameter coupled with a separate temperature parameter might be more logical
from a physical point of view. Never-the-less, the authors of the existing literature have
generally used the mass flow definition of I.

1. BACKGROUND REVIEW

Most supersonic wind tunnel experiments on this subject are concerned with cold gas
injection into the base region at relatively large values of I. Figure 11 shows the results
of one such experiment by Kayser. 20 In this test he investigated the effect of the injector
geometry (i.e, per cent open area of the base) on the base pressure. The results are for a
Mach number of 3.0 with cold air injected into the model wake. Note that there is a strong
dependence on injector open area at large values of I. However, all the curves originate at
the same pressure and increase linearly at the same slope for values of I less than about
0.005. This suggests that, at small injection rates, a linear increase in base pressure can
be assumed, although as the injection rate gets larger such an approximation may over-
estimate the beneficial effects. Similar results regarding the effect of injector geometry
have been reported by Reid and Hasting.3

Figure 12 shows the effect of Mach number on the base pressure versus injection rate
curves. 16 These results show that at low values of I, the pressure again increases linearly
but that the slope of the curves decrease with decreasing Mach number. Furthermore, the
maximum in the curves occurs at larger I at the lower Mach numbers. This is fortunate
because the average I increases with decreasing Mach number.

Figure 13 shows another experiment of Clayden and Bowman,37 in which high tem-
perature argon was injected from a model base into a Mach number 2.0 wind tunnel air
stream. The injection rate is much less in these experiments because, at equal mass flow
rates, the injection velocity is greatly increased as the temperature increases. At low in-
jection rates, the data can also be represented by a linear increase in base pressure with I.
At higher temperatures, the curves are more nonlinear; but this may be beyond the range
of interest for the M864.

2. LINEAR EFFECT OF INJECTION ON BASE PRESSURE

As a preliminary approach, it is assumed that the mass injection rate is at sufficiently
low subsonic velocities that the injection effect on base pressure is nearly linear, i.e.,

P, +1 bI I (14)
P.0  P.~~ - I= . d.1 j=

A number of reports on wind tunnel measurements of base pressure with injection have
been examined. Figure 14 shows the results of determining [ bI o Ji-- as a function of the
free stream Mach number. The open symbols represent wind tunnel experiments in which
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ambient room temperature air was injected. Although these data correlate reasonably well
with Mach number, they represent a special case of low temperature injection into a low
temperature wake (stagnation temperature of the wind tunnel flow is estimated also to be
ambient room temperature.)

Relatively little is known about injection at transonic and subsonic Mach numbers.
The computational data of Sahu8 and the experimental data of Sykes 39 have been used in
Figure 14.

Also included in Figure 14 are three points (filled symbols) computed by Nietubicz. 40

The magnitude of the numerical results agree quite well with the wind tunnel data. There
is possibly some difference in the trend of the computed results; but, as will be discussed,
the conditions in terms of the Reynolds number and stagnation temperature of the free-
stream flow are quite different.

Other numerical computations 4 1 of the near wake flow with injection have become
available to broaden our data base for these kinds of flows. These computations involve
solution of the perfect gas Navier-Stokes equations. Both the free-stream and injected gas
are air. The stagnation temperature of the injected gases was selected to provide one of the
boundary conditions on the exit plane of the injector. The solution is marched in time until
the flow converges to steady state. The computed base pressures were integrated over the
base area to determine the total base drag. An average base pressure was then calculated
from the computed drag. The computations have been performed using the actual M864
base geometry which includes an indented and domed configuration. The free-stream
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boundary conditions correspond to the flight case at sea level standard conditions (as
distinguished from the wind tunnel simulations).

Th- results of these computations, in terms of the linear effect of injection, are shown
in Figure 15. The data are unique in that they illustrate the combined effect of Mach
number and inji,-cted gas temperature. The computed data at an injection temperature of
1500 K are consistent with the only data available. 42 At all stagnation temperatures of the
gas, the slope [d(P&/Pc))1--0 increases rapidly with Mach number and almost linearly with
temperature. An approximate formula which describes the data is:

d(PPo)]_.= (-5.3953 + 6.O1723Tj)Mo.

dI
+(4.6101 - 0.01463T)M.2

+(-0.5660 + 0.00446Tj)M ,. (15)

Note that with this linear model (Equation 14) of the effect of injection on base
pressure, it is possible to correct the no injection base drag to account for base bleed. At
each step in a trajectory calculation where an estimate of Mach number, free-stream static
pressure, spin rate and inert (no injection) drag coefficients are specified, then equations
7, 11, and 14, or a non-linear version to be discussed, can be solved simultaneously to find
the change in base pressure with injection.
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3. NON-LINEAR EFFECT OF INJECTION ON BASE PRESSURE

It is apparent, even at low injection rates, that the effect on the base pressure is non-
linear. At subsonic speeds the nonlinearity can not be ignored because the low speed base
pressure curves appear to asymptote to constant values slightly higher than free-stream
static pressure at large values of I. As a strictly curve fitting technique, the following form
has been assumed:

Ib R;_ Pb ) -+ (1 (16)

a equals the slope d(Pb/P.) and the parameter # determines the importance of the non-
011

linearity. It has been found to be just a function of Mach number as follows

(1 = 15.1 - 46.3(M. - 0.71)

but not less than p=2.6. Figure 16 shows the resulting base pressures versus injection rate,
I, for a range of Mach numbers from subsonic to 2.5. The curves have been computed from
the correlation equations. Also shown on the graph are the numerical data of Nietubicz
and the experimental data of Ding. The agreement is reasonably good. The predicted lines
originate at values of the base pressure computed from an estimate of the base drag which
will be discussed later. The disagreement between the lines and the numerical results is
due to disagreement in the computed base drag relative to experimental data.
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4. BASE BURN

It is apparent in observing the flight of M864 projectiles that the products of com-
bustion produce considerable illumination in the near wake region.3 This suggests that
the gas products in the base region are fuel rich znd react with the oxygen in the base
region air. The studies that have been performed on base region combustion 27,4 3 have
shown that there can be a significant effect on base pressure. Most of these studies have
employed reactive gases such as hydrogen. Partial preburning of the injected reactant can
even be beneficial because the base pressure is produced by a combined effect of direct
volume addition to the near wake, and expansion of the wake because of the mixing of
hot gases and heat release through reaction. It is not clear, at this time, how the wake
combustion for the M864 propellant can be modeled. Tentatively, it is assumed that the
injected gases should be considered to have an effective stagnation temperature different
from the combustion chamber temperature. The increase in the effective T is assumed to
produce the same effect as the energy release in the wake. This feature has been incor-
porated into the current model. However, data are lacking on the M864 propellant with
which to analytically estimate this effective stagnation temperature. Even the ground base
measurements of chamber temperature are suspect because of the significant amount of
contamination found on the thermocouple after the tests. These tests indicated a chamber
temperature of roughly 1200 K. Subsequent flight tests in which similar measurements
were made indicated a higher temperature of 1500 K. Ding et al42used a solid propellant
with a burning temperature of 1573 K in a low speed wind tunnel test, as previously
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discussed. Their results were consistent with extrapolation of the supersonic numerical
calculations of air injected at 1500 K.40 In the calculations reported here, the temperature
of the combustion products has been taken to be 1500 K and no account has been taken
of the external burning.

V. TRAJECTORY

A simple two degree of freedom, point mass trajectory computation has been coupled
with the equations defined above to perform a complete analysis.

1. TWO-DIMENSIONAL TRAJECTORY MODEL

A fourth order Runga-Kutta integration is performed on the two second order mo-
mentum equations and a first order spin equation (where x corresponds to range direction
and y to height). The equations solved are:

d'x
= f., (17)

d2yt" "- g- + f", (18)

dp
dt = (19)

where;

CD= - 1C pouVA/m, (20)

S= -CD 1 p0,,vVA/m, (21)

2

fp= CIPIp.VpD2 A/I,. (22)

In order to obtain an accurate evaluation of the range of the projectile, account has to
be taken of the Magnus forces acting on the spinning body. Although the trajectory is
entirely two dimensional, a yaw of repose is calculated to account for the effect of the
curved trajectory on the spinning body. This yaw is a balance between the gyroscopic
moment produced by the curved flight path and the aerodynamic moment. It can be
computed from:

£ke = pooA -D Vt "  
(23)

POO.ADCM. V 4

The acceleration components in the x and y directions produced by the Magnus force,
which acts perpendicular to the velocity vector, are added to the f, and fy as:

( x -component) =+ 1
(- c= +Cy 4pADp(av)/m, (24)
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and
component) = -Cy, 4 p.ADp(au)/m. (25)

A secondary effect of the yaw of repose is a contribution to the drag coefficient which is
proportional to the square of the yaw angle.

Finally, the curvature of the earth is accounted for at each step by adding to the
altitude change computed from the vertical component of acceleration, the quantity:

(curved earth contribution to y) = ( + Ax) 2 -
2 Re0 ,th

Where x- is the range at the beginning of the time step and Ax is the change in range
computed from the acceleration.

2. AERODYNAMIC COEFFICIENTS

At each step of the calculation, a subroutine is called to define the standard atmo-
sphere free-stream density, pressure and velocity of sound as a function of the local altitude.
A standard polynomial representation is used. A second routine computes the inert round's
zero-yaw drag coefficient as well as the spin damping and other aerodynamic properties of
the basic shell. This routine uses a spline interpolation technique based on tabulated data
(see Table 2) to determine these quantities as a function of free-stream Mach number. The
overall drag data are based on measurements obtained in the BRL Transonic Range44 and
from radar data obtained in flight tests.6 The Navier-Stokes compvtations of the M864
forebody pressure and friction drag,45 also given in Table 2, have been subtracted from the
total inert drag to determine the base drag coefficient, i.e.:

Cb. = CD. - CD,,. (26)

Average base pressure is then computed from the base drag,

A =1 - M WA .C . (27)
- 2 b

Figure 17 illustrates drag coefficient data used in these computations. Note that Figure 17
also includes the Navier-Stokes computations of Nietubicz. 40 The base drag coefficients
at supersonic speeds are obtained directly, in this case, by solution of the fluid dynamics
equations for the actual base geometry. The agreement with the experimentally determined
CD. curves is generally good.

Once the inert aerodynamic properties have been determined, the subroutines which
compute the gas generator-on aerodynamics are invoked. This section of the code computes
the mass flow, base pressure and gas generator chamber pressure, using iteration, starting
with an initial estimate of the base pressure. The equations developed in the section on
the gas generator and the bleed aerodynamics are solved. When the base pressure with

21



TABLE 2: INERT M864 AERODYNAMIC CHARACTERISTICS

M. CD. CD,, CM. Cl,

0.00 4.32 -0.0178
0.50 -0.0145
0.70 0.168 0.0600
0.80 0.163 0.0569 4.32
0.90 0.175 0.0579 4.60
0.92 0.185
0.94 0.205
0.95 0.0817
0.98 0.285 0.0921
1.00 0.335 -0.0123
1.01 0.1162
1.05 0.1420
1.08 0.350
1.10 0.348 0.1421
1.15 0.342
1.20 0.1364
1.25 0.330
1.30 0.1308
1.40 4.70
1.50 0.302 0.1181
1.75 0.280
2.00 0.262 0.1009 -0.0096
2.50 0.234 0.0950 4.70 -0.00875

NOTES:

1. CD. is based on transonic range data44 for M00 < 1.10 and on radar flight data6 for
M00 >1.10.

2. CD,. is the sum of numerically computed forebody pressure and viscous drag coefficients

obtained by Sahu. 45

3. Additional constant aerodynamic parameters used in the trajectory calculation are:

CD. 2 =7.2 and Cy,, =-3.20.
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Figure 17: Zero Yaw Total and Base Drag Coefficients Versus Mach Number for the Inert M864

base bleed is determined a local drag reduction factor, fdi, is computed:

Pb b.

fd, =o (28)
P1.

The drag reduction factor is passed to the Runga-Kutta integration and used to compute
the reduced drag coefficient as follows:

CD = CD. - fir CDb.. (29)

In addition to the drag reduction factor, the mass of consumed fuel is computed so that
instantaneous mass is used in the equations.

3. VALIDATION OF TRAJECTORY MODEL

The trajectory computations were checked by comparison with the trajectories com-
puted by a full three-dimensional point mass technique46. 47 for a range of launch conditions.
The results for the inert M864 are shown in Figure 18. The total range is in agreement
with the more complete method within 60 m at 24,000 m or less than 0.25 per cent. An-
other check of the inert calculation is to compare the spin history from the two techniques
as shown in Figure 19. The agreement is again excellent. The final spin being computed
within 0.5 per cent.
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VI. RESULTS

The theory developed in the previous three sections has been programmed for the
BRL Vax 8600 computer and the technique compared to several flight test cases. The
primary case is that of an instrumented M864 flight 48 in which the base and combustion
chamber pressures were measured in flight. Radar flight data also have been obtained
by Lieske6 over a range of launch conditions. These data have been used to formulate an
empirical prediction technique which computes the trajectory for the purpose of generating
firing tables. These results are compared to the present model's predictions.

1. INSTRUMENTED FLIGHT TEST CASE

Kayser, et a148 launched an instrumented M864 in September 1988. The projectile
contained pressure transducers to monitor the static pressure at two points on the base
and the stagnation pressure in the combustion chamber. In addition, a thermocouple
measured the temperature in the combustion chamber. Pressures on the ogival nose were
also measured. These data were telemetered to recording stations on the ground. A
yawsonde helped define the epicyclic motion during part of the flight and radar tracked
the trajectory. The projectile was not a standard M864 in that the mass was 81.9 per cent
of normal. The launch conditions, Mach 1.30 at a quadrant elevation of 850 mills, did not
correspond to standard operating conditions and were selected in order to optimize the
chances of a successful initial test flight of the instrumented round.

Figure 20 shows a comparison between the predicted trajectory for this round with
the motor on and witL niotor off. The effect of drag reduction caused by the gas generator
results in a 23 per cc it increase in range. Unfortunately, the radar tracking did not cover
the entire trajectory to impact. Thus, experimental data are unavailable for a direct
comparison with these computations.

Figtlre 21 shows the predicted spin rate compared to the flight measurement of spin
rate using the onboard yawsonde. The prediction is initially in good agreement with
the data but tends to ovei predict spin by less than one per cent at 20 seconds. This
disagreement can be related to a small change in the roll damping coefficient. However,
for the computation of the burn rate as a function spin, this discrepancy is negligible.

Figure 22 shows the main result of the experiment which is the pressure-time histories
for two points on the base and in the chamber. The origin of the time scale is with respect
to the exit of the shell from the gun. The initial base pressure corresponds to the inert
projectile at Mach number of 1.30 . The chamber pressure port was deliberately sealed
with a combustible material. As a result, the chamber pressure sensor did not begin to
detect the gas pressure until approximately 5 seconds after shot exit. The position of the
port was in the slot between the grains. Delay in recording may have been caused, in
part, by distortion in the grain blocking the slot. This is suspected because of the rather
unexpectedly large delay.

The two base pressure taps indicated almost the same pressure throughout the burning
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phase, although there was a significant difference after burnout. These pressures initially
increased to a peak of 0.89; the pressure then followed the expected variation with local
atmospheric pressure. The only major exception is a jump as the projectile decelerates
through Mach number one at 8. to 9. seconds into the flight.

The chamber pressure measurements roughly parallel the base pressures but at a
some what higher level as needed to produce the gas generator exhaust. The ratio of
the two pressures indicates that the flow through the exit is subsonic throughout the
burn. The chamber pressure drops to that of the base flat at 35.3 seconds. This is an
indication of the actual burnout time, although the two base pressure measurements show
an altered behavior well ahead of the apparent burnout. This suggests that the wake
sensed a weakening motor output well before the chamber pressure completely dropped to
the level of the base.

The next figure, 23, shows the computed pressure histories using the present analysis.
The results are in resonably good accord with the previous experimental data. There
are some discrepancies including that the base pressure did not jump up as high initially.
This would seem to indicate that the initial drag reduction is not as great as obtained
in flight. Never-the-less, the base static pressure decreased to a somewhat lower value
corresponding to the projectile reaching an even higher altitude. A third line on this
figure indicates the local ambient static pressure along the trajectory. The base pressure
actually becomes larger than the local static indicating a thrust is being generated near
the apogee. It should be pointed out that a standard atmospheric model has been used in
the calculations rather than the measured atmosphere.

The chamber pressure history also roughly parallels the base pressure. The burnout
is clearly observed at 36.8 seconds.

The next two Figures, 24 and 25, show essentially the same information as in the
previous two except that all the pressures are divided by the free-stream static pressure.
The static pressure is plotted in atmospheres for reference. In both the computed data
(24) and measured data (25), the base pressure ratio in the subsonic flight (time greater
than 10. sec.) is slightly greater than one. Thus, relative to free-stream ambient pressure,
the base actually contributes a negative drag or thrust. In the same region the chamber
pressure is about 6 to 8 per cent higher than the base pressure which is a sufficiently low
ratio to assure subsonic ejection.

In the supersonic flight, there are a number of discrepancies such as the fact that
the igniter contribution is over estimated and that the timing of the igniter activation is
inaccurately modeled in detail. It is difficult to predict the igniter performance a priori
without more specific data.

Figure 26 shows the drag reduction factor, fd,, which is defined in equation (28) in
terms of the base pressures with and without bum. The computation shows that base
bleed reduces base drag about 50 per cent in the supersonic part of the flight and basically
eliminates the base drag in the subsonic regime. The burnout occurs very abruptly because
the uniform burning surface is modeled with significant size at the maximum diameter of
the grain. In the experiment, irregularities probably cause the grain to burn through
unevenly with a more gradual burnout.
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Figure 26: Drag Reduction Factor for M864-L Flight

The mass flow from the gas generator is shown in Figure 27. Except for the pulse
from the igniter, the mass flow from the generator is between 0.030 and 0.034 kg/s over
75 per cent of the burn time.

2. COMPARISON WITH FIRING TABLE DATA

In order to develop firing information for the M864, the Firing Tables Branch of
the Launch and Fight Division of BRL has been conducting flight tests of production
ammunition over a wide range of conditions. The properties of the standard M864 are
given in Figure 1.

The flight experiments employ Doppler radar to track the trajectory; and, from these
measurements and 3D modified point mass simulation, the drag and velocity of the projec-
tile in flight are deduced. The data reduction technique and results have been reported by
Lieske.6 .7 The modeling analysis developed here has been applied to some of these cases.

Figure 28 shows a comparison between the range determined by Lieske using the 3D
modified point mass trajectory model where data from the Doppler radar are used to
determine the drag coefficient with the gas generator operating. This figure shows shots of
the standard mass projectile for three gun charges. The line, basically through the data, is
the present computation. This figure shows that the computation gives the correct trend
and magnitude. However, a better picture of the ability of the model can I,,.- obtained
from Table 3 which also includes a fourth case of the light weight projectib, launched with
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Figure 27: Mass Flow from Gas Generator for M864-L Flight

a non-standard charge. The present model agrees with that predicted by Firing Tables
computation within 800 m for the four cases considered. The Firing Tables technique is
an empirical fit to extensive firing data; and thus it gives ranges with an accuracy of about
0.4 per cent (100 m in 25,000 m).

TABLE 3: PREDICTED FLIGHT RANGE DATA FOR M864

QE=850. MILS
CHARGE Mi RANGE RANGE DIFFERENCE

COMPUTED FIRING TABLES
km km PER CENT

6W- 1.30 12.82 12.557 +2.0
7W 1.61 17.87 17.153 +4.2
7R 1.97 22.24 21.996 +1.1
8R 2.37 27.32 28.129 -2.9

Figure 29 shows the calculated burnout time of the propellant in the M864 as a
function of launch conditions. At low quadrant elevations there is relatively little variation
of burnout with respect to the average time of 33 seconds. But, as the elevation increases,
the projectile spends more time at high altitude and there is a significant increase in burn
time and more variation with gun charge (i.e., launch Mach number). The D,,ppler radar
measurements reported by Lieske do not show an effect of elevation or launch Mach number
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on the performance of the propellant. His results are best correlated using a fixed burn
time of 33 seconds; however, the trajectory model deduced from the radar data indicates
that the drag reduction does depend on atmospheric pressure. Computations using a lower
value of n, the exponent in the effect of chamber pressure on burn rate, considerably reduces
the effect of elevation on burn time. Hudgins'S cites a value of n=0.51 as recommended
by the propellant manufacturer base on tests over a limited variation in pressure.

VII. CONCLUDING SUMMARY

An engineering model for the performance of the M864 base burn projectile has been
assembled and tested on a number of flight cases. The model takes into account the three
main elements of the problem: gas generator mass flow prediction; the drag reduction
caused by the mass injected into the wake; and a two dimensional modified point mass
trajectory computation. The predictive capability is, at this point, deficient in a number
of respects; but qualitative predictions are made of all the physical aspects of the system's
performance. The computer model is based on laboratory experiments, analysis, and flight
tests of the inert shell. No extra factors have been introduced to improve the agreement
with measured data from flights of the M864 projectile.

The Navier-Stokes computations of the base flow, being carried out at the Ballistic
Research Laboratory, have been a critical element in formulating a comprehensi v,- model.
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These computations have been used to provide a correlation of change in base pressure
with mass injection, Mach number and taking into account the temperature of the gas.
This later effect is of critical importance for the development of a physically realistic model
of the effect of mass addition on drag reduction. Applicable data have been unavailable in
previous experimental studies.

The analysis of the gas generator performance used momentum and mass conservation
laws, a burning rate law developed by Miller et al, 32 and the geometry of the solid
propellant grain to predict the mass flow as a function of the exit pressure of the motor.
The ground based experiments with a spin fixtures were used to determine the effect of spin
rate on the burning rates. The burning surface is divided into a cylindrical and slot surface
with different burning rates on each. The cylindrical burning rate is inversely proportional
to the burnout time. Thus, it increases almost linearly with spin rate according to the spin
fixture tests. The slot surface burn rate is determined by the observation that, in the spin
fixture tests, all chamber pressure data start at approximately the same value at the same
time, independent of spin rate. A slot burn rate which almost linearly decreases with spin
is necessary to satisfy that condition. The resulting chamber pressure-time histories agree
reasonably well with the ground tests, especially in the early times.

The literature on the aerodynamic effect of mass addition to the near wake has been
reviewed. The mass flow produced by the M864 is such that interest is focused on low
values of injection rate. This suggests that the important range of the injection parameter
is less than 0.005 in the supersonic flight. In that range, the linear change of base pressure
with injection rate is applicable and has been determined for the existing data. When

33



the data are interpreted in this form, a clear Mach number correlation is observed. The
Navier-Stokes computations of Nietubicz et a140 extend the data base to include effects of
elevated injected gas temperatures as well as confirming the low temperature wind tunnel
data which had to be evaluated graphically. The final result of this part of the study
is a correlation equation which can be used to predict the average base pressure over
the range of conditions experienced by the M864. The correlation can be improved with
more numerical data, particularly in the low supersonic and transonic flight regimes. The
average base pressure computed from this model is used to directly determine the base
drag reduction.

The ground based tests show that the gas generator performance is time, pressure
and spin dependent. Thus, the computed base drag reduction depends on the projectiles
trajectory. As a consequence, the analysis is completed with the incorporation of a tra-
jectory model. A two-dimensional modified point mass method is used which employs a
fourth order Runga-Kutta integration technique. The computed trajectory for the inert
M864 agrees (within 60 meter in 24,000) with a full three-dimensional modified point mass
method currently in use for generating firing tables.

The analytical model of the M864 has been compared with an instrumented flight test
case. The measured chamber pressure and base pressure versus time are predicted by the
model. The computed burnout time predicted was 36.8 seconds compared to an observed
burnout of 35.3 seconds. The time of flight is also predicted within one second. One of the
major problem areas is the timing of the ignition phase of the motor performance. The
model was also applied to a number of flight conditions representing normal operational
situations. Doppler radar data are available for these conditions and total range predictions
gave correct trends and range values within 4.2 per cent of the test results.
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LIST OF SYMBOLS

a Grain surface area
A Area
Ab Base area
Ae Exit area
Are! Reference area (projectile maximum cross section)
CD Drag coefficient
CDb Base drag coefficient
CD. Zero yaw total drag coefficient
CD,. Forebody pressure and friction drag coefficient

CD. 2  Yaw squared drag coefficient
C1, Spin damping coefficient
CM. Slope of the pitching moment curve
Cy, Magnus force coefficient
C", Discharge coefficient
D Diameter
f. Strand burning rate correction factor at zero spin

f, Cylindrical surface burning rate correction factor to account for the effect of spin
f. Slot surface burning rate correction factor to account for effect of spin
fdr Drag reduction factor
g Acceleration of gravity
I Non-dimensional injection rate
I. Axial Moment of inertia
K Constant
k Constant in burning rate versus pressure formula
1 Length of the propellant grain
M". Free-stream Mach number
m Mass
rh Mass flow
n Exponent in burning rate versus pressure formula
P Pressure
PC Combustion chamber pressure
p Spin rate
larth Radius of the earth
r Radius of the propellant grain
r., Maximum radius of the propellant grain
r, End corner radius of the propellant grain

Burning rate
r'o Burning rate observed in strand burning tests
T Temperature
T, Combustion chamber temperature
t Time
u Velocity component in the x direction
ue Exit velocity of combustion products
V Magnitude of the projectile velocity
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V Vector velocity
v Velocity component in y direction
W Slot width
x Distance down range
x_ Down range distance at previous time step
y Height (altitude)

Greek Symbols
ce Yaw of repose

Nonlinear parameter in base pressure versus I
79 Ratio of specific heats of combustion products
0 Parameter in propellant grain surface area computation
Ax Range change computed from ecceleration
p Density

SlopeP/P=)
dl

Subscripts
b Base
c Cylinder
e Exit

Initial
j Injected gas
ref Reference
sl Sea level
s Slot
1 End of ingnition transient
00 Free-stream
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7. If indicating a Change of Address or Address Corrcction, please provide the New or Correct
Address in Block 6 above and the Old or Incorrect address below.

Name

OLD Organization
ADDRESS

Address

City, State, Zip Code
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