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I. INTRODUCTION

There has been considerable interest in the development of sensitive
laser spectroscopic probes for the detection of trace transient species in
combustion environments.1 ,2 Laser-induced fluorescence has beeg utilized for
the observation of a number of free radical combustion species. In this
paper, we describe our attempt to observe laser-induced fluorescence of the
methyleneamidogen radical, H2CN, which is prepared by excimer laser
photodissociation of formaldoxime [H CNOH] . We have also investigated the
photodissociation of the methylated iomologs of formaldoxime, namely
acetaldoxime [CH3 CHNOH] and acetoxime [(CH3)2CNOH]. We also report the
internal state distribution of the companion photofragment, hydroxyl, for
these three precursors.

Methyleneamidogen was first observed by Cochran, et al.,4 by ESR
spectroscopy in an pr~on matrix and has been observed in other experiments by
the same technique.- The ultraviolet absorption spectrum 2 f Y2 CN was first
observed through flash photolysis of formaldazipi [(H2CN)2 ]18-1 and
subsequently in the photolysis of formaldoxime. The observation of the same
bands from these two precursors supported their assignment to H CN, and
deuterium-substitution studies confirmed the presence of two hydrogen atoms in
the molecule.1 0 No rotational structure could be resolved in these bands.
Recently, the infrared spectra of H2CN and i. ts deuterated counterparts have
been observed by Jacox in an argon matrix. 4 All the vibrational bands have
been assigned. The ultraviolet absorption spectrum was also observed, with
only a small matrix shift. The methylated homologs of methyleneamidogen,
namely CH3CHN and (CH3 )2 CN, were also observed in the gas phase by flash
photolysis, in this case, of the precursors acetaldazine [(CN3CHN)2] and
dimethylketazine [((CH 3)2CN)2] .

Methyleneamidogen is believed to be formed in the early stages of the
decomposition of nitramines, a class of important high-engrgy
molecules.15,16 Using ESR spectroscopy, Morgan and Beyer' observed H2 CN,
along with nitrogen dioxide, as one of the species present in the vapors
produced by the slow pyrolysis of cyclotetramethylenetetranitramine (HMC) near
its melting point. The electron spin resonance spectrum they obtained for the
matrix-deposited vapors from this pyrolysi 9-as essentially identical to
spectra of H CN obtained by other methods. This transient molecule is also
believed to ie formed by the dissociation of methylenenitramine [CH 2NNO2 ],
which has been experimentally identified as a primary decomposition product in
the molecular bea infrared multiphoton dissociation of cyclotrimethylenetri-
nitramine (RDX).1 Methyleneamidogen may alpo be important as an intermediate
in the reaction of hydrogen atoms with HCN.18

Further studies of the role of methyleneamidogen in nitramine
decomposition would clearly benefit from a sensitive diagnostic tool for the
detection of this species. The most prominent features in its electronic
absorption spectrum occur near 280 nm. 10 - 13  There actuallr apear to be two
electronic transitions occurring in this spectral region. 11 ,1  Quantum
chemical calculations have also been carried out in order to estimate vertical
excitation energies.1 9 These calculations give a reasonable explanation of
the electronic spectrum of this radical and provide assignments for the
electronic states involved in the bands near 280 nm.
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In this paper, we report a search for laser induced-fluorescence of
methyleneamidogen and its methylated homologs upon excitation of the bands
previously observed by flash photolysis. In view of the fact that no

rotational structure was observed using a 10.7 meter spectrograph with 0.3 cm-
I spectral resolution,"1 the excited states of H2 CN may in fact be

predissociated. Jacox14 observed that the ultraviolet absorptions of a
matrix-isolated sample decreased upon exposure to light from a medium-pressure
mercury arc, while they remained unchanged when the sample was irradiated with
light from an arc of wavelengths greater than 280 rnm. If the excited state
were strongly predissociated, it would, of course, lead to a negligible
fluorescence quantum yield. It is interesting in this egard to make the
comparison with the isoelectronic formyl radical, HCO. Most of the excited
levels of HCO are diffuse, except for those with '-=0.20 A laser optogalvanic
study2 I revealed, in fact, a strong variation of the linewidth in the A2A
(0,9,0) K'=0 manifold. In spite of this predissociation, HCO has been
successfully detected by fluorescence excitation in the 12A" (0,9,0)-
X2A' (0,0,0) band.2 2'2 3 More recently, the formyl radical has been detected
in both a cell2 4 and in a flame2 5 by two-photon-resonant multiphoton
ionization near 390-400 nm via its 3s and 3p Rydberg states. In view of the
importance of developing a diagnostic for H2 CN, it was deemed worthwhile to
investigate whether fluorescence could be observed with this molecule upon
excitation of its known ultraviolet band systems.

We have chosen in this study to prepare methyleneamidogen by excimer
laser photolysis of formaldoxime since the other photofragment is the hydroxyl
radical, which is easily detected by fluorescence excitation. Formaldoxume
exists at room temperature as a polymer and must be heated to produce the
monomeric vapor.2 6  Detection of the hydroxyl radical allows indirect
verification of the presence of the oxime precursor and also provides a way to
estimate our detection sensitivity for methyleneamidogen. Because of the
difficulty in producing formaldoxime vapor, we have also investigated the
photodissociation of its methylated homologs, acetaldoxime [CH3 CHNOH] and
acetoxime [(CH3)2CNOH] . These precursors are expected to yield CH3CHCN and
(CH3)2CN, whose absorption spectra have been previously observed by flash
photolysis of the corresponding azines.12 These molecules were also
investigated in the hope that their predissociation rate may be significantly
less than that of H2CN. Finally, the photodissociation of formaldazine and
acetaldazine was also briefly studied.

II. EXPERIMENTAL SECTION

These experiments were carried out in a large vacuum chamber normally
used for molecular beam scattering studies.27  The photolysis source was an
excimer laser (Lambda Physik EMG101MSC) usually operated at 193 nm with ArF;
typical pulse energies of the unpolarized output were 10-20 mJ in a I cm x 3
cm rectangular area at the photolysis zone. A few experiments with
acetaldazine precursor were carried out at 248 nm with KrF. The tunable
ultraviolet probe laser beam, obtained by frequency doubling the output of a
Nd:YAG pumped dye laser (Quantel), crossed at right angles to the excimer
laser beam along the long dimension. Typical probe pulse energies at the
apparatus were 200 1J in a 4 mr diameter beam for laser fluorescence detection
of OH in the A2E+ - X2 1 (1,0) and (2,1) bands at 280-290 nm. Slightly higher
power (500-800 vJ) was employed in the search for fluorescence from H2CN and
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its homologs. Fluorescence detection of CN through excitation of its 2E+ -

X2E+ (0,0) band near 388 nm was accomplished by mixing the dye laser output
with the residual 1.06 im Nd:YAG fundamental. The incident pulse energy of
the probe radiation was approximately 100 jJ.

Fluorescence excited by the probe laser was collected with a 3-lens
telescope and was detected with a photomultiplier (EMI 9813QB), whose output
was directed to a gated integrator (Stanford Research Systems). For
experimental convenience, the fluorescence telescope has a 900 bend in it. To
reduce the scattered light background, a dichroic mirror, with reflectivity
peaked over 300-350 unm, was used to make this bend. Below 300 rnm, the
reflectivity dropped rapidly, reaching 50% at 285 rim. For fluorescence
detection of CN, the dichroic mirror was replaced with an aluminized one, and
excimer laser scattered light was eliminated with the insertion of a 390 nm
center wavelength, 10 nm FWHM filter. In many runs, excita*ion spectra were
acquired under computer control (DEC LSIP-11/23), and the spectra were stored
on magnetic diskettes for later analysis on another laboratory computer (Apple
Macintosh).

The precursors acetaldoxime and acetoxime were obtained from Aldrich
Chemicals. The stated purities were 95 and 98%, respectively. Acetaldazine
was synthesized by the reaction of acetaldehyde and h drazine hydrate
according to the procedure of Curtius and Zinkeisen. Checks of the infrared
and mass spectra against literature infrared2 9 and mass3 0 spectra were made to
insure the identity of the product. The purity of the product was found to be
>q8%.

Formaldazine polymer was prepared simply by the addition of formaldehyde_
to hydrazine hydrate using the procedure of Pulvermacher.3 1 The alternative
procedure of Hofmann and Storm 32 yields a ring compound, tetrafgrmaltrisazine,
C01I2N%, rather than the desired polymer of formula (C2H4N2)n.

33 A check of
the elemental composition (analytical physical measurements performed by
E.I. duPont de Nemours and Company) of our product showed the correct
elemental stoichiometry. An infrared spectrum of the polymeric sample was
also taken and, in general, agreed with literature spectra of the monomer
deposited in a low-temperature matrix.

3 4 ,3 5

Formaldoxime was synthesized by the procedure of Scholl.2 6 The identity
and purity of the solid product was checked by infrared and gas
chromatograph/mass spectra. Unfortunately, the only infrared spectrum
available in the literature is for the gas phase monomer.36 Also, no
literature mass spectrum could be found. However, our observed mass spectrum
exhibits approximately the fragmentation pattern expected for H2CNOH, and the
physical properties match known values.

Two types of photodissociation experiments were carried out for the study
of both nascent and thermalized products. In the former, the vacuum chamber
was evacuated with a baffled diffusion pump. Typical pressures for the
precursors were 2-5 mTorr, with pump/probe delays of 2-4 usec. For the study
of thermalized products, the chamber was evacuated with a roughing pump, and
nitrogen was added to give a total pressure of 0.6-1 Torr; pump/probe delays
were 4-50 usec and usually greater than 20 psec.
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Acetaldoxime, acetoxime, and acetaldazine, which are monomeric
precursors, were admitted into the vacuu chamber by means of a needle valve
on an evacuated flask containing the degassed material. Under normal
conditions (298 K and 1 atm), formaldazine exists as a solid polymer, while
formaldoxime is a solid trimer. In our first experiments, the desired
monomeric precursors were obtained by depolymerization of the solids in a
heated crucible located just under the photolysis/detection zone. This
arrangement generated a significant amount of particulate material, which led
to laser scattering that interfered with the taking of laser fluorescence
excitation spectra. The problem was exacerbated when an inert diluent was
added to the chamber (even at only I Torr pressure) because the buoyancy of
the diluent gas caused a large amount of particulates to float in the laser
beams, or the condensation rates of the generated vapors were affected.

To avoid the light scattering problem, we first attempted to make
monomeric formaldoxime liquid, as has been done before.1 3 ," 6' 36 We found that
the best way to handle the gaseous formaldoxime monomer was to depolymerize
the solid polymer in a test tube and inject it directly through a long, mildly
heated section of metal tubing directly into the photolysis chamber. This
procedure avoids the formation of particulates in the chamber. Also, there is
very little decomposition because the temperature required is much lower than
for formation of the liquid. We found that a depolymerization temperature of
80-90C produced a pressure of several mTorr in the chamber with the pumps
on. This is an adequate amount to perform photolysis experiments.

We did not devise a very satisfactory technique to inject formaldazine
monomer into the chamber. Use of a technique similar to that which worked
well for formaldoxime (depolymerization in a heated sidearm to the chamber)
was thought to be difficult because the depolymerization temperature (ca. 200-
220°C 10 ,I1) is high enough to cause materials problems since the heated
components would be exposed to room air. However, in retrospect, this
technique might work well because a lower temperature might still be
sufficient to produce several mTorr of monomer. (Lower pressures of monomer
are required in these experiments than were used in the flash photolysis
experiments. 10 - 14 ) In any case, it is clearly probable that the formaldazine
monomer could be produced nicely in the photolysis chamber by heating a
sidearm contained under vacuum. Such apparatus was not readily available to
us. Therefore, most of the experiments on azines were performed with
acetaldazine.

III. RESULTS AND DISCUSSION

A. Fragmentation Energetics

There is considerable uncertainty in the RIR 2CN-OH bond dissociation
energy for the oximes. The bond dissociation energy for formaldoxime (R - R2
- H) can be estimated by using its heat of formation (A 298 - 0 kcal/mole)
derived from bond additivity considerations by Benson an O'Neal37 and the H-
HCN binding energy (19 kcal/mole) calculated by Bair and Dunning18 for the
HjCN 3pecies. With the &id of the well-determined heats of formation of H and
H N, we estimate a bond energy of 74 kcal/mole for formaldoxime. The Bond-
Additivity-Corrected Moller-Plesset fourth order perturbation theory (BAC-1P4)
method has been used to calculate the thermochemistry of a number of
combustion species.1 6 Using the BAC-MP4 values3 9 for AO 2 9 8 of H2CNOH and
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H CN (5.1 and 58.9 kcal/ mole, respectively), we obtain a H2CN-OH bond energy
of 63.0 kcal/mole, which is in moderate agreement with the previous cruder
estimate.

We would expect methylltion not to change drastically the RIR 2CN-OH bond
energy. Benson and O'Neal3  estimated a value of 48.4 kcal/mole for
acetaldoxime (R1 = CH3 , R2 - H) from available experimental unimolecular decay
kinetic data. This value seems quite low in light of the estimates for
formaldoxime. Indeed, Benson and O'Neal questioned the validity of ths
experimental data. We can obtain another value using their estimated

/ AHgo2 R
for acetaldoxime (-7.3 kcal/mole) and a BAC-MP4 value

39 for CH3CHN (50g.1 ka

mole). We obtain a CH3CHN-OH bond energy of 66.6 kcal/mole, which is quite
similar to that for formaldoxime. At present, there is no information on
acetoxime (R1 = R2 - CH3); however, we expect a similar bond energy.

The ultraviolet spectra of the oximes contain two absorption regions, a
weak diffuse band near 210-213 nm and an intense band with a maximum below
190 nn.1 1 Accordingly, our photodissociation studies were carried out only
with an ArF excimer laser (193 nm) as the photolysis light source. This
implies that there is approximitely 85 kcal/mole of energy available to the
photofragments, if a R1R2 CN-OH bond energy of 63 kcal/mole is assumed.

B. OH Fragment Internal State Distributions

The OH product was observed by laser fluorescence excitation in the A2Z
+

- X21l (1,0) and (2,1) bands. These particular bands were chosen since they
lie very close to the wavelengths of the absorptions previously observed for
H2CN and its homologs. The dependence of the OH fluorescence signals for
several lines was investigated as a function of excimer laser pulse energy.
On a log-log plot the slope was found to equal 1.25 * 0.1. This is roughly
consistent with a one-photon photodissociation process. Under thermalized
conditions, the OH fluorescence signal decreased with a half life of
approximately 100 l sec with respect to the pump/probe delay in 0.7 Torr
nitrogen buffer gas. This is comparable with the expected diffusion time out
of the photolysis zone.

The OH(v-0) rotational distributions were taken from (1,0) R, and R2
branch intensities. The intensities were converted to rotational populations
using fluorescence excitation line strength factors calculated by the formulas
of Greene and Zare.4 0 It was assumed that the OH photofragments had an
isotropic Mi distribution. The nascent distributions, which are plotted in
Figure 1, were found to be somewhat hotter than for thermalized samples. The
distributions are essentially identical for all three oxime precursors and
exhibit a preference for production of the FI(Q - 3/2) over the F2 (Q - 1/2)
spin-orbit component, particularly at low N.

The OH(v-1)/OH'v-0) population ratio was also estimated for acetaldoxime
precursor since high-N P1 and P2 lines of the (1,0) band overlapped the (2,1)
band origin, as shown in Figure 2. We estimate that the nascent v - 1 to v -

0 ratio equals 2.0 * 0.01. In deriving this ratio, a correction for
predissociation , 2 of the low F levels of v'-2 was made. From the measured
OH internal state distribution, we conclude that an average of only 2.5 kcal/
mole appears as excitation of the OH fragments for acetaldoxime precursor.
Similar results apply to formaldoxime and acetoxime. Thus, the overwhelming
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majority of the energy available to the fragments must be present as
translational recoil and internal excitatiou of the RIR 2CN fragment.

(a) (b) (c)
00

.2.

00
>0

0 10 *15 0 5 1 15 0 5 10 1

N N N

Figure 1. Rotational State Populations for OH (v-0) Produced in the
193-nm Photodissociation of (a) Formaldoxime, (b) Acetaldoxime, and
(c) Acetoxime. The circles and squares represent the F1(Q2-3/2) and
F2(QZ=1/2) spin-orbit levels, respectively. The distributions are each

separately normalized to a particular F1 level. The populations are not
divided by the (23+1) degeneracy factor.

C. Search for H.,CN Fluorescence

With OH detected as a photofragment from the oximes, it can be assumed
that H2CN, or its homologs, will be present in the photolysis at the same
concentration as OH if no subsequent excimer-laser-inuced decomposition or
reactions of R, R2CN occur. (In Section s, we address the possibility that
this assumption may not be correct.) Extensive searches for laser
fluorescence signals from H CN and its homologs were carried out, both under
nascent and thermalized conitions. No fluorescence signals attributable to
these species could be found. For the formaldoxime precursor, scans were
taken over 280-286 nm in the region of the strone aor
the flash photolysis experiments on formaldoxime 0,11,13 and foraldazne.
Because of the ea of introducing the precursor into the apparatus, the
photolysis of acetaldoxime and acetoxime were more extensively studied. For
these molecules, scans were taken over the range 287-a95 n in the regions
where CH3CHN and (CH3)2CN have been found to absorb.1

From our lack of observation of RoR2CN fluorescence and our observed
signal-to-noise ratio for OH lines, we can estimate an upper limit to the
RaR2CN fluorescence quantum yield, provided we assume that the concenations
o1 ReR2CN and OH are equal in the photolysis zone. Ogilvie and Hormel have
estimated the integrated oscillator strength for the 280 rum band of H CN to be
(4*2) x 10 . We shall assume that the oscillator strength of the
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corresponding bands in the radicals produced from acetaldoxime and acetoxime

are similar. Since the band is approximately 200 cm-1 wide, this implies an

average oscillator strength per unit bandwidth of 2 x 10- /cml. We can

estimate the oscillator strengths of the OH (1,0) and (2,1) inog from the

known 4radiative lifetimes and fluorescence branching ratios: f, 0 - 3.1
x 10-4 and f2 ,1 = 4.5 x 10- .

12 11 PiI I1

12 11 12
_17_ 7_ 1 1 (1,0)

17 16 Q2

9 I 12--- 10 1 (2,1) 81

2 1

34600 34700 34800

laser wavenumber (cm-1)

Figure 2. Excitation Spectrum Near the OH A-X (2,1) Band Origin for
Photodissociation of Acetaldoxime Under Nascent Conditions. Lines of the

(1,0) band and of the (2,1) 01 branch are marked. The pressure and
pump/probe delay were 4 mTorr and 3 us, respectively.

Our most sensitive searches for RIR 2CN fluorescence were carried out with
acetaldoxime and acetoxime and with nitrogen added as a thermalizing buffer.
Under these conditions, lines in the OH (2,1) band could be observed with

signal-to-noise ratio of greater than 100 in some scans. The oscillator
strengths given in the previous paragraph and the previously determined OH

(v-i) to (v0) population ratio imply that the ratio of an R1R2CN signal to
that of a low N line in the OH (2,1) band should equal approximately unity if
the fluorescence quantum yield 0 of R1R2 CN were unity, assuming also that the
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quantum yield for OH excited fluorescence is also unity. This suggests
that 0 is less than 1% for CH3 CHCN and (CH3)2 CN.

The N pressure and delay 4ime of these scans were sufficiently low to
prevent vibrational relaxation4' in the OH(X 211) state. In fact, the zero-
pressure fluorescence quantum yield or OH v'-2 is considerably less than
unity because of predissociation.4 1' 2 The measured radiative lifetime (ca.
450 nsec, which is significantly longer4th n the lifetime of low N levels
in v'2 under collision-free conditio9 , ,) of the laser excited OH (v'-2)
indicated that vibrational relaxation' v tg the nonpredissociating lower
vibrational levels was occurring in the A Z state; this would have the effect
of substantially raising the fluorescence quantum yield over that for v'-2 in
the absence of collisions.4 1,'4 2 Our estimate for the upper bound on 0 would
be even further reduced if the quantum yield of OH fluorescence were less than
unity. Hence, we conclude 0 is certainly less than 1% for CH3 CHCN and
(CH3 )2CN. The derived upper limit for 0 is approximately one order of
magnitude larger for H2CN since the OH signals observed for formaldoxime
precursor were smaller.

While not observing fluorescence attributable to R1R2 CN, we did observe
weak fluorescence from an as yet unidentifiable species other than OH. Figure
3 shows an excitation spectrum of a thermalized sample of photolyzed
acetaldoxime in the region of the OH (2,1) band head. In contrast to the
nascent spectruim in Figu e 2, the high N lines of the OH (1,0) band are very
weak compared to those of the (2,1) band because of rotational relaxation
in v"=l. In addition to the strong OH lines, we can see a weak set of lines
with closer spacing which appear to be converging to a band head degraded to
the red near 34650 cm- 1 . In addition to these lines, a second set of more
closely spaced lines were observed around 34150 cm- , as shown in Figure 4.
The spacing between lines in the latter region is much smaller than in the
former.

We do not believe that these lines are due to R R2CN since (1) they do
not match the wavelengths reported for RIR 2CN from the flash photolysis
studies and, more importantly, (2) they appear at identical wavelengths with
acetoxime as the precursor. (The lines near 34650 cm-1 also appeared, weakly,
with formaldoxime.) In an attempt to identify the molecular carrier of these
lines, we measured the radiative lifetimes of several of the lines. We
estimate the fluorescence decay lifetime to be approximately I Psec, roughly
independent of the line excited and the nitrogen pressure over 0.3-1 Torr.
The precision of our measurement is poor because the signal is small compared
with the probe laser scattered light. One possible candidate for the
molecular species is methoxy, CH30, which does have bgnds in this region and
whose radiative lifetime is reported to be 1 .5 1sec.-U However, the
rotational structure for a room-temperature sample of methoxy would be
expected to be much more dense than the spectra shown in Figures 3 and 4.

At present, we do not have a suitable candidate species to attribute to
these bands. We do, however, have several comments to make about the bands.
Firstly, there is so much interference from the strong OH lines obscuring the
short wavelength, better resolved band that it is difficult even to attempt to
fit the rotational structure of the band. The OH lines make it particularly
difficult to observe the band origin which would facilitate fitting the
spectrum. Secondly, the spl'tting between the two bands is about 450 cu-1 .
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5 3 1

I rrn.=.R1

1 3

iLU I I I

34400 34500 34600 34700 34800

laser wavenumber (cm -1)

Figure 3. Excitation Spectrum Near the OH A-X (2,1) Band Origin for
Photodissociation of 4cetaldoxime tinder Thermalized Conditions. All the
strong lines are due to OH. The Q, and R, branches of the (2,1) band are
marked. The splitting of the R branch lines is due to strong satellite

transitions near the main branch lines for these low N values. The pressure
and pump-probe delay were 0.66 Torr (nitrogen added) and 25 ps, respectively.

This mitigates against the possibility that the two bands are subbands of the
same vibrational band resulting from spin-orbit splitting because the
splitting is so large. If the two bands belong to the same molecule, it would
therefore seem that they are different vibrational bands. The form of the
short wavelength bands appears to be much simpler than the long wavelength
band. The former may consist of only P and R branches, with no apparent spin
splitting, while the latter apparently has more branches. If the bands arise
from the same molecular species, it therefore seems likely that the
vibrational symmetries of the levels involved in the two bands are
different. Alternatively, there could be a K' dependent pre~s~nciation in
the short wavelength band, as in the HCO AA-X2 A spectrum.
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Figure 4. Excitation Spectrum Around 34150 cm-I for Photodissociation of
kcetaldoxime Under Thermalized Conditions, Showing a Band of an

Unidentified Species. Lines of the OH A-X (2,1) band are marked.

We also investigated the 193 nm photolysis of formaldazine and the 193
and 248 nm photolysis of acetaldazine. No fluorescence signals attributable
to any molecular species were observed with the probe laser tuned through the
wavelength regions where the appropriate RjR 2 CN fragments are known to
absorb. 0- 13 The sensitivity of these runs was less than those with oxime
precursors. Moreover, our detection sensitivity could not be calibrated in
situ since, of course, no OH is produced by the photolysis of these compounds.

D. Detection of CN

In estimating the upper bound to 0, it is possible that our assumption of
equal concentrations of the RU and R1R2CN photofragments may not be correct.
The flash photolysis work10-  suggests that the latter is not rapidly
consumed by chemical reactions since the R1R2CN absorptions were seen to
persist at much higher reactant pressures than used in the present work for at
least gn psec. However, in our experiments, it is possible, at least in

10



principle, that RIR CN could itself be destroyed in the initial
photodissociation since the energy available to the fragments considerably
exceeds the RI-R 2CN bond energy (see Section A) and only a small fraction of
this energy appears as OH excitation (see Section B). Thus, both RIR 2CN + OH
and R1CN + R2 + OH photolysis products could be formed in a one-photon
process. The dissociation wavelength in the present experiment (193 nm) is
somewhat shorter than in the flash photolyfis studies since the Kr flashlamp
output there dropped rapidly below 200 nm. The effective wavelength range
of the photolysis radiation is actually a convolution of the flashlamp output
and the oxime absorption coefficient, which is rapidly rising below 200 ur.
Hence, it is possible that fragmentation of RIR 2 CN is more likely with
photolysis using 193 nm radiation, than with a Kr flashlamp. In fact, the
appearance of successive absorption maxima in the continuum spectra of both
the oxime and azine precursors 0 ,1 2 ,1 as one goes toward shorter wavelengths
may indicate the onset of some fraction of higher fragmentation photolysis.

In an effort to determine the importance of such destruction of R1R2CN,
we looked for production of CN by laser fluorescence excitation. Indeed, we
observed CN through fluorescence excitation in its B2E+ - X2E+ (0,0) band upon
193 nm photolysis of acetaldoxime. No attempt was made to measure
quantitatively the CN concentration relative to that of OH because of the
widely different wavelength range, and laser and filter bandwidths. However,
we estimate that the CN concentration was significantly less than that of OH
since comparable photomultiplier signals were observed; the oscillator
strength of the CN B-X (0,0) band equals (3.11 k 0.05) x 10- 2 51 and is hence
much larger than for the OH (Av-+l) sequence. The dependence of the CN
fluorescence signal was investigated for several lines as a function of
excimer laser pulse energy under thermalizing conditions (1 .0 Tort nitrogen
added, 4 ). sec pump/probe delay). On a log-log plot, the slope was found to
equal 0.78 * 0.1. This suggests that CN is formed by a one-photon
dissociation process from the oxime. The process CH3CHNOH + CH4 + CN + OH
requires approximately 110 kcal/mole. This dissociation pathway is clearly
feasible in a one-photon process at 193 nm.

In addition to the observation of ground state CN by laser fluorescence
detection, an emission signal coincident with the ArF excimer laser pulse was
seen through the 390 nm bandpass filter with the acetaldoxime precursor. We
do not believe this is due to direct photolytic production of CN(B2z+ ) because
the decay time of this signal (ca. 1 jisec) is much longer than the CN(B)
radiative lifetime (ca. 70 nsec51 ) . The dependence of the emission signal on
the excimer pulse energy was found to be approximately linear (slope of 0.99 *
0.1 on a log-log plot). However, production of CN(B) in a one-photon process
at 193 nm is not energetically allowed. Unfortunately, it was not possible in
the present apparatus to take a spectrum of this emission, thus elucidating
the species responsible.

IV. CONCLUSION

In this work, we have investigated the 193 nm photodissociation of the
simplest oximes, namely formaldoxime, acetaldoxime, and acetoxime. The OH
photofragment was detected, and its internal state distribution determined.
An unsuccessful search was made to observe laser excited fluorescence from the
other photofragment RIR 2CN, where R, and R2 equals H or CH3 . Based on the
assumption of an equa concentration of OH and RIR 2 CN upon photolysis of the
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oxime, we were able to estimate a rough upper bound of 1% for the fluorescence

quantum yield 0 of the RIR 2CN absorption bands in the 280-295 run region. This
implies that electronic states excited in these transitions are
predissociative. Through the detection of CN, there is some evidence that the
R R2 CN is itself destroyed to some extent in the initial event of the 193 n
photodissociation of the oxime. This could have the effect of increasing our
estimate on the upper bound to 0.

The present study indicates that fluorescence excitation of the
electronic bands near 280 n of methyleneamidogen is not a feasible laser
diagnostic for this species. The infrared absorption bandl of HICN, which
have been identified in the recent matrix study of Jacox,1 may nave utility
as a probe for this molecule. An alternative, more sensitive technique may be
resonant-enhanced multiphoton ionization through a Rydberg state, as has been
successfully carried out for HCO.2 4 ,25

Recently, Marston, et al., 5 2 have shown that H2CN can be produced in high
yield from the N + CW3 reaction. Using the discharge flow/mass spectrometry
technique, this group has measured the elementary reaction rate constant for
the N + H2CN reaction. These results imply that mass spectrometric detection
of H2 CN may be a viable alternative diagnostic for this species. In addition,
it would be interesting to compare the production of H2CN by this chemical
method with our photolytic approach.
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