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NOMENCLATURE

D jet pipe diameter
d particle diameter

L upstream pipe length

1e integral length scale

Re particle Reynolds number

r radial coordinate

S e  mean Stokes number at jet exit

S m  mean Stokes number

tm time scale of mean flow

t particle time constant
P

U streamwise fluid mean velocity

U0  bulk velocity of fluid at exit

Uom peak streamwise mean velocity of fluid at exit

Up streamwise mean velocity of particles

u streamwise rms velocity of fluid

u streamwise rms velocity of particles

z streamwise coordinate

vf kinematic viscosity of fluid

P p particle density

p fluid density
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I. INTRODUCTION

Experimental verification of the predictions of advanced models of the ballistic
cycle, Reference 1, lags far behind the results of parametric studies which increased
computer power has made available to modelers. Until recently, beside wall
temperature surveys and pressure measurements, little of the emerging non-intrusive
technologies have been applied to the hostile environment of the flow in a gun tube.

Erosion in gun tubes, where the presence of propellant particles is thought to play a
role, is a case in point. Neither the trajectories nor the distribution of the particulates
in a fast convecting flow are known with any degree of certainty. The role of the
particles in the generation and/or damping of turbulence is also an open issue. In view
of the importance of turbulence on the level of heat transfer, this too is a vital, but as
yet unresolved question.

Laser Doppler Velocimetry, Particle Image Velocimetry, holographic flow surveys,
just to mention a few of the newer technologies have, as yet, found few practicioners in
the ballistic diagnostic field. These approaches promise to add considerable information
to our understanding of the basic physics of the b.listic cycle. It is with this in mind
that the experiments described in this report were undertaken.

The earlier measurements obtained in a two-phase, unconfined jet of 25.4 mm
diameter and peak exit velocity of 20 m/s with glass beads of mean diameter of 80 Am
at a mass loading of 1.5% are reported in References 2 and 3. This study was
undertaken in a similar arrangement comprising a smaillr jet of 12.7 mm diameter and
a peak exit velocity of 25 m/s laden with the same particles at two mass loadings of 1%
and 5%. The results are compared with those of References 2 and 3 to quantify the
effect of upstream boundary conditions, more specifically the L/D ratio, on the
development of the two-phase jet.

The experimental system and the flow conditions considered are described in the
following section. Section 3 presents and discusses the results and the report ends with a
summary of the main findings in Section 4.

II. EXPERIMENTAL SYSTEM AND FLOW CONDITIONS

A detailed description of the experimental system is given in Reference 2. Briefly,
the jet issued vertically downward from a pipe of 12.7 mm in diameter and 0.56 m in
length giving an L/D ratio of 44. The air to the jet was supplied from a blower,
controlled by means of a set of valves and monitored by a rotameter. The peak jet
velocity at the exit was 25 m/s and the corresponding Reynolds number was around
17,500 based on the exit bulk velocity of about 21.5 mis. The time scale of the flow at
the exit, equation 1, was around 0.6 ms compared to that of the 80 Jim glass bead
particles of around 50 ms, equation 2.

t m = D/Uo, (1)

tp d p2(1 + 2pp/p)/36vf. (2)
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The resulting mean Stokes number at the exit, Eq. 3, and those at downstream
locations defined by Eq. 4 (Reference 4), were always less than unity so that the
particles were considered to be unresponsive to the mean flow and a slip between the
two phases was expected.

Se = (D/U0 ) / tp. (3)

Sm = Se(1/6.57)(z/D) 2 . (4)

The glass beads of 80 pan mean diameter and 2950 kg/m 3 density were introduced
in a plenum upstream of the jet pipe by means of a rotating brush/piston assembly at
mass loadings of 1% and 5%; the 5% loading represented the maximum limit achievable
with this arrangement under present flow conditions. The particle loading was
controlled by the speed of the piston driven by a variable speed motor. The size
distribution of the glass beads is shown in Figure 1. The majority of the particles had a
diameter in the range of 65-90 pam so that the effect associated with polydispersed
particles was minimized. For single phase flow measuremefii.s the particle disperser was
used to seed the flow with titanium dioxide particles of micron size. Velocity
measurements obtained with these particles in the absence of glass beads are assumed
to approximated those of the carrier phase.

The velocity of the fluid and particle flow was measured by a dual-beam laser
Doppler velocimeter operated in back-scatter mode. The detailed characteristics of the
optical arrangement are given in Reference 2. When measuring particle velocity, in
order to reduce the probability of "cross-talk" due to small particles, both the laser
power and the amplifier gain were turned down to reduce the amplitude of the signal
from the micron particles by at least a factor of ten. In this way the trigger level of the
signal processor was effectively increased by the same factor, thereby reducing the
possibility of measuring the amplitude signals which were mainly due to micron size
particles.

The effect of the trigger level on the "cross-talk" phenomenon is den. nstrated in
Figure 2. It shows three velocity pdf's obtained with different trigger-level settings at a
downstream location of z/D = 17 where the particles were expected to lead the fluid.
Increasing the trigger level reduces the probability of lower velocities associated with
the carrier phase. For the measurements of particle velocity, therefore, a high
trigger-level setting was employed. In addition the test rig was thoroughly cleaned prior
to measurements to minimize the residue of titanium dioxide particles.

The major sources of error associated with velocity measurements were due to
finite-size statistics and velocity gradient broadening effects; see for example Reference
5. The overall error in the mean velocity is estimated to be of the order of 3% and
around 10% for the rms velocity.
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III. RESULTS AND DISCUSSION

The velocity results are presented in Figures 3 - 6 in the form of centerline and
radial distributions and are all normalized by the peak mean velocity of fluid at the
exit, Uom' This allows a clear description of the jet velocity decay and also gives a

better comparison between the particles and fluid flow velocities.

It was assumed that for the relatively dilute concentrations considered, the
single-phase flow results closely approximate those of the carrier phase. The degree of
influence of the particles on the carrier phase flow depends on the size and
concentration of particles and the slip velocity between the two phases. Reference 6, for
example, indicates that for particle diameter to turbulent length scale ratios, dp /Iel of
0.001 to 0.1, the change in fluid turbulent intensity caused by the presence of particles
is generally small and the results of Reference 4 show almost identical velocity
characteristics for the fluid flow with and without the particles at mass loadings up to
20%. It is also expected that for particle Reynolds numbers (see Eq. 5) less than 110 as
in the present case (Rep < 40) no vortex shedding downstream of the particle would

occur, Reference 7, to enhance the turbulence of the carrier phase.

Rep = (Up - U)dp/Vf. (5)

Figure 3 shows the centerline distributions of the streamwise mean and rms
velocity for the fluid and particle flow mass loadings of 1% and 5%. The glass beads
lagged the fluid near the exit. The lag decreased from around 25% at the exit to zero at
about z/D = 7. At locations downstream of z/D =7 the particles led the fluid and the
lead increased to around 40% at z/D = 19. Increasing particle loading from 1% to 5%
had no significant effect on velocity characteristics. With mass loading of 5%, the
momentum flow rate of particles is not high enough to cause a significant change in the
flow and the particle-to-particle interaction is still negligible at this loading. In parallel
with the results of References 3 and 4 the particles rms velocities were higher at the
exit, up to 3 times, than the corresponding fluid values mainly due to the
"fan-spreading" effect described in those references. Downstream of the exit and as the
"fan-spreading" effect diminished, for z/D > 5, the particle rms velocities became lower
than those ofthe fluid since they were unresponsive to both the mean flow and the
turbulence. At z/D > 14, however, the two rms values were surprisingly comparable.
This may probably be due to the bouncing of the glass beads off the bottom panel of the
jet enclosure. This phenomenon needs to be checked, and the use of a PIV technique
may provide insight in this respect.

Figures 4 - 6 show the radial profiles of the streamwise mean and rms velocity of
the single-phase flow and the particles with 1% mass loading at z/D = 1, 9 and 18
respectively. Consistent with Figure 3, the particle mean velocities near the jet core at
z/D = 1 were lower, the rms velocities higher and the profiles flatter than those of the
fluid. The particle lag of 25% on the centerline compares with that of 8% with the 25.4
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mm jet and a peak exit velocity of 20 m/s of Reference 3. This is partly due to the
difference between the two exit Stokes numbers. The exit Stokes number here was 0.01
compared to 0.03 in Reference 3; with lower Stokes number more slip between the
phases is expected. The main reason, however, is associated with differences in the two
upstream boundary conditions. The L/D ratio in Reference 3 was around 22 as opposed
to 44 here and the flow was consequently not fully developed pipe flow observed here.

Figures 5 and 6 are also consistent with Figure 3 and show that the particles led
the fluid, the lead was more pronounced at z/D = 18 and the particle rms levels were
lower at z/D = 9 but comparable at z/D = 18 to those of the fluid.

IV. CONCLUSIONS

Measurements in an unconfined, axisymmetric jet with 1% and 5% mass loadings of
80 pm particles were carried out by laser Doppler velocimetry and the results compared
to those of References 2 and 3 to quantify the effect of upstream boundary conditions on
velocity characteristics. The most important findings were as follows:

The particles lagged the fluid by 25% near the exit but later led it by about 40% at
18 jet diameters downstream. The particle rms velocities near the exit were higher by a
factor of three than the fluid values due to the "fan-spreading" effect.

The particle lag at the exit was three times more than that of Reference 3 mainly
due to the difference between the two upstream L/D ratios. In the present case the L/D
ratio was 44 compared to 22 of Reference 3 and consequently the flow in the upstream
pipe was more fully developed.

Increasing the particle loading from 1% to 5%, the upper limit achievable with the
present system, did not cause any significant effect on the development of two-phase
jet.

There are several implications of these results for ballistic submodels. Early on, in
their passage down the tube, the particles will be lagging the carrier phase. This trend
will reverse as time progresses. This suggests that the particle drag models may need to
be reexamined. The particle rms velocities, i.e. turbulence, will be considerably higher
than that of the fluid during the initial phase. Clearly, the turbulence of the second
phase can not be neglected. The "fan-spreading" effect will influence the migration of
the particles, with effect on the boundary layer development and thus the heat transfer
to the tube walls. As yet, none of these observations can be deduced from current
ballistic models. Their modification is a task which need to be addressed soon.
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