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1 1 ~ ABSTRACT

The photonic band structure of a face-centered cubic lattice of spheres in a

uniform host medium is calculated. The plane wave method is used to solve the

exact Maxwell's equations without the use of the scalar approximation. Detailed

comparisons with the available experimental results are made. "

The idea of employing three dimensionally periodic dielectric structures to creat gaps in

the photon density of states has recently been introduced. [11 [21 The potential applications of

such a forbidden frequency gap is facinating. Examples include the inhibition of spontaneous

emission,11 the modification of basic properties of atomic, molecular and excitonic systems, [3]

[4 and the possibility for studying mobility edges and Anderson localization of photons within

the gap. [211
5 1

TI-C A recent experiment with microwaves [6] has demonstrated-the soundness of the basic idea

of photonic bands in three dimensional periodic structures. Moreover, in one of the samples, a

06 gap that extends throughout the Brillouin zone was observed. Unfortunately, there was little

6 -, theoretical guidance to help find optimal dielectric structures which will produce such gaps for

these new artificial optical media, besides the fact that the dielectric contrast should be large

and the Brillouin zone should be as close to spherical as possible. Consequently the

experimentalists had to adopt a tedious cut-and-try approach in which dozens of fcc structures

with atomic volume filling fraction between 11% to 86% and various refractive index ratios90 0(;o8 070
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were painstakingly machined out of low-loss dk'-tric materials. This very time comsuming

approach was necessary to help insure that no possibilities were overlooked. It was found that

out of the twenty-one samples that were made, only one exhibits a true photonic band gap.

Here we show that the plane wave method can successfully be used to calculated the

photonic bands in three dimensionally periodic dielectric media. The structure we studied is

the same as that investigated experimentally, [61 and consists of a face-centered cubic lattice of

spheres of refractive index na embedded in a homogeneous transparent host medium of

refracive index rb. The photon bands were calculated for various values of the relative

refractive index, r = na/nb, and volume filling fraction of spheres, f. In particular, we have

also studied the case in which the spheres are air-atoms which are so closely packed that they C/

are actually overlapping. This case is especially interesting in that it was found experimentally

to have a common photon band gap throughout the entire Brillouin zone. Overall our

theoretical results are in reasonable agreement with those of the experiment.i6 This includes
(D

the effective long wavelength refractive index as a function of the volume filling fraction, and

the size of the gap at the L- and X-points for a 86% of air-atoms. However, there is a 0
i-.. ...

discrepancy for this case at the W-point, where our result suggests that a gap does not exist
1o 0

because of symmetry. In addition, in the W to K direction away from the W-point, the gap is Q.

much more feeble than measured experimentally. ( T C

We present here the first computation of photon band structures based on Maxwell's

equations. Our results therefore fully take into account of the vector nature of the photon.

The importance of a full vector calculation has in fact been pointed out.161 Here we see that
V

calculations for scalar waves are inadequate and much too optimistic in predicting a gap to

open up at a refractive index contrast of about 1.7. [71 181 191 [101 Ill Our calculation here is

carried out using the plane wave method. This method has recently been used successfully to

calculated photonic band structures based on the scalar wave approximation. [71 [8 Our Ades

present work shows that the method can be extended with similar success to the full vector . or
A

case as well. The method is extremely simple, and is capable of treating any form of dielectric
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modulation. We find that convergence is slower than the scalar case, but is reasonably rapid

enough for obtaining accurate band structures. This is unlike conventional electronic band

calculations where convergence problem arises for the plane-wave method because wave

functions are rapidly oscillating near the highly attractive atomic core potentials and are

plane-wave like outside the atomic regions.

We start with Maxwell's equations and eliminate the magnetic field in favor of the electric

field E to obtain, for monochromatic waves of frequency w, the equation

Vx(V4)+k VE -- (1)

where V = 1 -n 2 /n 2 b, kb = tI~n,/Co, and n = na inside the spheres and n - nb inside the

host. We can identify k2 as the energy and k 2 V as the potential. Owing to the spin 1 nature of

the photon, the above equation has a vector character and the potential is proportional to

and thus vanishes in the long wavelength limit. This has some very important consequences in

determining the photonic band structures here, as well as in the photon localization

problem.[
121

In the plane wave method one works with the Fourier coefficients

-k. 
= f 'e E (r, (2)

and

=lfdi e'iTC+'_V( n, (3)

where K are the reciprocal lattice vectors and fl is the volume of the fcc primitive cell.

Equation (1) can then be expressed in the form

[(1k-K 2-2-(k-K)(k-K)]'Ek.-+kt , V/i'_'ik-" = 0. (4)

This equation gives an infinite order determinantal equation that can only be solved by
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truncation. If N reciprocal lattice points are included, then a 3Nx3N matrix equation has to

be solved. However, it is important to note that this equation has zero eigenvalues that

correspond to longitudinal photon modes. This can be seen by setting kb in Eq. (4) to zero

-_4 
R4and working in a coordinate system in which the z-axis points along the vector k-K. Then it is

clear that the resulting determinant is zero and the eigenvectors correspoding to the zero

eigenvalues have (k-K)' = (k)-KY = 0 and (k-K)z f 0. These zero eigenvalue modes can be

eliminated by the condition VD = 0, where D is the displacement field. This condition

implies that

E = 0. (5)
K

With this equation one of the cartesian component of Ek-' can be eliminated. The resulting

determinantal matrix is therefore of order 2Nx2N. This procedure of eliminating the zero

eigenvalue modes is found to speed up our numerical calculation by at least a factor of two,

and enables us to include more K points to improve the accuracy of our results. The photon

band structure is then obtained by finding the eigenvalues k2 of the resulting matrix for each

value of k.

Before we give the results of our calculations that are specific to the present problem, we

want to make a few general remarks. First, it is easy t0 see that in the empty lattice limit, i.e.

V-.0, the eigenvalues are given by kb = I k-K 2 and are at least doubly degenerate, because

the photon can have different states of polarization. The band structure can be found in most

solid state textbooks. It is also true that in this limiP - ,.t of the levels are highly degenerate,

especially at high symmetry points, and for k vary: rom the F-point to the edge of the

Brillouin zone, the dispersion curves are straight lines given by kb = k . A detailed plot of the

free-photon bands for the fcc lattice can be found in a recent paper, [MI except that the

degeneracy factor for each level should be multiplied by a factor of two.
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For V f 0, depending on the symmetry of V, some of these degeneracies are lifted, and

the dispersion curves originating from the r-point are linear only near the r-point, where k is

small compared with the magnitude of the smallest nonzero reciprocal lattice vector of the

lattice. If we plot kb versis % k % for the photon bands, then the slope of the straight portion

is no longer unity, but should be given by (nb/leff) where neff is the effective refractive index

of the entire medium in the long wavelength limit.

For fixed values of the relative refractive index and volume filling fraction, the lowest lying

frequency gap is expected to have the the largest width. We find that this is true in all the

cases that we have studied, and therefore we shall only report results for the lowest few bands.

Moreover, it is important to note that because of the two different states of polarization, the

lowest gap can lie only between the second and the third bands. This situation is very

different than the scalar wave case where the lowest gap lies between the first and the second

bands.

Now we are ready to discuss the results for the present model. For the case of dielectric

spheres considered here, we have

11K-= 3f(1-r)g( I K Ia), (6)

where the function g(x) = (sinx -xcosx)/x 3, and a is the radius of the sphere. This result

applies as long as the spheres do not touch. In the experimental work of Yablcnovitch and

Gmitter 161, two types of models were studied. The first type consists of dielectric spheres of

polycystalline A120 3 with a microwave refractive index of 3.06 embedded in a dielectric foam

of refractive idex 1.01. Samples were made with a variey of volume filling fraction from 11%

to the closed-packed value of 74%. The second type of samples were made by drilling

spherical holes in a low-loss dielectric material which has a refractive index of 3.5. Various

samples with a volume filling fraction from 11% to 86% were fabricated. The voids are

actually overlapping when the volume filling fraction is larger than the close-packed value of

= 0.74. It turns out that when f>f,, there are three separated cases that have to be
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considered. These three cases correspond to c/v8<a <c/V-, c/x/-<a <cv'3/16, and

cv/16 <a <c/2, where c is the length of the side of the conventional unit cube for the fcc

lattice. In the first case, both the spheres and the host material form an infinite multiply-

connected domain. In the last two cases, the host material breaks up into disconnected star-

shape islands while the spheres form an infinite multiply-connected domain. We find that for

a = c/v, the volume filling fraction is 0.964. Therefore the sample which was found

experimentally to have a gap in the photon density of states and has a volume filling fraction

f = 0.86 actually belongs to the first case. It can be shown that for this case

PI/dr= (l-r)[3fg( I K Ia) - (Q)1 (7)

where

a
- 2 r f dzcos(Qzz) V Jl(Q V?). (8)

In the above equations, J 1 is the first order Bessel function, and two of the six Q vectors are

given by Qp = VK2+(Ky±Kz)2/2 and Q, = (Ky'+Ky)/v/ in cylindrical coordinates. The

remaining four vectors are given by cyclic permutations of x, y, and z. Although the integrals

can be expressed in terms of Lommel's functions of two variables and various schemes for

computing them are available 1131, we find it more convenient in our work to simply integrate

these integral numerically.

Using these results together with our plane wave equations, we have calculated the photon

band structure for various values of f and r. We find that the results for the lowest few bands

converge reasonably fast. To within an accuracy of 0.1%, we find that 180 K points are

sufficient for r ranging from 1/12.25 to 9.179 and for f ranging from 0 to 0.96. First we show

the results for the effective long wavelength refractive index in Fig. I for both the dielectric-

and air-atoms as a function of the volume filling fraction. The results are seen to be in

excellent agreement with the experimental results of Yablonovitch and Gmitteri61, who have
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also pointed out that these results are not accurately predicted by any effective medium

theories.

Next we present, in Fig. 2, the computed results for the eigenvalues for the second and

third bands at the L- and X-points in the Brillouin zone as a function of the volume filling

fraction for the case of air- atoms. These results are normalized to the center frequency of the

lowest gap at the X-point. The agreement with the experimental results 161 is fairly good. In

particular we find that the X-gap goes to zero for f=0.66. This is very close to the

experimental value of 0.68. The physical origin of this behavior has been fully discussed by

Yablonovitch and Gmitter, and accordingly we plot the gap width at the X-point as a negative

quantity for f> 0.66. For f= 0.86 our results for the gap sizes at L and X are both smaller than

those observed in the experiment.

We have also calculated the entire photonic band structure for k along the symmetry

directions in the Brillouin zone. Results are obtained for the refractive index ratio r varying

from 1/4 to 1 for air-atoms and from 1 to 4 for dielectric-atoms. For each value of r, the

volume filling fraction is varied from 0 to 0.96 for air-atoms and from 0 to 0.74 for dielectric-

atoms. Fig. 3 shows the results for a 86% volume filling fraction of air-atoms embedded in a

dielectric material with a refractive index of 3.5. These parameters correspond to the case in

which a common gap was found experimentally. We see that although the overall band

structure agrees reasonable well with the experiment, our computed band structure does not

show a common gap. This is due to the fact that the second and third bands appear to be

degenerate at the W-point. Fig. 3 also suggests that the second and third bands are degenerate

along the W to K direction. (Note that the K- and U-points are connected by a reciprocal

lattice vector, and are therefore equivalent points in the Brillouin zone.) However, further

investigation shows that this degeneracy away from the W point in the K direction is purely

accidental because our results show that it disappears in general for other values of r and f.

Fig. 4 shows the band structure for the case where r = 1/3.5 and f= 0.8. Although the

magnitude is rather small there is now a gap at the U point between the second and third
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bands. The crossing of these bands at a point between W and K is also accidental, and does

not appear in general. The most troublesome feature is at the W point where the degeneracy

is found to persist for this value of refractive index ratio of r= 1/3.5 for f ranging from 0 to

0.96. Further calculation indicates that this remains true down to a value of r= 1/4 for all

values off, and that this degeneracy appears to be symmetry related.

In the case of dielectric-atoms, we find that the gap at the W-point oper. up for r >2.8,

unfortunately there is no overlap in the gaps at the L- and X-points for a true gap to develop

for these values of r. We have also checked that for r around 4 the second and third bands at X

appear to be degenerate and therefore a common gap does not exist either. We have not

gone to values of r too much larger than 4 because the lack of suitable optical materials that is

currently available in the laboratory, and because in our calculation the size of the matrix

required for convergence becomes prohibitedly too large.

In summary, we found that for r ranging from 1/4 to 4, thus including both the air- and

dielectric-atom cases, there is no common gap in the photonic band structure for the fcc

geometry at any volume filling fraction. Our work suggests that it is important to find a

mechanism which will either redistribute the strength of the Fourier coefficients of the

potential in such a way that degenerate levels at the W point do not occur for the second and

third levels, or lift the degeneracy of these levels.
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Figure Captions

Fig. 1 - The effective long wavelength refractive index for two basic crystal structures as a

function of the volume filling fraction. The solid lines are our computed results. The

experimental values are shown by the (o) and (x) points respectively for spherical dielectric

atoms and spherical air- atoms.

Fig. 2 - The computed forbidden frequency gap width at the L- and X-points as a function of

the volume filling fraction for air-atoms embedded in a dielectric material with a refractive

index of 3.5. The experimental values at the L- and X-points are labeled respectively by (x)

and (o). These results are all normalized to the center frequency of the lowest gap at the X-

point.

Fig. 3 - The computed photonic band structure for a 86% volume filling fraction of air-atoms

embedded in a dielectric material with a refractive index of 3.5. The spherical voids are

actually closer than close-packed, and are overlapping.

Fig. 4 - The computed photonic band structure for a 80% volume filling fraction of air-atoms

embedded in a dielectric material of refractive index of 3.5.
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