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ABSTRACT

/

The wavenumber-frequency response of Timoshenko beams to multiple point
drives is studied in this thesis. An experimental system to excite a free-free
Timoshenko beam and measure the resulting velocity is developed. Piezoelectric
shakers/force gage units are designed and built to excite the beam and measure
the applied forces. Experiments varying the number of shakers used and the
wavenumber to which the drive voltage sent to the shakers is steered are
performed. The wavenumber-frequency dependence of the force and velocity
are measured and compared to theoretical predictions. These comparisons show
excellent agreement between the measured and theoretical results. A theoretical
investigation into the effect of the velocity measurement array is perforined. Also,
the finite beam admittance is examined. The piezoelectric shakers are modeled
using equivalent circuits, which successfully predict the force output and the force

gage sensitivity.

The experiments show that the wavenumber content of the discrete shakers
could be steered to the wavenumbers chosen over a wide frequency range (the
frequency range of measurement was 2-12 kHz). The finite beam admittance

is shown to approach the infinite beam admittance in regions where the
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wavenumber content of the forcing function are high.
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Chapter 1
INTRODUCTION

The interaction of the pressure fluctuations beneath a turbulent boundary
layer (TBL) and a structure cause that structure to vibrate. These vibrations
may cause unwanted effects such as radiated noise in jet aircraft, spacecraft,
naval vehicles and air conditioning systems; or self noise in transducer systems.
The TBL pressure fluctuations can usually be described as random stationary
processes in space and time. It is generally useful to characterize the spatial
and temporal variations in terms of their Fourier transforms, wavenumber and
frequency. The vibrations of a structure excited by these pressure fields also
are random stationary processes. It is the wavenumber-frequency dependence of
these structural vibrations that is of interest in this study.

The wavenumber-frequency response of the forced transverse vibrations of
a one-dimensional structure, represented by a beam, is under consideration for
this study. The excitation consists of discrete shakers with measured force levels
instead of random pressure fluctuations. The velocity is sampled along the length
of the beam. Both the force and velocity spatial distributions are transformed
into wavenumber-frequency space via the Fourier transform. As the frequency
response of structures is generally well understood and easy to measure, the
emphasis of this study is placed on understandirg the wavenumber response.

The general objective of this study is to characterize the wavenumber filtering
characteristics of a finite beam over a large region of wavenumber-frequency
space. The study is both theoretical and experimental. Results from theoretical
models on the beam response, characteristics of the shakers used to excite the
beam and algorithms used in taking Fourier transforms over spatially finite

domains are used to assist in the design of the experiments and analysis of the
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measurement resuits.

Just as an impulsive load in time has a white or flat frequency spectrum,
so does a spatially impulsive load (i.e. a point source). Initially it seems, a
good method would be to excite the beam with a single shaker and measure the
wavenumber velocity response with an array of accelerometers. As the input force
wavenumber spectrum would be flat, all velocity wavenumbers would be excited.
However, there are several difficulties with this idea. One is the fact that the
spatial location of the shaker is important to the velocity, not just the relative
distance between the excitation point and the measurement sensor. Hence, even
at a single frequency, the output wavenumber velocity spectrum will depend on
the location of the drive force. Two, the beam is a fairly selective wavenumber
filter. At any frequency there is a preferred wavenumber, the freebending
wavenumber, at which the velocity response of the beam will peak. This is the
wavenumber that corresponds to the wavelength of a freely propagating wave
on an infinite beam at that frequency. Measurement of the beam response at
this wavenumber is easy because the signa.l.is very high. With only one point
force exciting the structure, the freebending wavenumber would dominate the
response making measurement at other wavenumbers difficult. In an atteﬁpt to
excite the beam to measurable levels at wavenumbers other than the freebending
wavenumber, a forcing function weighted to a particular wavenumber other
than the freebending wavenumber could be used. This requires multiple point
drives to be used. In this way, the energy of force excitation as well as the
velocity response would be concentrated in a region of wavenumber-frequency
space centered around the drive wavenumber. The velocity response would be
measured by the accelerometer array, which provides a further concentration of

the measurement in the desired wavenumber frequency region.
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The philosophy of driving the beam at a particular wavenumber is similar to
steady state frequency analysis. The difference is that in the temporal domain a
signal of indefinite length can be used while spatially the signal length is limited
to the length of the structure. Indeed, the meaning of Fourier transforms over
the finite length of the structure is different than that for the infinite domain.
What is proposed is the development of a system to measure the wavenumber-
frequency characteristics of a beam by using multiple point drives and measuring
the velocity response with an array of accelerometers. Hence, it is necessary to
understand the theoretical aspects and hardware realization of the measurement
system. Predictions of the response of the beam are derived so that experimental
results on both point admittances and wavenumber spectra may be validated.
The signal processing necessary to measure the wavenumber spectra of the force
and the velocity is developed. The signal processing aspects of imposing the
desired spatial force distribution on the beam is also derived. The transducers
for exciting the beam and measuring the exciting forces are developed as well
as an equivalent circuit model to predict the response of the force transducer.

Finally, the equipment and procedure used for data acquisition are developed.

1.1. Literature Review

The early work on the wavenumber response of structures seems to be
motivated by the need to understand the vibrations induced by jet and rocket
TBL pressure fluctuations [1,2). Some of the later work is more motivated toward
the measurement of flow induced TBL due to vehicles moving through a fluid
[3,4). Essentially, each of these papers studies the relation between the applied
pressure field and the resulting vibration or radiated pressure due to the induced
vibration.

Starting with Uberoi and Kovasznay [5], the wavenumber sensitivity of
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sensors with finite extent has been studied. Maidanik and Jorgensen [6} developed
the wavenumber sensitivity of arrays of flush mounted pressure transducers.
Blake and Chase [7] examine arrays of pressure sensors with more complicated
wavenumber pressure sensitivity. In this thesis, the sensitivity of arrays of
accelerometers is predicted using the analysis of Blake and Chase [7] as well
as of Gaskill [8].

Hutto [9] investigated the use of multiple point drives weighted to a
wavenumber to excite a beam. His theoretical study into this method forms some
of the basis of this research. Roberts and Sabot [10] employ a similar technique
utilizing multiple point drives. However, they attempt to simulate the TBL
pressure fluctuations on a plate. Hutto’s work on the response of Timoshenko
beams to point drives is extended in this thesis. The multiple shaker system is
constructed and experiments are compared to theoretical predictions based on
Timoshenko beam theory. A system for the measurement of the wavenumber-

frequency pressure response of structures is discussed by Strawderman [11].

1.2. Experimental Approach

The basic experimental approach employed in the remainder of this thesis
for measuring the wavenumber-frequency response of a beam is outlined in this
section. Also discussed are the analytic and experimental requirements imposed

by the proposed system which forms much of the basis for this thesis.
1.2.1. Experimental Method

The experimental method consists of driving the structure at a particular
wavenumber and measuring the velocity response as a function of frequency.
To achieve the force distribution, multiple drivers are placed along the length

of the beam. The voltage input to the shakers is weighted to a particular
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wavelength by setting the voltage inputs to the shakers to cos(k4z.), where
kq is the drive wavenumber and z,, is the location of a shaker. The resulting
velocity distribution is measured by an accelerometer placed at discrete points
along the beam using a common reference. The Fourier transforms of the force
and velocity are performed to obtain the wavenumber response of both quantities.
It is the relationship between these wavenumber dependencies that characterizes
the spatial filtering action of the beam or the admittance of the finite beam in
wavenumber-frequency space.

A typical force amplitude distribution weighted to a particular wavenumber
is shown in Figure 1.1. By using multiple drives in a standing wave pattern,
the peak of the forced wavenumber content is steered to the drive wavenumber,
ka, without the need for continuous control of the phase of each of the drive
voltages, as would be required by a traveling wave pattern. The measurement of
the velocity distribution by the array of accelerometers also allows a filtering of
the wavenumber dependence. The use of the discrete Fourier transform applied
to the velocity data, steers the measurement wavenumber to the different bins of
the discrete transform (Chapter 2). The hardware and analytic implications of

this method are described next.

1.2.2. System Requirements

Clearly, one of the most important requirements is the need for multiple
shakers (force exciters). Because the force is to be measured at each excitation
point, each shaker must have an integral force gage. Measurement of the force
is required for two main reasons. First, the force measurement allows for the
determination of whether or not the force wavenumber spectrum tracks with the
applied drive voltage wavenumber spectrum. A feedback-control system could

be used to control the force at each of the shakers, but this is a much more
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Figﬁre 1.1 Discrete forcing function weighted to a wavenumber

(after Hutto [9]).




7
complicated implementation. Second, the forces at each of the shakers are the
input to the analytic models which predict the velocity along the beam. To
prescribe the desired drive voltage distribution, a multiple channel amplitude
weighting system is essential. This amplitude weighting system must have the
ability to drive each of the shakers at an arbitrary amplitude (real, positive or
negative amplitude). The requirement of one channel per shaker is cut in half by
using a symmetric weighting pattern as in Figure 1.1. The weighting distribution
used is symmetric about the center and equal to cos k4(z — L/2), where L is the
length of the beam. The velocity of the beam at an array of locations must be
measured.

Both the force and velocity measurements must be transformed into wave-
number space via Fourier transforms. Because the velocity may only be measured
at discrete points, the continuous Fourier transform is simulated by the discrete
Fourier transform. Because of the finite length of the beam, the velocity and
force only exist over a finite length.

Validation of the measurements is required. The force gages must be
calibrated and resonant effects in the force gages identified. This requires analytic
modeling of the shaker/force gage units used in the measurements. Also, results
from the measured response of the beam must be validated. Analytic modeling

of the beam response is employed to validate the measurement results.

1.3. Outline of Thesis

In Chapter 2, the means by which the wavenumber-frequency spectra of
the force and velocity are measured is described. The entire experimental
measurement system is described. The basis for the signal processing assump-
tions is presented. A description of the shaker/force gage unit is given. In

Chapter 3, the analytic model for Timoshenko beams is derived and discussed.




8
First the spatial-frequency response of free-free beams to multiple point drives
is derived following Hutto [9]. The wavenumber-frequency response of free-free
finite beams and infinite beams is developed. Finally, the relationship between
the wavenumber content of the forcing function and the velocity response is
examined. In Chapter 4 the combination force gage/shaker units are modeled
using equivalent circuit analysis. The results of the experiments are compared
to the various theoretical results in Chapter 5. Lastly, the conclusions and

recommendations for future research are drawn in Chapter 6.




Chapter 2
DESCRIPTION OF MEASUREMENTS

2.1. Introduction

In this chapter, the implementation of the experimental method proposed
in Chapter 1 is described. First, a general outline of the experiments is given;
including descriptions of the experiments, measurement system and procedure.
The design, construction and calibration of the shaker/force gage units follow
the experimental description. Next, the signal processing used both to process
the force and velocity data as well as calculate the amplitudes of the voltages
sent to the shakers is presented. The analysis in this final section spells out the

various assumptions made in the signal processing aspects of handling the data.

2.2. Experimental Description

In this section, the overall description of the experiments is presented. First,
the beam geometry and material properties are listed. The forcing functions
that define the nine expériments performed are described next. The system and
procedure by which the force and velocity data are obtained are detailed. Also,
the means of force excitation is given. Finally, general aspects of performing the

experiments are enumerated.
2.2.1. Beam Geometry

The steel beam used in the experiments is 37.9 cm long by 1.27 cm wide
by 1.92 cm high (or thick). The material properties of the beam are listed in
Table 2.1. The length of the beam was determined by two constraints. The
number of channels available for driving the shakers is ten; using a symmetric

weighting function with respect to the center of the beam the number of shakers
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that could be driven is nineteen (with the center shaker having no symmetric
pair). The closest center to center shaker spacing that is feasible is 2 cm; hence

a 38 cm beam would be fully covered by nineteen shakers.

Table 2.1 Steel material parameters used in this thesis.

Material Parameter Symbol Value (units)

Elastic Modulus 210x10!° (dyne/em?)
Shear Modulus 77x10'? (dyne/em?)
Density 7.8 (grams/cm®)
Damping Loss Factor 05%1

3 Ol

#1 This is the damping loss factor of shaker-beam system, not just of the steel beam.

The beam is supported on two highly porous foam wedges, typically used
in air anechoic rooms. Hutto [9] showed that this method of support closely
approximates a free boundary condition. One of the drawbacks to the use of the
wedges is that approximately 1 cm is required to support the beam at either end.
Hence, for the 2 cm shaker separation distance, only seventeen and not nineteen
shakers could be used. This is because there is not enough room to place the last
two shakers on the beam and still properly support the beam.

The beam was scored at 1 cm intervals to aide in the location of the shakers
and the accelerometer. The first mark is at 0.95 cm and the last mark is at
36.95 cm. These spacings are symmetric with respect 1';0 the middle of the beam.

It is at each scored location that the acceleration is measured.
2.2.2. Experimental Test Matrix

The experimental test matrix is shown on Table 2.2. The values under the
heading “wavelengths across the beam” are equal to the drive wavelength (see

Figure 1.1) divided by the length of the beam. The drive wavenumber is kg4 =
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2r/A. The nine shakers were located 4 cm apart emanating from the center of
the beam; with four shakers to the left of center shaker and four to the right of
the center. The seventeen shakers were spaced 2 cm apart, also symmetrically
from the center. The procedure by which the voltage amplitudes are determined

is detailed later in this chapter in the section on signal processing.

Table 2.2 Experimental test matrix.

Experiment Wavelengths Across Drive Number of
No. " the Beam Wavenumber (¢cm™!) Shakers
1 0 0.000 9
2 1 0.166 9
3 2 0.332 9
4 4.5 0.746 9
5 0 0.000 17
6 1 0.166 17
7 2 0.332 17
8 4.5 0.746 17
9 9 1.492 17

2.2.3. Measurement Instrumentation and Procedures

The overall plan for the measurement scheme is outlined in Chapter 1. Each
experiment is characterized by the number of shakers used to excite the beam
and the voltage distribution applied to the shakers. For each of the experiments,
the spatial distribution of both the force and velocity must be measured in order
to describe the wavenumber-frequency filtering characteristics of the beam. A
description of the instrumentation and procedure by which the force and velocity
are measured, as well as the means of exciting the beam, are found in this section.

The shakers are glued to the beam using epoxy (Epoxy-Patch 309 gray made
by the Hysol division of Dexter). Before attaching the shakers with this fast
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setting, high tensile strength epoxy, all surfaces must be cleaned. First, any rust
is removed from the beam by using steel wool. Then, both the attachment point
on the beam and the shaker headmass are cleaned using a three part process.
First, a cotton swab is immersed in toluene and rubbed on the surface to be
cleaned until no further residue can be seen. This procedure is repeated with
alcohol and then acetone. After the surfaces are cleaned, each surface is coated
with epoxy and held together either by hand or by a vise until set. In Figure 2.1,

a photograph of seventeen shakers glued to the beam is shown.

Figure 2.1 Photograph of nine shakers glued to the beam.

A flowchart of the measurement system is shown in Figure 2.2. An IBM
PC-AT controls the experiments by driving an HP 4102A impedance analyzer
through a GP-IB (General Purpose-Interface Bus). The impedance analyzer
sends an oscillator signal at a specified voltage and frequency through a low pass

filter set at 12 kHz to an HP 465A voltage amplifier. The measurements are all
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taken using a step frequency method. Note that this figure is shown specifically
performing a measurement of transfer admittance. For the measurement of the
force ratios, the accelerometer signal is removed and a force signals is sent to the
impedance analyzer.

The amplified and filtered signal is feed into the multi-channel amplitude
weighting system (MAWS). The system has the ability to use the single input
from the voltage amplifier to transmit up to ten separate voltage signals. These
signals will have arbitrary gains and either a zero or 180 degree phase difference
from the oscillator signal. MAWS allows the amplitude of the drive signal of
the array of shakers to be tuned to a particular wavenumber by dialing in the
voltage signals for each of the shakers to precalculated values using the procedure
described in Section 2.4. Because MAWS has only zero or 180 degree phase
control, only a real spatial voltage distribution may be imposed unto the drive
signals. As previously stated, there are only ten channels; a symmetric force
distribution is used so that up to twenty shakers may be driven by this ten
channel system.

The center shaker is used as the reference shaker. The signal from each of the
other force gages is sent to a channel selector, which is simply a switch that can
select any of the output signals from the force gages. The force output voltages
from the reference and measurement force gages are amplified by Ithaco 450
amplifiers. The amplitude and phase of the ratio of fhe two force gage signals
are measured by the impedance analyzer. Of course, this measurement is taken
while all of the other shakers are being driven. The results are stored by the PC
as a function of frequency. This procedure is repeated until the ratios of all of the
shakers to the center shaker are measured. The stored data are later transferred

to the mainframe computer.
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The velocity distribution is measured in a manner similar to the measurement

of force ratios. An accelercmeter glued to a samarium-cobalt magnet serves as
the velocity probe. The same epoxy used to glue the shakers to the beam is used
to attach the magnet to the accelerometer. The magnet performs very well in
the frequency range of interest [9]. The beam is made of magnetic steel so the
velocity is sampled simply by moving the accelerometer down the length of the
beam. It was found that the response of the accelerometer/magnet combination
is enhanced by using Kistler force gage grease between the beam surface and the
magnet. At each scored location along the beam the ratio of the voltage from the
accelerometer to the center force gage is measured using the impedance analyzer.
As part of the data acquisition program this ratio is converted into admittance
(velocity divided by force) and the admittance as a function of frequency and

location is stored on the PC.

2.3. Shaker/Force Gage Units

The requirements for the hardware of the measurement system were laid out
in Chapter 1. These requirements are placed into two categories; transducer and
data acquisition requirements. The data acquisition system was just described.
In the sections on transducer development, the design and construction of the
final shaker is described along with interim design steps. A brief description of
construction techniques is followed by the method for the calibration of the force
gages. In Chapter 4, an equivalent circuit model describing the overall response
of the shaker, and the response of the force gage section is developed. This model
serves as a check on the measurements made on these transducers.

The design and construction of the combination force gage and driver (or
shaker) is a major part of this study. Because shakers of a diameter of less than

1.27 cm required in this study are not commercially available, it is necessary to
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fabricate them. The original design concept of the drive section included the use
of PZT-4 (Lead Zirconate Titonate) piezoceramic disks as the active element.
The use of two of these disks and a passive tailmass were added to the shaker
design during the iterative steps of the design process. Also in the original design,
the piezo-film PVDF (also known as PVF-2) was used in the force gage section.
This design was abandoned after many iterations due to mechanical difficulties
and PZT-4 was used in the final force gage design. The force gage design using
the PVDF film is shown in Appendix A.

2.3.1. Shaker/Force Gage Design

A schematic of the final design is shown in Figure 2.3. The three sections
of the shaker are labeled on the figure. The sections are the drive section, the
decoupler section and the force gage section. The dimensions of the various

components and materials used are given in Table 2.3.

Table 2.3 Dimensions and materials used in the transducer.
Description of Section Material Dimensions (cm)
Drive PZT-4 .635 long x 1.27 Diam.
Tailmass Brass .635 long x 1.27 Diam.
Decoupler Aluminium 1.905 long x 1.27 Diam.
Force gage PZT-4 ~ 3175 thick x 1.27 O.D. and .762 L.D.¥1
Headmass Aluminium 1.59 long x 1.27 Diam.#*

#1 1 D. and O.D. stand for inner and outer diameter respectively.

#2 The headmass section narrows to an area of .3175 ¢cm x 1.27 cm at the top portion.

The drive section consists of two PZT-4 disks, three corrugated nickel

electrodes, and a brass tailmass. The PZT-4 elements are polarized toward the
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center electrode and are electrically in parallel. The negative terminals (ground)
are the two outward facing electrodes; this configuration aides in shielding the
force gage signal from the drive signal. The contamination of the force gage
signal from the drive voltage is called cross-talk. Proper grounding techniques
are discussed later in this section. The PZT-4 disks are 33 coupled, which means
that the direction of the applied electric field is the same as the resulting motion
(or force). Since both disks are polarized toward the center electrode and are
electrically in parallel, an applied electric field causes the disks to beat against
each other. In other words, both disks contract toward the center electrode and
expand away in unison. At low frequencies, the action of the two piezoceramic
disks is the same as a single PZT-4 disk with twice the length of thg original
disk [12]. The motivation for this design and the use of the brass tailmass, is
to increase the overall compliance and mass of the transducer drive section so
as to lower the resonant frequency of the system. Thus, the low frequency force
output of the shaker is increased.

The negative terminals are connected using an insulated wire to eliminate
the possibility of shorting out the positive terminal since the positive terminal
is between the two negative terminals. The wire is soldered to the electrodes
and then to the black lead of a twisted wire with a shield. The positive lead of
the twisted pair (the red wire) is soldered to the center electrode of the shaker.
Both wires are then glued to the side of the shaker with epoxy to strain relieve
the connection. A General Radio or Pomona type, two prong connector is used
at the other end of the twisted pair wire with the outer shield connected to the
ground terminal at this connector.

The decoupler section consists of an aluminum cylinder. There are two main

reasons for the decoupler. The first reason is an extension of the mechanical
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design of the drive section, that is to lower overall stiffness of the shaker. So
as not to block the output of the drive section at higher frequencies, a material
lighter than brass is used. By increasing the compliance of the shaker, the use
of the aluminum decoupler increases the low frequency axial force output of the
shaker. Second, the use of the decoupler also reduces the effect of electronic
cross-talk. Since the drive section acts as an antenna, it is beneficial to place
the force cell as far from the drive section as possible to reduce the effects of the
electronic cross-talk. The aluminum decoupler must be connected to ground in
order to act as a shield for the force gage.

The force gage section is designed to measure the applied force to the test
structure and to transmit a line force across the width of the beam. The
force gage section consists of an annular cylinder 33 coupled PZT-4 piece, two
electrodes, an alsmaig ceramic insulating disk (ceramic insulator in Figure 2.3),
and an aluminum headmass. The positive electrode of the force gage is insulated
from the decoupler by the alsmaig disk. The ground side of the force gage is
connected to the aluminum headmass. The electrodes are soldered to low noise
coaxial cable. The center conductor of this cable is the positive or high side and
the outer conductor is the shield. At the end of the coaxial wire a Micro-Tech
connector is used to help reduce unwanted cross-talk. The cable is stress relieved
in a similar manner to the drive section; by gluing the wire to the side of the force
gage. The aluminum headmass allows for light stiff connection of the shaker to
the test structure. At the attachment point the cross-section of the headmass is
narrowed to simulate a line force. The headmass design enables the shaker to
easily and safely be attached and removed from the test structure. The effect of
the headmass on the response of the force gage is examined in Chapter 4.

The proper grounding technique is a critical element of the shaker design as
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well as for the entire measurement system. The shakers must be designed so that
the force gage signal is insulated from the drive signal. The ground plane of the
drive section and the force gage section must be the same so that no ground loop
exists. All metal elements of the shaker are grounded to prevent charge from
accumulating on these components and becoming an emitter of electro-magnetic
noise. The ground planes of all of the equipment must be the same. This can
be accomplished by running all of the amplifiers, oscilloscopes and any other

equipment connected to the shaker off of the same power line.

2.3.2. Construction

The transducer is constructed by gluing the surfaces of the components
together using epoxy. The surfaces must be meticulously cleaned before the glue
is applied. After the construction is complete, the strength of the glue joints is
greater than the ceramic in bending. These procedures were arrived upon by
experimentation with different methods as well as through discussions with the
personnel at the Applied Research Lab (ARL) at Penn State [13].

The first step is to clean the assembled components. Metallic surfaces that
are to be glued (electrodes, tailmass and decoupler) are first etched in a mild acid
bath to remove oxide coatings. The metallic surfaces, the electroded surfaces of
the PZT and the alsmaig insulating disk are next abraded with a fiberglass brush
for further cleaning. Then all of the surfaces to be gluéd undergo the three part
solvent cleaning process of toluene, alcohol, and acetone; this process is performed
under an exhaust hood.

After cleaning, the components are glued together using Shell EA-6 epoxy.
First, the glue is applied in a thin coat to both surfaces that are to be joined.
The entire transducer is assembled sequentially from the tailmass up. Upon

completion of the gluing, the transducer is placed in an alignment jig which also
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supplies axial compression to insure a good bond. The transducer, now in the
jig, is placed in an oven at 80 degrees Celsius for six to eight hours. The jig and
transducer are removed from the oven. The residual charge across the electrode
terminals from the heating and cooling of the piezocefamic is shorted out. All of
this work is performed in the transducer clean room at ARL.

Next, the electrodes are bent slightly toward the body of the shaker to prevent
the electrodes from protruding. Wires are then soldered to the terminals of the
PZT-4 elements and then stress relieved. Finally, the outer part of the transducer

is covered by shrink wrap so that the electrodes are not exposed and are protected

during handling.
2.3.4. Force Gage Calibration

The method of calibration is simply a comparison calibration which employs
Newton’s law. The shaker is loaded with a known mass. The acceleration of the
mass is measured with an accelerometer. From the ratio of the force gage voltage
to the accelerometer voltage, the sensitivity of- -the force gage is determined. A
diagram of the calibraticn set-up is shown in Figure 2.4

A personal computer controls the calibration by sending instructions to an
HP 4192A impedance analyzer using a GP-IB. The impedance analyzer has the
ability to send an oscillator signal at a prescribed voltage and frequency as well
as measuring the ratio of two signals and their relative phase. A data acquisition
computer program was written to run the calibration and store the data. The
program steps the oscillator through the frequency range of interest (2-12 kHz),
while the oscillator signal from the HP 4192A is sent to an HP 465A voltage
amplifier. The amplified drive signal excites the shaker which, in turn, excites
the known calibration mass. The signal from the force gage and the attached

accelerometer are amplified and then sent to the impedance analyzer. The
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amplitude and phase of this ratio are used to calculate the unknown sensitivity
of the force gage. The sensitivity data are sent to the VAX 11/780 mainframe

for plotting.

The sensitivity is calculated from the following formula,

_ R(w)S,
S(W) - Mc + Mhm + lwa ’

(2.1)

where, S(w) is the frequency dependent force sensitivity, S, is the sensitivity
of the accelerometer, My, is the mass of the head mass, Af, is the calibration
mass, M, is the mass of the accelerometer, and R(w) is the ratio of the voltage
from the force gage to the accelerometer voltage. This formula comes from the
application of Newton’s Law.

The maximum and minimum sensitivity for five different shakers is shown in
Figure 2.5 over the frequency range of 2-12 kHz. Since the value of the force gage
sensitivity is very flat over the frequency range of interest, a single sensitivity is
assigned. This sensitivity is the average of the frequency dependent sensitivity
over the frequency range. The averaged §a.1i1es of the sensitivity and phase for
all of the force gages is tabulated in Table 2.4. Each of the shakers has a number
associated to it; these are the numbers used to identify the shakers and their
sensitivities. A discussion of the variations of the force gage sensitivity is found

in Chapter 4.
2.4. Signal Processing Aspects

In this section, the signal processing aspects of measuring the wavenumber
response of the beam are examined. First, the discrete Fourier transform
is introduced. Next, the wavenumber sensitivity of accelerometer arrays is
developed. This development begins with a general treatment of the problem, so

that the simplifications made when using the discrete Fourier transform can be
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Table 2.4 Sensitivities of the force gages.

Shaker number Sensitivity (V/N) Phase (deg.)
1 .94 179.
2 .88 179.
3 .95 180.
4 .88 180.
5 .93 180.
6 .92 181.
7 .99 181.
8 .94 181.
9 .98 181.
10 .98 181.
11 97 180.
12 97 181.
13 97 181.
14 97 180.
15 .99 180.
16 1.0 180.
17 .98 180.
18 1.0 180.
19 1.0 180.
20 .98 180.
21 .94 180.
22 .98 180.
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identified and justified. Also, the measurement of the wavenumber content of the

forcing function is developed and a method of steering the forced wavenumber

content is developed.
2.4.1. Discrete Fourier Transform of the Velocity

The Fourier transform of f is defined to be
o0
Fli)= [ fa)etesds (2.2)
and the inverse transform is
1 [« ]
f@) =5 [ Flr)ee=ar, (23)
-00

where the wavenumber is k; and the spatial variable is z.
The discrete Fourier transform (DFT) is a means of estimating the wave-
number spectrum from measured and predicted spatial data. The DFT may be

applied to results of spatial-frequency model or to experimental data. The DFT
of the displacement y(z) is

N-1
Ya(k) = Az Z y(EAz)el~tA=R) (2.4)
=0

The factor k is the wavenumber counting index, £ is the sample number and
N is the total number of points. The factor Az is the spacing between sample
locations. The multiplying Az is the proper normalization for the DFT (14]. The
transform of a complex sequence of NV points results in NV separate spectral lines,
the first N/2 spectral lines represent the positive wavenumber spectrum and the
mirror image of the second represent the negative spectrum. The counting index
k corresponds to the wavenumber k; in the following manner,
kr_{,?,—’g‘;, for k=0,1...N/2-2,N/2 -1

2r{k=N) (25)
_”;V-AT—’ for k=N/2,N/2+1’N
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In the discretization, both the spectrum and the original sequence are considered
periodic. Zero padding of the data interpolates between points in wavenumber
space with a sin(z)/z function [15]. Zero padding better defines the spectrum
by this interpolation, but does not increase the resolution capabilities of the
given transform. The points are interpolated between the existing points, but
the maximum wavenumber (7/Az) remains the same.

All of the processing of experimental velocity data utilizes the DFT. In the
next section, the assumptions that are implicit in the use of the discrete transform
are discussed. The discrete transform is used as an approximation to the exact
transform; the exact transform is performed analytically on the predicted beam
velocity in Chapter 3 and used as a means of assessing the impact of the spatial
sampling required in the measurements.

For the processing of discrete transforms a Fast Fourier Transform (FFT)
algorithm is used by zero padding [14,15] to a power of two. This speeds the
calculation of the transform, which is important even though the transforms

considered in this thesis are not large.
2.4.2. Wavenumber Frequency Sensitivity of Accelerometer Arrays

What is sought here is the sensitivity of an array of sensors (in this case
an array of accelerometers) in wavenumber-frequency space. The objective of
performing this analysis is to understand the wavenumber filtering effect of
the array and to determine the spacing of the sensors needed to measure the
wavenumber spectra. Specific results in this section are presented for point or
ideal sensors, but the analysis may be applied to a more general class of sensors
[7].

The starting point of the analysis is to derive the wavenumber sensitivity for

a single sensor. It is postulated that there exists a large class of sensors whose
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voltage output due to some excitation can be caste in the form of a convolution
integral {5,6]. In other words, there exists an impulse response function for the
transducer. Additionally, the impulse response function is taken to be separable
in space and in time; in other words the space-time impulse response function

may be written as
9(z,t) = h(z)f(t) (.6)

In Figure 2.6 the geometry of the single sensor is shown symbolically measuring
some physical phenomenon. The specific sensor under consideration here is an
accelerometer so that the terms accelerometer and sensor are used synonymously
in this section. The measurement center of the accelerometer is at 4 units from
the origin with some finite width as shown in Figure 2.6. There is some voltage
output from the sensor which is proportional to the velocity (this is buried in

f(t) as velocity is the quantity of interest).

1

| .
b
Um(Zo)
Figure 2.6 Geometry of single sensor in a velocity field.
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The form of the convolution integral applied to obtain the measured velocity

by a sensor located at zg is

o0 oo

Vm = / / v(a, 7)h(zo — a)f(t — T)drda. (2.7)

—00 —00
Since the steady state response is of interest, the remaining analysis proceeds in

frequency domain. Taking the Fourier transform with respect to time results in
o0

vm = F(w) / v(a,w)h(zo — a)da (2.8)
-~00

where the convolution theorem has been applied to the frequency dependence
[15]. For brevity, the frequency dependence is dropped from the equations. Using

the asterisk notation for the convolution operation on z, Equation (2.8) becomes

vm = [v(z) * h(2)]6(z — o), (2.9)

where the use of the Dirac delta function in Equation (2.9) is detailed in Bracewell
and Gaskill [8,15]. This use of the delta function locates the sensor at zo. In
order to examine the wavenumber filtering effect of a single sensor, the spatial
Fourier transform is applied to the right hand side of Equation (2.9). This results
in

Vin = [V(ke)H(k;)) + e7 k=50, (2.10)

here the asterisk notation indicates convolution on k.. If z¢ is zero, then the

output measured from the sensor is

oo

V,,,:/V(k,)H(k,)dk,. (2.11)

—00
If the sensor is a point sensor then H(k;) = 1 because h(zr) = é(z) and
the output of the sensor is just the integral over all wavenumbers. For h(z)

not equal to a 6(z), then H(k;) represents the filtering action of the sensor.
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For all real sensors h(z) is not a delta function, but at low wavenumbers the
response approximates a delta function; i.e., the sensor is equally sensitive to
all wavenumbers below a certain wavenumber. An analysis of a spatial impulse
response function that is not a delta function is found in Blake and Chase (7).
Their analysis finds that, for a sensor with uniform sensitivity to velocity over

the contact surface, if the wavelengths meet the following criterion,
A>4.2R (2.12)

where R is the radius of the sensor, the sensitivity will not be attenuated by
spatial averaging by more than 3 dB. This assumes that the magnet attached to
the structure has a uniform velocity sensitivity. This may not be true for our
situation but is probably a close approximation. Because of spatial averaging,
the sensor is a sort of low pass wavenumber filter. However, at wavenumbers past
the cutoff wavenumber (defined in Equation (2.12)) there are regions of increased
sensitivity (i.e., sidelobes in the filter function).

By examining the wavenumber response of a single sensor, the wavenumber
filtering action is obtained. There is no ability to select (other than the low
pass filtering action) which particular wavenumber is to be examined. Using an
array of accelerometers allows for a certain degree of wavenumber selectivity to
be achieved.

The velocity sampled by N identical transducers is just a variation of
Equation (2.9) with the addition of NV sensors. A schematic for this situation is
shown in Figure 2.7. Mathematically, this array can be represented as,

N-1

vm(z) = | / v(a)h(z — a)da] ) _ gné(z — nAz)

n=0

(2.13)
[v(x) * h(z))A(z),
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BEas

Um(Zo) vm(Z1)  vp(z2) vm(ZN)
Figure 2.7 Multiple sensors in a velocity field.
where
N-=1
A() =" gab(z -~ nAz). (2.14)
n=0

A(z) is the array function and the g,’s are arbitrary weights applied to the
outputs of the sensors which are spaced Az units apart. Taking the spatial
Fourier transform of Equation (2.13) and making use of the convolution theorem

again results in
Vin(kz) = [V(ke)H(ks)] * A(kz). (2.15)
For an array of ideal sensors the velocity spectrum is

Vin(kz) = V(k;) * A(k). (2.16)

The term A(k.) is the Fourier transform of the array function or

N-=1
A(k;) = )" gnemskemar, (2.15)

n=0
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The term A(k.) represents the filtering action in wavenumber space of the array

of sensors. The DFT of the velocity,

N-=1
Vi(kz) = Az Y gavm(nAzje™*emss (2.18)

n=0

is equivalent to Equation (2.16). The DFT is the most efficient way to calculate
the wavenumber response. Additionally, in almost all cases, this is the only way to
calculate the wavenumber response for, in order to evaluate Equation (2.15), the
true spectrum V' (k;) must be known a priori. However, the DFT representation
tells nothing about the filtering action of the array as do Equations (2.15) and
(2.16). H(k;) represents the wavenumber sensitivity of a single accelerometer
and .‘i(k,) of the array. H(k;) is a multiplicative term that rides over the entire
spectrum. By assuming the sensor to be ideal, the wavelengths must be larger
than the sensor (i.e. the criterion of Equation (2.12) must be met).

For real sensors the wavenumber sensitivity cuts off after a certain wavenum-
ber, because, when the wavelengths in the structure are small relative to the size
of the sensor, there is an averaging effect which tends to attenuate the voltage
output of the sensor. Equation (2.15) represents the wavenumber sensitivity of
an array of real sensors. If a single sensor is unable to measure the velocity at a
particular wavenumber, then the array of sensors is likewise unable measure the
velocity at that wavenumber. Using an array of sensors, a wavenumber band-pass
filter is created by the summation of the outputs of the sensors, but only below
the cut-off wavenumber of an individual sensor. The use of an array enables a
selectivity within the range of the measurable wavenumbers not available with
just one sensor. The convolution integral of Equation (2.16) is an integration of
a shifted version of the array function times the true velocity spectrum which

results in the measured spectrum at ;.
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2.4.3. Windowing Considerations

The effect of windowing the output of the sensors measuring the velocity
on a finite structure must be viewed from a different standpoint than for an
infinite structure. Using window functions is an attempt to smooth the artificial
discontinuity caused by truncation of the data sejuence. For the finite beam the
truncation is not artificial, the velocity distribution on the beam truly exists only
over a finite length, outside this domain the velocity is zero.

It is useful to define the rectangle function as

0, for |(z — z0)/b] > 1/2;
I — I

rect( 7 Yy=1¢ 1/2, for |(z —z0)/b] =1/2 (2.19)
1, for |(z — z0)/b] < 1/2.

The amplitude of the Fourier transform of the rectangle is the sinc function

defined as,

sinc(¢) = Sinc“). (2.20)

There is an additional multiplicative phase factor if the rect function is not

centered at z = (. If a pure sinosouidal wave exists only over the length of the

structure it can be represented as
u(z) = sin(k,oz)rect(%), (2.21)
where the Fourier transform of u(z) is U(k.),
Ulke) = o-{8(ks = kuo) = 8(ks + haa)} » fsinc(L/2)). (222

Let U(k,) be the true velocity distribution on some finite structure, then the
measured wavenumber spectrum can be obtained from Equation (2.16). Here
it is postulated that for a finite structure with an array of closely spaced point

sensors the proper weighting is a uniform one (i.e. all of the g,’s equal to one).
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Hence. A(k.) is the sinc function and Equation (2.16) becomes,
Um(kz) = U(k;) *sinc(k;L/2),
1 . .
= 2—}-{6(/&:, —kz0) — 6(kz + kz0)} * {sinc(k.L/2)} * {sinc(k.L/2)}.
(2.23)
The convolution of two sinc functions of the same length results in one sinc

function or,
sinc(kyL/2) » sinc(k.L/2) = sinc(k.L/2). (2.24)
It follows that,
Um(kz) = U(k,). (2.25)

In this case, the true spectrum is measured. Of course in reality A(k,) only
approximates a sinc function. But in the case where the sampling is very
fine, the array function closely approximates the ideal case. Thus, it is argued
(heuristically) that the proper weighting is uniform.

Of course Equation (2.25) is an expected result. However, if the spatial
window function (the g,’s) is other than a unit;orm window, even if the sampling
interval is infinitesimally small, Equation (2.25) would not hold. If the velocity
field is sampled across the entire length of the beam, then the only errors inherent
in the DFT are due to aliasing [14]. If some spatial weighting is used, obviously,
the estimate will vary from the contipuous transform due to both aliasing and
the window.

In the measurement of the Fourier transform of the velocity on a finite
structure using the DFT, aliasing cannot be avoided as the spectrum is not
band limited. The efects of aliasing can be reduced by choosing a spacing that
moves the aliasing lobes of the array function to a region of wavenumber space
where the spectrum has very low values. In Section 5.3, the effect of varying the

spacing of the accelerometers is examined. The goal in the array design is to

—
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use as fine a spacing as possible and to obtain an array function whose Fourier

transform is close to the proper sinc function.

2.4.4. Spacing of Accelerometers for the Experiment

The dispersion relation for the beam, which is derived in Chapter 3 and
pictured in Figure 3.2, shows that the highest freebending wavenumber expected
is about 0.6 cm™!. The spectrum for the finite beam falls off as a sinc function
centered at the freebending wavenumber. In other words the spectrum should
fall off around 30 dB after three octaves or at k; = 2.4 cm™!. Hence. a spacing of
1 cm, which yields a Nyquist rate of 7 cm™! and would reduce aliasing, is used.

The other item with which to contend is the criterion of Equation (2.12). The
accelerometer used has a radius of 0.5 cm. The criterion for this size transducer
is that the minimum wavelength should be greater than 2.1 cm. The measured
wavenumber spectra would exhibit a slight attenuation compared to an exact
analyuc treatment, except of course for the aliasing that would tend to accentuate

the higher wavenumbers. It is left to the results section to examine which, if

either. effect evidences itself.

2.4.5. Wavenumber Content of an Array of Point Forces

Each of the shakers in the array is considered delta functions in space. Thus,
the array of M shakers where ¢, is the complex force amplitude and z,, is the

shaker location can be represented as,

M
W2) = Y qmb(z - 2m),
m=1
M (2.26)
=Y gmé(z — mAz),
m=1
where £,, = mAz. The force is zero everywhere except at a shaker. Thus, the

external forcing function is completely described. The Fourier transform may be
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performed exactly and is

M
Qkz) = Y gme(Toemas), (2.27),
m=1

This is the wavenumber spectrum of the array of point forces.
2.4.6. Steering the Wavenumber Content of an Array of Point Forces

In order to obtain better measurements of the velocity at a particular
wavenumber, it is helpful to concentrate the energy of the forcing function at
that wavenumber. The objective is to steer the peak of the forced wavenumber
spectrum to the desired or drive wavenumber, k4. The peak of the forced
wavenumber spectrum may be steered to k4 by amplitude shading of the forced
amplitudes.

As mentioned previously, this is done by setting the g, ’s to cos(k¢(zm —L/2)),
which modulates the spatial signal so that there are peaks in the wavenumber
spectrum at k, = *k4. This holds if the Nyquist criterium is met, i.e. k4 <
7w /Az. There must be at least two shakers for each wavelength. Additionally,
there are peaks in the spectrum at k, = +(27/Az — k4). The location of these
peaks can be predicted by examining the convolution of the Fourier transform
of the cosine function and the array of point forces. The finite spatial aperture
of the forcing function will broaden the peaks of the force spectrum and cause
the appearance of sidelobes. The peaks at k; = +kq4 are called main-lobes while
the secondary peaks are called grating lobes; collectively, the main-lobes and
the grating lobes are referred to as major-lobes. The sidelobes are smaller in
amplitude than the major-lobes and fall between the major-lobes. Lastly, the
force spectrum of an array of point forces is pe;'iodic, with period equal to 27/Axz.
This characteristic is important as the pattern seen in the region 0 < k; < 27/Az

is repeated periodically in the positive and negative k. directions.
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While it is easy to theoretically specify the force amplitudes, it is a completely
different matter to experimentally enforce these amplitudes. The voltages applied
to the shakers are controllable, so that the drive wavenumber can be steered to
the desired wavenumber by steering the drive voltages. This assumes that the
force applied to the beam tracks with the voltage in wavenumber space and a
complicated feedback-control system between the voltage applied and the force
output can be avoided. For the remainder of this section, the ¢m's (the force
output at the shaker) is assumed to be controllable.

Some results of the wavenumber spectra of the forces seen at the shakers (i.e.,
the applied voltages) are now presented for the spacing and number of shakers
used in the experiments. For the nine shaker experiments (Az = 4 cm), the
wavenumber spectrum for the unsteered force distribution (k¢ = 0 cm™!) and a
steered force distribution with k4 = 0.332 cm™? (two wavelengths over the length
of the beam) are shown in Figure 2.8a and 2.8b, respectively. The peaks at +k4
and at k; = 27/Az — k4 can be seen. It is important to note that, due to the
periodic nature of the spectrum, by prescribing a drive wavenumber between 0
and m/Az a peak force wavenumber response may be steered to any wavenumber.
There are always an infinite number of peaks. This fact is both an advantage
and a drawback. Without the grating lobes, the only way to excite the very
high wavenumbers is to decrease the spacing, which requires smaller shakers.
However, the grating lobes can complicate the interpretation of the spectrum, by
exciting the velocity in an unwanted region.

Results of the force wavenumber spectra for seventeen shakers are shown in
Figure 2.9. For seventeen shakers Az is equal to 2 cm. Note that the grating
lobes do not appear in these plots because the grating lobes are outside the chosen

wavenumber range. By examining these plots it is interesting to note that the
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width of the major-lobes is a function of M Az, or the length of the spatial signal

and any spatial windowing which may be added to the shaker weighting during
steering (this is described next). Hence, if the spatial windowing is the same for
the nine shakers as for seventeen. the major lobes have the same width.

While the steering of the voltage input moves the peak of the wavenumber
content to a desired wavenumber. the high sidelobes caused by rectangular
windowing may produce undesirable effects. These sidelobes may cause higher
velocity response than the main-lobes if the sidelobes occur in a region of high
admittance. By applying a windowing function, the sidelobes are reduced at the
cost of a broader main-lobe. The values of the voltages for the windowed and

shifted distribution become,

gm = W(zm)cos(ks(zm — L/2)) , (2.28)

where W(x) is the selected window function. Different windows may be applied
to the shaker forces in order to alter the sidelobe structure which is done at
the sacrifice of increasing the width of the main-lobe. A Kaiser-Bessel window
with it’s variable parameter alpha set to 1.5 is used in the results presented in
Figure 2.10. This window type is described in reference [16]. By windowing, the
energy of the forcing function is less likely to leak into the nearby wavenumbers.
The periodic main-lobes are not affected except for broadening. In Figure 2.10,
k4 = 0 cm™! and a Kaiser-Bessel window is used with nine and seventeen shakers.

The FORTRAN program FORCE_FILTER, is used to obtain the wavenum-
ber spectrum and the correct amplitude shading for all of these cases. This code

is found in Appendix C.
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Chapter 3
BEAMN THEORY

3.1. Introduction

In the experiments, a beam is excited by multiple shakers. The number of
shakers is varied and the response is measured at accelerometer locations spaced
along the beam. The accelerometer data are used to obtain the wavenumber
response via the discrete Fourier transform. In order to validate and understand
the experimental results, the theoretical response of the beam to multiple forces is
developed in both the spatial and wavenumber domains according to Timoshenko
beam theory.

The normal mode solution for the velocity of a Timoshenko beam is briefly
developed in this chapter and the results given by Hutto 9] are restated. These
results allow the validation of the measured velocity at a point due to an a2rbitrary
forcing function; this is called the forced spatial-frequency response of the
beam. The theoretical wavenumber response, defined as the Fourier transform
of the velocity, may be obtained by taking the discrete Fourier transform of
the predicted results or by performing the Fourier transform analytically. The
wavenumber-frequency response of an infinite Timoshenko beam is derived to
obtain the freebending wavenumbers and as a transition step in understanding
the relationship between force and velocity in wavenumber space. Finally, the
theory of the finite Fourier transform is applied to obtain predictions of the

wavenumber-frequency admittance of the finite free-free Timoshenko beam.

3.2. Spatial-Frequency Response of a Finite Beam

The coupled differential equations with internal damping for a Timoshenko

type beam with the total transverse deflection, y, and the slope due to bending,
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¥, are [9,17]

. %yl t)  Ou(z.t) pAd*y(z.t)
kG"* A( 022~ 52 ) — 52 =q(z,t) (3.1
.. 0%(z. 1) . . Oy(z, 1) *(z,t)
E IT"FK.G A(T—tﬁ(:r,t))—pf——a—tz—=0 , (3.2)

where ¢ is the forcing function, the complex elastic modulus is E* = E(1 + jn),
the complex shear modulus is G* = G(1 + jn), I is the second moment of inertia
of the cross sectional area, , p is the density, A is the cross sectional area, and
x the numerical shape factor {18]. The loss factor, 7, is taken to be equal for
rotation and translation. Only the time harmonic case is considered. with time

dependence e/**, w being radian frequency and y = /=1. Making the following
substitutions in Equations (3.1) and (3.2)

y(z,t) = Y(z)e* | (3.3)
¥(z,t) = ¥(z)et | (3.4)
q(z,t) = Q)" (3.5)

and omitting the time dependence vields,
kG*AY"(z) - KG*AY'(z) + pszY(z) =Q(z) , (3.6)

E*IV"(z) + kG A(Y'(z) — ¥(z)) + pl?¥(z) = 0. (3.7

Where the primes indicate differentiation with respect to r the spatial variable.
These are the dimensional time harmonic differential equations which are used
later in this chapter. In the development of the finite beam response, it is useful

to non-dimensionalize the above equations. The non-dimensional variable £ is

used where,

€=z/L. (3.8)
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Making the substitution into Equations (3.6) and (3.7), the non-dimensional time

harmonic differential equations are,

G- s G‘
EG Ay~ &

V'(€) + pAw’Y (€) = Q(€) (3.8)

L;I‘I’"(E)+ RGTA(T 217(€) T(8)) + pIw?T(€) = 0. (3.9)

The primes here indicate differentiation with respect to the £. To obtain the
normal mode equations, first the homogeneous problem is solved. In references

[9,17], the homogeneous forms of Equations (3.8) and (3.9) are decoupled in Y’

and ¥ resulting in,

Y™ + 03 (r? + )Y — 2(1 - 2r?s?)Y =0, (3.10)
U 4 02(r? 4 s = B2(1 - bPr?s?) ¥ =0, (3.11)
where
b = ’,’E—’}JU , (3.12)
r? = % , (3.13)
o = - AEng (3.14)

The general solutions for Y and ¥ are,
Y (&) = C, cosh(ba€) + C; sinh(baf) + Cs cos(bﬂf)- + Cysin(bBE) , (3.15)

U(€) = C, sinh(baf) + C; cosh(baf) + Cysin(bB€) + Cq cos(bB8E) , (3.16)
where
o= ZFE D+ - g (317)

The general relationship between C; and C! is given in [9]. Only the relationship

between C, and Cj is needed to describe the bending slope; that relation is given
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later. The boundary conditions for the free-free beam applied at the ends of the

beam £ = 0 and £ = 1 are that the bending moment is zero or,

=0 |, (3.18)

and the total shear force is zero or,

1.,
Y -¥=0 . (3.19)

Applying the boundary conditions to Equations (3.15) and (3.16) results in a four
by four matrix to solve for three of the unknown C’s. By setting the determinant

to zero the characteristic equation is found; it is

b
— b2r2s2)1/2 X

2 — 2 cosh(ba) cos(b83) + a
[62r%(r? = §%)% + (32 — s?)] sinh(ba)sin(b8) =0 . (3.20)

This transcendental equation is solved for the natural frequencies of the beam.
In the computer code that solves for the natural frequencies it is important
to apply a high argument approximation to the hyberbolic functions (that is
sinh(z) = cosh(z) as z becomes large). Otherwise, errors occur.

The mode shapes are now known to within a multiplicative constant. Let
the subscript : denote a mode number corresponding to a natural frequency w;.

Define the following constants,

_al+r? Bi-s? al+r? BE-R
a4+ fE-r? BE-r2  a?+s?

Gi , (3.21)

Ai=— (3.22)

and
___cosh(bia;) — cos(b;5:)
=3 sinh(bja;) — Cisin(b;8;) (3.23)

Using the notation introduced above, the mode shapes are

Yi(€) = Cl[cosh(b.-a.f)+%COS(b,ﬂ,'E)—)‘;& sinh(b;a;&) — 6, sin(b; :€)] ., (3.24)

e
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Ui(€) = Cy[sinh(biai€) — Aisin(biB8;€) — Aibi cosh(biaif) — 8 MiCi cos(b; 5:€))]
(3.25)
where the approximations to the hyperbolic functions of large argument are used
for the mode shapes also. When b,a; > 1, 6 — -,\1—. and when bia;§ > 1
cosh(b;ai€) — sinh(b;a;€) — 0, which results in the reduction of Equations (3.24)
and (3.25) to

Vi(6) = Cilix cos(bi8i€) ~ - sin(biBi6)] (3.26)
ba?+s? .
U(6) = ~Cir SIS sin(b8i6) + EMGcosBiBE)] - (3:27)

Where C] has been substituted for in terms of C,. The resonant wavenumbers
of the Timoshenko beam are b;8;. Later, it will be. seen that these are the
free-bending wavenumbers of the solution to the infinite beam that also fit the
free-free boundary conditions to produce resonance in the beam.

Since the boundary conditions for the free-free beam allow for rigid boc

motion, there exists non-trivial solutions for the zero natural frequency. The two

rigid body modes are

Yoo =Co , (3.28)

Yoz = Co2(£ —1/2) . (3.29)

The orthogonality conditions for the free-free Timoshenko beam are given in

[19]. They are

1
/0 [P AYA(E)Y;(€) + pTU.(6)F ;(€)ldE = 0 -y

=pAM,' i=j

, (3.30)

where M, is the normalization constant for the ith mode.




47
3.3. Forced Spatial-Frequency Response of a Finite Beam

In the normal mode solution to the forced or non-homogeneous Timoshenko

beam equations, Y and ¥ are expressed in terms of the eigenmodes of the

homogeneous solution,

=

Y(6) =) a¥i() , (3.31)
=0

V(E) =) ai¥i(f) . (3.32)
=0

The constants a, are the modal expansion coefficients to be determined. The
constant C, is absorbed into the a;’s. By substituting Equations (3.31) and (3.32)
into the non-homogeneous differential Equations (3.6) and (3.7), and using the
orthogonality -integral expressions the unknown a;’s are found. The decéils are

found in reference [9]. The general form of the solution for ¢; due to an arbitrary

forcing function 1s,

I S (N AGLS
YT pAMWHT + i) — w?]

(3.33)

The integration represents a measure of the orthogonality between the forcing
function and the ith normal mode. If the force distribution is the same as a
mode shape, then that mode may have a very high modal constant. Of course,
the steady state frequency w plays an important role; mode shapes whose natural
frequencies are far removed from the applied frequency have little effect on the
beam velocity.

The experimental measurements are taken using shakers that closely approx-
imate point sources. In the z direction the extent of the shakers is small, and
the width of the shaker nearly spans the width of the beam. So the shakers are
line sources in three dimensions, but, since the beam is approximated as a one

dimensional continuum. a forcing function consisting of an array of such shakers
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can be modeled as an array of point sources, so that Q(¢) is

M

Qe = ambl(E—Em) (3.34)
m=1
where gm is the complex amplitude of the force located a £ = £n,. Using the
above in Equation (3.33) results in,

= D, Z -——[cosh(b aibm) + -—cos(b Bibm) — Aibi sinh(biaifm)

m=1

—5;Sin(b,',3,'€m)] \ (3.35)

or,

= D; Z 2Yi(€m) (3.36)

where,

1

D; = - . , 3.37
PAM(wi(1 + jn) — w?) (3:37)

and Y;({m) is value of the mode shape evaluated at £ = £,,. It should be noted

that experimentally, the values gn, are functions of drive frequency. The modal

constants for the translational and rotational rigid body modes are respectively,

a1 = Doy Z Im (3.38)
m=]
a2 = Doy Z Tem —5) (3.39)
m=l

This is the analytic model developed to validate experiments for the velocity at

a point due to an array of point sources exciting a beam at a given frequency.

3.4. Wavenumber Response of a Forced Finite Beam

In this section the spatial Fourier transform of the velocity response of a
Timoshenko beam excited by multiple point drives is derived. The spatial Fourier

transform is.

F(k,) = / flz)e=Hketdn (3.40)
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and the inverse transform is .

f(:c)——/F(k Jek=Zdk, (3.41)

The wavenumber is k, and z is the spatial variable. In order to obtain
the wavenumber-frequency response of the beam, Equation (3.40) is applied
to Equation (3.31). The velocity distribution of Equation (3.31) exists from
0 > £ > 1 and is taken to be zero elsewhere. Thus, the limits of integration

in Equation (3.32) are now zero and one. Applying the Fourier transform to

Equation (3.31) vields

1
P (ke) = / Y(£)e™ et de

Ms i °

Yi(€)e k4 de

B
o .

Yi(ke). (3.42)

..
Il
©

l./,‘(ke) is the spatial Fourier transform of each mode shape. obtained by applying

the Fourier transform to Equation (3.24). For the non-rigid body modes Yi(ke)

is
?«(kf) =m{e—)k‘ []ke cosh(b,-a,-) + bia; sinh(bga,-)
— Aibi(gke sinh(b;a:) + bia; cosh(biar))] — (ke — 6.~A,vb.-a.~)}
1 - .
IO {71/ u(oke cos(bi8i) — bifisin(b:i6.)
— §i(ke sin(biBi) + bifi cos(biB)) + (Jke/Gi — 8:b:B) ) (3.43)
or,

Yi(ke) = Dir(ke) + Tiz(ke) (3.44)
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where [';1(k¢) represents the first six terms of Equation (3.43) and Tjp(ke)
represents the second six terms. There are two special cases to consider. One,

when k¢ = b;0; the factor I';2(k¢) becomes,

rl 1 e"¥k
Tia(ke) = e77*¢ |~C— 5 +

1 e~27ke 1 é;
)—6.~(.-_,;— 2k )]_[4kec.~+4k¢] . (3.45)

Two, when b;a; becomes large with respect to the numerical precision of the
computer, I';; (k) reduces to

J
Falke) = (5

(3.46)

For the rigid body modes, the transforms of the translational and rotational

modes are
Yor(ke) = (e —1) (347)
'€
Foalke) = (e~ — 1) 4 L(e™™e +1) . (3.48)

The transform of each mode shape consists of one component due to the
trigonometric functions and another due. to the hyberbolic functions. The
contribution due to the hyperbolic functions is basically a linear decay in
wavenumber. The sine and cosine parts produce a sin(z)/z function which ha.s'
a peak at k¢ = b;B;. The b;f; terms are called the resonant wavenumbers of
the beam. Equation (3.43) is the transform of a single mode and is a relatively
complicated form; complicated in that even if a single mode was excited on
the structure the Fourier spectrum would not consist of delta functions at the
resonant wavenumber. The dependence of the velocity on the forcing function is
held in the a;'s

The transform is in terms of the non-dimensional wavenumber ke. It is

desirable to express the transform in terms of the dimensional wavenumber,

k.. The problem of finding the mapping relation between the transform of the
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displacement in terms of the dimensional and non-dimensional wavenumber is
caste in terms of the functions f and f. The proof presented here is general
for functions where the relation between f and f is simply, f(£) = f(L£) and ¢
is defined to be equal to z/L. These are the conditions that relate the spatial
dependence of the dimensional and non-dimensional forms of the displacement.

The relationship between the Fourier transforms of f and f is desired. The

following definitions are made

Flke) = / F(€)emkekde

F(ky) = / f(z)e ¥ ==dz

In order to find how the values of ' may be obtained from F, first the change

of variables z = L{ is made in the second definition resulting in
F(ko) =L [ f(reperHag
Using the relationship between f and f to obtain,

F(k) =L [ f@)e-tede
)
and finally using the first definition yields the desired result
F(k;) = LF(k L) . (3.49)
Similarly one may obtain,
1 -
F(ke) = ZF(kf/L) . (3.50)

This is the relation by which the values of F may be obtained from F. For

the quotient of two functions of the transformed variable the multiplicative L
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term would cancel. The method of proof is suggested by the derivation of the
similarity theorem in {13] and also by [20].

The exact Fourier transform of the spatial response of the forced Timoshenko

beam serves as a basis for comparison for experimental and theoretical estimates

of the Fourier spectrum.
3.5. Wavenumber Response of an Infinite Beam

In this section, predictions of the wavenumber response of an infinite beans
are derived using Timoshenko beam theory. Using this result, the dispersion
relation for an infinite beam is obtained. The derivation basically follows the

development of Magrab [21].

Equations (3.6) and (3.7), the dimensional differential equations, re-written

here,

kG*AY"(z) — kG AV'(z) + pALY (z) = Q(z)

E*IV"(z) + kG A(Y'(z) — ¥U(z)) + pl?¥(z) =0

are the starting point of the analysis. The Fourier transform as defined in
Equation (3.40) is used to transform the above into wavenumber domain. Let F

represent the Fourier transform operator, the following identity from Bracewell

[13], F{f'(z)} = sk F{f(z)} is used in obtaining,
Y(k)[2kG" A + pAw?] + T(ky)[—1k:6G"A] = Q(k:) (3.51)
Y(k.)|—skecG*A) + O(k) [~k E*I + plw® — kG*A] =0 (3.52)

after applying the Fourier transform to Equations (3.7) and (3.8). Define the

following terms;

Q= pAw?

O = plu? (3.53)




v=rG"4

Also, let the freebending wavenumber for the Bernoulli Euler beam as defined in
Junger and Feit [22] be k}z = Q/E*I. Use the expressions in Equation (3.53)

to simplify Equations (3.51) and (3.52) to
Y(ke)[=k3v + Q) + ¥(ke)[—rkev] = Q(k:) (3.54)

Y (k) ko) + Ok )[~k:E T +0Q ~v] =0 . (3.53)

Equations (3.54) and (3.55) represent two coupled algebraic equations in Y (k)

and ¥(k;). By using Cramer’s rule both unknowns may be found. Applving
Cramer’s rule to solve for Y(k.) results in

Q(k:)[© = K2E"T — ]

Y(kz) = k;E'IU - kg[@y + QE'I) + Q[O - U]

Dividing top and bottom by E*Iv results in,

Qk:) g7 (/v = 1) — k2/v]

Yika) = ki —k2{Q/E*I + Qfv) + kye[O/v — 1]

(3.56)

The wavenumber-frequency admittance is defined as the quotient of the Fourier
transforms of the velocity and the force, for the infinite beam

TT-I'—I(@/"' 1) —k2/v

Hoo(kz) = jw ki — k2[{O/E*T + Q/v] + k?JE[O/V -1

(3.57)

where the multiplicative jw comes from the conversion of displacement to velocity.
Thus, the wavenumber-frequency response of an infinite beam to an arbitrary
forcing function has been derived according to the assumptions of Timoshenko
beam theory. For a Bernoulli-Euler type beam © — 0 and v — oo (v as defined

in (3.53) not Poisson’s ratio) [22], and Equation (3.57) becomes

_ =Q(k)/ET

Y(ky) = (3.58)
CRIY

. e
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From this it can be seen that kgg is the wavenumber at which the admittance

for the Bernoulli-Euler beam has its peak.

The zeros of the denominator of Equation (3.58) are

N e
=i{%[%+%i\/(%—%)2+4k435]}% , (3.59)

noting k,z0/v = QO/E*Iv. The «'s are the poles of the solution.
In order to interpret the meaning of the poles of the admittance, the inverse

Fourier transform of the solution must be examined. Subect to.

0 Q 0 Q
E+7<\/('ﬁ—?)2+4k435 , (3.60)

and the damping taking the form E* = E(1+)7), the poles of the Equation (3.59)
are located approximately as shown in Figure 3.1. If the damping is zero, then
the roots of the denominator are either purely real or imaginary. The inverse

Fourier transform solution for the displacement is,
1 T A ke
V() = 5oz [ Qo) Hoolkr)e ek,
-0

Since the forcing function under consideration is a series of delta functions, it
suffices to examine the solution for a single point force located at z = zo, in

which case the preceding equation simplifies to,

1

27w

Y(z) = / Hoy(ke)ette === gk, . (3.61)

This integral may be evaluated using the theory of residues. To use residue
theory, the integrand must decay at infinity and consist of only outgoing waves.
Hence there are two cases. One, for  — o < 0, where the integrand is evaluated

using the two residues in the upper half plane (UHP in Figure 3.1). Two. for
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Figure 3.1 Location of the poles and contours for the residue
evaluation.

z — zo > 0 the integrand is evaluated using the two residues in the bottom half
plane (BHP in Figure 3.1).

It can be seen in Equation (3.61) that the poles near the real axis represent
the propagating part of the velocity field and the poles near the imaginary axis

the evanescent field. The freebending wavenumber at a particular frequency is

defined as

kp = (3.62)

It can be easily shown that the freebending wavenumber should be the same
as the resonant wavenumbers at the resonant frequencies. Upon examining the

definitions of Equations (3.12)-(3.14) and Equation (3.53), the following relations




are found
b’r? =L?Q/E"1I.

b?s? =L%Q /v,
b2 =L4k4BE'

Using thse in Equation (3.59) the free-bending wavenumbers results in,

/2

b 2 . 2 1
M,234 =% \/‘EL[T + 52 £ /(r2 —s2)2 +4/b2

=+ b3/L, +5ba/L . (3.63)

The resonant frequencies are just those frequencies for which the freebending
wavenumber satisfies t.he boundary conditions. It is very useful to examine the
overall dispersion relation in order to better tell what wavenumbers to expect at
the frequencies of interest. In Figure 3.2, the resonant wavenumbers are plotted
using solid dots and the freebending wavenumber for an infinite Timoshenko
beam using a solid line. The freebending wavenumber for a Bernoulli-Euler beam
is also plotted in the same figure. In Table 3.1, the resonant frequencies and the
resonant wavenumbers for the beam are listed. The dispersion diagram is helpful
in two ways. First. it provides a guide in spacing the accelerometers to measure
the velocity field. Also, this plot may be used to see what wavenumbers might
be excited in a beam. In Section 2.4.4, the highest freebending wavenumber that
is expected for the velocity is read from this figure. The calculations were made
using the parameters for the beam used in the experiments (see Chapter 2 for

material constants).

3.6. Relation between Force and Velocity in Wavenumber Space for a

Finite Beam

As seen in Equation (3.57), the admittance of an infinite beam is a

that function of only the physical and geometric properties of the beam and
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Figure 3.2 The dispersion relation for the beam used in the
experiment. The freebending wavenumbers for the
infinite beam are shown as well as the resonant
wavenumbers (and frequencies) for the finite beam.




Table 3.1

Resonant frequencies and wavenumbers.

Mode Resonant Resonant
No. Frequency (Hz) Wavenumber (cm ™! )

1 703. 0.124
2 1904. 0.207
3 3644. 0.290
4 5847, 0.373
5 8439. 0.456
6 11350. 0.539
7 14519. 0.622
8 17893. 0.705
9 21427. 0.787
10 25087. 0.871
11 28845. 0.953
12 32673. 1.036
13 - 36557. 1.118
14 40483. 1.201
15 44436. 1.284
16 48403. 1.366
17 52384. 1.448
18 56365. 1.530
19 60342. 1.612
20 64302. 1.693
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independent of the forcing function. However, Equations (3.33) and (3.42) imply
that the admittance function for a finite beam, formed by dividing the velocity
wavenumber spectrum by the force wavenumber spectrum. is a function that
depends on the form of the forcing function as well as the properties of the beam.
Because we are forced to deal with finite beams, quantification of the dependence
of the admittance, computed as the ratio of the velocity and force wavenumber
spectra, on the physical properties of the beam as well as the properties of the
forcing function is required.

For linear, shift invariant systems, the impulse response function completely
determines the system. Both the finite and the infinite beam are linear systems.
but only the infinite beam is a shift invariant system. Physically, shift invariance
means that only the distance between the shaker and the accelerometer are
needed to define the response, not their absolute locations. For the finite beam
the location of force and the sensor are needed.

In an attempt to quantify the meaning of the quantity Y(k.;)/Q(k.) for a
finite beam, the finite Fourier transform is applied to the governing differential

equations of the Timoshenko type beam. As defined in Bracewell, the finite

Fourier transform is

b
F(k.,a,b) =/ f(z)e™k=%dz . (3.64)
The inverse finite Fourier transform takes the form of a series,
— 1 = 2anz /L
f2) =57 n;wF(‘.an/L.a,b)e’ . (3.65)

The finite Fourier transform of f'(z) the spatial derivative of f(z) is
)
/ f'(z)e~**dz = sk, F(ke,a,b) + f(b)e= k=t — f(a)e ke | (3.66)

Higher order derivatives may also be obtained from the above formula. This

relation is different than relations for the infinite transform. The interval
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under consideration is the non-dimensional length of the beam 0 < £ < 1, for

convenience and brevity the following notation is introduced.
Fpk )& F(k;,0.1) . (3.67)

The transform variable for the non-dimensional equations is k¢ and the trans-

forms of the displacement, bending slope and force are defined in Equation (3.67)

or,

1

Yi(ke) = / Y(E)e Tkebde | (3.68)
0

_ 1

byl = [ w@eeeds (3.69)
0
1

s(ke) = / Q)= ekde . (3.70)

Applying the definition of the finite Fourier transform to the non-dimensional

equations of motion for the Timoshenko beam (Equations (3.8) and (3.9)) yields

T2 [Y'(8) + skeY (O™ €|8) — k2 (ko) |
- —[‘1’(6) TIREIEZ] + ke D s (ke)] + QY (ke) = Qlke)
(3.71)
By using the first boundary condition, given Equation (3.10)
ZY(E) - ¥()=0 for £=0 and £=1
Equation (3.71) simplifies to
k2
Yy (ke)l— Iz S+ Q)+ U y(ke)[—1ke/L) = Qlke) — Y(E) —HEEZ, . (3.72)

Taking the finite Fourier transform of the second differential and using the second

boundary condition (¥'(0) = ¥'(1) = 0) results in,
2 E. _~k(€ £E=1
Yy (ke) [—] + ¥ p(ke) [‘_’L +0-v]= [—Y(ﬁ) -7 ¥ (E)]e 7" ¢ o

(3.73)
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The terms that contain the values of the displacement and bending slope at the

endpoint are contained in the following terms.

Buke) = Ty ()42} (3.14)
E‘
Ba(ke) = [T (6) - = W(E)]e™ #4823 (3.75)

Using the definitions in Equations (3.74) and (3.75) to rewrite the transformed

differential equations in a form ready for solution of the unknowus vields

~ —'ng - —ka ~
Yr(k)l—g7 + Q) + Yslke)[—77] = Qs(ke) + Ba(ke) (3.76)
L L

Y, (Le)[——] + B 4 Lf)[E Ik2+e v) = Ba(ke) . (3.77)

These equations are solved using Cramer’s rule for Y(k¢), which results in ,

[Qr(ke) + Br(ke)l[~ELk2 + © — v) + Ba(ke)yke %

Y,.f(kf) = ]
HEL - (0 - E*IQ)+ Q[0 - v]

(3.78)

Using the fact that Hoo(k:) = Hoo(ke/L) the above equation can be written as

Ba(ke)

k ——Hc,o ke/L (k k < . .
¥y (ke) (ke/ DIQsth0) + Bulk)+ gt G—] - (319
The admittance for the finite beam is
RN 7
rlke) = Qy(ke)
Ba(ke)
= x(LE/L){1+Qf(k€)[Bl( Ot BT Loy ]}.(3.80)

The wavenumber response of the finite beam consists of a part that is the same as
for an infinite beam and another part that depends on the boundary values of the
displacement and bending slope. Since the constants B;(k¢) and Ba(k¢) depend
on the values of the spatial variables. to solve for the wavenumber response the
spatial response must be obtained as well. Although it is not done here, the

constants would be evaluated by inverting the Equation (3.78) and considering
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Y (0),Y (1), ¥(0) and ¥(1) as unknown constants. Upon inversion these constants
could be evaluated and then substituted into the wavenumber response.

There are several implications from Equation (3.80). First, the wavenumber
admittance of the free-free Timoshenko beam is dependent on the location and
amplitude of the forces applied to the beam. This means that a wavenumber
admittance that is a function of only the physical and geometric properties of
the beam is not obtained simply by forming the quotient of the wavenumber
velocity spectrum and force spectrum. The infinite beam part of the admittance
is invariant with respect to change in the forcing function. At wavenumbers
where the amplitude of the forcing function is high, the admittance measured
with the finite beam approximates the infinite beam wavenumber admittance.
The velocity response of the beam at a particular wavenumber is a function of
how near this rwavenumber is to the freebending wavenumber and how well this
wavenumber matches the boundary conditions. When both of these conditions
are met resonance occurs. Since the impedance of the beam is low at resonance,
it is expected that the amplitude of the force wavenumber spectra would be low if
the forcing function matches the structural mode shape. With a matched forcing
function, the finite beam admittance at resonance is a poor approximation to
the infinite beam admittance. It is important to note that even at a resonant
frequency the resulting velocity contrib_ution from the resonant mode shape would
be small if the value from the spatial integration that cccurs in Equation (3.33)

is small. i.e., if the force distribution does not match the mode shape.




63
Chapter 4
EQUIVALENT CIRCUIT MODELING OF
THE SHAKER FORCE/GAGE UNITS

4.1. Introduction

In this chapter, the response of the combination shaker/force gage units
is modeled using equivalent circuits. The basic Mason equivalent circuits for
piezoelectric and non-piezoelectric materials are shown. From these circuits the
low frequency approximations are derived. First, the equivalent circuit for the
overall force output of the transducer is developed. From this model, the levels
and resonance frequencies of the force output due to an arbitrary termination
impedance are found. Also, the relationship between the voltage output from
the force gage section and the force applied to the structure is obtained through
the use of equivalent circuits. The effect on the force gage output due to added
cable capacitance, mass loading and contact stiffness is obtained. The method

of calibration and its consequences are also be examined.

4.2. Equivalent Circuit Analysis for Transducers

The dynamic response of shakers can be 1epresented by using Mason
equivalent circuits. These circuits, in their exact form, represent a solution
to the electrical and elastic differentizl equations that govern the transducer
system. For piezo-active elements, a catalogue of lumped impedance, equivalent
circuits for different boundary conditions and piezoelectric couplings have been
developed [23]. The analysis of electro-mechanical circuits in general is found in
Beranek(24]. The Mason equivalent circuits of the piezoelectric elements and the
non-piezoactive elements may be cascaded toéether to form the model for the

entire transducer system. In this study, the low frequency approximation to the
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exact solution is used.

By constructing the complete circuit representation of the transducer, the
resonance frequency, output force and force sensitivity of the system can be
approximated as well as the effect of changing any of the transducer parameters.
The equivalent circuit analysis yields solutions for the desired quantities, the
overall force output and the force gage sensitivity, in terms of the material
properties of the shaker, excitation frequency and load impedance.

The equivalent circuits are a representation of the solution of the differential
equations governing the elements of the transducer. Certain boundary conditions
have been applied to the non-active areas (in this case the radial faces). Basically,
the boundary conditions are that the radial faces are stress free and the electric
field lines do not fringe. The wave motion through the transducer is assumed to
be a plane wave traveling in the axial direction. Because the length to diameter
ratio is large, the response of the shaker is almost entirely in the axial direction.
Berlincourt et al. [23] describe in detail the boundary conditions assumed for
the equivalent circuits mentioned above. Thé non-piezoactive elements of the
transducer are modeled las longitudinally vibrating rods or bars.

The equivalent circuits utilized are of the mechanical impedance type. In
the mechanical impedance representation, the flow quantity is velocity and the
potential quantity is force. The boundary conditions for the force and velocity
transmitting surfaces are left as arbitrary impedances. Each section of the
transducer that has different material properties will be modeled using a similar
equivalent circuit, but with different material properties. The rest of the model
can be constructed by cascading the equivalent circuits one after the other.

The equivalent circuit for the 33 coupled piezoceramic is shown in Figure 4.1a

The equivalent circuit for the non-piezoactive elements is shown in Figure 4.1b
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Figure 4.1 Equivalent circuit for (a) piezoelectric 33 coupled
sections, (b) Non-piezoactive sections [23].
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(23]. In these figures, U is the velocity and F 1s the force. These are the
solutions to the differential equations for the so called ‘length expander’ case.
The values for the impedances in the equivalent circuits are calculated from the
formulas given below the circuit diagrams in Figure 4.1. The nomenclature used
to describe the constants defining the impedances and the impedances themselves
is a combination of that used in [23,23]. Since piezoceramics are anisotropic
materials the notation used in the definition of the constants use indicial notation.
Additionally, since there are both electrical and elastic boundary conditions to
—e denoted, there must exist a flexibility in the nomenclature to describe these
conditions.

The numerical subscripts (for example ga3) have the following meaning. The
first index indicates the axis to which the electroded surface is perpendicular,
or the direction of the poling of the crystal. The second index indicates the
direction the forces will be applied (either piezoelectrically induced or externally
applied). The coordinate system for a crystal is shown in Figure 4.2 and is a
local coordinate system for each element of the transducer. There are several
different alphabetic subscripts and superscripts. The superscripts D and E
are used in reference to elastic constants, E means that the constants were
measured with a constant electric field, and D that the charge density was
constant. The superscripts T and S are used in reference to the electric or
piezoelectric constants, T means that the constants were measured with the
free elastic boundary conditions, and S with the boundary conditions clamped.
These boundary conditions are implicit in the solution of the governing equations
and assumed not to change. For example, the radial surface of the 33 coupled
transducer is assumed to be stress free, hence the electric properties are indicated

with the T superscript. TLe subscript b used in conjunction with the wavenumber
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k£ and the wave velocity vf indicates that the length expander or bar mode is
the prominent mode. With the subscript and superscript notation described,
the material constants are defined. The constants ¢33 and ds; are piezoelectric
constants. The load bearing area and the electroded area (which are the same
for the piezoelectric materials with the 33 coupling) is denoted as A and the axial
length as [. The material density is p. Cy is the electrical capacitance and ¢ or
¥ will be used in this chapter to denote the transformation factor which converts
from the electrical domain to the mechanical. The relative dielectric constant of
the piezoceramic is €33 and the free space constant is €. The elastic compliance

is s33 which is the inverse of the elastic modulus.
3 A

v

Figure 4.2 Local coordinate system for the ceramic.

The representations in Figures 4.1a and 4.1b are the solutions to the

governing differential equations and have no frequency limitation except that
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the boundary conditions will break down at high frequency. These represen-
tations become cumbersome to program and it is efficacious to use the srr;all
argument approximation for the sine and cosine functions. The validity of these
assumptions breaks down when the error in the small argument approximation in
any one of the elements becomes appreciable. For example, one would expect the
small argument approximation to become invalid in the decoupler section first.
The small argument model (which amounts to a low frequency approximation) is
shown in Figure 4.3a for the piezoactive element and Figure 4.3b for the elastic
element. This model reduces to lumping the static mass and stiffness of the
elements of the transducer into the branches of the circuit. This approach allows
some engineering approximations to be made. When the frequency is low, the
stiffness and mass of some adjacent elements may be combined to simplify the
resulting equi\.'alent circuit witLout a significant loss of accuracy. The overall
transducer model] is obtained by cascading the equivalent circuits for each section
one after the other. To be precise, every different material of the transducer
should be modeled separately. This could result in a very large equivalent circuit
with many branches. Thus, the initial iterations of the model are made by
making simplifying assumptions about what are the important elements of the
transducer. For example, with respect to the overall force output of the shaker,
the force gage plays a small part. So in order to remove a loop of the total
equivalent circuit, the mass and compliance of the force gage ceramic are lumped

with the headmass and the decoupler sections.

4.3. Equivalent Circuit Model for the Shaker Force Output

The transducer described in Section 2.3 is modeled in this section. The
modeling process is iterative. Complexity is added to the model until predicted

results match measurements.
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Figure 4.4 shows the equivalent circuit for the entire shaker, force gage
transducer system using the low frequency approximations of Figures 4.3a and
4.3b. Since the branches of each section of the circuit form a T, these circuits
are called T circuits. The first T circuit represents the drive section and the
tailmass section. The compliances of the two PZT disks and the brass tailmass are
included in C';. At low frequencies, these elements act as a combined stiffness [12].
The mass of the tailmass and one half the mass of a PZT disk are lumped into M;.
The mass of one and one half PZT disks are included in the calculation of AM,.
The second T circuit includes the effect of the decoupler alone. The compliance
C: is the compliance of the decoupler. Half of the decoupler mass is lumped into
each of M, and Mj;. The third T circuit includes the effect of the headmass and
the PZT force cell in a manner similar to the first T circuit. The effect of the
added mass due to the glue used to stress relieve the lead wire attachments is
added to M,, M, and Mj in proportion to their estimated amounts. The values
of the elastic and piezoelectric constants needed for calculation of the impedances
in the equivalent circuit are found in Table 4.1 and 4.2.

Explicitly, the values of the impedances in Figure 4.4 are calculated from;

M, = 1/2 mass of PZT driver + mass of brass tailmass,

M, = 3/2 mass of PZT driver + 1/2 mass of decoupler,

M; = 1/2( mass of decoupler + mass force gage + mass of headmass),

M, = 1/2( mass force gage + mass of headmass),

Co = electrical capacitance of PZT driver,

C: = mechanical compliance of drive section,

C2 = compliance of decoupler,

C; = compliance of headmass + force gage,

Z, = termination impedance,
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Figure 4.4 Equivalent circuit model for the force output of the
transducer.

¢ = transformation factor.
These values are calculated using the formulas given in Figure 4.2. After
combining similar impedances and reflecting electrical elements through the
transformers to convert them into the mechanical domain, the circuit takes the
form of Figure 4.5. The compliance of this branch is C7 which now takes into
account the effect of the electrical impedance.

The loop equations for this circuit, using the currents shown in Figure 4.5

(noting that current is velocity and voltage is force) are;

E6 = LM + —ez) + (oo . =), (4.1a)
Cy
1 -1
-E¢ = Il( ) + L(wMy; + — C: + ]_w—C—) + 13(——2), (4.1b)
0= (JwM; + 1 + — L. (——-) (4.1¢)

JwCa ]uCa JwCs




Table 4.1 Nominal material properties.

Material Elastic compliance (m"’/N) Density (kg/m3)
Aluminium 1.41x10~ 2700
Brass 9.62x10~"* 8500
PZT-4 not applicable 7750
Table 4.2 Material properties for PZT-4.
Material Property Value (units)
£33 26.1x10~° (Vm/N)
dis 289x10~'4 (m/N)
33 7.9 x 1071% (m*/N)
533 15.5 x10™ 1% (m*?/N)
€35/ €0 1300
0 = I(—L) + L(wMi + —— + Z)) (4.1d)
= LB\—= 4w iy + —== t) -
JwCs JwCs ‘

These equations can be caste in matrix form, and solved using Cramer's rule

for any of the unknowns. The potential drop across the termination impedance

represents the force applied to the structure. In the next section the relation of

the force gage voltage output to the force is examined. In the current model the

force applied to the structure is,

Fout = I4Z!-

(4.2)

The results of applying the equivalent circuit model to the shaker are

compared with theory in Figure 4.6. The results show good agreement especially

in the low frequency range. The theoretical resonance frequency is 29.8 kHz.
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Figure 4.5 Equivalent circuit model for the forced output of the
transducer with electrical elements transformed into
the mechanical domain.

while the experimental value is 20.6 kHz. The fact that the analytic shaker
model does not include any damping or loss mechanism accounts for some of the
discrepancy of the amplitude between experiment and theory. Additionally, the
error associated with the low frequency approximation is becoming appreciable
at 30 kHz. At this frequency, the error associated with the low argument

approximation 1s 8 percent.
4.4. Equivalent Circuit Model for the Force Gage Section

In Section 4.3, the force gage section was modeled as having only high
frequency resonances, hence the details of its voltage response were ignored.
In this section, the equivalent circuit for the force gage section driven by an
arbitrary force into an arbitrary impedance is examined. The purpose of this

section is to determine the response of the force gage, and its relationship to the




dB re 1 Newton/Volt

-25.0 0.0 25.0 50.0

-50.0

-100.0 -75.0

b e e = — . —

0.0 25 50 7.5 10.0 12.5 15.0 17.6 20.0 22.5 25.0 27.5 30.0 32.5 35.0
Frequency (kHz)

G-fpredicted force output
CSmeasured force output

Figure 4.6 Transmitting voltage response for unloaded shaker.
theory versus experiment.




75
force applied to the structure. Also. calibration procedures are examined and the
normal assumptions regarding the sensitivity of force gages (that the sensitivity
is constant with respect to frequency and load impedance) are analyzed.

The model for the force gage is shown in Figure 4.7. It has been constructed
using the low frequency approximations in Figure 4.3a and 4.3b. The force source
represents the rest of the transducer, which is modeled as some arbitrary input
force. In the calculation of the sensitivity of the force gage, if the input force
cancels out, then the sensitivity is independent of the drive section and decoupler
section of the shaker. Note in Figure 4.7, that since the electrical terminals are
open, the positive and negative capacitances cancel if the cable capacitance,
Ceable, 1s zero or small . Even though the capacitances are in series, their net
effect is zero because the positive and negative impedances of the two capacitors
cancel when added. First the effect of the cable capacitance is ignored, then
a correction factor is listed to take into account the effect of the finite cable
capacitance. In Figure 4.7, M;, M,, C,, C;, Cq, Z4, and ¢ are:

M, = 1/2 (mass of PZT force gage + aluminum headmass),

M, = 1/2 mass of aluminum headmass,

C, = compliance of the force gage,

C, = compliance of the aluminum headmass,
C, = electrical capacitance of the force gage,

Z, = termination impedance,

1 = transformation factor.

The sampled voltage is in the electric domain and we must take into account
the transformation factor in calculating the output voltage. The current that
flows through the capacitor across which the output voltage is measured is v

times the velocity of that branch of the circuit. The output voltage of the force




Figure 4.7 Equivalent circuit for force gage sensitivity.

gage is then
Y

owt =(I2~1 7.
Eout = (I, I)JUCO

(4.3)
The output force is
Fout = I3Z(. (4.4)

This is the force imparted to the structure. The first item of interest is the ratio
of the output voltage of the force gage to the force applied to the structure. In
order to obtain this, the loop equations must again be solved. The equations for

the loop currents (velocities) are

1 -1
in = I ] I + ]y 4.5
F; I(chx)+ 2(1—'—“)(:1) (4.5a)
0 = Iy( -1 I( M'+-1—+-—1—-)+I(——1) (4.5b)
- JwC;)+ 2% wCy ' wCy T N Gy '
-1 ’ 1
= - I M, -+ Z4). 4.
0 Iz(chg)‘* 3QwM,; + Po +Z4) (4.5¢)




Upon solving the equations using Cramer’s rule for the velocities. the ratio of

the output voltage tc the output force is
Rl = Eout/Fout

which is just Equation (4.3) divided by Equation (4.4). A constant proportional-

ity between the two is desired. The solution of the above results in the following:

_ ' : A ' ' ; '
R, = wg(leMl - M, s M M,C,
Co Zt

Z,

—WM,C, — w ) . (46)

The common factor %’} simplifies to g33t/A4 which is the low frequency sensitivity
of the ceramic. This is the nominal sensitivity that we try to measure. However,
away from w = 0 the response of the output voltage to the actual force appears
to become more complicated. Actually, most of the other terms are negligible
in the frequency range examined in this study. If the force gage would be ideal,
in other words massless and infinitely stiff, C,, M;,and M, would be zero and
the sensitivity would be independent of Z, and frequency. The non-zero values
complicate matters. The term multiplying jw is due to the mass loading by the
mass between the force gage and structure. The actual force that reaches the
structure is less by the velocity times jw(M. ; +M;) This factor may be subtre ~ted
out electronically during the measurement or via computer software afterward.
At the lower frequencies, this term is the most significant source of errors in the
measurement of the force. This error is usually neglected. It is a major source
of error only when the impedance of the structure is low; i.e., at a resonance
of the structure. The other terms in higher powers of w have an effect only at
higher frequencies. If these effects need be examined, the equivalent circuit of
Figure 4.1a and 4.1b must be used. When the admittance of the structure drops
to a level comparable to the mass below the force gage, then the mass subtraction

should be used if precise impedance levels are required (see Appendix B).




78

The object of a calibration of the force gage is to obtain the nominal
sensitivity of the force gage section. A standard method is to mass load the
shaker and mount an accelerometer on the termination mass. Knowing the
mass, its acceleration and the output voltage from the sensor the sensitivity
can be inferred. The mass that loads the force gage is M, + ]\/I; + M; The
sensitivity, Sy is approximately the voltage outpu. of the force gage divided by

" the acceleration times the mass loading. Solving for this we obtain.

Spa= - ‘Cb,f‘ (1 —w?M;C, —gl——\ii‘;?‘i i) (4.7)
this is the sensitivity measured using Equation 2.1. If,
M, << My + M,
then Equation (4.7) becomes
Sy = l%c—;(l - WM C,) . ‘ (4.8)

The calibration described here and in Sectidn 2.3.3 provides a good estimate
of the low frequency force sensitivity. If the compliance C, includes only the
compliance of the aluminum headmass, the term w?M;C, is much smaller
than one even at 100 kilohertz. However, the glue layer attaching the shaker
headmass to the structure to be tested increases this compliance. The sensitivity
characteristically rolls off at higher frequencies due to this contact point or glue
layer compliance.

Now the effect of cable capacitance for the 33 coupled force gage is examined.
The cable capacitance can almost double the mechanical compliance of the force
gage section in the shaker used in this study. This is not a problem in predicting
the entire shaker’s dynamic response because the compliance of the force gage

will still be much less than the compliance of the decoupler and the drive sections.
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Hence. the cable capacitance will not effect the dynamics of the system. However.
the cable capacitance may all but cripple the sensitivity of the force gage if the
cable capacitance is too high. The cable length is the length of the cable to the
first amplifier or buffer. In cases where the cable length must be very long, a
charge amplifier must be used. To account for the effect of the cable capacitance
the following changes to the above equations are made. In the circuit diagram

in Figure 4.7, C| is replaced by
C(,)' = C(; + Ccablc )
and mechanical compliance C; is everywhere replaced by C* which is found from

1/C* =1/Cy —¢*/Co" + 9%/ Cy.

After these two substitutions are made in the circuit, the loop Equations (4.5)
are re-solved and the resulting low frequency sensitivity is

—yC,/Cq.
S"=1+C (2 — p25L)
cable Col C;’

(4.9)

Thus if C.asie is zero then the sensitivity is g3at/A. If the cable capacitance is
very high, the sensitivity is lowered.

The average measured sensitivity for the force gage is 0.95 V/N as tabulated
in Table 2.3. The predicted value of g33t/4 is 1.02. V/N which matches the
measured values closely. Average cable capacitance for the type and length of
cable used in the construction of the force gage is 45 picofarads. Plugging this
value into Equation (4.9) results in a sensitivity of 0.89 V/N, again close to the
measured value. This close agreement indicates that there are no significant

errors in the construction or the calibratioi: of the transducer.
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Chapter 5
EXPERIMENTAL AND THEORETICAL RESULTS

5.1. Introduction

The experimental results of the implementation of the wavenumber drive
system with nine and seventeen shakers are presented in this chapter. First, the
experimental transfer admittance at various spatial locations along the beam is
compared with the theoretically predicted values. This comparison allows for a
point by point validation of the measurements. Next, the effect of varying the
number and spacing of the sensors used to measure the wavenumber spectrum
is analyzed using predicted results. Subsequently, the wavenumber-frequency
dependence of the measured forcing function is presented. The measured and
predicted velocity responses to this forcing function are examined. Finally, the
relationship between the wavenumber content of the forcing function and the

velocity is explored.

5.2. Measured and Predicted Point Admittances

The measured admittance at various locations on the beam is compared to the
predicted admittance as a function of frequency. As mentioned in Section 2.4.4,
the velocity is measured at 37 locations on the beam, with the actual locations,

in centimeters, given by
z;=((i — 1)+ 0.95) ,
and, in non-dimensional coordinates, by
&i=((t1~1)+0.95)/37.9

The admittances are all measured with respect to the center shaker, so all but

the measurement of the velocity at the center location are considered transfer
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admittances defined here as

ti(w) = vi(w)/Fe(w) (5.1)

where v; is the velocity measured at location ¢ and F. is the force measured at
the center shaker. Since the beam is being driven by nine or seventeen shakers,
the admittance takes on a much different appearance then it would for a single
drive point.

The FORTRAN program VALTIM (see Appendix C) employs the beam
theory in Chapter 3 to predict the admittance of the beam at the different spatial
locations using the measured forces read from a data file. VALTIM also reads
the measured values of the admittance and then plots both the theoretical and
experimental data at an observation point as a function of frequency.

The forcing condition is defined by the experiment number given in Table 2.2.
As the agreement between experiment and theory is generally very good,
Experiment 7 has been chosen as a representative measurement. Several locations
for the comparison of the predicted and measured admittances for Experiment 7
are presented while only a single plot is shown for the other experiments. The
seventeen shaker experiments are more complicated (i.e., more sources for error),
so the representative data set was chosen from the last five experiments. Also,
many of the features for the nine shaker experiments are the same as for the
seventeen shaker experiments, so it is not necessary to specifically examine in
detail all of the data sets from the nine and seventeen shaker experiments.

The admittance for the center location (§ = 0.5) is shown in Figure 5.1 from
Experiment 7. The good agreement between theory and experiment is seen. The
first peak around 3.1 kHz is due to the system resonance caused by the interaction
between the beam and shakers. At this frequency the force and velocity at nearly

every location on the beam has a peak in amplitude with respect to the force
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seen at the center shaker. In other words, the driving-point impedance at the
center of the beam is nearly zero, consequently the driving force is nearly zero.
This resonance peak occurs around 3.1 kHz for all of the experiments, however
the location of this peak is a function of the number of shakers and the weighting
pattern of the drive voltages. The shifting of this peak from experiment to
experiment may be due to mass loading of the force gage (for a brief discussion
of mass loading see Appendix B), however, the reasons behind the shifting of this
peak are not investigated in detail.

The predicted admittance shows a peak at the resonance frequencies of
3.6 kHz and 8.4 kHz, while these peaks are not seen in the experimental
data. These are even or symmetric modes (with respect to the center of the
beam) and therefore are excited more by the symmetric forcing function than
the antisymmetric modes. The absence of these predicted resonance effects in
the experimental data could be due to the use of a damping coefficient in the
predictions (0.05 is used) that is lower than the actual damping coefficient. This
damping is due to having shakers glued to the beam.

Figures 5.2 and 5.3 show the transfer admittance for Experiment 7 at a
location 5 cm to the left and to the right of the center of the beam ({ = 0.368 and
0.632). If the forcing function were perfectly symmetric these admittances would
be exactly the same. While they are quite similar there are differences, indicating
that the forcing function was not perfectly symmetric. In Figure 5.4, the results
for position number 3 at £ = 0.078 are presented. While the magnitude and phase
of the predicted and measured drive point admittances match at frequencies
below 6 kHz except at the resonance frequencies, in Figures 5.2-5.4 there are

deviations between the predicted and measured results above 6 kHz.
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The transfer admittances at location 14 (£ = 0.368) for Experiments 1-6 and
8-9 are shown in Figures 5.5-5.12. From these plots, the excellent agreement
between theory and experiment can be seen. Again. the resonance peaks appear
in the predicted results that are not found in the experimental results. These
peaks are found around 3.6 kHz (e.g. Figure 5.7) or 8.4 kHz (e.g. Figure 5.10).

The suppression of the resonance peaks in the measurements is notable.
The use of multiple shakers changes *he usual interpretations of the admittance
especially when the forcing function is weighted to a particular wavenumber.
With only one or two shakers on the beam, the mode of the nearest resonance
frequency almost always contributes the most to any measured response. The
exception is when the measurement or excitation point is on a node of a mode.
With multiple shakers, the orthogonality of the forcing function to a particular
mode may result in that mode having at least as much influence on the velocity
response as the mode whose resonance frequency is actually closer to the drive
frequency. Also, the gluing of nine or seventeen shakers to a beam increases the
damping of the beam due to the presence of the glue, which also suppresses the
measured resonance responses. Thus, with the array of shakers the resonance
may be suppressed by a mismatch between the spatial response of the resonance
mode and the spatial distribution of the applied forces.

Finally, the drive wavenumber for Experiments 4, 8 and 9 corresponds to
a freebending wavenumber whose frequency falls far outside the measurement
frequency range (compare Tables 2.1 and 3.2). The overall admittance for these

experiments is much lower than for the other experiments.
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5.3. Effects of the Spatial Measurement Array

In this section, the effect of varying the accelerometer spacing on the

estimation of the normalized wavenumber velocity response is examined. The

~

normalized wavenumber-frequency velocity spectrum, V(k;,w), is

1
Fe(w)

Viks,w) = Viks,w) , - (52)

where V(k;,w) is the Fourier transform of the velocity. To assess the effect of
spatial sampling, the DFT is performed on the theoretically predicted spatial
velocity response and compared to the analytic or continuous transform as given
in Section 3.4. The DFT is calculated using a 128 point FFT; the number of the
actual data points varies but the data length is always zero-padded to a length of
128. Only the 64 bins corresponding to the positive spectrum are plotted. The
FORTRAN program ARRAY_EFFECT implements the calculation of both the
analytic and the discrete transforms then plots the results.

Before examining the results of these calculations, the Fourier transforms of
the array pattern or A(k.), as defined in Chapter 2, is plotted for spacings of
1 cm, 2 cm and 4 cm in Figures 5.13-5.15. A(k.) also is called the array pattern.
Only the positive part of array function spectrum is plotted, the negative part of
the spectrum is symmetric. Re-writing Equation (2.12) in terms of the current

variables,

Vin(ks) = V(k:) « A(ks) . (5.3)

This is the measured wavenumber velocity spectrum (after dropping the fre-
quency dependence). In this equation, the convolution integral for the measured
response at a wavenumber k. can be interpreted as the integration of a shifted

version of A(k;) times V(k;) over all wavenumbers. In Figures 5.13-5.15, the
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Figure 5.13  The Fourier transform of the array function for 37
accelerometers with a spacing of 1 cm.
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main-lobe of A( kz) is located at k; = Ocm™!, the lobes appearing at
ky = +27l/Az forl=1,2,..

are called aliasing lobes. As the measurement wavenumber increases, the array
pattern ,as shown in Figures 5.13-5.15, is shifted to the right and the convolution
integration is performed to produce Vim(k;). So, as the measured wavenumber
nears n/Az the first negative aliasing lobe nears —n/Az from the left. Since
f/( k) is almost symmetric, if we see peaks past #/Az in the positive part of the
spectrum there are pea_lgs also in the negative part of the spectrum. It is these
peaks in the negative part of the spectrum that alias into the positive part of
the spectrum. The ideal array pattern is a sinc(k;L/2) function as discussed in
Chapter 2; the array pattern for the 1 cm spacing most closely resenibles that
sinc function.

For the comparison of different array spacings, the forcing function from
Experiment 9 in Table 2.2 is used. Because the drive wavenumber for this
experiment is the highest of the experiments conducted (k; = 1.49 cm™!), more
energy should be seen in the higher wavenumbers of the velocity spectrum.
With more energy input into the high wavenumber end of the spectrum than
any of the other experiments, the velocity should be the most challenging to
measure. The wavenumber dependence at 8.0 kHz is examined. In Figure 5.16,
an array of 37 accelerometers equally spaced froin the center of the beam and
covering the entire length of the beam (in this case Az = 1.02 cm) is used to
estimate the wavenumber spectrum of the velocity. As shown in Figure 5.16,
the agreement between the continuous and discrete transforms of the predicted
velocity is excellent except at the higher wavenumbers. There, the aliasing effects
tend to cause the levels calculated by the FFT to fall off less rapidly then the

continuous transform.
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Using a nineteen element array consisting of accelerometers located at 2 cm
intervals equally spaced away from the center of the beam, also produces good
agreement between the discrete and continuous transforms for Experiment 9 as
presented in Figure 5.17. At the Nyquist wavenumber (defined here as 7/Az)
the local peak in the response causes the discrete transform to overestimate once
again. The results for an array using nine accelerometers is shown in Figure 5.18.
Considering that the Nyquist wavenumber for this array, 0.75 cm™!, is one half
the drive wavenumber, the results are remarkably good. It seems that the aliasing
effects have somehow canceled out in the convolution integral. Generally, so long
as the largest amplitude seen in the velocity spectrum is contained within the
Nyquist rate of the array, the FFT approximates the general features of the
spectrum very well.

Returning to the nineteen accelerometer array, the effects of a slight decrease
in the inter-element spacing is now examined. By decreasing Az the aliasing
wavenumber is increased slightly. By doing so, the local peak in the true
wavenumber spectrum now falls below the aliasing lobe of the array pattern if the
Az is chosen correctly. The result of using an array of 21 accelerometers is shown
in Figure 5.19. While the discrete transform still overestimates the value of the
spectrum slightly around 7/2 cm™?, the shape of the true spectrum is faithfully
followed. It is noteworthy that merely by using two more accelerometers the
results may be noticeably improved.

The importance of knowing the highest wavenumber at which a peak is
to be seen has been demonstrated. While examining the dispersion relation
for the beam (see Figure 3.2) yields an idea of what the highest freebending
wavenumber to expect for a particular frequency range, the content of the forced

wavenumber content must be known as well. At 8.0 kHz the forced wavenumber
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content is shown in Figure 5.20. This shows that for this frequency the force
wavenumber content has been successfully steered to the desired wavenumber.
However, the main-lobe of the wavenumber pattern is fairly broad and extends
past the Nyquist wavenumber for a spacing of 2 cm. By realizing the extent
of the force wavenumber spectrum, the measurement array can be adjusted for

proper measurement.

The final array effect to be examined is that of truncation error. The length

of a discrete transform is L,,
L.=NAz | (5.4)

where NV is the number of samples. As was mentioned previously, it is desirable to
have the Fourier transform of the array function match the sinc function with the
correct length, L;. The location of the actual measurements is given in the very
beginning of this chapter. The length of the FFT is NAz = 37 cm; the length
should have been forced to be 38 cm either by using a different spacing or by using
a different starting point (which would allow the use of another accelerometer).
The effect of truncation error is noticeable as a shifting of the location of the
sidelobe structure at wavenumbers approaching the Nyquist wavenumber. The
spacing used in the experiment is input to ARRAY.EFFECT to calculate the
beam response at 8.0 kHz for Experiment 9 and the wavenumber response is
obtained via the FFT. The results are shown in Figure 5.21. The shifting of the
sidelobe pattern is clearly visible. The array used to calculate the spectrum in
Figure 5.16 used a data window whose length is nearly 38 cm, and the results
are much better. The truncation error causes the width of the main-lobe of the
array pattern to be wider than that of the proper sinc function. The sidelobes

at the higher wavenumbers are misaligned.
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Figure 5.20 Wavenumber content of the force relative to the center
shaker for Experiment 9 at a frequency of 8 kHz.
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Although the error of 1 cm causes only a small deviation, the truncation
problem can be more severe. For example, for an accelerometer spacing of
2 cm it is tempting to place accelerometers only at seventeen shaker locations.
This spacing yields a Nyquist wavenumber which is the same as the Nyquist
wavenumber for the array that produced :he plot in Figure 5.16; but L,, the
aperture length, for this case is only 34 cm. The results for this truncated array
are shown in Figure 5.22. This result clearly points out the danger of truncation
error.

In this section, the effects of the spacing and length of the measurement array
on the estimated wavenumber spectrum have been investigated. The spacing
must be close enough to enable the peaks at the higher wavenumbérs to be
measured. A(k;) must be as close as possible to a sinc(k; L/ 2), hence the length
of the transform must be almost that of the structure. The length should fall
within 0.5Az of the length of the beam.

5.4. Wavenumber-Frequency Dependence of the Force and Velocity

The main results of this thesis are presented in this section. The wavenumber-
frequency dependence of the measured force as well as the measured and
predicted velocity are presented in surface-contour plots. The surface portion
of the plots allow for a qualitative examination of the main features of the
spectrum. The contours of the surface are shown in a plane beneath the surface.
From these contours, more detailed information about the values of the spectrum
can be obtained. From these plots, two of the most important questions with
respect to the success of the wavenumber-frequency measurement system are
answered. The first is whether or not the forcg wavenumber content of the array
of point forces can be steered to a desired wavenumber by amplitude shading of

the drive voltages sent to the shakers. Second, contingent upon steering the force
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wavenumber content. what enhancement in the measurement of the velocity is
obtained by exciting the beam in this fashion. In other words. are we able to
measure the presence of the higher wavenumber velocity fields, which have so far
been unmeasureable.

For each of the nine experiments (listed in Table 2.2), the spatial Fourier
transform of the measured force relative to the force at the center shaker is
plotted. The units of this function are centimeters. Additionally, the predicted
normalized wavenumber velocity spectra (using the analytic Fourier transform
as formulated in Section 3.4) are presented. As before. the velocity is normalized
to the force at the center shaker, hence the Fourier transform has the units of
admittance times centimeters. The experimental velocity data are processed in
the following manner: the 37 normalized velocities are read into a computer
program which zero pads the data to a length of 128 points and then performs
an FFT. The general processing of the data is discussed in Chapter 2. Since
all of the quantities present in this section are normalized to the center shaker’s
force, the designation “normalized” is dropped for brevity. Also, any peculiarities

associated with any of the data sets (e.g., missing accelerometer locations) can

be found in Appendix D.

5.4.1. Nine Shaker Experiments

For the first experiment, the drive wavenumber is k4 = 0 cm~!. The
wavenumber dependence of the force spectra is shown in Figure 5.23. The force
wavenumber is characterized by four main features, the forced wavenumber ridge,
the freebending wavenumber influence, system resonance and the periodicity of
the spectrum.

The forced wavenumber ridge is the ridge apparent at the drive wavenumber

in Figure 5.23. it is a high amplitude region for constant k. The forced
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wavenumber ridge is also called the main-lobe of the force wavenumber spectrum.
A coherent ridge occurs when the amplitude shading of the input voltages has
succeeded in imposing a similar distribution on the forces at the shakers. The
grating lobes are due to the inherent periodicity of the spectrum of discrete
point forces (the period is 27/Az). Hence, if the forced wavenumber ridge
has been successfully enforced there also are grating lobes present at k, =
£27l/Az £ kq,l = £1,£2..... For the first experiment, the main-lobe and the
grating lobes can be clearly seen at 0,7/2 and m cm™!.

The system resonance is described in Section 5.2. On the surface plots. the
system resonance appears as a sharp ridge for constant frequency. This is a
consequence of the low impedance seen by the center shaker and the low force
output due to this small impedance. At resonance, all of the normalized forces
ana velocities appear high because they are measured with respect to the force
at the center shaker. The system resonance is not labeled on Figure 5.23, but
can be seen around 3.0 kHz.

The freebending wavenumber for the Timoshenko beam has approximately
a square root dependency on frequency (see Figure 3.2) for frequencies below
12 kHz. For a Bernoulli-Euler beam, the relationship for the freebending
wavenumber is exactly a square root dependency. Due to the high admittance
of the beam at the freebending wavenumber, it is expected that there is a region
around a parabolic line where the influence of the freebending wavenumber can
be seen. The parabola has a positive k; branch and a negative k; branch. The
influence of the positive branch on the spectrum can be seen in Figure 5.23.
Regions where the effect of the higher admittance at the freebending wavenumber
can be seen are denoted by the label ‘freebending wavenumber’ on the plots (in

Figure 5.23). Even though the drive voltage is not steered to the freebending
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wavenumbers. the force spectrum exhibits a ridge at these wavenumbers because
the beam response is high enough to drive the shakers. For all of the plots.
not every local ridge associated with this effect is pointed out explicitly. The
periodicity of the spectrum means that there is a repetition of this parabola
centered at k; = £2=xl/Azx,l = £1,£2,...; these periodic repetitions can be seen
at #/2 cm™! and 7 cm™! (labeled in Figure 5.23 as periodic repetitions of the
freebending wavenumber).

The wavenumber-frequency velocity spectrum predicted using the measured
forcing function from Experiment 1 is shown in Figures 5.24 and 5.25. The first
plot is the analytic Fourier transform and the second is the FFT of the predicted
velocity. As these plots are almost identical, only the analytic Fourier transform
is shown for the rest of the experiments. The measured wavenumber-frequency
velocity response is shown in Figure 5.26.

The wavenumber-frequency velocity surfaces are characterized by three main
features, the forced wavenumber ridge, the freebending wavenumber and the
system resonance. Note that there is no inherent periodicity in the transform of
the continuous velocity field. The freebending wavenumber ridge is due to the
high admittance in this region and the forced wavenumber ridge is due to the large
amplitude of the force wavenumber spectrum in this region. In Figures 5.24-5.26,
the forced wavenumber ridge and the freebending wavenumber peaks can be seen
clearly as marked on the plots. The agreement between theory and experiment is
quite good. The system resonance can be seen at 3.1 kHz on all of the plots. Both
of the theoretically produced plots have a ridge at the first grating lobe of the
force wavenumber spectrum, at k; = 7 /2 cm™! (labeled as “forced wavenumber
ridge” on the plot). In order to show this peak, a slice is made through the surface

at a frequency of 11.5 kHz. This plot of the analytic and measured wavenumber
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velocity is shown on Figure 5.27. The peak can be seen in the predicted results.

The measurements do not reflect this however, and it may be that the large
amplitude of the spectrum at the lower wavenumbers somehow overwhelms the
spectrum at the higher wavenumbers. A possible mechanism for the burying of
the higher wavenumber components in the measured data is the following; the
accelerometer is more sensitive at the lower wavenumbers, the peak at the zero
wavenumber and the associated sidelobes are given more weight than the smaller
peak at the higher wavenumbers. In this way, the stronger component at the
lower wavenumbers buries the weaker components at the higher wavenumbers in
the measurement; but the theory has no such sensor error and is able to measure
the higher wavenumber peak.

In Experiment 2, the drive wavenumber is 0.16 cm™!. Due to the width
of the main-lobe in the force spectrum, the peaks at *kq overlap as shown
in Figure 5.28. The grating lobes and the main-lobe create force wavenumber
passband regions. The freebending wavenumber influence is not as noticeable
as in Experiment 1, because the forced wavenumber ridge is present where the
freebending wavenumber effect would be seen. The system resonance is seen
again at 3.1 kHz.

The measured and predicted wavenumber velocity responses are shown in
Figures 5.29 and 5.30. Again, the forced wavenumber ridge is clearly present
and theory and experiment agree nicely, especially below k; = 1.5 cm™!. The
grating lobe effect around k, = 7/2 cm~! can be seen in the predicted velocity
spectrum but not in the measured spectrum. This ridge in the predicted velocity
is present above 9.0 kHz. The system resonance occurs at 3.1 kHz. Only slight
local peaks can be seen in the region where the freebending wavenumber influence

is expected.
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The force wavenumber spectrum for Experiment 3 is displayed in Figure 5.31.
The drive wavenumber for this experiment is kg4 = 0.332 cm~!. The forced
wavenumber ridge for this experiment is the least defined for any of the nine
shaker experiments. From 2-6.5 kHz, the forced wavenumber ridge is fairly well
defined and properly located. From 6.5-9 kHz, the forced wavenumber ridge
(and the grating lobes as well) have shifted and become less defined. A forced
wavenumber ridge once again appears from 9-12 kHz. For this experiment and
for Experiment 7, k4 corresponds to a freebending wavenumber whose frequency
1s within the measurement range of 2-12 kHz. The frequency of a freebending
wavenumber equal to 0.332 cm™! is 5.0 kHz. It is not necessarily expected that
there would be a peak in either the force wavenumber content or the velocity
wavenumber content at this frequency. This is not expected for two reasons.
One, this is not a resonance wavenumber of the beam. Two, even if it were a
resonance wavenumber, the force distribution must match that particular mode
in order to produce a highly resonance response.

Figures 5.32 and 5.33 are the surface contour plots showing the dependence
of the velocity on wavenumber and frequency for Experiment 3. The velocity in
general tracks with the force wavenumber main-lobe. As the main-lobe of the
force shifts up or down in wavenumber so does the velocity response. Since the
forced wavenumber ridge wanders, the velocity ridge does not stay at a constant
wavenumber. The freebending wavenumber effect is not seen. Perhaps, it is
the proximity of the drive wavenumber to the freebending wavenumbers in this
frequency range that is the explanation for the lack of a nicely formed forced
wavenumber ridge. The system resonance for the measured values is higher than
the predicted value. However, if the mass loading would be removed, the two

curves should compare more closely.
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The final nine shaker experiment is Experiment 4. Here, the shakers_ are
driven in a pattern such that every other shaker is out of phase with the center
shaker (i.e. the first shaker is in phase, the second out of phase). The force
wavenumber content in Figure 5.34 displays the strong main and grating lobe
pattern near the desired wavenumber until about 10 kHz. The peak of the forced
wavenumber spectrum is found at k; = 7/4 cm™! instead of the value used to
generate the weights in FORCEFILTER, 0.746 cm™!. It is difficult to control
the wavenumber spectra to this fine a degree. The influence of the freebending
wavenumber can once again be seen and is labeled on the plot.

Figures 5.35 and 5.36 are the surface contour plots for the predicted and the
measured velocity spectra for Experiment 4. The forced wavenumber ridge is
seen to become more and more defined as frequency increases. At frequencies
below 3 kHz, the admittance of the beam at kg4 is so low, that even with the well
defined forced wavenumber ridge, the velocity spectrum does not exhibit a ridge
at the drive wavenumber . At these low frequencies, the freebending wavenumber
dominates the response of the structure. The overall spectrum of the velocity
response is much lower than the other experiments because most of the energy of
the force spectrum falls into a low admittance region. The system resonance is
very much subdued as compared to some of the other experiments, and cannot
be seen in the force wavenumber content. The grating lobe appears at such a

high wavenumber that the velocity content is not disturbed at that wavenumber.

5.4.2. Seventeen Shaker Experiments

The results for the five seventeen shaker experiments are now presented.
The force wavenumber-frequency spectra for the nine and seventeen shaker
experiments are very similar. The major difference between the two is due

to the shaker spacing; the periodicity of the seventeen shaker force spectra is
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7 cm~!. Hence. the grating lobes are separated farther from the main-lobe

and the periodic repetition of the freebending wavenumber parabola is centered
further away from the origin. The means by which the results from the first four
seventeen shaker experiments are to be presented is to point out any differences
from the corresponding nine shaker experiment and any other noticeable features.

The first four seventeen shaker experiments are driven at the same wavenum-
ber as the nine shaker experiments (see Table 2.2). The force and velocity spectra
for the matching experiments are very similar. The force, predicted velocity
and measured velocity wavenumber-frequency distributions for Experiment 5 are
shown in Figures 5.37-5.39 respectively, for Experiment 6 (one wavelength over
the structure) in Figures 5.40-5.42, for Experiment 7 (two wavelengths over the
structure) in -Figures 5.43-5.45 and for Experiment 8 (4.5 wavelengths over the

structure) in Figures 5.46-5.48.

The major differences seen between the nine shaker experiment of a particular
force distribution and the seventeen shaker experiment with the same force
distribution are summarized in this paragraph. In Experiments 5 and 6, there
are no grating lobes present at k; = #/2 cm™! (Figures 5.37 and 5.40). Thus,
the velocity spectra for these two experiments (see Figures 5.38 and 5.41) do
not exhibit a ridge at this wavenumber as do the predicted spectra for the nine
shaker experiments. In all of the seventeen shaker experiments, the grating lobes
of the force wavenumber distribution occur at a wavenumber that is too large
to noticeably excite the velocity. In Experiment 6, the system resonance is very
strongly excited, more so in the measurement than the theory. For Experiment 7,
the forced wavenumber ridge is even more poorly defined than for Experiment 3
as can be seen in Figures 5.31 and 5.43. The velocity spectrum for this experiment

looks. however, very similar to the corresponding nine shaker experiment. For
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contour plot of the measured force spectrum for Exper

Wavenumber-frequency surface-
ment §. Force relative to F.(w).

Figure §.37
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Wavenumber-frequency surface-contour plot of the measured force spectrum for Experi-

ment 7. Force relative to Fe(w).

Figure 5.43
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the Experiment 8, again the nine shaker experiment seems to have had more
success in prescribing a coherent forced wavenumber ridge at k4 as shown in
Figures 5.34 and 5.46. Especially at the higher frequencies (above 9 kHz), the
ridge for the seventeen shaker experiment breaks up. The resulting velocity
response is characterized by a forced wavenumber ridge that is less coherent
than for the nine shaker experiment. .

Experiment 9 is unique to the seventeen shaker experiment as the shakers
are excited at the Nyquist rate. The peak of the force wavenumber spectrum
occurs at k; = m/2 ecm™!; in Figure 5.49 the success in prescribing the drive
wavenumber can be seen. Because the drive wavenumber corresponds to a
freebending wavenumber at 60 kHz, the main-lobe of the force wavenumber
content does .not interfere with the freebending wavenumber region. So the
influence of the freebending wavenumber along with the periodic repetition of
the negative wavenumber branch emanating from k, = 7 cm™! can be seen on
the force wavenumber spectrum. The predicted velocity spectrum display the
forced wavenumber ridge beginning at 7 kHz (see Figure 5.50). The measured
velocity, presented in Figure 5.51, also shows a ridge at the forced wavenumber,
but at higher frequencies. A slice of the predicted and measured velocity surfaces
is presented in Figure 5.52 at a frequency of 11.9 kHz. The drive wavenumber
for this experiment is the same as the grating lobe for Experiment 1. In the
Experiment 1, the measured wavenumber velocity spectrum did not result in
any ridge at the high wavenumber, while in Experiment 9, in the absence of
the strong low wavenumber velocity field, the high wavenumber variations were
detected experimentally.

In summary, several important results were discovered. The ability to steer

the wavenumber content of the array of point sources merely by steering the drive
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voltages was shown. In general. the velocity spectra in the low wavenumber
region was accurately measured. The accuracy of the measurement system
(using the theoretical values for comparison) in the high wavenumber region
for this system (above 1.3 cm~!) was improved by using an array of shakers to
provide excitation concentrated in the high wavenumber region. The ability in
Experiment 9 to measure the forced wavenumber ridge while in Experiment 1 the
svstem was not able to measure velocity components at the same wavenumber

demonstrates the improved capability.
5.53. Relationship between Force and Velocity in Wavenumber Space

In this section, the relationship between the wavenumber-frequency spectrum
of the force and that of the velocity field is investigated. The finite beam

admittance as defined in Chapter 3 is

V(ky,w)
Hilk;,w) = ——
£( ) ok o)

Both the normalized force and the normalized velocity spectra are normalized

(5.5)

to the force measured at the center of the beam. The units of this function
are those of admittance (centimeters per dyne seconds). The examination of
this function centers around the postulation in Chapter 3 that the finite beam
admittance should approach the infinite beam admittance when the amplitude of
the force wavenumber spectrum is high. To this end, the frequency variation of
the predicted and measured finite beam admittances are compared to the infinite
beam admittance as a function of frequency at the drive wavenumber. The
FORTRAN program COMPARE (see Appendix C), computes the admittance of
the various functions at a wavenumber as a function of frequency and plots the
results. The wavenumber at which the results are presented corresponds to the

bin of the FFT that is closest to the drive wavenumber. The notation on the
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plots. “exact transform™, indicates that the finite beam admittance is calculated
using the analytic Fourier transform solution to the wavenumber velocity.

In Figures 5.53a and 5.53b. the three admittances for each of Experiment 1
and 5 are displayed. The drive wavenumber is 0 cm™!. All six of the plots are
virtually identical. The success in prescribing a high force output at the drive
wavenumber resulted in the finite beam admittance being the same as the infinite
beam admittance. At the zero wavenumber, the beam acts as a lumped mass
and the admittance looks masslike.

The admittance for Experiment 2 and 6 are shown in Figure 5.54a and 5.54b
(respectively). For the finite beam admittance a peak is scen around 3 kHz
for both the nine and seventeen shaker experiments. This peak occurs at a
lower frequency for the seventeen shaker experiment; otherwise the finite beam
admittance for nine and seventeen shakers are the same. Note also the excellent
agrcement between the predicated und measured values for the finite beam
admittance. Also, the infinite beam admittance is very close to the finite beam
admittance except around 3 kHz. The drive wavenumber for this experiment is
0.16 cm™! and the center of the nearest bin of the FFT (for which the data are
presented) is 0.147 cm™!.

The drive wavenumber for the third and seventh cxperiments is 0.332 cm™".
A freebending wavenumber of the same value occurs around 5 kHz. The
admittances are shown at k; = 0.344 cm™! on Figure 5.55a and 5.55b. The
maximum of the infinite beam admittance occurs at the freebending frequency for
that wavenumber. The theory and experiment generally agree in the estimation
of the admittance for the finite beam. For the finite bearn admittance, the first
peak in the admittance of the nine and seventeen shaker experiments takes place

at nearly the same frequency. The second peak of the finite beam admittance
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for Experiment 7 occurs at a lower frequency than does the second peak for
Experiment 3. Above the second peak, the admittances of the finite beam for
both experiments collapses to the infinite beam admittance. Recall that the
force wavenumber spectrum for these experiments was the least defined and this
results in part of the discrepancy. However, further investigation is required to
determine what effect the proximity of the freebending wavenumber has on the
finite beam admittance.

For the nine and seventeen shaker experiments whose drive wavenumber
corresponds to 4.5 wavelengths across the length of the beam. the finite beam
admittance generally stays close to that of the infinite beam; as pictured in Figure
5.96a and 5.56b. Upon examination of the force wavenumber spectra for both
experiments (Figures 5.34 and 5.46), the main-lobe for the nine shaker spectra
is better defined and this is probably why the finite beam admittance for this
experiment stays closer to the infinite beam admittance.

The finite beam admittance for Experiment 9 is shown in Figure 5.57. There
are some fairly large deviations between the predicted and measured values of the
finite beam admittance. This is expected as the wavenumber here is 1.57 cm™!
and at these wavenumbers the measurements are more difficult. Note that the
experimental results generally lie below those for the predicted admittance; this
may be attributed to the decrease in the sensitivity of the accelerometer at the
higher wavenumbers. The finite beam admittances still follow the trend of the
infinite beamn admittance.

For completeness, similar plots for Experiment 2 at the wavenumber of
0.69 cm™! where the magnitude of the force wavenumber spectrum is low are
shown in Figure 5.58. The finite beam admittances show no similarity to the

infinite beam admittance except perhaps at the higher frequencies.
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The postulation has been made that the finite beam admittance should
approach the infinite beam admittance at a wavenumber where the force
amplitude is high. The analysis and results presented in this section certainly

point in this direction.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

In this thesis, the experimental and theoretical aspects of exciting and
measuring the wavenumber-frequency spectrum of a finite structure have been
examined. A system that steers the force amplitude of an array of shakers
to a particular wavenumber have been developed. The response of a free-
free beam to this excitation have been measured experimentally and predicted
theoretically. Experiment and theory have been shown to match very well, both
in point transfer admittances and in the comparison of wavenumber spectra. The
relationship between the wavenumber dependence of the force and the velocity
have been examined and caste in terms of the finite beam admittance. The
finite beam admittance have been shown experimentally to approximate the
infinite beam admittance in regions of wavenumber-frequency space where the
force amplitude is high. Also, in these regions the finite beam admittance for
experiments using nine shakers and seventeen are nearly the same.

In order to measure the relation between the force and the velocity, one must
be reasonably sure that it is the actual force and velocity spectra that are being
measured. Hence, it have been a major emphasis of this study to understand
the means by which the two quantities has been measured. To this end, the
wavenumber sensitivity of an array of sensors has been developed. The effects
of using different types of measurement arrays h»s been examined. Equivalent
circuit modeling has been used both to predict the overall response and the
output of the shaker/force gage. The predicted force output and force gage
sensitivity have been shown to be commensurate with the measured values. These

predictions have been a used as a check on the validity of the measurements and
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the calibration procedure.
6.2. Recommendations

Further theoretical and experimental study into the relationship between
the wavenumber-frequency content of the force and the velocity spectrum is
indicated. A more complete analysis of the results of Section 3.6 would yield
a theoretical model for analysis of any possible exceptions to the empirical
observations made relating the force to the velocity. Also, further examination
of the data obtained in this thesis would aide in this analysis.

This method of force excitation and velocity measurement could be applied
to structures coated with compliant layers. By using the measurement system,
the filtering action of these coatings might be parameterized. Hence, this system
could be a useful tool in the better design of compliant layers.

Finally, the use of other spectral estimation methods in examining the
response of the structure would be useful [26]. By using so-called high resolution
methods (e.g., maximum likelihood, maximum entropy and the extended Prony
methods), the individual mode shapes might be resolved. With this information,

the relation between the force and velocity would become more straightforward.




161
APPENDIX A

PVF-2 FORCE GAGE DESIGN

A schematic of the force gage design using PVF-2 as the piezo-active
component is shown in Figure A.1. This design proved to be mechanically
unsuitable. Upon repeated attachment and removal from the structure, the force
gage would delaminate. This problem motivated the use of the PZT-4 force gage
which is more sturdy.

The components and their dimensions are shown in Table A.1. The force
gage is constructed in the following manner. First, two pieces of PVF-2 are
sandwiched around the inner brass shimstock (which is the positive lead). The
surface of positive polarity of each of the pieces of piezo-film are glued facing each
other toward the inner brass using Devcon five-minute epoxy. Next, the longer
and wider strip of brass shimstock is folded in half. The sandwiched combination
is inserted into the the now folded outer brass shield. At this point, the area
over the PVF-2 is glued to the outer brass shield and held in a vise while a bend
is made at the point 1.27 cm from the fold point of the outer brass. This bend
allows for the force gage to fit nicely over the headmass of the shaker. After this
gluing is complete, the center conductor of a low noise coaxial cable is soldered
to the inner brass shimstock. This is the positive electric terminal. The exposed
positive connection (the combination inner brass shimstock and coaxial cable)
is covered by flexible insulating material. The outer brass is then glued to the
insulating material. Finally, the shield wire of the coaxial cable, which has been
dressed back, is soldered or glued using conductive epoxy to the outer brass

shimstock.
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LOW NOISE COAXIAL INSULATING MATERIAL
CABLE /
e
TWO STRIPS OF
52 ym PVDF
0.001 INCH —\
BRASS SHIM \ 0.001 INCH
BRASS SHIM
INSULATING
MATERIAL

o TRANSDUCER THICKNESS OVER ACTIVE
AREA = 9,010 INCH

Figure A.1 Schematic of the PVF-2 force gage design.




Table A.1 Materials used in PVF-2 transducer.

Description of Section Material Dimensions (cm)
length x width x thickness
Outer shield Brass shim 3.49 x .4 x .00254
Force cell PVF-2 1.43 x .35 x .0052
Positive lead Brass shim 1.75 x .3 x .00254
Flexible insulation Kapton cut ic size

The PVF-2 may be cleaned using a Freon based solvent.
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The other

components of the force gage are cleaned before gluing using the procedures

mentioned in Chapter 2.

The force gage is glued to the top of the headmass. The force gage/shaker

is then glued to the test structure. Initially, the force gage sensitivity (measured

using the same procedure as in Section 2.3.4) amplitude and phase was very

flat as a function of frequency. However, as the force gage was removed and

re-attached to the structure, the sensitivity was altered. It was obvious upon

inspection, the the force gage layers were becoming unglued and the force gage

was rendered useless.
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APPENDIX B

MASS LOADING OF THE FORCE GAGE

In this appendix. the manner by which the effect of the mass below the force
gage may be removed from the measured data is presented. There are three
quantities which require the mass loading effect to be removed. the drive point
admittance. transfer admittance and the normalized force measurements. The
mass loading effect causes an error in the force measured by the force gage, as
described in Chapter 4. Essentially, the force applied to the structure differs
from that measured by the force gage by the impedance of the mass loading
times the velocity at that point. The results are presented in the same order as
the algorithm used to correct the errors must be written. This is because the
first result is used to correct the second mass loaded quantity and the second to
correct the third.

The first quantity examined is the measured drive point admittance at the
center of the beam, denoted as 4.. Note that all quantities are understood to be
functions of frequency, w. The measured drive point admittance in the center is,

. Ve
Ac = m (B.1)
where Z; = jwM, F. is the force applied to the structure at the center of the
beam, and v, is the velocity measured at the center of the beam. The quantity
M is known from the analysis of Section 4.4. The denominator of Equation {B.1)
is the measured force. The desired quantity is A, the velocity divided by the force
applied to the structure. .. is related to the measured quantity by,
Ve A,

A=<=

= — B.2
F. 1-2Zp4A, ( )

From this equation it can be seen that if the product of the measured admittance

of the beam and the impedance of the mass loading is much less than one, the
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measured and the actual admittance are the same. This product will generally
be much lower than one for the beam and the shaker used in tnis thesis.
The second quantity of interest is the measured transfer admittance, A; or.

~ v'

Ai=s ——— .
Fe+2Zpv, (B.3)

where v; is the velocity at the ith location. The actual transfer admittance , A;
is

Adi=—===4, . (B.4)
where both the measured and corrected drive point admittances have been used
in the correction of the transfer admittance.

The final quantity to be corrected is the normalized force measured at each

of the shakers, FV,

A Fi+ Zpv;
N ]
Ey Fe+Zpve (B:5)

The desired quantity is F;/F. or FN which is obtained using the previous

1

correction for /i;. The corrected normalized force is
FN=[FN/A. - Z.)4i | (B.6)

which may be verified by substitution.

In Figure B.1, the difference between the corrected and uncorrecied drive
point admittance is shown for Experiment 3. This experiment was chosen because
the admittance of the beam rises above the admittance of the mass loading. This
means that the product of the beam admittance and the mass impedance will be
around one. The plot shows that only when beam admittance is above the mass
loading line does the corrected admittance vary from the measured. However.
the general trend of the data is not significantly altered for tl.e purposes of this
study. Hence, the mass correction algorithm has not been implemented to correct

the entire data set.

——————————————————————————



166

K ; | " magnitude of the admittance
of the mass loading

Admittance (cm/s-dyne)

Frequency(kHz)
o R
120 | | | | | | l ! ! } |
“MF[ | | | | i i i
80 | l #h % | ! |
w 30 I ' ‘ i l& l ‘ ' l
< | L e | | | |
0
G N
| L TN T
b ;.::v:.:;, | Y '

i
R |
| ﬁ'ﬁwm‘ ,
|

\ ‘
| L ! i
L ]
7 8 9 10 1" 12
Frequency(kHz)
oa measured
- mass loading removed
Figure B.1 Measured versus corrected driving point admittance

for Experiment 3 at the center of the beam.




167
APPENDIX C
CITED COMPUTER CODE

In this appendix, the computer code cited in the text of the thesis is listed

in order of citation. The first program listed is FORCE_FILTER.

-

PROGRAM Force_Filter

2 c... This program caculates the weighting coefficients for the
3 ¢... drive voltages.

4 CHARACTER #*20 name

5 REAL PLT(512),PES(512)

6 COMPLEX W(512),etap(100)

7 COMPLEX WW(256),SUM,c_i

8 c_i = (0.0,1.0)

9 pi = 3.141592654

10 beam_length = 37.9

11 NUM_WAV = 128

12 ¢... dinput location for the number of shakers.

13 12121 write(6,*) ’ input number of points in filter’

14 READ(S,*)num

15 ¢... finding spatial locations for the shakers in real non-dimensional
16 ¢.. space (length of the bar is one.)

17 ¢. this method places one shaker in the middle and symmetrically out
18 €. from this shaker locates the rest of the shakers

19 if(num.eq.9)then

20 do i = 1{,num

21 etap(i) = (2.95 + float(i-1)#4.)/beam_length
22 enddo

23 elseif (num.eq.17) then

24 do i = 1,nun .

25 etap(i) = (2.95 + float(i-1)%2.)/beam_length
26 enddo

27 else

28 vrite(6,+) ’ input either 9 or 17 shakers’

29 goto 12121

30 ENDIF

31 ¢..

32 ¢... forcing window options are:

a3 c.. 1) rectangular window

Mec.. 2) Kaiser-Bess1l window

35 c. 3) Hananing window

3 c.. 4) Self input of window coeficients
37 c... option held in variable i_flag
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39
40

41 ¢

43
44
45
46
47
43
49
50
51
52
53
54
55
56
57
S8
59
60
61
62
63
64
65
66
67
68
69
70

72
73
74
75
76
7
78
79
80
81
82

dd
dd

1111
1112

O o o o6

write(6,*) ’ input rect (1), kaiser (2) or hanning(3) self(4)’
read (5,*) i_flag

rectangular window
it (i_flag . eq . 1) then
DO I = {,NUM
W(I) = cmplx(1.0,0.)
ENDDO
Kaiser-Bessel window
elseif(i_flag . eq . 2) then
write(6,*) ’ input alpha’
read(5,*) alpha
CALL KAISER(W,NUM,ALPHA)
Hannning window
elseif(i_flag . eq . 3) then
DO I = 1,NUM
arg = etap(i)*2.*pi
W(i) =.5+(1- cos(arg))
ENDDO
self input option
elsexrf(i_flag.eq.4) then
do i = 1,num
vrite(6,1111)i
read(5,*)w(i)
vrite(6,1112)i
read(5,%)etap(i)
enddo
endif
format(’ input force number °’,i2)
format(’ input location number ’,i2)

In this section, the wavenumber content is shifted using a
symmetrical cosine weighting. The number of waves across
the length of the beam is used as the means for determining
the drive wavenumber.
vrite(6,+) ’ input cos weight(1i) or not’
read (5,*) i_cos
it (i_cos.eq.1) then
write(6,s) ’ input desired waves over the bar(k/2pi)’
read (5,*) x_k
do i = 1,num
arg = (etap(i)-.5)#*2.+x_kepi
W(i)= W(i)*cos(arg)
write (6,*)w(I)

168
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enddo
endif

. output files

type 1512
format(’ input file for force mag wave-freq plot file-->’,$)
read(5,10)name
open(unit=11,file = name , status = ’new’)
type 1513
format(’ input tile for force phase wave-freq plot file-->’,$)
read(5,10)name
open({unit=12,file = name , status = ’new’)
wavmm = -1000,

This section performs the Fourier transform as per Equation 2.27.

do k = -num_wav, num_wav
sum = cmplx(0.,0.)
x_wav_num = float((k))/2.
do j = 1,num
sum = sum + w(j)*cexp(-x_wav_num#
> c_isetap(j))
enddo ! enddo for j
set up for plotting routines. Normalize data to maximum point

temp = cabs(sum)
if (temp.6q.0.0) then
temp = .0000001
sum = cmplx(0.000001,0.0000001)
write(6,s) ’ zero’
endif
plt(k) = 20*log10(temp)
phs(k) = atan2d(aimag(sum),real(sum))
it (p1t(k).gt.wavam) then

vavmm=plt (k)
i_rem = k
endif
enddo ! enddo for k
format (20a4)
format(a20)

write transformed data to data files.
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153
154
155
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159
160
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162
163
164
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166
167
168
169
170
171
172

(2]

c

170

DO I = -num_wav,num_wav
plt(i) = plt(i) - vavmm
phs(i) = phs(i) - phs(i_rem)
it (phs(i) . 1t . -180.) phs(i) = phs(i) +360.
xx = float(i)/(2.*beam_length)
write(11,*)xx,plt(i)
write(12,*)xx,phs(i)

ENDDO

close(unit=11)
close(unit=10)
OPEN (UNIT=10,FILE=’weight.DAT’,STATUS=’NEW’)
OPEN (UNIT=11,FILE=’wphase.DAT’,STATUS=’NEW’)
write spatial veighting coefficients
DO I = 1,NUM
WRITE(10,*)float(I)-1.,cabs(W(I))
WRITE(11,*)float(I)-1.,atan2d(aimag(W(I)),real(W(I)))
ENDDO
CLOSE(UNIT=11)
CLOSE(UNIT=10)
STOP
END

SUBROUTINE KAISER (W,N,ALPHA)
Kaiser-Bessel weights. Algorithim from Carter Ackerman
COMPLEX W(512)

F = (FLOAT(N)+1.)/2.
PIA = 3.1415927+ALPHA
BD = AINO(PIA)
D0D1I=1,K

BN = AINO(PIA*SQRT(1.-(FLOAT(I)/F-1.)%s2))
W(I)=CMPLX(BN/BD,0.0)
RETURN
END

FUNCTION AINT{X)

X BETWEEN O. AND 20.

Y = X/2.
T = 1.E-8
E = 1.

DE = 1.

DO 1I=1,25




171

173 DE = DE#+Y/FLOAT(I)
174 SDE = DE**2

175 E = E+SDE .

176 IF(E*T-SDE)1,1,2
177 1 CONTINUE

178 2 AINO = E

179 RETURN

180 END

The next program listed is VALTIM, the program that compares the

measured to the predicted admittance.

1 program valtim

2c :

3 ¢ This program calculates the adittance and phase of a

4 ¢ Timoshenko bar in cm-dyne~sec units and compares it to
5 ¢ measured values. The measured data is in g’s and pounds-force
6 ¢ and must be converted to cm-dyne-sec.

7 ¢ This program is a combination of the work of F.M. Hutto
8 ¢ and K. Grosh.

9 ¢ This specific program is for the first three nine shaker
10 ¢ experiments.

1 ¢

12 REAL E,G,RHO,INM,AREA,AK,ORE,TWO,TWEK,LM,A1 ,FSN

13 REAL PI,ZERO,BBT,BAL,FREQ

14 REAL OMG(0:40),PEI(0:40),B(0:40),AL(0:40),CETA

15 REAL BT(0:40),DEL(0:40) ,CHE(0:40) ,LAMDA(0:40)

16 REAL DF,MB,q(2),qy(2)

17 REAL ETAP(10),BBTE,BALE,FRQ(450)

18 REAL YR(0:40,20)

19 REAL Y(201,2),XR,YI,PES(201,2),fa

20 REAL ORT(0:40),PENS(2),PETS(2)

21 INTEGER I,J,M,N,Z,ind .

22 COMPLEX*8 DISP(250),CY,SUM,DROI(250,0:40),K0(10),SSUM
23 COMPLEX#*8 FC(260,20),SUMS

24 CHARACTER#20 NAME,N1,N2

25 CEARACTER*1 P,1f ,esc

26 C..

27 ¢

28 ¢ The values used are:

29 ¢ E (elastic modulus) = 210E10 dynes/cm~2

30 ¢ G (shear modulus) = 77E10 dynes/cm~2

3t ¢ IM (area moment of inertia) = bh~3/12

32 ¢ wd (width of beam) = 1.27 cm.




33
34
a5
36
37

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
538
69
60
61
62
63
64
[-H]
66
67
68
69
70
71
72

O o0 o o0 6 o

ht (height of beam) = 1.92 cm.

REO (density of material) =7.8 grams/cm"3
LM (length of beam) =37.9. cnm.

AK (cross sec. constant) =.833

DF (damping factor) =.05

DATA E,G,ONE,RHO,LM,wd,ht / 210E10 , 77E10 ,
1 1. ,7.8, 37.9 ,1.27,1.91/
DATA ZERO,AK,TWEN,TWO / 0.0 , .833
PI=4+*ATAN(ONE)

df = .05
PENS(1)=1.0
PENS(2)=2.0

, 19, , 2./

PNTS(1)=201.
PNTS(2)=201.

area = wd*ht

im = wd+ht**3/12.
MB=(RHO*AREAsLM)
P=2\?

[¢]

0o 0 0 0 6 0 0

73 ¢C
74 C

75 €

76

There are nine voint forces:

=9

reading in the eigen-frequencies

OPEN ( UNIT=10 , FILE=’(grosh.kgl.bar]bsfreq.DAT’ ,TYPE='OLD’ )

DO I=2,21

READ (10,+) OMG(I)
OMG(I)=0MG(I)#*2+PI
END DO

CLOSE ( UNIT=10 )
OMG(0)=0.0
OMG(1)=0.0

Reading in the orthoganality constants

OPEN(UNIT=10,FILE=’[grosh.kgl.bar]bsort.dat’ ,STATUS='0LD’)

DO I=2,21




73
79
80
81
82
83
34

35 €

86
87

89
80
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
118
116
117
118
119
120
121
122

C...

READ(10,*) ORT(I)
EXD DO
CLNSE(UNIT=10)
ORT(0)=1.0
ORT(1)=(LM**2)/12

173

reading in forcing function data -- this is assumed to be a constant

. no matter where the accelerometer is

1511

1300

opening file of force data
type 1511
format (’ input force file-->’,$)
read(5,10)name
OPEN(UNIT=10,FILE=name,TYPE='0LD’)
DO J =1,M
IF(J.NE.(M+1)/2) THER
DO I=1,PNTS(1)
READ(10,1300) FRQ(I),FA,PHASE
FA = 10*+(FA/20.)
FC(I,J) = FA+«CMPLX(COSD(PHASE),SIND(PHASE))
END DO
ELSEIF(J.EQ.(M+1)/2)THEN
DO I=1,PNTS(1)
FC(I,J) = CMPLX(1.0,0.0)
ENDDO
endif
END DO
CLOSE(UNIT=10)
FORMAT(1X,F5.2,F12.6,F7.2)

c
c..

closing file of force data

R=SQRT(IM/(AREA*LM#*%2))
=SQRT(E*IM/(AK*AREA*G*LM*%x2))

DO I=2,21

B(I)=SQRT(RHO*AREA*OMG(I)*+2+LM*24/(E+IN))
AL(I)=(((R#%2-S#*2)%#2+4/B(I)#42) %% E-R+#2-S#22) %% §
1 /SQRT(TWO)

BT(I)=(((R#%2-S##2)#+244/B(I)#+2)#* E+Re42+5S+42)*+ 5
1 /SQRT(TWO)

LAMDA(I)=AL(I)/BT(I)
CHE(I)=(BT(I)#*#*2-S«#2)/(AL(I)*#2+S#»2)
BAL=B(I)*AL(I)

BBT=B(1)+BT(I)

IF (BAL.GT.TWENR) GOTO 170
DEL(I)=(COSH(BAL)-COS(BBT))/(LAMDA(I)*SINR(BAL)-

1 CHE(I)*SIN(BBT))




123
124

129
130
131
132
133
134
135
136
137
1338
139
140
141
142
143

174

GOTO 171

170 DEL(I)=1/LAMDA(I)
171 CONTINUE

(o

END DO

C CALCULATICONS DUE TO THE FORCING FUNCTION.

c

doi=1,m
etap(i) =(2.95 + (i-1)*4. )/1m
enddo

144

145
146
147
148
149
150
151
152
183
154
155
156
187
158
159
160
161
162
163
164
165
166
167

DO J=1,M

YR(0,3)=1.0

YR(1,J)=ETAP(j)-.5

DO 1=2,21

BBT=B(I)*BT(I)

BAL=B(I)*AL(I)

BBTE=BBT+ETAP(J)
BALE=BAL*ETAP(J)

IF (BALE.GT.TWEK) GOTO 200
YR(I,J)=(COSH(BALE)+COS(BBTE)/CEE(I)-LAMDA(I)*DEL(I)
1 *SINH(BALE)-DEL(I)*SIN(BBTE))
GOTO 201

200 YR(I,J)=(COS(BBTE)/CHE(I)~DEL(I)*SIN(BBTE))
201 CONTINUE

END DO
END DO

. loop point

a oo o

10

SET FOR READING IN DATA

WRITE(S,+) ’WHAT IS THE NAME OF THE DATA FILE?’
READ(5,10) NAME

FORMAT (A20)
OPEN(UNIT=21,FILE=name,STATUS=’0OLD’)
DO I=1,PNTS(2)

READ (21,*)ii, frq(i),Y(i,2),PHS(I,2)

phs(i,2)=phs(i,2)-180.

it (phs(i,2).gt.180.) phs(I,2)=phs(i,2)-360

it (phs(I,2).1t.-180.) phs(I,2)=phs(i,2)+360
END DO

CLOSE(UNIT=21)

name(20:20)='$"’

TYPE 1313




197
198
199
200
201
202
203
204
208
206
207
208
209
210
211
212

175

1313 format (’ input ceta-->’,$)
READ(5,*) ceta

CALCULATING EIGENFUNCTION FOR A PARTICULAR POINT ON THEE BEAM
FOR THE FIRST 21 MODES

CALCULATION OF THE EIGENFUNCTIONS FOR DIFFERENT FREQUENCIES

AT A SINGLE POINT "CETA". THE EIGENFREQUENCIES ARE FOR A FREE-FREE
BEAM OF THE TIMOSHENKO TYPE TAKING INTO ACCOUNT SHEAR ARE ROTARY
INERTIA EFFECTS

OO0 0O00O00O00O0000o0o00aann0n

DO I=2,21

BBT=B(I)#*BT(I)

BAL=B(I)*AL(I)

BALE=BAL#*CETA

BBTE=BBT*CETA

IF (BALE.GT.TWEN) GOTO 150

PHI(I)=COSH(BALE)-LAMDA(I)*DEL(I)*SINH(BALE)+

1 COS(BBTE)/CHE(I)~DEL(I)*SIN(BBTE)

GOTO 151 )
150 PHI(I)=COS(BBTE)/CRE(I)-DEL(I)+SIN(BBTE)
151 CONTINUE

END DO

c THE RIGID BODY MODES. BQTE ROTARY AND TRANSLATIONAL

PHEI(0)=1.0
PHI(1)=.5%(CETA-.5)

DO Z=1,PNTS(1)

FREQ=FRQ(Z)*1000.*2*P1

SSUM=CMPLX (ZERO,ZERO)

po I=0,21
DNOI(Z,I)=1/(MB*ORT(I)#*(OMG(I)+*2+CMPLX(ONE,DF)-FREQ**2))
SUMS=CMPLX(0.0,0.0)

DO J=1,M

SUMS=SUMS+FC(Z,J)*YR(I,J)

END DO

SSUM=SSUM+DNOI(Z,I)*SUMS*PHI(I)
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ERD DO
cy = SSUM*cmplx(0.0,freq)
y(z,1) = 20%1og10(cabs(cy))
phs(z,1) = atan2d(aimag(cy),reallcy))
ERD DO
C===s====ss==ss==s=======sz=== = =======s===
Cc
C
C PLOTTING ROUTINE GOES HERE
C
c
C
C=======zzz= sszs==zzszs======zzszcsz===szzczsz=s=sss==zz==s== =
c
STOP
END

The source code for the FORTRAN program ARRAY _EFFECT is given next.

program array_effect
c.
c. This program allows for the comparison of the analytic and
c. discrete Fourier transform of the velocity response of a
c. Timoshenko beam to the experimentally measured forcing functionm.
c. Also, the experimentally obtained velocity response may be
c. plotted as well. The number of sensors used to measure the
c. theoretical response may be varied as
c. vell as the measurement frequency. These results are plotted as
c. a function of wavenumber at a particular frequency.
real x(64,4),y(64,4),1ftfor(64,101)
complex £c(20,201)
character name*40

common frequency,irun,num_accel,ihan,m
type #,’ input forcing file’
accept 100,name
100 format (a40)
type *,’'number of shakers’
accept *,m
type *, ’'run number’
accept *,irun
it (irun.le.3) num_rd_freq = 201
if (irun.gt.3) num_rd_freq = 101
c... Reading in the forcing functien.
OPEN(UNIT=10,FILE=name,TYPE='OLD’)
DO J =1,HK




133

11000

IF(J.NE.(M+1)/2) THEN
DO I=1,num_rd_freq
READ(10,133) xxx,FA,PHASE
FA = 10+#(FA/20.)
FC(J,i) = FA+CMPLX(COSD(PHASE),SIND(PHASE))
END DO
ELSEIF(J.EQ. (M+1)/2)THER
DO I=1,num_rd_freq
FC(J,i) = CMPLX(1.0,0.0)
ENDDO
endif
END DO

format(1x,£5.2,£12.6,17.2)

CLOSE(UNIT=10)

Construction the name of the experimentally measured
velocity response in case this option is desired

if (m.eq.9)name =’fft_’//name(3:5)//’a’//name(8:8)//’'m’

it (m.eq.17)name =’££t_’//name(3:6)//’a’//name(9:9)//'m’
type *,name

open (unit=19,form=’unformatted’,status=’old’,file=name)
read(19)f1ttor

close(unit=19)

call prompt(idev) ! plotting initialization subroutine.

Which frequency and then decide in which frequency bin does
the chosen frequency falls.

type *,’ which frequency °’

accept *,frequency

fmin = 2000.

12000.

ibin = int(float(num_rd_freq-1)+*(frequency-£fmin)/10000.)+1
iibin=int(100.*(frequency-fmin)/10000.)+1

fmax

Call the analytic Fourier transform of the velocity response.
call exftfb(frequency,fc(1,ibin),m,x(1,1),y(1,1))
do i =1,64
x(i,3)=x(i,1)
y(i,3)=tttfor(i,iibin)
enddo

Input the number of sensors for the theoretical FFT ol the
velocity.

type *,’ input number of accel’

accept *,num_accel
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72 ¢C... Call the theoretical FFT of the velocity.

73 call theo_fft(frequency,ihan,fc(1,ibin),num_accel,m,x(1,2)
74 > .y(1,2))

75 type *,’ enter numcurves’

76 accept *,num_curves

77 call xyplot(x,y,num_curves,idev) ! plotting routine.
78 C... begin again?

79 type *,’ another frequency(1)’

80 accept *, iopt

81 if (iopt.eq.1)then

82 do i = 1,64

83 y(i,1)=0.0

84 y(i,2)=0.0

85 y(i,3) = 0.0

86 enddo

87 goto 11000

88 endif

89

90 call donepl(0)

91 stop

92 end

93 ¢

94

1 subroutine exftfb(frequency,fc,m,hold,vout)
96 C. this program reads in the forcing function experimentally measured
97 ¢. and uses it in a model for the exact spatial fourier transform
98 c. of the timoshenko beam.

99 c...

100 REAL E,G,REO,IM,AREA,AK,ONE,TWO,TVEN,LM,AL1,FSN
101 REAL PI,ZERO,BBT,BAL,FREQ

102 REAL OMG(0:40),B(0:40),AL(0:40),CETA

103 REAL BT(0:40) ,DEL(0:40),CHE(0:40),LAMDA(0:40)
104 REAL DF,MB,resp(64,101)

108 REAL ETAP(20),BBTE,BALE,FRQ(450)

106 REAL YR(0:40,20)

107 REAL XR,YI,fa, hold(64)

108 REAL ORT(0:40),PENS(2),PNTS(2)

109 INTEGER I,J,M,N,Z,ind, kik

110 COMPLEX#+8 CY,SUM,DNOI(0:40),SSUM,f_temp(20)

11 COMPLEX#8 FC(20),SUMS,tempi,temp2,PBI(0:40),c_i
112 real vout(64)

113 CHARACTER+*20 NAME,N1,N2

114 CRARACTER*1 P

118 CHARACTER#*21 NAMEP

116 €




130
131
132
133
134
135
13¢
137
138
139

C...

140 ¢
141 ¢

142
143
144
145
146
147
148
149
150

152 ¢

153
154
18§
156

138
189
160
161
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DATA ONE / 1. /

DATA ZERO,TWEN,TWO / 0.0 , 12. , 2. /
PI=4#*ATAN(ONE)

constants the units are cgs system.

e = 210el10 ! young’s modulus

g = 77 e10 ! shear modulus

tho = 7.8 ! density

ak = .833 ! kappa the shape factor
df = .05 ! damping factor
num_eig=21 ! number of modes used
lm = 37.9 ! length of the beam

wd = 1.27 ! width of the beam

ht = 1.91 ! height of the beam

nl = ’bsfreq’ ! eigenfrequency file
n2 = ’bsort! ! orthoganality constant file

c.i = cmplx(0.0,1.0)
vav_min = 0.0
scaling of the variables back to inverse centimeters.
wav_max = pislm
area = wd+ht
im = wdsht**3/12.
MB=(RHO*AREA)

reading in the eigen-frequencies

OPEN ( UNIT=10 , FILE=’{grosh.kgi.bar]’//ni ,TYPE=’OLD’ )
DO I=2,num_eig

READ (10,*) OMG(I)

OMG(I)=0MG(I)#2¢PI

END DO

CLOSE ( UNIT=10 )

0MG(0)=0.0

0MG(1)=0.0

reading in the orthoganality constants.

OPER(UNIT=10,FILE="[grosh.kgl.bar]’//n2,STATUS=’0LD’)
DO I=2,num_eig
READ(10,#*) ORT(I)
EXD DO
CLOSE(UNIT=10)
ORT(0)=1.0
ORT(1)=(LM##2)/12
format(1x,15.2,£12.6,17.2)
CLOSE(UNIT=10)




162 €. ..

163 ¢... location of the point sources (shakers) depends on the number of
164 ¢... shakers '

165 if (m.eq.9)delta=4.

166

167 if (m.eq.17)delta=2.

168

169 doi=1m

170 etap(i) =(2.95 + (i-1)*delta )/1m

171 enddo

172 ¢.

173 ¢.

174 c. Begin the calculation of the necessary eigen constants
175 ¢...

176 R=SQRT(IM/(AREASLM*#2))

177 S=SQRT(E*IM/(AK*AREA*G*LM#*»2))

178 DO I=2,num_eig

179 B(I)=SQRT(RHO*AREA*OMG(I)#*#2+LM+*4/(E*IN))

180 AL(I)=(((R##2-S*#2) #22+4/B(I)**2) #& G-Re#2-5s22)*% §
181 1 /SQRT(TWO)

182 BT(I)=(((Re#2-S#+2)##2+4/B(1)*#2) *# E+Ré+245#s2)s% b
183 1 /SQRT(TWO)

184 LAMDA (I)=AL(I)/BT(I)

185 CEE(I)=(BT(I)#*2-S##2)/(AL(I)#**2+S*»2)

186 BAL=B(I)*AL(I)

187 BBT=B(I)*BT(I)

188 IF (BAL.GT.TWEN) GOTO 170

189 DEL(I)=(COSH(BAL)-COS(BBT))/(LAMDA(I)*SINH(BAL)-

190 1 CHE(I)*SIN(BBT))

191 GOTO 171

192 170 DEL(I)=1/LAMDA(I)
193 171 CONTIRUVE

194 END DO

195 c...

196 c...

197 ¢... Calcualtion of the modal expansion coefficients, a : - :-tion
198 c... of mode shapes and the forcing function.
199 c...

200 DO J=1,M

201 YR(0,J)=1.0

202 YR(1,J)= .5¢(ETAP(j)-.5)

203 DO I=2,num_eig

204 BBT=B(I)*BT(I)

208 BAL=B(I)*AL(I)

206 BBTE=BBT*ETAP(J)

180




181

207 BALE=BAL+ETAP(J)

208 IF (BALE.GT.TWEN) GOTO 200

209 YR(I,J)=(COSH(BALE)+COS(BBTE)/CRE(I)-LAMDA(I)*DEL(I)
210 1 *SINH(BALE)-DEL(I)*SIN(BBTE))

211 GOTD 201

212 200 YR(I,J)=(COS(BBTE)/CEE(I)-DEL(I)*SIN(BBTE))
213 201 CORTINUE

214 ERD DO
215 ERD DO
216 c... at each frequency dnoi holds the information about the

217 ¢... orthoganality of the forcing function with any of the modes
218 €... at each frequency.

219 FREQ = 2.*PI*frequency

220 DO I = O,num_eig

221 SUM=CMPLX(0.0,0.0)

222 DO J=1,M

223 SUM= SUM + FC(J)*YR(I,J)

224 END DO

228 TEMP1=1/(MB*ORT(I)*(0OMG(I)**2+CMPLX(ONE,DF)-FREQ#**2))
226 DROI(I) = TEMP1#SUM*CMPLX(0.0,FREQ)!last part changes to velocity
227 enddo

228 ¢..

229 C

230 C CALCULATE THE WAVENUMBER RESPONSE OF EACH MODE SEAPE

231 C PBI IS THE COMPLEX ARRAY OF THE WAVENUMBER RESPONSE.

232 C -

233 ¢ do loop over gammas

234 c. vavenumber response of the two rigid body modes

238 do 1010 kik = 1,64

236 hold(kik) = (wav_min + (wav_max-wav_min)*(kik-1)/64.)/1m
237 gamma = wav_min + (wav_max-wav_min)+*(kik-1)/64.

238 ¢c...

239 itz ( gamma.ne.0.0) then

240 phi(0) = c_i/gammas(cexp(-c_isgamma)-1.)

241 phi(1) = (1./gamma*+2)*(cexp(-c_i*gamma) ~ 1.)
242 > +c_i/(2.+gamma)*(cexp(~-c_i*gamma)+1 )
243 elseif(gamma.eq.0.0) then

244 phi(0) = CMPLX(1.0,0.)

245 ' phi(1) = CMPLX(.5,0.)

246 endif

247 C.. THE TRANSFORM OF THE NON-RIGID BODY MODES.

248 DO I=2,num_eig

249 BBT=B(1)#*BT(I)

280 BAL=B(I)#*AL(I)

251 call transform(bal,bbt,lamda(i),del(i),che(i),1.0,gamma
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252 > ,temp2)
253 call transform(bal,bbt,lamda(i),del(i),che(i),0.0,gamma
254 > ,templ)
258 phi(i) = temp2-tempi
256 enddo
257 C
253 SSUM=CMPLX(0.0,0.0)
259 DO I=0,num_eig
260 SSUM=SSUM+DNOI(I)+PHI(I)
261 END DO
262 vout(kik) = 20%1logi10(cabs(SSUM))
263 1010 continue ! enddo for wavenumber loop
264 10000 format(20a4)
265 return
266 end
267 €
268 subroutine transform(bal,bbt,lambda,delta,zeta,xsi,gamma,val)
269 c... Evaluation of the analytic transform of the mode shapes.
270 real lambda
271 " complex*8 val,templ,temp2,c_i
272 c_i=cmplx(0.0,1.0)
273 bale = balsxsi
274 bbte = bbtexsi
275 game = gamma*xsi
276 € .
277 templ = cexp(-c_i*game)/(gammas*2 + balss2)
278 templ = tempi*((c_i+gammascosh(bale) + bal*sinh(bale))
279 > -lambdasdelta*(c_i*gamma*sinh(bale) + bal*cosh(bale)))
280 C... if argument of the hyberbolic functions is too high
281 if(bale.gt.12) tempi = 0.0
282 it (gamma . ne . bbt) then
283 ¢
284 temp2 = cexp(-c_i*game)/(gammas*+2 - bbt##2)
288 temp2 = temp2+(1./zetas(c_isgammascos(bbte) - bbt*sin(bbte))
286 > ~delta*(c_i*gammassin(bbte) + bbtecos(bbte)))
287 ¢
288 elseif(gamma . eq . bbt) then
289 temp2 = 1./zetas(xsi - 1./(2.*c_i*gamma)*cexp(-2.*c_isgame))
290 > -delta*(xsi + 1/(2.%c_irgamma)*cexp(-2.*c_isgame))
291 endif
292 val = tempi+temp2
293 return
294 end
295 €...

296 subroutine theo_fft(frequency,ihan,fc,num_accel,m,hold,vout)
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299
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304
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306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
32%
326
327
328
329
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c... calc £ft of responese theoretically
¢... First the spatial response of the beam is obatained at num_accel
C... points. Then the FFT is taken of the respose
c
c
REAL E,G,RHO,IM,AREA,AK,ONE,TWO, TWEN,LM,A1,FSK
REAL PI,ZERC,BBT,BAL,FREQ
REAL OMG(0:40),PEI(0:40),B(0:40),AL(0:40),CETA
REAL BT(0:40) ,DEL(0:40),CHE(0:40),LAMDA(0:40)
REAL DF,MB
REAL ETAP(20),BBTE,BALE,FRQ(450)
REAL YR(0:40,20),x(64)
REAL XR,YI,PHS(500),fa,vout(64),hold(64)
REAL ORT(0:40),PENS(2),PNTS(2)
INTEGER I,J,M,N,Z,ind
COMPLEX#8 CY,SUM,DNOI(0:40),SSUM,temp1
COMPLEX#*8 FC(20),SUMS,a(1024),ww(512),resp(303)
CHARACTER#20 NAME,N1,N2
CHARACTER*1 P,cone
CHARACTER*2 ctwo
CHARACTER+*21 NAMEP
character*5 base
c.
c.
c.
... The same physical constants are used in this routine as in EXFTFB
c..
c..
DATA E,G,ONE,RHO,LM,wd bt / 210E10 , T7E10 ,
1 . ,7.8, 37.% ,1.27,1.91/
DATA ZERO,AK,DF,TWEN,TWO / 0.0 , .833 , .05 , 12. , 2. /
PI=4*ATAN(ONE)
PENS(1)=1.0
PENS(2)=2.0
area = wd+ht
im = wdshte+3/12.
num_f£t=128
MB=(REO*AREA*LN)
P="\?
num_eig=21
c.. before things get started calculate fft weights

call cafft(a,vov,num_f£t,0) ! FFT alogorithm
c... hanning window option.
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347
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359
360
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365
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366 €

367
368
369
370
371
3arn2
373
374
37s

1222

376 ¢
377 €

ars
379

381

EEEEE

type *,’ hanning option(i)’
accept *,ihan

. option to use spacing exactly the same as per the experiments
. or a spacing that evenly spreads the accelerometers over the
. beam for any spacing.

type *,’ same as exp.(1) or even dist.(2)’
accept *,imatch
if(imatch.ne.1i.and.imatch.ne.2)goto 141

reading in the eigen-frequencies from the file
BSFREQ.DAT

OPEN ( UNIT=10 , FILE=’[grosh.kgi.bar]lbsfreq.DAT’ ,TYPE=’OLD’ )
DO I=2,num_eig

READ (10,%) OMG(I)

OMG(I)=0MG(I)*2+PI

END DO

CLOSE ( UNIT=10 )

O0MG(0)=0.0

OMG(1)=0.0

reading in the orthoganality conatants.

OPER(UNIT=10,FILE=’ [grosh.kgi.bar]bsort.dat’,STATUS="QLD’)
DO I=2,num_eig
READ(10,#*) ORT(I)
EED DO
CLOSE(UNIT=10)
ORT(0)=1.0
ORT(1)=(LM#*+2)/12
tormat(1x,15.2,£12.6,17.2)
CLOSE(UXIT=10)
Eigenfunciton constants

R=SQRT(IM/ (AREA*LN*+2))
S=SQRT(E+IM/(AK*AREA*G*LMw»2))

DO I=2,num_eig
B(I)=SQRT(RHO®AREA*OMG(I)s#2¢LMes+4/(E*IN))
AL(I)=(((R##2-S#22)##2+44/B(I)#22) #* E-R¢#2-S#22) %+ 5
i /SQRT(TWO)
BT(I)=(((Re22-S¢#2)#42+44/B(I)##2) % E+Re#2+S#%2)#% 5
1 /SQRT(TWO)

LAMDA(I)=AL(I)/BT(I)
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387 CHE(I)=(BT(I)*%2-S*#2)/(AL(I)*#2+S%%2)

388 BAL=B(I)#*AL(I)

389 BBT=B(I)*BT(I)

390 IF (BAL.GT.TWEN) GOTO 170

391 DEL(I)=(COSH(BAL)~-COS(BBT))/(LAMDA(I)*SINHE(BAL)-
392 1 CHE(I)*SIN(BBT))

393 GOTO 171

394 170 DEL(I)=1/LAMDA(I)
395 171 CONTINUE

396 END DO

337 C
398 C CALCULATIONS DUE TO THE FORCING FUNCTION. EVALUATING THE POINT FORCES
399 C AT THE DIFFERENT POINTS

400 C

401 if (m.eq.9) delta = 4,

402 if (m.eq.17) delta = 2.

403 doi=1i,m

404 etap(i) =(2.95 + (i-1)*delta)/1lm
405 enddo '

406 C==========z

407 DO J=1,M

408 YR(0,J)=1.0

409 YR(1,3)=.5+(ETAP(j)-.5)

410 DO I=2,num_eig

a1l BBT=B(I)*BT(I)

412 BAL=B(I)#*AL(I)

13 BBTE=BBT+ETAP(J)

414 BALE=BAL*ETAP(J)

415 IF (BALE.GT.TWEN) GOTO 200

416 YR(I,3)=(COSE(BALE)+COS(BBTE)/CHE(I)-LAMDA(I)*DEL(I)
17 1 *SINR(BALE)-DEL(I)*SIN(BBTE))

418 GOTO 201

419 200 YR(I,J)=(COS(BBTE)/CHE(I)-DEL(I)*SIN(BBTE))
420 201 CONTINUE '

421 ERD DO
422 END DO
423 c... at each frequency dnoi holds the information about the

424 c... orthoganality of the forcing function with any of the modes
428 c... at each frequency.

426 FREQ = 2.*PI=frequency

427 DO I = O,num_eig

428 SUM=CMPLX(0.0,0.0)

429 DO J=1,M

430 SUM= SUM + FC(J)*YR(I,J)

431 E¥D DO
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432 TEMP1=1/(MB*ORT(I)*(OMG(I)#*#»2+CMPLX(ONE,DF)-FREQ#*%2))

433 DNOI(I) = TEMP1#SUM*CMPLX(0.0,FREQ)!last part changes to velocity
434 enddo

435 c. At this point all of the information concerming the

436 C. forcing function has been obtained. Now, the sensor

437 c. location is varied.

438 c.

439 C

440 10 FORMAT (A20)

441 C..

442 C..

443 ¢... begin acclerometer loop

444 c..

445 do kkj = 1,num_accel

446 1000 format(il)

447 2000 format(i2)

448 C...

449 ¢c... what is the location of the accel. for this kkj.
450 if(num_accel.eq.17) then

451 . x_of£=2.95/1m

452 ceta = (2.95+float(kkj-1)*2.)/1mn

453 delta_fft = 2.

454 elseif (num_accel.eq.8) then

455 x_o01£=2.95/1m

456 ceta = (2.96+float(kkj-1)*4.)/1m

457 delta_x = 4.

458 delta_fft = 4.

459 else

460 if(imatch.eq.1)then

461 x_0££=0.95/1m

462 delta_x= (lm-1.9)/float(num_accel-1)
463 ceta =x_off+(float(kkj-1))*delta_x/1lm
464 delta_fft=delta_x

465 elseif (imatch.eq.2 )then

466 ceta = (float(kkj)-.5)/float(num_accel)
467 delta_fft=1m/float(num_accel)

468 endif

469 endif

470 c..

471 C

472 C

473 ¢... evaluate the mode shapes at ceta.

474 c..

475 DO I=2,num_eig

476 BBT=B(I)*BT(I)
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BAL=B(I)*AL(I)

BALE=BAL*CETA

BBTE=BBT*CETA

IF (BALE.GT.TWEN) GOTO 150
PHI(I)=COSH(BALE)~LAMDA(I)*DEL(I)*SINH(BALE)+
1 COS(BBTE) /CHE(I)-DEL{I)*SIN(BBTE)

GOTO 151

150 PHI(I)=COS(BBTE)/CHE(I)~DEL(I)*SIN(BBTE)
151 CONTINUE

END DO

O

THE RIGID BODY MODES. BOTH ROTARY AND TRANSLATIONAL

PHRI(0)=1.0
PHI(1)=.5+%(CETA-.5)

SSUM=CMPLX(0.0,0.0)

DO I=0,num_eig
SSUM=SSUM+DNOI(I)*PHI(I)
END DO ! enddo for kkj

type *,jjj.ceta,ceta*lm,cabs(ssum)
write(10, *)jjj,ceta,cabs(ssum)

cy=ssum
resp(kkj) = cy
enddo ! enddo kkj

. Next, perform FFT on the velocity data and return to main
. routine.

const = 2.%pitdelta_fft
x_norm = lm/float(num_accel) ! proper normalization
do j = i,num_accel
it (ihan.eq.1) then

veight=.5%(1.-cos((x_otf+float(j-1))*const))

else
weight=1.
endit
a(j) = weightsresp(j)
enddo
do j = num_accel+l,num_fft
a(j)=cmplx(0.0,0.0)
enddo
call cafft(a,we,num_2ft,1)
do ik = 1,64




vout(ik) = 20.*alog10(cahs(a(ik)#*x_norm))
hold(ik) =float(ik-1)#*pi/(float(num_fft/2)
sdelta_fft)
enddo
return
end
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Finally, the FORTRAN program that compares the finite and infinite beam

admittances at a particular wavenumber, titled COMPARE, is listed.

© 0 N o b N e

8GHMN’N!JNUMNNNI¢-—-.——-.-n-u—»-o-r-
N = O W o MDA b WY = O O N 9 N " bW N =~ O

0o 0 00

211
112
190

1804
1806
10

program compare

This program compares the predicted, experimentally measured
finite beam admittance to the theoretically derived infinite beam
admittance.

CHARACTER FNAME+*30
LOGICAL#*1 TEXT(80)

real *8 gamma

DIMENSION X(101),q(2),qy(2)

real mag(101,4)

CHARACTER FILEIN*40,texpl+*40,header*40
CHARACTER*30 LINE_TYPE(4),cone*1,ctwos2

pi = 3.141592654

type *,’ input number of shakers

accept 211,ctwo

type *,’ input exper no in the series (ie,<=5) *
accept 112,cone

format (a2)

format(al)

format(a40)

ncurves = 3

npts = 101

variables for the plotting routire

theses are the line descriptions
line_type(1l) = ’exact transform$’
line_type(4) = 'fft of theoretical results$’
line_type(2)='fft of experimental results$’
line_type(3)=’admittance of infinite beam$’
format(’ input filename ’,i1,’ -->’,$)
format(’ input LINETITLE’,i1,’ -=->',$)
format(a30)




34 c...
a5 C...
3 c...
37

38

39

40

41

42

43 999
44 10000
45

46

47

43

49

50

51

52

53

54

55

56

57

53

$9

60

61

62 C...
63

64

(1

66

67

68

69

189

begin frequency loop

do i = 1,101
x(i) = 2. +float(i-1)=*.1
enddo
CALL PROMPT(IDEV) ! plotting initialization subroutine
type *,’ fill letters (1)’
accept 999,ifil
format(il)
type *,’ automatic option or self input (1,2)’
accept 999,iopt
if (iopt.eq.1) then
if (ctwo.eq.’9’) then
if (cone.eq.’1’.or.cone.eq.’5’)then
ibin = 1
gamma=.0
elseif (cone.eq.’2’)then
ibin = 16
gamma = .73631
elseif (cone.eq.’4’)then

ibin = 4

gamma=. 14726
elseif (cone.eq.’3’)then

ibin = 8

gamma = .34361
endit
endif

if (ctwo.eq.’17’) then
if (cone.eq.’1’)then
ibin = 1
gamma=.0
elseif (cone.eq.’4’')then
ibin = 16
gamma = .73631
elseif (cone.eq.’2’)then
ibin = 4
gamma=.14726
elseif (cone.eq.’3’)then
ibin = 8
gamma = .34361
elseif(cone.eq.’5’) then
ibin = 31
gamma = 1.4726
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79 endif
80 endif
a1 elseift (iopt.eq.2)then
82 type *,’ input bin number (calculates gamma)’
83 accept *,ibin
34 gamma = pi*(ibin-1)/64.%1.d0
85 endif
86
87 c... read in calculated and measured velocity responses.
88 c... these values are stored in a data file
89 ¢
90 call indat(mag,cone,ctwo,ibin)
91 ¢
92 C... program that calculates infinite beam admittance
93 call inf_admit(mag(1,3),x,gamma)
94 xmin = x(1)
95 xmax= x(101)
96 C
97 ¢c... scaling for plot
98 header=cone//’ ’//ctwo//’$’
99 if (ibin.le.20) then
100 ymin=-160
101 ymax=-60
102 elseif (ibin.gt.20) then
103 ymin=-200
104 ymax=-100
108 endit
106 C
107 60 continue
108

109

111
112
113

plotting routine resides in this space

a0 a6 60 o0 6 0 0 0 60

114
118

116

117 do you wish to continue questions,

118

119 type *,’ TYPE 1 for another plot, 0 to ask for another rum’
120 accept 999, iplag

121 it(iplag.eq.1) go to 60

122 type *=,’ TYPE 1 for another run, 0 to exit’

123 accept 998, irflag
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130 C€

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
158
156
187
158

160
161
162
163
164
165
166
167
168

6O 0 0 0

it (irflag.eq.1)
CALL DONEPL(0)
stop

end
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goto 10000

subroutine inf_admit(xmag,frq,gamma)

this subroutine calculates the wavenumber-frequency

admittance of an

infinite beanm.

implicit real*8 (a-h,o0-z)

real*8 rho,im,area,ak,one,tvo,twen,ln
real*8 pi,zero,bbt,bal,freq

real=8 df
real*4 xmag(101),£rq(101)
real*8 first
reals8 kappa

complex*16 resp,argi.arg2.g,e,bomega.zeta.theta
complex *16 wav_free_4

integer i,j,m,n,z,ier,IVEIGH

ceccccececcece  input material and dimension parameters cccccccccccccce

212

C...

1., 7.8 /

format (aif)
ht=1.9240

wd= 1.27d40
area = ht * wd
kappa = ak

im = wd+ht#*+3/12.
real_g*dcmplx(1.0d0,df)
real_e+dcmplx(1.0d0,d?)
write(6,*)g,e,2k,
THIS PART OF THE PROGRAM CALCULATES THE wavenumber
admittance AT VARIOUS frequencies

zeta = kappa *

data real_e,real_g,one,rho / 21010 , 77e10 ,

data zero,ak,df,twen,two / 0.0 , .833 , .06 , 12. , 2. /
pi=4.=datan(one)

df

g * area

DO jj = 1,101
freq = £rq(jj)*1000.
hold_max=-1000.

bomega
theta

rho * area * (2.*pi #freq)s*2
rho * im # (2.*pi *freq)**2

wav_free_4 = bomega /e/im




xmag(jj)

enddo
return
END

gammas#*2/zeta+1/e/im*(1-theta/zeta)
gamma**4 + gammas*2 * (-theta/e/im -
+ wav_free_4*(theta/zeta - 1)

bomega/zeta)
resp = -argl/arg2

rmag = 20*dloglO( cdabs(resp)*freq*2.*pi)
phase=datan2d(dimag(resp) , dreal(resp))
sngl(rmag)
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APPENDIX D
EXPERIMENTAL EXCEPTIONS

In this appendix, any problems associated with collecting the data and the
remedies are delineated. In some of the experiments, accelerometer data were
lost. When FFT’s of the experiments were performed, these data locations were
taken to be zero. Obviously, this induces error into the measured wavenumber
velocity response. The accelerometer data at location one were missed in
Experiments 1 and 4. Additionally, locations 34 and 37 were lost in Experiment 4.
There was one problem associated with the force gage records. In Experiment 6,
the last force record was lost. After examining the force records at the other
locations, a strong symmetry was noticed {fortunately). Using this symmetry,
an approximation was made which was to use the first shaker force record for the
seventeenth shaker. As can be seen by the excellent agreement between theory
and experiment for the Experiment 6, this was a good approximation.

Also, a note should be made concerning the storage of the data on the
computer. For the second and fourth experiments, the data are stored in different
subdirectories on the computer than the experiment number listed in this thesis.
Experiment 4 is stox;ed in the second subdirectory and Experiment 2 is stored
in the fourth subdirectory. Also, experimentally there is a difference in the
number of frequencies measured from the first three experiments and the last
six experiments. In the first three experiments the data was taken using 50 Hz
increments while the final six were taken using 100 Hz increment. The range of

frequencies measured was same for all experiments (2 kHz to 12 kHz).
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Finally, it should be noted that the 180 degree phase factor present in the
force gage calibrations was not subtracted out in the data acquisition programs.
This phase factor is removed by any FORTRAN program that made use of the

measured admittance data.
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