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ABSTRACT

The wavenumber-frequency response of Timoshenko beams to multiple point

drives is studied in this thesis. An experimental system to excite a free-free

Timoshenko beam and measure the resulting velocity is developed. Piezoelectric

shakers/force gage units are designed and built to excite the beam and measure

the applied forces. Experiments varying the number of shakers used and the

wavenumber to which the drive voltage sent to the shakers is steered are

performed. The wavenumber-frequency dependence of the force and velocity

are measured and compared to theoretical predictions. These comparisons show

excellent agreement between the measured and theoretical results. A theoretical

investigation into the effect of the velocity measurement array is performed. Also,

the finite beam admittance is examined. The piezoelectric shakers are modeled

using equivalent circuits, which successfully predict the force output and the force

gage sensitivity.

The experiments show that the wavenumber content of the discrete shakers

could be steered to the wavenumbers chosen over a wide frequency range (the

frequency range of measurement was 2-12 kHz). The finite beam admittance

is shown to approach the infinite beam admittance in regions where the

wavenumber content of the forcing function are high. A-oessjo/ , 4
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Chapter 1

INTRODUCTION

The interaction of the pressure fluctuations beneath a turbulent boundary

layer (TBL) and a structure cause that structure to vibrate. These vibrations

may cause unwanted effects such as radiated noise in jet aircraft, spacecraft,

naval vehicles and air conditioning systems; or self noise in transducer systems.

The TBL pressure fluctuations can usually be described as random stationary

processes in space and time. It is generally useful to characterize the spatial

and temporal variations in terms of their Fourier transforms, wavenumber and

frequency. The vibrations of a structure excited by these pressure fields also

are random stationary processes. It is the wavenumber-frequency dependence of

these structural vibrations that is of interest in this study.

The wavenumber-frequency response of the forced transverse vibrations of

a one-dimensional structure, represented by a beam, is under consideration for

this study. The excitation consists of discrete shakers with measured force levels

instead of random pressure fluctuations. The velocity is sampled along the length

of the beam. Both the force and velocity spatial distributions are transformed

into wavenumber-frequency space via the Fourier transform. As the frequency

response of structures is generally well understood and easy to measure, the

emphasis of this study is placed on understanding the wavenumber response.

The general objective of this study is to characterize the wavenumber filtering

characteristics of a finite beam over a large region of wavenumber-frequency

space. The study is both theoretical and experimental. Results from theoretical

models on the beam response, characteristics of the shakers used to excite the

beam and algorithms used in taking Fourie~r transforms over spatially finite

domains are used to assist in the design of the experiments and analysis of the



2

measurement resuits.

Just as an impulsive load in time has a white or flat frequency spectrum,

so does a spatially impulsive load (i.e. a point source). Initially it seems, a

good method would be to excite the beam with a single shaker and measure the

wavenumber velocity response with an array of accelerometers. As the input force

wavenumber spectrum would be flat, all velocity wavenumbers would be excited.

However, there are several difficulties with this idea. One is the fact that the

spatial location of the shaker is important to the velocity, not just the relative

distance between the excitation point and the measurement sensor. Hence, even

at a single frequency, the output wavenumber velocity spectrum will depend on

the location of the drive force. Two, the beam is a fairly selective wavenumber

filter. At any frequency there is a preferred wavenumber, the freebending

wavenumber, at which the velocity response of the beam will peak. This is the

wavenumber that corresponds to the wavelength of a freely propagating wave

on an infinite beam at that frequency. Measurement of the beam response at

this wavenumber is easy because the signal is very high. With only one point

force exciting the structure, the freebending wavenumber would dominate the

response making measurement at other wavenumbers difficult. In an attempt to

excite the beam to measurable levels at wavenumbers other than the freebending

wavenumber, a forcing function weighted to a particular wavenumber other

than the freebending wavenumber could be used. This requires multiple point

drives to be used. In this way, the energy of force excitation as well as the

velocity response would be concentrated in a region of wavenumber-frequency

space centered around the drive wavenumber. The velocity response would be

measured by the accelerometer array, which provides a further concentration of

the measurement in the desired wavenumber frequency region.
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The philosophy of driving the beam at a particular wavenumber is similar to

steady state frequency analysis. The difference is that in the temporal domain a

signal of indefinite length can be used while spatially the signal length is limited

to the length of the structure. Indeed, the meaning of Fourier transforms over

the finite length of the structure is different than that for the infinite domain.

What is proposed is the development of a system to measure the wavenumber-

frequency characteristics of a beam by using multiple point drives and measuring

the velocity response with an array of accelerometers. Hence, it is necessary to

understand the theoretical aspects and hardware realization of the measurement

system. Predictions of the response of the beam are derived so that experimental

results on both point admittances and wavenumber spectra may be validated.

The signal processing necessary to measure the wavenumber spectra of the force

and the velocity is developed. The signal processing aspects of imposing the

desired spatial force distribution on the beam is also derived. The transducers

for exciting the beam and measuring the exciting forces are developed as well

as an equivalent circuit model to predict the response of the force transducer.

Finally, the equipment and procedure used for data acquisition are developed.

1.1. Literature Review

The early work on the wavenumber response of structures seems to be

motivated by the need to understand the vibrations induced by jet and rocket

TBL pressure fluctuations [1,2]. Some of the later work is more motivated toward

the measurement of flow induced TBL due to vehicles moving through a fluid

[3,4]. Essentially, each of these papers studies the relation between the applied

pressure field and the resulting vibration or radiated pressure due to the induced

vibration.

Starting with Uberoi and Kovasznay [5], the wavenumber sensitivity of
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sensors with finite extent has been studied. Maidanik and Jorgensen [6] developed

the wavenumber sensitivity of arrays of flush mounted pressure transducers.

Blake and Chase [7] examine arrays of pressure sensors with more complicated

wavenumber pressure sensitivity. In this thesis, the sensitivity of arrays of

accelerometers is predicted using the analysis of Blake and Chase [7] as well

as of Gaskill [8].

Hutto [9] investigated the use of multiple point drives weighted to a

wavenumber to excite a beam. His theoretical study into this method forms some

of the basis of this research. Roberts and Sabot [10] employ a similar technique

utilizing multiple point drives. However, they attempt to simulate the TBL

pressure fluctuations on a plate. Hutto's work on the response of Timoshenko

beams to point drives is extended in this thesis. The multiple shaker system is

constructed and experiments are compared to theoretical predictions based on

Timoshenko beam theory. A system for the measurement of the wavenumber-

frequency pressure response of structures is discussed by Strawderman [11).

1.2. Experimental Approach

The basic experimental approach employed in the remainder of this thesis

for measuring the wavenumber-frequency response of a beam is outlined in this

section. Also discussed are the analytic and experimental requirements imposed

by the proposed system which forms much of the basis for this thesis.

1.2.1. Experimental Method

The experimental method consists of driving the structure at a particular

wavenumber and measuring the velocity response as a function of frequency.

To achieve the force distribution, multiple drivers are placed along the length

of the beam. The voltage inpat to the shakers is weighted to a particular



5

wavelength by setting the voltage inputs to the shakers to cos(kdXm), where

kd is the drive wavenumber and xm is the location of a shaker. The resulting

velocity distribution is measured by an accelerometer placed at discrete points

along the beam using a common reference. The Fourier transforms of the force

and velocity are performed to obtain the wavenumber response of both quantities.

It is the relationship between these wavenumber dependencies that characterizes

the spatial filtering action of the beam or the admittance of the finite beam in

wavenumber-frequency space.

A typical force amplitude distribution weighted to a particular wavenumber

is shown in Figure 1.1. By using multiple drives in a standing wave pattern,

the peak of the forced wavenumber content is steered to the drive wavenumber,

kd, without the need for continuous control of the phase of each of the drive

voltages, as would be required by a traveling wave pattern. The measurement of

the velocity distribution by the array of accelerometers also allows a filtering of

the wavenumber dependence. The use of the discrete Fourier transform applied

to the velocity data, steers the measurement wavenumber to the different bins of

the discrete transform (Chapter 2). The hardware and analytic implications of

this method are described next.

1.2.2. System Requirements

Clearly, one of the most important requirements is the need for multiple

shakers (force exciters). Because the force is to be measured at each excitation

point, each shaker must have an integral force gage. Measurement of the force

is required for two main reasons. First, the force measurement allows for the

determination of whether or not the force wavenumber spectrum tracks with the

applied drive voltage wavenumber spectrum. A feedback-control system could

be used to control the force at each of the shakers, but this is a much more
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complicated implementation. Second, the forces at each of the shakers are the

input to the analytic models which predict the velocity along the beam. To

prescribe the desired drive voltage distribution, a multiple channel amplitude

weighting system is essential. This amplitude weighting system must have the

ability to drive each of the shakers at an arbitrary amplitude (real, positive or

negative amplitude). The requirement of one channel per shaker is cut in half by

using a symmetric weighting pattern as in Figure 1.1. The weighting distribution

used is symmetric about the center and equal to cos kd(x - L/2), where L is the

length of the beam. The velocity of the beam at an array of locations must be

measured.

Both the force and velocity measurements must be transformed into wave-

number space via Fourier transforms. Because the velocity may only be measured

at discrete points, the continuous Fourier transform is simulated by the discrete

Fourier transform. Because of the finite length of the beam, the velocity and

force only exist over a finite length.

Validation of the measurements is required. The force gages must be

calibrated and resonant effects in the force gages identified. This requires analytic

modeling of the shaker/force gage units used in the measurements. Also, results

from the measured response of the beam must be validated. Analytic modeling

of the beam response is employed to validate the measurement results.

1.3. Outline of Thesis

In Chapter 2, the means by which the wavenumber-frequency spectra of

the force and velocity are measured is described. The entire experimental

measurement system is described. The basis for the signal processing assump-

tions is presented. A description of the shaker/force gage unit is given. In

Chapter 3, the analytic model for Timoshenko beams is derived and discussed.
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First the spatial-frequency response of free-free beams to multiple point drives

is derived following Hutto [9]. The wavenumber-frequency response of free-free

finite beams and infinite beams is developed. Finally, the relationship between

the wavenumber content of the forcing function and the velocity response is

examined. In Chapter 4 the combination force gage/shaker units are modeled

using equivalent circuit analysis. The results of the experiments are compared

to the various theoretical results in Chapter 5. Lastly, the conclusions and

recommendations for future research are drawn in Chapter 6.
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Chapter 2

DESCRIPTION OF MEASUREMENTS

2.1. Introduction

In this chapter, the implementation of the experimental method proposed

in Chapter 1 is described. First, a general outline of the experiments is given;

including descriptions of the experiments, measurement system and procedure.

The design, construction and calibration of the shaker/force gage units follow

the experimental description. Next, the signal processing used both to process

the force and velocity data as well as calculate the amplitudes of the voltages

sent to the shakers is presented. The analysis in this final section spells out the

various assumptions made in the signal processing aspects of handling the data.

2.2. Experimental Description

In this section, the overall description of the experiments is presented. First,

the beam geometry and material properties are listed. The forcing functions

that define the nine experiments performed are described next. The system and

procedure by which the force and velocity data are obtained are detailed. Also,

the means of force excitation is given. Finally, general aspects of performing the

experiments are enumerated.

2.2.1. Beam Geometry

The steel beam used in the experiments is 37.9 cm long by 1.27 cm wide

by 1.92 cm high (or thick). The material properties of the beam are listed in

Table 2.1. The length of the beam was determined by two constraints. The

number of channels available for driving the shakers is ten; using a symmetric

weighting function with respect to the center of the beam the number of shakers
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that could be driven is nineteen (with the center shaker having no symmetric

pair). The closest center to center shaker spacing that is feasible is 2 cm; hence

a 38 cm beam would be fully covered by nineteen shakers.

Table 2.1 Steel material parameters used in this thesis.

Material Parameter Symbol Value (units)

Elastic Modulus E 210x10 10 (dyne/cm 2 )
Shear Modulus G 77x10 10 (dyne/cm 2 )

Density p 7.8 (grams/cm3 )
Damping Loss Factor Y7 .05#1

#1 This is the damping loss factor of shaker-beam system, not just of the steel beam.

The beam is supported on two highly porous foam wedges, typically used

in air anechoic rooms. Hutto [9] showed that this method of support closely

approximates a free boundary condition. One of the drawbacks to the use of the

wedges is that approximately 1 cm is required to support the beam at either end.

Hence, for the 2 cm shaker separation distance, only seventeen and not nineteen

shakers could be used. This is because there is not enough room to place the last

two shakers on the beam and still properly support the beam.

The beam was scored at 1 cm intervals to aide in the location of the shakers

and the accelerometer. The first mark is at 0.95 cm and the last mark is at

36.95 cm. These spacings are symmetric with respect to the middle of the beam.

It is at each scored location that the acceleration is measured.

2.2.2. Experimental Test Matrix

The experimental test matrix is shown on Table 2.2. The values under the

heading "wavelengths across the beam" are equal to the drive wavelength (see

Figure 1.1) divided by the length of the beam. The drive wavenumber is kd -
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2ir/A. The nine shakers were located 4 cm apart emanating from the center of

the beam; with four shakers to the left of center shaker and four to the right of

the center. The seventeen shakers were spaced 2 cm apart, also symmetrically

from the center. The procedure by which the voltage amplitudes are determined

is detailed later in this chapter in the section on signal processing.

Table 2.2 Experimental test matrix.

Experiment Wavelengths Across Drive Number of
No. the Beam Wavenumber (cm- 1 ) Shakers

1 0 0.000 9
2 1 0.166 9
3 2 0.332 9
4 4.5 0.746 9
5 0 0.000 17
6 1 0.166 17
7 2 0.332 17
8 4.5 0.746 17
9 9 1.492 17

2.2.3. Measurement Instrumentation and Procedures

The overall plan for the measurement scheme is outlined in Chapter 1. Each

experiment is characterized by the number of shakers used to excite the beam

and the voltage distribution applied to the shakers. For each of the experiments,

the spatial distribution of both the force and velocity must be measured in order

to describe the wavenumber-frequency filtering characteristics of the beam. A

description of the instrumentation and procedure by which the force and velocity

are measured, as well as the means of exciting the beam, are found in this section.

The shakers are glued to the beam using epoxy (Epoxy-Patch 309 gray made

by the Hysol division of Dexter). Before attaching the shakers with this fast
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setting, high tensile strength epoxy, all surfaces must be cleaned. First, any rust

is removed from the beam by using steel wool. Then, both the attachment point

on the beam and the shaker headmass are cleaned using a three part process.

First, a cotton swab is immersed in toluene and rubbed on the surface to be

cleaned until no further residue can be seen. This procedure is repeated with

alcohol and then acetone. After the surfaces are cleaned, each surface is coated

with epoxy and held together either by hand or by a vise until set. In Figure 2.1,

a photograph of seventeen shakers glued to the beam is shown.

Figure 2.1 Photograph of nine shakers glued to the beam.

A flowchart of the measurement system is shown in Figure 2.2. An IBM

PC-AT controls the experiments by driving an HP 4102A impedance analyzer

through a GP-IB (General Purpose-Interface Bus). The impedance analyzer

sends an oscillator signal at a specified voltage and frequency through a low pass

filter set at 12 kHz to an HP 465A voltage amplifier. The measurements are all
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taken using a step frequency method. Note that this figure is shown specifically

performing a measurement of transfer admittance. For the measurement of the

force ratios, the accelerometer signal is removed and a force signals is sent to the

impedance analyzer.

The amplified and filtered signal is feed into the multi-channel amplitude

weighting system (MAWS). The system has the ability to use the single input

from the voltage amplifier to transmit up to ten separate voltage signals. These

signals will have arbitrary gains and either a zero or 180 degree phase difference

from the oscillator signal. MAWS allows the amplitude of the drive signal of

the array of shakers to be tuned to a particular wavenumber by dialing in the

voltage signals for each of the shakers to precalculated values using the procedure

described in Section 2.4. Because MAWS has only zero or 180 degree phase

control, only a real spatial voltage distribution may be imposed unto the drive

signals. As previously stated, there are only ten channels; a symmetric force

distribution is used so that up to twenty shakers may be driven by this ten

channel system.

The center shaker is used as the reference shaker. The signal from each of the

other force gages is sent to a channel selector, which is simply a switch that can

select any of the output signals from the force gages. The force output voltages

from the reference and measurement force gages are amplified by Ithaco 450

amplifiers. The amplitude and phase of the ratio of the two force gage signals

are measured by the impedance analyzer. Of course, this measurement is taken

while all of the other shakers are being driven. The results are stored by the PC

as a function of frequency. This procedure is repeated until the ratios of all of the

shakers to the center shaker are measured. The stored data are later transferred

to the mainframe computer.
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The velocity distribution is measured in a manner similar to the measurement

of force ratios. An accelercmeter glued to a samarium-cobalt magnet serves as

the velocity probe. The same epoxy used to glue the shakers to the beam is used

to attach the magnet to the accelerometer. The magnet performs very well in

the frequency range of interest [9]. The beam is made of magnetic steel so the

velocity is sampled simply by moving the accelerometer down the length of the

beam. It was found that the response of the accelerometer/magnet combination

is enhanced by using Kistler force gage grease between the beam surface and the

magnet. At each scored location along the beam the ratio of the voltage from the

accelerometer to the center force gage is measured using the impedance analyzer.

As part of the data acquisition program this ratio is converted into admittance

(velocity divided by force) and the admittance as a function of frequency and

location is stored on the PC.

2.3. Shaker/Force Gage Units

The requirements for the hardware of the measurement system were laid out

in Chapter 1. These requirements are placed into two categories; transducer and

data acquisition requirements. The data acquisition system was just described.

In the sections on transducer development, the design and construction of the

final shaker is described along with interim design steps. A brief description of

construction techniques is followed by the method for the calibration of the force

gages. In Chapter 4, an equivalent circuit model describing the overall response

of the shaker, and the response of the force gage section is developed. This model

serves as a check on the measurements made on these transducers.

The design and construction of the combination force gage and driver (or

shaker) is a major part of this study. Because shakers of a diameter of less than

1.27 cm required in this study are not commercially available, it is necessary to
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fabricate them. The original design concept of the drive section included the use

of PZT-4 (Lead Zirconate Titonate) piezoceramic disks as the active element.

The use of two of these disks and a passive tailmass were added to the shaker

design during the iterative steps of the design process. Also in the original design,

the piezo-film PVDF (also known as PVF-2) was used in the force gage section.

This design was abandoned after many iterations due to mechanical difficulties

and PZT-4 was used in the final force gage design. The force gage design using

the PVDF film is shown in Appendix A.

2.3.1. Shaker/Force Gage Design

A schematic of the final design is shown in Figure 2.3. The three sections

of the shaker are labeled on the figure. The sections are the drive section, the

decoupler section and the force gage section. The dimensions of the various

components and materials used are given in Table 2.3.

Table 2.3 Dimensions and materials used in the transducer.

Description of Section Material Dimensions (cm)
Drive PZT-4 .635 long x 1.27 Diam.

Tailmass Brass .635 long x 1.27 Diam.
Decoupler Aluminium 1.905 long x 1.27 Diam.
Force gage PZT-4 .3175 thick x 1.27 O.D. and .762 I.D. # 1

Headmass Aluminium 1.59 long x 1.27 Diam.# 2

#1 I.D. and O.D. stand for inner and outer diameter respectively.

#2 The headmass section narrows to an area of .3175 cm x 1.27 cm at the top portion.

The drive section consists of two PZT-4 disks, three corrugated nickel

electrodes, and a brass tailmass. The PZT-4 elements are polarized toward the
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center electrode and are electrically in parallel. The negative terminals (ground)

are the two outward facing electrodes; this configuration aides in shielding the

force gage signal from the drive signal. The contamination of the force gage

signal from the drive voltage is called cross-talk. Proper grounding techniques

are discussed later in this section. The PZT-4 disks are 33 coupled, which means

that the direction of the applied electric field is the same as the resulting motion

(or force). Since both disks are polarized toward the center electrode and are

electrically in parallel, an applied electric field causes the disks to beat against

each other. In other words, both disks contract toward the center electrode and

expand away in unison. At low frequencies, the action of the two piezoceramic

disks is the same as a single PZT-4 disk with twice the length of the original

disk (121. The motivation for this design and the use of the brass tailmass, is

to increase the overall compliance and mass of the transducer drive section so

as to lower the resonant frequency of the system. Thus, the low frequency force

output of the shaker is increased.

The negative terminals are connected using an insulated wire to eliminate

the possibility of shorting out the positive terminal since the positive terminal

is between the two negative terminals. The wire is soldered to the electrodes

and then to the black lead of a twisted wire with a shield. The positive lead of

the twisted pair (the red wire) is soldered to the center electrode of the shaker.

Both wires are then glued to the side of the shaker with epoxy to strain relieve

the connection. A General Radio or Pomona type, two prong connector is used

at the other end of the twisted pair wire with the outer shield connected to the

ground terminal at this connector.

The decoupler section consists of an aluminum cylinder. There are two main

reasons for the decoupler. The first reason is an extension of the mechanical
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design of the drive section, that is to lower overall stiffness of the shaker. So

as not to block the output of the drive section at higher frequencies, a material

lighter than brass is used. By increasing the compliance of the shaker, the use

of the aluminum decoupler increases the low frequency axial force output of the

shaker. Second, the use of the decoupler also reduces the effect of electronic

cross-talk. Since the drive section acts as an antenna, it is beneficial to place

the force cell as far from the drive section as possible to reduce the effects of the

electronic cross-talk. The aluminum decoupler must be connected to ground in

order to act as a shield for the force gage.

The force gage section is designed to measure the applied force to the test

structure and to transmit a line force across the width of the beam. The

force gage section consists of an annular cylinder 33 coupled PZT-4 piece, two

electrodes, an alsmaig ceramic insulating disk (ceramic insulator in Figure 2.3),

and an aluminum headmass. The positive electrode of the force gage is insulated

from the decoupler by the alsmaig disk. The ground side of the force gage is

connected to the aluminum headmass. The electrodes are soldered to low noise

coaxial cable. The center conductor of this cable is the positive or high side and

the outer conductor is the shield. At the end of the coaxial wire a Micro-Tech

connector is used to help reduce unwanted cross-talk. The cable is stress relieved

in a similar manner to the drive section; by gluing the wire to the side of the force

gage. The aluminum headmass allows for light stiff connection of the shaker to

the test structure. At the attachment point the cross-section of the headmass is

narrowed to simulate a line force. The headmass design enables the shaker to

easily and safely be attached and removed from the test structure. The effect of

the headmass on the response of the force gage is examined in Chapter 4.

The proper grounding technique is a critical element of the shaker design as



20

well as for the entire measurement system. The shakers must be designed so that

the force gage signal is insulated from the drive signal. The ground plane of the

drive section and the force gage section must be the same so that no ground loop

exists. All metal elements of the shaker are grounded to prevent charge from

accumulating on these components and becoming an emitter of electro-magnetic

noise. The ground planes of all of the equipment must be the same. This can

be accomplished by running all of the amplifiers, oscilloscopes and any other

equipment connected to the shaker off of the same power line.

2.3.2. Construction

The transducer is constructed by gluing the surfaces of the components

together using epoxy. The surfaces must be meticulously cleaned before the glue

is applied. After the construction is complete, the strength of the glue joints is

greater than the ceramic in bending. These procedures were arrived upon by

experimentation with different methods as well as through discussions with the

personnel at the Applied Research Lab (ARL) at Penn State [13].

The first step is to clean the assembled components. Metallic surfaces that

are to be glued (electrodes, tailmass and decoupler) are first etched in a mild acid

bath to remove oxide coatings. The metallic surfaces, the electroded surfaces of

the PZT and the alsmaig insulating disk are next abraded with a fiberglass brush

for further cleaning. Then all of the surfaces to be glued undergo the three part

solvent cleaning process of toluene, alcohol, and acetone; this process is performed

under an exhaust hood.

After cleaning, the components are glued together using Shell EA-6 epoxy.

First, the glue is applied in a thin coat to both surfaces that are to be joined.

The entire transducer is assembled sequentially from the tailmass up. Upon

completion of the gluing, the transducer is placed in an alignment jig which also
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supplies axial compression to insure a good bond. The transducer, now in the

jig, is placed in an oven at 80 degrees Celsius for six to eight hours. The jig and

transducer are removed from the oven. The residual charge across the electrode

terminals from the heating and cooling of the piezoceramic is shorted out. All of

this work is performed in the transducer clean room at ARL.

Next, the electrodes are bent slightly toward the body of the shaker to prevent

the electrodes from protruding. Wires are then soldered to the terminals of the

PZT-4 elements and then stress relieved. Finally, the outer part of the transducer

is covered by shrink wrap so that the electrodes are not exposed and are protected

during handling.

2.3.4. Force Gage Calibration

The method of calibration is simply a comparison calibration which employs

Newton's law. The shaker is loaded with a known mass. The acceleration of the

mass is measured with an accelerometer. From the ratio of the force gage voltage

to the accelerometer voltage, the sensitivity of the force gage is determined. A

diagram of the calibration set-up is shown in Figure 2.4

A personal computer controls the calibration by sending instructions to an

HP 4192A impedance analyzer using a GP-IB. The impedance analyzer has the

ability to send an oscillator signal at a prescribed voltage and frequency as well

as measuring the ratio of two signals and their relative phase. A data acquisition

computer program was written to run the calibration and store the data. The

program steps the oscillator through the frequency range of interest (2-12 kHz),

while the oscillator signal from the HP 4192A is sent to an HP 465A voltage

amplifier. The amplified drive signal excites the shaker which, in turn, excites

the known calibration mass. The signal from the force gage and the attached

accelerometer are amplified and then sent to the impedance analyzer. The
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amplitude and phase of this ratio are used to calculate the unknown sensitivity

of the force gage. The sensitivity data are sent to the VAX 11/780 mainframe

for plotting.

The sensitivity is calculated from the following formula,

S (LO) R(w)S. (2.1)

Mc + Mh. + M(.

where, S(w) is the frequency dependent force sensitivity, Sa is the sensitivity

of the accelerometer, Afh, is the mass of the head mass, Mc is the calibration

mass, A. is the mass of the accelerometer, and R(w) is the ratio of the voltage

from the force gage to the accelerometer voltage. This formula comes from the

application of Newton's Law.

The maximum and minimum sensitivity for five different shakers is shown in

Figure 2.5 over the frequency range of 2-12 kHz. Since the value of the force gage

sensitivity is very flat over the frequency range of interest, a single sensitivity is

assigned. This sensitivity is the average of the frequency dependent sensitivity

over the frequency range. The averaged values of the sensitivity and phase for

all of the force gages is tabulated in Table 2.4. Each of the shakers has a number

associated to it; these are the numbers used to identify the shakers and their

sensitivities. A discussion of the variations of the force gage sensitivity is found

in Chapter 4.

2.4. Signal Processing Aspects

In this section, the signal processing aspects of measuring the wavenumber

response of the beam are examined. First, the discrete Fourier transform

is introduced. Next, the wavenumber sensitivity of accelerometer arrays is

developed. This development begins with a general treatment of the problem, so

that the simplifications made when using the discrete Fourier transform can be
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Table 2.4 Sensitivities of the force gages.

Shaker number Sensitivity (V/N) Phase (deg.)

1 .94 179.

2 .88 179.
:3 .95 180.

4 .88 180.

5 .93 180.

6 .92 181.
7 .99 181.

8 .94 181.

9 .98 181.

10 .98 181.

11 .97 180.

12 .97 181.

13 .97 181.

14 .97 180.

15 .99 180.

16 1.0 180.

17 .98 180.

18 1.0 180.

19 1.0 180.
20 .98 180.
21 .94 180.
22 .98 180.
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identified and justified. Also, the measurement of the wavenumber content of the

forcing function is developed and a method of steering the forced wavenumber

content is developed.

2.4.1. Discrete Fourier Transform of the Velocity

The Fourier transform of f is defined to be

00

F(k.) = J f(X)e-jk'dx , (2.2)

-00

and the inverse transform is
00

AX) F(k,)eJ;zdkz , (2.3)
27r J

-00

where the wavenumber is k. and the spatial variable is x.

The discrete Fourier transform (DFT) is a means of estimating the wave-

number spectrum from measured and predicted spatial data. The DFT may be

applied to results of spatial-frequency model or to experimental data. The DFT

of the displacement y(x) is
N-I

Yd(k) = Ax I Y(eax)e (2.4)
1=0

The factor k is the wavenumber counting index, t is the sample number and

N is the total number of points. The factor Ax is the spacing between sample

locations. The multiplying Ax is the proper normalization for the DFT [141. The

transform of a complex sequence of N points results in N separate spectral lines,

the first N/2 spectral lines represent the positive wavenumber spectrum and the

mirror image of the second represent the negative spectrum. The counting index

k corresponds to the wavenumber k. in the following manner,
2wrk
N'k for k = 0, 1... N/2 - 2, N/2 - I

= -N , for k =N/2, N/2+1 ...N
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In the discretization, both the spectrum and the original sequence are considered

periodic. Zero padding of the data interpolates between points in wavenumber

space with a sin(x)/x function [15]. Zero padding better defines the spectrum

by this interpolation, but does not increase the resolution capabilities of the

given transform. The points are interpolated between the existing points, but

the maximum wavenumber (7r/Ax) remains the same.

All of the processing of experimental velocity data utilizes the DFT. In the

next section, the assumptions that are implicit in the use of the discrete transform

are discussed. The discrete transform is used as an approximation to the exact

transform; the exact transform is performed analytically on the predicted beam

velocity in Chapter 3 and used as a means of assessing the impact of the spatial

sampling required in the measurements.

For the processing of discrete transforms a Fast Fourier Transform (FFT)

algorithm is used by zero padding [14,15] to a power of two. This speeds the

calculation of the transform, which is important even though the transforms

considered in this thesis are not large.

2.4.2. Wavenumber Frequency Sensitivity of Accelerometer Arrays

What is sought here is the sensitivity of an array of sensors (in this case

an array of accelerometers) in wavenumber-frequency space. The objective of

performing this analysis is to understand the wavenumber filtering effect of

the array and to determine the spacing of the sensors needed to measure the

wavenumber spectra. Specific results in this section are presented for point or

ideal sensors, but the analysis may be applied to a more general class of sensors

[7].

The starting point of the analysis is to derive the wavenumber sensitivity for

a single sensor. It is postulated that there exists a large class of sensors whose
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voltage output due to some excitation can be caste in the form of a convolution

integral [5,61. In other words, there exists an impulse response function for the

transducer. Additionally, the impulse response function is taken to be separable

in space and in time; in other words the space-time impulse response function

may be written as

g(x,t) = h(x)f(t)

In Figure 2.6 the geometry of the single sensor is shown symbolically measuring

some physical phenomenon. The specific sensor under consideration here is an

accelerometer so that the terms accelerometer and sensor are used synonymously

in this section. The measurement center of the accelerometer is at x0 units from

the origin with some finite width as shown in Figure 2.6. There is some voltage

output from the sensor which is proportional to the velocity (this is buried in

f(t) as velocity is the quantity of interest).

zo

b

Figure 2.6 Geometry of single sensor in a velocity field.
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The form of the convolution integral applied to obtain the measured velocity

by a sensor located at xo is

VM = J 7 v(a, r)h(xo - a)f(t - -r)drda. (2.7)

-00 -00

Since the steady state response is of interest, the remaining analysis proceeds in

frequency domain. Taking the Fourier transform with respect to time results in

00

Vm = F(w) 7 v(a,w)h(xo - a)da (2.8)

-00

where the convolution theorem has been applied to the frequency dependence

[15]. For brevity, the frequency dependence is dropped from the equations. Using

the asterisk notation for the convolution operation on x, Equation (2.8) becomes

Vm = [v(x) * h(x)]S(z - xo), (2.9)

where the use of the Dirac delta function in Equation (2.9) is detailed in Bracewell

and Gaskill [8,15]. This use of the delta function locates the sensor at xo. In

order to examine the wavenumber filtering effect of a single sensor, the spatial

Fourier transform is applied to the right hand side of Equation (2.9). This results

in

Vm = [V(k,)H(k,)] • e-3kZ, (2.10)

here the asterisk notation indicates convolution on k.. If xo is zero, then the

output measured from the sensor is
00

Vm = 7 V(k,)H(k,)dk,. (2.11)

-00

If the sensor is a point sensor then H(k,) = 1 because h(x) = 6(x) and

the output of the sensor is just the integral over all wavenumbers. For h(x)

not equal to a 6(x), then H(k ) represents the filtering action of the sensor.



30

For all real sensors h(x) is not a delta function, but at low wavenumbers the

response approximates a delta function; i.e., the sensor is equally sensitive to

all wavenumbers below a certain wavenumber. An analysis of a spatial impulse

response function that is not a delta function is found in Blake and Chase [7].

Their analysis finds that, for a sensor with uniform sensitivity to velocity over

the contact surface, if the wavelengths meet the following criterion,

A> 4.2R (2.12)

where R? is the radius of the sensor, the sensitivity will not be attenuated by

spatial averaging by more than 3 dB. This assumes that the magnet attached to

the structure has a uniform velocity sensitivity. This may not be true for our

situation but is probably a close approximation. Because of spatial averaging,

the sensor is a sort of low pass wavenumber filter. However, at wavenumbers past

the cutoff wavenumber (defined in Equation (2.12)) there are regions of increased

sensitivity (i.e., sidelobes in the filter function).

By examining the wavenumber response of a single sensor, the wavenumber

filtering action is obtained. There is no ability to select (other than the low

pass filtering action) which particular wavenumber is to be examined. Using an

array of accelerometers allows for a certain degree of wavenumber selectivity to

be achieved.

The velocity sampled by N identical transducers is just a variation of

Equation (2.9) with the addition of N sensors. A schematic for this situation is

shown in Figure 2.7. Mathematically, this array can be represented as,

Vm(x) = If v(a)h(x - ,)dal E g.(x - nAX)
-00 (2.13)

= [vx • xJ~)
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7i

Vm(xo) V.(xi) L',n(x2) Vm(XIV)

Figure 2.7 Multiple sensors in a velocity field.

where
N-i

A(x) E j gn6(x - nAz). (2.14)
n=O

A(x) is the array function and the gn's are arbitrary weights applied to the

outputs of the sensors which are spaced Ax units apart. Taking the spatial

Fourier transform of Equation (2.13) and making use of the convolution theorem

again results in

V,(kz) = [V(k,)H(k,)] * A(k,). (2.15)

For an array of ideal sensors the velocity spectrum is

Vn(k,) = V(k,) * A(k,). (2.16)

The term A(k.,) is the Fourier transform of the array function or

N-I

A(kz) - gne- 3ktn '  (2.15)

.m=m
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The term A( k.) represents the filtering action in wavenumber space of the array

of sensors. The DFT of the velocity,

N-i

Vm(kz) = Ax Z gnvm(n x)e l (2.18)
n-0

is equivalent to Equation (2.16). The DFT is the most efficient way to calculate

the wavenumber response. Additionally, in almost all cases, this is the only way to

calculate the wavenumber response for, in order to evaluate Equation (2.15), the

true spectrum V(k.) must be known a priori. However, the DFT representation

tells nothing about the filtering action of the array as do Equations (2.15) and

(2.16). H(k.) represents the wavenumber sensitivity of a single accelerometer

and .4(k-) of the array. H(k,) is a multiplicative term that rides over the entire

spectrum. By assuming the sensor to be ideal, the wavelengths must be larger

than the sensor (i.e. the criterion of Equation (2.12) must be met).

For real sensors the wavenumber sensitivity cuts off after a certain wavenum-

ber, because, when the wavelengths in the structure are small relative to the size

of the sensor, there is an averaging effect which tends to attenuate the voltage

output of the sensor. Equation (2.15) represents the wavenumber sensitivity of

an array of real sensors. If a single sensor is unable to measure the velocity at a

particular wavenumber, then the array of sensors is likewise unable measure the

velocity at that wavenumber. Using an array of sensors, a wavenumber band-pass

filter is created by the summation of the outputs of the sensors, but only below

the cut-off wavenumber of an individual sensor. The use of an array enables a

selectivity within the range of the measurable wavenumbers not available with

just one sensor. The convolution integral of Equation (2.16) is an integration of

a shifted version of the array function times .the true velocity spectrum which

results in the measured spectrum at k,.
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2.4.3. Windowing Considerations

The effect of windowing the output of the sensors measuring the velocity

on a finite structure must be viewed from a different standpoint than for an

infinite structure. Using window functions is an attempt to smooth the artificial

discontinuity caused by truncation of the data se-uence. For the finite beam the

truncation is not artificial, the velocity distribution on the beam truly exists only

over a finite length, outside this domain the velocity is zero.

It is useful to define the rectangle function as{ 0, for I(x - xo)/bI > 1/2;

rect( X ) = 1/2, for I(x - xo)/bI = 1/2 (2.19)
1, for I(x - xo)/bl < 1/2.

The amplitude of the Fourier transform of the rectangle is the sinc function

defined as,

sinc(C) = (2.20)

There is an additional multiplicative phase factor if the rect function is not

centered at x = 0. If a pure sinosouidal wave exists only over the length of the

structure it can be represented as

u(x) = sin(kzo)rect(x ) '  (2.21)

where the Fourier transform of u(x) is U(k,),

U(k) 1 6(k - k.0) - 6(k, + k o)} * {sinc(kL/2)}. (2.22)

Let U(k.) be the true velocity distribution on some finite structure, then the

measured wavenumber spectrum can be obtained from Equation (2.16). Here

it is postulated that for a finite structure with an array of closely spaced point

sensors the proper weighting is a uniform one (i.e. all of the g,'s equal to one).
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Hence. A(kr) is the sinc function and Equation (2.16) becomes,

U,,(kz) - U(kz) * sinc(k L/2),

1 = b(k. - k,o) - 6(k, + k0o)} * sinc(k.L/2)} * {sinc(k L/2)}.
2j

(2.23)

The convolution of two sinc functions of the same length results in one sinc

function or,

sinc(kL/2) * sinc(k.L/2) = sinc(k.L/2). (2.24)

It follows that,

Um(k,) = U(k.). (2.25)

In this case, the true spectrum is measured. Of course in reality A(k.) only

approximates a sinc function. But in the case where the sampling is very

fine, the array function closely approximates the ideal case. Thus, it is argued

(heuristically) that the proper weighting is uniform.

Of course Equation (2.25) is an expected result. However, if the spatial

window function (the gn's) is other than a uniform window, even if the sampling

interval is infinitesimally small, Equation (2.25) would not hold. If the velocity

field is sampled across the entire length of the beam, then the only errors inherent

in the DFT are due to aliasing [14]. If some spatial weighting is used, obviously,

the estimate will vary from the continuous transform due to both aliasing and

the window.

In the measurement of the Fourier transform of the velocity on a finite

structure using the DFT, aliasing cannot be avoided as the spectrum is not

band limited. The effects of aliasing can be reduced by choosing a spacing that

moves the aliasing lobes of the array function to a region of wavenumber space

where the spectrum has very low values. In Section 5.3, the effect of varying the

spacing of the accelerometers is examined. The goal in the array design is to
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use as fine a spacing as possible and to obtain an array function whose Fo.urier

transform is close to the proper sinc function.

2.4.4. Spacing of Accelerometers for the Experiment

The dispersion relation for the beam, which is derived in Chapter 3 and

pictured in Figure 3.2, shows that the highest freebending wavenumber expected

is about 0.6 cm- 1 . The spectrum for the finite beam falls off as a sinc function

centered at the freebending wavenumber. In other words the spectrum should

fall off around 30 dB after three octaves or at k, = 2.4 cm - 1 . Hence. a spacing of

1 cm, which yields a Nyquist rate of 7r cm - 1 and would reduce aliasing, is used.

The other item with which to contend is the criterion of Equation (2.12). The

accelerometer used has a radius of 0.5 cm. The criterion for this size transducer

is that the minimum wavelength should be greater than 2.1 cm. The measured

wavenumber spectra would exhibit a slight attenuation compared to an exact

analytic treatment, except of course for the aliasing that would tend to accentuate

the higher wavenumbers. It is left to the results section to examine which, if

either, effect evidences itself.

2.4.5. Wavenumber Content of an Array of Point Forces

Each of the shakers in the array is considered delta functions in space. Thus,

the array of M shakers where q.. is the complex force amplitude and x,,, is the

shaker location can be represented as,
M

q(x) = Z qm(x - xm),
M=1 (2.26)M

= E qm4(x - mAx),
M=1

where x,m = max. The force is zero everywhere except at a shaker. Thus, the

external forcing function is completely described. The Fourier transform may be
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performed exactly and is

M

Q(k.) = E qme(Jkzm*z)" (2.27),
m=1

This is the wavenumber spectrum of the array of point forces.

2.4.6. Steering the Wavenurnber Content of an Array of Point Forces

In order to obtain better measurements of the velocity at a particular

wavenumber, it is helpful to concentrate the energy of the forcing function at

that wavenumber. The objective is to steer the peak of the forced wavenumber

spectrum to the desired or drive wavenumber, kd. The peak of the forced

wavenumber spectrum may be steered to kd by amplitude shading of the forced

amplitudes.

As mentioned previously, this is done by setting the qm's to cos(kd(xm-L/2)),

which modulates the spatial signal so that there are peaks in the wavenumber

spectrum at k. = ±kd. This holds if the Nyquist criterium is met, i.e. kd <

r/Ax. There must be at least two shakers for each wavelength. Additionally,

there are peaks in the spectrum at k, = ±(27r/Ax - kd). The location of these

peaks can be predicted by examining the convolution of the Fourier transform

of the cosine function and the array of point forces. The finite spatial aperture

of the forcing function will broaden the peaks of the force spectrum and cause

the appearance of sidelobes. The peaks at k, = ±kd are called main-lobes while

the secondary peaks are called grating lobes; collectively, the main-lobes and

the grating lobes are referred to as major-lobes. The sidelobes are smaller in

amplitude than the major-lobes and fall between the major-lobes. Lastly, the

force spectrum of an array of point forces is periodic, with period equal to 21r/Ax.

This characteristic is important as the pattern seen in the region 0 < k < 27/Ax

is repeated periodically in the positive and negative k, directions.
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While it is easy to theoretically specify the force amplitudes, it is a completely

different matter to experimentally enforce these amplitudes. The voltages applied

to the shakers are controllable, so that the drive wavenumber can be steered to

the desired wavenumber by steering the drive voltages. This assumes that the

force applied to the beam tracks with the voltage in wavenumber space and a

complicated feedback-control system between the voltage applied and the force

output can be avoided. For the remainder of this section, the qm's (the force

output at the shaker) is assumed to be controllable.

Some results of the wavenumber spectra of the forces seen at the shakers (i.e.,

the applied voltages) are now presented for the spacing and number of shakers

used in the experiments. For the nine shaker experiments (Az = 4 cm), the

wavenumber spectrum for the unsteered force distribution (kd = 0 cm- 1) and a

steered force distribution with kd = 0.332 cm - 1 (two wavelengths over the length

of the beam) are shown in Figure 2.8a and 2.8b, respectively. The peaks at ±kd

and at k. = 2r/Ax - kd can be seen. It is important to note that, due to the

periodic nature of the spectrum, by prescribing a drive wavenumber between 0

and r/Ax a peak force wavenumber response may be steered to any wavenumber.

There are always an infinite number of peaks. This fact is both an advantage

and a drawback. Without the grating lobes, the only way to excite the very

high wavenumbers is to decrease the spacing, which requires smaller shakers.

However, the grating lobes can complicate the interpretation of the spectrum, by

exciting the velocity in an unwanted region.

Results of the force wavenumber spectra for seventeen shakers are shown in

Figure 2.9. For seventeen shakers Az is equal to 2 cm. Note that the grating

lobes do not appear in these plots because the grating lobes are outside the chosen

wavenumber range. By examining these plots it is interesting to note that the



38

0~

201 -20 1

> -30

r: -40 i F ii

-so 4--
.v .

-70 I
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Wavenumber (1/cm)

(a)

0-'

> -30- t .

aso - ___I __

V -50.

-70._ _

-2.0 -1.5 -O -0.5 0.0 0.5 1.0 1.5 2.0
Wavenumber (1/cm)

(b)
Figure 2.8 Shifted and unshifted force spectra for nine shakers.

(a) kd = 0. cm- ', (b) kd=.332 cm-1.
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width of the major-lobes is a function of MAx., or the length of the spatial signal

and any spatial windowing which may be added to the shaker weighting during

steering (this is described next). Hence, if the spatial windowing is the same for

the nine shakers as for seventeen, the major lobes have the same width.

While the steering of the voltage input moves the peak of the wavenumber

content to a desired wavenumber. the high sidelobes caused by rectangular

windowing may produce undesirable effects. These sidelobes may cause higher

velocity response than the main-lobes if the sidelobes occur in a region of high

admittance. By applying a windowing function, the sidelobes are reduced at the

cost of a broader main-lobe. The values of the voltages for the windowed and

shifted distribution become,

q,. = W(xm)cos(kd(X,, - L/2)) , (2.28)

where W(x) is the selected window function. Different windows may be applied

to the shaker forces in order to alter the sidelobe structure which is done at

the sacrifice of increasing the width of the main-lobe. A Kaiser-Bessel window

with it's variable parameter alpha set to 1.5 is used in the results presented in

Figure 2.10. This window type is described in reference [16]. By windowing, the

energy of the forcing function is less likely to leak into the nearby wavenumbers.

The periodic main-lobes are not affected except for broadening. In Figure 2.10,

kd = 0 cm -1 and a Kaiser-Bessel window is used with nine and seventeen shakers.

The FORTRAN program FORCE-FILTER, is used to obtain the wavenum-

ber spectrum and the correct amplitude shading for all of these cases. This code

is found in Appendix C.
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Chapter 3

BEAM THEORY

3.1. Introduction

In the experiments, a beam is excited by multiple shakers. The number of

shakers is varied and the response is measured at accelerometer locations spaced

along the beam. The accelerometer data axe used to obtain the wavenumber

response via the discrete Fourier transform. In order to validate and understand

the experimental results, the theoretical response of the beam to multiple forces is

developed in both the spatial and wavenumber domains according to Timoshenko

beam theory.

The normal mode solution for the velocity of a Timoshenko beam is briefly

developed in this chapter and the results given by Hutto [91 are restated. These

results allow the validation of the measured velocity at a point due to an arbitrary

forcing function; this is called the forced spatial-frequency response of the

beam. The theoretical wavenumber response, defined as the Fourier transform

of the velocity, may be obtained by taking the discrete Fourier transform of

the predicted results or by performing the Fourier transform analytically. The

wavenumber-frequency response of an infinite Timoshenko beam is derived to

obtain the freebending wavenumbers and as a transition step in understanding

the relationship between force and velocity in wavenumber space. Finally, the

theory of the finite Fourier transform is applied to obtain predictions of the

wavenumber-frequency admittance of the finite free-free Timoshenko beam.

3.2. Spatial-Frequency Response of a Finite Beam

The coupled differential equations with internal damping for a Timoshenko

type beam with the total transverse deflection, y, and the slope due to bending,



43

'0, are [9,17]

G 02 y(x t) x 0 90(x. ) pA8 2y(x. t) =q(xt) (3.1)
(x2 aX )t 2

E*I i 2?b(,( t) + GA y( x, t) a02l(X, t)
Ox2 a x ,(X ))- p, &2 0 , (3.2)

where q is the forcing function, the complex elastic modulus is E* E(1 + j7),

the complex shear modulus is G* = G(1 + 377), I is the second moment of inertia

of the cross sectional area, , p is the density, A is the cross sectional area, and

te the numerical shape factor [18]. The loss factor, 17, is taken to be equal for

rotation and translation. Only the time harmonic case is considered. with time

dependence eJwt, w being radian frequency and j = vi T. Making the following

substitutions in Equations (3.1) and (3.2)

y(x,t) = Y(x)e j t , (3.3)

O(x,t) = %D(x)e"t , (3.4)

q(x,t) = Q(x)e" , (3.5)

and omitting the time dependence yields,

nG*AY"(x) - .cG*AP'(x) + pAW2Y(x) = Q(x) , (3.6)

EIP"(x) + KG*A(Y'(x) - q'(x)) + pIjW2 p(x) = 0. (3.7)

Where the primes indicate differentiation with respect to x the spatial variable.

These are the dimensional time harmonic differential equations which are used

later in this chapter. In the development of the finite beam response, it is useful

to non-dimensionalize the above equations. The non-dimensional variable is

used where,

=x/L. (3.8)
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Making the substitution into Equations (3.6) and (3.7), the non-dimensional. time

harmonic differential equations are,

tG*A " - KGA V'() + pAw2 Y() - Q() , (3.8)

L2 L

+ -cG*A( yI( ) _ p( )) + pJW2 ( ) = 0. (3.9)

The primes here indicate differentiation with respect to the . To obtain the

normal mode equations, first the homogeneous problem is solved. In references

[9,17], the homogeneous forms of Equations (3.8) and (3.9) are decoupled in Y

and %P resulting in,

Y1"" + b2 (r 2 + s 2 )Y '" - b2(1 - b2r 2s2 )Y = 0, (3.10)

TI"" + b2 (r 2 + s2)%I" - b2 (1 - b2 r 2 s 2 )%p = 0, (3.11)

where
b2 =A2L4 

(3.12)
EI

2 L 2  (3.13)

2 EI
S 2 .AGL 2  (3.14)

The general solutions for Y and %P are,

Y(C) = C1 cosh(baC) + C 2 sinh(baC) + C3 cos(b/3) + C4 sin(bO3C) , (3.15)

( )= C' sinh(baC) + Ccosh(ba ) + C3sin(bC) + C' cos(btk) , (3.16)

where
a 1__2_ 2) 4,

" = :F(r 2 + s2) + [(r2 + 2)2 2 ) . (3.17)

The general relationship between C, and C! is given in [9]. Only the relationship

between C, and C' is needed to describe the bending slope; that relation is given
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later. The boundary conditions for the free-free beam applied at the ends of the

beam = 0 and = 1 are that the bending moment is zero or,

%P I =0 ,(3.18)

and the total shear force is zero or,

1 ,
zY- % -0 (3.19)

Applying the boundary conditions to Equations (3.15) and (3.16) results in a four

by four matrix to solve for three of the unknown C's. By setting the determinant

to zero the characteristic equation is found; it is

b
2 - 2 cosh(bck) cos(b/O) + ( x(1 - b2r2s2) 1/ 2

[b2 r 2 (r 2 - s2)2 + (3r 2 - s 2 )] sinh(ba) sin(b3) = 0 (3.20)

This transcendental equation is solved for the natural frequencies of the beam.

In the computer code that solves for the natural frequencies it is important

to apply a high argument approximation to the hyberbolic functions (that is

sinh(x) = cosh(x) as x becomes large). Otherwise, errors occur.

The mode shapes are now known to within a multiplicative constant. Let

the subscript i denote a mode number corresponding to a natural frequency W,.

Define the following constants,

a+ r 2  s2 _cif + r2  S2 - s
c'- -= r ¥k2 + , (3.21)

Ai ,(3.22)

and

cosh(biac ) - cos(bi,#)
A , sinh(b, a ) - (i sin(bf 0)

Using the notation introduced above, the mode shapes are

1
= C, [cosh(bjai) + - cos(bj,/3) - A,6, sinh(bai) -6, sin(b,j,)] , (3.24)4'
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'Ti( ) = C,[sinh(biai) - Aisin(bi.,2 ) - Aiicosh(biai,) -6iA ~icos(bi,/3,)]

(3.25)

where the approximations to the hyperbolic functions of large argument are used

for the mode shapes also. When biai > 1, bi T and when biot{ > 1

cosh(bicai) - sinh(biai&) --* 0, which results in the reduction of Equations (3.24)

and (3.25) to
1 1

t () = CI[ cos(bji3,) - 1-sin(bi~3 )] , (3.26)

i = -Cb a2 + s2 [Ai sin(bi i ) + 6AiAi(i cos(bi,3i )] (3.27)

Where C has been substituted for in terms of C 1. The resonant wavenumbers

of the Timoshenko beam are bi/pi. Later, it will be seen that these are the

free-bending wavenumbers of the solution to the infinite beam that also fit the

free-free boundary conditions to produce resonance in the beam.

Since the boundary conditions for the free-free beam allow for rigid boc

motion, there exists non-trivial solutions for the zero natural frequency. The two

rigid body modes are

Y01 = C01  , (3.28)

Y02 = C0 2( - 1/2) (3.29)

The orthogonality conditions for the free-free Timoshenko beam are given in

[19]. They are

1[PAY()Yj( ) + =0 (3300 (3.30)

= pAM i=j

where Mi is the normalization constant for the ith mode.
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3.3. Forced Spatial-Frequency Response of a Finite Beam

In the normal mode solution to the forced or non-homogeneous Timoshenko

beam equations, Y and %P are expressed in terms of the eigenmodes of the

homogeneous solution,
00

Y(E) - ZajYi( ) , (3.31)
i=0

00

( -E aj'Pj( ) (3.32)
i=0

The constants a; are the modal expansion coefficients to be determined. The

constant C1 is absorbed into the ai's. By substituting Equations (3.31) and (3.32)

into the non-homogeneous differential Equations (3.6) and (3.7), and using the

orthogonality -integral expressions the unknown ai's are found. The deLails are

found in reference [9]. The general form of the solution for ai due to an arbitrary

forcing function is,

a- fo' Q(C)Y,(C)d(
pAM,[w (1 + jTr)_ W2] (3.33)

The integration represents a measure of the orthogonality between the forcing

function and the ith normal mode. If the force distribution is the same as a

mode shape, then that mode may have a very high modal constant. Of course,

the steady state frequency w plays an important role; mode shapes whose natural

frequencies are far removed from the applied frequency have little effect on the

beam velocity.

. The experimental measurements are taken using shakers that closely approx-

imate point sources. In the x direction the extent of the shakers is small, and

the width of the shaker nearly spans the width of the beam. So the shakers are

line sources in three dimensions, but, since the beam is approximated as a one

dimensional continuum, a forcing function consisting of an array of such shakers
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can be modeled as an array of point sources, so that Q( ) is

Af
Q(w = E q( - ,),(3.34)

rn=I

where q,, is the complex amplitude of the force located a = m. Using the

above in Equation (3.33) results in,
M1

ai = Di > q- [cosh(biai,) + - cos(bi/3tm) - AjS sinh(bjaj&,)
M=- bi sin(bifli~m)] , (3.35)

or,
M

ai= Di L L (&r) (3.36)
m=1

where,
1

pAAj(w2(1 + j )-w 2 ) ' (3.37)

and Y( m) is value of the mode shape evaluated at & = ,* It should be noted

that experimentally, the values q,,, are functions of drive frequency. The modal

constants for the translational and rotational rigid body modes are respectively,
M

aol -D 0 1 E L (3.38)
m 1

M

a02 = D02 1 Lf-( M -. 5) (3.39)
m=1L

This is the analytic model developed to validate experiments for the velocity at

a point due to an array of point sources exciting a beam at a given frequency.

3.4. Wavenumber Response of a Forced Finite Beam

In this section the spatial Fourier transform of the velocity response of a

Timoshenko beam excited by multiple point drives is derived. The spatial Fourier

transform is.

F(k.) I 7 f(x)eJkzd , (3.40)

-00
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and the inverse transform is

f(x) = 1 F(kz)ejk-zdk, (3.41)

-00

The wavenumber is k, and x is the spatial variable. In order to obtain

the wavenumber-frequency response of the beam, Equation (3.40) is applied

to Equation (3.31). The velocity distribution of Equation (3.31) exists from

0 _ > 1 and is taken to be zero elsewhere. Thus, the limits of integration

in Equation (3.32) are now zero and one. Applying the Fourier transform to

Equation (3.31) yields

1
a(k4) y(C)e-=kd

0

00

0

00

= iaYi(kC). (3.42)
t=0

Yi(kf) is the spatial Fourier transform of each mode shape, obtained by applying

the Fourier transform to Equation (3.24). For the non-rigid body modes Yi(k4)

is

Y1(k) +e - j ke Uk cosh(biai) + bioci sinh(biai)

- ibi(jkf sinh(bici ) + bioi cosh(biai))] - (jkt - iAibioi )}
1

+k - (b- k 1-,k, [1/¢,(jkc os(b3,a) - bi, sin(b,/3))

- 6i(jk sin(bi3i) + bi cos(bi/i))] + (jkc/(i - 6ibi,3i)} , (3.43)

or,

(kC)"ri,(kt) + ri2(k() ,(3.44)
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where Fi(kt) represents the first six terms of Equation (3.43) and Fi2 (kt)

represents the second six terms. There are two special cases to consider. One.

when kt = bi,3i the factor Fi 2 (k ) becomes,

ri1 e- 2 jkf 1 e-2 1kf
i 2(k)= e t 4 )]-[ . (3.45)

Two, when biai becomes large with respect to the numerical precision of the

computer, rii(k ) reduces to

ri(k,) - k. +.i(biai) (3.46)

For the rigid body modes, the transforms of the translational and rotational

modes are

Y0i(ko ) = J(e - k ' - 1) (3.47)

02(kf) = ( - 1) + (e -jk + 1) (3.48)

The transform of each mode shape consists of one component due to the

trigonometric functions and another due to the hyberbolic functions. The

contribution due to the hyperbolic functions is basically a linear decay in

wavenumber. The sine and cosine parts produce a sin(x)/x function which has

a peak at kt = bii. The bifli terms are called the resonant wavenumbers of

the beam. Equation (3.43) is the transform of a single mode and is a relatively

complicated form; complicated in that even if a single mode was excited on

the structure the Fourier spectrum would not consist of delta functions at the

resonant wavenumber. The dependence of the velocity on the forcing function is

held in the ai's

The transform is in terms of the non-dimensional wavenumber kC. It is

desirable to express the transform in terms of the dimensional wavenumber,

k.. The problem of finding the mapping relation between the transform of the
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displacement in terms of the dimensional and non-dimensional wavenumber is

caste in terms of the functions f and j. The proof presented here is general

for functions where the relation between f and j is simply, f( ) = f(L ) and

is defined to be equal to x/L. These are the conditions that relate the spatial

dependence of the dimensional and non-dimensional forms of the displacement.

The relationship between the Fourier transforms of f and f is desired. The

following definitions are made
0o

F(k) = J )ek(d

-00

00

F~k~j =Jf(x)e-jkzxdx

00

In order to find how the values of F may be obtained from F, first the change

of variables x = L is made in the second definition resulting in

F(k.) = L f f(L )ekzLd

-00

Using the relationship between f and f to obtain,

F(k,) = L I f()e-jk.L4d

00

and finally using the first definition yields the desired result

F(k ) = LF(kL) (3.49)

Similarly one may obtain,

F(k ) =F(k 4 /L) .(3.50)

This is the relation by which the values of F may be obtained from F. For

the quotient of two functions of the transformed variable the multiplicative L
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term would cancel. The method of proof is suggested by the derivation of the

similarity theorem in [15] and also by [20].

The exact Fourier transform of the spatial response of the forced Timoshenko

beam serves as a basis for comparison for experimental and theoretical estimates

of the Fourier spectrum.

3.5. Wavenumber Response of an Infinite Beam

In this section, predictions of the wavenumber response of an infinite beam

are derived using Timoshenko beam theory. Using this result, the dispersion

relation for an infinite beam is obtained. The derivation basically follows the

development of Magrab [21].

Equations (3.6) and (3.7), the dimensional differential equations, re-written

here,

KG*AY"(x) - r.GCA'4"(x) + pAw2 Y(x) = Q(x)

E*II"(x) + tcG*A(Y'(x) - I(x) ) + pIw2 %p(x) = 0

are the starting point of the analysis. The Fourier transform as defined in

Equation (3.40) is used to transform the above into wavenumber domain. Let F

represent the Fourier transform operator, the following identity from Bracewell

[15], .F'{f'(x)} = )k .F{f(x)} is used in obtaining,

Y(k )[k2 G'A + pAw 2 ] + k(k.)[-jkKG'A] = Q(k.) (3.51)

Y(k,)I-)k.KG*A] + %P(k,)[-kE*I + plw2 - KG*A] = 0 , (3.52)

after applying the Fourier transform to Equations (3.7) and (3.8). Define the

following terms;

PJW= pAw 2  ,

0 = pw 2 , (3.53)
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V = bGIA

Also, let the freebending wavenumber for the Bernoulli Euler beam as defined in

Junger and Feit [22] be kE = fQ/E*I. Use the expressions in Equation (3.53)

to simplify Equations (3.51) and (3.52) to

Y-(k )[-krv + Q] + P(k.)[-jkzvI = Q(k.) (3.54)

Y'(k,)[jk.v] + 4P(k,)[-kE*I + 0 - v] = 0 (3.55)

Equations (3.54) and (3.55) represent two coupled algebraic equations in Y'(k,)

and P(k_). By using Cramer's rule both unknowns may be found. Applying

Cramer's rule to solve for Y'(k:) results in

Y~k' -Q(k )[E) - k2EI - v]I
-(k.) = r.- G( + QEI) + 2(0 - v]

Dividing top and bottom by E*Iv results in,

Q =kk)[k.- 7.(elv - 1) - k] (3.

k2_O/E*I + Q/v) + kEI[o/- 11(

The wavenumber-frequency admittance is defined as the quotient of the Fourier

transforms of the velocity and the force, for the infinite beam

E.I(e,,- 1) - k2l,,
H (kz) = j0 - k2L[OE I + vj+ kBE[O/zi - 1] ' (357)

where the multiplicative jw comes from the conversion of displacement to velocity.

Thus, the wavenumber-frequency response of an infinite beam to an arbitrary

forcing function has been derived according to the assumptions of Timoshenko

beam theory. For a Bernoulli-Euler type beam 0 -- 0 and v --- oo (v as defined

in (3.53) not Poisson's ratio) [221, and Equation (3.57) becomes

Y(k.) = -()E (35)

z BE
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From this it can be seen that kBE is the wavenumber at which the admittance

for the Bernoulli-Euler beam has its peak.

The zeros of the denominator of Equation (3.58) are

-/1,2,3,4 = ± { - +  - +  ) - k+E(-- - 1)j}2

+- (.... .)2 + 40 (3.59)2 Ty+v EI V E

noting kE0E/V = QO/E*Iv. The y,'s are the poles of the solution.

In order to interpret the meaning of the poles of the admittance, the inverse

Fourier transform of the solution must be examined. Sub ect to.

o V/ e _)
j-" + -- <  - -) + 4k 4 (.60)

and the damping taking the form E ° = E(l+37), the poles of the Equation (3.59)

are located approximately as shown in Figure 3.1. If the damping is zero, then

the roots of the denominator are either purely real or imaginary. The inverse

Fourier transform solution for the displacement is,

00

Y(x)- 1 (k,)H,(kz)e,k zdk.27rw

Since the forcing function under consideration is a series of delta functions, it

suffices to examine the solution for a single point force located at z = X0, in

which case the preceding equation simplifies to,

00

Y(X)_2irw I Ho(kz)ek (z-)dkz (3.61)

-00

This integral may be evaluated using the theory of residues. To use residue

theory, the integrand must decay at infinity and consist of only outgoing waves.

Hence there are two cases. One, for x - xo < 0, where the integrand is evaluated

using the two residues in the upper half plane (UHP in Figure 3.1). Two, for
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. Re X 3 UHP for x < Xo

BHP for x > zo

4=

Figure 3.1 Location of the poles and contours for the residue
evaluation.

x - xO > 0 the integrand is evaluated using the two residues in the bottom half

plane (BHP in Figure 3.1).

It can be seen in Equation (3.61) that the poles near the real axis represent

the propagating part of the velocity field and the poles near the imaginary axis

the evanescent field. The freebending wavenumber at a particular frequency is

defined as

kf = 7t (3.62)

It can be easily shown that the freebending wavenumber should be the same

as the resonant wavenumbers at the resonant frequencies. Upon examining the

definitions of Equations (3.12)-(3.14) and Equation (3.53), the following relations
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are found
b2 r2 =L2 ®/E*I.

b2 s2 =L2fQ/v,
b2 =L 4k4E.

Using th -.se in Equation (3.59) the free-bending wavenumbers results in,

7Y1,2,3,4 - I r 2 + s 2  (r 2 - S2 )2 + 4/b2 1/2

=-WL, 4-b/L (3.63)

The resonant frequencies are just those frequencies for which the freebending

wavenumber satisfies the boundary conditions. It is very useful to examine the

overall dispersion relation in order to better tell what wavenumbers to expect at

the frequencies of interest. In Figure 3.2, the resonant wavenumbers are plotted

using solid dots and the freebending wavenumber for an infinite Timoshenko

beam using a solid line. The freebending wavenumber for a Bernoulli-Euler beam

is also plotted in the same figure. In Table 3.1, the resonant frequencies and the

resonant wavenumbers for the beam are listed. The dispersion diagram is helpful

in two ways. First, it provides a guide in spacing the accelerometers to measure

the velocity field. Also, this plot may be used to see what wavenumbers might

be excited in a beam. In Section 2.4.4, the highest freebending wavenumber that

is expected for the velocity is read from this figure. The calculations were made

using the parameters for the beam used in the experiments (see Chapter 2 for

material constants).

3.6. Relation between Force and Velocity in Wavenumber Space for a

Finite Beam

As seen in Equation (3.57), the admittance of an infinite beam is a

that function of only the physical and geometric properties of the beam and
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.W 0

009*

a

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.6
Wavenumber (1/cm)

* Resonant wavenumbers
-Infinite Timoshenko beam
~Infinite Bernoull-Euler beam

Figure 3.2 The dispersion relation for the beami used in the
experiment. The freebending wavenumbers for the
infinite beam are shown as well as the resonant
wavenumbers (and frequencies) for the finite beam.
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Table 3.1 Resonant frequencies and wavenumbers.

Mode Resonant Resonant

No. Frequency (Hz) Wavenumber (cm-1)

1 703. 0.124
2 1904. 0.207
3 3644. 0.290
4 5847. 0.373
5 8439. 0.456
6 11350. 0.539
7 14519. 0.622
8 17893. 0.705
9 21427. 0.787
I0 25087. 0.871
II 28845. 0.953
12 32673. 1.036
13 36557. 1.118
14 40483. 1.201
15 44436. 1.284
16 48403. 1.366
17 52384. 1.448
18 56365. 1.530
19 60342. 1.612
20 64302. 1.693
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independent of the forcing function. However, Equations (3.33) and (3.42) imply

that the admittance function for a finite beam, formed by dividing the velocity

wavenumber spectrum by the force wavenumber spectrum, is a function that

depends on the form of the forcing function as well as the properties of the beam.

Because we are forced to deal with finite beams, quantification of the dependence

of the admittance, computed as the ratio of the velocity and force wavenumber

spectra, on the physical properties of the beam as well as the properties of the

forcing function is required.

For linear, shift invariant systems, the impulse response function completely

determines the system. Both the finite and the infinite beam are linear systems.

but only the infinite beam is a shift invariant system. Physically, shift invariance

means that only the distance between the shaker and the accelerometer are

needed to define the response, not their absolute locations. For the finite beam

the location of force and the sensor are needed.

In an attempt to quantify the meaning of the quantity Y(k.)/Q(k.) for a

finite beam, the finite Fourier transform is applied to the governing differential

equations of the Timoshenko type beam. As defined in Bracewell, the finite

Fourier transform is

F(k, a, b) = f()e-J1k dx (3.64)

The inverse finite Fourier transform takes the form of a series,
1

f W = L Z F(2nr/Lab)e2 rn"/L (3.65)

The finite Fourier transform of f'(x) the spatial derivative of f(x) isLb
ff(x)e-Skl'"dx =jkF(kz,a,b) + f(b)e- skb - f(a)e-J k ' a (3.66)

Higher order derivatives may also be obtained from the above formula. This

relation is different than relations for the infinite transform. The interval
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under consideration is the non-dimensional length of the beam 0 < & < 1, for

convenience and brevity the following notation is introduced.

Ff(k )=LF(k, 0, 1) . (3.67)

The transform variable for the non-dimensional equations is k and the trans-

forms of the displacement, bending slope and force are defined in Equation (3.67)

or,

Yf (k ) = 0( )e d , (3.68)

qIf (k ) = j0 x( )e-jkfkdlc (3.69)L0I
Qf(kC) = Q(0)ejk(dQ . (3.70)

Applying the definition of the finite Fourier transform to the non-dimensional

equations of motion for the Timoshenko beam (Equations (3.8) and (3.9)) yields

7j[Y'( ) + kY ]~j(f1= - k 2 Yi(kO}

- [= + ak ,ij(k4 )l + =(kC)=Qf(kt)
(3.71)

By using the first boundary condition, given Equation (3.10)

1Y'( )-I( )=0 for =O and
L

Equation (3.71) simplifies to
-vk 2jk

Yf (kt)[-L2  + If,=(k4 )[-ik¢/L]= QCk ) Qr fVY(-)e- I 3)L2

Taking the finite Fourier transform of the second differential and using the second

boundary condition (V"(0) = V(1) = 0) results in,

1 (k v [k ] f (k) Ek 2 + V] E1 e.73

(3.73)
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The terms that contain the values of the displacement and bending slope at the

endpoint are contained in the following terms.

B=(k_) = (3.74)

I32(kC) = - I 1 (3.75)

Using the definitions in Equations (3.74) and (3.75) to rewrite the transformed

differential equations in a form ready for solution of the unknowiis yields

-v +QIfk 2 -7k -(kc)[-- U - L2 '+ +(k )[ ] = Q+(kc) + 11(k,) (3.76)

' (f) -]+4Pf kc)[-L 2 + _V -]= 2 (kc) .(3.77)

These equations are solved using Cramer's rule for Yf"(kC), which results in

-f(kC) = [Q1(k) + B1 ,(kt)] [- -=Lk L o + () . (3.78)I E*, f [vE) - E*ISII + Ql[E - vj

Using the fact that H,(k,) = H (kc/L) the above equation can be written as

Ifi.(k ) = .g(kf/L)[Q1 (kC) + 1,(k 4 ) + E-, B2 k O  (3.79)jW k + ' 0-'v)--v j k V

The admittance for the finite beam is

Hf (k,) "7wkjr(k ) I (k(k

=H.(kCIT){1 + 1 ( 1(k) + .. 2(k) ] ).(3-80)-zjkc + L-- (0 - v)]-(.0

The wavenumber response of the finite beam consists of a part that is the same as

for an infinite beam and another part that depends on the boundary values of the

displacement and bending slope. Since the constants B1(k ) and B2(k ) depend

on the values of the spatial variables, to solve for the wavenumber response the

spatial response must be obtained as well. Although it is not done here. the

constants would be evaluated by inverting the Equation (3.78) and considering
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Y(0), Y(1), T(0) and %P(1) as unknown constants. Upon inversion these constants

could be evaluated and then substituted into the wavenumber response.

There are several implications from Equation (3.80). First, the wavenumber

admittance of the free-free Timoshenko beam is dependent on the location and

amplitude of the forces applied to the beam. This means that a wavenumber

admittance that is a function of only the physical and geometric properties of

the beam is not obtained simply by forming the quotient of the wavenumber

velocity spectrum and force spectrum. The infinite beam part of the admittance

is invariant with respect to change in the forcing function. At wavenumbers

where the amplitude of the forcing function is high, the admittance measured

with the finite beam approximates the infinite beam wavenumber admittance.

The velocity response of the beam at a particular wavenumber is a function of

how near this wavenumber is to the freebending wavenumber and how well this

wavenumber matches the boundary conditions. When both of these conditions

are met resonance occurs. Since the impedance of the beam is low at resonance,

it is expected that the amplitude of the force wavenumber spectra would be low if

the forcing function matches the structural mode shape. With a matched forcing

function, the finite beam admittance at resonance is a poor approximation to

the infinite beam admittance. It is important to note that even at a resonant

frequency the resulting velocity contribution from the resonant mode shape would

be small if the value from the spatial integration that occurs in Equation (3.33)

is small. i.e., if the force distribution does not match the mode shape.
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Chapter 4

EQUIVALENT CIRCUIT MODELING OF

THE SHAKER FORCE/GAGE UNITS

4.1. Introduction

In this chapter, the response of the combination shaker/force gage units

is modeled using equivalent circuits. The basic Mason equivalent circuits for

piezoelectric and non-piezoelectric materials are shown. From these circuits the

low frequency approximations are derived. First, the equivalent circuit for the

overall force output of the transducer is developed. From this model, the levels

and resonance frequencies of the force output due to an arbitrary termination

impedance are found. Also, the relationship between the voltage output from

the force gage section and the force applied to the structure is obtained through

the use of equivalent circuits. The effect on the force gage output due to added

cable capacitance, mass loading and contact stiffness is obtained. The method

of calibration and its consequences are also be examined.

4.2. Equivalent Circuit Analysis for Transducers

The dynamic response of shakers can be iepresented by using Mason

equivalent circuits. These circuits, in their exact form, represent a solution

to the electrical and elastic differential equations that govern the transducer

system. For piezo-active elements, a catalogue of lumped impedance, equivalent

circuits for different boundary conditions and piezoelectric couplings have been

developed [23]. The analysis of electro-mechanical circuits in general is found in

Beranek[24]. The Mason equivalent circuits of the piezoelectric elements and the

non-piezoactive elements may be cascaded together to form the model for the

entire transducer system. In this study, the low frequency approximation to the
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exact solution is used.

By constructing the complete circuit representation of the transducer, the

resonance frequency, output force and force sensitivity of the system can be

approximated as well as the effect of changing any of the transducer parameters.

The equivalent circuit analysis yields solutions for the desired quantities, the

overall force output and the force gage sensitivity, in terms of the material

properties of the shaker, excitation frequency and load impedance.

The equivalent circuits are a representation of the solution of the differential

equations governing the elements of the transducer. Certain boundary conditions

have been applied to the non-active areas (in this case the radial faces). Basically,

the boundary conditions are that the radial faces are stress free and the electric

field lines do not fringe. The wave motion through the transducer is assumed to

be a plane wave traveling in the axial direction. Because the length to diameter

ratio is large, the response of the shaker is almost entirely in the axial direction.

Berlincourt et al. [23] describe in detail the boundary conditions assumed for

the equivalent circuits mentioned above. The non-piezoactive elements of the

transducer are modeled as longitudinally vibrating rods or bars.

The equivalent circuits utilized are of the mechanical impedance type. In

the mechanical impedance representation, the flow quantity is velocity and the

potential quantity is force. The boundary conditions for the force and velocity

transmitting surfaces are left as arbitrary impedances. Each section of the

transducer that has different material properties will be modeled using a similar

equivalent circuit, but with different material properties. The rest of the model

can be constructed by cascading the equivalent circuits one after the other.

The equivalent circuit for the 33 coupled piezoceramic is shown in Figure 4.la

The equivalent circuit for the non-piezoactive elements is shown in Figure 4.1b
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(b)

Figure 4.1 Equivalent circuit for (a) piezoelectric 33 coupled
sections, (b) Non-piezoactive sections [23].
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[23]. In these figures, U is the velocity and F is the force. These are the

solutions to the differential equations for the so called 'length expander' case.

The values for the impedances in the equivalent circuits are calculated from the

formulas given below the circuit diagrams in Figure 4.1. The nomenclature used

to describe the constants defining the impedances and the impedances themselves

is a combination of that used in [23,25]. Since piezoceramics are anisotropic

materials the notation used in the definition of the constants use indicial notation.

Additionally, since there are both electrical and elastic boundary conditions to

_,e denoted, there must exist a flexibility in the nomenclature to describe these

conditions.

The numerical subscripts (for example g33) have the following meaning. The

first index indicates the axis to which the electroded surface is perpendicular,

or the direction of the poling of the crystal. The second index indicates the

direction the forces will be applied (either piezoelectrically induced or externally

applied). The coordinate system for a crystal is shown in Figure 4.2 and is a

local coordinate system for each element of the transducer. There are several

different alphabetic subscripts and superscripts. The superscripts D and E

are used in reference to elastic constants, E means that the constants were

measured with a constant electric field, and D that the charge density was

constant. The superscripts T and S are used in reference to the electric or

piezoelectric constants, T means that the constants were measured with the

free elastic boundary conditions, and S with the boundary conditions clamped.

These boundary conditions are implicit in the solution of the governing equations

and assumed not to change. For example, the radial surface of the 33 coupled

transducer is assumed to be stress free, hence the electric properties are indicated

with the T superscript. The subscript b used in conjunction with the wavenumber
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kand the wave velocity v indicates that the length expander or bar mode is

the prominent mode. With the subscript and superscript notation described,

the material constants are defined. The constants g33 and d33 are piezoelectric

constants. The load bearing area and the electroded area (which are the same

for the piezoelectric materials with the 33 coupling) is denoted as A and the axial

length as 1. The material density is p. Co is the electrical capacitance and 6 or

7p will be used in this chapter to denote the transformation factor which converts

from the electrical domain to the mechanical. The relative dielectric constant of

the piezocerarnic is e33 and the free space constant is co. The elastic compliance

is S33 which is the inverse of the elastic modulus.

3

Figure 4.2 Local coordinate system for the ceramic.

The representations in Figures 4.1a and 4.1b are the solutions to the

governing differential equations and have no frequency limitation except that
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the boundary conditions will break down at high frequency. These represen-

tations become cumbersome to program and it is efficacious to use the small

argument approximation for the sine and cosine functions. The validity of these

assumptions breaks down when the error in the small argument approximation in

any one of the elements becomes appreciable. For example, one would expect the

small argument approximation to become invalid in the decoupler section first.

The small argument model (which amounts to a low frequency approximation) is

shown in Figure 4.3a for the piezoactive element and Figure 4.3b for the elastic

element. This model reduces to lumping the static mass and stiffness of the

elements of the transducer into the branches of the circuit. This approach allows

some engineering approximations to be made. When the frequency is low, the

stiffness and mass of some adjacent elements may be combined to simplify the

resulting equivalent circuit without a significant loss of accuracy. The overall

transducer model is obtained by cascading the equivalent circuits for each section

one after the other. To be precise, every different material of the transducer

should be modeled separately. This could result in a very large equivalent circuit

with many branches. Thus, the initial iterations of the model are made by

making simplifying assumptions about what are the important elements of the

transducer. For example, with respect to the overall force output of the shaker,

the force gage plays a small part. So in order to remove a loop of the total

equivalent circuit, the mass and compliance of the force gage ceramic are lumped

with the headmass and the decoupler sections.

4.3. Equivalent Circuit Model for the Shaker Force Output

The transducer described in Section 2.3 is modeled in this section. The

modeling process is iterative. Complexity is added to the model until predicted

results match measurements.
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Figure 4.3 Low frequency equivalent circuit for (a) piezoelectric
sections, (b) non-piezoactive sections.
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Figure 4.4 shows the equivalent circuit for the entire shaker, force gage

transducer system using the low frequency approximations of Figures 4.3a and

4.3b. Since the branches of each section of the circuit form a T, these circuits

are called T circuits. The first T circuit represents the drive section and the

tailmass section. The compliances of the two PZT disks and the brass tailmass are

included in C 1 . At low frequencies, these elements act as a combined stiffness [12].

The mass of the tailmass and one half the mass of a PZT disk are lumped into Mi.

The mass of one and one half PZT disks are included in the calculation of A12 .

The second T circuit includes the effect of the decoupler alone. The compliance

C2 is the compliance of the decoupler. Half of the decoupler mass is lumped into

each of M 2 and Ml3 . The third T circuit includes the effect of the headmass and

the PZT force cell in a manner similar to the first T circuit. The effect of the

added mass due to the glue used to stress relieve the lead wire attachments is

added to M 1 , M 2 and A13 in proportion to their estimated amounts. The values

of the elastic and piezoelectric constants needed for calculation of the impedances

in the equivalent circuit are found in Table 4.1 and 4.2.

Explicitly, the values of the impedances in Figure 4.4 are calculated from;

MI = 1/2 mass of PZT driver + mass of brass tailmass,

M 2 = 3/2 mass of PZT driver + 1/2 mass of decoupler,

M3 = 1/2( mass of decoupler + mass force gage + mass of headmass),

M4 = 1/2( mass force gage + mass of headmass),

Co = electrical capacitance of PZT driver,

C1 = mechanical compliance of drive section,

C 2 = compliance of decoupler,

C3 = compliance of headmass + force gage,

Zj = termination impedance,



71

Drive Section Decoupler Section Force Gage Section

M 3  N14

NIC2

[ 1

Figure 4.4 Equivalent circuit model for the force output of the
transducer.

=transformation factor.

These values are calculated using the formulas given in Figure 4.2. After

combining similar impedances and reflecting electrical elements through the

transformers to convert them into the mechanical domain, the circuit takes the

form of Figure 4.5. The compliance of this branch is Cj which now takes into

account the effect of the electrical impedance.

The ioop equations for this circuit, using the currents shown in Figure 4.5

(noting that current is velocity and voltage is force) are;

EO =- 1 1 11 (4.1a)

(JOw + +

: I( + 2(jw 2  - + + 13( (4. 1 b)
JWCI* JWC* JWC 2  )WC2

1 1 (4.c)
JWC 2 JwOC 2 JWC 3 C3
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Table 4.1 Nominal material properties.

Material Elastic compliance (m2/N) Density (kg/m 3)
Aluminium 1.41xl0- 1  2700

Brass 9.62x10'- 2  8500
PZT-4 not applicable 7750

Table 4.2 Material properties for PZT-4.

Material Property Value (units)
g33 26.1x10 - 3 (Vm/N)

d33 289x10'- 2 (m/N)
S33 7.9 x 70-12 (m2/N)
sk_ _ 15.5 xlO- ' 2 (m2/N)
11300

0 13( ) + 14(.wM 4 + - + Zr). (4.1d)
(;:C3  + w:C 3 + t

These equations can be caste in matrix form, and solved using Cramer's rule

for any of the unknowns. The potential drop across the termination impedance

represents the force applied to the structure. In the next section the relation of

the force gage voltage output to the force is examined. In the current model the

force applied to the structure is,

F,,t = I 4 Zt. (4.2)

The results of applying the equivalent circuit model to the shaker are

compared with theory in Figure 4.6. The results show good agreement especially

in the low frequency range. The theoretical resonance frequency is 29.8 kHz.
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Figure 4.5 Equivalent circuit model for the forced output of the
transducer with electrical elements transformed into
the mechanical domain.

while the experimental value is 29.6 kHz. The fact that the analytic shaker

model does not include any damping or loss mechanism accounts for some of the

discrepancy of the amplitude between experiment and theory. Additionally, the

error associated with the low frequency approximation is becoming appreciable

at 30 kHz. At this frequency, the error associated with the low argument

approximation is 8 percent.

4.4. Equivalent Circuit Model for the Force Gage Section

In Section 4.3, the force gage section was modeled as having only high

frequency resonances, hence the details of its voltage response were ignored.

In this section, the equivalent circuit for the force gage section driven by an

arbitrary force into an arbitrary impedance is examined. The purpose of this

section is to determine the response of the force gage, and its relationship to the
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Figure 4.6 Transmitting voltage response for unloaded shaker,
theory versus experiment.
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force applied to the structure. Also, calibration procedures are examined and the

normal assumptions regarding the sensitivity of force gages (that the sensitivity

is constant with respect to frequency and load impedance) are analyzed.

The model for the force gage is shown in Figure 4.7. It has been constructed

using the low frequency approximations in Figure 4.3a and 4.3b. The force source

represents the rest of the transducer, which is modeled as some arbitrary input

force. In the calculation of the sensitivity of the force gage, if the input force

cancels out, then the sensitivity is independent of the drive section and decoupler

section of the shaker. Note in Figure 4.7, that since the electrical terminals are

open, the positive and negative capacitances cancel if the cable capacitance,

Ccable, is zero or small . Even though the capacitances are in series, their net

effect is zero because the positive and negative impedances of the two capacitors

cancel when added. First the effect of the cable capacitance is ignored, then

a correction factor is listed to take into account the effect of the finite cable

capacitance. In Figure 4.7, M.', 1 ,, C, C o , Z, and 0 are:

M, = 1/2 (mass of PZT force gage + aluminum headmass),

M2 = 1/2 mass of aluminum headmass,

C, = compliance of the force gage,

C = compliance of the aluminum headmass,

CO = electrical capacitance of the force gage,

Zt = termination impedance,

k = transformation factor.

The sampled voltage is in the electric domain and we must take into account

the transformation factor in calculating the output voltage. The current that

flows through the capacitor across which the output voltage is measured is 0

times the velocity of that branch of the circuit. The output voltage of the force
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Figure 4.7 Equivalent circuit for force gage sensitivity.

gage is then

Eout = (42 - I1)C • (4.3)

The output force is

F,,, = -3Z,. (4.4)

This is the force imparted to the structure. The first item of interest is the ratio

of the output voltage of the force gage to the force applied to the structure. In

order to obtain this, the loop equations must again be solved. The equations for

the loop currents (velocities) are

Fi = I,( + I2(-- ), (4.5a)

0=, + I2(JWM, + -+ )+13(-' ) (4.5b)jWC1, JC' jwC
- - I 1 -1jwj w 1  wC jwC2

0 = 12(7) + 13(,wM + - + Zt). (4.5c)JwC. JWC2



77

Upon solving the equations using Cramer's rule for the velocities, the ratio of

the output voltage tc the output force is

R1 = Eo.t/Fout

which is just Equation (4.3) divided by Equation (4.4). A constant proportional-

ity between the two is desired. The solution of the above results in the following:

-¢C1 ~ MM, -N' . 2,C,_wM C2)
R1 - -ikC + ± Al W 2 MC 2 -(M+W 3 Z, (4.6)

The common factor ± simplifies to g33t/A which is the low frequency sensitivity
C

O

of the ceramic. This is the nominal sensitivity that we try to measure. However,

away from w = 0 the response of the output voltage to the actual force appears

to become more complicated. Actually, most of the other terms are negligible

in the frequency range examined in this study. If the force gage would be ideal,

in other words massless and infinitely stiff, C2, M',and M would be zero and

the sensitivity would be independent of Zi and frequency. The non-zero values

complicate matters. The term multiplying 3w is due to the mass loading by the

mass between the force gage and structure. The actual force that reaches tfie

structure is less by the velocity times jw(M +M ). This factor may be subtre -ted

out electronically during the measurement or via computer software afterward.

At the lower frequencies, this term is the most significant source of errors in the

measurement of the force. This error is usually neglected. It is a major source

of error only when the impedance of the structure is low; i.e., at a resonance

of the structure. The other terms in higher powers of w have an effect only at

higher frequencies. If these effects need be examined, the equivalent circuit of

Figure 4.1a and 4.1b must be used. When the admittance of the structure drops

to a level comparable to the mass below the force gage, then the mass subtraction

should be used if precise impedance levels are required (see Appendix B).



78

The object of a calibration of the force gage is to obtain the nominal

sensitivity of the force gage section. A standard method is to mass load the

shaker and mount an accelerometer on the termination mass. Knowing the

mass, its acceleration and the output voltage from the sensor the sensitivity

can be inferred. The mass that loads the force gage is Mt + .ll + M2. The

sensitivity, Sf is approximately the voltage outpu-. of the force gage divided by

the acceleration times the mass loading. Solving for this we obtain.

-C1 2 ' t+ Wv2
Sf 2 o (1  w A W C2 V L±. +  , ) (4.7)

0V + Af +Aft,

this is the sensitivity measured using Equation 2.1. If,

M, <<M2 + M,

then Equation (4.7) becomes

Sf (1-WMIC2) (4.8)

The calibration described here and in Section 2.3.3 provides a good estimate

of the low frequency force sensitivity. If the compliance C, includes only the

compliance of the aluminum headmass, the term w 2,IC is much smaller

than one even at 100 kilohertz. However, the glue layer attaching the shaker

headmass to the structure to be tested increases this compliance. The sensitivity

characteristically rolls off at higher frequencies due to this contact point or glue

layer compliance.

Now the effect of cable capacitance for the 33 coupled force gage is examined.

The cable capacitance can almost double the mechanical compliance of the force

gage section in the shaker used in this study. This is not a problem in predicting

the entire shaker's dynamic response because the compliance of the force gage

will still be much less than the compliance of the decoupler and the drive sections.
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Hence, the cable capacitance will not effect the dynamics of the system. However.

the cable capacitance may all but cripple the sensitivity of the force gage if the

cable capacitance is too high. The cable length is the length of the cable to the

first amplifier or buffer. In cases where the cable length must be very long, a

charge amplifier must be used. To account for the effect of the cable capacitance

the following changes to the above equations are made. In the circuit diagram

in Figure 4.7, Co is replaced by

Co' = Co + Ccabge

and mechanical compliance C' is everywhere replaced by C* which is found from

1/C- = 11Cl - k2/Co'+ ,/c.

After these two substitutions are made in the circuit, the loop Equations (4.5)

are re-solved and the resulting low frequency sensitivity is

S = , (4.9)
1 + c,,,e(, - 02-L)0 Co

Thus if Ccabl, is zero then the sensitivity is g33t/A. If the cable capacitance is

very high, the sensitivity is lowered.

The average measured sensitivity for the force gage is 0.95 V/N as tabulated

in Table 2.3. The predicted value of g33t/A is 1.02 V/N which matches the

measured values closely. Average cable capacitance for the type and length of

cable used in the construction of the force gage is 45 picofarads. Plugging this

value into Equation (4.9) results in a sensitivity of 0.89 V/N, again close to the

measured value. This close agreement indicates that there are no significant

errors in the construction or the calibratio- of the transducer.
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Chapter 5

EXPERIMENTAL AND THEORETICAL RESULTS

5.1. Introduction

The experimental results of the implementation of the wavenumber drive

system with nine and seventeen shakers are presented in this chapter. First, the

experimental transfer admittance at various spatial locations along the beam is

compared with the theoretically predicted values. This comparison allows for a

point by point validation of the measurements. Next, the effect of varying the

number and spacing of the sensors used to measure the wavenumber spectrum

is analyzed using predicted results. Subsequently, the wavenumber-frequency

dependence of the measured forcing function is presented. The measured and

predicted velocity responses to this forcing function are examined. Finally, the

relationship between the wavenumber content of the forcing function and the

velocity is explored.

5.2. Measured and Predicted Point Admittances

The measured admittance at various locations on the beam is compared to the

predicted admittance as a function of frequency. As mentioned in Section 2.4.4,

the velocity is measured at 37 locations on the beam, with the actual locations,

in centimeters, given by

xi = ((i - 1) + 0.95)

and, in non-dimensional coordinates, by

6i = ((i - 1) + 0.95)/37.9

The admittances are all measured with respect to the center shaker, so all but

the measurement of the velocity at the center location are considered transfer
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admittances defined here as

= v,(w)/Fjw , (5.1)

where v, is the velocity measured at location i and F, is the force measured at

the center shaker. Since the beam is being driven by nine or seventeen shakers,

the admittance takes on a much different appearance then it would for a single

drive point.

The FORTRAN program VALTIM (see Appendix C) employs the beam

theory in Chapter 3 to predict the admittance of the beam at the different spatial

locations using the measured forces read from a data file. VALTIM also reads

the measured values of the admittance and then plots both the theoretical and

experimental data at an observation point as a function of frequency.

The forcing condition is defined by the experiment number given in Table 2.2.

As the agreement between experiment and theory is generally very good,

Experiment 7 has been chosen as a representative measurement. Several locations

for the comparison of the predicted and measured admittances for Experiment 7

are presented while only a single plot is shown for the other experiments. The

seventeen shaker experiments are more complicated (i.e., more sources for error),

so the representative data set was chosen from the last five experiments. Also,

many of the features for the nine shaker experiments are the same as for the

seventeen shaker experiments, so it is not necessary to specifically examine in

detail all of the data sets from the nine and seventeen shaker experiments.

The admittance for the center location ( - 0.5) is shown in Figure 5.1 from

Experiment 7. The good agreement between theory and experiment is seen. The

first peak around 3.1 kHz is due to the system resonance caused by the interaction

between the beam and shakers. At this frequency the force and velocity at nearly

every location on the beam has a peak in amplitude with respect to the force
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Figure 5.1. comparison of the theoretical and experimental driv-
ing point admittance, magnitude (dB re 1 cm/dyne-s)

and phase for Experiment 7 at the location = .5.
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seen at the center shaker. In other words, the driving-point impedance at the

center of the beam is nearly zero, consequently the driving force is nearly zero.

This resonance peak occurs around 3.1 kHz for all of the experiments, however

the location of this peak is a function of the number of shakers and the weighting

pattern of the drive voltages. The shifting of this peak from experiment to

experiment may be due to mass loading of the force gage (for a brief discussion

of mass loading see Appendix B), however, the reasons behind the shifting of this

peak are not investigated in detail.

The predicted admittance shows a peak at the resonance frequencies of

3.6 kHz and 8.4 kHz, while these peaks are not seen in the experimental

data. These are even or symmetric modes (with respect to the center of the

beam) and therefore are excited more by the symmetric forcing function than

the antisymmetric modes. The absence of these predicted resonance effects in

the experimental data could be due to the use of a damping coefficient in the

predictions (0.05 is used) that is lower than the actual damping coefficient. This

damping is due to having shakers glued to the beam.

Figures 5.2 and 5.3 show the transfer admittance for Experiment 7 at a

location 5 cm to the left and to the right of the center of the beam ( = 0.368 and

0.632). If the forcing function were perfectly symmetric these admittances would

be exactly the same. While they are quite similar there are differences, indicating

that the forcing function was not perfectly symmetric. In Figure 5.4, the results

for position number 3 at = 0.078 are presented. While the magnitude and phase

of the predicted and measured drive point admittances match at frequencies

below 6 kHz except at the resonance frequencies, in Figures 5.2-5.4 there are

deviations between the predicted and measured results above 6 kHz.
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The transfer admittances at location 14 ( = 0.368) for Experiments 1-6 and

8-9 are shown in Figures 5.5-5.12. From these plots, the excellent agreement

between theory and experiment can be seen. Again. the resonance peaks appear

in the predicted results that are not found in the experimental results. These

peaks are found around 3.6 kHz (e.g. Figure 5.7) or 8.4 kHz (e.g. Figure 5.10).

The suppression of the resonance peaks in the measurements is notable.

The use of multiple shakers change.' the usual interpretations of the admittance

especially when the forcing function is weighted to a particular wavenumber.

With only one or two shakers on the beam, the mode of the nearest resonance

frequency almost always contributes the most to any measured response. The

exception is when the measurement or excitation point is on a node of a mode.

With multiple shakers, the orthogonality of the forcing function to a particular

mode may result in that mode having at least as much influence on the velocity

response as the mode whose resonance frequency is actually closer to the drive

frequency. Also, the gluing of nine or seventeen shakers to a beam increases the

damping of the beam due to the presence of the glue, which also suppresses the

measured resonance responses. Thus, -,ith the array of shakers the resonance

may be suppressed by a mismatch between the spatial response of the resonance

mode and the spatial distribution of the applied forces.

Finally, the drive wavenumber for Experiments 4, 8 and 9 corresponds to

a freebending wavenumber whose frequency falls far outside the measurement

frequency range (compare Tables 2.1 and 3.2). The overall admittance for these

experiments is much lower than for the other experiments.
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5.3. Effects of the Spatial Measurement Array

In this section, the effect of varying the accelerometer spacing on the

estimation of the normalized wavenumber velocity response is examined. The

normalized wavenumber-frequency velocity spectrum, V(kz, w), is

) V(kxw) (5.2)

where V(k , w) is the Fourier transform of the velocity. To assess the effect of

spatial sampling, the DFT is performed on the theoretically predicted spatial

velocity response and compared to the analytic or continuous transform as given

in Section 3.4. The DFT is calculated using a 128 point FFT; the number of the

actual data points varies but the data length is always zero-padded to a length of

128. Only the 64 bins corresponding to the positive spectrum are plotted. The

FORTRAN program ARRAY-EFFECT implements the calculation of both the

analytic and the discrete transforms then plots-the results.

Before examining the results of these calculations, the Fourier transforms of

the array pattern or A(k.), as defined in Chapter 2, is plotted for spacings of

1 cm, 2 cm and 4 cm in Figures 5.13-5.15. A(kr) also is called the array pattern.

Only the positive part of array function spectrum is plotted, the negative part of

the spectrum is symmetric. Re-writing Equation (2.12) in terms of the current

variables,

Vm,,(k) = V(k) * A(kz) (5.3)

This is the measured wavenumber velocity spectrum (after dropping the fre-

quency dependence). In this equation, the convolution integral for the measured

response at a wavenumber k, can be interpreted as the integration of a shifted

version of A(k.) times V(kr) over all wavenumbers. In Figures 5.13-5.15, the
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main-lobe of A(k_) is located at k, = 0cm - 1, the lobes appearing at

k_ = :2,rl/Ax for I = 1, 2,...

are called aliasing lobes. As the measurement wavenumber increases, the array

pattern ,as shown in Figures 5.13-5.15, is shifted to the right and the convolution

integration is performed to produce Vm(kz). So, as the measured wavenumber

nears 7r/Zx the first negative aliasing lobe nears -r/Ax from the left. Since

V(k.) is almost symmetric, if we see peaks past 7r/Ax in the positive part of the

spectrum there are peaks also in the negative part of the spectrum. It is these

peaks in the negative part of the spectrum that alias into the positive part of

the spectrum. The ideal array pattern is a sinc(kL/2) function as discussed in

Chapter 2; the array pattern for the 1 cm spacing most closely resembles that

sinc function.

For the comparison of different array spacings, the forcing function from

Experiment 9 in Table 2.2 is used. Because the drive wavenumber for this

experiment is the highest of the experiments conducted (kd = 1.49 cm- 1 ), more

energy should be seen in the higher wavenumbers of the velocity spectrum.

With more energy input into the high wavenumber end of the spectrum than

any of the other experiments, the velocity should be the most challenging to

measure. The wavenumber dependence at 8.0 kHz is examined. In Figure 5.16,

an array of 37 accelerometers equally spaced from the center of the beam and

covering the entire length of the beam (in this case Az = 1.02 cm) is used to

estimate the wavenumber spectrum of the velocity. As shown in Figure 5.16,

the agreement between the continuous and discrete transforms of the predicted

velocity is excellent except at the higher wavenumbers. There, the aliasing effects

tend to cause the levels calculated by the FFT to fall off less rapidly then the

continuous transform.
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FFT consisted of 37 elements (Ax = 1.02 cm).



102

Using a nineteen element array consisting of accelerometers located at 2 cm

intervals equally spaced away from the center of the beam, also produces good

agreement between the discrete and continuous transforms for Experiment 9 as

presented in Figure 5.17. At the Nyquist wavenumber (defined here as 7r/Ax)

the local peak in the response causes the discrete transform to overestimate once

again. The results for an array using nine accelerometers is shown in Figure 5.18.

Considering that the Nyquist wavenumber for this array, 0.75 cm - 1, is one half

the drive wavenumber, the results are remarkably good. It seems that the aliasing

effects have somehow canceled out in the convolution integral. Generally, so long

as the largest amplitude seen in the velocity spectrum is contained within the

Nyquist rate of the array, the FFT approximates the general features of the

spectrum very well.

Returning to the nineteen accelerometer array, the effects of a slight decrease

in the inter-element spacing is now examined. By decreasing Ax the aliasing

wavenumber is increased slightly. By doing so, the local peak in the true

wavenumber spectrum now falls below the aliasing lobe of the array pattern if the

Ax is chosen correctly. The result of using an array of 21 accelerometers is shown

in Figure 5.19. While the discrete transform still overestimates the value of the

spectrum slightly around 7r/2 cm - 1, the shape of the true spectrum is faithfully

followed. It is noteworthy that merely by using two more accelerometers the

results may be noticeably improved.

The importance of knowing the highest wavenumber at which a peak is

to be seen has been demonstrated. While examining the dispersion relation

for the beam (see Figure 3.2) yields an idea of what the highest freebending

wavenumber to expect for a particular frequency range, the content of the forced

wavenumber content must be known as well. At 8.0 kHz the forced wavenumber
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content is shown in Figure 5.20. This shows that for this frequency the force

wavenumber content has been successfully steered to the desired wavenumber.

However, the main-lobe of the wavenumber pattern is fairly broad and extends

past the Nyquist wavenumber for a spacing of 2 cm. By realizing the extent

of the force wavenumber spectrum, the measurement array can be adjusted for

proper measurement.

The final array effect to be examined is that of truncation error. The length

of a discrete transform is Lt,

Lt = NAx , (5.4)

where N is the number of samples. As was mentioned previously, it is desirable to

have the Fourier transform of the array function match the sinc function with the

correct length, Lt. The location of the actual measurements is given in the very

beginning of this chapter. The length of the FFT is NAx = 37 cm; the length

should have been forced to be 38 cm either by using a different spacing or by using

a different starting point (which would allow the use of another accelerometer).

The effect of truncation error is noticeable as a shifting of the location of the

sidelobe structure at wavenumbers approaching the Nyquist wavenumber. The

spacing used in the experiment is input to ARRAYEFFECT to calculate the

beam response at 8.0 kHz for Experiment 9 and the wavenumber response is

obtained via the FFT. The results are shown in Figure 5.21. The shifting of the

sidelobe pattern is clearly visible. The array used to calculate the spectrum in

Figure 5.16 used a data window whose length is nearly 38 cm, and the results

are much better. The truncation error causes the width of the main-lobe of the

array pattern to be wider than that of the proper sinc function. The sidelobes

at the higher wavenumbers are misaligned.
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Although the error of 1 cm causes only a small deviation, the truncation

problem can be more severe. For example, for an accelerometer spacing of

2 cm it is tempting to place accelerometers only at seventeen shaker locations.

This spacing yields a Nyquist wavenumber which is the same as the Nyquist

wavenumber for the array that produced :he plot in Figure 5.16; but Lt, the

aperture length, for this case is only 34 cm. The results for this truncated array

are shown in Figure 5.22. This result clearly points out the danger of truncation

error.

In this section, the effects of the spacing and length of the measurement array

on the estimated wavenumber spectrum have been investigated. The spacing

must be close enough to enable the peaks at the higher wavenumbers to be

measured. A(k,) must be as close as possible to a sinc(k.L/2), hence the length

of the transform must be almost that of the structure. The length should fall

within 0.5Ax of the length of the beam.

5.4. Wavenumber-Frequency Dependence of the Force and Velocity

The main results of this thesis are presented in this section. The wavenumber-

frequency dependence of the measured force as well as the measured and

predicted velocity are presented in surface-contour plots. The surface portion

of the plots allow for a qualitative examination of the main features of the

spectrum. The contours of the surface are shown in a plane beneath the surface.

From these contours, more detailed information about the values of the spectrum

can be obtained. From these plots, two of the most important questions with

respect to the success of the wavenumber-frequency measurement system are

answered. The first is whether or not the force wavenumber content of the array

of point forces can be steered to a desired wavenumber by amplitude shading of

the drive voltages sent to the shakers. Second, contingent upon steering the force
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wavenumber content, what enhancement in the measurement of the velocity is

obtained by exciting the beam in this fashion. In other words. are we able to

measure the presence of the higher wavenumber velocity fields, which have so far

been unmeasureable.

For each of the nine experiments (listed in Table 2.2), the spatial Fourier

transform of the measured force relative to the force at the center shaker is

plotted. The units of this function are centimeters. Additionally, the predicted

normalized wavenumber velocity spectra (using the analytic Fourier transform

as formulated in Section 3.4) are presented. As before, the velocity is normalized

to the force at the center shaker, hence the Fourier transform has the units of

admittance times centimeters. The experimental velocity data are processed in

the following manner: the 37 normalized velocities are read into a computer

program which zero pads the data to a length of 128 points and then performs

an FFT. The general processing of the data is discussed in Chapter 2. Since

all of the quantities present in this section are normalized to the center shaker's

force, the designation "normalized" is dropped for brevity. Also, any peculiarities

associated with any of the data sets (e.g., missing accelerometer locations) can

be found in Appendix D.

5.4.1. Nine Shaker Experiments

For the first experiment, the drive wavenumber is kd = 0 cm - '. The

wavenumbe- dependence of the force spectra is shown in Figure 5.23. The force

wavenumber is characterized by four main features, the forced wavenumber ridge,

the freebending wavenumber influence, system resonance and the periodicity of

the spectrum.

The forced wavenumber ridge is the ridge apparent at the drive wavenumber

in Figure 5.23. it is a high amplitude region for constant k . The forced
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wavenumber ridge is also called the main-lobe of the force wavenumber spectrum.

A coherent ridge occurs when the amplitude shading of the input voltages has

succeeded in imposing a similar distribution on the forces at the shakers. The

grating lobes are due to the inherent periodicity of the spectrum of discrete

point forces (the period is 27r/Ax). Hence, if the forced wavenumber ridge

has been successfully enforced there also are grating lobes present at k, =

,1Ax ± kd, I = ±1, ±2..... For the first experiment, the main-lobe and the

grating lobes can be clearly seen at 0, 7r/2 and ir cm -

The system resonance is described in Section 5.2. On the surface plots, the

system resonance appears as a sharp ridge for constant frequency. This is a

consequence of the low impedance seen by the center shaker and the low force

output due to this small impedance. At resonance, all of the normalized forces

anuI velocities appear high because they are measured with respect to the force

at the center shaker. The system resonance is not labeled on Figure 5.23, but

can be seen around 3.0 kHz.

The freebending wavenumber for the Timoshenko beam has approximately

a square root dependency on frequency (see Figure 3.2) for frequencies below

12 kHz. For a Bernoulli-Euler beam, the relationship for the freebending

wavenumber is exactly a square root dependency. Due to the high admittance

of the beam at the freebending wavenumber, it is expected that there is a region

around a parabolic line where the influence of the freebending wavenumber can

be seen. The parabola has a positive k, branch and a negative k. branch. The

influence of the positive branch on the spectrum can be seen in Figure 5.23.

Regions where the effect of the higher admittance at the freebending wavenumber

can be seen are denoted by the label 'freebending wavenumber' on the plots (in

Figure 5.23). Even though the drive voltage is not steered to the freebending
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wavenumbers. the force spectrum exhibits a ridge at these wavenumbers because

the beam response is high enough to drive the shakers. For all of the plots,

not every local ridge associated with this effect is pointed out explicitly. The

periodicity of the spectrum means that there is a repetition of this parabola

centered at k_ = +27,l/Ax, I = 4-1, ±2,... ; these periodic repetitions can be seen

at -,/2 cm - 1 and r, cm - 1 (labeled in Figure 5.23 as periodic repetitions of the

freebending wavenumber).

The wavenumber-frequency velocity spectrum predicted using the measured

forcing function from Experiment 1 is shown in Figures 5.24 and 5.25. The first

plot is the analytic Fourier transform and the second is the FFT of the predicted

velocity. As these plots are almost identical, only the analytic Fourier transform

is shown for the rest of the experiments. The measured wavenumber-frequency

velocity response is shown in Figure 5.26.

The wavenumber-frequency velocity surfaces are characterized by three main

features, the forced wavenumber ridge, the freebending wavenumber and the

system resonance. Note that there is no inherent periodicity in the transform of

the continuous velocity field. The freebending wavenumber ridge is due to the

high admittance in this region and the forced wavenumber ridge is due to the large

amplitude of the force wavenumber spectrum in this region. In Figures 5.24-5.26,

the forced wavenumber ridge and the freebending wavenumber peaks can be seen

clearly as marked on the plots. The agreement between theory and experiment is

quite good. The system resonance can be seen at 3.1 kHz on all of the plots. Both

of the theoretically produced plots have a ridge at the first grating lobe of the

force wavenumber spectrum, at k. = r/2 cm - 1 (labeled as "forced wavenumber

ridge" on the plot). In order to show this peak, a slice is made through the surface

at a frequency of 11.5 kHz. This plot of the analytic and measured wavenumber
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velocity is shown on Figure 5.27. The peak can be seen in the predicted results.

The measurements do not reflect this however, and it may be that the large

amplitude of the spectrum at the lower wavenumbers somehow overwhelms the

spectrum at the higher wavenumbers. A possible mechanism for the burying of

the higher wavenumber components in the measured data is the following; the

accelerometer is more sensitive at the lower wavenumbers, the peak at the zero

wavenumber and the associated sidelobes are given more weight than the smaller

peak at the higher wavenumbers. In this way, the stronger component at the

lower wavenumbers buries the weaker components at the higher wavenumbers in

the measurement; but the theory has no such sensor error and is able to measure

the higher wavenumber peak.

In Experiment 2, the drive wavenumber is 0.16 cm - i. Due to the width

of the main-lobe in the force spectrum, the peaks at ±kd overlap as shown

in Figure 5.28. The grating lobes and the main-lobe create force wavenumber

passband regions. The freebending wavenumber influence is not as noticeable

as in Experiment 1, because the forced wavenumber ridge is present where the

freebending wavenumber effect would be seen. The system resonance is seen

again at 3.1 kHz.

The measured and predicted wavenumber velocity responses are shown in

Figures 5.29 and 5.30. Again, the forced wavenumber ridge is clearly present

and theory and experiment agree nicely, especially below k, = 1.5 cm - 1. The

grating lobe effect around k, ., =r/2 cm - 1 can be seen in the predicted velocity

spectrum but not in the measured spectrum. This ridge in the predicted velocity

is present above 9.0 kHz. The system resonance occurs at 3.1 kHz. Only slight

local peaks can be seen in the region where the freebending wavenumber influence

is expected.
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The force wavenumber spectrum for Experiment 3 is displayed in Figure 5.31.

The drive wavenumber for this experiment is kd = 0.332 cm - 1 . The forced

wavenumber ridge for this experiment is the least defined for any of the nine

shaker experiments. From 2-6.5 kHz, the forced wavenumber ridge is fairly well

defined and properly located. From 6.5-9 kHz, the forced wavenumber ridge

(and the grating lobes as well) have shifted and become less defined. A forced

wavenumber ridge once again appears from 9-12 kHz. For this experiment and

for Experiment 7, kd corresponds to a freebending wavenumber whose frequency

is within the measurement range of 2-12 kHz. The frequency of a freebending

wavenumber equal to 0.332 cm - 1 is 5.0 kHz. It is not necessarily expected that

there would be a peak in either the force wavenumber content or the velocity

wavenumber content at this frequency. This is not expected for two reasons.

One, this is not a resonance wavenumber of the beam. Two, even if it were a

resonance wavenumber, the force distribution must match that particular mode

in order to produce a highly resonance response.

Figures 5.32 and 5.33 are the surface contour plots showing the dependence

of the velocity on wavenumber and frequency for Experiment 3. The velocity in

general tracks with the force wavenumber main-lobe. As the main-lobe of the

force shifts up or down in wavenumber so does the velocity response. Since the

forced wavenumber ridge wanders, the velocity ridge does not stay at a constant

wavenumber. The freebending wavenumber effect is not seen. Perhaps, it is

the proximity of the drive wavenumber to the freebending wavenumbers in this

frequency range that is the explanation for the lack of a nicely formed forced

wavenumber ridge. The system resonance for the measured values is higher than

the predicted value. However, if the mass loading would be removed, the two

curves should compare more closely.
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The final nine shaker experiment is Experiment 4. Here, the shakers. are

driven in a pattern such that every other shaker is out of phase with the center

shaker (i.e. the first shaker is in phase, the second out of phase). The force

wavenumber content in Figure 5.34 displays the strong main and grating lobe

pattern near the desired wavenumber until about 10 kHz. The peak of the forced

wavenumber spectrum is found at k., =7r/4 cm - 1 instead of the value used to

generate the weights in FORCE-FILTER, 0.746 cm - 1. It is difficult to control

the wavenumber spectra to this fine a degree. The influence of the freebending

wavenumber can once again be seen and is labeled on the plot.

Figures 5.35 and 5.36 are the surface contour plots for the predicted and the

measured velocity spectra for Experiment 4. The forced wavenumber ridge is

seen to become more and more defined as frequency increases. At frequencies

below 3 kHz, the admittance of the beam at kd is so low, that even with the well

defined forced wavenumber ridge, the velocity spectrum does not exhibit a ridge

at the drive wavenumber. At these low frequencies, the freebending wavenumber

dominates the response of the structure. The overall spectrum of the velocity

response is much lower than the other experiments because most of the energy of

the force spectrum falls into a low admittance region. The system resonance is

very much subdued as compared to some of the other experiments, and cannot

be seen in the force wavenumber content. The grating lobe appears at such a

high wavenumber that the velocity content is not disturbed at that wavenumber.

5.4.2. Seventeen Shaker Experiments

The results for the five seventeen shaker experiments are now presented.

The force wavenumber-frequency spectra for the nine and seventeen shaker

experiments are very similar. The major difference between the two is due

to the shaker spacing; the periodicity of the seventeen shaker force spectra is
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cm - 1 . Hence. the grating lobes are separated farther from the main-lobe

and the periodic repetition of the freebending wavenumber parabola is centered

further away from the origin. The means by which the results from the first four

seventeen shaker experiments are to be presented is to point out any differences

from the corresponding nine shaker experiment and any other noticeable features.

The first four seventeen shaker experiments are driven at the same wavenum-

ber as the nine shaker experiments (see Table 2.2). The force and velocity spectra

for the matching experiments are very similar. The force, predicted velocity

and measured velocity wavenumber-frequency distributions for Experiment 5 are

shown in Figures 5.37-5.39 respectively, for Experiment 6 (one wavelength over

the structure) in Figures 5.40-5.42, for Experiment 7 (two wavelengths over the

structure) in -Figures 5.43-5.45 and for Experiment 8 (4.5 wavelengths over the

structure) in Figures 5.46-5.48.

The major differences seen between the nine shaker experiment of a particular

force distribution and the seventeen shaker experiment with the same force

distribution are summarized in this paragraph. In Experiments 5 and 6, there

are no grating lobes present at k. = r,/2 cm - 1 (Figures 5.37 and 5.40). Thus.

the velocity spectra for these two experiments (see Figures 5.38 and 5.41) do

not exhibit a ridge at this wavenumber as do the predicted spectra for the nine

shaker experiments. In all of the seventeen shaker experiments, the grating lobes

of the force wavenumber distribution occur at a wavenumber that is too large

to noticeably excite the velocity. In Experiment 6, the system resonance is very

strongly excited, more so in the measurement than the theory. For Experiment 7,

the forced wavenumber ridge is even more poorly defined than for Experiment 3

as can be seen in Figures 5.31 and 5.43. The velocity spectrum for this experiment

looks, however, very similar to the corresponding nine shaker experiment. For
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the Experiment S. again the nine shaker experiment seems to have had more

success in prescribing a coherent forced wavenumber ridge at kd as shown in

Figures 5.34 and 5.46. Especially at the higher frequencies (above 9 kHz), the

ridge for the seventeen shaker experiment breaks up. The resulting velocity

response is characterized by a forced wavenumber ridge that is less coherent

than for the nine shaker experiment.

Experiment 9 is unique to the seventeen shaker experiment as the shakers

are excited at the Nyquist rate. The peak of the force wavenumber spectrum

occurs at k, = 7r/2 cm- 1; in Figure 5.49 the success in prescribing the drive

wavenumber can be seen. Because the drive wavenumber corresponds to a

freebending wavenumber at 60 kHz, the main-lobe of the force wavenumber

content does .not interfere with the freebending wavenumber region. So the

influence of the freebending wavenumber along with the periodic repetition of

the negative wavenumber branch emanating from k. = 7r cm - 1 can be seen on

the force wavenumber spectrum. The predicted velocity spectrum display the

forced wavenumber ridge beginning at 7 kHz (see Figure 5.50). The measured

velocity, presented in Figure 5.51, also shows a ridge at the forced wavenumber,

but at higher frequencies. A slice of the predicted and measured velocity surfaces

is presented in Figure 5.52 at a frequency of 11.9 kHz. The drive wavenumber

for this experiment is the same as the grating lobe for Experiment 1. In the

Experiment 1, the measured wavenumber velocity spectrum did not result in

any ridge at the high wavenumber, while in Experiment 9, in the absence of

the strong low wavenumber velocity field, the high wavenumber variations were

detected experimentally.

In summary, several important results were discovered. The ability to steer

the wavenumber content of the array of point sources merely by steering the drive
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Figure 5.52 Comparison of the magnitude of the predicted spec-
trum versus the measured spectrum for Experiment 9
at a frequency of 11.9 kHz.
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voltages was shown. In general. the velocity spectra in the low wavenumber

region was accurately measured. The accuracy of the measurement system

(using the theoretical values for comparison) in the high wavenumber region

for this system (above 1.5 cm - 1 ) was improved by using an array of shakers to

provide excitation concentrated in the high wavenumber region. The ability in

Experiment 9 to measure the forced wavenumber ridge while in Experiment 1 the

system was not able to measure velocity components at the same wavenumber

demonstrates the improved capability.

5.5. Relationship between Force and Velocity in Wavenumber Space

In this section, the relationship between the wavenumber-frequency spectrum

of the force and that of the velocity field is investigated. The finite beam

admittance as defined in Chapter 3 is

Hf(kZW) = V(kz 1)(5.5)

Q(k±,w)

Both the normalized force and the normalized velocity spectra are normalized

to the force measured at the center of the beam. The units of this function

are those of admittance (centimeters per dyne seconds). The examination of

this function centers around the postulation in Chapter 3 that the finite beam

admittance should approach the infinite beam admittance when the amplitude of

the force wavenumber spectrum is high. To this end, the frequency variation of

the predicted and measured finite beam admittances are compared to the infinite

beam admittance as a function of frequency at the drive wavenumber. The

FORTRAN program COMPARE (see Appendix C), computes the admittance of

the various functions at a wavenumber as a function of frequency and plots the

results. The wavenumber at which the results are presented corresponds to the

bin of the FFT that is closest to the drive wavenumber. The notation on the
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plots. -exact transform", indicates that the finite beam admittance is calculated

using the analytic Fourier transform solution to the wavenumber velocity.

In Figures 3.53a and 5.53b. the three admittances for each of Experiment 1

and 5 are displayed. The drive wavenumber is 0 cm - '. All six of the plots are

virtually identical. The success in prescribing a high force output at the drive

wavenumber resulted in the finite beam admittance being the same as the infinite

beam admittance. At the zero wavenumber, the beam acts as a lumped mass

and the admittance looks masslike.

The admittance for Experiment 2 and 6 are shown in Figure 5.54a and 5.54b

(respectively). For the finite beam admittance a peak is seen around 3 kHz

for both the nine and seventeen shaker experiments. This peak occurs at a

lower frequency for the seventeen shaker experiment; otherwise the finite beam

admittance for nine and seventeen shakers are the same. Note also the excellent

agreement between the predicated ind measured values for the finite beam

admittance. Also, the infinite beam admittance is very close to the finite beam

admittance except around 3 kHz. The drive wavenumber for this experiment is

0.16 cm - ' and the center of the nearest bin of the FFT (for which the data are

presented) is 0.147 cm - .

The drive wavenumber for the third and seventh cxperiments is 0.332 cm - 1 .

A freebending wavenumber of the same value occurs around 5 kHz. The

admittances are shown at k, = 0.344 cm - 1 on Figure 5.55a and 5.55b. The

maximum of the infinite beam admittance occurs at the freebending frequency for

that wavenumber. The theory and experiment generally agree in the estimation

of the admittance for the finite beam. For the finite beam admittance, the first

peak in the admittance of the nine and seventeen shaker experiments takes place

at nearly the same frequency. The second peak of the finite beam admittance
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Figure 5.53 Plots of the analytic and experimental finite beam
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for Experiment 7 occurs at a lower frequency than does the second peak for

Experiment 3. Above the second peak. the admittances of the finite beam for

both experiments collapses to the infinite beam admittance. Recall that the

force wavenumber spectrum for these experiments was the least defined and this

results in part of the discrepancy. However, further investigation is required to

determine what effect the proximity of the freebending wavenumber has on the

finite beam admittance.

For the nine and seventeen shaker experiments whose drive wavenumber

corresponds to 4.5 wavelengths across the length of the beam. the finite beam

admittance generally stays close to that of the infinite beam; as pictured in Figure

5.56a and 5.56b. Upon examination of the force wavenumber spectra for bothl

experiments (Figures 5.34 and 5.46), the main-lobe for the nine shaker spectra

is better defined and this is probably why the finite beam admittance for this

experiment stays closer to the infinite beam admittance.

The finite beam admittance for Experiment 9 is shown in Figure 5.57. There

are some fairly large deviations between the predicted and measured values of the

finite beam admittance. This is expected as the wavenumber here is 1.57 cm - 1

and at these wavenumbers the measurements are more difficult. Note that the

experimental results generally lie below those for the predicted admittance; this

may be attributed to the decrease in the sensitivity of the accelerometer at the

higher wavenumbers. The finite beam admittances still follow the trend of the

infinite beam admittance.

For completeness, similar plots for Experiment 2 at the wavenumber of

0.69 cm - ' where the magnitude of the force wavenumber spectrum is low are

shown in Figure 5.5S. The finite beam admittances show no similarity to the

infinite beam admittance except perhaps at the higher frequencies.
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The postulation has been made that the finite beam admittance should

approach the infinite beam admittance at a wavenumber where the force

amplitude is high. The analysis and results presented in this section certainly

point in this direction.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

In this thesis, the experimental and theoretical aspects of exciting and

measuring the wavenumber-frequency spectrum of a finite structure have been

examined. A system that steers the force amplitude of an array of shakers

to a particular wavenumber have been developed. The response of a free-

free beam to this excitation have been measured experimentally and predicted

theoretically. Experiment and theory have been shown to match very well, both

in point transfer admittances and in the comparison of wavenumber spectra. The

relationship between the wavenumber dependence of the force and the velocity

have been examined and caste in terms of the finite beam admittance. The

finite beam admittance have been shown experimentally to approximate the

infinite beam admittance in regions of wavenumber-frequency space where the

force amplitude is high. Also, in these regions the finite beam admittance for

experiments using nine shakers and seventeen are nearly the same.

In order to measure the relation between the force and the velocity, one must

be reasonably sure that it is the actual force and velocity spectra that are being

measured. Hence, it have been a major emphasis of this study to understand

the means by which the two quantities has been measured. To this end, the

wavenumber sensitivity of an array of sensors has been developed. The effects

of using different types of measurement arrays hp.s been examined. Equivalent

circuit modeling has been used both to predict the overall response and the

output of the shaker/force gage. The predicted force output and force gage

sensitivity have been shown to be commensurate with the measured values. These

predictions have been a used as a check on the validity of the measurements and
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the calibration procedure.

6.2. Recommendations

Further theoretical and experimental study into the relationship between

the wavenumber-frequency content of the force and the velocity spectrum is

indicated. A more complete analysis of the results of Section 3.6 would yield

a theoretical model for analysis of any possible exceptions to the empirical

observations made relating the force to the velocity. Also, further examination

of the data obtained in this thesis would aide in this analysis.

This method of force excitation and velocity measurement could be applied

to structures coated with compliant layers. By using the measurement system,

the filtering action of these coatings might be parameterized. Hence, this system

could be a useful tool in the better design of compliant layers.

Finally, the use of other spectral estimation methods in examining the

response of the structure would be useful [26]. By using so-called high resolution

methods (e.g., maximum likelihood, maximum entropy and the extended Prony

methods), the individual mode shapes might be resolved. With this information,

the relation between the force and velocity would become more straightforward.
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APPENDIX A

PVF-2 FORCE GAGE DESIGN

A schematic of the force gage design using PVF-2 as the piezo-active

component is shown in Figure A.1. This design proved to be mechanically

unsuitable. Upon repeated attachment and removal from the structure, the force

gage would delaminate. This problem motivated the use of the PZT-4 force gage

which is more sturdy.

The components and their dimensions are shown in Table A.l. The force

gage is constructed in the following manner. First, two pieces of PVF-2 are

sandwiched around the inner brass shimstock (which is the positive lead). The

surface of positive polarity of each of the pieces of piezo-film are glued facing each

other toward the inner brass using Devcon five-minute epoxy. Next, the longer

and wider strip of brass shimstock is folded in half. The sandwiched combination

is inserted into the the now folded outer brass shield. At this point, the area

over the PVF-2 is glued to the outer brass shield and held in a vise while a bend

is made at the point 1.27 cm from the fold point of the outer brass. This bend

allows for the force gage to fit nicely over the headmass of the shaker. After this

gluing is complete, the center conductor of a low noise coaxial cable is soldered

to the inner brass shimstock. This is the positive electric terminal. The exposed

positive connection (the combination inner brass shimstock and coaxial cable)

is covered by flexible insulating material. The outer brass is then glued to the

insulating material. Finally, the shield wire of the coaxial cable, which has been

dressed back, is soldered or glued using conductive epoxy to the outer brass

shimstock.
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s TRANSDUCER THICKNESS OVER ACTIVE
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Figure A.1 Schematic of the PVF-2 force gage design.
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Table A. 1 Materials used in PVF-2 transducer.

Description of Section Material Dimensions (cm)

length x width x thickness

Outer shield Brass shim 3.49 x .4 x .00254
Force cell PVF-2 1.43 x .35 x .0052

Positive lead Brass shim 1.75 x .3 x .00254
Flexible insulation Kapton C'ot tc size

The PVF-2 may be cleaned using a Freon based solvent. The other

components of the force gage are cleaned before gluing using the procedures

mentioned in Chapter 2.

The force gage is glued to the top of the headmass. The force gage/shaker

is then glued to the test structure. Initially, the force gage sensitivity (measured

using the same procedure as in Section 2.3.4) amplitude and phase was very

flat as a function of frequency. However, as the force gage was removed and

re-attached to the structure, the sensitivity was altered. It was obvious upon

inspection, the the force gage layers were becoming unglued and the force gage

was rendered useless.
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APPENDIX B

MASS LOADING OF THE FORCE GAGE

In this appendix. the manner by which the effect of the mass below the force

gage may be removed from the measured data is presented. There are three

quantities which require the mass loading effect to be removed, the drive point

admittance, transfer admittance and the normalized force measurements. The

mass loading effect causes an error in the force measured by the force gage, as

described in Chapter 4. Essentially, the force applied to the structure differs

from that measured by the force gage by the impedance of the mass loading

times the velocity at that point. The results are presented in the same order as

the algorithm used to correct the errors must be written. This is because the

first result is used to correct the second mass loaded quantity and the second to

correct the third.

The first quantity examined is the measured drive point admittance at the

center of the beam, denoted as Ac. Note that all quantities are understood to be

functions of frequency, w. The measured drive point admittance in the center is,

- e
AC FZ , (B.1)

where ZL = JW-MIL, Fc is the force applied to the structure at the center of the

beam, and vc is the velocity measured at the center of the beam. The quantity

ML is known from the analysis of Section 4.4. The denominator of Equation (B. 1)

is the measured force. The desired quantity is A, the velocity divided by the force

applied to the structure. .41 is related to the measured quantity by,

= - A (B.2)

From this equation it can be seen that if the product of the measured admittance

of the beam and the impedance of the mass loading is much less than one, the
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measured and the actual admittance are the same. This product will generally

be much lower than one for the beam and the shaker used in tnis thesis.

The second quantity of interest is the measured transfer admittance, A or.

Vi
Ai=F ZLV ' (B.3)

where vi is the velocity at the ith location. The actual transfer admittance , Ai

is
vi A,

Ai = _.Ac ,(B.4)
Fc AC

where both the measured and corrected drive point admittances have been used

in the correction of the transfer admittance.

The final quantity to be corrected is the normalized force measured at each

of the shakers, FtN ,

Fi + ZLV (B.5)
.Fc + ZLV(

The desired quantity is FI/F or FN which is obtained using the previous

correction for Ai. The corrected normalized force is

F N = [Fi/Ac - ZL]A, , (B.6)

which may be verified by substitution.

In Figure B.1, the difference between the corrected and uncorrected drive

point admittance is shown for Experiment 3. This experiment was chosen because

the admittance of the beam rises above the admittance of the mass loading. This

means that the product of the beam admittance and the mass impedance will be

around one. The plot shows that only when beam admittance is above the mass

loading line does the corrected admittance vary from the measured. However.

the general trend of the data is not significantly altered for the purposes of this

study. Hence, the mass correction algorithm has not been implemented to correct

the entir- data set.
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APPENDIX C

CITED COMPUTER CODE

In this appendix, the computer code cited in the text of the thesis is listed

in order of citation. The first program listed is FORCE.FILTER.

1 PROGRAM Force-Filter

2 c... This program caculates the weighting coefficients for the

3 c... drive voltages.

4 CHARACTER *20 name
5 REAL PLT(512),PHS(512)

6 COMPLEX W(512),etap(lO0)

7 COMPLEX WW(256),SUM,c-i

a c-i= (0.0,I.0)
9 pi : 3.141592654

10 beam-length = 37.9

11 NUMWAV = 128

12 C... input location for the number of shakers.

13 12121 vrite(6,*) ' input number of points in filter'

14 READ(S.*)num

15 c... finding spatial locations for the shakers in real non-dimensional
16 c.. space (length of the bar is one.)

17 C.. this method places one shaker in the middle and symmetrically out

is c.. from this shaker locates the rest of the shakers

19 if(num.eq.9)then

20 do i = 1,num

21 etap(i) = (2.95 + float(i-1)*4.)/beamlength

22 enddo

23 elseif (num.eq.17) then

24 do i = 1,num

25 etap(i) = (2.95 + float(i-1)*2.)/beamlength

26 enddo

27 else

28 write(6,*) ' input either 9 or 17 shakers'

29 goto 12121

30 ENDIF

31 C...

32 C... forcing window options are:

33 C... 1) rectangular window

34 C... 2) Kaiser-Bespil window

35 C... 3) Hannning window

36 C... 4) Self input of window coeficients

37 C... option held in variable i-flag
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38 C...

39 write(6,*) ' input rect (1), kaiser (2) or hanning(3) self(4).'

40 read (5,*) i.flag

41 C...

42 C... rectangular window

43 if (i-flag . eq . 1) then

44 DO I = 1,NUM
45 W(I) = cmplx(1.0,O.)

46 ENDDO

47 C... Kaiser-Bessel window
48 elseif(i-flag . eq . 2) then

49 write(6,*) ' input alpha'
50 read(5,*) alpha
51 CALL KAISER(W,NUM,ALPHA)

52 c... Hannning window

53 elseif(i-flag . eq . 3) then

54 DO I =1,NUM
55 arg = etap(i)*2.*pi
56 W(i) =.S*(I- cos(arg))

57 ENDDO
58 C... self input option

59 elseit(i-flag.eq.4) then

60 do i = 1,num
61 write(6,1111)i

62 read(S,*)w(i)

63 dd write(6,1112)i

64 dd read(5,e)etap(i)

65 enddo

66 endif

67 1111 format(' input force number ',i2)

68 1112 format(' input location number ',i2)

69 C...

70 c... In this section, the wavenumber content is shifted using a

71 c... symmetrical cosine weighting. The number of waves across

72 c... the length of the beam is used as the means for determining

73 C... the drive wavenumber.

74 write(6,$) ' input cos weight(l) or not'

75 read (5,$) i-cos

76 if (i-cos.eq.1) then
77 write(6,*) ' input desired waves over the bar(k/2pi)'

78 read (5,$) x-k

79 do i =l,num

80 arg = (eatap(i)-.5)*2.sx-kepi

81 V(i)= W(i)*cos(arg)
82 write (6,.*)w(I)
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83 enddo

84 endif

85 C ....

86 c .... output files

87 C ....

88 type 1512

s9 1512 format(' input file for force mag wave-freq plot file-->' .$)

90 read(5,10)name

91 open(unit=11,file = name , status = 'new')

92 type 1513

93 1513 format(' input file for force phase wave-freq plot file-->',$)

94 read(5,10)name

95 open(unit=12,file = name , status = 'new')

96 gavmm = -1000.

97 C...

9s c... This section performs the Fourier transform as per Equation 2.27.

99 C...

100 do k = -num-wav, numjwav
101 sum = cmplx(O.,0.)
102 x-wav-num = float((k))/2.

103 do j = 1,num

104 sum sum + wj)*cexp(-xwav_num*
105 > c-i*etap(j))

106 enddo ! enddo tor j

107 C... set up for plotting routines. Normalize data to maximum point

108 c...

109 mep = cabs(sum)

110 if (temp.eq.0.0) then

111 temp = .0000001
112 sum : cmplx(0.000001,0.0000001)

113 write(6,*) zero'

114 endif

115 plt(k) = 20*logtO(temp)

116 phs(k) = atan2d(aimag(sum),real(sum))

117 it (plt(k).gt.avm) then
1S wavmm=plt (k)

119 i-rem = k

120 endit

121 eanddo :nddo for k

122 C...

123 1222 format(20a4)

124 10 format(a20)

125 C...

126 C... write transformed data to data tiles.

127 C...
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128 DO I = -num-wavDuum-av

129 plt~i) = plt~i) - wavam

130 phs(i) = phs~i) - phsi-.rem)

131 it Cphs~i) . it . -180.) phs~i) =phs(i) +360.

132 xx = float~i)/C2.*beam-.length)

133 write~ll,*)xx,plt~i)

134 write(12,*)xx,phs(i)

135 ENDDO

136 C . ..

137 C .. .

138 close~uiiit=11)

139 close~uiiit=1O)
140 OPEN CUNIT=1O.FILE='weight.DAT' ,STATUS='NEW')

141 OPEN CUNIT=1i.FILE='vphase.DAT' ,STATUS=INEW')

142 C ... write spatial weighting coefficients

143 DO I = 1,NUM

144 WRITEC10,*)float(I)-l.,cabsCW(I))

145 WRITEC11,*)float(l)-l. ,atan2d~aimagCV(l)) .realCWCI)))

146 ENDDO

147 CLOSECUNIT=11)
148 CLOSECUNIT=1O)
149 STOP
15o END

151 C

152 C

153 C

154 SUBROUTINE KAISER (V,N.ALPHA)

155 C ... Kaiser-Bessel weights. Algorithm from Carter Ackerman

156 COMPLEX W1(612)

157 F = (FLOAT(N)+1.)/2.

158 PIA = 3.1415927*ALPHA

159 BD = AIVOCPIA)

160 DO 1 I 1,N

161 BN = AINO(PIA*SQRT(1.-(FLOATCI)/F-1.)**2))

162 1 W(I)=CMPLXCBN/BD,O.0)

163 RETURN

164 END
165 C..-

166 FUNCTION AINrj(X)

16-, C X BETWEEN 0. AND 20.

I" Y = X/2.

169 T =IE-

170 E = 1

171 DE1=

172 DO 1 I z 1,25
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173 DE = DE*Y/FLOAT(I)

174 SDE = DE**2

175 E = E+SDE

176 IF(E*T-SDE)1,1,2

17" 1 CONTINUE
178 2 AINO = E
179 RETURN

i80 END

The next program listed is VALTIM, the program that compares the

measured to the predicted admittance.

1 program valtim

2 C ------------------------------------------------------------------

3 c This program calculates the adittance and phase of a
4 c Timoshenko bar in cm-dyne-sec units and compares it to
s c measured values. The measured data is in g's and pounds-force

6 c and must be converted to cm-dyne-sec.

7 c This program is a combination of the work of F.M. Hutto

s c and K. Grosh.

9 c This specific program is for the first three nine shaker

10 c experiments.

11 C ----------------------------- --------------

12 REAL E,G.RHO,IX,AREAAK,ONE,TWOTWEN,LN,AIFSN

13 REAL PI,ZERO,BBT,BAL,FREQ
14 REAL OMG(0:40),PHI(O:40),B(0:40).AL(0:40),CETA

15 REAL BT(0:40).DEL(0:40),CHE(0:40),LAMDA(0:40)
16 REAL DF.B,q(2),qy(2)

17 REAL ETAP(10),BBTE,BALE.FRQ(450)

is REAL YR(0:40,20)

19 REAL Y(201,2),XR,YI,PBS(201,2).fa

20 REAL ORT(0:40),PENS(2),PNTS(2)

21 INTEGER I,J.K,N,Zind
22 COMPLEX*8 DISP(250) ,CY,SUM,DNOI(250,O:40) ,KO(1O) ,SSUM

23 COMPLEX*8 FC(20,20) SUMS

24 CHARACTER*20 NANE,N1,12

25 CHARACTER*i P,ff,esc

26 C...

27 C -------------------------------

28 c The values used are:

29 c E (elastic modulus) = 210E10 dynes/cm-2

30 C G (shear modulus) = 77E10 dynes/cm-2

31 c IN (area moment of inertia) = bh'3/12

32 C wd (width of beam) = 1.27 cm.
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33 C ht (height of beam) 1.92 cm.

34 c RHO (density of material) =7.8 grams/cm-3

35 c LM (length of beam) =37.9. cm.

36 C AK (cross sec. constant) =.833

37 c DF (damping factor) =.05

38 C ---------------------------------------------------------------------

39

40 DATA E,G,ONE,RHO,LM,wd,ht / 210EI0 , 77EI0

41 1 1. , 7.8 , 37.9 ,1.27,1.91/

42 DATA ZEROAK,TWEN,TWO / 0.0 , .833 , 19. , 2. /

43 PI=4*ATAN(ONE)

44 df = .05

45 PENS(1)=1.0

46 PENS(2)=2.0

47

48 PNTS(1)=201.

49 PNTS(2)=201.

50 area = wd*ht

51 im = wd*ht**3/12.

52 MB=(RHO*AREA*LM)

53 P=,\ '

54 C ---------------------------- ----------------

55 C There are nine Doint forces:
56 C

57 M=9

b8 C

59 -------------- - ------------- ----- ---- ------------------ -

60 C

61 c reading in the eigen-frequencies

62 C

63 C

64C ----

65 OPEN ( UNIT=1O , FILE='[grosh.kgl.bar]bsfreq.DAT' ,TYPE='OLD' )
66 DO I=2,21

67 READ (10,*) OMG(I)

68 OMG(I)=OMG(I)*2*PI

69 END DO

70 CLOSE ( UNIT=1O )
71 OMG(O)=0.O

72 OMG(1)=O.O

73 C...

74 c... Reading in the orthoganality constants

75 C...

76 OPEN(UNIT=10,FILE=' Cgrosh.kgl.bar]bsort.dat',STATUS='OLD')

77 DO I=2,21
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78 READC1O.*) ORTCI

79 END DO

8o CLrSE(UNIT=10)

6] ORT(O=i.O

a2 ORTC1)=CLM**2)/12

83 c... reading in forcing function data -- this is assumed to be a constant

84 c ... no matter where the accelerometer is
85 c-------------------opening file of force data----------

86 type 1511

87 1511 format(' input force file-->',$)

88 readC5,1O)xiame

89 OPEN(UNIT=1O,1'ILEname.TYPE= 'OLD')

90 DO0J=1,M

91 IFCJ.NE.(M+1)/2) THEN

92 DO I=1*,PNTSC1)

93 READ(1O,1300) FRQ(I) ,FA,PEASE
94 FA = 10**CFA/20.)

95 FCCI,J) = FA*CMPLX(COSDCPHASE),SINDCPHASE))

96 END DO

9T ELSEIF(J.EQ.CN+1)/2)THEN
98 DO I=1,PNTSC1)

99 FC(I.J) = CMPLX(1.O,O.O)
100 EIDDO

101 endif
102 EN DO

103 CLOSECUNIT=1O)

104 1300 FORMATC1X,F5.2,F12.6,F7.2)

105 c -------------- closing tile ot force data ---------------------

106 C..

107 R=SQRTCIM/(AREA*LM**2))

108 S=SQRTCE*IM/(AK*AREA*G*LM**2))

log C -------- - ------------- ----- ---- --- ---------------

110 DO I=2,21

ill BCI)=SQRT(RHO*AREA*OMG(I)**2*LM**4/(E*IM))

112 ALCI)W(((R**2-S**2)**2+4/B(I)**2)**.S-R**2-S**2)**.b

113 1 /SQRT(TWO)

114 BT(I)=(((ft**2-S**2)**2+4/B(I)**2)**.5+R**2+S**2)**.5

115 1 /SQRT(TWO)

116 LAMDA(I)=AL(I)/BT(I)

117 CHECI)=(BT(I)**2-S**2)/(AL(I)**2+S**2)

118 BAL=B(I)*AL(I)

119 BBT=B(I)*BT(I)

120 IF (BAL.GT.TVEI) GOTO 170

121 DEL(I)=(COSHCDAL)-COSCDDT))/(LAMDA(I)*SINR(BkL)-

122 1 CHE(I)*SIICDBT))



174

123 GOTO 171

124 170 DEL(I)=I/LAMDA(I)

125 171 CONTINUE

126 END DO

127 C ---------------------------------------
128 C CALCULATIONS DUE TO THE FORCING FUNCTION.

129 C

130 do i = 1,m

131 etap(i) =(2.96 + (i-1)*4. )/lm

132 euddo

133 C-- -- - -- -- - -- -- - -- -

134 DO J=l,M

135 YR(O,J)=i.0

136 YR(1,J)=ETAP(j)-.5

137 DO I=2,21

138 BBT=B(I)*BT(I)

139 BAL=B(I)*AL(I)

140 BBTE=BBT*ETAP (J)

141 BALE=BAL*ETAP(J)

142 IF (BALE.GT.TWEN) GOTO 200

143 YR(IJ)=(COSH(BALE)+COS(BBTE)/CE(I)-LAMDA(I)*DEL(I)
144 1 *SINE(BALE)-DEL(I)*SIN(BBTE))

145 GOTO 201

146 200 YR(IJ)=(COS(BBTE)/CHE(I)-DEL(I)*SIN(BBTE))

147 201 CONTINUE

148 END DO

149 END DO

150 c... loop 2o;t
151 C...

152 C------------------------------------------------------

153 C SET FOR READING IN DATA

154

155 WRITE(S,*) 'WHAT IS THE NAME OF THE DATA FILE?'

156 READ(5,10) NAME

157 10 FORMAT (A20)

158 OPEN(UNIT=21,FILEname,STATUS='OLD')

159 DO I=1,PNTS(2)

160 READ (21,*)ii, frq(i),Y(i,2),PHS(I,2)

161 phs(i,2)=phs(i,2)-180.
162 it (phs(i,2).gt.180.) phs(I,2)zphs(i,2)-360

163 it (phs(l,2).It.-180.) phs(I,2)=phs(i,2)+360

164 END DO

165 CLOSE(UNIT=21)

166 name(20:20)'$'

167 TYPE 1313
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i6s 1313 format (' input ceta-->',$)

169 READ(S,*) ceta

170 C-------------------------------------------------------------------

171 C CALCULATING EIGENFUNCTION FOR A PARTICULAR POINT ON THE BEAM

172 C FOR THE FIRST 21 MODES

173 C

174 C

175 C

176 C ------------------------------------------------

177 C--------------------------------------------------- ------

178 C

179 C CALCULATION OF THE EIGENFUNCTIONS FOR DIFFERENT FREQUENCIES

ISo C AT A SINGLE POINT "CETA". THE EIGENFREQUENCIES ARE FOR A FREE-FREE

181 C BEAM OF THE TIMOSHENKO TYPE TAKING INTO ACCOUNT SHEAR ARE ROTARY

182 C INERTIA EFFECTS

183 C

184 C----------------

185 DO 1=2,21

186 BBT=B(I)*BT(I)

187 BAL=B(I)*AL(I)

IS SALE=BAL*CETA

189 BBTE=BBT*CETA

190 IF (BALE.GT.TWEN) GOTO 150

191 PHI(I)=COSH(BALE)-LAMDA(I)*DEL(I)*SINH(BALE)+

192 1 COS(BBTE)/CHE(I)-DEL(I)*SIN(BBTE)

193 GOTO 151

194 150 PHI(I)=COS(BBTE)/CHE(I)-DEL(I)*SIN(BBTE)
195 151 CONTINUE

196 END DO

197 C------------------------

198 C THE RIGID BODY MODES. BOTH ROTARY AND TRANSLATIONAL

199 C

200 PHI(0)=1.0

201 PHI(1)=.5*(CETA-.5)

202 C ------------------

203 DO Z=I,PNTS(l)

204 FREQ=FRq(Z)*1000. *2*PI

205 SSUM=CMPLX (ZERO,ZERO)

206 DO I=0,21

207 DNOI(ZI)=1/(MB*ORT(I)*(OMG(I)**2*CMPLX(ONE,DF)-FREQ**2))

208 SUMS=CPLX(.0,0.0)

209 DO J=lM

210 SUMS=SUMS+FC(Z.)*YR(I,J)

211 ED DO

212 SSUN=SSUK+DNOI(Z, I)*SUMS*PHI(I)
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213 END DO

214 cy = SSUM*cmplx(O.O.freq)

215 y(z,1) = 20*loglO(cabs(cy))

216 phs(z,l) = atan2d(aimag(cy),real(cy))

217 END DO

218 C.................................==.=====.

219 C

220 C

221 C PLOTTING ROUTINE GOES HERE
222 C

223 C

224 C

225 C- - - - - - - --

226 C

227 STOP

228 END

229

230

The source code for the FORTRAN program ARRAY-EFFECT is given next.
1 program array-effect

2 C...

3 c... This program allows for the comparison of the analytic and
4 c... discrete Fourier transform of the velocity response of a

5 c... Timoshenko beam to the experimentally measured forcing function.
6 c... Also, the experimentally obtained velocity response may be

7 C ... plotted as well. The number of sensors used to measure the

8 c... theoretical response may be varied as

9 c... well as the measurement frequency. These results are plotted as

10 c... a function of wavenumber at a particular frequency.

ii real x(64,4),y(64,4),fftfor(64,101)

12 complex fc(20,201)

13 character name*40

14 common frequency. irun,num-accel, ihan,m

IS type *,' input forcing file'

16 accept 100,name

17 100 format(a40)

18 type *.'number of shakers'

19 accept *,m

20 type *, 'run number'

21 accept *,irun

22 if (irun.le.3) num-rd-fzeq = 201

23 if (irun.gt.3) num.rd-freq = 101

24 C... Reading in the forcing function.

25 OPEN(UNIT=10,FILEzname, TYPE='OLD')

26 DO J 1,m
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27 IF(J.NE.(N+1)/2) THEN

28 DO I=1,num-rd-freq

29 READ(1O,133) xxx,FA,PHASE

30 FA = 1O**(FA/20.)

31 FC(J,i) = FA*CMPLX(COSD(PEASE).SIND(PHASE))

32 END DO

33 ELSEIF(J.EQ. (M+I)/2)THEN

34 DO I=1,num-rd-freq

35 FC(J,i) = CMPLX(I.0,0.0)

36 ENDDO

37 endif

38 END DO

39 C...

40 133 format (x,f5.2,f12.6,f7.2)

41 CLOSE(UNIT=10)
42 c... Construction the name of the experimentally measured

43 C... velocity response in case this option is desired

44 if (m.eq.9)name =fft'//name(3:)//'a'//name(8:8)//'m'

45 if (m.eq.17)name ='fft_'//name(3:6)//'a'//name(9:9)//'m'

46 type *,name

47 open (unit=19,form='unformatted ,status='oldl ,file=name)

48 read(19)fftfor

49 close(unit=19)

SO call prompt(idev) ! plotting initialization subroutine.

51 C...

52 C... Which frequency and then decide in-which frequency bin does

53 C... the chosen frequency falls.

54 11000 type *,' which frequency I

55 accept *,frequency

56 fmin = 2000.

57 fmax a 12000.

58 ibin = int(float(num-rd-freq-1)*(frequency-fmin)/10000.)+

59 iibin~int(100.*(freqency-fmin)/10000. )+1

60 C...

61 c... Call the analytic Fourier transform of the velocity response.

62 call exftfb(frequencyfc(1,ibin),m,x(1,1),y(1.1))

63 do . = 1,64

64 x(i,3)=x(i,l)

65 y(i,3)=fftfor(i,iibin)

66 enddo

67 c...

68c ... Input the number of sensors for the theoretical FFT of the

69 c... velocity.

70 type *.' input number of accel'

71 accept *,nu.accel
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72 C ... Call the theoretical FFT of the velocity.
73 call theo-.fft~frequency~ihan,fc(libin) ,num-.accel,m,x(1,2)

74 > y(Ij2))

75 type *,' enter nil-curves'

76 accept *,num curves

77 call xyplot(x,y,num..curvesidev) !plotting routine.

7 C ... begin again?

79 type *,' another frequency(l)'

so accept *, iopt

81 if (iopt.eq.1)then

82 do i = 1,64

93 y~i,1)=0.0

84 y(i,2)=0.0

85 y~i.3) = 0.0
86 anddo

87 goto 11000

88 endif

89

90 call donepiCO)

91 stop

92 end

93 C ...

94 C ...
95 subroutine *xftfb(frequency .fc,m~hold.vout)

96 c... this program reads in the forcing function experimentally measured
97 C... and uses it in a model for the exact spatial fourier transform
98 c... of the timoshenko beam.
99 c ...

100 REAL E,G,RHO,IM,AREA,AK,ONE,TWO,TWEN,L,A1,FSI

101 REAL PI,ZERO,BBT.BAL,FREQ
102 REAL ONG(:40),B(0:40),AL(O:40).CETA
103 REAL BT(0:40) .DEL(0:40) ,CHEC:40) ,LAMDA(:40)

104 REAL DF,MB~resp(64,1O1)
105 REAL ETAP(20) ,BBTE,BALE.FRQ(450)

108 REAL YR(:40,20)
107 REAL XR,YI.fa~hold(64)

108 REAL aRT(0:40),PENS(2).PITS(2)
109 INTEGER I,J,M,NZ~ind,kik

110 COMPLEX*S CY,SUM,DNOICO:40) ,SStIM,f..temp(20)

111 COMPLEX*8 FC(20) .SUMS.templ,temp2,PI(0:40),c-i

112 real vout(64)
113 CHARACTER*20 IAME,N1,12

114 CHARACTER*i P
115 CNARACTER*21 NAMEP
118 ------------ ---- - ------ ---- --- -- -
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117 DATA ONE / 1. /

li1 DATA ZERO,TWEN,TWO / 0.0 , 12. , 2. /
119 PI=4*ATAN(ONE)
120 c... constants the units are cgs system.

121 a = 210lO ! young's modulus

122 g = 77 eO ! shear modulus
123 rho = 7.8 ' density

124 ak a .833 ! kappa the shape factor
125 df = .05 ! damping factor
126 num-eig=21 number of modes used
127 lm = 37.9 ! length of the beam

128 wd = 1.27 ! width of the beam

129 ht = 1.91 ! height of the beam

130 nI 'bsfreq' eigenfrequency file

131 n2 a'bsort' ! orthoganality constant file

132 ci = cmplx(0.0,1.0)

133 wav.min = 0.0
134 c... scaling of the variables back to inverse centimeters.

135 wavmax = pi*lm
136 area = wd*ht

137 im : wd*ht*$3/12.
138 B(R0*ARAF.,)

139 c...

14o c... reading in the eigen-frequencies

141 c...

142 OPEN ( UNIT=1O , FILE='(grosh.kgl.bar'//l ,TYPE='OLD' )
143 DO I=2.num-eig

144 READ (10*) OMG(I)

145 ONG(I)=OXG(I)*2*PI

146 END DO
147 CLOSE ( UNIT1O )
148 ONG(O)=O.O

149 OMG(1)=0.0
130 C ...
151 c... reading in the orthoganality constants.

1S2 C...

1S3 OPEN(UNIT:10,FILE 'tgrosh.kgl.bar //n2,STATUS='OLD')

154 DO I=2.num-eig

55 READ(10,*) ORT(I)

156 END DO

157 CLOSE(UNIT=10)
158 ORT(O)=1.0

1S9 ORT(I)=(LM**2)/12

i6o 133 format(lzfS.2,f12.6,f7.2)

161 CLOSE(UNIT:10)
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162 c ..

163 C ... location of the point sources (shakers) depends on the number of

164 C ... shakers

165 if C3.eq.g)delta=4.

166

167 it Cm.eq.17)delta=2.

168

169 do i =1,m

170 etap(i) =(2.95 + Cj-i)*delta )/lm

171 enddo

172 C ..

173 C ..

174 C ... Begin the calculation of the necessary oigen constants

175 c ..

176 R=SQRTCIM/(AREA*LI**2))

177 S=SQRT(E*IM/CAK*AREA*G*LN**2))
178 DO I=2,nu..eig

179 B(I)=SQRT(RHO*AREA*OMG(I)**2*LM**4/CE*IM))

1S0 AL(I)=(((R**2-S**2)**2+4/BCI)**2)**.5-R**2-S**2)**.5

181 1 /SQRT(TWO)

1832 BTCI)=(C(R**2-S**2)**2+4/B(I)**2)** .5+R**2+S**2)**.5

183 1 /SQRT(TWO)

184 LAMDA(I)=ALI)/BT(I)
185 CEE(I)=CBT(I)**2-S**2)/(ALCI)**2+S**2)

186 BAL=B(I)*AL(I)

187 BBT=B(I)*BT(I)

I"8 IF (BAL.GT.TWEN) GOTO 170

189 DEL(I)=(COSH(BAL)-COS(BBT))/(LAMDA(I)*SINE(BAL)-

190 1 CHECI)*SIE(BBT))

191 GOTO 171

192 170 DEL(I)1I/LAMDA(I)

193 171 CONTINUE

194 END DO

195 C...

196 C ...

197 C ... Calcualtion. of the modal expansion coefficients, a --tion

198 C ... of made shapes and the forcing function.

199 c ..

200 DO 3=1,M

201 YR(o.J)=1.0

202 Th(i,J)z .5*(ETAP(j)-.5)

203 DO I=2.nnm-.eig

204 BBT=B(I)*BT(I)

205 flALB(I)*AL(I)

206 BBTE=BBT*ETAP (3)
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207 BALE=BAL*ETAP (3)

208 IF (BALE.GT.TWEN) GOTO 200

209 YR(I ,J)=(COSH(BALE)+COS(BATE)/CHE(I)-LAMDA(I)*DEL(I)

210 1 *SINH(BALE)-DEL(I)*SIN(BBTE))

211 GOTO 201

212 200 YR(I,J)=(COS(BBTE)/CHE(I)-DEL(I)*SIN(BBTE))

213 201 CONTINUE
214 END DO

215 END DO
216 c... at each frequency dnoi holds the information about the

217 C... orthoganality of the forcing function with any of the modes
218 c... at each frequency.

219 FREQ = 2.*PI*frequency
220 DO I = O,num.eig
221 SUM=CMPLX(0.O,0.O)

222 DO J3l,M

223 SUM= SUM + FC(J)*YR(I,J)
224 END DO
225 TEMPI=I/(MB*ORT(I)*(OMG(I)**2*CMPLX(ONE,DF)-FREQ**2))

226 DNOI(I) = TEMPI*SUM*CMPLX(O.0,FREQ)Ilast part changes to velocity

227 enddo

228 C..

229 C --------------------------

230 C CALCULATE THE WAVENUMBER RESPONSE OF EACH MODE SHAPE

231 C PHI IS THE COMPLEX ARRY OF THE WAVENUMBER RESPONSE.

232 C------------

233 c do loop over gammas--------

234 c... vavenumber response of the two rigid body modes

235 do 1010 kik u 1,64

236 hold(kik) = (wavmin + (wav.max-avmin)(kik-)/64.)/lm
237 gamma = wav.ain + (wavax-avmin)e(kik-1)/64.

238 C...

239 if (gamna.ne.0.O) then

240 phi(O) = ci/gamma*(cexp(-c_i*gama)-1.)

241 phi(l) = (1./gamma**2)e(cexp(-ci*gamma) - 1.)

242 +ci/(2.*gamma)*(cexp(-c-i*gamma)+1 )
243 elseif(gamma.eq.O.O) then

244 phi(O) = CMPLX(.0,0.)

245 phi(l) x CMPLX(.5.O.)
246 *ndif
247 C.. THE TRANSFORM OF THE NON-RIGID BODY MODES.

248 DO I=2,numneig

249 BBT=B(I)*BT(I)

250 BAL=B(I)*AL(I)

251 call transforu(balbbtlazda(i) .del(i), che(i) 1.0 ,gamma
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252 >,tomp2)

253 call transform(bal,bbt,lamda~i).del(i).che(i).0.,gamma

254 > tempi)

255 phi~i) = temp2-tompl

256 euddo

257 C ---------- ----------------------------------------

258 SSUM=CMPLX(0.0,.0)
259 DO 10,num-.eig
260 SSUM=SSUM+DNOI CI) ePjH I)

261 END DO
262 vout(kik) =20*logIO~cabsCSSUO))

263 1010 continue enddo for wavenumber loop

264 10000 format(20a4)
265 return
266 end

267 C ...

268 subroutine transform(bal,bbt ,lambda,delta~zeta,xsi ,ganma~val)

269 c ... Evaluation of the analytic transform of the mode shapes.

270 real lambda

271 complex*8 val.templtemp2,c.i

272 c..icmplx(0.0,1.0)

273 bale = bal*xsi
274 bbte = bbt*xsi

275 game = ga*xsi

276 C ...

277 tempi = cexp(-c-igame)/(gammia**2 + bal**2)

278 tempi = templ*((c..i*g-Ammacosh(bale) + bal*sinh(bale))

279 >-lambda*delta*(c-i*gazma*sizih~bale) + bal*cosh~bale)))

280 C ... if argument of the hyberbolic functions is too high

281 if(bale.gt.12) tempi = 0.0
282 if (gamma . no . bbt) then

283 C ...

284 temp2 = cerp(-c-.i*gamo)/(gamma**2 - bbt**2)

285 temp2 = tomp2*(1./zeta*(c-.i*gamma*cos(bbte) - bbt*sin(bbts))

286 >-delta*(c-i*g*Amm*sin(bbte) + bbt*cos(bbte)))

287 C..

2"8 *li(gan-a . eq . bbt) then

289 te3P2 z 1./zata*Cxsi - 1./C2.*c.i*ganma)*cexp(-2.*c-.i*game))
290 >-delta*Cxsi + 1/(2.*c-.i*gamma)*cexp(-2.*c-.i*game))

291 endif
292 val = templ+temp2

293 return
294 end
295 C ...

296 subroutine theo-..ft(frequncy.ihan.c,flufl.accel,3.hold.vout)
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297 C... caic f t of responese theoretically

298 c... First the spatial response of the beam is obatained at num-accel

299 C... points. Then the FFT is taken of the respose

300 C -.................----- --- ---------

301---------------------------------------------------

302 REAL E.G,RHO,IM,AREAAK,ONE,TWDTWEN,LMA1,FS

303 REAL PIZERO,BBT,BAL,FREQ

304 REAL OMG(0:40).PHI(O:40),B(0:40).AL(0:40),CETA

305 REAL BT(0:40),DEL(0:40),CHE(0:40),LAMDA(0:40)

306 REAL DFMB
307 REAL ETAP(20) ,BBTE,BALE,FR(450)

308 REAL YR(0:40,20),x(64)

309 REAL XR,YI,PHS(SO0) ,fa,vout(64) ,hold(64)

310 REAL ORT(0:40) ,PENS(2) ,PNTS(2)

311

312 INTEGER I,JM,N,Z,ind

313

314 COMPLEX*8 CY,SUN,DNOI(0:40),SSUMtempl

315 COMPLEX*8 FC(20) ,SUNS,&(1024) ,w(512) ,reep(303)

316 CHARACTER*20 NAME,N1,12

317 CHARACTER*1 Pcone

318 CHARACTER*2 ctwo

319 CHARACTER*21 NAMEP

320 character*5 base

321 C...

322 C...

323 C...

324 C,.. The same physical constants are used in this routine as in EXFTFB

325 C...

326 C...

327 DATA E,GONE,RHO,L ,vd,ht / 210E10 , 77E10

328 1 1. , 7.8 , 37.9 .1.27,1.91/
329 DATA ZERO,AKDF,TWEITWO / 0.0 , .833 , .05 , 12. , 2. /
330 PI=4*ATAN(ONE)

331 PENS(1:1.0

332 PENS(2):2.0
333 area a wd*ht

334 in - vd*ht**3/12.

335 numnfft=128
336 MB= (RIO*AREA*LM)

337 P:)\S

338 nun-eig:21

339 c.. before things get started calculate fft weights

340 call cafft(a,w,nu-fft,O) ! FFT alogoritha

341 C... harning window option.
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342 type *' haning optioiL(1)s

343 accept *9ihan

344 C ..

345 C ... option to use spacing exactly the same as per the experiments
346 C ... or a spacing that evenly spreads the accelerometers over the

347 c ... beam for any spacing.
348 C ..

349 141 type *,I same as exp.(1) or even dist.(2)'

350 accept *,imatch
351 ii(imatch.ne.1.and.imatch.n..2)goto 141

352 C

353 C reading in the .igen-frequencies from the file

354 C BSFREQ .DAT
355 C

356 OPEN ( UNIT=10 , FILE='Egrosh.kgl.barlbsireq.DATI .TYPE='OLD')

357 DO 12,num-..ig
358 READ C10,*) OMGCI
359 ONGI)=OMG(I)*2*PI
360 END DO
361 CLOSE ( UNIT=1O
362 OMGCO)=O.O
363 OMG(1)0O.O

364 C ..

365 c ... reading in the orthoganality conatants.
366 C ..

367 OPEN(UNIT=1O.FILE=' (grosh.kgl.bwar~bsort.dat' .STATUS'IOLD')

368 DO 12num..eig

369 READ(1O,*) ORT(I

370 END DO

371 CLOSE(131T=10)

372 ORT(OW*1.O

373 ORT(1)=(LM**2)/12

374 1222 format(1x,f5.2,fI2.6,f7.2)

375 CLOSE(UNIT=1O)

376 C ... Elgenfunciton constants

377 c ...

378 R=SQRT(IM/(AREA*LM**2))

379 S*SQRT(E*IN/(kK*AREA*G*LM**2))

380 DO 1=2,num-eig

361 B(I)=SQRT(RuO*AREA*OMG(I)**2*LM**4/(E.IM))

382 AL(IW=(((R**2-S**2)**2+4/B(I)**2)**.5-R**2-S**2)**.5

383 1 /SQRT(TWO)

384 BT(I)z(((R**2-S**2)**2+4/B(I)**2)**.S+R**2+S**2)**.S

385 1 /SQRT(TVO)

3". LAKDA(I)u'AL(I)/DT(I)
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387 CHE(I)=(BT(I)**2-S**2)/(AL(I)**2+S**2)

38 BAL=B(I)*AL(I)
389 BBT=B(I)*BT(I)

390 IF (BAL.GT.TWEN) GOTO 170
391 DEL(I)=(COSH(BAL)-COS(BBT))/(LAMDA(I)*SINH(BAL)-

392 1 CHE(I)*SIN(BBT))
393 GOTO 171

394 170 DEL(I)=I/LAMDA(I)

395 171 CONTINUE

396 END DO

397 C ------------------------------ -----------

398 C CALCULATIONS DUE TO THE FORCING FUNCTION. EVALUATING THE POINT FORCES

399 C AT THE DIFFERENT POINTS

400 C

401 it (m.eq.9) delta = 4.
402 if (m.eq.17) delta = 2.
403 do i = 1,m

404 etap(i) =(2.96 + (i-1)*delta)/lm

405 euddo

406C--------------------------------------------

407 DO 3=1,,M
408 YR(0,3)=I.0

409 YR(1,J)=.5*(ETAP(j)-.5)

410 DO I=2,nu-eig

411 BBT=B(I)*BT(I)

412 BAL=B(I)*AL(I)
413 BBTE=BBT*ETAP(J)

414 BALE=BAL*ETAP(J)
415 IF (BALE.GT.TWEN) GOTO 200

416 YR(I,3)=(COSH(BALE)+COS(BBTE)/CHE(I)-LADA(I)*DEL(I)

417 1 *SIIN(BALE)-DEL(I)*SIi(BBTE))

418 GOTO 201
419 200 YR(I,3)=(COS(BBTE)/CHE(I)-DEL(I)*SI(BBTE))

420 201 CONTINUE

421 END DO
422 END DO
423 c... at each frequency dnoi holds the information about the

424 C... orthoganality of the forcing function with any of the modes

425 c... at each frequency.

426 FREQ = 2.*Pl*frequency

427 DO I a O,num.eig
428 SUM=CMPLX(0.0,0.0)
429 DO J1l,M
430 SUMa SUN + FC(J)*YR(I,J)

431 END DO
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432 TEMP1=1/CMB*ORTCI)*COMGCI)**2*CMPLXCONE,DF)-FREQ**2))

433 DNOICI) = TEMP1*SUM*CMPLXCO.0,FREQ)!last part changes to velocity

434 enddo

435 C ... At this point all of the information concerning the

436 C ... forcing function has been obtained. Now, the sensor
43 . . . location is varied.

4383 C.. .

439 C -------------- --- ---------------------------------------------

440 10 FORMAT (A20)

441 C ...

442 C ..
443 c ... begin accierometer loop

444 C..

445 do kkj = I,num-.accel
446 1000 format(i1)
447 2000 format(i2)
448 C ...

449 C ... what is the location of the accel. for this kkj.
450 if Cnum-.accel .eq. 17) then
451 x-.off=2.95/la
452 ceta = (2.95+float(kkj-l)*2.)/lm
453 delta-.fft = 2.
454 elsei~num-.accel.sq.9) then
455 x-.off=2.95/la
456 cet&. = (2.96+float~kkj-1)*4.)/la

457 delta-.x = 4.
458 delta-.f ft = 4.
459 else

460 if(imatch.eq.l)then

461 x..off=0.95/la
462 delta..r (la-I .9)/float Cnuzu..accl-1)
463 ceta r...off+(float~kkj-1))*delta-.x/la

464 delta-.fftdelta-x
465 elseif (imatch.eq.2 )then
466 Ceta =(float(kkj)-. 5)/float~num-.accel)

467 delta-.fftla/float (num..accel)

468 audit

469 endif
470 C ...

471 C ------------------- ----------------------

472 C

473 c ... evaluate the mode shapes at ceta.

474 C ...

475 DO 12,num-.eig

476 BBT=(I)*BT(I)



187

477 BAL=BCI)*ALCI)

478 BALE=BAL*CETA

479 BBTE=BBT*CETA
480 IF (BALE.GT.TWEN) GOTO 150

481 PEICI)=COSHCBALE)-LAMDACI)*DELCI)*SINHCBALE)+

482 1 COS(BBTE)/CHE(I)-DEL(I)*SIN(BBTE)

483 GOTO 151

484 150 PHI(I)=COS(BBTE)/CHE(I)-DEL(I)*SIN(BBTE)

485 151 CONTINUE
486 END DO

487 C ------------- ---------- -- ------------ ---- - --------- - -- -- -- ----

488 C THE RIGID BODY MODES. BOTH ROTARY AND TRANSLATIONAL

4139 C

490 PHI (0)=1 .0
491 PHI(1)=.S*(CETA-.5)

492 C ----------------------------------------- - -- -- -- -- ----------

493 SSIM=CMPLX(0.O,0.0)

494 DO I=0,num-.eig

495 SSUM=SStJM+DNOI(I)*PHI(I)

496 END DO ou.ddo for kkj
497 C ..

498 C ...

499 type *,jjj~ceta,ceta*lm,cabs~ssum)

500 write(10, *)jjj,ceta~cabs~ssum)

501 CyssuUN

502 reep~kkj) = cy

503 .nddo ' nddo kkj

504 C ...

505 C ... Next, perform FFT on the velocity data and return to main

506 c ... routine.

507 const =2. *pi*delta-I.ft
508 x-.norm lm/float(num-.accel) ! proper normalization

509 do j = 1,num..accal
510 if (ihan.eq.1) then
511 wight=.5*(1.-cos((x..off+floatoj-1))*const))

512 else

513 weightl.

514 audit

515 a.(j) = weight*resp(j)

516 enddo

517 do j num...accel+1 ,num-.fft

518 a(j)acmplx(O.0,0.0)

519 enddo

520 call cafft(a,.,,nu...fft,1)

521 do ik a 1,64
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522 vout(ik) = 20.*aloglO(cahs(a(ik)*x-norm))
523 hold(ik) =float(ik-1)*pi/(float(num-fft/2)

524 *delta-fft)

525 enddo

526 return

527 end

528

Finally, the FORTRAN program that compares the finite and infinite beam

admittances at a particular wavenumber, titled COMPARE, is listed.

I program compare

2 c... This program compares the predicted, experimentally measured

3 c... finite beam admittance to the theoretically derived infinite beam

4 c... admittance.

5 C...

6 CHARACTER FNAME*30

7 LOGICAL*1 TEXT(80)
a C

9 real *8 gamma

10 DIMENSION X(1O1),q(2),qy(2)

11 real mag(101,4)
12 CHARACTER FILEII*40,texpl*40,header*40

13 CHARACTER*30 LINETYPE(4) ,cone*1,ctwo*2

14 C

15 pi = 3.141592654

16 type *,' input number of shakers

17 accept 211,ctwo

is type *,' input exper no in the series (ie,<=5)

19 accept 112,cone

20 211 format (a2)

21 112 format(al)

22 190 format(a40)

23 ncurves = 3

24 npts = 101

25 c... variables for the plotting routine

26 c... theses are the line descriptions

27 line-type(l) = 'exact transform$'
28 linetype(4) a 'fft of theoretical results$'

29 line-typ(2)='fft of experimental results$'

30 line-typo(3)z'admittance of infinite beamS'

31 1804 format(' input filename ',i1,' -->',$)

32 1806 format(' input LIIETITLE,il, ' -->',S)

33 10 format(a30)
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34 C ...

35 C ... begin frequency loop

36 C ...

37 do i =1,101

38 x~i) = 2. +float(i-l)*.l
39 *nddo

40 CALL PROMPT(IDEV) !plotting initialization subroutine

41 type ', fill letters Cl)'

42 accept 999,ifil

43 999 f ormat(i 1)
44 10000 type *.' automatic option or self input (1,2)'

45 accept 999,iopt

46 if Ciopt.eq.1) then

47 it Cctwo.eq.'9') then
48 if (cone.eq.'1'.or.cone.eq.'5')then

49 ibinl
50 ga-ma .0

51 elseif (cone.oq.'2')then

52 ibinl16

53 gamma =.73631

54 elseif (cone.eq.'4')then

55 ibin =4
56 gammas.14726

57r elseif (cone.eq.'3')then

58 ibin=8

59 gamma =.34361

60 endif

61 endif
62 C ...

63 if (ctwo.sq.'17') then

64 if (cone.eq.11)tben

65 ibin a
66 gammac.O

67elseif (cone..q.'4')then

68 ibin = 6

69 gamma = .73631

70 elseif (cone.sq.'2')then

71 ibin =4

72 gAmma=.14726

73 elseif (cone.eq.'3')theni

74 ibin 8
75 gamma =.34361

76 elsei(con.q.'5') then

77 ibin x31

78 gamma a 1.4726
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79 endif

80 endif

81 elseif (iopt.eq.2)then

82 type *,' input bin number (calculates gamma)'
83 accept *,ibin

84 gamma = pi*(ibin-l)/64.*1.dO

85 endif

86

87 c... read in calculated and measured velocity responses.

88 c... these values are stored in a data file

89 C...

90 call indat(mag,cone.ctwo,ibin)

91 C...

92 C... program that calculates infinite beam admittance
93 call inf-admit(mag(1,3),x,gamma)

94 xmin = X(1)

93 xmax= X(101)
96 C

97 c... scaling for plot

98 header=cone//' '//ctwo//'$'

99 it (ibin.le.20) then
100 ymin=-160

101 ymax=-60

102 elseif (ibin.gt.20) then

103 ymin=-200
104 ymax=-100

105 endif

106 C

107 60 continue

108 c...

109 C..

110 C...

I11 c... plotting routine resides in this space

112 C...

113 C...

114 C...

115 C ..

116 C...

117 C ... do you wish to continue questions,

118 C...

119 type *.' TYPE 1 for another plot, 0 to ask for another run'

120 accept 999, iplag

121 it(iplag.eq.1) go to 60

122 type *,' TYPE 1 for another run, 0 to exit'

123 accept 999, irflag
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124 if (irflag.eq.1) goto 10000

125 44 CALL DONEPL(O)

126 stop

127 end

128 C...

129 C...

130 C...

131 subroutine inf-admit (xmag,frq, gamma)

132 C...

133 C... this subroutine calculates the wavenumber-frequency

134 C... admittance of an infinite beam.

135 C...

136 implicit real*8 (a-h,o-z)

137 real*8 rho, im,area,akone,two, twenlm

138 real*8 pi,zero,bbt,bal,freq

139 real*8 df
140 real*4 xmag(101),frq(101)

141 real*8 first

142 real*8 kappa

143 complex*16 respargl ,arg2,g,e,bomega,zeta,theta

144 complex *16 wav-free_4

145 integer i,j,m,n,z,ier,IWEIGH

146 CCCCCCCCCCCCCC input material and dimension parameters ccccccccccccccc

147 data reale,real-g,one,rho / 210.10 , 77e0 ,

148 1 1. , 7.8 /

149 data zeroak,df,twen,two / 0.0 , .833 , .05 . 12. 2. /

1SO pi=4. *datan(one)

151 212 format (a5)

152 ht=1.92d0

153 vd= 1.27d0

154 area =ht * wd

SS kappa = ak

156 im= vd*ht**3/12.

1s7 g = real-g*dcmplx(.OdO,df)

158 = reale*dcmplx(1.OdOdf)

159 write(6,*)g,e,ak,df

160 C... THIS PART OF THE PROGRAM CALCULATES THE wavenumber

161 C... admittance AT VARIOUS frequencies

162 zeta = kappa * g * area

163 DO jj = 1,101

164 freq : frq(jj)*1000.

165 hold.maz=-1000.

166 bomega = rho * area * (2.*pi *freq)**2

167 theta = rho * im * (2.*pi *freq)**2

168 wav_-free_4 = bomega /e/im
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169 argi = gAma**2/zta+//im*(l-thata/zeta)
170 arg2 = gamama**4 + gamma**2 * C-theta/e/im -

171 >bomega/zeta) + wav..ree-4*Ctheta/zeta - 1)
172 reap = -argl/arg2

173 rmag = 20*dloglOC cdabs~reop)*treq*2.*pi)
174 phasedatan2d~dimag~resp) ,dreal~resp))

175 xmag(jj) =sngl~rmag)

176 enddo

177 return

178 END
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APPENDIX D

EXPERIMENTAL EXCEPTIONS

In this appendix, any problems associated with collecting the data and the

remedies are delineated. In some of the experiments, accelerometer data were

lost. When FFT's of the experiments were performed, these data locations were

taken to be zero. Obviously, this induces error into the measured wavenumber

velocity response. The accelerometer data at location one were missed in

Experiments 1 and 4. Additionally, locations 34 and 37 were lost in Experiment 4.

There was one problem associated with the force gage records. In Experiment 6,

the last force record was lost. After examining the force records at the other

locations, a strong symmetry was noticed (fortunately). Using this symmetry,

an approximation was made which was to use the first shaker force record for the

seventeenth shaker. As can be seen by the excellent agreement between theory

and experiment for the Experiment 6, this was a good approximation.

Also, a note should be made concerning the storage of the data on the

computer. For the second and fourth experiments, the data are stored in different

subdirectories on the computer than the experiment number listed in this thesis.

Experiment 4 is stored in the second subdirectory and Experiment 2 is stored

in the fourth subdirectory. Also, experimentally there is a difference in the

number of frequencies measured from the first three experiments and the last

six experiments. In the first three experiments the data was taken using 50 Hz

increments while the final six were taken using 100 Hz increment. The range of

frequencies measured was same for all experiments (2 kHz to 12 kHz).
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Finally, it should be noted that the 180 degree phase factor present in the

force gage calibrations was not subtracted out in the data acquisition programs.

This phase factor is removed by any FORTRAN program that made use of the

measured admittance data.
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