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Abstract: Necessary and sufficient conditions for equivalence or singularity of
certain product measures are given and applied to the problem of distinguishing
a sequence of random vectors from affine transformations of itself. In
particular sequences of independent stable random variables are considered and
the singularity of sequences with diffqrent indexes of stability is proved.
Using the;e results the dichotomy, "two processes are either equivalent or
singular”, i{s established for certain classes of stable processes, such as
independently scattered measures and harmonizable processes. Also sufficient
conditions for singularity and necessary conditions for absolute continuity are

N s b 'fL

given for p  order processes.
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1. INTRODUCTION

This paper investigates the equivalence and singularity of measures induced
by non-Gaussian stable processes.

For two Gaussian processes the following dichotomy prevails: they are
either mutually absolutely continuous (equivalent) or else they are singular
(see, e.g. [6]). For non-Gaussian stable processes some results are available
in [13] [30]. [29] and [24].

In Section 2 an idea of LeCam [23] is developed further to provide a
necessary and sufficient condition for equivalence and for singularity of
certain product measures (Proposition 2.1). As an application, the results on
the discrimination between a sequence of random vectors and its perturbation by
rigid motions in [27], are extended to more general classes of perturbations
(Corollary 2.2). Also necessary and sufficient conditions are given for the
equivalence and for the singularity of certain sequences of independent stable
random variables (Corollaries 2.3, 2.4); and the singularity of two sequences of
independent symmetric stable variables with different indexes of stability is
proved (Proposition 2.5).

In Section 3 an equivalence-singularity dichotomy is shown for certain
symmetric stable processes (Proposition 3.2), including independently scattered
measures (Proposition 3.1) and harmonizable processes (Corollary 3.3), and
necessary and sufficient conditions for the two alternatives are given,
identical to those in the Gaussian case. The singularity of an invertible
symmetric stable process to its multiples is also proved (Corollary 3.4).

In Section 4, a necessary condition for equivalence of two Gaussian
processes, namely the setwise equality of their reproducing kernel Hilbert
spaces (RKHS), is extended to symmetric stable processes with the function space

of the process introduced in [24] replacing the RKHS (Proposition 4.2).
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Further, for pth order processes with 1 < p 2, necessary conditions for
absolute continuity and sufficient conditions for singularity are presented
(Proposition 4.3) analogous to those in [12] for second order processes.

The following setting is considered. Xi = (Xi(t) = Xi(t.w); t €T).
i = 1,2, are stochastic processes on a probability space (11.¥,P) with parameter
set T and real or complex values, i.e. values in F = R or €. VWhen
Xi(t) € Lp(Q,?.P) = Lp(P) for all t € T and some p > O, X1 is called a pth order
process and its linear space Q(Xi) is the Lp(P) completion of the set of finite
linear combinations of its random variables e(xi) 4 sp{Xi(t): t € T}. FT
denotes the set of all extended Ffvalued (i.e., real or complex valued)

functions on T, € = @(FT) the o-field generated by the cylinder sets of FT. and

My (or Hx ) the distribution of the process X1 i.e. the probability induced on €
i

by Xii ui(C) = P({w; Xi(°.w) €C})., C€ <€ Ve are interested in the Lebesgue
decomposition of Hoy with respect to Hys and in particular in conditions for My
and By to be singular (pl i u2). for Ky to be absolutely continuous with respect

to i, (u2 < ul). and for By and Hy to be mutually absolutely continuous or

equivalent (ul ~ u2).

2. ON THE EQUIVALENCE AND SINGULARITY OF CERTAIN PRODUCT MEASURES

In this section we consider the case where Xi = (xi.n: n € N), i=1,2, are
sequences of independent random variables, or equivalently By and Hy are product
measures on Fm. The equivalence-singularity dichotomy of product measures was
characterized in [18] in terms of the Hellinger distance of the marginal
measures, which may be difficult to compute, e.g. for stable measures. The case
of translates of product measures with identical marginals was solved in [25]
under finite Fisher information. The sufficient condition for equivalence in
[25] was extended in [23] to a more general scenario under LeCam's “&"

condition. Proposition 2.1 derives a nearly complete extension of a result of
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Shepp in [25] under a condition closely related to LeCam’s. As an application
the equivalence-singularity dichotomy is establisﬁed for a sequence of 1.1.d.
random vectors and an affine transformation of itself in Corollary 2.2
(extending the results in [27] about rigid motions), and for sequences of i.i.d.
stable random variables in Corollaries 2.3 and 2.4.

Before stating the main results we need to introdv—e some concepts for

which we refer to [28].

2.1 Preliminaries
The normalized Hellinger distance d of two probability measures P and Q on

a measurable space ({1,%) is defined by

d?(P.Q) = % I, |(aP/dv)” - (do/av)”|%a

v,

where v is any o-finite measure dominating P+Q, i.e. PHQ € v (e.g. v = P+Q); and
d does not depend on v.

Kakutani’s theorem [18] states that if (un: n € N) and (kn. n € N) are

sequences of probability measures with B, ~ kn and g = x:_lun and \ = x:—lkn are

their product measures, then

® 9 o 2
(2.1) p~2N o 3 d@A)C® and piX e 3 4w ) =0

We consider the following setting. (0.%,v) is a o-finite measure space, and

{P,; 6 € 8} a family of probability measures on (Q2,¥) with Pe < v and O an open

9;
subset of R. Then Fi8 — L(2.%.0) = Ly(v) defined by F(8) = 2 [dPg/dv]” 1s

said to be differentiable at 8, if there exists a map DF(6):= DF(-,0) : 0 — Rk

such that

WDF(8) 11> e =g IDF (w,8) 112 v(dw) < =,
L,(2.5.v:R")

i.e. DF(8) € L,(02.%,u:R"). and
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§o|F(8+h) - F(8) - <DF(8).h>|%dv = o(WhI%) as Iihil — 0.

As usual F is said to be differentiable (on 8) if it is differentiable at each

0 € 8. The Fisher information matrix is defined by
2(6) = IQ DF(68) DF(6)'dv

(wvhere DF(68)' is the transpose of the column vector DF(68)). It is nonnegative
definite, as a‘#(8)a = fn(a’DF(G))zdv. and is positive definite if and only if

the components of DF(0) are linearly independent functions in L2(u).

2.2 Main result

As in [23] our purpose is to consider product measures

[ o«
(2.2) M=% Ko, A= xnzlkn' where M= Pe and An = P9+hn .
0 €0 is fixed and 6 + hn €0, n=1,2,... Under LeCam's condition
"2” : limsu d2(P P,)/lhll € »
P g+h' '@ ’

O<Iihii=0

1llhnll2 { @ implies u ~ A. Here we obtain an

Proposition 2 in [23] shows that E:=
equivalence-singularity dichotomy along with necessary and sufficient conditions
for the two alternatives, when #(6) is positive definite at 6 and the following
separation type condition (which is usually assumed in asymptotic statistical
theory [16]) is satisfied,

(2.3) "for all sufficiently small 6 > O, inf d2(P
Bhii>é

genPg) > 0"

PROPOSITION 2.1. Let pu and A be as in (2.2), F be differentiable at 6 and $(6)
be positive definite.

i) If 0K llhnll — 0 as n — =, then
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2

<o, ad plr e 3 b=

o0
B ~A ° 3 “hn" n=1

n=1

ii) If condition (2.3) is satisfied, then the conclusions of i) hold for

any sequence (hn: n € N).

The sufficiency for equivalence follows from [23, Proposition 2], since
L2—differentiability is clearly stronger than condition "£", but we include a

simple complete proof here.
Proof. Since F is differentiable at 8, as O < llhll — O we have

| uF(8+h) - F(8)UI - H<DF(6).h>HL2(D) | = o(libi).

Ly(v)

Thus for any € > O there exists 6 = 6(e) > O such that if O < lhll < 6,

-1 -1 -1
Ithil H(DF(G),h)"Lz(v)—e < Hthil HF(e+h)-F(9)"L2(D) < I H<DF(9).h>HL2(D)+e.
But H<DF(9).h>HE (v) = fn|<DF(9).h>|2dv = h'#(0)h, implies that for all h # O,
2

1

k(8) < Ihil™ H(DF(G),h)HLz(D) < K(8)

where k(6) and K(6) are the smallest and the largest eigenvalues of #(8). Since
$(0) is positive definite, k(8) > 0 and we can choose O < ¢ < k(68) so that for

all O < Iihil < 6,

0 < L(6) < IhlLuF(8+h)-F(8) I < U(e)

L2(D)

where L(08) = k(6) - € and U(8) = K(8) + e. Thus since d2(P9.Pe,) =

NF(8) - F(G')Hfz(v)/S we have for n large

1,2 2, 2 1 2
0 < 5 L%(8) Wh ¥ < d(n_.A) < §-02(e) h_i

and the result follows from (2.1).
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i1) If (2.3) is satisfied and hn +» 0, then there exist § > 0 and a

subsequence (nj; J € N) with “hn H#>6. It follows that
J

) 2 o 2 o 2
znzld (un.kn) 2 2J=1d (pn .an) 2 2J=1 inf d (P9+h'P9) = o,

§ IhiI>5

and from (2.1), u L A. This combined with i) gives the result. a

It should be mentioned that the differentiability of F(6) is generally
difficult to verify, but is implied by the classical Carmér-Wold and Hajek
regularity conditions, which play an important role in statistical estimation
theory and are in principle easy to check (see e.g. [28], §77). However,
-differentiability is weaker than any of these classical conditions, and the

2
definition of Fisher information presented here extends the classical one,

L

namely #(8) = —E{azen(dPB/du)/ae2} under the usual conditions on dPe/dv .

2.3 Examples

Affine Transformations in Rk.

Suppose (Xn; n € N) is a sequence of i.i.d. random vectors in Rk.
(An; n € N) a sequence of kxk matrices and (bn; n € ) a sequence of vectors in
Rk. In order to compare the sequence of random vectors (Xn; n € N) with

(Anxn+bn: n € N) we can take as parameter space B8 any open subset of

{6

(A.b); A=(a; ) kek matrix, b = (b)) € R}
2

2
- oK +k _ k
R e=(a11"'"alk"'°'akk'bl""'bk)) =R =R

k xR

containing the point (I,0). with norm

k k
2kxk . Hb"zk =3 a%J + 3 bf.
IR 'R 1.J=1 i:l

2

R(kxk)+k = HAll

el

With P the common distribution of the i.i.d. random vectors Xn and 8 = (A,b), we




define

(2.4) Py(B) = P (B) = P({AX +b € B})

(A.b)

and note that P = P(I 0)" From Proposition 2.1 we have the following

COROLLARY 2.2. Let the probability measures P9 defined as in (2.4) be such that

2
for an open set 6 C RS xBX with (1,0) € 6. the family {Py: O € 6} is dominated

by some o-finite measure v on Rk. F(0) is differentiable at (I,0) and #(I,0) is

positive definite. If An — I and bn~—» Oas n — @ then

. 2 2
(X)~(AX+b) e ZIbI° <® and 3 NI-A_N° o
n=1 R n=1 R

< o,

and otherwise (Xn) 1 (Aan+bn). Furthermore if condition (2.3) is satisfied,

the above conclusions hold for all sequences (An.bn) in 6.

Proof. Putting 6 = (I,0) and (An.bn) = 9+hn we have hn = (An—I,bn) and

2 2 2
ith_Ii = HA_-Tii + Ib 1l .
n IR(kxk)+k n IR(kxk) n IRk
The conclusion then follows from Proposition 2.1. o

Remarks. a) Since the space of kxk matrices is finite dimensional, any norm can

be used in place of "."mkxk'

b) When An = I for all n, Corollary 2.2 extends the result on translates in
[25] from random variables (k=1) to random vectors (k=2).

c) Corollary 2.2 contains Theorems 1 and 2 in [27], which consider the
case where An is a rotation, {.e. Anx+bn is a rigid motion of x € Rk.

d) When the Xn's are Gaussian random variables (k=1) with mean zero and

variance one, Corollary 2.2 can be checked directly by computing Hellinger

distances. However, the computation of Hellinger distance is not simple in
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higher dimensions [k22) even for Gaussian random vectors.

Stable Sequences.

Here we denote by f(a,ﬁ.a,b) the univariate stable density whose

(+ ]
characteristic function f_wexp(iux)f(a B.a b)(x)dx is

exp{—lau]aexp[-iwﬁ sgn{u)/2] + {bu), ifa #1,

exp{-|au| - 1(28/7)au In(|au|) + ibu}, 1if a = 1.

where 0 < a £ 2, |B] { aA(2-a), a > O and = < b < = (see [10]). If B = O and
b = 0, we have the symmetric a-stable case (SaS).

We establish the equivalence-singularity dichotomy for certain sequences of
independent stable variables. Because results about L2-d1fferentiab11ity and
the validity of the condition (2.3) at a = 1 are not known, we consider only

limiting values a # 1.

COROLLARY 2.3. Let (xln' n € N) be a sequerce of {.1.d. stable variables with

density f and let (X2n: n € N) be a sequence of tndependent stable

(ap:Bg+29:bg)

with (an.Bn.an.bn) —_

variables where the density of each is f
X2n ( n'Bn'an'bn)
(aO.BO.ao.bo) and ag # 1. Then
o 2 o 2
2n=l(an_a0) <o 2n=l (Bn-BO) <o
(Xln) i (X2n) ® o 2 o 2
2n=1 (an-ao) { =, 2n=1 (bn-bo) ( =,

and otherwtise (xln) 1 (X2n).

Proof. Let 6 be any open subset of {8 = (a,B,a,b): a € (0,1)U(1,2),
|B|<aA(2-a), a>0, -o(b{w} containing the point 90 = (ao.ﬁo.ao.bo). It is known

that the densities {fe. 0 € B8} satisfy the usual Cramér-Wald regularity

conditions ([9]. p. 952): hence fA

g s L2(Leb)-differentiable at each 6 € B (see
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e.g. [28], §77). Moreover the Fisher information matrix ?(90) is positive
definite [8, p. 954]. Therefore the assumptions of Proposition 2.1.1i) hold at

2 2

e Since for hn = (an—a .Bn~ﬁo.an—ao.bn-bo) we have llhnllm4 = (an—ao) +

o
(B_-B, )2 + (a_—a )2 + (b _-b )2 the result follows a
n'O0 n 0 n 07 ° :

When all parameters except shift b are kept fixed, the separation condition
(2.3) follows from the inequality in [16, Example 3, p. 57]., and when § = O and

a € (0,2] is fixed, it has been proved in [19]. Hence we have the following

COROLLARY 2.4. Let (Xn: n € N) be a sequence of t.1.d. standard SaS variables

with density f and a € (0,2], and let (an'bn) and (aa.bﬁ) be two

(x,0,1,0)
sequences of patrs of real numbers with a # 0. Then

(anxn+bn) ~ (ann+bA) o (Xn) ~ ((an/al‘l)xn + (bn-bﬁ)/aA)
o 30 (1-lasa'}2<¢® and 3 {(b-b')/a'}2(w
n=1 n n n=1'*"n n’" "n '
and otherwise (aan+bn) 1 (ann+bﬁ)'

Proof: The first equivalence follows since the map (xn) - ((xn—bg)/aé) is

invertible and the second follows from Corollary 2.2 since

(an/an)Xn + (bn-bn)/an has density f(a,O.a /a'.(b_-b')/a_)" o
n ' n'*'n n’""n

We next explore the tail behavior of a stable distribution to show that two
infinite sequences of independent symmetric stable variables with two different

indexes of stability are singular.

PROPOSITION 2.5. Let X1 = (Xin; n € N), i=1,2 be two sequences of
(nondegenerate) tndependent symmetric stable variables with index of stability

a, in (0.2] and scale parameters (ain)' If a, #ay then By Lopy.

Proof: Assume a, < a, { 2. For each v € (0,2) let Z_7 denote a $7S r.v. with
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scale parameter 1. Thus “in(B) A P(Xin € B) = P(a, Z € B). Since
i

ch(lqu > cﬁ) -—>C% as ¢ — © yhere C_7 is a positive constant (see e.g.

[11]). given any € > O, there exist M e

13

such that for ¢ > M .
v,€

- -
(C,-e)e " < P(|Z | > a) < (C,+e)c .

From now on fix e such that 0 < e < min(C_ ,C_ ).
"1 %2

Case 1. Assume

112

g

n aln/a2n -0 asn-—wo,

Define ¥: F' — F by ¥(x)

(Wn(x) = xn/azn; n € N). It follows that ¥ is an

i.i.d. sequence of standard SaZS r.v.’s under My and under M, an independent

sequence of SaIS r.v.’'s with scale parameter aln/a2n =0
As before let dv denote the total variation distance between probability

measures. For ¢ > M(l+sup o ) where M = max(M_ ,M_ ), we have
n n a, e,

a a a
1

1 -1 2 1
Mo V) 2 P(|Za2|>c) - P( |anZa1|>c) > (Caz-e)c - o (Ca1+e)c .

dv(uln\pn
and thus

Qa

1 -1 2
, 2an ) 2 (Caz-e)/c > 0.

liminf d_(u, ¥_
vilnn

Since dv { 2 d where d denotes the Hellinger distance (see e.g. [28]) we have

1 1

E:=1d(uan; , 2nw;1) = ® and therefore by Kakutani’s Theorem ulw—l 1 uzw_ .

which implies My 1 Ho-

Case 2. Assume o <4+ 0. Thus there exist 6 > 0 and a sequence (nk; k € N) such

that o 2 5. 1.e. o1 671, Define ¢: F' — F" by 8(x) = (9 (x) = 5/app ¢ K

"

€ N). Then ¢ is an i.i.d. sequence of stantard SaIS r.v.'s under By and under

) - _1
K, an independent sequence of Sazs r.v.'s with scale parameter a2nk/alnk = ank
For ¢ > H(1+6~1) we have
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-1 -1 -1
d (u, & ., $ ) 2P(lz. I>c) - P(lo_"Z_ |>c)
v Yo oy @y ™ ay
a a a a
> (C_ -€e)c 1. a-l(Ca +e)c 2 > (C_ -€)c 1. 6-1(Cd +e)c 24 5'(c).
"k "k %2 " 2
¥™% | -1
Since a, < a,, we have §'(c) > O if and only if c > 6 (C_+e)/(C_ -¢).
1 2 ay ay
-1 1/(a2—a1)
Thus, fixing c > M(1+6 ~ + (ca +e)/(Ca -€) ) we obtain
2 1

1

- -1 ,
limsup dv(u1n¢n , 2n¢n ) >8'(c) >0

n-o

and the conclusion follows as in case 1.

If a

5 = 2, the result can be shown with minor modifications in the proof. O

3. DICHOTOMIES FOR CERTAIN SaS PROCESSES

For stochastic processes the equivalence-singularity dichotomy has been
proved for product measures [18], for Gaussian processes ([10] and [14]). and
for certain ergodic measures [20]. In [24]. it was shown that this dichotomy
prevails for translates of certain SaS processes. Such dichotomy for general
SaS measures has been conjectured in [7] but the problem remains open. In this
section we show that an equivalence-singularity dichotomy holds for certain SaS
processes, e.g. independently scattered SaS measures and harmonizable SaS
processes, and we give necessary and sufficient conditions for the two
alternatives for all a € (0,2].

Recall that a random variable X is SaS with scale parameter "X"a € (0,w) if
E{exp(iuX)} = exp(—HXHZ |u|a). and a stochastic process X = (X(t); t € T) is SaS
if all linear combinations EﬁzlakX(tk) are SaS variables. When a = 2 we have
zero mean Gaussian variables and processes respectively. When O { a < 2, the
tails of the distributions are heavier and only moments of order p € (0,a) are

finite.
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We first prove a dichotomy for independently scattered SaS measures. Let I
be an arbitrary set and # a 6-ring of subsets of I with the property that there
exists an increasing sequence (In: n € N) in # with UnIn = I. A real stochastic
process Z = (Z(B): B € #) is called an independently scattered SaS measure if
for every sequence (Bn: n € N) of disjoint sets in #, the random variables
{Z(Bn): n € N} are independent and whenever Uan € # then Z(Uan) = EnZ(Bn)
a.s., and for every B € # the random variable Z(B) is SaS, i.e.

E{exp(iuZ(B)} = exp{-m(B)IuIa} where m(B) = HZ(B)"z. Then m is a measure on ¢
which extends uniquely to a o-finite measure on o(#). and is called the control
measure of Z. The existence of an independently scattered SaS measure with a
given control measure is a consequence of Kolmogorov's consistency theorem.
When I is an interval of the real line and the control measure m is Lebesgue
measure, then X has stationary independent increments,

E{exp (1u[X(t)-X(t')])} = exp{-lt-t']]u]®}. and is called SaS motion on I.

The following notation will be used in Proposition 3.1. Recall that if a
o-finite measure space (I,0(#).m) is such that o(#) contains all single points
sets (e.g. I is a Polish space, o(#) its Borel sets, and # the §-ring of Borel
sets with finite m-measure) then m can be decomposed into m = m o+ my where m,
is purely atomic and m, is diffuse (non-atomic) [21], and the set of atoms is at
most countable, say A = {an}. Thus if Z = (Z(B); B € #) is an independently

scattered SaS measure with control measure m, it can be decomposed into

Z=Za+Zd.

where Za and Zd are indepedent SaS independently scattered measures defined for
all B € 2 by Za(B) = Z(ANB) and Zd(B) = Z(A°MB), and have control measures m
and my respectively. The atomic component has a series expans . .n

Za(B) = EnlB(an)Z({an)) which can be normalized by using the i.i.d. standard SaS

-1/a

variables Zn 4 Z((an})m ((an)) with E{exp(iuZn)) = exp(-lula). as follows:
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1/a

Z,(B) = 3 15(a )m ({2 })Z_ .

PROPOSITION 3.1. For i=1,2, let Z1 = (Zi(B);B € #) be an independently
scattered SaiS measure with a, € (0.2] and control measure m, which is not
purely discrete with a finite number of atoms. Then By ~ Ho if and only if the
following conditions are satisfied

i) a; = a,.

) myg = moy
iii) m, and m, have the same set of atoms A = {an} and

2
501 - m({a })/my({a}) 1° < o.
Furthermore if any of these conditions fails Hy 1l Ho-

Proof. First suppose that m; and m, are not equivalent, e.g. m,, { m . Then

there exists B € o(#) such that

* %o
uzl(la)um1 =m (B) =0, and ||22(B)ua2 = my(B) > O.

F_l

Ho and thus

Define Iy F' — F by Iy(x) = x(B). It follows that 5! 1
My 1 Ho- From now on we assume mo~om,.

Suppose a, # ay. Since m, and m, are not purely atomic with a finite
number of atoms, we can choose an infinite sequence (Bn; n € N) of disjoint sets

in # such that m (B_) > 0, 1 = 1,2. Define ¥: I’ — F" by ¥(x) = (¥_(x) =

x(Bn); n € N). Thus, for i=1,2, under By ¥ is a sequence of independent SaiS

a
» 1 —
r.v.'s with "Wn"ai = mi(Bn)' It follows from Proposition 2.5 that if a, #a,,

then ulw 1 uzw-l. so that My 1 Mo From now on we assume a =ay =a.
Since m, ~m, we have ma ™~ Moy Suppose LI #my,. SO that

mid((dm2d/dm1d #1}) > 0, i=1,2, hence
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m q({0 < dmy/dm < 1}) >0 or m ({dmy,/dm , > 1}) > O.

Assume mid((dm2d/dm1d > 1}) > 1}) > 0. Then there exists & > 1 such that
mid((dm2d/dm1d > 6}) > 0. Since m 4 1s nonatomic, we can find a sequence

(Bn: n € N) of disjoint subsets of {dmid/dmld > &8} such that mld(Bn) > 0. Let
®: F' — F" be the map defined by #(x) = (&_(x) = x(AMB_)/m 4(B )% n € m).
Under By ¢ is an 1.1.d. sequence of standard SaS r.v.’'s, and under Hg. ¢ is an

' a _

indepedent sequence of SaS r.v.'s with "¢n"a = m2d(Bn)/m1d(Bn)' It follows from
Corollary 2.4 that u1¢-1 and u ¢.1 are either equivalent or singular, and they

are singular if and only if

Va,2 _ .,

(3.1) 3, { 1= [mpy(B,)/m; 4(B))]

Now by construction

dmo4
moa(By) = 'an dn, dm, g > 5 m4(B).

-1 -1
Hence 1 < &6 ¢ m2d(Bn)/mld(Bn). so that (3.1) holds. Thus u1¢ L u2¢ which

implies By 1 Ho-

If mid({dm2d/dm1d > 1}) = O we have mid({dmld/dm2d > 1}) > 0 and an
indentical argument applies. Therefore m o~ m, and mg # Moq implies My 1 Hy-
Now assume Mg = Moy- Since m o~ om,, they have the same set of atoms

A ={a}. Suppose py < p and let Z: F© — F' be defined by

- - 1/a, =1 =1 =

2(x) = (_n(x) = x({an))/ml((an}) ;: n € N). Thus HoZ < M= and = is an
i.1.d. sequence of standard SaS r.v.'s under By and under H, an independent

sequence of SaS r.v.s's with HEHz = m2({an})/m1((an}). Hence by Corollary 2.4,

(3.2) 3, (1= Iy /my (2,119 )2 <o

Also, 1f (3.2) does not hold, again Corollary 2.4 implies ulE_l 1 uzi—l so that

1 Ho-
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Note that (3.1) and (3.2) are symmetric in m, and m, and independent of a
as for q # O, En(l—un)2 < o if and only if Zn(l—ug)2 < w, Hence (3.2) can be
replaced by iii).

Conversely, suppose that i), ii) and 1ii) hold. Since m, 6 =m,, we have
Z, + 12 i=1,2,

where Zia and Zd are independent, independently scattered SaS measures with
L .
control measures mo and My = Mg = Moy respectively, and = denotes equality in

lav. Let ¢: FN —  be defined by
[#(y)1(B) = 8(y.B) = 35 _ 1p(a )m ({a N /% . y=v) €T

Thus (& © E)(Z,) £Z,_. so that p,_ = (,Z 17!, 1=1,2. Now by Corollary 2.4,
. -—-1 --1
iii) implies 1E T~ s hence Mg~ Hou- Therefore, since My =My o *pg.

i=1,2, it follows that My ~ Ho-

The results in Proposition 3.1 can be extended to certain symmetric
(dependent) stable processes. Let Z be an independently scattered SaS measure
with control measure m. For any function f € La(I.a(f).m) = La(m) the
stochastic integral fIde can be defined in the usual way and is a SaS variable

with HIIdeHa = Ifll The map f — fIde from L (m) into £(Z) is an

L (m)"

a

isometry and

(3.3) €(2) = {JfdZ; f € L (m)}.

The stochastic integral allows for the construction of SaS processes with

generally dependent values by means of the spectral representation
(3.4) X(t) = IIf(t.u)Z(du). t €T,

where{f(t,*); t € T} C La(m). In fact every SaS process X has such a spectral
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representation in law, in the sense that for some family (f(t,<). t € T} in some

La(m).
(3.5) (X(t); t €T) & (S f(e.0)Z(du); £ €T)

(see e.g. [22] and [15]). Some examples of SaS processes will be considered at
the end of the section.

Let X = (X(t);: t € T) be a SaS process with spectral representation as in
(3.4). It follows from the continuity of the stochastic integral map f — [JfdZ
that the representing functions ({f(t.*): t € T)} are linearly dense in La(m).
sp{f(t.*);: t €T} = La(m). if and only if ¥9(X) = £(Z). Processes satisfying
this condition will be said to have an lnuvertible spectral representation or
more simply to be tnvertible. Gaussian processes are invertible [1]. For
non-Gaussian SaS processes this is not generally true [5]. Conditions for
invertible representation are given in [3] and [5]. SaS processes with
invertible representation in L2([O.l]) are considered in [30].

Let Xi = (Xi(t): t €T), 1=1,2, be two invertible SaiS processes with
spectral representations Xl(t) = fIf(t,u)Zi(du). where Zi are independently

scattered Sa S measures with control measures m, and f(+,t) €L (m,) NL_ (m,),
i i a 1 a, 2

t €T. Xl and X2 will be called simultaneously invertible if for each B € ¢
there exist Nn(B). anl(B)""' nNn(B)(B)' tnl(B).....tnNn(B)(B) such that
N_(B)

21(21 a f(t (B). ©) = 1p(:) asn—e=
in Lh (mi) for both i=1,2. E.g., Xl and X2 are simultaneously invertible if
i

they are invertible, and either a =a, and dmlldm2 is bounded above or below, or
their associated random measures Zl and 22 are equivalent (cf. Proposition 3.1).
The simultaneous invertibility of Xl and X2 allows for the study of the

equivalence and singularity of By My in terms of that of Zl' 22. Indeed
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Xi(t)=ff(t.u)li(du) is, roughly speaking, X1=L(Zi). where L is a linear map from
Y(Zi) into !(Xi). Simultaneous invertibility is like having Zi=L—1(X1). so the
singularity of Zl. 22 should imply the singularity on equivalence of X1 and X2.

and vice-versa for equivalence. The next proposition makes this precise.

PROPOSITION 3.2. Let Xi = (Xi(t); t € T) be two simultaneously invertible Sais
processes with ai€(0.2] and spectral representations Xi(t) = fIf(t.u)Zi(du),
where Z1 are independently scattered Sais measures wlith control measures my

which are not purely discrete with a finite number of atoms. Then Hy and uxz
1

are either equiuvalent or singular, and
~ Y ~ . _L L -4 .L ,
T 7 Ty T "2, 7,

t.e. My ~ ux2 Lf and only tf condittons i), 1i) and iii) of Proposition 3.1 are
1

satisfled, and otherwise 1 .
T

Proof: For B € # we can define

N_(B) T
9 (B.x) = 37 ‘a, (B)x(t (B)). x€F,

so that ¢n(B.X1(-.o)) — Zi(B.w). in probability as n — @, i=1,2. Let

(¢ (B.*): k € N) be a subsequence cenverging a.s. (ui). i=1,2, and put

Z(B) = Z(B.+) = liminf &_ (B.-)1
min nk(

ko {x: "’nk(x) converges}( )

Hence Z(B.Xi(°.w)) = Zi(B.w) a.s., i=1,2. The stochastic process Z = (Z(B),
B € #) defined on (FT.@) is an independently scattered Sais measure with control

measure m, under My - If we also denote by Z the map x — Z(+,x) then
i

-1

>-1
~ 7'~
uxl ux2 ’ pxl ux2Z

i.e. ~ d 1 i.e.
(1-e pzl sz) = le uz2 (1-e
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~

-1 >-1
Z "1 Z > 1 .
uxl Hx2 ) uxl sz

~

On the other hand if uz ~Hy i.e. My 2_1 ~ ule-l. it follows that
1 2 1

i)-iii) of Proposition 3.1 hold. Thus, we can construct indepedent processes Xd

~

and xia on (F’, @(F}).uzi) such that

{{1an
<

+ X, , i=1,2,

xi d ia

with u. ~pup. . Since = U. ¥ . , we have ~ .
uxl X uxl ux2

xla x2a d xia

Now if My and My are not equivalent it follows that Moy 1 Hy (since
1 2 2

1
otherwise uzl ~ uzz. which implies uxl ~ ux2. i.e. a contradiction) and this was

shown to imply My 1 . (8]
1%

It follows from Proposition 3.2 that simultaneously invertible processes
are singular whenever their indexes of stability are different. This is not
generally true for symmetric stable processes with different indexes of
stability. Indeed, let G = {G(t); t € T) be a Gaussian process, and for i=1,2,
let Ai be a standard positive (a1/2)—stab1e random variable where a, # a,, and
consider the sub-Gaussian SaiS processes Xi = (Xi(t) = A?G(t); t € T). We have

that pxi(B) =f uxG(B) Hy (dx). Since the distribution Hy of Ai has positive
+ i i
R

density in R+ we have By ~ My » SO that by the Corollary of Theorem 18.1 in
1 2

[26]. My ™ ux2. Since the linear space of a sub-Gaussian process does not

1
contain (nondegenerate) independent random variables (see [5]), sub—-Gaussian
processes are not invertible (nor simultaneously invertible). Further examples
of symmetric stable processes with different indexes of stability which are
equivalent are Xi = (Xi(t) = Eg_lA?nGn(t); t € T) where for each i=1,2, the

vector (A 'AiN) is positive (ai/2)-stable. indepedent of the mutually

{1
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independent Gaussian processes Gn = (Gn(t); t€T), n=1,...,N.
As a consequence of Proposition 3.2, harmonizable processes are either
equivalent or singular and necessary and sufficient conditions for the two

alternatives are provided.

COROLLARY 3.3. Let Xk = (Xk(t); t € T), k=1,2, be two harmonizable SakS

processes, with a € (0,2], i.e.

Xk(t) = IIexp(i<t,u>) Zk(du), t €T,

where I = Rd. respectively [-w.w]d. for T = Rd, respectively Zd. and Zk are
independently scattered SakS measures with finite spectral measures m which are

not purely discrete with a finite number of atoms. Then My and uX2 are
1

equivalent if and only if i), i1) and iii) of Proposition 3.1 are satisfied, and

they are singular otherwise.

Proof: Clearly Xl and X2 are simultaneously invertible, since indicator

functions can be approximated uniformly, and hence in Lak(mk)' by linear

combinations of the functions f(t,u) = exp(i<t,u>). Hence the result follows

from Proposition 3.2 a

As a special case, let S and N be harmonizable SaS signal and noise
processes as in Corollary 3.3, that are independent of each other. Then HgeN
and pg are equivalent if and only if

Mg 4 = o, the atoms of mg are atoms of LT and

st o
2 L age, g ((a D)

Otherwise Moo and My are singular, and the presence of the random signal S in
the additive noise N can be detected with probability one (at least in

principle). In particular, HgeN and My are singular when the signal has
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continuous spectrum or the noise has no atomic spectrum. (Similar results hold
when the signal and noise processes have simultaneously invertible
representations as in Proposition 3.2).

The results in Propositions 3.1 and 3.2 and Corollary 3.3 are identical in
the non-Gaussian stable case and in the Gaussian case [6]. However in the case
of Corollary 3.3 much more is known for Gaussian processes. Namely, for

stationary Gaussian processes (d=1) restricted over a finite interval, the

equivalence-singularity dichotomy prevails and necessary and sufficient
conditions for the two alternatives are known (see e.g. [17]). Both of these
important questions remain open in the non-Gaussian stable case.

Another consequence of Proposition 3.2 is the singularity of multiples of

invertible processes.

COROLLARY 3.4. Let X=(X(t); t € T) be an invertible SaS process with
a € (0,2] and control measure m which is not purely atomic with a finite number

of atoms. Then X and bX are singular wherever |b| # 1.

Proof. If X(t) = ff(t,u)Z(du), where Z has control measure m, then bX(t) =

ff(t.u)Zb(du) where Zb = bZ has control measure Iblam. Clearly X and bX are

simultaneously invertible and the result follows from Proposition 3.2. o

The result in Corollary 3.4 is known to hold for every Gaussian process
with infinite dimensional linear space. Here again the class of SaS
sub—Gaussian processes provides an example to show that the result is not true
for all infinite dimensional SaS processes. In fact, if X = (A%G(t): t €T), as

before, we have for each b > O, pbx(B) =J +pr(B) pbA(dx). The distributions
R

N and Mpa are equivalent for all b > O so that My ~ Hpx
In the Caussian case the multiple b in Corollary 3.4 is allowed to be a

function b(t), but this problem remains open in the non-Gaussian stable case.
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Corollary 3.4 is relevant to the detection of a constant signal in

multiplicative noise. (See [2])

h_ORDER AND SaS PROCESSES

4. REMARKS ON SINGULARITY AND ABSOLUTE CONTINUITY OF p°
For two Gaussian processes, the setwise equality of their RKHS's is a
necessary condition for equivalence. For two second order processes a necessary
condition for absolute continuity and a sufficient condition for singularity in

terms of their RKHS's are proved in [12]. We show that these results remain
true for SaS processes and for pth order processes with 1{p<{2 respectively, with
the RKHS replaced by an appropriate function space ¥ specified in the sequel.

The function space of a pth order process X = (X(t); t € T) is defined in

[24] by

A | 2N=1a s(t )]
3 = { s: T—F; lislg = sup n=n_n 7 < -

ay.....ay 5, a X (¢ )i -
"t ...t P
10ty

N

Note that when p = 2, § = RKHS. If X, = (X,(t); t € T), 1=1,2, are two pth

order processes, we say that X1 dominates X2 if there exists O {( K { ®» such that
€T,

1
for all N € N, al.....aN €R and t S

1 N

"2:=1anX2(tn)H y <K 3 _a X (e )

L (P L,(P) -

The relationship between domination and the function spaces is clarified in the

following

PROPOSITION 4.1. Let Xi = (Xi(t); t €T) be a pth order processes with function
space 31.i=1.2.

i) If X1 dominates X2. then 32 C yl'

ii) X1 dominates X2 if and only if there exists a bounded linear

transformation V: Q(Xl) -a»g(xz). satisfying V(Xl(t)) = X2(t). t €T.
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Consequently, if X, dominates X2 and vice versa, then ¥, = 3, (setwise), Il
1 1 2 31

and H-ﬂg are equivalent, and the transformation V has bounded ilnverse.
2

Proof. 1) If X, dominates X2. it follows that for all functions s,

1

Ilslls.2 < K"s"$2' and thus 32 C 31.

11) Let V:g(X;) — #(X,) be defined by V(3,_a X (t)) = 3% _a X (t ). It
is clear that V is a well defined bounded linear transformation and as such it

can be extended to E(Xl) if and only if X1 dominates X2. o

For SaS, the next Proposition shows that mutual domination is a necessary
condition for absolute continuity, i.e. non-domination is a sufficient condition
for singularity. This Proposition is a stochastic process version of

Proposition 7 in [30].

PROPOSITION 4.2. Let X1 = (Xi(t): t€T), §f=1.,2, be two Sais processes. If
My and H, are not singular, then X1 dominates X2. X2 dominates Xl. and

31 = $2. Equivalently tf 31 # ?2 then either Xl
not dominate X1 and M 1l Ho-

does not dominate X2 or X2 does

Proof: Since for Y € Q(Xi). “Y"LP(P) = C'p.aillYllai (see [4]). X, dominates X2 if

and only if
uz§=lanx2(cn)ua2 < K "E§=lanxl(tn)"al'

Assume Xl does not dominate X2. Then for any positive sequence Kn — @ as
(1) _yn
n — o, there exist Yn = 2k=lan.kxi(tn.k)' 1=1,2, such that
u¥§2)ua2 2K uvﬂ’)ual. n=1,2,... . Without loss of generality we can assume

Yy -1 for all n. Thus
n a2
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i ¢ 1K —0 asn— .
n a2 n

Now consider the sequence of random variables (Yn; n € N) defined on (FT,Q) by

T

Y _(x) = N x € F'. It follows that

n=1an.kx(tn,k)'

(1),
a

a
1
J'IFTexp(iuYn)du1 = exp(-IY_ |

lul ') @1 asn — o,

Hence a subsequence (Ynk: k € N) can be chosen such that if CO = {x; Ynk(x) — 0

as k — «}, then My (Cb) = 1. Clearly Co is a measurable linear subspace of FT
1

and, since Ho is a Sazs measure on (FT.@). it follows by the zero-one law for
stable measures [8] that u2(C ) =0or 1. On the other hand,

J cexp(iuY_ )du xp(-1IY uazl Ia2) xp(-| Ia2)
e u = € - u = e -
Fr no 2 0, %

which implies that u2(CO) = 0 and thus My 1l Mo a]

The crucial result used in the proof of Proposition 4.2 is the zero-one
law, which is not available for general pth order processes. However the
proposition has some partial analogs for certain pth order processes.

As in [12] we call a pth order process X = (X(t): t € T) non-reduced if

there exists some ¢ € (0,1] such that for all countable subsets TO of T,
P({w; X(t.w) =0, t € To}) 2 €; otherwise X is called reduced. Nontrivial SaS
processes are reduced. When X is separable and T an interval of the real line
it is shown in [12] that X is reduced if and only if P({X(t) = O,t € T}) = 0O,
and nonreduced if and only if P({X(t) =0, t € T}) 2 e for some € € (0,1].

Next we generalize to pth order processes with 1 { p < 2 the results in

[12]. Théorémes (3.2) and (3.3.2). The proof is essentially identical to

Fortet’'s and is presented in a shorter form.
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PROPOSITION 4.3. Let X, = (X,(t): t € T), be a p'" order process wtth
1 < p <2 and function space 51, i=1,2.

1) If Ho < My then 310 $2 is dense in 52.

i1) If elther Xl or X2 ts reduced, and 510 52 = {0}, then My 1 o

Proof. i) Fix s € 32. By Proposition 1 in [24] we have

<p-1>

s(t) = E(Xy(t)Y ) = j'FTx(t)a(x

where z<% = Izlq-lz. Y € £(X;) and a(x) is a representation of Y in

T

Lp(ul)-g{x(c); t€T}CF, Y(w) = a(X(*.w)). Let

be the Lebesgue decomposition of p, with respect to p,. Define
2 1

En = {x: 0<g'x)}<n}N N¢ and
(8 = 5 x(0a00 PV lp (@) = 5 px(0)a(x) T B 1g (s (@) -
n n

<{p-1>

1

p-1>
Since a g € Lp*("2) and a glE € Lp*(ul). we have s € $lﬂ - Also

n n

|5 e (s-s ) () | < [fEle§=1ckx(tk)Ipuzll’P[fFTla<P‘1>lp*lEcduZJ"P*-

n

Thus

<p-1>
is-s iy < S a7 [Pduy = J |a|Pgdp —0

2 E {g2n}

as n —®, i.e. 310 $é is dense in 32 .

ii) For a fixed t, € T, let ao(x) = x(to) and define

0

<p-1>

(8) = J px(2)ag0) T ().

By Proposition 1 in [24], sg € 52. since ao(x) € Lp*(u2). Let




(1]

(2]

[3]

[4]
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Son(t) = f}Tx(t)ao(X)<p-l>1E (x)iy(dx) = f}Tx(c)ao(x)‘P">g(x)1E (), (dx)
n n

so that Son € 310 32. Since sln 32 = {0}, sonEO. i.e. son(t) = 0 for all

t € T. In particular

s Jﬂwn%umgu)=o for n=1.2,...,

and hence

5o Ix(tg) Pe(x)m (ax) = o.
{0<g<=}

Consequently. since t € T is arbitrary, we have x(t) = O a.e. (pl) on {0<g{=)

for each t € T. But this implies that X1 is non-reduced if
By ({x:x(t) = 0.t € T}) 2 py({xi O<g(x)<w)).

On the other hand if ul((x; 0<g(x)<=}) > O then x(t) = 0 a.e. (gul) for each t

and J Sdul > 0. Hence

{0<g<=}
Ho({x: x(t) =0, t € Ty}) 2 J gdu, > 0,
{0<g<=}
i.e. X2 is nonreduced. Since either X1 or X2 is reduced we must have
ul({x: 0<g(x)<=}) =0, i.e. Hy 1 Mo o
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