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certain product measures are given and applied to the problem of distinguishing

a sequence of random vectors from affine transformations of itself. In

particular sequences of independent stable random variables are considered and

the singularity of sequences with different indexes of stability is proved.

Using these results the dichotomy, two processes are either equivalent or

singular". is established for certain classes of stable processes, such as

independently scattered measures and harmonizable processes. Also sufficient

conditions for singularity and necessary conditions for absolute continuity are

given for p order processes.
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1. INTRODUCTION

This paper investigates the equivalence and singularity of measures induced

by non-Gaussian stable processes.

For two Gaussian processes the following dichotomy prevails: they are

either mutually absolutely continuous (equivalent) or else they are singular

(see, e.g. [6]). For non-Gaussian stable processes some results are available

in [13] [30]. [29] and [24].

In Section 2 an idea of LeCam [23] is developed further to provide a

necessary and sufficient condition for equivalence and for singularity of

certain product measures (Proposition 2.1). As an application, the results on

the discrimination between a sequence of random vectors and its perturbation by

rigid motions in [27], are extended to more general classes of perturbations

(Corollary 2.2). Also necessary and sufficient conditions are given for the

equivalence and for the singularity of certain sequences of independent stable

random variables (Corollaries 2.3, 2.4); and the singularity of two sequences of

independent symmetric stable variables with different indexes of stability is

proved (Proposition 2.5).

In Section 3 an equivalence-singularity dichotomy is shown for certain

symmetric stable processes (Proposition 3.2), including independently scattered

measures (Proposition 3.1) and harmonizable processes (Corollary 3.3), and

necessary and sufficient conditions for the two alternatives are given,

identical to those in the Gaussian case. The singularity of an invertible

symmetric stable process to its multiples is also proved (Corollary 3.4).

In Section 4. a necessary condition for equivalence of two Gaussian

processes, namely the setwise equality of their reproducing kernel Hilbert

spaces (RKHS), is extended to symmetric stable processes with the function space

of the process introduced in [24] replacing the RKHS (Proposition 4.2).
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Further. for p th order processes with I < p < 2. necessary conditions for

absolute continuity and sufficient conditions for singularity are presented

(Proposition 4.3) analogous to those in E12] for second order processes.

The following setting Is considered. XI = (Xi(t) = Xi(t.c): t E T).

i = 1.2. are stochastic processes on a probability space (O.,P) with parameter

set T and real or complex values, i.e. values in F = R or C. When

Xi(t) C Lp(0, ,P) = Lp(P) for all t C T and some p > 0, X1 Is called a pth order

process and its linear space $(Xi) is the L p(P) completion of the set of finitep

linear combinations of its random variables I(XI) A sp{Xi(t); t C T}. F

denotes the set of all extended F-valued (i.e.. real or complex valued)

-T -Tfunctions on T. I = ,(F ) the a-field generated by the cylinder sets of F . and

4, (or jIX ) the distribution of the process Xi i.e. the probability induced on T

by XI: pi(C) = P({(i; Xi(-.cj) C C)). C C T . We are interested in the Lebesgue

decomposition of p2 with respect to 11' and in particular in conditions for 1I

ind w2 to be singular (p, I p2) . for p2 to be absolutely continuous with respect

to Al (42 < Ad, and for gi and p2 to be mutually absolutely continuous or

equivalent (p 1 - 2) -

2. ON THE EQUIVALENCE AND SINGULARITY OF CERTAIN PRODUCT MEASURES

In this section we consider the case where XI = (X in; n C IN). i=1,2. are

sequences of independent random variables, or equivalently Al and A2 are product

measures on F. The equivalence-singularity dichotomy of product measures was

characterized in [18] in terms of the Hellinger distance of the marginal

measures, which may be difficult to compute, e.g. for stable measures. The case

of translates of product measures with identical marginals was solved in [25)

under finite Fisher information. The sufficient condition for equivalence in

[25] was extended in [23] to a more general scenario under LeCam's "t"

condition. Proposition 2.1 derives a nearly complete extension of a result of
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Shepp in [25] under a condition closely related to LeCam's. As an application

the equivalence-singularity dichotomy is established for a sequence of i.i.d.

random vectors and an affine transformation of itself in Corollary 2.2

(extending the results in [27] about rigid motions), and for sequences of i.i.d.

stable random variables in Corollaries 2.3 and 2.4.

Before stating the main results we need to introdu--e some concepts for

which we refer to [28].

2.1 Preliminaries

The normalized Hellinger distance d of two probability measures P and Q on

a measurable space (fl) is defined by

d2(P.Q) = M JI j(dP/dv) - (dQ/dv) %J2 dv,

where v is any a-finite measure dominating P+Q, i.e. P+Q ( v (e.g. v = P+Q); and

d does not depend on v.

Kakutani's theorem [18) states that if (pn; n e IN) and (Nn" n C IN) are

sequences of probability measures with An ' Xn and P = X" lgn and X = Xn l n are

their product measures, then

(2.1) X2 ( , Xi) < and ; 1 X 4* d__d2(w Xn=l nn n=l n n

We consider the following setting. (fl,v) is a a-finite measure space, and

{P 6 ; 6 E 6) a family of probability measures on (0,5) with P. < v and 0 an open

subset of IRk. Then F:O --+ L2( O,.,v) = L2 (v) defined by F(G) = 2 [dP 6/udv is

said to be differentiable at 0. if there exists a map DF(O):= DF(-,) : -- IRk

such that

IIDF()II 2 k = k 0 IIDF(w,.)II 2 v(dci) < -,

i.e. DF(6) C L2 (0.,v;Irk). and
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101F(G+h) - F(O) - <DF(G).h>1 2 dv = o(lihl 2 ) as lihill -- O.

As usual F is said to be differentiable (on 6) if it is differentiable at each

6 C 6. The Fisher information matrix is defined by

$(9) = fl- DF(e) DF(6)'dv

(where DF(6)' is the transpose of the column vector DF(6)). It is nonnegative

definite, as a'$(O)a = f,(a'DF(O))2dv and is positive definite if and only

the components of DF(6) are linearly independent functions in L2 (v).

2.2 Main result

As in [23] our purpose is to consider product measures

~w

(2.2) X 10 L X = X . where jin = P and X
n

6 C 6 is fixed and 6 + h 0 6, n=1,2.... Under LeCam's conditionn

: limsup d2(PB+h.P)/lhll < ,
O<llhll-K)

Proposition 2 in [23] shows that 2= 11hnll2 < o implies p - X. Here we obtain an
n=l n

equivalence-singularity dichotomy along with necessary and sufficient conditions

for the two alternatives, when $(0) is positive definite at 6 and the following

separation type condition (which is usually assumed in asymptotic statistical

theory [16]) is satisfied.

(2.3) "for all sufficiently small 6 > 0, inf d2(Pe+hP0) > 0.
11hll>6

PROPOSITION 2.1. Let Wi and X, be as tn (2.2), F be dtfferenttable at 6 and 11(0)

be posittue deftntte.

i) If 0 < Ih [1 -- +0 as n-- thenn
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~ 11 h 11 2  <C. and pI X Ih- 1 2h

ii) If condition (2.3) ts satisfied, then the conctustons of i) hotd for

any sequence (hn; n C 11).

The sufficiency for equivalence follows from [23. Proposition 2], since

L 2-differentiability is clearly stronger than condition "e", but we include a

simple complete proof here.

Proof. Since F is differentiable at 6, as 0 < [Ihil --+ 0 we have

I IF(O+h) - F(e) L2(v) - ,<DF(O).h>,L2(V) I = o(Ihi).

Thus for any e > 0 there exists 6 = 6(a) > 0 such that if 0 < Ilhil < 6,

IlhlI- 1 11DFCE),hAIL2 v)-6 < Ihl-lllIF(+h)-F(O)L2(V) < Ilhll-ll(DF(e).h>llL2cv)+'.

utIDF()h>II2) = fSI<DF(e).h>I2dv = h'.t(6)h, implies that for all h s 0,

k(O) Iill- 1 II<DF(O).h>IIL2(v) K(O)

where k(O) and K(O) are the smallest and the largest eigenvalues of f(O). Since

#(0) is positive definite, k(O) > 0 and we can choose 0 < e < k(O) so that for

all 0 < Ilhill < 5.

0 < L(O) < Ilhll-lIlF((+h)-F(O)llL2(v) < U()

where L(O) = k(6) - e and U(6) = K(O) + a. Thus since d2(p6 .Pe,) =

IIF(9) - F(')11()/8 we have for n large

0 < - L2 (0) lh 112  < d2(pL.X) ( . U2(6) Ilhnii2

and the result follows from (2.1).
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ii) If (2.3) is satisfied and h -- 0. then there exist 6 > 0 and a

subsequence (nj; .C IN) with lh n 11 > 6. It follows that

d 2d 2{ (l. X I d2 (P e
ld2(An }d Jl JnhJ=l in +hPe)=n=id~~c'~~I dOLd )!i i = lhl>

and from (2.1). pi 1 X. This combined with i) gives the result. 0

It should be mentioned that the differentiability of F(G) is generally

difficult to verify, but is implied by the classical Carm~r-Wold and Hajek

regularity conditions, which play an important role in statistical estimation

theory and are in principle easy to check (see e.g. [28]. §77). However,

L2-differentiability is weaker than any of these classical conditions, and the

definition of Fisher information presented here extends the classical one,

namely #(8) = -E{o2en(dP9/dv)/IE2} under the usual conditions on dPe/dv

2.3 Examples

Affine Transformations in

Suppose (Xn; n 6 IN) is a sequence of i.i.d. random vectors in Rk

(An; n C IN) a sequence of kxk matrices and (bn; n C IN) a sequence of vectors in

R k. In order to compare the sequence of random vectors (Xn; n C IN) with

(An X n+bn ; n C IN) we can take as parameter space 8 any open subset of

{9 = (Ab); A=(aij): kxk matrix. b = (bi) C IR k

2 2
-(9;~~ =ak+k Ik ,k

-{0; 0=(a11. .... a lk' ...akk~bI ..... k)l = IR2 +  - R~

containing the point (1.0), with norm

2 k k11611 = IAI2  + 11b11k2  = . a2  + I 2,i l
IR~kk+ IRkx IRk t ~ ~ i=1

With P the common distribution of the i.i.d. random vectors X and 9 = (A.b). wen
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define

(2.4) Pe(B) = P(Ab)(B) = P((AXn+b C B})

and note that P = P,(1 0 )" From Proposition 2.1 we have the following

COROLLARY 2.2. Let the probability measures P0 defined as in (2.4) be such that

for an open set 0 C IRk 2xIRk with (1,0) E 0. the family {P,; 6 E 0} is dominated

by some a-ftntte measure v on IR k, F(O) is dtfferenttable at (I.0) and (I,0) is

positive definite. If A n I and b -- # 0 as n -40 thenn n

co 2 cc 2 0

(Xn) (AnXn+bn) k lb II1, < and I III-A n 1 k
n=l IR n=l IR

and otherwise (X n) i (An X n+b n). Furthermore if condition (2.3) is satisfied,

the above conclusions hold for all sequences (An bn) in 8.

Proof. Putting 6 = (1,0) and (A nbn) = 6+hn we have h = (An -I,b n) and

11h 11 2  IA -111 2  + Ilb 11i2

n R(kxk)+k = n IR(kxk) n I

The conclusion then follows from Proposition 2.1. 0

Remarks. a) Since the space of kxk matrices is finite dimensional, any norm can

be used in place of 11-11 kxk.

b) When A = I for all n, Corollary 2.2 extends the result on translates inn

[25] from random variables (k=l) to random vectors (k=2).

c) Corollary 2.2 contains Theorems 1 and 2 in [27], which consider the

case where A is a rotation, i.e. A x+b is a rigid motion of x E I.n n n

d) When the X 's are Gaussian random variables (k=1) with mean zero and

variance one, Corollary 2.2 can be checked directly by computing Hellinger

distances. However, the computation of Hellinger distance is not simple in
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higher dimensions fk 2) even for Gaussian random vectors.

Stable Sequences.

Here we denote by f(ap,a,b) the univariate stable density whose
characteristic function fmexp(ux)f(a.ab)(X)dx is

exp{-laulaexpE-i sgn(u)/2] + ibu), if a g 1.

exp{-IauI - i(2p/r)au In(laul) + ibu}, if a = 1.

where 0 < a 2. 1P1 9 aA(2-a), a > 0 and - < b < c (see [10]). If P = 0 and

b = 0. we have the symmetric a-stable case (SaS).

We establish the equivalence-singularity dichotomy for certain sequences of

independent stable variables. Because results about L 2-differentiability and

the validity of the condition (2.3) at a = 1 are not known, we consider only

limiting values a g 1.

COROLLARY 2.3. Let (Xln. n C IN) be a sequence of L.t.d. stable vartables with

density f (ao13Oao.bo) and let (X2n; n E IN) be a sequence of tndependent stable

variables uwhere the density of each X2n ts f (anPnanb with (a n.3 n,a ,bn)

(aO.O.ao.b 0 ) and a0  I . Then

(X Id -(X2n) 
' ( a 2 <IW= (b _ O 2 <

and otherwutse (Xlnd) L (X2n).

Proof. Let 6 be any open subset of (0 = (a,1,a,b); a C (OI)U(1.2),

I1P<aA(2-a). a>O. -<b<-) containing the point 60 = (ao.Po.ao.bo). It is known

that the densities {f6  6 C 6} satisfy the usual Cram~r-Wald regularity

conditions ([9]. p. 952); hence fS is L2(Leb)-differentiable at each 6 E 6 (see
0 L2 Le)dfentbl
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e.g. [28], §77). Moreover the Fisher information matrix .(00) is positive

definite [8. p. 954]. Therefore the assumptions of Proposition 2.1.1) hold at

o Since for h =(a-a -b) we haveh = ( )2 +

(nj-90)2 + (an-ao)2 + (bn-bo) 2 , the result follows. El

When all parameters except shift b are kept fixed, the separation condition

(2.3) follows from the inequality in [16. Example 3, p. 57]. and when 13 = 0 and

a C (0.2] is fixed, it has been proved in [19]. Hence we have the following

COROLLARY 2.4. Let (X ; n e IN) be a sequence of i.t.d. standard SaS variables

with density f(aO 10) and a C (0,2]. and let (a ,b) and (a',b') be two

sequences of pairs of real numbers with a n 0. Thenn

(anXn+b) (a'Xn+b) o (X) ((an/an)Xn + (bn-bn)/a')

e=(1- an/a' }2 <c and ((bn-b')/a'}2 ( 0.n=l n n=1 n n

and other-wise (a Xn+b ) I (a'X +b').
n n n n n n

Proof: The first equivalence follows since the map (x) ((xn-bn)/an) is

invertible and the second follows from Corollary 2.2 since

(an/a')Xn + (b -b')/a has density f(a,O, anannnan 0

~~n n n / nbbV

We next explore the tail behavior of a stable distribution to show that two

infinite sequences of independent symmetric stable variables with two different

indexes of stability are singular.

PROPOSITION 2.5. Let Xi = (Xin; n C IN), t=1.2 be two sequences of

(nondegenerate) independent symmetric stable variables with index of stability

ai in (0,2] and scale parameters (ain). If aI f a2 then A, 1 A2 .

Proof: Assume a1 < a2 < 2. For each - E (0,2) let Z I denote a S7S r.v. with
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scale parameter 1. Thus p in (B) A P(Xin C B) = P(aiZ C B). Since• -- PXin € ) - P aii

c P( Z I > c ) --* C as c --+ w where C is a positive constant (see e.g.

[11]), given any a > 0. there exist M such that for c ) M , ,

(C-6)c-V < P(Iz lI > a) < (C+e)c -

From now on fix a such that 0 < e < min(C X ).

Case 1. Assume

A
an = aln/a2n ---# 0 as n

Define *: FM -- FM by *(x) = (*n(x) = xn/a ; n C 0). It follows that * is an

i.i.d. sequence of standard Sa 2S r.v.'s under jiL2 and under XL, an independent

sequence of Sa S r.v. 's with scale parameter aln/a2n = an .

As before let d denote the total variation distance between probabilityv

measures. For c > M(l+supnan) where M = max(Ma,.M). we have

-l a2  a1  a1

dv± 1 n' 2n4'n1) P(IZ I>c) - P(Ia Z I>c) > (C a )c - a C+E)c
v ;~%2 n a1  2 n a1

and thus

liminf d (pln nl 1) - - Ca -6)/c 2 > 0.
m v in'n '~nn ) 2

Since d v 2 d where d denotes the Hellinger distance (see e.g. [28]) we have

nI=d(wln1 ,4 12n ) =s- and therefore by Kakutani's Theorem Al* - 1 - 2 1 .

which implies ji1 i '2

Case 2. Assume an -4-+ 0. Thus there exist 6 > 0 and a sequence (nk; k C IN) such

that an 6. i.e. aI 6- 1. Define 0: F' --+ F by O(x) = (,k(x) = xk/aln; k
nk nk

C IN). Then 0 is an i.i.d. sequence of stantard SalS r.v.'s under Il and under

P an independent sequence of Sa2S r.v. 's with scale parameter a2nk/alnk = an
For c > M(1+6 )we have
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d 0 I, 0) P(IZa I>c) - P(Ia-1Za I>c)
v n k n k'2nKn ka 1 nk a2

> (C E)c -1 (C +&)c 2 > (C _&2c 6- 1 (C +e)c 2 A ).
nk nk a2 nka2

Since a1 ( a2 , we have 6'(c) > 0 if and only if c a 1 (Ca2 + 1)/(C -e)

Thus, fixing c > M(1+6 -  + (c +e)/(Cl-e) 2 we obtain

a 2  a1

limsup d 0' -1) > 6(c) >0
(nv in ln ,n >  '

and thn conclusion follows as in case 1.

If a2 = 2, the result can be shown with minor modifications in the proof. 0

3. DICHOTOMIES FOR CERTAIN SaS PROCESSES

For stochastic processes the equivalence-singularity dichotomy has been

proved for product measures [18], for Gaussian processes ([10] and [14]). and

for certain ergodic measures [20]. In [24], it was shown that this dichotomy

prevails for translates of certain SaS processes. Such dichotomy for general

SaS measures has been conjectured in [7] but the problem remains open. In this

section we show that an equivalence-singularity dichotomy holds for certain ScS

processes, e.g. independently scattered SaS measures and harmonizable SaS

processes, and we give necessary and sufficient conditions for the two

alternatives for all a £ (0.2].

Recall that a random variable X is SaS with scale parameter 1iXia C (Ow) if

E(exp(iuX)) = exp(-IXIa lula), and a stochastic process X = (X(t); t C T) is SaSa

if all linear combinations !=lakX(tk) are SaS variables. When a = 2 we have

zero mean Gaussian variables and processes respectively. When 0 < a < 2. the

tails of the distributions are heavier and only moments of order p E (O,a) are

finite.
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We first prove a dichotomy for independently scattered SaS measures. Let I

be an arbitrary set and .0 a 6-ring of subsets of I with the property that there

exists an increasing sequence (I n; n 6 IN) in # with Un I n = . A real stochastic

process Z = (Z(B); B C $) is called an independently scattered SaS measure if

for every sequence (Bn; n C IN) of disjoint sets in . the random variables

{Z(B n); n C IN} are independent and whenever UB n  #$ then Z(UnBn) = nZ(B )

a.s., and for every B C $ the random variable Z(B) is SaS, i.e.

E{exp(iuZ(B)} = exp(-m(B)Iua} where m(B) = llZ(B)lIaI. Then m is a measure on

which extends uniquely to a a-finite measure on a($). and is called the control

measure of Z. The existence of an independently scattered SaS measure with a

given control measure is a consequence of Kolmogorov's consistency theorem.

When I is an interval of the real line and the control measure m is Lebesgue

measure, then X has stationary independent increments,

E{exp (iu[X(t)-X(t')])} = exp{-1t-t'11ul=}, and is called SaS motion on I.

The following notation will be used in Proposition 3.1. Recall that if a

a-finite measure space (I,a(f),m) is such that a() contains all single points

sets (e.g. I is a Polish space, a(.) its Borel sets, and $ the 6-ring of Borel

sets with finite m-measure) then m can be decomposed into m = ma + md where ma

is purely atomic and md is diffuse (non-atomic) [21]. and the set of atoms is at

most countable, say A = (an ). Thus if Z = (Z(B); B C .t) is an independently

scattered SaS measure with control measure m, it can be decomposed into

Z=Z +Z d
Z=Za +dZ

where Za and Zd are indepedent SaS independently scattered measures defined for

all B C $ by Za(B) = Z(AfB) and Zd(B) = Z(AcflB). and have control measures ma

and md respectively. The atomic component has a series expans -n

Za(B) = -n lB(a n)Z((an}) which can be normalized by using the i.i.d. standard SaS

variables Zn A Z({an} )m-1/ ({a} ) with E{exp(iuZ n)} = exp(-Iula ). as follows:
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Z(B) = lB(an)m 1/a(an})Z

PROPOSITION 3.1. For i=1,2, Let Zi = (Zi(B);B e f) be an independently

scattered Sa iS measure with ai C (0,2] and control measure mi which is not

purely discrete with a finite number of atoms. Then W, - g2 if and only if the

following conditions are satisfied

i) a, = a2 ,

ii) mld = m2d'

iii) m1 and m2 have the same set of atoms A = (an and

In[ 1 - ml ( ( a n )/m2( ( a n}) ]2 < .

Furthermore if any of these conditions fails p 1 w2.

Proof. First suppose that m1 and m2 are not equivalent, e.g. m2  m1 . Then

there exists B C a(.#) such that

a I  a

11Z 1(B)II = ml(B) = 0, and IIZ2(B)II 2 = m2(B) > 0.
1 a2

Define IB: -- F by FB(x) = x(B). It follows that wlrB1 i 1. and thus

91 1 w2. From now on we assume m, ~m 2 .

Suppose a1 # a2 . Since mi and m2 are not purely atomic with a finite

number of atoms, we can choose an infinite sequence (B n; n C IN) of disjoint sets

in J1 such that mi(Bn) > 0, i = 1,2. Define *: I' --* F by *(x) = (*n(x) =

X(B n); n C IN). Thus, for i=1,2, under Wi' * is a sequence of independent SaiS

ai

r.v.'s with ll* 11i = mi(Bn). It follows from Proposition 2.5 that if a1 ; a2,
n a i n1 2

then -1 4 '2*-  so that p1 P2. From now on we assume a, = a2 = a.

Since mI - m2 we have mid ~ m2d. Suppose mid 4 m2d. so that

mid((dm2d/dmld $ 1)) > 0, i=1.2. hence
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m id ( { 0 < dm2d/dmld < 1}) > 0 or Mid ( ( d m2 d / d m l d > 1)) > O.

Assume mid({dm2d/dmld > 1)) > 1) > 0. Then there exists 6 > 1 such that
Mind(dm2d/dmld > 61) > 0. Since mid is nonatomic, we can find a sequence

(Bn; n E IN) of disjoint subsets of "dmid/dmld > 6) such that m ld(Bn) > 0. Let

0: F0 --+ N be the map defined by O(x) = (On(x) = x(ACnB n)/mld(Bn)l1a; n E }.

Under A1 . 0 is an i.i.d. sequence of standard SaS r.v.'s. and under pi2. 0 is an

indepedent sequence of SaS r.v.'s with II0nll, = m2d(B n)/mld(Bn). It follows from

Corollary 2.4 that X1 I -1 and A2 0
- 1 are either equivalent or singular, and they

are singular if and only if

(3.1) 1n ( - [m2d(B n)/mld(B n )]1/a 2 =

Now by construction

m'd(B) = dm >5 (n dm Id Id Id B).

Hence 1 < 6 < m2d(Bn)/mld(B) so that (3.1) holds. Thus p1 0
1 .p2 2

1 which

implies A I I A2.

If mid({dm2d/dmld > 1)) = 0 we have mid({dmlddm2d > 1) > 0 and an

indentical argument applies. Therefore m1 ' m2 and mid # m2d implies p 1 1 w2.

Now assume mId = m2d. Since mI, m2 , they have the same set of atoms

A = (an). Suppose ; 2 (p 1 and let -: FO --4 I be defined by

1/a -1 --(x) = ("n (x) = x({an})/ml({a})I; V I). Thus l i - 1 < _---and -- is an

i.i.d. sequence of standard SaS r.v."s under pI and under p 2 an independent

sequence of SaS r.v.s's with II-la = m2 ({an})/ml({an)). Hence by Corollary 2.4.

(3.2) n {I - [m2 ({an})/mI (an 1]I/a )2 < .

Also, if (3.2) does not hold, again Corollary 2.4 implies p I  ± 2 - so that

11 2h
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Note that (3.1) and (3.2) are symmetric in m1 and m2 and independent of a

as for q 0 0. 1n(1u )2 < w if and only if I(1- n)2 < w. Hence (3.2) can be

replaced by iii).

Conversely, suppose that i). ii) and iii) hold. Since mld = md we have

= Zia + Zd i=1,2,

where Zia and Zd are independent, independently scattered SaS measures with

control measures mia and md = tld = m2d respectively, and L denotes equality in

law. Let 0: FI --* F-* be defined by

[O(y)](B) = 0(y.B) = w llB(an)ml((an})lia y

Thus (0 o =)(Zi)=Zia, so that _= ( -1)07 1 , i=1,2. Now by Corollary 2.4.

iii) implies j~jIE- , hence wla -2a" Therefore, since ji = i,a *d'

i=1.2, it follows that PI 42- 0

The results in Proposition 3.1 can be extended to certain symmetric

(dependent) stable processes. Let Z be an independently scattered SaS measure

with control measure m. For any function f C La(I,o(#),m) = La(m) the

stochastic integral f IfdZ can be defined in the usual way and is a SaS variable

with OfJIfdZIa = 1fiL (m)' The map f f IlfdZ from L a(m) into V(Z) is an
a

isometry and

(3.3) V(Z) = {f'fdZ; f E La(m)}.

The stochastic integral allows for the construction of SaS processes with

generally dependent values by means of the spectral representation

(3.4) X(t) = fIf(tu)Z(du), t 6 T,

where{f(t,-); t C T) C La(m). In fact every SaS process X has such a spectral
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representation in law, in the sense that for some family {f(t.-). t C T} in some

L(m).

(3.5) (X(t); t e T) (fI f(tu)Z(du); t C T)

(see e.g. [22] and [15)). Some examples of SaS processes will be considered at

the end of the section.

Let X = (X(t); t 4 T) be a SaS process with spectral representation as in

(3.4). It follows from the continuity of the stochastic integral map f --+ ffdZ

that the representing functions ((f(t.); t C T)} are linearly dense in La(m) ,

sp~f(t,'); t C T} = L a(m). if and only if V(X) = S(Z). Processes satisfying

this condition will be said to have an tnuerttble spectral representation or

more simply to be tnverttble. Gaussian processes are invertible [1]. For

non-Gaussian SaS processes this is not generally true [5]. Conditions for

invertible representation are given in [3) and [5]. SaS processes with

invertible representation in L2 ([0,1]) are considered in [30).

Let X I = (Xi(t); t C T). i=1.2. be two invertible SaiS processes with

spectral representations X1 (t) = fIf(t~u)Zi(du). where Z, are independently

scattered SaiS measures with control measures mi and f(..t) E Lal (in) n L (i 2 ).

t e T. X and X2 will be called simultaneously invertible if for each B C .9

there exist Nn(B), an1 (B)....anN (B)(B). tn1(B),.....tnN (B)(B) such that

N (B)
1k1 ankf(tnk(B) ) Y 1B() as n -

in La i(mi) for both i=1,2. E.g., XI and X2 are simultaneously invertible if

they are invertible, and either a 1=a2 and dm,/dm2 is bounded above or below, or

their associated random measures Z I and Z2 are equivalent (cf. Proposition 3.1).

The simultaneous invertibillty of XI and X2 allows for the study of the

equivalence and singularity of 1I' 92 in terms of that of Z1. Z2 . Indeed
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Xi(t)=ff(t.u)Zi(du) is, roughly speaking. Xi=L(Zi), where L is a linear map from

se(Zi) into $e(Xi). Simultaneous invertibility is like having Zi=L- (Xi). so the

singularity of Z1 . Z2 should imply the singularity on equivalence of X1 and X2 .

and vice-versa for equivalence. The next proposition makes this precise.

PROPOSITION 3.2. Let Xi = (X1 (t); t C T) be two simultaneously invertible SaiS

processes with aiE(O.2] and spectral representations Xi(t) = fif(t.u)Zi(du),

where Z are independently scattered SaIS measures with control measures mI

hich are not purely discrete with a finite number of atoms. Then pX1 and X2

are either equivalent or singular, and

PX1 X Z1 PZ' P 12 _'P21 _P2.

i.e. 1 if and only if conditions i), ii) and iii) of Proposition 3.1 are

satisfied, and otherwise PX1 £ X2 .

Proof: For B C f we can define

N (B)
n(B.x) = jknl ank(B)x(tnk(B)). x E FT .

so that *n(BXi(-,cj)) -Zi(B., ) , in probability as n -+, i=.1,2. Let

(0 n(B,-); k E N) be a subsequence converging a.s. (pi). i=1,2. and put

Z(B) = Z(B.-) = liminf { (B,*)l{x; 0 (x) converges)
k-* nk nk

Hence Z(B.Xi(..w)) = Zi(B.w) a.s., i=1,2. The stochastic process Z = (Z(B).

B C $) defined on (FT T) is an independently scattered Sai S measure with control

measure m Iunder PXi If we also denote by Z the map x - Z(-,x) then

1- ~-2 (i .e.pZ 1 an d Z I I Z2 (i.
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PxIz-I 2 Z 1 ) X1 X2-

On the other hand if Z1 *Z2, i.e. IZ1 PX2Z-, it follows that

i)-iii) of Proposition 3.1 hold. Thus, we can construct indepedent processes Xd

and Xia on (F. ( ). pZ) such that

X1 =X +X i =1,2,

with p- - p . Since PXI = * ;4 . we have X - % .
Xla X2a Xd  Xia 1

Now if AXI1 and pX2 are not equivalent it follows that PzI pZ2 (since

otherwise ZI ~ -P 21 which implies X1 i.e. a contradiction) and this was

shown to imply PXI 1A ,X. 0

It follows from Proposition 3.2 that simultaneously invertible processes

are singular whenever their indexes of stability are different. This is not

generally true for symmetric stable processes with different indexes of

stability. Indeed, let C = {G(t); t e T) be a Gaussian process, and for i=1,2,

let A be a standard positive (ai/2)-stable random variable where aI 1 a2 , and

consider the sub-Gaussian SaiS processes Xi = (Xi(t) = AiG(t); t C T). We have

that pX i(B) = wxG(B) wA i(dx). Since the distribution pAi of A. has positive

density in R+ we have "A ~A 2 , so that by the Corollary of Theorem 18.1 in

E26]. X1 - PX2. Since the linear space of a sub-Caussian process does not

contain (nondegenerate) independent random variables (see [5)), sub-Gaussian

processes are not invertible (nor simultaneously invertible). Further examples

of symmetric stable processes with different indexes of stability which are

equivalent are Xi = (Xi(t) = IN=AinGn(t); t C T) where for each i=1,2. the

vector (Ail..... AiN) is positive (ai/2)-stable. indepedent of the mutually
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independent Gaussian processes Cn = (Gn(t); t E T). n = 1.....N.

As a consequence of Proposition 3.2, harmonizable processes are either

equivalent or singular and necessary and sufficient conditions for the two

alternatives are provided.

COROLLARY 3.3. Let Xk = (Xk(t); t 6 T), k=1.2. be two harmontzable SakS

processes, with ak C (0,2], i.e.

Xk(t) = fexp(i<tu>) Zk(du) ,  t C T,

where I = IRd, respectively [-l,Td, for T = IRd, respectively Zd' and Zk are

independently scattered SaKS measures with finite spectral measures mk which are

not purely discrete with a finite number of atoms. Then pX1 and u-- are

equivalent if and only if i), ii) and iii) of Proposition 3.1 are satisfied, and

they are singular otherwise.

Proof: Clearly X1 and X2 are simultaneously invertible, since indicator

functions can be approximated uniformly, and hence in L%(mk), by linear

combinations of the functions f(tu) = exp(i<t,u>). Hence the result follows

from Proposition 3.2 0

As a special case, let S and N be harmonizable SaS signal and noise

processes as in Corollary 3.3, that are independent of each other. Then pS+N

and iS are equivalent if and only if

ms- d 0, the atoms of ms are atoms of mN  and

mS({a}n)

n ms({an})+m ({a} ) ]

Otherwise PS+N and p are singular, and the presence of the random signal S in

the additive noise N can be detected with probability one (at least in

principle). In particular, "S+N and pN are singular when the signal has
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continuous spectrum or the noise has no atomic spectrum. (Similar results hold

when the signal and noise processes have simultaneously invertible

representations as in Proposition 3.2).

The results in Propositions 3.1 and 3.2 and Corollary 3.3 are identical in

the non-Gaussian stable case and in the Gaussian case [6]. However in the case

of Corollary 3.3 much more is known for Gaussian processes. Namely, for

stationary Gaussian processes (d=l) restricted over a finite interval, the

equivalence-singularity dichotomy prevails and necessary and sufficient

conditions for the two alternatives are known (see e.g. [17]). Both of these

important questions remain open in the non-Gaussian stable case.

Another consequence of Proposition 3.2 is the singularity of multiples of

invertible processes.

COROLLARY 3.4. Let X=(X(t); t C T) be an invertibte SaS process with

a C (0.2] and control measure m which is not purety atomic witth a finite number

of atoms. Then X and bX are stngutar wherever Ibi 0 1.

Proof. If X(t) = ff(t.u)Z(du), where Z has control measure m. then bX(t) =

ff(tu)Zb(du) where Zb = bZ has control measure Iblam. Clearly X and bX are

simultaneously invertible and the result follows from Proposition 3.2. 0

The result in Corollary 3.4 is known to hold for every Gaussian process

with infinite dimensional linear space. Here again the class of SaS

sub-Gaussian processes provides an example to show that the result is not true

for all infinite dimensional SaS processes. In fact, if X = (A5G(t); t C T), as

before, we have for each b > 0. pbx(B) = f R +pxG(B) pbA(dX). The distributions

pA and 
1 bA are equivalent for all b > 0 so that pX -bX .

In the Gaussian case the multiple b in Corollary 3.4 is allowed to be a

function b(t). but this problem reains open in the non-Gaussian stable case.
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Corollary 3.4 is relevant to the detection of a constant signal in

multiplicative noise. (See [2])

4. REMARKS ON SINGULARITY AND ABSOLUTE CONTINUITY OF pth-ORDER AND SaS PROCESSES

For two Gaussian processes, the setwise equality of their RKHS's is a

necessary condition for equivalence. For two second order processes a necessary

condition for absolute continuity and a sufficient condition for singularity in

terms of their RKHS's are proved in [12]. We show that these results remain

true for SaS processes and for pth order processes with 1<p<2 respectively, with

the RKHS replaced by an appropriate function space 9 specified in the sequel.

The function space of a pth order process X = (X(t); t C T) is defined in

[24] by

= s: T -- + F; IlsillA sup _ /
a Il.. aN 112n lanXi~n u /

N, I=lan(tn"Lp(P)
tIl.....N tn~ li nL

th
Note that when p = 2. 5 = RIM. If X = (Xi(t); t E T), i=1.2, are two p

order processes, we say that X1 dominates X2 if there exists 0 < K < - such that

for all NE IN, a I . . C 1 R1 and tI ..... tN C T,

_12 a K 11IN
ln=lanX2(tn)[[L (P) K1 n=lax l(tn)[[L (P)

P P

The relationship between domination and the function spaces is clarified in the

following

th
PROPOSITION 4.1. Let X, = (Xi(t); t C T) be a p order processes with function

space 5i1 i=1,2.

i) If XI dominates X2 . then 92 C 91 ,

ii) X1 dominates X2 if and only if there exists a bounded Linear

transformation V: I(XI) --+ V(X2 ). satisfying V(Xl(t)) = X2 (t), t C T.
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Consequently, if XI dominates X2 and vice versa, then 9 = 2 (setwise). 1I-11 1

and II-II are equivalent, and the transformation V has bounded inverse.

Proof. 1) If X1 dominates X2 , it follows that for all functions s,

IslU 9 KIlsll2. and thus 9 2 C 171"

it) Let V: e(X1 ) -- + V(X2 ) be deftied by V(iP anX(t) _T I~a X (tn It

is clear that V is a well defined bounded linear transformation and as such it

can be extended to 2(X1) if and only if X, dominates X2 . 0

For SaS, the next Proposition shows that mutual domination is a necessary

condition for absolute continuity, i.e. non-domination is a sufficient condition

for singularity. This Proposition is a stochastic process version of

Proposition 7 in [30].

PROPOSITION 4.2. Let X, = (Xi(t); t C T), i = 1.2. be two SaiS processes. If
III and l12 are not singular, then XI dominates X2 X2 dominates X1, and

; 1= 2 .Equivalently if 1 A2 then either XI c!es not dominate X2 or X2 does

not dominate X and W I J- 2 "

Proof: Since for Y C V(Xi), "Y"L (P) = C INYI (see [4]). XI dominates X2 ifp Pi ai

and only if

1INi a X (t )I1 K UPi a X (
n=1 n 2tn)a2 n=lan ltn) a1 .

Assume XI does not dominate X2. Then for any positive sequence K n , as

n - 0,there exist yMi Nk n
n = lan,kXi(tn,k) ,  i=1.2. such that

Ily(2)II K 1y(*1 n=1.2..... Without loss of generality we can assumen a2 n n a,

IIY(1)ll - I for all n. Thus
n a2
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11Y( 1 )II 1AK -* as n--w
n a2  n

Now consider the sequence of random variables (Yn; n C IN) defined on (FTT) by

YnX) = Nnlakx(tk) x C FT . It follows that

ex~ u d j=exp(-IIY(l)IIC1 lulal) -- + 1 as n -*w

Hence a subsequence (Y k E IN) can be chosen such that if CO  {x; Y (X) -+ 0
1 nk

as k -- . then PXI (C) = 1. Clearly Co is a measurable linear subspace of FT

and, since i2 is a Sa 2S measure on (IF T,), it follows by the zero-one law for

stable measures [8] that i2 (C0 = 0 or 1. On the other hand,

a2  a2 a

FT exp(iuY nkd2 = exp(-IY n1a21 = exp(-IulI 2 )
F n k 2

which implies that p2 (C0 ) = 0 and thus p1 L P2. 0

The crucial result used in the proof of Proposition 4.2 is the zero-one

law, which is not available for general pth order processes. However the

proposition has some partial analogs for certain pth order processes.
th

As in [12] we call a p order process X = (X(t); t C T) non-reduced if

there exists some e E (0.1] such that for all countable subsets T of T,

P({c: X(t.w) = 0. t E TO}) 0 e; otherwise X is called reduced. Nontrivial SaS

processes are reduced. When X is separable and T an interval of the real line

it is shown in [12] that X is reduced if and only if P({X(t) = O,t E T)) = 0.

and nonreduced if and only if P({(X(t) = 0. t C T}) e for some a E (0.1].
th

Next we generalize to p order processes with 1 < p < 2 the results in

[12]. Th~or~mes (3.2) and (3.3.2). The proof is essentially identical to

Fortet's and is presented in a shorter form.
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PROPOSITION 4.3. Let Xi = (Xi(t); t C T), be a pth ordier process with

<(p<2 and function space 51 i=1.2.

i) If A2 ( l1 then 91fnl5 2 is dense ing2

ii) If either X I or X2 is reduced, and 1 n 12= {o}, then g 2

Proof. i) Fix s C g2- By Proposition 1 in [24) we have

s~)=E(X 2 (t)Y ) =l S,,x(t)a(x) <->tX(x

where z~q =lq-z, Y C Vf(X2) and a(x) is a representation of Y in

L P(41- p{x~);t C T) C FT. Y(ci) = a(X(..cj)). Let

112 (E) = f~gdg, + p2(EflN)

be the Lebesgue decomposition of IA 2 with respect to pL. Define

E n= (x: O<&'x) n~fl N c and

nn

E n 92 E~ n 1 2gnnn

I~.i) 55)(k Fo a ie T, letickx ) = x'2)( a de ine c'

ThusX

ByPoitio a fixe [2].0 C . let aince =xt) an defin2' et
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s On(t) = .f Frx(t)ao(x) 1Pl>IE h(X)11 2 (dx) = f' .~x(t)aO(x) <->g(x)lE (x)ji1(dx)

so that sOn e ln 52. Since ln 52 = {O}, ,oa, i.e. son(t) = 0 for all

t C T. In particular

SOn(tO) l I x(to) Pg(x)gl1(dx) = 0 for n = 1.2.....
{O<g<n}

and hence

Ix(to )IPg(x)gl(dx) = 0.
(o<g<-}

Consequently, since t0 C T is arbitrary, we have x(t) = 0 a.e. (4i) on (O<g<-)

for each t C T. But this implies that X1 is non-reduced if

1.L({x:x(t) = O.t C T}) j&1({x; O<g(x)<-)).

On the other hand if l({x; O<g(x)<w)) > 0 then x(t) = 0 a.e. (gl1 ) for each t

and f gdl > 0. Hence
{O<g<-}

p2 ((x; x(t) = 0. t C To}) O g$di 1 > 0.

i.e. X2 is nonreduced. Since either X or X2 is reduced we must have

1 ({x: O<g(x)<w}) = 0. i.e. il 1 p2. 0
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