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1 Introduction and motivation

It is well-known that there can be a significant difference in behavior in flight between

liquid-filled and solid-filled projectiles. The difference is caused by the motion of the liquid

inside the spinning projectile. This motion causes forces to act on the projectile that can

ultimately cause the flight of the projectile to be prematurely terminated by instability.

The initial motion of the projectile necessarily causes the fluid motion in the cylinder to be

time-dependent; later it can be assumed that the flow is steady. The destabilizing motion

of the projectile induced by the forces exerted by the fluid is of small amplitude in its

initial stages.

Several methods are available to find the fluid motion in a cylindrical container per-

forming small amplitude oscillations; here we mention two of these approaches. First, a

finite difference approach to the equations of motion can be used1 . In this formulation, the

Navier-Stokes equations are marched forward in time until an equilibrium state is reached.

This is not a time-accurate method, however. The method is most economical at relatively

small Reynolds numbers and prohibitively expensive2 at Reynolds numbers of the order of

10,000.

Secondly, a spatial eigenvalue procedure has been developed by Hall, Sedney, and-

Gerber'. This procedure can be used to determine inexpensively the forced fluid mo-

tion at Reynolds numbers up to about 2000. The method produces results in excellent

agreement with experimental observations and agrees with the finite difference results in

most situations. A solution is obtained with this method by expressing the velocity and

fluid pressure fields in terms of the eigenfunctions that describe the linear instability of

solid-body rotation. However, because we are concerned with flows in cylinders of finite

length, we can allow the axial wavenumber of the perturbations to be complex while the

frequency of the perturbations is real. The eigenvalue problem associated with this type of

perturbation has an infinite number of eigenvalues, which can be numbered in some way,

for example, by counting the number of internal zeros of the eigenfunctions. Essentially it

is found that eigenvalues can be naturally split into groups of three with the eigenvalues

within each group now being ordered on the basis of the number of zeros of the eigenfunc-

tions. The major computational task associated with the spatial eigenvalue approach is
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to determine the eigenvalues. Most of the calculations performed by the present authors

were carried out by using initial guesses for the eigenvalues from interpolation in a table of

eigenvalues 4 obtained by extrapolation from the eigenvalues at a Reynolds number of 10.

In order to perform calculations over a wider range of parameter values it was necessary

to find an alternative (and quick) way of obtaining initial guesses for almost all of the

eigenvalues. This report demonstrates the most useful such method, which is based on the

WKB method.

In this report we explain the implementation of the WKB method to find the eigen-

value spectrum for solid-body rotation. The reader is referred to References 3 and 4

for discussions of the spatial eigenvalue approach. Here the approach is outlined for the

completely filled cylinder problem; the extension of the approach to the 'inner-rod' or

'partially-filled' case is straightforward.

2 The spectrum at high Reynolds numbers

As mentioned above, the motivation for this work comes from our previous study of

forced motions in finite rotating/nutating cylinders'. We first present a brief description

of the physical problem that motivates the present study. Consider a cylinder of radius

a and height 2c, rotating about its axis with angular velocity 11. The cylinder is filled

with an incompressible fluid of density p and kinematic viscosity v. After transient effects

(spin-up) have died out, the fluid motion in the absence of gravity is solid body rotation.

If the cylinder is made to cone at constant rate r with respect to an inertial reference

frame, the motion is a perturbation on solid body rotation. In coning motion, the axis of

the cylinder moves on a cone; for convenience, the vertex of the cone is taken to be at the

geometrical center of the cylinder. The angle between the cylinder and the cone axis is

K 0 . We define the Reynolds number Re by

Re ( +r cosKo)a
2

and the nondimensional perturbation frequency by

T

= +r cosK 0

2



For the linearized problem, cos Ko = 1. Time, length, velocity and pressure are made

nondimensional by (Q + r)- 1 , a, (Q + r)a and pa2 (Q + r) 2 , respectively. Our starting

point, therefore, is the linearized stability equations for a three-dimensional time-dependent

disturbance to solid body rotation in a circular cylinder. We restrict our attention to the

mode with azimuthal wavenumber unity and axial wavenumber k. This wavenumber is

taken to be complex while the frequency of the disturbance is real; notice that at finite

values of the Reynolds number, solid body rotation is stable so that no real eigenvalues k

can exist. At infinite Reynolds numbers the flow is neutrally stable so that for high values

of the Reynolds number we expect to find eigenvalues k with small imaginary part. For

the inertial reference frame, the appropriate stability equations are:

[Re-' A -r-2) - iM]u + 2+ 2iRe) -p =O

[Re-( A - r-2) - iM]v 2+ r) +-0 (2.a, b, c, d)

[Re-' (A,) - iM]w + kp = 0

(ru)r - iv + krw = 0

Here r denotes the radial -ariable with the cylinder located at r = 1 while u,v,w denote

the radial, azimuthal, and axial perturbation velocities and p denotes the perturbation

pressure. The operator A1 is given by

d 2  I - d k + (2 .2 )

dr2 +r dr {k 2

and M = f - 1 with f equal to the perturbation frequency. If we are concerned with the

case where there is no inner cylinder then (2.1) must be solved for k = k(Re, f) such that

u-iv=w=p=O, r=O
(2.3a, b)

U--v--w--O0, r--=1

The first of these conditions ensures that the velocity and pressure fields of the disturbance

are regular at the origin and the second condition is the no-slip condition for a viscous fluid.

Notice that if we were investigating the 'inner rod' problem or the 'two-fluid 'problem,

then the inner boundary conditions would be altered and applied instead at a finite value

of r.

3



Our aim therefore is to determine the infinite spectrum of eigenvalues at a given value

of f at high values of Re. From our previous experience (e.g., see Reference 3) we know

that for positive values of the real part of k, there are three distinct branches of eigenvalues.

Two of these branches, I and III, are in the first quadrant while a third branch, II, is in the

fourth quadrant. We know that on any one of these branches the asymptotic expansion of

any eigenvalue takes the form

k = k0 + Ro-k, + Re-k 2 +. (2.4a)

or the form

k = Re4 ko + Re-2ki +. (2.46)

The eigenfunction associated with k0 in (2.4a) can be expressed in terms of Bessel functions

and k, dei.ends on the mode number m (basically the number of zeros) of the eigenfunction.

In fact, for large m it can be shown that k, - m, so that the first two terms in (2.4a)

will formally break down when m , Re". In this situation the radial derivatives will

formally be of size Re so that the basic assumptions leading to (2.4a) no longer apply. It

is this regime that we will now concentrate on since our previous experience has shown that

(2.4a,b) are only useful in predicting accurate approximations to the first few eigenvalues

on the different branches.

For modes with wavenumbers of size O(Re 4 ) the disturbance varies on a length scale

O(Re 1) over most of the flowfield; we anticipate this structure by seeking WKB type

solutions of (2.1) with

{u,v,w,p1 = exp{iRe" J 6(f)df} Z(_,n,_,,.,Re7A'p)R-. (2.5)
n=O

At this stage the viscous derivatives in the radial direction are of size O(Re) while diffusion

in the ax-ial direction will be of size 0(k 2 ). Thus in order to balance the diffusion of vorticity

in the radial and axial directions we must take k = O(Re26) so that (2.4a,b) must now be

replaced by the expansion

k=V- ko + k,+ - k2 +.... (2.6)
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The WKB phase function 0 appearing in (2.5) is determined by substitution for {u, v, w, p}

from (2.5) into (2.1) and retaining only the dominant terms in the limit Re - oo. We

obtain _ + + iMJ- + 2 i- =

[02 + k 2 + iM]o + 21 o = 0
(2.6b)

[02 + k2 + iM]wo + kop = 0

iOuo + kow.o = 0,

and these equations have a consistent solution if

(92 + k2 + iM) 2 (02 + k2) + 4k2 = 0, (2.7)

so there are six possible values for 0 for a given value of k. If the expansion (2.5) is to be

valid over a 0(1) length in r then only real values of 0 are acceptable. Thus we insist that

(2.7) has two real roots. in which case it can be shown that the other four roots are complex.

Without any loss of generality we can suppose that ±01 are the two real roots of (2.7) while

the remaining (complex) roots are denoted by ±02, ±03. Hence our expansion (2.5) must

now be written down as a sum over the two acceptable real solutions of (2.7); alternatively

these exponential solutions can be combined in terms of trigonometric functions.

At next order the linear equations to determine (m&l, 1, w, , p,) are obtained but are

found to be forced by the zeroth order function (u, vo, wo0 , p) and their derivatives with

respect to the slow scale r. The consistency of these equations leads to a first order

differential equation for m_ that can be solved to give
1

uo -- exp{ikir} (2.8)
r 2

in which the constant k1 is given by

-1 = 0koki1 + 1 (2.9)
1i + (L2 + 2L(0 2 + k2))

The quantity L is defined by

L =9 2 +k + iAf. (2.10)
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A few comments are in order before completing our asymptotic solutions for k in

the large wavenumber limit. First, we note that the phase function 0 determined above is

constant so that the 'fast' dependence of the perturbed flow could equivalently be expressed

in terms of the variable r* = Re r. Thus an alternative and possibly more instructive

method to solve the asymptotic problem for k would be to use a multiple scale approach

using the variables Re r, r, Re 2 r, .... Secondly, we notice that the slow dependence of

m (and hence that of r_, w and p.) on r takes the usual WKB form for a second order

differential equation in that it is proportional to {J (F)d}- -2. The extra exponential

factor is introduced because the differential system under consideration here is of sixth

order. We now introduce the following nomenclature:

u, = un exp(i Re1/2 0 r), n = 0,1, 2,...

with similar expressions for vn, w,, and pn.

The solution u0 is singular in the limit of r --4 0 so there must be an inner viscous

boundary layer at the origin in order to smooth out the singularity. We have seen that

the only acceptable roots of (2.7) are 01 and -01 since the complex roots will lead to

exponential growth when r increases or decreases. Thus for r = 0(1), the appropriate

forms for uo, vo and uo ,determined by (2.6b) and (2.8) are

L1 sin{Re26jr + kIr} NL1 cos{Re26 1 r + I r}
I I

-U 0 - . + I2r2 2r2
_ sin{Re12ir + kir} N cos{IRe 4

jr + .ki r}VO=+ 1(2.1lla, b,c)

-ILI cos{Re Olr + kir} L 1N6 1 sin{Re 16r + k.ir}
2r2 2r2

Here the constant L1 = 02 + k 2 + iM, while N is a constant to be found.

We can see from (2.11) that we cannot choose 61 and N, the two constants at our

disposal, in order to satisfy the no-slip condition directly at r = 1. The remedy is to allow

for a viscous boundary layer at r = 1 in which, in effect , the exponentially decaying WKB

solution can be used to satisfy the condition. In fact, it is easiest to simply use a boundary

layer variable

=Re' {1 - r}

6



and note from (2.11) that the r = 0(1) core solution at r -- 1 can be expressed as

v0 sin01 [N sin(Re 20 1+ ki) - cos(Re0 1 + )] (2.12)
(212

+ cos 01C (sin(Re 01 + kj) + N cos(Re10 1 + k )

together with similar expressions for u0 , w0.

In order to match with the above limiting form of the core solution, we must expand

(u,v,w,p) in the = 0(1) wall layer in the form

(u, v, w, p) = (io(C), io(C), tbo(C), Re 51o()). (2.13)

If the above expansions are substituted into (2.1) and like powers of Re- are equated we

find that

-d _ k2 iM fio + 2 o = - (2.14a)

d- k2 - iM )o - 2io -- 0 (2.14b)

- -2 iM} tZIO -koPO (2.14c)

-r + kolo = 0. (2.14d)

If we eliminate io, z1,o, Po, we find that

[(2 2 iM) 2 ( k ) d2k 2 2 = (2.15)

so that the solution for iO that satisfies the no-slip condition at r = 1 is

o = a[sin O + Acos 01 C + Be-
42

4 - (A + B)e - i 9C]  (2.16)

Here A, B, a are constants to be determined and 02, 03 are the roots of (2.7) that have

negative imaginary parts. The functions io, tiv0, o can then be found from (2.14) and the

application of the no-slip condition on fio, tb0 shows that

B=- iLl01
-L 3 0 3 + L 2 0 2 + L -La3  (2.17a, b)

A =B(L3 - L 2)

L, - L3
7



while the matching with the coreflow requires that
I L.

a N sin(Re29 1+ kj1 ) - cos(Re2 01 + kl)

Aa = sin(Re201 + k1 ) + N cos(ReiO + k1 ).

Solving these equations for A yields

A = tan(Re 01 + ki)+ N (2.17c)
N tan(Re21 + k)- 1"

Since A is already known, it remains for us to determine the constant N and then (2.17c)

will constitute an eigenvalue problem for k0 and kj. This constant can only be determined

by matching the coreflow solution with the solution of the inner boundary layer problem.

2a Inner boundary-layer problem

Here, we define 77 = Re r and write

U = Reiio(7) + Re-J(( 7 ) +(218
V=Re4 V0(r7) + Re-14 01(q) +. ..,

1 1 (2.18)
w = Re 7'o(7) +Re ,w(,7) +...,

p = Re-14o('7) +....

We have anticipated in (2.18) that the disturbance in the center layer is Rek4 larger than

in the core; this increase in size is necessary because of the dependence of the core solution

on r 2. The expansions (2.18) are substituted into (2.1) and like powers of Re-2 are

equated. Surprisingly, we find that (iio, Vo, wvo,po) satisfy the full equations (2.1), but with

r replaced by 7, k by k0, and Re = 1.

Hence, the solution cannot be completely determined analytically in the core so (2.1)

must be solved numerically with Re = 1. However, for larger values of Y7 we can show from

(2.1) with Re = 1 and r replaced by q that a large 17 solution of (2.1) is

sin 61i77 a cos 1 r be01 q ce - ifa
O - - + + + 1 (2.19)

12 77 2 772 172

together with similar expressions for io, w0o and p0. Here the constants a, b and c can

only be found by integrating (2.1) numerically. This was done by first calculating three

8



independent solutions of (2.1) in (0, i7w) where i7, is some suitably large value of 71. These

three solutions are then multiplied by constants such that (iio, vo, 00, PO, TOO, eD,) determined

in this way is continuous at 1 with the same function determined asymptotically for large

7. This can be achieved by a suitable choice of these three constants and a, b, c, in (2.19).

Clearly, no iteration is necessary so (2.1) is solved numerically only three times in this

procedure. The matching of the core and the center layer solutions then requires that

N = a, so that (2.17c) yields

Rel01 +k, = n + tan-{'N+A} (2.20)Re 1+~a=nr ta - INA-1

which determines ko and ki. In fact, since Re >> 1, (2.20) reduces to

Re2 0 = n,, ki1 = tan1{ A±- } (2.21)

where n, an integer, is formally O(Rei). We can take k1 to be defined by the principal

value of tan-1 [(N + A)/(NA - 1)] since adding 27r to ki can easily be shown to be formally

equivalent (when Re > > 1) to a different choice of n in the equation for 01.

We now see how the eigenvalues k, are to be determined for Re >> 1. First, we

choose a large integer n and define
n~r

0 1 - R
Re2

Secondly, we solve (2.7) for the three possible values of k0 in the half plane R{ko} > 0.

For each of these values of k0 , we solve (2.1) to find a = N, then k1 is found from (2.9)

and (2.21).

2b A comparison with exact eigenvalues

In Figure 1 we present plots of the imaginary part vs. real part of k for both the

present approximations and the exact values for the case Re = 1000, f= 0.1. The two

sets of data are seer, to be in close agreement.

3 Some observations on the use of the method

1. It should be noted that the method is formally justified when the core variation of

the disturbance is on the fast Re 2 lengthscale. In effect, this means that the eigenfunctions

must have many zeros in the domain of interest. Notwithstanding this observation, in the

9
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Figure 1. Plot of K, vs. KR for Re = 1000, f = 0.1 (k a KR + i K).
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spirit of asymptotics we can now ignore this word of caution and apply the method for

the case n = 1,2,3,4,5,. ........ Though it is formally valid for the higher values of n, we

can reasonably expect to get useful answers at small values too. However, since the formal

requirement for the validity of the method is n = O(Re2) , the method could well be

perverse enough to give better guesses for the lower eigenvalues at the lowest values of

Reynolds number used.

2. The order in which the eigenvalues come out of the WKB solution is related to the

three branches we have discussed elsewhere. Essentially the eigenvalues fall into groups

of three, one from each of the families. No sensible comment about the nature of the

branch relationships for the first few eigenvalues predicted by the method can be made

since inherently the method is being used out of its range of validity; all that one can

say with any confidence or credibility is that if you go far enough down the series the

eigenvalues predicted by the WKB method will fall out in groups of threes, one from each

branch.

3. The method can be easily modified to predict eigenvalues in the presence of an

inner rod. There are really just two cases worth considering. If the rod is of thickness

Re 2 , the above formulation holds, but the inner equations now have to be solved subject

to appropriate boundary conditions at a scaled value of r. Much more realistically, though,

the usual situation will correspond to the case where the inner boundary is at a finite value

of r. Suppose then that there is such a boundary at r - q. The boundary can be either a

free surface or another rigid rod. In either case a boundary layer of thickness Re 2 is now

set up at the inner boundary in which the azimuthal velocity field will again satisfy (2.15)

but with some appropriate variable replacing . A solution corresponding to (2.16), but

appropriate to the inner boundary condition, is then written down. Matching with the

coreflow then gives the eigenrelation. Now, however, there is no inner problem to be solved

numerically, basically because r is not small enough for the terms like I to be comparable

with derivatives with respect to r in the radial direction.

11
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