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Abstract

in Sender-based message logging supports transparent fault tolerance in distributed sys-
tems in which all communication is through messages and all processes execute deter-
ministically between received messages. It uses a pessimistic message logging protocol
that requires no specialized hardware. Sender-based message logging differs from previ-
ous message logging methods in that it logs each message in the local volatile memory
of the machine from which it was sent, thus greatly reducing the overhead of message
logging. Overhead is further reduced by relaxing the synchronization imposed by pre-
vious pessimistic message logging protocols. Sender-based message logging guarantees
recovery from a single failure at a time in the system, and detects all cases in which
multiple failures prevent recovery. Extensions are also presented to support optimistic
recovery from multiple failures at once. - / 2A-(

Sender-based message logging has been implemented under the V-System on a network
of SUN-3/60 workstations. The measured overhead on V-System communication op-
erations is about 25 percent. The overhead experienced by distributed application
programs using sender-based message logging is affected most by the amount of com-
munication performed during execution. The highest measured program overhead was
under 16 percent, and for most programs, overhead ranged from about 2 percent to
much less than 1 percent, depending on the problem size.
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Network Protocols-protocol architecture; D.4.5 [Operating Systems]: Reliability-
fault-tolerance, checkpoint/restart; D.4.7 [Operating Systems]: Organization and De-
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1 Introduction

Sender-based message logging efficiently and transparently supports fault tolerance for application
programs executing in a distributed system. Processes in the system are assumed to communicate
only through messages, and the execution of each process between received messages is assumed to
be deterministic. Sender-based message logging guarantees recovery of a consistent system state
after any failure in which only one process has failed. In all cases in which multiple processes
have failed, either the system is recovered to a consistent state or the inability to recover is de-
tected. Sender-based message logging requires no specialized hardware and adds little additional
communication to the system.

With sender-based message logging, all messages received by each process are saved in a message
log, and the state of each process is occasionally saved as a checkpoint. No coordination is required
between the checkpointing of individual processes. When a process fails, it is recovered by restoring
it from its most recent checkpoint and replaying to it from the log the sequence of messages received
by it after that checkpoint. Each failed process can be recovered individually, and no surviving
process is forced to roll back due to the failure. Previous fault-tolerance methods using other forms
of message logging and checkpointing include Auros and TARGON/32 [4, 51, PUBLISHING [20],
and Strom and Yemini's Optimistic Recovery [28, 27]. Sender-based message logging is unique in
that it logs each message in the local volatile memory of the machine from which it was sent, as
illustrated in Figure 1. Previous methods send a copy of each message to stable storage [16, 2]
on disk or to a special backup process for logging. By logging messages in volatile memory, the
overhead of message logging is significantly reduced.

The message logging protocol used by sender-based message logging is pessimistic [4, 5, 201. A
pessimistic logging protocol guarantees that after any failure, processes that have not failed will
not be forced to roll back to complete recovery of the system. Such protocols are called pessimistic
because they assume that a failure can occur at any time, and prevent processes from proceeding

until this guarantee can be assured. With previous pessimistic logging protocols [4, 5, 20], message
logging is synchronized with message receipt, such that a process receiving a message is not allowed
to proceed until the message has been logged. Although this synchronization simplifies recovery, it
can significantly increase the overhead of message logging and degrade the failure-free performance
of the system. Previous pessimistic logging systems have attempted to reduce the logging overhead
through the use of special-purpose hardware to assist the logging. Sender-based message logging,
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Figure 1 Sender-based message logging configuration



instead, reduces the logging overhead by logging messages in the volatile memory of the sender,
and by relaxing this synchronization while still achieving the same recovery guarantee of other
pessimistic logging protocols.

This paper examines the design of sender-based message logging, describes an implementa-
tion of it, and presents an analysis of its performance. More information is contained in the first
author's Ph.D. dissertation [11]. Section 2 of this paper describes the model of a distributed
system assumed in this work. The specification of the sender-based message logging protocol is
presented in Section 3. Section 4 describes an implementation of sender-based message logging
in the V-System [9, 8], and Section 5 examines its performance in this implementation. Section 6
discusses extensions to the basic sender-basea message logging protocol to guarantee recovery from
multiple failures. Related work is covered in Section 7, and Section 8 presents conclusions.

2 Distributed System Model

Sender-based message logging is designed for use in existing distributed systems without the ad-
dition of specialized hardware to the system or specialized programming to applications. The
following assumptions about the underlying distributed system are made:

* The system is composed of a network of fail-stop processors [24]. A fail-stop processor imme-
diately halts whenever any failure of the processor occurs.

* Processes communicate only through messages. Messages arrive at a node asynchronously,
and are queued until received by the process. Processes do not communicate via shared
memory.

* The execution of each process in the system is deterministic [4] between received messages.
That is, if two processes start in the same state and receive the same sequence of messages,
they will both send the same sequence of messages and will finish in the same state. The state
of a process is thus completely determined by its starting state and the sequence of messages

it has received.

* The network includes a shared stable storage service [16, 2] that is always accessible to all
active nodes in the system.

o The "outside world" consists of all external devices with which processes may interact, such
as a time-of-day clock. Input read from the outside world is assumed to be able to be replayed
during recovery in the same order as originally received. In general, input is logged on stable
storage as it enters the system, but input from read-only sources need not be logged.

o Packet delivery on the network need not be guaranteed, but reliable delivery of a packet can
be achieved by retransmitting it a bounded number of times until an acknowledgement arrives
from its destination.

o The network protocol supports broadcast communication. All active nodes can be reached
by a broadcast through a bounded number of retransmissions of the packet.
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The underlying system is able to detect duplicate messages on arrival from the network.
For simplicity of duplicate detection, we assume FIFO communication between each pair of
processes. Each process tags all messages sent with a monotonically increasing send sequence
number (SSN), and maintains a table recording the highest SSN value tagging a message
received from each other process. If the SSN tagging a new message received is not greater
than the current table entry for its sender, the message is considered to be a duplicate.
However, FIFO communication is not required by the sender-based message logging protocol
itself, and actual systems may use any appropriate mechanism for duplicate detection.

3 Protocol Specification

3.1 Overview

The execution of each process is divided into a sequence of state intervals by the messages that
the process receives. Since process execution is deterministic between received messages, the state
of a process within any state interval is a function of its state at the beginning of the interval and
the contents of the message received that started the interval. Each state interval of a process is
uniquely identified by a state interval index, which is a count of messages received by the process.

When a process sends a message, it saves a copy of the message in its local volatile memory.
When the message is received, the receiver increments its own state interval index, and the new
value becomes the index of the state interval started by the receipt of that message. This new
value is also assigned as the receive sequence number (RSN) of the message. The RSN is returned
to the sender to indicate the order in which this message was received relative to other messages
sent to the same process, possibly by different senders. This ordering information is not otherwise
available to the sender, but is required for failure recovery since these messages must be replayed to
the recovering process from the log in the same order in which they were received before the failure.
When the RSN arrives at the sender, it is added to the sender's volatile log with the message.

The log of messages received by a process is distributed among the processes that sent them,
such that each sender has in its log only those messages that it sent. Figure 2 shows an example D "
of such a distributed message log resulting from sender-based message logging. In this example, C.PV

process Y was initially executing in state interval 6. Process Y received two messages from process
X1 , followed by two messages from process X2, and finally another message from X1 . For each
message received, Y incremented its state ., al index, assigned the new value as the RSN of
the message received, and returned this RSN - iie sender. As each RSN arrived at the sender, it
was added to the sender's local volatile log witIL the message. After receiving these five messages, *
process Y is now executing in state interval 11.

During each state interval, a process may send any number of messages. Each message sent is
tagged with the current state interval index of the sender. When a message is received, the receiver
then depends on this state interval of the sender, since any part of the sender's state may have been
included in the message. Each process records these dependencies locally in a dependency vector. des
For each process from which this process has received messages, the dependency vector records the otr

maximum state interval index tagging a message received from that process. Only the maximum
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Figure 2 An example message log

index of any state interval of each other process on which this process depends is recorded, since
this state interval naturally also depends on all previous state intervals of the same process.

After a failure, the system must be restored to a consistent system state. A system state is
consistent if it could have occurred during the preceding execution of the system from its initial
state, regardless of the relative speeds of individual processes [6]. This ensures that the total
execution of the system is equivalent to some possible failure-free execution. During recovery,

sender-based message logging uses the dependency vector maintained by each process to verify
that the resulting system state that can be recovered is consistent.

3.2 Data Structures

For each process, sender-based message logging maintains a small number of data structures, as
described in the list below. Except where noted, each of these data structures must be included in
each checkpoint of the process, and is restored during recovery from the checkpoint. Only the most
recent checkpoint of each process must be retained on stable storage. The following data structures

are maintained for each participating process:

o A state interval indez, which is incremented each time a new message is received. The new
value becomes the index of the state interval started by the receipt of this message, and is

assigned by the process as the receive sequence number (RSN) of the message. Each message
sent by a process is tagged with the current state interval index of the sender.

o A message log of messages sent by the process. For each message sent, this includes the

message data, the identification of the destination process, the SSN and state interval index
tagging the message when sent, and the RSN returned by the receiver (which is also the index

of the state interval started in the receiver by the receipt of that message). The message log

is recorded in the checkpoint so that it can be restored after a failure of this process and
used in any future recoveries of other processes. After a process is checkpointed, all messages
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received by that process before the checkpoint may be removed from the logs in their sending
processes. Only the log of messages received by each process since its moat recent checkpoint
must be saved in the volatile message log or in the checkpoint of each sending processes.

" A dependency vector, recording the maximum index of any state interval of each process on
which this process currently depends. For each other process from which this process has

received messages, the dependency vector stores the maximum state interval index tagging a
message received from that process.

" An RSN history list, recording the RSN value returned for each message received by this
process since its last checkpoint. For each message received, this list includes the identification
of the sending process, the SSN value tagging the message, and the RSN returned by this
process when the message was received. This list is used when a duplicate message is received.
The RSN history list of a process is not included in the checkpoint. It may be purged when
the process is checkpointed, since messages received by the process before this checkpoint will
never be needed for recovery.

" The data structures used by the underlying system for duplicate message detection, as de-
scribed in Section 2.

3.3 Message Logging

Sender-based message logging is designed to operate with any existing message transmission pro-
tocol used by the underlying non-fault-tolerant system. The following steps are required when
sending a message M from process X to process Y:

1. Process X copies message M into its local volatile message log before transmitting M to
process Y across the network. The message sent is tagged with the current state interval

index and SSN of process X. At this point, the message is called partially logged.

2. Process Y receives the message, increments its own state interval index, and assigns this new
value as the RSN for M. The entry for process X in "s dependency vector is set to the
maximum of its current value and the state interval index tagging message M, and an entry
in Y's RSN history list is created to record this new RSN. Finally, process Y returns to
process X a packet containing the RSN assigned to message M.

3. Process X adds the RSN for message M to its message log, and sends back to process Y a
packet containing an acknowledgement for the RSN. Once the RSN has been added to the
message log by Y, the message is called fully logged, or just logged.

After returning the RSN, process Y may continue execution without waiting for the RSN acknowl-
edgement, but it must periodically retransmit the RSN until the acknowledgement is received or
until process X is determined to have failed. Also, any new messages (including output to the
outside world) sent by process Y must be delayed until the RSNs returned for all messages Y has
received have been acknowledged. The operation of this protocol in the absence of retransmissions
is illustrated in Figure 3.
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Figure 3 Operation of the message logging protocol in the absence of retransmissions

Previous pessimistic logging protocols [4, 5, 20] force each message to be logged before it is
received by the destination process, blocking the receiver while the logging takes place. Sender-

based message logging relaxes this synchronization by allowing the receiver to execute based on the
message data while the logging begins asynchronously. For example, if the message requires some
computation by the receiver, this computation can begin while the message is being logged. This
change allows a significant decrease in the overhead of message logging, while still preserving the
advantages of pessimistic message logging in terms of the simplicity of recovery. Once all returned

RSNs have been acknowledged, the process knows that all messages it has received have been
fully logged at their senders, and thus can be replayed during recovery in the same order in which
hey were originally received. By preventing the process from sending new messages before this is

known, no other process can become dependent on a state of that process that may not be able to
be recovered after a failure. Hence, no other process can be forced to roll back due to a failure of
another process.

Processes are assumed to detect any duplicate messages on receipt, using the SSN tagging

each message. When a duplicate message is received, no new RSN is assigned to the message.
Instead, the receiver searches its RSN history list for an entry with the SSN tag and sending
process identification of this message. If found, the RSN value there is returned to the sender.
Otherwise, the receiver must have been checkpointed since originally receiving this message, and

the RSN history list entry for this message has been purged. In this case, the message cannot be
needed for any future recovery of this receiver, since the later checkpoint can always be used. The
receiver instead returns to the sender an indication that this message need not be logged.

3.4 Failure Recovery

The following steps are used by sender-based m-ssage logging for recovery of some failed process Y:

1. The saved state of process Y is reloaded from its most recent checkpoint onto some available
processor. This also restores the values of the sender-based message logging data structures

described in Section 3.2.
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2. All fully logged messages received after this checkpoint by Y are retrieved from the message
logs of their sending processes. The RSN of the first message needed is one greater than the
state interval index of Y recorded in the checkpoint.

3. A check is made to determine if the system state that can be recovered is consistent, using the
dependency vector maintained by each process in the system. A consistent system state can
be recovered if and only if no process X has an entry in its dependency vector for process Y
that is greater than the RSN of the last message in the sequence of fully logged messages
retrieved. This RSN gives the index of the most recent state iqterval of Y that can be
recovered. Thus no process X depends on a state interval of Y t-at cannot be recreated. If
a consistent system state cannot be recovered, recovery is terminated, and the system may
warn the user or abort the application if desired.

4. Process Y is allowed to begin execution, but is forced to receive the retrieved sequence of fully
logged messages before any other messages may be received. The fully logged messages must
be received in the order of their logged RSNs. Duplicate messages sent by Y as a result of
this reexecution are handled by the same method used during failure-free execution. For each
duplicate message received, either the original RSN or an indication that the message need
not be logged is returned to the recovering process. Sending these duplicate messages and
recording the returned RSNs correctly recreates Y's volatile message log for use in any future
recovery of other failed processes. Likewise, the other sender-based message logging data
structures are correctly restored, since they are read from the checkpoint and are modified as
a result of sending and receiving the same sequence of messages as before the failure.

5. Any partially logged messages destined for Y may be resent to it, along with any new messages
that other processes may now need to send to Y. These messages may be sent and received
in any order after the sequence of fully logged messages has been received, since any effect of
their earlier receipt before the failure is not visible to any other process.

The recovery of the process is complete once the process has resent all messages it had sent before
the failure and the returned RSNs have been added to the sender's message log. Any method
of failure detection may be used, but failure detection must be coordinated with failure recovery.
For each failed process Y, any other failure of some process Z must be detected and recovered
through checking for a consistent system state (step 3 above), before Y is allowed to send any new
messages after completing its own recovery. This prevents any inconsistent execution of the system
if a consistent system state cannot be recovered.

If only one process has failed, a consistent system state can always be recovered, since the
volatile message log at the sender survives the failure of the receiver. However, if more than one
process has failed, some messages needed for recovery may not be available. For example, Figure 4
illustrates a portion of the execution of a system of three processes, in which processes 2 and 3 have
failed as shown. The state recorded in the most recent checkpoint for each is indicated by a vertical
bar along the execution of the process, and the index of each new state interval is indicated at the
receipt of the message starting it. If message M has not been sent, a consistent system state can be
recovered by sender-based message logging, since the message log of process 1 survives the failures.
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Process 1 1 2 43

Process 2 6 7 8 9 " failure

Process 3 4 \ 6 failure

Figure 4 A multiple process failure. If message M has not been sent, sender-based
message logging can recover a consistent system state.

The resulting system state is indicated by the intersection of the curve with the lines representing
the execution of each process. However, if message M has been received, process 1 then depends on

state interval 9 of process 2, which cannot be recreated. During the recovery of process 2, process 1
checks its dependency vector and determines that a consistent system state cannot be recovered.

To guarantee progress in the system in spite of failures, any fault-tolerance method must avoid
the domino effect [21, 22], an uncontrolled propagation of process rollbacks necessary to restore the

system to a consistent state following a failure. As with any pessimistic message logging protocol,
sender-based message logging avoids the domino effect by guaranteeing that any failed process can
be recovered from its most recent checkpoint, and that no other process must be rolled back during

recovery.

3.5 Protocol Optimizations

The number of extra packets required for message logging can be reduced by returning more than

one RSN or RSN acknowledgement in a single packet. This simple optimization is useful when

an uninterrupted stream of packets is received from a single sender. The return of the RSNs is

postponed until the end of the stream of packets is detected, or until a timer expires forcing their
transmission, and the acknowledgements for all RSNs in a packet can be returned in a single packet.

For example, when receiving a blast bulk data transfer [32], the RSNs for all data packets of the

blast can be returned to the sender in a single packet.

Another optimization that also reduces the number of extra packets required for logging is to

piggyback [29] RSNs and RSN acknowledgements onto existing message packets being returned,
rather than transmitting them in additional special packets. The transmission of RSNs and RSN

acknowledgements is postponed until a packet is returned on which to piggyback them, or until a

timer expires forcing their transmission if no return packet is forthcoming. RSN acknowledgements

can be piggybacked on any packet, but RSNs can be piggybacked on a packet only if all unac-

knowledged RSNs for messages received by this process are piggybacked on the same packet and

are destined for the same process as the message in this packet. This preserves the correctness of
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the logging protocol by ensuring that all messages received by a process will be fully logged before
any new message sent by the process is seen by its destination process. When a packet is received,
any RSNs and RSN acknowledgements piggybacked on it are handled before the message carried
by the packet. When these RSNs are added to the message log, the messages for which they were
returned become fully logged. Since this packet carries all unacknowledged RSNs from the sender,
all messages received by that sender become fully logged before the new message in this packet
is seen. If the RSNs are not received because the packet is lost on the network, the new message
cannot be received either.

Piggybacking RSNs and RSN acknowledgements can be useful in systems in which there is
frequently an existing message returned by the underlying system on which to piggyback them.
For example, if the underlying message protocol uses explicit acknowledgements to ensure reliable
message delivery, the RSN for the message being acknowledged can be piggybacked on the under-
lying acknowledgement packet. Alternatively, if a message is received that requests the application
program to produce some user-level reply to the original sender, the RSN for the request message
can be piggybacked on the packet carrying this reply; if the original program sends a new request
to this same receiver shot v after the reply is received, the acknowledgement of this RSN, and the
RSN for the reply itself, can be piggybacked on the packet carrying this new request. As long as
messages are exchanged between the same two processes in this way, no new packets are necessary
to return RSNs or RSN acknowledgements. When this message sequence terminates, one additional
packet is needed in each direction, to return the RSN and RSN acknowledgement for the last reply
message. The use of this optimization for a sequence of these request-reply exchanges is illustrated
in Figure 5. This optimization is particularly useful in systems using remote procedure call [3] or
other request-response protocols [8, 7], since all communication takes place as a sequence of message
exchanges.

These two protocol optimizations can be combined. For example, Figure 6 illustrates the use of
both optimizations with a blast bulk data transfer protocol. The RSN for every data packet of the
blast can be piggybacked together on the reply packet acknowledging the receipt of the blast. If
there are n packets of the blast, the unoptimized logging protocol requires an additional 2n packets
to exchange their RSNs and RSN acknowledgements. Instead, if both protocol optimizations are
combined, only one additional packet is required in each direction, to exchange the RSN and RSN
acknowledgement for the packet acknowledging the blast.

Sender

I ,
\ / m sg , i,

msg MRSN.-n- RSRSN1 n- ack ackn-,ack
I aCkn

Receiver SN, /ackn-2

Figure 5 Piggybacking RSNs and RSN acknowledgements on existing message packets
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ReceiverRSNI.. 
% Iak+

A 11

Figure 6 A blast protocol with sender-based message logging using both optimizations

Both protocol optimizations postpone the transmission of RSNs and RSN acknowledgements,
which may delay the transmission of new messages that would not otherwise be delayed. If a
process postpones the return of an RSN, the transmission of a new message by that process may
be delayed; if the new message is not destined for the same process as the RSN, the message must
be held while the RSN is sent and its acknowledgement is returned, delaying the transmission of
the new message by approximately one packet round-trip time. Likewise, if a process postpones
the return of an RSN acknowledgement, new messages being sent by the process expecting the
acknowledgement must be delayed; in this case, the process expecting the RSN acknowledgement
retransmits the RSN to force the acknowledgement to be returned, also delaying the transmission
of the new message by approximately one packet round-trip time. In both cases, any possible delay
is also bounded in general by the timer interval used to force the transmission of the RSN or its
acknowledgement.

4 Implementation

Sender-based message logging has been implemented under the V-System [9, 8] on a collection of
diskiess Sun workstations connected by an Ethernet to a shared network file server. The imple-
mentation supports the full protocol specified in Section 3, including both protocol optimizations,
and supports all V-Systemn message passing operations. Although the V-Systemn allows more than
one process to share a single address space, this feature is not supported, and the implementation
is limited to a single process using sender-based message logging per network node.

4.1 Division of Labor

The implementation is divided between a logging server process and a checkpoint server process
running on each node in the system, and a small collection of support routines in the V-System
kernel. The kernel records messages in the log in memory as they are sent, and handles the exchange
of RSNs and RSN acknowledgements. This information is carried in normal V kernel packets, and
is handled directly by the sending and receiving kernels. This reduces the overhead involved in
these exchanges, eliminating any process scheduling delays. All other aspects of logging messages
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and replaying logged messages during recovery are handled by the logging server process. The

checkpoint server process manages recording checkpoints and restoring them during recovery. All
logging servers in the system belong to a single V-System process group [10], and all checkpoint

servers belong to a separate process group.

This use of server processes limits the increase in complexity and size of the kernel. In total,
only five new primitives to support message logging and three new primitives to support check-

pointing were added to the kernel. Also some changes were made to the internal operation of

several existing primitives. The total size of the kernel for the SUN-3/60 configuration increased by

roughly 15 kilobytes of executable instructions and 36 kilobytes of data, comprising a total increase

of under 20 percent. This does not include the size of the message log in volatile memory.

4.2 Message Logging

The message log is stored in the address space of the local logging server process on each node,
allowing much of the message log management to be performed by the server outside the kernel.

It is organized as a list of fixed-size blocks of message logging data that are sequentially filled as

needed by the kernel and are written to disk by the logging server during a checkpoint. The message

log block currently being filled is always double-mapped through the hardware page tables into the
kernel address space, allowing new records to be added to the log without context switching.

Each message log block is 8 kilobytes long, the same size as data blocks in the file system and

hardware memory pages. Each block begins with a 20-byte header describing the extent of the
space used within the block. The following two record types are used to describe the logging data

in these blocks:

LoggedMessage: This type of record saves the data of the message sent, the SSN tagging the

message, the process identifier of the receiver, and the RSN value returned by the receiver.

It contains a complete copy of the packet sent, and varies in size from 92 to 1116 bytes,

depending on the size of any appended data segment that is part of the message.

AdditionalRsn: This type of record saves an additional RSN returned for a message logged in an

earlier LoggedMessage record. It contains the process identifier of the new receiver, the new

RSN value returned, and the SSN tagging the original message. It is 12 bytes long.

Normally, only the LoggedMessage record type is used; the AdditionalRsn record type is used
only for messages sent to a process group [10] or those sent as a datagram. A group message is

delivered reliably to only one receiver, and unreliably to other members of the group. The first

RSN returned is stored in the LoggedMessage record, and a new AdditionalRsn record is created
to store the RSN returned by any other receiver of the message. Likewise, reliable delivery of a

datagram message is not guaranteed by the kernel. The RSN field in the LoggedMessage record is
not used, and an AdditionalRsn record is created to hold the RSN when it arrives, if the message

is received.
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4.3 Checkpointing

Checkpointing a process is initiated by sending a request to its local checkpoint server. This re-
quest may be sent by the kernel when the process has received a given number of messages or has
consumed a given amount of processor time since its last checkpoint. Any process may also request
a checkpoint at any time, but this is nevet necessary.

The checkpoint is written as a file on the network file server. On each checkpoint, only the
pages of the user address space modified since the previous checkpoint are written to the file. The
checkpoint also includes all kernel data used by the process, the state for that process in the local
team server [8], and the state of the local logging server. This data is entirely rewritten on each
checkpoint, since it is small and since modified portions of it are difficult to detect. The file server
supports atomic commit of modified versions of files, and thus the most recent complete checkpoint
of a process is always available, even if a failure occurs while a checkpoint is being written. To limit
any interference with the execution of the process during checkpointing, most of the checkpoint
data is written to the file while the process continues to execute; the process is then frozen while
the remainder of the data is written. This is similar to the method used by Theimer for process
migration in the V-System [30]. The recent checkpointing work by Li et al [17] also attempts to
limit interference from checkpointing, and could be applied here as well.

Each logging server maintains a separate message log file on the network file server, containing
a checkpoint of the message log for that node. During a checkpoint, the local logging server updates
this file by writing to it all modified blocks of the message log from volatile memory. The message
log file may also be updated in order to extend the amount of available space for the message
log. Once a full message log block has been written to the file, it may be reused for new logging
data. After the new checkpoint is complete, the group of logging servers is notified to remove all
messages received by this process before the checkpoint from the log in volatile memory and from
the message log file. Although reliable delivery of this notification is not ensured by the V kernel,
the notification of any future checkpoint of this process will also cause their removal.

4.4 Failure Recovery

A failed process may be recovered on any available node in the network, and is restored with the
same process identifier as it had before the failure. Recovery is initiated by sending a request to
the checkpoint server on the node on which the process is to be recovered. Normally, the recovery
request would be sent by the process that detected the failure. However, no failure detection is
currently implemented, and the request instead comes from the user. Other nodes in the system
determine the new network address of the recovering process through the existing V kernel network
address caching mechanism.

The local logging server coordinates the replay of logged messages to the recovering process, and
verifies that the resulting system state that can be recovered is consistent. The logging server sends
a request to the logging server process group, giving the RSN of the first message needed for replay.
The server that has this message logged returns it and all later messages that it also has logged
for the recovering process; all other logging servers ignore the request. Another request is then
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sent to the group, giving the RSN of the next message needed, and this procedure is repeated until
all available messages have been collected. The sequence of available logged messages is complete
when no reply is received from a request sent to the group after the kernel has retransmitted the
request a defined number of times. The logging server then sends another message to the logging
server group, giving the RSN of the last message in the sequence retrieved (or the state interval
index in the checkpoint if the sequence is empty). Each logging server compares this value with
the entry for the recovering process in its own dependency vector, and replies with a complaint
if the dependency vector value is higher; all other logging servers do not reply. If no complaints
are received after the kernel has retransmitted the request several times, the resulting system state
is assumed to be consistent. The recovering process is allowed to begin execution concurrently
once the first logged message has been retrieved, but until the dependency vector check has been
completed, the process is not allowed to receive any messages other than those replayed. This
reduces the time needed for recovery, while ensuring that no inconsistent execution occurs even if
the dependency vector check fails.

This method of replaying the logged messages and checking the dependency vectors is used
because no complete list of all proce es in the system is maintained in the V-System, and due
to the limitations of the available V-System group communication operations [10]. Retrieving the
logged messages and checking the dependency vectors each terminate with a request retransmitted
several times to a process group, from which no replies are received and none are expected. This
avoids replies being lost on the network due to replies from other group members causing collisions
on the network or buffer overflow in the receiver's Ethernet interface. Since in practice, the error
rate on the Ethernet is low, these requests reach all processes and allow any replies generated to
be received, with very high probability [31].

5 Performance

The performance of this implementation of sender-based message logging has been measured on a
network of diskless SUN-3/60 workstations. The workstations each use a 20-megahertz Motorola
MC68020 processor, and are connected by a 10 megabit per second Ethernet network to a single
shared network file server. The file server runs on a SUN-3/160 using a 16-megahertz MC68020
processor, with a Fujitsu Eagle disk. This section presents an analysis of the individual costs
involved with sender-based message logging in communication, checkpointing, and recovery, and
an evaluation of the performance of several distributed application programs using sender-based
message logging. These performance measurements were made on an otherwise idle Ethernet, and
variations between individual measurements were small.

5.1 Communication Costs

Table 1 presents the time in milliseconds req' ired for common V-System communication operations
using sender-based message logging. The elapsed times required for a Send-Receive-Reply sequence
with no appended data and with a 1-kilobyte appended data segment, for a Send as a datagram,

and for MoveTo and MoveFrom operations of 1 and 64 kilobytes of data each were measured. These
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Table 1

Performance of common V-System communication operations with
sender-based message logging (milliseconds)

Message Logging Overhead

Operation With Without Time Percent

Send-Receive-Reply 1.9 1.4 .5 36
Send(1K)-Receive-Reply 3.4 2.7 .7 26
Datagram Send .5 .4 .1 25

MoveTo(1K) 3.5 2.8 .7 25
MoveTo(64K) 107.0 88.0 19.0 22

MoveFrom( 1K) 3.4 2.7 .7 26
MoveFrom(64K) 106.0 87.0 19.0 22

operations were executed both with and without sender-based message logging, and the average
time required for each case is shown separately. The overhead of using sender-based message logging

for each operation is given as the difference between these two times, and as a percentage increase
over the time without logging. These times were measured in the initiating user process, and
indicate the elapsed time between invoking the operation and its completion. The overhead for
most communication operations is about 25 percent.

The measured overhead reported in Table 1 is caused entirely by the time necessary to ex-
ecute the instructions of the sender-based message logging protocol implementation. Because of

the request-response nature of the V-System communication operations, and due to the presence

of the logging protocol optimizations described in Section 3.5, no extra packets for each opera-

tion were required, and no delays in sending any message were incurred while waiting for an RSN
acknowledgement to arrive. Two extra packets were required after all iterations of each test se-

quence to exchange the final RSN and RSN acknowledgement, but this final exchange occurred

asynchronously within the kernel after the user process had completed the timing.

To better understand how this execution time is spent, the execution times for a number of
components of the implementation were measured individually by executing each component in

a loop a large number of times and averaging the results. The time for a single execution could

not be measured directly because the hardware lacks a clock of sufficient resolution. The packet
transmission overhead as a result of sender-based message logging is about 126 microseconds for
messages of minimum size, including 27 microseconds to copy the message into the log. For send-

ing a message with a 1-kilobyte appended data segment, this time increases by 151 microseconds
for the additional time needed to copy the segment into the log. Of this transmission overhead,

38 microseconds occurs after the packet is transmitted on the Ethernet, and executes in parallel
with reception on the remote node. The packet reception overhead is about 142 microseconds. Of
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this time, 39 microseconds is spent processing any piggybacked RSNs, and 45 microseconds is spent

processing any RSN acknowledgements.
These component measurements agree well with the overhead times shown in Table 1 for each

operation. For example, for a Send-Receive-Reply with no appended data segment, one minimum-
sized message is sent by each process. The sending protocol executes in parallel with the receiving
protocol for each packet after its transmission on the network. The total sender-based message
logging overhead for this operation is calculated as

2 ((126 - 38) + 142) = 460 microseconds.

This closely matches the measured overhead value of 500 microseconds given in Table 1. The
time beyond this required to execute the logging protocol for a 1-kilobyte appended segment Send-
Receive-Reply is only the additional 151 microseconds needed to copy the segment into the message
log. This closely matches the measured difference of 200 microseconds. As a final example, consider
the 64-kilobyte MoveTo operation, in which 64 messages with 1 kilobyte of appended data each are
sent, followed by a reply message of minimum size. No parallelism is possible in sending the
first 63 data messages, but they are each received in parallel with the following send. After the
sender transmits the last data message, and again after the receiver transmits the reply message,
execution of the protocol proceeds in parallel between the sending and receiving nodes. The total
calculated overhead for this operation is 18.062 milliseconds, compared with the measured overhead
of 19 milliseconds.

In less controlled environments and with more than two processes communicating, communica-
tion performance may degrade because the transmission of some messages may be delayed waiting
for an RSN acknowledgement to arrive. To examine the effect of this delay on the communication
overhead, the average round-trip time required to send an RSN and receive its acknowledgement was
measured. Without transmission errors, the communication delay should not exceed this round-
trip time, but may be less if the RSN has already been sent when the new message transmission is
first attempted. The RSN round-trip time required in this environment is about 550 microseconds.
Although the same amount of data is transmitted across the network for a Send-Receive-Reply
with no appended data segment, this RSN round-trip time is significantly less than the 1.4 mil-
liseconds shown in Table 1 because the RSN exchange takes place directly between the two kernels
rather than between two processes at the user level.

To examine the effect of the protocol optimizations, the performance of the same communication
operations was measured again, using a sender-based message logging implementation that did not
include either optimization. All RSNs and R.SN acknowledgements were sent as soon as possible
without piggybacking, and no packet carried more than one RSN or RSN acknowledgement. For
most operations, the elapsed time increased by an average of 430 microseconds per message (packet)
involved. Comparing this increase to the measured RSN round-trip time of 550 microseconds
indicates that about 120 microseconds of the round-trip time occurs in parallel with other execution.
This includes the time needed by the V kernel and the user process each to receive the message
for which this RSN is being returned, -and to form the reply message. The times for the 64-
kilobyte MoveTo and MoveFrom operations and for the datagram Send increased by an average of
only 260 microseconds per message. This increase is less, because multiple sequential messages
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are sent to the same destination without intervening reply messages, and thus the sending of most
messages is not forced to wait for an RSN round-trip. There is some increase, though, since each
RSN and RSN acknowledgement is sent in a separate packet and must be handled separately.

5.2 Checkpointing Costs

The cost of checkpointing to the user process is small, since most data is written to the checkpoint
file before freezing the process. Although the performance is highly dependent on the particular
application program, the process is frozen and its execution is suspended typically for only a few
tens of milliseconds.

The total elapsed time to complete the checkpoint also varies with the particular application
program, and is dominated by the time required to write the modified pages of the user address
space to the file. The total time is approximately 3 seconds per megabyte of modified address space,
plus a small fixed cost of about 120 milliseconds. The time required to write the address space also
depends on the distributioi. of these pages over the total address space, since only contiguous pages
can be written to the checkpoint in a single operation. For each separate write operation required,
the total time increases by about 3 milliseconds. A total of 17 milliseconds is required to open the
checkpoint file and later close it, 0.8 milliseconds is required to checkpoint the state of the kernel,
and 1.3 milliseconds is required to checkpoint the team server. The time required to checkpoint the
logging server varies with the number of message log blocks to be written to the logging file, from a
minimum of 18 milliseconds, and increasing by about 25 milliseconds per message log block written.
For comparison, the time required to write the address space to the checkpoint is approximately
4 percent more than that required for a user process to write the same amount of data to a file on
the network file server.

5.3 Recovery Costs

The time required to perform recovery is highly dependent on the particular application being
recovered. This time varies most with the time required for the process to reexecute from its
checkpointed state using the replayed logged messages, but this reexecution time is in general
bounded by the interval at which new checkpoints are recorded. Other costs involved in recovery
are similar to those involved in checkpointing.

The measured recovery time is approximately 1.5 seconds per megabyte of user address space
being restored, plus a small fixed cost of about 70 milliseconds. For comparison, the time required
to read the address space from the checkpoint is approximately the same as that required for a
user process to read the same amount of data from a file on the network file server. This recovery
time does not include the time required to retrieve the logged messages and to check the depen-
dency vectors, since these operations occur in parallel with the reexecution of the process from its
checkpointed state. The time required for the process to reexecute based on the sequence of logged
messages is also not included, since this time is necessarily application-dependent.
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5.4 Application Program Performance

The preceding three sections have examined the three sources of overhead caused by the oper-
ation of sender-based message logging. However, distributed application programs spend only a

portion of their execution time on communication, and checkpointing and failure recovery occur
only infrequently. To analyze the overhead of sender-based message logging in a more realistic

environment, the performance of the following three distributed application programs, each with a

different communication rate and pattern, was measured using this implementation:

nqueens: This program counts the number of solutions to the n-queens problem for a given number

of queens n. The problem is distributed among multiple processes by assigning each a range of

subproblems from an equal division of the possible placements of the first two queens. When

each process finishes all allocated subproblems, it reports the number of solutions found to the
main process. There is no other communication during execution. The subordinate processes

do not communicate with one another, and the total amount of communication is constant

for all problem sizes.

tsp: This program finds the minimum solution to the traveling salesman problem for a given map

of n cities. The problem is distributed among multiple processes by assigning each a different

initial edge from the starting city to include in all paths. A branch-and-bound algorithm

is used. When each new possible solution is found by some process, it is reported to the

main process, which records the minimum known solution and returns its length to this

process. When a process finishes its assigned search, it requests a new edge of the graph

from which to search. There is no communication between subordinate processes. Since the

number of subproblems is bounded by the number of cities in the map, the total amount of

communication performed is O(n) for a map of n cities, but due to the branch-and-bound

algorithm used, the running time is highly dependent on the map input.

gauss: This program performs Gaussian elimination with partial pivoting on a given n x n matrix of

floating point numbers. The problem is distributed among multiple processes by giving each

a subset of the matrix rows on which to operate. At each step of the reduction, the processes

send their possible pivot row number and value to the main process, which determines the

row to be used. The current contents of the pivot row is sent from one process to all others,

and each process performs the reduction on its rows. When the last reduction step completes,

each process returns its rows to the main process. All processes can communicate with all

others, and the total amount of communication performed is 0(n 2) for an n x n matrix.

These programs were used to solve a fixed set of problems. Each problem was solved multiple

times, both with and without sender-based message logging. The maps used for tsp and the

matrices used for gauss were randomly generated, but were saved for use on all executions. For

each program, the problem was distributed among 8 processes, each executing on a separate node

of the system. When using sender-based message logging, all messages sent between application

processes were logged. No checkpointing was performed during these tests, since its overhead is

highly dependent on the frequency with which new checkpoints are written.
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The overhead of using sender-based message logging ranged from about 2 percent to much less
than 1 percent, depending on the problem size, for nqueens and tsp. The overhead for gauss was
higher, since it performs more communication than the other programs, and ranged from about
16 percent to 3 percent. As the problem size increases for each program, the overhead decreases
because the average amount of computation between messages sent increases. Table 2 summarizes
the performance of these programs. The program name and problem size n are shown, together
with the running time in seconds required to solve each problem, both with and without sender-
based message logging. The sender-based message logging overhead for each problem is also shown
in seconds and as a percentage increase over the running time without logging.

Table 3 shows the average message log sizes per node resulting from these programs. The
message log sizes are also shown averaged over the elapsed execution time in seconds for each pro-
gram. These message log sizes are all well within the limits of available memory on the workstations
used in these tests and on other similar contemporary machines.

The effectiveness of the logging protocol optimizations was studied by examining their influence
on the sending of new messages. For each message, one of three separate cases occurs. If no
unacknowledged RSNs are pending (that is, all RSNs being returned have been acknowledged),
the message is sent immediately with no piggybacked RSNs. If all unacknowledged RSNs can be
included in the same packet, they are piggybacked on it and the message is sent immediately.
Otherwise, the packet cannot be sent now and must wait for the acknowledgement of previous
RSNs. The occurrences of these three cases were counted individually during the execution of
each application program. Table 4 summarizes these figures as the percentage of messages sent
that fall into each case, averaged over all processes. In gauss, piggybacking could be used less
frequently than in the other two programs, since its communication pattern allowed all processes
to communicate with each other during execution, reducing the probability that a message being

Table 2

Performance of the application programs using sender-based message logging (seconds)

Message Logging Overhead

Program Size With Without Time Percent

nqueens 12 5.99 5.98 .01 .17
13 34.61 34.60 .01 .03
14 208.99 208.98 .01 .01

tsp 12 5.30 5.19 .11 2.12
14 16.40 16.13 .27 1.67
16 844.10 841.57 2.53 .30

gauss 100 12.41 10.74 1.67 15.55
200 71.10 66.40 4.70 7.08
300 224.06 217.01 7.05 3.25
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Table 3

Message log sizes for the application programs using sender-based
message logging (average per node)

Total Per Second

Program Size Kilobytes Messages Kilobytv

nqueens 12 8 1.9 1.30 .32
13 8 1.9 .23 .06
14 8 1.9 .04 .01

tsp 12 43 5.5 8.09 1.04
14 48 6.1 2.91 .37
16 59 7.3 .07 .01

gauss 100 514 95.4 41.44 7.69
200 1113 292.8 15.66 4.12
300 1802 593.7 8.04 2.65

sent is destined for the same process as the pending unacknowledged RSNs. For the nqueena and
tsp programs, piggybacking utilization was lower in the main process than in the others, due to the
differences in their communication patterns. For all programs, though, more than half the messages
could be sent without waiting.

Because the logging protocol optimizations may postpone the return of an RSN acknowledge-
ment, some messages that could be sent immediately without these optimizations may instead be
delayed before sending. To evaluate this effect, the application programs were reexecuted using a
sender-based message logging implementation that did not include either optimization; all RSNs and
acknowledgements were returned immediately and no piggybacking was performed. The statistics
reported in Table 4 wcre again measured, except that only two cases were now possible: messages
sent while no unacknowledged RSNs were pending, and messages forced to wait for RSN acknowl-
edgements. In these measurements, the percentage of messages sent with piggybacked RSNs shown
in Table 4 were instead divided approximately equally between the two other cases. Although any
actual delays caused by the protocol optimizations could not be measured directly, these measure-
ments indicate that such extra delays do not commonly occur. The effectiveness of piggybacking as
an optimization has also been demonstrated recently in another context by Joseph and Birman [14].

The additional overhead caused by checkpointing depends on the frequency with which new
checkpoints are created. To evaluate this overhead, each application program was reexecuted to
solve its largest problem, with new checkpoints written by each process after each 15 seconds of
processor time. A high checkpointiig frequency was used in order to generate a significant amount
of checkpointing activity to be measured. For nqueens and tsp, the additional overhead from this
level of checkpointing was less than 0.5 percent of the required running time for that application
wi." sender-based message logging. For gauss, checkpointing overhead was about 2 percent. This
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Table 4

Statistics on message sending by the application programs (percentage of messages sent)

No RSNs RSNs Wait For
Program Size Pending Piggybacked RSN Ack

nqueens 12 42.9 44.4 12.7
13 41.3 46.0 12.7
14 41.3 46.0 12.7

tsp 12 19.9 62.4 17.6
14 22.3 63.5 14.2
16 33.0 58.3 8.7

gauss 100 20.7 30.0 49.2
200 29.4 28.6 42.0
300 29.0 31.0 40.0

is higher than for the other two programs because gauss modifies more data during execution,
which must be written to the checkpoint.

6 Multiple Failure Recovery

As described, sender-based message logging cannot recover a consistent system state in some cases
in which more than one process has failed at a time. However, sufficient information is present in
the existing process checkpoints to allow recovery in many cases of multiple failures not supported
by the basic recovery procedure. For example, Figure 4 of Section 3.4 showed an example system
state (with message M having been received) that cannot be recovered by the basic sender-based
message logging mechanism. Here, process 1 depends on an unrecoverable state interval of process 2,
because of its receipt of message M. The recovery procedure can be extended to recover a consistent
system state in this case if the existing checkpoint of process 1 records the state of the process
before it received M. Process 1 is simply rolled back by forcing it to fail and recovering it using
this checkpoint. Message M is not replayed to process 1 during this recovery, making the recovered
state of process 1 consistent with the recovered states of processes 2 and 3.

With this extension, each such surviving process X that depends on some unrecoverable state
interval of some failed process Y must be rolled back. This dependency is detected during the
recovery of Y as described in Section 3.4, using the dependency vectors maintained by each process.
If the current checkpoint for process X was written before the message from Y was received that
caused this dependency, then process X is rolled back. To preserve as much of the existing volatile
message log as possible, each such process X is rolled back one at a time after the reexecution of the
original failed processes is completed. As the original failed processes reexecute using the sequences
of messages that can be replayed, they resend any messages they sent before the failure, and thus
recreate much of their original volatile message log that was lost from the failure. Then, as each of
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these additional processes is forced to fail and is recovered, it will recreate its volatile message log
during its reexecution as well. By rolling these processes back one at a time, no additional logged
messages needed for their reexecution from their checkpointed states will be lost.

If the checkpoint for some process X that must be rolled back was not written early enough

to allow the process to roll back to before the dependency on process Y was created, recovery of

a consistent system state using its existing checkpoint is not possible. To guarantee recovery of
a consistent system state in this case, sender-based message logging can be extended further to
retain on stable storage all checkpoints for all processes, rather than saving only the most recent
one for each process. Then, the existence of a checkpoint for each such process X that can be used

to roll X back far enough is ensured.

These extensions to the recovery procedure are optimistic [28, 13, 25], since they may force sur-
viving processes to also roll back in order to recover after a failure. The volatile message log is

used for recovery when possible, and the saved copy of the message log in each process checkpoint
is used as an optimistic message log otherwise. Although not all checkpoints must be retained
on stable storage to guarantee recovery with these extensions, determining which checkpoints can
safely be removed is a separate problem, requiring an additional protocol or algorithm as with

existing optimistic message logging methods [28, 13, 25]. The domino effect is still avoided by these

extensions, since the data in the checkpoints is not volatile. There is always a unique maximum re-
coverable system state using the checkpointed message logs, which never decreases [13]. No process

may be forced to roll back beyond this state. If each process eventually records new checkpoints,
this maximum recoverable system state must eventually increase. By using the surviving volatile

message logs as well, process roll back is further reduced.

7 Related Work

Many fault-tolerance systems require application programs to be written according to specific com-

putational models to simplify the provision of fault tolerance. For example, the Argus [18, 19] and

Camelot [26] systems require applications to be structured as a set of atomic actions on abstract
data types. Likewise, some systems, such as the Tandem NonStop system [1], require the program-

mer to embed fault-tolerance support into each application. Since sender-based message logging is
transparent, it does not impose such restrictions on application programs.

Sender-based message logging differs from other message logging protocols primarily in that
messages are logged in the local volatile memory of the sender. Sender-based message logging

is also unique among existing pessimistic message logging protocols [4, 5, 20] in that it requires
no specialized hardware to assist with logging. The TARGON/32 system (5], and its predecessor

Auros [4], log messages at a backup node for the receiver, using specialized networking hardware
that provides three-way atomic broadcast of each message. With this networking hardware as-

sistance and using available idle time on a dedicated processor of each multiprocessor node, the

overhead of providing fault tolerance in TARGON/32 has been reported to be about 10 percent [5].
Sender-based message logging causes less overhead for all but the most communication-intensive

programs, without the use of specialized hardware. The PUBLISHING mechanism [20] proposes
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the use of a centralized logging node for all messages, which must reliably receive every network
packet. Although this logging node avoids the need to send an additional copy of each message over
the network, providing this reliability guarantee seems to be impractical without additional proto-
col complexity [23]. Strom and Yemini's Optimistic Recovery mechanism [28] logs all messages on
stable storage on disk, but Strom, Bacon, and Yemini have proposed enhancements to Optimistic
Recovery, using ideas from sender-based message logging, to avoid logging some messages on stable
storage [27].

Some of the simplicity of the sender-based message logging protocol results from the limitation
of guaranteeing recovery from only a single failure at a time. This allows the messages to be
logged in volatile memory, significantly reducing the overhead of logging. Similar single-failure
assumptions were also made by Tandem NonStop, Auros, and TARGON/32, but without achieving
such a reduction in fault-tolerance overhead. The addition of the extensions of Section 6 to handle
multiple failures causes no additional overhead during failure-free operation, although to guarantee
recovery requires that all checkpoints be retained on stable storage. Also, the recovery from multiple
failures at once using these extensions may require longer to complete than with other methods,
since any processes other than those that failed that must be rolled back, must do so one at a time.

Optimistic message logging methods [28, 13, 25] have the potential to outperform pessimistic
methods, since message logging proceeds asynchronously without delaying either the sender or
the receiver for message logging to complete. However, these methods require significantly more
complex protocols for logging, since each process must essentially be notified of the progress of the
logging of messages received by each other process. Also, failure recovery in these systems is more
complex and may take longer to complete, since processes other than those that failed may need
to be rolled back to recover a consistent system state. Finally, optimistic message logging systems
may require substantially more storage during failure-free operation, since logged messages may
need to be retained longer, and processes may be required to save more than just their most recent
checkpoint. Sender-based message logging achieves some of the advantages of asynchronous logging
more simply by allowing messages to be received before they are fully logged.

Message logging and checkpointing methods differ from those using global checkpointing [6, 15]
in that separate processes can be checkpointed individually, evening the load on the network and
file server on which checkpoints are recorded. With global checkpointing, the network or file server
may become a performance bottleneck, and the coordination required between processes during
checkpointing may significantly add to the overhead of the system. Global checkpointing has the
advantage of not requiring process execution to be deterministic, and can support recovery from
any number of concurrent failures. However, a global checkpoint must be created each time before
output from the system can be released to the outside world. Message logging and checkpointing
avoids this expense by using the logged messages to allow states of a process between its check-
pointed states to be restored. Global checkpointing methods could be used to limit the number of
checkpoints that must be retained for each process with the multiple failure recovery extensions of
Section 6, but this would increase checkpointing overhead during failure-free execution.

This work improves on our earlier work with sender-based message logging, which was reported
before the system had been implemented [121. The protocol optimizations of Section 3.5 result in a
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significant reduction in the number of extra network packets required for message logging. Sender-
based message logging now also detects all cases in which the system cannot be recovered to a
consistent state following a failure. Furthermore, the extensions of Section 6 allow the system to
be recovered in these cases of multiple failures, although they may also require surviving processes
to be rolled back during recovery.

8 Conclusion

Sender-based message logging is a transparent method of providing fault tolerance in distributed
systems in which all process execution is deterministic and all process communication is through
messages. It uses pessimistic message logging and checkpointing to record information for recover-
ing a consistent system state following a failure. It differs from previous message logging protocols
in that each message is logged in the local volatile memory of the node from which it was sent.
The order in which the message was received relative to other messages sent to the same receiver
is required for recovery, but this information is not usually available to the message sender. With
sender-based message logging, when a process receives a message, it returns to the sender a receive
sequence number (RSN) to indicate this ordering information. When the RSN arrives at the sender,
it is added to the local volatile log with the message. To recover a failed process, it is restarted
from its most recent checkpoint, and the sequence of messages received by it after this checkpoint
are replayed to it in ascending order of their logged RSNs.

Sender-based message logging concentrates on reducing the overhead placed on the system from
the provision of fault tolerance by a pessimistic logging protocol. The cost of message logging is the
most important factor in this system overhead. Keeping the message log in the sender's local volatile
memory avoids the expense of synchronously writing each message to disk or sending an extra
copy over the network to some special logging process. Overhead is further reduced by relaxing
the synchronization imposed by previous pessimistic message logging protocols. Unlike previous
pessimistic logging protocols, sender based message logging requires no specialized hardware to
assist with logging. Since the message log is volatile, sender-based message logging can guarantee
recovery from only a single failure at a time within the system. In all cases in which multiple
processes have failed, either the system is recovered to a consistent state or the inability to recover
is detected. Extensions to the basic sender-based message logging protocol also guarantee recovery

in all cases of multiple failures.
Performance measurements from a full implementation of sender-based message logging under

the V-System verify the efficient nature of this protocol. Measured on a network of SUN-3/60
workstations, the overhead on V-System communication operations is approximately 25 percent.
The overhead experienced by distributed application programs using sender-based message logging
is affected most by the amount of communication performed during execution. For Gaussian elim-
ination, the most communication-intensive program measured, this overhead ranged from about
16 percent to 3 percent, for different problem sizes. For the other programs measured, overhead
ranged from about 2 percent to much less than 1 percent.
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