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'ABSTRACT (Refs. 1,2). Reference 3 reported the correlation of

A test of a small scale 3-bladed model rotor, with these test results with predictions using a rotorcraft
geometry typical of that used on tilt-rotor aircraft, analysis program CAMRAD. They found that the the-

n was conducted in the Army Aeroflightdynamics Direc- ory underpredicts the ATB rotor hover figure of merit
co torate's anechoic hover chamber. The purpose of this at high thrust coefficients (CT/o- greater than 0.14 ). In

L, test was to determine the hover performance of the addition, the measured figure of merit remains a con-

rotor and investigate the pressure distributions on a stant value at high thrust coefficients where the predic-
blade at various collective pitch angles and tip speeds. tion drops off. The authors further ruled out the pos-
The measured pressures indicate that the rotor did not sibility of wake geometry effects on hover performance
stall for high collective pitch angles up to 0e = 25°. by implementing the measured wake geometry into the

This is clearly a three dimensional effect since two- CAMRAD code. They speculated that the airfoil stall
dimensional theory predicts flow separation at these model used in the CAMRAD code may be the major
high angles. The flow near the trailing edge separated source of error. As reported in Ref.4, the CDI EHPIC
above 0, = 250 which caused a sharp increase in power. free wake code shows good agreement between predic-

tion and test results at moderate thrust coefficients for4 NOTATION - the XV-15 tilt-rotor. The under-prediction of figure of

c = rotor chord length, in merit at high thrust suggests that the stall model that

CL = blade section lift coefficient is implied in two-dimensional airfoil data may again be

Cp = blade surface pressure coefficient the source of error.

Cq = rotor torque coefficient The present paper is aimed at clarifying the rea-
CT = rotor thrust coefficient son why these hover rotor codes failed to predict theFM = rotor figure of merit tilt-rotor hover performance at high thrust levels. A
FM = blade radial station, in small scale 3-bladed model rotor was tested in the Army
R = rotor radius, 24 in Aerofightdynamics Directorate's anechoic hover cham-

tic = maximum thickness to chord ratio ber. The blade was instrumented with surface pressure

z = chordwise distance from leading edge, in taps. Hover performance and selected surface pressures
S = blade twist relative to 3/4 radius, deg. were recorded. Finally, a finite-difference code FPR

1e = collective pitch at 3/4 radius, deg. coupled with CDI's free wake code has been used to

o- = rotor solidity, 0.1194 predict surface pressures.

INTRODUCTION DESCRIPTION

The accurate prediction of hover performance is
particularly important for tilt-rotors since the payload
is about thirty percent of the aircraft's gross weight. The rotor tested is a 3-bladed rotor designed to op-
NASA Ames Research Center has recently conducted erate at thrust coefficients typical of current tilt-rotor
a series of tests to measure the tilt-rotor hover perfor- aircraft, such as the XV-15 tilt-rotor, but is not ac-
mance and wake geometry at various test conditions tually scaled to any particular full scale configuration.

The rotor was mounted on the Aeroflightdynamics Di-
Presented at the 46th Annual Forum of the Amer- rectorate's rotary wing test stand in the Army hover

ican Helicopter Society, Washington, D.C., May 1990
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chamber as shown in Fig. 1. The rotor system has a di- leavinv - the one remaining radial location open for
ameter of 4 feet and a solidity of 0.1194. The blades are data i.. urement. Once data were obtained for that
cons,ructed out of birch wood and have a total twist of particular collective and radial location another radial
32* between the root cutout and the tip. Table 1 gives location was opened and the previous one sealed off.
the twist, chord, and maximum thickness distributions This was done until data at all eight radial locations
of the blade with the radius. The blade section airfoils were recorded. The collective was then changed and
were originally designed to represent NACA 64 series the process was repeated.
airfoils however, templates made of 12 radial locations
along the blade showed that the actual airfoil sections TEST RESULTS
differed from that series. These templates were digi-
tized so that the actual airfoil geometry could be used Hover Performance Data
in the prediction codes. The actual airfoil coordinates
will be included in a NASA Technical Memorandum Although the test matrix consists of many test

containing the test data. To obtain pressure data for points, only limited data are presented here. The com-

this test, one of the blades was configured with a to- lished. The data at 1800 rpm are reported in detail.

tal of nineteen 0.03 inch diameter pressure tubes. Ten Other data are similarly consistent. The tip speed equal

of these tubes were embedded radially along the up- to 377 feet per second st 1800 rpm corresponds to ap-

per surface of the blade while the remaining tubes were poximate sent of ful-calesped th tp

embedded radially along the lower surface. Tap orifices proximately six-tenths of full-scale tip speed. The tip

were located at eight radial locations on each pressure Reynolds number is about T50,000. Fig.3 shows the ef-

tube. Table 2 shows the tap location for both the chord- fect of collective pitch angle on CTIe. The solid line

wise and radial directions. Fig. 2 shows a partial view represents the two different rates of increasing CQT/o
ofthe pressure orifices on the upper surface of the blade. with respect to collective pitch angles. The Cq/ur as a

function of collective pitch angle is given in Fig.4. The

Instrumentation solid line in this figure represents a third-order poly-
nomial least-squares curve fit of the data. The Cq/

Each one of the nineteen pressure tubes in the versus (CT/ o) 1 5 is shown in Fig.5. A linear relation
blade was connected to a corresponding Kulite (YQC- is observed for (CT/o)' 5 up to 0.087. The figure of
250 series) differential pressure transducer using flex- merit for this rotor is shown in Fig.6 as a function of
ible plastic tubing. These pressure transducers were CT/o ". The figure of merit reaches a plateau at 0.75 be-
located inside a container above the rotor hub (Fig. 2). tween CT/O" equal to 0.1 and 0.17 and drops off quickly
As shown in the figure the transducers were set close afterward.
to the center of rotation and aligned vertically so that
centrifugal force would not affect the transducer. Cal- Pressure Coefficients
ibration checks of each transducer were performed on The column of air inside the pressure tube is sub-
a daily basis prior to running. A six component strain j e colun orcns the esure ressure
gauge balance was used to measure thrust and torque jered to centrifugal force, so the measured pressure
data from the rotor. Other measurements included am- coefficients need to be corrected for this effect. Thisdatarrfroiothearotor.lOteerdmeasurementseincluded am-
bient temperature and pressure and rotor rpm. Rotor corretin w eted dur d at edution eThrpm was measured using a 60/rev counter. All data flexible tubing between the pressure tube at the 85 per-

cent chord location on the upper surface of the blade
were recorded using an HP data acquisition system. and its transducer was not functional during the early
Thrust, torque and blade pressure data were averaged part of the test but was repaired later in the test. Be-over 22 rotor revolutions. ato h etbtwsrpardltri h et e

cause of this some of the figures do not contain pres-

Test conditions and procedures sure information for that location. In addition, pressure
data from the 60 percent chord location on the lower

Performance and pressure data were obtained at surface of the blade was not obtained due to an inopera-
collective pitch angles ranging from 00 to 28* and ro- ble transducer. Typical sectional pressure distributions
tor speeds of 400, 600, 800, 1200, 1800, and 2400 rpm. are shown in Fig.7 for 0. = 8 and 1800 rpm. Figs.8
This paper discusses the 1800 rpm rotor speed case pri- and 9 are the plots of Cp distributions over a range of
marily. The collective pitch angles were manually set collective angles at r/R=0.2 and r/R=0.75 respectively.
at the hub for each blade using a template at the 3/4 The surface pressure distributions over a range of rotor
radius and a digital protractor. Pressure data were speeds are shown in Figs. 10 and 11 respectively. From
collected at one radial location at a time since each observation the Cp does not change very much with the
tube had eight tap orifices per transducer. This was
accomplished by sealing off seven radial locations and



rotor speed and the 1800 rpm results are representative station rIR = .125. It is suspected that the flow sep-
of all measurements obtained. arates at the root cutout and spills over the pressure

taps.

Sectional Lift Coefficients Himmelskamp in reference 6 conducted measure-

Accurate calculation of sectional lift coefficients ments of pressure distributions on a rotating propeller
from pressure distributions requires many pressure and determined local lift coefficients of the blade. He

measurements located near the leading edge. The found that a marked increase in lift coefficient occurred

present study has only one pressure measurement at six near the hub at high angles of incidence. He suggested
percent chord on the upper surface and one at ten per- that the Coriolis force, which occurs in the rotating sys-
cent chord on the lower surface of the blade. Therefore, tem of reference, acts as a favorable chordwise pressure
an approximate method (Ref.5) to estimate the pres- gradient to delay flow separation and that the influ-
sure coefficients near the leading edge was employed. ence of centrifugal force is to reduce the boundary layer
This method approximates the actual airfoil by using thickness. These are the two major reasons why higher
a simpler airfoil with an elliptical nose. The exact so- lift is generated.
lution for the approximating airfoil leads to simple ex- The CDI's EHPIC code and AMI's HOVER code
pressions which are accurate at the nose of the actual (Refs.7 and 8) coupled with the FPR code (Ref.9) were
airfoil. When this method applies to the rotor problem, used to compute the surface pressure distributions. The
the exact solution for the approximating airfoil contains first two codes are based on an integral method where
two unknown constants namely the sine and cosine of the rotor blades and wakes are represented by vortex
the local inflow angle. The measured pressures at six segments. The FPR code is a finite difference scheme
percent chord on the upper surface of the blade and for solving the full-potential equation. The EHPIC and
the one at ten percent chord on the lower surface of the HOVER codes were not used for stand-alone calcula-
blade were used to determine these two unknowns. Fig. tions of performance because no two-dimensional air-
12 shows the sectional lift coefficients as a function of foil data are available. In essence the FPR solution
collective pitch angle at 1800 rpm. The lift coefficients was used to replace the airfoil section tables. The tech-
at 0e = 12* are omitted here due to some erroneous nique to couple the finite difference code with the in-
pressure measurements. tegral code has been reported in Ref. (10) . A set of

partial inflow angles are generated by using either the
DISCUSSION AND CORRELATION EHPIC or HOVER codes and these angles are passed

to the FPR code. The partial inflow angle is defined asThe chordwise pressure distributions show no sign the inflow angle due to partial wakes excluding the near
of flow separation near the leading edge on the upper wake inside the finite difference grid. As mentioned in
surface of the blade. This is true even for the very high the previous section, the actual sectional airfoils are

thrust conditions shown in Fig.8. No loss of leading the s s the aca6 seies airfoil se

edge pressure on the blade implies no loss of lift at that not quite the same as the NACA 64 series airfoil sec-
radil satin ad n drp i toal hrut. hismay tions. The digitied coordinates of the experimentalradial station and no drop in total thrust. This may blade do not have the smoothness (continuous slope

explain why the thrust of the rotor does not decrease
at high collective pitch angles. Further analysis of the and curvature) of the actual airfoils. The unevennesssufathigcorece sof the predicted pressure distributions is a consequence
surface pressures show that the flow does separate near of these discontinuities. Fig.14 shows the comparison of
the trailing edge at the higher collective pitch angles predicted pressure distributions with measurements at
(ue > 25) in Fig.. Fig.13 shows the surface pres- 0e = 16* and 1800 rpm. Good agreement is seen at out-
sure coefficients at the three rearmost upper pressure board radial sections while the EHPIC/FPR code over-

taps at r/R = .75 and various thrust conditions. The pr dicts tnftiat the ecns This mern
shar chnge n C firt ocur foralc= .9 arund predicts the lift at the inboard sections. This means

sharp change in dp first occurs for /c = .95 around that the EHPIC code overpredicts the partial inflow
around (CT/)75 = .085. It seems that the trailing angles at inboard sections. The last inboard grid for
aodge separation moves for8a. Itose that teaiing e the FPR code is at r/R=0.135, thus the predicted sur-
edge separation moves forward toward the leading edge face pressures at that section are used to compare the
as CT' increases. The inboard section behaves in a aim- mesr ensarR=12.TeA IsHVRcd

measurements at r/R=0.125. The AMI's HOVER code
ilar manner. The trailing edge separation increases the
drag force at that section and so increases the total gIves about the same partial inflow angles as the El-
power. Thus the total power increases sharply at higher PC code if the same wake geometry is used. Similar
collective pitch angles as seen in Fig.4. It was observed pressure results are obtained. The ErPIC code fails tothat the flow does separate around mid-chord at radial converge at 09 = 28", so a set of partial inflow angles

by HOVER code using a prescribed wake geometry and
modified inboard partial inflow angles are used to get
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Figure 1. Three-bladed model rcoa in the Army Anechoic Hover Chi Uber.
Accesion For
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Table 1. Blade characteristics. Unannounced
Justification _______

r/R /3deg cin tCB
.125 26.7 4.06 .466

.20 23.2 4.06 .407 Dist~btokon I

.30 17.8 4.02 .335 Availability Codes

.40 11.1 3.89 .269 AVail and/or

.50 8.2 3.75 .211 Dist Special

.60 3.8 3.58 .191

.75 0.0 3.23 .147

.81 -0.8 3.08 .138 DJ

.86 -2.6 2.92 .125

.91 -3.9 2.77 .120 I~e

.96 -4.6 12.52 1.107

STATEMEN'T "A per D. Kiefer
Army Aeroflightdynanics Directorate /FAZRT
AF-F, NASA Ames Research Center, Moffett
Field, CA 94035
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Figure 2. Top view of the model rotor showing the pressure transducers and a partial view of the pressure
blade.

Table 2. Tap locations for the (U)upper and (L)lower surface of the pressure blade.

-- , ~ "IC 61 5'2 03 40 45 50 5W 60 65 70 75 8 9 95

12.5 U LU, L U L U L U L U L U L~ U L U L U
20.0 U L U, LU L U L U L U L U L U L U L U
30.0 U L U, LU L U L U L U L U L U L U L U
40.0 U L ,U,L U L U L U L U L U L U L U L U
50.0 U L UvL U L U L U L U L U L U L U L U
60.0 U L U,L U L U L U L U L U L IU L U L U
70.0 U L U ,L U L U L U L U L U L U L U L U
75.01 U ILUIRL IU IL U IL IU IL IU L IU- L U IL U I LUI
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Figure 15. Surface pressure results using predicted partial inflow angles by HOVER code. 0, = 280,
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