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The dynamics of solvation is of great importance for many aspects of

solution chemistry, such as spectroscopy, reaction kinetics, and dynamic light

scattering. It is not surprising, then, that a number of excellent discussions

exist on the subject 1. The availability of experimental data for fast

reactions in solution has prompted, very recently, theoretical research on the

effects of the discrete structure of the solvent on the relaxation of internal

modes in the solutes, either ionic or neutral species. In particular, we should

mention the work of Wolynes(12) and of Rips, Klafter and Jortner (13) who

discuss the relaxation of the shift of an effective hydration sphere diameter,

using the mean spherical approximation (MSA) as the theory.

In the present discussion we want to study a different approach to this

problem; namely, the electric microfield distribution function and its dynamic

behavior.

(15)The electric microfield distribution was first studied by Holtsmark

who studied the weak coupling regime. We are interested in the formulation of

the microfield distribution function

W(M) - W(Ct) Jto - < 6(f - Ko(0)>

de dPv eH 6(f - K0  (2)

where we are using canonical ensemble averages of the 3-dimensional Dirac delta. -J !

function 6(f). Our system has v particles of coordinates R, -- N - v and

momenta P1 -"- PN - p The inverse temperature P - I/kT where kB is

Boltzmann's constant and T is the absolute temperature. The Hamiltonian of the •

system is H. We single out a particle 0, located at the origin % - P0 - 0.
Codoi

The electrostatic field produced by a particle J, of coo ats Rjý PJ is E0 I~d/ar_

f ýlts J

KY"U



J.E. Hubbard and L. Blum 3

and

v

) (Ol (R(3)
J-1

Furthermore

'Oj '91 ('1(4)

where 9Oj( R) is the electrostatic potential at the origin produced by particle

J. Normally the evaluation of the electric microfield would be done by

expanding Eqn. (2), which entails the calculation of all v-particle distribution

functions. The problem could also be reformulated in terms of a path integral,

16
as has been done very recently1. But a more practical approach was proposed by

17 18
Morita , and more explicitly by Iglesias In this formalism the Fourier

transform of W(C),

A(A) - J df eiA . W(o (5)

is introduced. It can be shown that the calculation of A(A) can be performed

using the pair correlation functions of a modified hamiltonian H(A). Explicit

results have been obtained in the MSA for the one component plasma on a

19neutralizing background

The static microfield problem for ionic and polar solutions was discussed

20
recently In the MSA, and for hard ions and spherical solvent molecules, the

general result is that the microfield distribution at the center of a spherical

test charge is Gaussian, of the form

23 ] 3 e" i
M m2 (6)

2 2wu2  2

where m2 - <(2> is the mean square average of the field at the testing particle.
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In several cases of interest the value of a2 is known explicitly, such as
(202

in the SA( 2 0 ). For a mixture of ions of charge zie (1e1 - electron charge),

density pi and hard core diameter ai one obtains

+P zi (a ) (7)m2 EPZ 0 L 1 90 I

where goi(aot) is the pair contact distribution function, and z0 is the charge

of the test particle located at the origin. In the Onsager limit, for which the

Debye screening length is zero, the following simple and exact result holds:

6
" 2  0-1 (8)

where <U > is the Onsager self energy of a dipole p. In our case p - 1. For

the primitive model electrolyte (8) reduces to (7), since the MSA second moment

is exact in the Onsager limit.

The first observation is thit the second moment a2 is also the fluctuation

of the electrostatic energy, <Z - E. Then the natural extension of the

microfield idea to non-equilibrium situations is to study the quantity

L(t) - <E(O) • E(t)> (9)

where E(t) is given by eqns. (3, 4) with coordinates R (t) (t - time);

therefore, L(t) is the fluctuation (and, by the Nyquist theorm also the

dissipation function) of the solvation energy. Introducing the quantity

W(fl f2' t) -<+1' ZO(O) 1 6 (2 - R 0(t)J1> (10)

we see that, after a short calculation

L(t) - fdl fd 2 W(C1 , 420 t) f1 f2 - <1(0). E(t)> (11)
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we imagine now a situation in which our test particle has undergone some change,

in which its c. ,rge, or better, its charge distribution has changed. Assumitg

that the change is permanent the system will initially be in a state in which

the microfield distribution is W0 (). At the end of the process the microfield

distribution will be W((). The implication is that

W(C 1 f2 ' t)0 - W0 (il, #) 6(C 1 " f2) (12)

and

I(c1 C2 ' t)I - W0 (CI. •) W (C2 ) (3VCf ) (13)

Furthermore, W(f1 f 2 , t) must also obey the normalization

f d C2 W(fl f2' t) - W(f1 ) (14)

at any time (t). These conditions imply that the conditional microfield

probability distribution is given by

W( . f, 0. t)
K(f, tIC0) - W(O, 0) (15)

and K(C, tJfO) relaxes from a 6(Q - f0 ) function to the Gaussian distribution

3/2 . 2

K([, 10) - ] e 2m2 (16)

The time dependence of K(C,tlC0 ) is complicated because of the complexity

of the system. It is therefore reasonable to assume that it is given by some

Gaussian random process (this does not mean that f is a Gaussian random

variable) which is characterized by a propagator and a source term. It can be

verified that the boundary conditions (12-16) are satisfied if
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K(C. tICo) - J Ci C(t1 ) r(t - t1 ) (17)

G(t1 ) " 13/2 4 C CO (18)
(4rDt 1)

3-(t - 32 2 Cos 3 (19)

The time dependence enters through the diffusion constant D, which characterizes

the random relaxation process.

An alternative approach is to utilize the Fourier series representation of

a Gaussian random process22 (C is the zero-mean Gaussian random variable) to

derive a convenient and provocative form for the joint probability distribution

P(C. tico):

P(C, tic0) - K (C. tico) exp 2 j (20)

where the transition probability K, or equivalently, the conditional probability

density K (CO fixed), is given by

K(C, tIC0 ) [ x2(
[2m 2 (l - 2(W))

2 2 -2 C ?t
exp 3 0  . (t)

Ier 1 - t o

Here 11(t) is the normalized microfield autocorrelation function
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K(t) - <((0) ED(0)> (22)
<C(0) Co

where < > denotes an equilibrium ensemble average. Note that Eqn. (21) is a

dynamic contact transformation in which the operator K acts on the Kaxwellian

distribution to produce P(C, tico)0. Berne, Pechukas. and Harp have shown that

23this result can also be obtained from an information theoretic approach

Therefore, if f is a Gaussian random variable,

3/2

P(C. tico) [22 X2w 2 (1 -M2(0))1

2 + ( 2 . 2 K( t )

exp - 2 2 (22)Ya2 1I - M2(t) 1

Furthermore, if M(t) decays as a simple exponential

M(t) - exp (-at) (a > 0) (23)

then we recover an Ornstein-Uhlenbeck (OU) process, which is "essentially"

(allow for linear transformations of C and t) the only process which is

24
stationary, Gaussian, and Markovian It follows that, if in a microfield

model such as the ion-dipole MSA, one generates an M(t) which decays as a sum of

simple exponencials, or if in more elaborate models one encounters sums of

oscillatory exponentials, then, given that the (-fluctuations are

time-stationary, they cannot be both Gaussian and Markovian, and in these cases

it is the former condition which does not hold.

More exotic forms forms for M(t) such, as the algebraic decay

M(t) - const., t large, (a > 1) (24)
ta

or stretched exponential

M(t) - exp(-t$), t large, (0 < 0 < 1) (25)
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are not anticipated for electric field fluctuations in simple, non-glassy media.

Algebraic decay implies that the Markov assumption has broken down, while

stretched exponential behavior indicates the (more serious) apparent violation

of time stationarity.

As a simple example of non-Gaussian C fluctuations, one might consider a

so-called "dichotomic* Karkov process (D*P) in which the microfield C takes on

the values ± C0 with equal probabilily. In this case

K(C., ticO)- ½ [1 + exp (-at)] 6A,+C0

+ 1 [1- exp (-at)1 6 ,. (26)

where a is twice the transition frequency between states and 6 is the Kronecker

delta function. Just as for an OU process, the autocorrelation function of #

DHP is given by

H(t) - exp (-at) (27)

Therefore, if only two point correlation functions are considered, very little

can be said about the stochastic process which generates microfield

fluctuations, and it is for this reason that we have emphasized the importance

of P(C,. tICO) and the conditional probability density K(C, ticO).
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