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The dynamics of solvation {s of great importance for many aspects of
solution chemistry, such as spectroscopy, reaction kinetics, and dynamic light
scattering. It is not surprising, then, that a number of exceller.t discussions

exist on the subject(l-ll).

The availabiiity of experimental data for fast
reactions in solution has prompted, very recently, theoretical research oi the
effects of the discrete structure of the solvent on the relaxation of internal
modes in the solutes, either ionic or neutral species. In particular, we should

mention the work of Wolynes(lz) (13) who

and of Rips, Klafter and Jortner
discuss the relaxation of the shift of an effective hydration sphere diameter,
using the mean spherical approximation (MSA) as the theory.

In the present discussion we want to study a different approach to this
problem; namely, the electric microfield distribution function and its dymamic
behavior.

The electric microfield distribution was first studied by Holtsmark(ls).

who studied the weak coupling regime. We are interested in the formulation of

the microfield distribution function

W(E) - V(f.t)lt_o - < 5(€ - E (0>

1

- I a-” dap¥ M 5(¢ - E,) (2)

where we are using canonical ensemble averages of the 3-dimensional Dirac delta. !
function §(£). Our system has v particles of coordinates 81 22 -- RN - R and ii

momenta p; --- Py = pv. The inverse temperature g = l/kBT where k is [J

Boltzmann’s constant and T is the absolute temperature. The Hamiltonian of the !

system is H. We single out a particle 0, located at the origin RO =Py~ 0. ’

N EEE——
Codes \

The electrostatic field produced by a particle j, of cooxdinates ‘j' pj is Bbj,ldl°r "'W
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and
v
EO“’L_O - K, -J}l Zyy (B (3)
Furthermore
xoj - -V woj(nj) (4)

vhere ¢OJ(RJ) is the electrostatic potential at the origin produced by particle
j. Neormally the evaluation of the electric microfield would be done by
expanding Eqn. (2), vhich entails the calculation of all v-particle distribution
functions. The problem could also be reformulated in terms of a path integral,
as has been done very recenclyls. But a more practical approach was proposed by
Horita17. and more explicitly by Iglesiasls. In this formalism the Fourier

transform of W(§),
AQd) = Icus € L v (5)

is introduced. It can be shown that the calculation of A()A) can be performed
using the pair correlation functions of a modified hamiltonian H(A). Explicit
results have been obtained in the MSA for the one component plasma on a
neutralizing backgroundlg.

The static microfield problem for ionic and polar solutions was discussed
recentlyzo. In the MSA, and for hard ions and spherical solvent molecules, the

general result is that the microfield distribution at the center of a sphericul

test charge is Gaussian, of the form

W) =-35—

2xm2

2
3 5 -3 &
J 2 n2 (6)

where m

9 = <62> is the mean square average of the field at the testing particle.
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In several cases of interest the value of =, is known explicitly, such as

(20)

in the MSA . For a mixture of ions of charge z.e (|e] = electron charge),

density Py and hard core diameter o, one obtains
m, = + A= P, Z (o.,) 7)
2 ebzy [ °1 1 80i'%1

where 501(601) is the pair contact distribution function, and zZ4 is the charge
of the test particle located at the origin. In the Onsager limit, for which the

Debye screening length is zero, the following simple and exact result holds:

> (8)

6
2 8 Tp-l

where <U“> is the Onsager self energy of a dipole g. 1In our case g = 1. For
the primitive model electrolyte (8) reduces to (7), since the MSA second moment
is exact in the Onsager limit.

The firsc observation is th:t the second moment a, is also the fluctuation
of the electrostatic energy, <E : E>. Then the natural extension of the ]

microfield idea to non-equilibrium situations is to study the quantity
L(t) = <E(0) - E(t)> 9

where E(t) is given by eqns. (3, 4) with coordinates Rj(t) (t = time);
therefore, L(t) is the fluctuation (and, by the Nyquist theorm also the

dissipation function) of the solvation energy. Introducing the quantity
(g, €, ©) = <s[e1 - 0<0)] s[ez - z0<c)]> (10)

we see that, after a short calculation

L(t) = Ffl Ffz w(fl. 621 t) €1 €2 - <B(0) ' g(t)> (11)

-0 -
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ve imagine now a situation in which our test particle has undergone some chunge,
in which its c. .rge, or better, its charge distribution has changed. Assuning
that the change {s permanent the system will initially be in a state in which
the microfield distribution is Vo(f). At the end of the process the microfield

distribution will be W‘(E). The implication is that

g(fl 620 c) -0 - "0(61! ‘) ‘(61 - €2) (12)
t

and

W(fl fzn t) - "0(61. ‘) "; (62) (13)

el ]

Furthermore, W((l 62, t) must also obey the normalization

jm d 62 W(fl 62' :) - "(fl) (1“)
-0

at any time {(t). These conditions imply that the conditional microfield

probability distribution is given by

W, € ©
K(¢&, C!fg) = W, 0 (15)

and K(¢{, tlfo) relaxes from a §(§ - fo) function to the Gaussian distribution

2 3t
K(E, =€) = [%2—] e m (16)

The time dependence of K((,tlfo) is complicated bécause of the complexity
of the system. It is therefore reasonable to assume that it is given by some
Gaussian random process (this doess not mean that § is a Gaussian random
variable) which is characterized by a propagator and a source term. It can be

verified that the boundary conditions (12-16) are satisfied if
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¢

K(f. c'fo) - I dcl c(tl) r(c - tl) (17) ,
0
2
. La0)
1 ancl 18
G(ty) = —————75 o v b = £ - £ (18)
1 (lmncl)s/z 0

3,2
Aé 3
re - ¢,) - =46 cos |eagl| 3 3 (19)
Y ra [Bu'znzb] [J 2Dm, € J 7ba, ¢,

The time dependence enters through the diffusion constant D, which characterizes
the random relaxation process.

An alternative approach is to utilize the Fourier series representation of
a Gaussian random proc.-:ess22 (£ is the zero-mean Gaussian random variable) to
derive a convenient and provocative form for the joint probability distribution

P(E, t|€y):

-3(2

P(E, tl€y) = K (€, t[€,) exp|— ,: (20)

where the transition probability K, or equivaleatly, the conditional probability

density K (fo fixed), is given by

3/2
R(E, €[gg) = 2| x
2!1!2(1 - M7°(t))
s [+ utm - 26 enw
exp - 5o 3 {21)
2 1 - wi(e)

Here M(t) is the normalized microfield autocorrelation function
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<6(t) - £(0)>
MO = e E> 2

where < > denotes an equilibrium ensemble average. Note that Eqn. (21) is a
dynamic contact transformation in which the operator K acts on the Maxwellian
distribution to produce P(§, tlfo)w Berne, Pechukas, and Harp have shown that
this result can also be obtained from an information theoretic approach23.

Therefore, 1f € is a Gaussian random variable,

3/2

3 X

2emy (1 - 12 (e))

P(E, tley) =

€+ 6226 &N

exp - (22)
2m, 1 - ¥(e)
Furthermore, if M(t) decays as a simple exponuntial
M(t) = exp {-at} {a > Q) {(23)

then we recover an O;nstein-Uhlenbeck (0U) process, which is "essentially"
(allow for linear transformations of £ and t) the only process which is

2“. It follows that, {f in a microfield

stationary, Gaussian, and Markovian
model such as the ion-dipole MSA, one generates an M(t) which decays as a sum of
simple exponencials, or if in more elaborate models one encounters sums of
oscillatory exponentials, then, given that the £-fluctuations are
time-stationary, they cannot be both Gaussian and Markovian, and in these cases

it is the former condition which does not hold.

More exotic forms forms for M(t) such, as the algebraic decay

M(t) - S92, ¢ large, (a > 1) (24)

t

or stretched exponential

H(t) - exp(-tP), ¢ large, (0 <@ <1) (25)

X
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are not anticipated for electric field fluctuations in simple, non-glassy media.
Algebraic decay implies that the Markov assumption has broken down, while
stretched exponential behavior indicates the (more serious) apparent violation
of time stationarity.

As a simple example of non-Gaussian £ fluctuations, one might consider a
so-called "dichotomic" Markov process (DMP) in which the microfield { takes on

the values % €0 with equal probabili.y. In this case

LT Ed

K(E, clgy)) - [1 + exp (-at)] 65'*50

LI

[1 - exp (-at)] ¢, ¢, (26)

where a is twice the transition frequency between states and § is the Kronecker
delta function. Just as for an OU process, the autocorrelation function of a

DMP is given by
M(t) = exp (-at) (27)

Therefore, if only two pnint correlation functions are considered, very little
can be said about the stochastic process which generates amicrofield
fluctuations, and it is for this reason that we have emphasized the importance

of P(£, t|€)) and the conditional probability density K(¢, t|€y) -
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