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ABSTRACT X, Y, Z = Earth axis displacements w.r.t, tracking station
(m)

A new methodalg3' has been developed for applica- x = state vector
tion of Kalman Filter/Smoothers to post-flight processing of z = observation vector
helicopter flight test dynamic measurements. This process- a = angle of attack (rad)
ing includes checking for kinematic compatibility among the f = angle of sideslip (rad)

IC measurements, identification of a measurement error model, Y2 = coherence function
and reconstruction of both measured and unmeasured time 6 = pilot control deflection (%)
histories. Emphasis is placed on identification of a paramet- 7 = random error

(ric measurement error model which is valid fit a set of flight e = error parameter
test data. This is facilitated through a new method of con- N= scale fator

catenating several maneuver time histories. The method- = measured variable
ology also includes a model structure determination step T = t delay (sec)
which ensures that a physically realistic parameteizaion has 0, 0, sp = Euler angles (rad)
been achieved. Application of the methodiegi to a set of
BO-105 flight test data is illustrated. The resulting mini- INTRODUCTION<l mally parameterized error model is shown to characterize the
measurement errors of the entire data set with very little vari- High-quality flight test data is required for many appli-
ation in the parameter values. Reconstructed time histories cations in rotorcraft dynamics, controls, guidance, naviga-
are shown to have increased bandwidths and signal-to-noise tion, performance, and handling qualities analyses. How-
ratios. , . ,, / ' ever, obtaining accurate and complete flight test data isa

difficult task. Measurements are always subject to sources
NOMENCLATURE of systematic and random error. In addition, some quanti-

ties may be difficult to measure directly. This is particularly
a., a,, a, = body axis translational accelerations (m/sec2) true for helicopters because of the their high vibration levels,
b = bias error and is true of VTOL aircraft in general because of their large
B = tracking bearing angle (tad) ranges of motion compared to conventional aircraft.
c.g. = center of gravity
E = tracking elevation angle (rad) T achieve the necessary level of quality, errors in the
f,g = vector functions flight test data must be detected and removed. This is pos-
g = local gravitational acceleration (n/sec2) sible because the kinematic quantities measured in flight are
p, q, r = body axis angular velocities (rad/sec) related to each other by well-known differential equations.
R = tracking range (tad) The information in these equations can be used to determine
t = time the kinematic consistency (or compatibility) of the various
u, v, w = body axis translational velocities (m/sec) measurements and to reconstruct others. This process is of-
u = input vector ten called data consistency analysis and has been used as
V = total velocity (m/sec) a precursor to such activities as system identification (1,2),

simulation validation (3), and accident investigations (4).
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Each of these methods has its own advantages and dis- input, and observation vectors as defined in equations 18
advantages. The objective of all of them, however, is to de- through 20.
termine a model of flight data measurement errors. The va-
lidity of this model is of paramount importance because it = f(U) (16)
will affect the validity of all subsequent analyses.

This paper presents a comprehensive, systematic
methodology for conducting data consistency analyses us- r= ( u, v, W, 0, 0, b, X, Y, Z] (18)
ing a previously developed state-estimation algorithm. The aK [ a., a. ,,, ;y q, r] (19)
methodology was developed with the goal of achieving a ro-
bust technique for determining valid error models. In the zr= [ , 0, 0, V, a,fl, R, E, B] (20)
process several new techniques were developed which may
be of interest to others working in the field. The application Measurement Errors
of the methodology to a set of BO-105 flight test data is il-
lustrated, and the validity and usefulness of the results are Measurement errors can be broadly classified as either
demonstrated. deterministic, or random errors as shown in Figure 1. Bias

The flight test data were produced by DLR, Institute and scale factor errors generally result from incorrect in-
for Flight Mechanics, Braunschweig, Germany, for use by strument calibrations. Typical sources of time skew errors
AGARD Flight Mechanics Panel Working Group 18, "Ro- are analog signal conditioning and multiplexing of digital
torcraft System Identification," December 1987, and are dt Dpouts are usually present only in telemetered data
used with permission. or tracking data. Disturbance errors are caused when a sen-

sor measures a motion not associated with the rigid-body
BACKGROUND rotation or translation of the aircraft center of gravity. A

common example of disturbance errors is the effect of anmo-
Kinematic Equations spheric turbulence on the measurement of the air-data vari-

ables. Quantization errors are caused by the analog-to-digital
The set of kinematic equations for motions of the air- conversion process with finite digital word length. Other

craft center of gravity with respect to a flat, non-rotating earth sources of random error include sensor and instrumentation
are presented in equations I through 15. noise and high frequency vibrations.

i = rv - qw + a, - g sin 0 (1) Measurement Error Models

6 = pw - ru + a. + g cos 0 sin 0 (2) A linear parametric model of measurement errors is

lb = qu - pu + a, + g cos 0 Cos 0 (3) generally adopted for data consistency analysis. Equations

=p+qsin 0 tan0+rcos tan0 (4) such as f.(t) = Xf• C.(t- ) + b + (21)

= qcos 0 - rsin 0 (5) relate the measured time histories, f,, to the estimated time

= q sin 0 sec 0 + r cos 0 sec 0 (6) histories, f., through such parameters as bias errors,/4, scale
factors, It, time delays, Tf, and random errors, 'k. Some

X = u cos cos + (sin sin cosb - cos sin ') (7) methods do not model the random error explicitly, and those

+ w(cos 0 sin 8 cos t, + sin 0 sin 0) that do generally assume it to be white gaussian. Time delay
errors are seldom modeled, but some researchers have real-

Y = u cos 0 sin 0 + v(sin 0 sin 0 sin @ + cos 0 cos 0) (8) ized significant improvements in results by including them

+w(cos 0sin 0sin 0 - sin 0cos 0) in the error model (9,10).

Z = -u sin 0 + v cos 8 sin 0 + w cos 0 cos 0 (9) Data Consistency Analysis

V = /u 2 
+ -V + W2  (10) Parameter values are determined by fitting the measured

a = arctan(w/u) (11) time histories to the estimated time histories subject to the
constraints of equations 16 and 17. Differential equations

= arctan(v/u) (12) for the deterministic error parameters are appended to to the
R = LX 2 + Y 2 + Z2 (13) state equations and provide additional constraints. These are

usually trivial since the error parameters are usually assumed

E = armsin (-Z/R) (14) to be time-invariant.

B = arctan(Y/X) (15) Algorithms- Several algorithms have been used to
identify parameter values and calculate estimated time histo-

For data consistency analyses, the equations are usually ries. They differ mainly in the level of sophistication of their
considered in the form of equations 16 and 17 with state,
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Fig. 1 Types of measurement errors.

constraints of equations 16 and 17. Differential equations measurement variables based on models of the system dy-
for the deterministic error parameters are appended to to the namics and statistical properties of the process and measure-
state equations and provide additional constraints. These are ment noise. Parameter values are determined through mini-
usually trivial since the error parameters are usually assumed mization of a cost function based on state and measurement
to be time-invariant, variable fit errors weighted by the process and measurement

Algorithms- Several algorithms have been used to a'or covariance matrices respectively.

identify parameter values and calculate estimated time histo- Maxzium Likelihood- The maximum likelihood
ries. They differ mainly in the level of sophistication of their identification technique is usually applied to the data consis-
random error models and the type of cost function they em- tency analysis problem as an output error (process noise ne-
ploy. Some of the more common algorithms are discussed glected) formulation (8,9,10). This allows the state equations
below, to be integrated directly. Random measurement errors are

Least Squares- Random errors are not modeled ex- modeled explicitly by a covariance matrix- Parameter val-

plicitly in this method. The state equations are integrated us- ues are determined through minimization of the likelihoodcotfunction which includes a weighted least squares mea-
ing measured state and input variables to calculate estimates streuntior term nd a aditn loathmicaem.

of the state and output variables. This process continues, us-

ing estimated state values in further iterations, until param- Model Structure Determination
eter values are determined which mir,'mize the least squares
fit error between the measured and estimated outputs. The model structure refers to the set of non-zero pa-

rameters which are used to parameterize the measurement
Extended Kalman Filter- Random errors in both the error. Determination of an appropriate model structure is

input variables (process noise) and output variables (mea- an important part of any parameter identification problem.
surement noise) can be modeled explicitly in this method. Improvements in the fit can almost always be achieved by
The presence of process noise means that the state variables adding non-zero parameters to the model. However, only
must be treated as stochastic quantities. The Kalman filter parameters which truly represent a physical characteristic of
steps hrough the data calculating estimates of the state and the system should be included. An incorrect model structure
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will cau-se the parameter estimates to be biased away from Flight
their u values. Instrumentation

TimeChrceits
Two factors which should be considered during HistoryCharacte cs

model structure determination are parameter insensitivity
and parameter correlation. If the solution (cost function) is
relatively insensitive to variations in a particular parameter,
then this parameter is said to have a high insensitivity. The
parameter is then less likely to be an important pat of the Pre-processor
model structure, and removing it should be considered.

If variations in two or more parameters cause sim-
ilar variations in the solution (cost function), then they are
said to be correlated. The more two parameters are corre-
lated, the less possible it is to determine unique values for Initial
each of them. This in turn makes it difficult to determine Unke- Solution
whether each of them is an important part of the model. This E
can be remedied by fixing one of them at an a priori value
if enough information is available to determine a reasonable
one.

METHODOLOGY

A comprehensive methodology has been developed SolutionM

for application of Kalman Filter/Smoothers to the identifica-
tion of models for helicopter flight test data measurement er-
rors. A flow chart of the information flow through this sys-

tem is shown in Figure 2. The filter/smoother algorithm is
applied in both the initial solution and final solution blocks. EstimatedSome of the major features of the methodology are:

1. All of the flight test data for a given flight test is
passed through a preprocessor whose function is to increase
the signal-to-noise ratio of the data seL

2. A small subset of the preprocessed data F. 2 Flow chart of developed methodology.

in an initial solution to obtain an initial error model structure
for use as a start-up in the final solution. Knowledge of in- state and measurement models used by SMACK is shown
stinmentation characteristics is used at this step to determine in Figure 3. These models differ from the more commonly
appropriate values for the measurement error covariance ma- employed models of equations 18 through 20 because they
trix of the Kalman Filter. have been formulated to keep the state model linear. All mea-

3. All of the flight test data is then processed in the final sured variables are also treated as observations and never as

solution step to obtain an error model valid for the entire set system inputs. Estimation of constant bias and scale factor

of data. errors in each of the measurements as well as time-varying
winds is possible. Other algorithms could be substituted for

The final error-model parameters can be applied directly SMACK without reducing many of the benefits of the over-
as corrections to the raw flight test data, or the filter/smoother all methodology. However, SMACK has several properties
can be used with the error parameters fixed to these values and features which nI-o. it a favorable choice. These are
to reconstruct estimates of error-free time histories. discussed below.

Each of the major sections of this process are explained Stochastic Optima, Estimator- The SMACK algo-
in greater detail in the sections which follow. rithm consists of a backward "information" filter and forward

SMACK smoother. This formulation offers all of the advantages of
the extended Kalman filter plus certain computational advan-

For the present study, the filter/smoother program tages which result in a more accurate and less computation-
SMACK (SMoothing for AirCraft Kinematics), developed ally expensive solution (6). The use of a linear state model
by Ralph Bach at Ames Research Center, was employed as also improves the performance of the SMACK algorithm.

the paramete esimation/tate reconstruction algorithm in
the initial and final solution blocks. A block diagram of the
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Other Computational Features- SMACK calculates Use of this preprocessing procedure has resulted in less
the means and standard errors of the final measurementresid- variation in identified parameter values and improved time
uals, which supplies a useful feedback to the user about the history estimates.
accuracy of initial estimates of the measurement error stan-
dard deviations. A provision is also supplied for the elimi- Initial Solution
nation of selected data points from the measurement update. The objective of the initial solution step is to determine
This is very useful for elimination of disturbance-type errors an initial error model structure and refine estimates of the
from the measurements. measurement error covariance values. This analysis is per-

Convenience Features- A predefined measurenwet formed by iteratively processing one representative compos-
model is available, but new measurements are easily added, ite maneuver through SMACK. The results are used as a
An internal simulated maneuver is available for debugging start-up for processing of all of the cases in the final solu-
new input decks. Printed output provides many useful met- tion.
rics of solution quality; and graphical output of measure- The initial values of the measurement error covariances
ment, estimate, and residual time histories is supplied. are determined from the digital resolution of the instrumenta-

Preprocessing tion system. This information is usually available from cal-
ibration data for each measured channel as the number of

Studies have been conducted to investigate the variabil- engineering units per "count."
ity of parameter values identified from different flight test For example, a typical 12-bit system would provide a
maneuvers (1,7). This variability is often caused by poor ex- m xm o2, 4 count pe canl. ia a
citation of some states for certain types of maneuvers. Klein maximum of 2 t2 = 4096 counts per channel. If an ac-

(8) postulates that it may be possible to increase the accu- celemnee was calibrated to read-1.00g at 1600 counts and

racy of parameter estimates by designing an optimal maneu- +1.50g at 2800 counts, the digital resolution of that channel

ver. Indeed, this approach has been taken in a flight test pro- would be 2.50g/1200 = 0.00208g.

gram of the AV-8B Harrier aircraft conducted at the Ames These values are input to SMACK as the standard de-
Research Center (2). However, it is often the case that flight viations of the random error component of the measure-
tests are conducted without this consideration in mind. The ment errors. This is compatible with the requirements of the
approach taken here is to create "optimal" maneuvers from filter/smoother since quantization error can be modeled as
sub-optimal flight test records in a preprocessing step. white noise (12, pages 190-195). The assumption that all of

Flight test time histories from several different types of the random error may be attributed to quantization effects is

maneuvers, usually one for each control axis, are concate- sufficiently accurate for starting up the initial solution pro-

nated to construct a composite maneuver with sufficient ex- cess. In fact, it is likely that low-pass filtering has removed

citation of all kinematic quantities. Discontinuities at the most other sources.

junctions between events are avoidedby inserting abufferre- The representative case is then processed iteratively
gion of time between the records. These sections are flagged through SMACK. After each iteration, the error model struc-
for elimination from the filter measurement update allow- ture and error covariance values may be modified based on
ing SMACK to construct trajectories joining the two events, evaluation of the three following criteria.
These "pseudo-dropouts" are of sufficient length to allow the Measurement Residuals- In his forthcoming NASA
estimated aircraft states to transition smoothly. When track- Rere e nt Es tatin Applico in AiAing data are available, coordinate transformations are made Reference Publication "State Estimation Applications in Air-
to the data to ensure a continuous flight path throughout the craft Flight-Data Analysis (A User's Guide for SMACK),"

Bach states that one of the criteria for a "good" SMACK so-
composite maneuver. lution is that all of the residuals should be white, zero mean,

All of the flight test data are also carefully low-pass fll- and have standard deviations close to the measurement error
tered to remove noise. This approach is taken because dif- standard deviation values provided by the user. This concept
ferent types of sensors have different bandwidths. For in- is similar to the Innovations Property of linear-optimal filters
stance, accelerometers will be much more sensitive to high- (13, page 400).
frequency vibrations than gyros will be. Thus, low-pass At each iteration of the initial solution the residuals
filtering removes another possible source of inconsistency are examined for whiteness, offset, and magnitude. Non-
among measurements. white or non-zero mean residuals may be indicative of error-

Also, a visual inspection of the data is made and dropout parameters which are missing from the model. A missing
and disturbance errors are flagged for elimination from the scale factor will cause the corresponding residual signal to
filter measurement update. This has the effect of increasing have a shape similar to the measured signal. A missing bias
the signal-to-noise ratio of each affected measurement and parameter will cause the residual to have a non-zero mean
removing a source of error which could otherwise bias esti- value.
mates of the error model parameters.
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The standard errors of the residuals are compared to the enough times to capture this variation. However, if the flight
user-supplied estimates of the measurement error standard tests are conducted within a short enough period of time, the
deviations. If a residual is sufficiently white, hen its stan- assumption of a stationary error model can be made. In this
dard error will be a good measure of the tiue measurement case the procedure of the final solution is employed to de-
error standard deviation. If not, an estimate of the stan- termine a model structure and parameter values valid for the
dard error of the random portion of the residual signal may entire data base.
have to be made. The user may then update his estimates In the final solution step, SMACK is applied iteratively
accordingly. to all of the composite maneuver cases. At each iteration, the

Parameter Insensitivity- The insensitivity of the error-model structure is held constant across all the maneu-
model to variations in its parameters is determined through vers. The model structure from the initial solution is used as
examination of the parameter Cramer-Rao lower bounds a start-up in this process.
generated by SMACK. It is well known that the Cramer-Rao After each iteration, the sample mean values and stan-
bounds overestimate the accuracy of the identified parame- a e of the parameters are calculated. The pa-
ter, but they are useful for comparisons of relative accuracy rameter with the largest variation above a certain threshold

between parameters, and variations from case to case (10). is dropped from the model. This process continues until all

When the ratio of the Cramer-Rao bound to the parameter of the parameters have sufficiently small variations.

value is relatively large (usually by a factor of ten) for a par-

ticular parameter, it is eliminated from the model structure. It has been the author's experience that an appropriate
It has been the author's experience that there is little effect on threshold value of parameter variation usually appears dur-
the whiteness of the residuals from elimination of insensitive ing the analysis. The parameters are usually grouped into
parameters. sets with low-variance and high-variance. Sequential elim-

ination of the high-variance parameters tends to reduce the
mshourse phwysical udestoandno a modl rutare variations in the low-variance parameters, accentuating this

lem should always be used to pare down a model stutr division. Determination of an appropriate threshold value is

from the outset. For example, if one is conducting an anal- therefore a simple matter.

ysis of the three rotational degrees-of-freedom only, the so-

lution will be very insensitive to bias errors in 4 and 0. For When a final solution is determined, the model struc-
a six-degree-of-freedom analysis without tracking data the ture and parameter values are enforced in SMACK to recon-
solution will be completely insensitive to a bias error in 40. struct time histories of measured and unmeasured variables
This is readily verified through inspection of the kinematic for each of the unlinked flight test events.
equations.

Parameter Correlation- No numerical indicator of pa- RESULTS
rameter :orrelation is presently calculated in SMACK. Cor- The proposed methodology has been applied to a set
relation of parameters is currently avoided by consideration of flight test data produced by the DLR, Institute for Flight
of the the structure of the kinematic equations and use of non- Mechanics in Braunschweig, Germany, for use in time- and
kineratic information. For example, bias errors in a, and 0 freqency-domain parameter identification (1). These testswill be highly correlated. The kinematic eatosreveal feunydmi aaee dniiain() hs et

equations were flown in the DLR ATrHeS BO-105 helicopter (see
the correlation, but more information is needed to determine Figure 4) The data include doublet, multi-step "3211",
which measurement is really biased. If the flight test data and frequency-sweep maneuvers in each of the four control
includes segments of trimmed flight, then pilot comments or axes. The doublets were repeated twice in each direction; the
simulation results may be used to determine the validity of 3211's were repeated three times in each direction; and the
the measured trim attitude. frequency-sweeps were repeated three times for a total of 52

Convergence- The above criteria are examined at each flight test events. The nominal flight condition was horizon-

iteration until an appropriate model structure and measure- tal flight at 80 knots and a density altitude of 3000 feet, and
ment error covariance values are obtained. Convergence the entire flight test was conducted in less than two weeks.

problems have not been eccountered. The measurements used in consistency checks and state re-
construction included: the Euler angles 4, and 0; body angu-

Final Solution lar rates p, q, and r, c.g. specific forces a., a., and a,; and

The direction in which the analysis proceeds from this c.g. translational velocities u, v, and w. The translational
point deson te chacte sis oeds if this velocities had previously been derived from measurements

point depends on the characteristics of the database. If the aken with a HADS air data system which uses a swiveling
flight tests were conducted over a long period of time, then it pitot static mechanism located below the main rotor.
is likely that the instrumentation characteristics will vary sig-
nificantly throughout the database. In this case we can expect The 52 flight test events were preprocessed into 13 com-
the error model structure and parameter values to vary, and posit, maneuvers, each consisting of a longitudinal cyclic
the procedure of the initial solution will have to be applied maneuver, a lateral cyclic maneuver, a collective maneuver,

7



,ft-

Fig. 4 DLR ATTHes BO-105 helicopter.

and a pedals maneuver. Disturbance errors in the velocity of the parameters increase and their mean values change sig-
signals welt discovered in manyof maneuvers. It is believed nificantly when tis approach is taken.
that these were caused by interaction of the HADS air data The effect of ecitaion of a particular variable on the
sensor with the rotor wake. They were flagged for elimina- idenficati of error parameters associated with it can be
tion from the filter measurement update. seen in Table 3. Here the identified values for the scale factor

Parameter values for the final model structure are tab- on lateral velocity are tabulated by the control axis of the
ulated for the 13 composite maneuvers in Table 1. The maneuver. It is clear that variations in the identified value
SMACK calculated Cramer-Rao lower-bounds are also tab- of X, are smaller for the pedal and lateral cyclic maneuvers
ulated. The standard deviations of all of the parameters am which contain much larger lateral velocity responses than the
less than 11% of their respective mean values. Such small other maneuvers.
variations in the parameter estimates validate the assump- Comparison of filtered flight test data and reconstructed
tion of a stationary errormodel and provide a high degree of time histories for a typical composite maneuver is ilius-
confidence in the model structure and parameter mean values trsted in Figure 5. The reconstructed data have been de-
themselves. It is also notable that ite Cramer-Rao bo corrected by the identified error parameters for plotting pur-
underestimate the sample variations by as much as two or- poe.Aste"suodoot"between events haveof magnitude, ~poses. Also, the "pseudo-dropouts"bewnevtshe
des of magnitude. been removed to improve the plot scales. Only lateral vari-

The usefulness of the composite maneuver approach can ables are plotted to save space, but the results are represen-
be seen by comparing the results in Table I with those in Ta- tative of the the fits in other axes.
ble 2. The parameter values in Table 2 were obtained using The consistency is generally very good. The lack of re-
the same model structure, but the individual flight test ma-
neuvers were used in the identification instead of the coi- maining deterministic errors indicates that the error model

posite maneuvers. It is evident that the standard deviations
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Table I Error mode! parameters identified for composite maneuvers

I Case I Le d/s) b h Ws) I 'N I " I I'
1____ tIQU511*U.U J 1L~2tU V.YbWA±U.UW2 0.69W±00: 0.827711±0.00 I

____ U.730g .84UQQ3IU94T . .72M0.UU1 A US5 1±0.000)9 1

4.90±.0 0UA~UW I .994Q±d:001J3 0.7321 ±Q.0011 U.8S0±U.002 1

U.U4[50. 2 U 194 .W I fi0P64 008 0.8859±.UUU(6
"0.7679±0)0X9 0.S995±0 7

9 U934.U "" . .9M±0(XXZ .0479000 0Y:_~)J .8120.07
ITI 0.U7i'9±0.0001I 0.0918±01=0(J 1 .9438±0.00(Z_ 0.703±0.0008 0.903±.DMU

1_____ _________ I~o ___________ 0.8171±0.0U10 0.9349±0000)9

I -- aP 1 0.0863±0.0093 1 0.0956±0.0091 T 0.9556±0.0272 1 0.7043±-0.0524 I 0.8750±0.0378

adequately characterizes those present in the flight data. Dis- Measured data

turbance errors are evident in the lateral velocity measure- 10 1---- -- -- ----- -- -- e su-d

ment. Vertical dotted lines indicate the regions of the sig- ..-----
nal which have been eliminated from the measurement up- 6 o

odate The missing velocity segments have been satisfactorily _ _-_ _
-

______.,

Improvements in the velocity signals are also clearly (d8) -70
seen in the frequency domain. The frequency responses for .90lateral velocity due to pedal inputs identified using measured 600
and reconstructed lateral velocity signals are compared in 3_.1
Figure 6. Bode magnitude and phase and the coherence func-
tion 12 are plotted. The coherence function indicates the v 120 -

fraction of the output which can be accounted for by linear -120 -
relation with the input. It may be reduced from a maximum T
value of 1 by nonlinearities, input and output noise, and lack (dog) -

of excitation and/or response. The most striking feature of _6W ......... ......... ........
Figure 6 is that the coherence function for the response iden- 1.0
tified from the reconstructed data is larger over a much wider .,
frequency range. This is the result of two factors. The first is -'
that the signal-to-noise ratio of the lateral velocity signal has .?2pv 6

been increased through the elimination of random and distur- .4
bance errors. The second is that the bandwidth of the lateral .2-
velocity signal has been increased by the complementary fil 0- __ _ _

ter action of the Kalman Filter. This results from the use of .1 1 10 100
many measurements with different response characteristic in o (radisec)
the calculation of the reconstructed time histories.

Fig. 6 Comparison of frequency responses identified from
It is also interesting to note that, for the range of fre- flight test and reconstructed data.

quencies where both frequency responses have high coher-
ence values, their response characteristics are very similar.
The only major difference is a magnitude shift of approx- CONCLUDING REMARKS
imately 3dB which agrees with the . = 0.71 identified in
the time domain. This also indicates that the state-estimation A comprehensive and systematic methodology for iden-
process has not corrupted the dynamic relationship between tifying models of helicopter flight data measurement errors
the control and response variables, has been developed. This methodology makes use of the fa-

The results presented here have been used in time- vorable properties and features of the optimal filter/smoother

and frequency-domain identification and verification of program SMACK. A preprocessing step is used to construct
andyunay-mai odeipraomnts n teideatioco- composite maneuvers with increased kinematic information
dons05 wroaine forese Imro ementsin the identified pacontent and to increase the signal-to-noise ratios of individ-ions were obtained for use of the identified parameters in ua me s r en .Ap o rit m a ue e ter r v r -ual measurements. Appropriate measurement error covari-
the time-domain method and use of reconstructed data in the ance values are determined in an initial solution step, and a
frequency-domain method (1).
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Table 2 Error model parameters identified for flight test 7Table 3 Variation in \, identification with level of lateral

maneuvers velocity excitation for different control axis inputs

LAX bm la 6-a 6

Y_ .654 1~ .6w LU U68Case bp (d/s) bq (d/s) X x, x . U .38 VRIF -wVZ-
1 0.0933 0.0930 0.9472 0.6684 0.8181 7 U D=T-'"0'F7W"-
2 0.0835 0.1016 1.0010 0.9543 0.8986 - "-3'77'7n3 TL--U0""7b-- -" 0.5860' -"I76"20"--
2 0.0895 0.0814 0.9465 0.6760 0.7989 TTR= -367 0.U8 -76=
4 0.0825 0.0697 0.9880 1.0080 0.9206 Z U U.295
5 0.0353 0.0691 1.0390 0.6840 0.8834 D '-"7874 0.7037 846
6 0.0414 0.0959 1.1030 0.8070 1.0140 --"9,T1 ---33( U.9083-R"r- /31 M931 -U666 -70"55-
7 0.0920 0.0783 0.9392 0.8276 0.8185 ""T-- "-/- -"*-77 179=
8 0.1054 0.1025 1.0100 0.7776 0.9546 -- T2'-lUfl U Tli r3 0 .7819
9 0.0803 0.0817 0.9969 1.0610 0.8723 "". NJ / *.73 UA)40 ______

10 0.0719 0.0771 0.8741 0.3801 0.6621 I 0.67281 0.6581 1 0.7098 1 0.6732
11 0.0607 0.0734 0.9432 0.7079 0.8363 1 U1U, I U.13308 0. 1 T6 .19f3 I0340
12 0.1087 0.0873 0.9648 0.5633 0.7920
13 0.0890 0.0853 0.9511 0.6546 0.8519
14 0.1278 0.0753 1.1560 0.7695 0.9907 measurement error model valid for a set of flight test data is
15 0.0625 0.1246 1.0140 0.7400 0.8646 identified in a final solution step.
16 0.0562 0.0832 1.06101 0.7548 0.7917 0.17 0.32 1.0230 1.6704 0.86391 This methodology had been applied to the identification17 0.171 0.2329 1.0230 1.6270 0.8548 of a physically realistic measurement error model for a set of19 0.1454 0.0792 0.9460 0.9846 0.8053 BO- 105 flight test data. The identified model is described by
20 0.111 0.1292 0.8733 0.3846 07930 asmall number of parameters which each vary less than 11%
21 0.0692 0.0875 0.8815 0.9083 0.76Z7 over the entire data base. The use of composite maneuvers
22 0.0860 0.1099 0.8918 0.5254 0.8839 in the identification was shown to decrease variations in the
23 0.0839 0.0825 0.9895 0.5860 0.8744 parameter values.
24 0.0922 0.1016 0.9693 0.6867 0.921 Reconstructed time histories were shown to be free of
25 0.0852 0.1214 0.9390 0.4398 0.8797
26 0.1142 0.1572 0.9745 0.7874 0.8078 many deterministic and random errors. This included the
27 0.0753 0.1118 0.9119 0.9411 0.9201 elimination of rotor wake interference effects from the ye-
28 0.0791 0.1448 0.9119 0.8493 0.9372 locity measurements. Frequency response analysis demon-
29 0.0896 0.1132 0.9660 0.8372 0.9252 stated that these signals have increased bandwidths and
30 0.0789 0.0779 0.9132 0.9084 790 signal-to-noise ratios.
31 0.0752 0.0828 0.9005 0.8295 0.6832 0.082 0.0757 0.9601 0.7037 0.660 Use ofthe results ofthe BO-105 data consistency analy-33 0.0834 0.1083 0.961 0.37 095 sis in identification ofBO-105 dynamic models has produced

34 0.0838 0.0816 0.9564 0.6686 0.7682 improvements in the identification results.
35 0.0897 0.0760 0.9436 0.6310 0.8044
36 0.1026 0.1092 0.9276 0.6411 REFERENCES
37 0.0676 0.1209 1.0010 0.6540 0.34Kaltka, J Von GrnhagenW Tischler M B., and
38 0.1123 0.0939 0.9727 0.8419 1.0580 l .,
39 0.0872 0.1079 0.9306 0.5956 0.7921 Fletcher, J. W.,'Time and Frequency-Domain Identification
40 0.0894 0.0908 0.9616 0.6751 02 and Verification of BO-105 Dynamic Models," Proceedings
41 0.0569 0.0930 0.8370 0.5546 0.7126 of 15th European Rotorcraft Forum, Amsterdam, Nether-
42 0.0756 0.0928 0.9479 0.7819 0.8639 lands, Sept. 1989.
43 0.0750 0.0933 0.8803 0.6354 0.7844
44 0.0745 0.0933 0.7987 0.4792 0.7732 2 McNally, B. D. and Bach, R. E., Jr., "Flight Test-
45 0.0692 0.0925 0.8289 0.5846 0.8208 ing a V/STOL Aircraft to Identify a Full-Envelope Aero-
46 0.0742 0.0918 0.9143 I0.6473 ( dynamic Model," NASA TM-100996, 1988, also AIAA
47 0.0961 0.0909 0.9895 0.7911 1.1930 Paper 88-2134-CP.
48 0.1069 0.0950 1.0360 1.0310 1.1300
49 0.0843 0.0918 0.8794 0.6546 0.7299 3 Balin, M. G., "Validation of the Dynamic Response of
50 0.0799 0.0904 0.8518 [0.5467 0 a Blade-Element UH-60 Simulation Model," Proceedings of
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52 1 0.1044 0.0940 1.0880 0.7037 0.80
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