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Wigner Distribution Function: Relation to
Short-Term Spectral Estimation, Smoothing,
and Performance in Noise

A. H. Nuttall
ABSTRACT

The properties and behavior of the Wigner Distribution
Function (WDF) are investigated both analytically and by means
of a number of simple informative examples. The lack of local
temporal averaging when obtaining the Instantaneous correlation
function, and the lack of weighting the longer delay values when
transforming to the instantaneous spectrum are shown to be the
causes of the deleterious Interference effects that are inherent to
the WDF. The equivalence of short-term spectral estimation to
the smoothed WDF offers an attractive alternative with
guaranteed positive distribution values and no interference
effects.

The performance of a processor which estimates the WDF of a
signal waveform in the presence of additive noise Is investigated
in terms of the output mean, bias, and variance. Dependence on
filtering the input and time-weighting is allowed and included in
the analysis. Numerical application to a particular example Is
carried out.

Approved for public release; distribution is unlimited.
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WIGNER DISTRIBUTION FUNCTION: RELATION TO SHORT-TERM

SPECTRAL ESTIMATION, SMOOTHING, AND PERFORMANCE IN NOISE

INTRODUCTION

The potential of the Wigner Distribution Function (WUF) for

characterizing the short-term local time and frequency content of a

transient waveform has been amply demonstrated in a series of papers; for

example, see the recent publications [1,2,3] and the extensive references

listed therein. In particular, [1] contains numerical examples of the WDF

for rectangularly gated linear frequency modulation and a version which has

been smoothed with a square window in the time-frequency plane, in order to

yield positive distribution values. Here, we will be concerned with

smoothing so as to minimally spread tie WDF, but will not presume all the

information that is required for implementation via [2], nor do we limit

consideration to a constant-magnitude function. We will then use the close

connection between short-term spectral estimation and smoothed WDFs to

suggest a possible analysis procedure and philosophy to extract information

about a given waveform without an extensive search in waveform parameters.

Finally, the performance of a particular WDF estimator in the presence of

additive noise will be analyzed, both in terms of bias and variance.

This report summarizes and compiles many of the results in the

publications noted above in a unified framework and notation. Also,

numerous examples are presented in the various sections of this report to
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illustrate and bring out some of the fundamental concepts and limitations of

the WDF; these examples can be evaluated analytically in closed form,

allowing for close investigation of the behavior of the WOF, and as control

cases on any computer-written program for numerical evaluation of the WOF.

2
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BASIC PROPERTIES OF THE WDF

DEFINITIONS

A natural definition of the time-varying correlation of a nonstationary

complex stochastic process s(t) is

*

R(t,T) = s(t + s (t - , (1)

where the overbar denotes an ensemble average. The "center' time in (1) is

t, while the "separation" time is T. However, if an ensemble is not

available, or if s(t) is a deterministic waveform, the obvious extension of

(1) is simply

R(t,T) = s(t + T) s*(t - ) . (2)

This quantity is interpreted as the instantaneous correlation of waveform

s(t) at time t, for separation (or lag) T.

The associated "spectrum" at time t is then available, as usual, by

Fourier transforming (2) on separation variable r, to get at frequency f,

W(t,f) = dC exp(-12ift) R(t,t) =

r dt exp(-12wfr) s(t + 21 s (t (3)

3
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(Integrals without limits are over the range of nonzero integrand. Also, it

is presumed that s(t) and its derivatives decay fast enough to zero at t = ±0

for all the integrals to converge.) This time-frequency function W(t.f) is

called the Wigner Distribution Function (WDF). It is a real function, even

when s(t) is complex, since

* C * rW (t,f) = j dt'exp(12wfr) s (t + ) s(t- ) =

t f) 2)ep-iu

Jdu exp(-1ifu) s (t - ) s(t + = W(tf) . (4)

However, it is not necessarily positive, as the simple example of a

rectangularly gated pulse quickly shows: for

a for jtj < T/2s(t) = -~ t'</

otherwise

then

Wtf=2Esin[2wf(T - 21tl)lT

W(tf) = 2E 2fT for Itl < all f

and zero otherwise, where E is the waveform energy:

E = { dtls(t)12 = jai 2 T . (5)

An even simpler example is furnished by waveforms with odd symmetry,

s(-t) = -s(t). Substitdtion in (3) imediately yields W(OO) =

- SdrIs(t/2)l2 = -2E. Thus the origin value of the WOF is always

negative for an odd waveform.

4
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More generally, when waveform s(t) is expressed in terms of its even and

odd parts according to

s(t) = e(t) + o(t) , (6)

then the origin value of the WDF is

W(OO) = dr s(s(-r/= 2 dt s(t) s (-t) -

2 fdt[!(t) + o(t]) [e*(t) - o*(t)] =
2Ee - 2E0  (7A)

where

Ee - dtle(t)12 Eo -fdt (t)' (18)

are the energies of the even and odd parts respectively. For nonzero t,f,

it can readily be shown that the magnitude of the WDF is upper bounded by

2E = 2 (Ee + E0 ).

5
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PROPERTIES OF WOF

For s(t) real, it readily follows from the definition of the WDF in (3)

that

W(t,-f) = W(t,f) for s(t) real (8)

In this special case, it is only necessary to evaluate W(tf) for f >0.

Define the voltage density spectrum of waveform s(t) as

S(f) = dt exp(-12wft) s(t) (9)

Then an alternative form for the WDF in (3) is

W(t,f) = f dr exp(-i2vft) s(t + Y) s*(t- =

= dv exp(i2i'vt) S(f + *) S*(f (10)

In terms of S(f).

Integration on (10) immediately yields the marginals

f dt W(tf) = jS(f)12 , (11)

and

S df W(t,f) = Is(t)1 2 . (12)

6
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where we used the result

S dx exp(12wxy) = 6(y) (13)

The quantity in (11) is the energy density function, while that in (12) is

the instantaneous power. If we complete the integrations on the remaining

variables in (11) and (12), they both yield

ffdt df W(t,f) = E -

3dt Is(t)I d Ij) (14)

where E is the total waveform energy.

If waveform s(t) satisfies a time-limited restriction, namely

s(t) o 0 only for tI < t < t2 , (15)

then (3) reduces to

r *
W(t,f) dC exp(-12wf?) s(t +T) s (t - ) for t1 < t < t2  , (16)

and zero otherwise, where

= 2 min(t2 - t, t - tl ) for t1 < t < t2  (17)

Thus the WjF is time-limited if waveform s(t) is time-limited; however, if

there are gaps in s(t), the behavior of the WDF is more complicated, as will

be demonstrated later.

7
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PRODUCT AND CONVOLUTION

If waveform s(t) is the product of two other waveforms,

s(t) = a(t) b(t) , (18)

then the WDF of s(t) is (Inserting subscripts as needed)

Ws(t,f) = fdr exp(-12ift) RS(tz) =

f dr exp(-12ift) Ra (t,t) Rb(tt) -

= Sdv Wa(t~v) Wb(t f - V) =

f
= Wa(t,f)D wb(t'f )  (19)

which is a convolution on frequency f, for fixed t.

In a similar fashion, if s(t) is the convolution in time, of two other

waveforms,

tf
s(t) - a(t) D b(t) J dt a(T) b(t -- ) , (20)

then the WDF of s(t) is

8
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t I
Ws(t,f) = Wa(t,f) 6 Wb(tlf) = dr Wa(rf) Wb(t -tf) , (21)

which is a convolution on time t, for fixed f.

AMBIGUITY FUNCTION

The WDF is closely related to the complex ambiguity function of s(t),

which is defined here as [4; section 7.2]

)= jdt exp(-12irvt) s(t + T) s (t- ) =

= gdt exp(-12irvt) R(t,t) =

= df exp(12ifc) S(f + ) S*(f - ) . (22)

In fact, the two are double Fourier transforms of each other:

ffdt df exp(12iTf - 12wvt) W(tf) =

-Sdt df exp(12wtf - 1irvut) f dr1 exp(-12.wfrl) s(t + 2rL s*(t -TL)

=Sdt dl exp(-12wvt) s(t +. 'r) - ) 6(-t)

2) * ( T 2

- dt exp(-12wvt) s(t + 2) s (t - ) = (Vt) (23)

9
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Here we used (3), (13), and (22).

In a similar fashion, the following (single) Fourier transform

relationships on the WDF hold:

df exp(12ifr) W(t,f) = s(t + 2) s(t - ) = t,T)

dt exp(-12wvt) W(tf) = S(f + )) S*(f - )) = A(vf) . (24)

These properties are summarized in the following diagram, where an arrow

denotes a Fourier transform:

R(t.T) f P W(t f)

Y-(v~r) r Aiv~f)

Not every function of tf is a (legal) WDF; in fact, from (24) there

follows

Jdf expi2wf(t1 - t2)) R2 t - l t2 *
1 J W-s(t I ) s*(t 2 )  2 R 1 -t2)

(25)

10
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Thus, in order for a candidate function W(t,f) to be a WDF, the function

resulting on the right-hand side of (25) must be separable in-the variables

t1 and t2. When and only when that separability occurs, the waveform s(t)

can be recovered from correlation R or W (within a constant unknown phasor)

as follows: let

S(t0) = Js(t')Iexp(ie(t.)) R(t0,O) = Is(to)1 2  (26)

where to is arbitrary, except that s(t ) o 0. Then, from the right-hand

side of (25),

R t -to) R ( 2- t-st 2 - exp(ie(to)) for all t (27)

s (to) R(t,0O)

The special case of to = 0 was given in [3; (17)]. The fact that the

constant phase e(t0 ) Is Irretrievably lost in R and W can easily be seen

by considering s(t) = c g(t), for which Ws(t,f) = Jcj 2 W (t,f).

The box-like function rect(t/T) rect(f/F) = 1 for Itt < T/2 and

Jfj < F/2, zero otherwise, which was employed for smoothing in [1], is not a

WOF, since the transform on the left-hand side of (25) yields

F sinc(FtI - Ft2) for ItI + t2J < T, which is not separable in t1 and t2.

Also, the Gaussian function exp(-t 2/a - b2 4w 2f 2 ) Is a legal WOF If and only

if b - , in which case s(t) = (4va2)-1/4 exp(-t 2/(2o 2)), with a arbitrary.

11
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FIRST MOMENTS OF W

The marginal integrals of W were given in (11) and (12). The

(conditional) first moment of W, with respect to frequency, is

rTfdf f W(tf) = Jdf f Jdt exp(-1irwfr) s(t +- s) (t -~

dt s(t + tdf f exp(-12rfT) =

f- dt s(t + 1) s*(t - 6'() = Im ls(t) s*(t 4 (28)

Here we used the result

12vrjdx x exp(i2ixy) = 6'(y) , (29)

obtainable directly from (13) by taking a derivative with respect to y.

Therefore the "frequency center at time t" of waveform s(t) is defined as

t df f W(t,f) 1 Im['(t)s*(t(

f df W(t,f) 2, s(t)12 I

upon use of (28) and (12). If we let complex waveform s(t) be represented

in terms of its amplitude and phase modulations according to

s(t) = M(t) exp[ie(t)] , (31)

12
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then (30) yields simply

1f(t) = l e'(t) , (32)

which is independent of amplitude modulation M(t). (32) can also be

interpreted as the instantaneous frequency at time t of waveform s(t).

The "time center at frequency f" follows in an analogous fashion as

fdt t W(t,f) I Ims'(f) s*(Af
Ptf) = dt W(t~f) 2 IS(f )I I33

If we represent the voltage density spectrum S(f) in terms of its magnitude

and phase,

S(f) = A(f) expt-i(f)] , (34)

then (33) reduces to

Pt(f )  1(f) (35)

which is independent of A(f). (35) can also be interpreted as the group

delay at frequency f of waveform s(t).

The unconditional first moments of W are frequency center

_ dt df f W(t,f) Idf f ()2 fdf f A 2(f) (

f fdt df W(tf) df JS(f) 2 df A2(f)(36)

13
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and time center

- fdt df t W(t,f) fdt t js(t)I 2 = dt t 142(t)
t Jdt df W(t,f) Jdt Is(t)l 2 Jdt M2(t)

(36) follows directly from (11) and (34), while (37) follows directly from

(12) and (31). Thus, T is independent of o(f), and T is independent of e(t).

Alternative forms to (36) and (37), in the complementary domains, are

available:

1 dt Imfs'(ts) s* 1 dt M S2 (t) ('(t)

=2w Jdt Is(t)=2  2 fdt (38)

and

1 Jdf Im '(f)S(f) 1 fdf A2(f) o,(f)
2 J j df IS(f)1 2  2, df A2()

The result in (38) follows from the use of (28) and (12) in definition (36);

a similar procedure yields (39). The frequency center 7 in (38) is an

average of the instantaneous frequency pf(t) in (32), weighted according

to the magnitude-squared waveform, M2 (t); similarly, time center T in (39)

is a weighted average of vt(f) in (35).

14
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SECOND MOMENTS OF W

By taking two partial derivatives with respect to r in (24), there

follows

df W(t,f) = IS'(t)J 2 - Refs"(t) s(ti)] (40)

81r2

When we then employ (12) and (31), the (conditional) second moment with

respect to f develops into the form

fdf f 2 W(t,f) 1I 1()-Mt)~ 21(1
5 df W(t,f) v [1:42(t1)1

Therefore the instantaneous "mean-square frequency spread" is

2 a df [f - pf(t)] 2 W(t,f)
ft df W(t,f)

___ ____ 14t)1  1 d t)
8 L2(t) - (t)J = d t M(t)J ' (42)

where we employed (32) and (12). This result does not depend on phase

modulation e(t). However, it should be observed that this quantity can be

negative; consider the example M(t) = exp(-t") for t > 0, with 0 < v < 1.

Thus (42) can not be interpreted as a true variance. This unfortunate

feature of the WDF is due to the fact that W(t,f) can go negative for some

values of t,f.

15
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The unconditional second moment with respect to f follows from (40) and

(11), respectively, as

4fdt df f2 W(tf) = 2dt Is(t)I 2 = Sdf f 2J(f)1 2 (43)
42r

Analogous relations for the second moments with respect to t can also be

derived via a similar approach.

MOMENTS OF W
2

The marginal integral of the square of the WDF with respect to f is, via

(3), (13), and (2),

S df W2(t,f) = fdf fjdt du exp(-i2.f(T- u)) R(t,t) R(tu) 

=Jdt] R (t ) 2 dT- ls(t + X 2 Js(t - F 2=

- 2 s(z) 2 S(l)1}2 (44)

which is the convolution of IsI2 with itself, at argument 2t. The

complementary result, integrating with respect to t, is

5dt W 2(t,f) = fdv S(f + 2)12 (f ubj 2:o, ,,, f So  2s, 2, , s, ,

2 "S(V)1 2@S(v) 2 =2f (45)
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If we complete the integrations in (44) and (45) on the remaining

variables, both yield the result

5 dt df W2(t,f) E ; (46)

see (14). Also note, for comparison, that the double integral on W yielded

E.

Although the results in (44) and (45) are not overly simple, continued

integration does yield a surprisingly simple result; multiplying (44) by t,

there follows

Sf dt df t W2 (t,f) - dt t 2fdx ls(x) 2 L( 2 t- x)1 2

Sdx I(x)I 2 2 , dtt Is(2t x), 2 = dx js(x)j 2 f dy I(Y)l 2(y + x)/2

dx Is(x)a [iE + xE] = [t E2 + t E] =E 2 E . (47)2f2

Here we used (44), (37), and (14). Thus

Sdt df t W
2(t,f) = dt t Is(t)l 2

5f dt df W 2(t,f) - Js d (t)j2- (48)

from (47), (46), and (37). This result in (48) is the same as (37), but now

for W2 rather than W.
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Conditional first moments of W2 with respect to f and t are also

deriveable; for example,

df f W2(t,f) -i2- dt R*(t,t) aR(t,r) =

dt s(t + '2 Im s(t - TO *(t - =

= 1 dx Is(2t - x)12 Im fS'(x) s(x) =

= dx M2(2t - x) M2(x) e'(x) (49)

Here we used (3), (29), (2), and (31). When normalized by the quantity in

(44), the result is considerably more complicated than the corresponding

result for W in (30) and (32); nevertheless, continued integrations simplify

tremendously. In particular, there follows, from (49), (14), (38), (46),

and (36),

)f dt df f W 2(t,f) - ,df f I S(f)I (50
- = f = .(50)

ES dt df W 2 (t,f) f = df IS(f )1 2

This is the dual relation to (48), but derived by means of a different

approach. Comparison of (50) with (36) reveals the same result for W as for

w2.
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CROSS WIGNER DISTRIBUTION FUNCTION

The cross WOF of two complex waveforms a(t) and b(t) is a generalization

of (3) and (10) according to

Wab(tf) = Idr exp(-12rfT) Rab(t~t) =

= Jdt exp(-12,fr) a(t + -) b*(t- -

= Jdv exp(12iut) A(f + !) B*(f (51)

which is generally complex. If a(t) and b(t) are nonzero only for

aI < t < a2 and b1 < t < b2, respectively, then the integral limits

on t in (51) are explicitly rtl, 2, where

T = 2 max (a 1 -t, t - b2 ) 2 mn (a - t t - b)
1 2 m2 ( 2  tt-b

If T1 > 2' then Wab is zero.

The following properties of the cross WDF result immediately:

Wa*b*(tlf) Wab(t.-f) I

Wba(tf) = Wab(tlf)

f df Wab(t~f) - a(t) b*(t)

19



TR 8225

r *
dt Wab(tf) = A(f) B (f)

Sdt df Wab(tf) = dt a(t) b (t) f df A(f) B (f)

isdt df IWab(t'f)l2 = Ea b.

dt df Waa(t~f) Wbb(t.f) = Jdt a(t) b*(t) = ISfdt df Wab(tef)l

Sfdt df Wab(t*f) Wcd(tf) = Jdt a(t) c (t)* dt b (t) d(t) (52)

The last three relations follow upon substitution of (51), interchanging

integrals, and the use of (13). Again, the double Fourier transform of the

cross WDF yields the cross ambiguity function:

Sdt df exp(-12mvt + 12,f) Wab(t~f) =

= fdt exp(-12irvt) a(t + 2 ) b (t - ) =

= df exp(12wft) A(f +) + 2)) =

=Xab(vT)= dt exp(-2wvut) Rab(t,t) (53)
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The magnitude-squared cross-WDF of waveforms a and b is also related to

the auto-WDFs by means of a double convolution:

IWab(t,f)I2 = Jfd; 1 dr 2 exp(-i2vf(r1 -C2 )) *

aa t 2 bb (t T Rbbt - - 2 )

= Sdr' dr exp(-12wfT') Raa + 2 , 1)Rbb - , -

= fft' d: exp(-i2vfr') Raa , f'fl exp 2 )fI Wbb -2 )

= Ij d: df' Wbb(t- 2 f) fdt' exp(12i(2f - f') X) Raa(t + r2L

=2 JSr dfl Wbt +~ r") Wa 2f - f) =4fV )W#A4- 2U

S dd Waa (t,+ f + )Wbb - , f - , (54)

where we let T= (C1 +1C2)/2, T' =T1 - X2 in the third line.

Lin v( V(0 = (.) 4Wiey1
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NARROWBAND REAL WAVEFORM

When waveform s(t) is narrowband and real, it can be expressed in terms

of its low-pass complex envelope c(t) according to

s(t) = 2 Re{c(t) exp(12i ft) =

= c(t) exp(i2i ft) + c*(t) exp(-i2if 0t)

where f0 is the carrier or center frequency of s(t). The WDF of s(t) is

then expressible as

Ws(t,f) = dt exp(-i2ifT) s(t + i) s(t- =

= Wcc(tf - fo) + Wcc(t. - f - fo) +

+ 2 RefWcc*(t,f) exp(14irf 0 t) (55)

Here, we substituted for s(t), and used (51) and (52). Since complex

envelope c(t) is low-pass, a representative contour plot of (55) appears as

shown in figure 1. The wiggly lobe centered at f = 0 is subject to rapid

oscillations in t, whereas those lobes centered at ±f0 are slowly varying

with f and t. A small amount of averaging in time would wipe out the

undesired oscillating lobe, but maintain the desired components at f = ±f0 '
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0

Figure 1. WDF for Narrowband Real Waveform

SAMPLING PROPERTIES

By letting u = Z/2 in (3), the WDF becomes

W(t,f) = 2 fdu exp(-14ifu) s(t + u) s*(t - u) , (56)

where we again now allow general complex s(t). If this integral is to be

evaluated numerically on a computer, we will need to sample the integrand at

some increment at., and apply some integration rule. In particular, if we

use the Trapezoidal rule and carry out the summation over -ob, +aD, we have

approximation

W(tf) N 26t 5 exp(-t4vfkAt) s(t + kat) s*(t - kat) (57)

k

for all t,f. Since it is immediately seen from (57) that
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w(tf + - =W(t,f) , ,..

it follows that W(t,f) has period (2at) in f, when waveform s(t) is

sampled at increment At. In fact, it can be shown that W is the aliased

version of W:

Wtf n W(t,f-_ n St %Are 2. (59)

n

Thus, W(t,f) need be evaluated only over one period, say (O,.5/At).

Since (57) cannot be evaluated for ail continuous values of t and f,

we will limit its evaluation to

tmA , f - 2Nfa t  (60)
2Nft

where m, n, Nf are integers. Then (57) becomes (exactly)

( At, 2NtA = 2At exp(-12rnk/Nf) s((m + k)a s((m - k)At) , (61)

k A ~ ZA si <ii

the right side of which is recognized as an Nf-point discrete Fourier

transform. If the number of nonzero samples in k is greater than Nf, we

simply collapse them mod Nf, without loss of accuracy; see [5; page 7].

Since the period of W(tf) is (2At) in f, we only need consider

0 < n < Nf-1, that is, 0 < f < (2at) . Values of m must be considered

wherever the sumand of (61) is nonzero.

A plot of two of the infinite number of lobes of ;(t,f) in (59) is

depicted in figure 2 for a representative bandpass analytic waveform s(t).
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Figure 2. WDF for Sampled Version Wi'(tjf)

fi~

Figure 3. W(t,f) for Real Waveform s(t)
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The spreads of the desired WOF term W(tf) are T and 8 in time and frequency,

respectively. In order to guarantee that aliasing is insignificant in

figure 2, we must choose

(2At)-1 > B, that is, at < (2B)-l (62)

For Nf equal to a power of 2 In (61), an FFT can be employed to evaluate W

and will give the vertical slice in f indicated in figure 2 between f = 0 and

f = (2At)-, for the particular m value under consideration. Since the

spacing of frequency values in (61) is (2Nfat) -1, then in order to

keep track of the wiggles in W(tf) as a function of f, we must choose

-1 -1
(NfAt) < T- , that is, Nf > T/At > 2BT. (63)

Thus the FFT size may have to be quite large for an extended WDF in t,f

space.

If s(t) is real, then (8) applies, meaning that W in (61) need only be

computed for

0 < n < Nf/ 2 , that is, 0 < f < (4t) . (64)

The pertinent approximate WDF W is depicted in figure 3. In order to avoid

aliasing now, we must have

(4at) > fH' that is, at < (4fH) (65)
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where fH is the highest frequency contained in s(t). This sampling rate

is twice as fast as the usual Nyquist rate for waveform s(t), and is due to

the unavoidable factors of 1/2 in definition (3).

The procedure described above, in (61) et seq., realizes a slice in f,

at fixed t, of the WDF; see figures 2 and 3. An alternative procedure for

obtaining slices of the WDF in t, at fixed f, is described in appendix A;

however, starting with time samples of s(t), it requires an additional

large-size FFT to start the calculations.
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EXAMPLES OF WOF

In this section, we present several examples of the WOF for waveforms

that are likely to be encountered in practice, and that are amenable to

simple closed form solution. A significant shortcut in the presentation is

possible when it is observed from (3) that if

r(t) = s(t - t ) exp(i2wf t + 1e) , (66)

which corresponds tG a time delay and frequency shift, then

Wr(tf) = Ws(t - to , f - fo) . (67)

Thus we can choose any convenient origin for the waveform s in time and

frequency, without loss of generality, and then merely shift the WDF

according to (67), as appropriate.

We will place heavy emphasis here on combinations of Gaussian pulses,

both because of their analytic tractability and due to the fact that any

waveform can be expanded into elementary waveforms consisting of Gaussian

wavelets; see, for example, Gabor's original paper [6, part 1, section 5].

In the following, frequent use will be made of the following integral:

dx exp(- I olx2 ± Bx) = 1/) exp ) for ar > 0 (68)
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where a and 3 can be complex, with components

C& = a r  + 101 , a = a r +  Ii " (69)

Also, as a special case, there follows

2f (8I 2 - 2' + 2a 8rBij

Ifdx exp(- a cX 2 ± Ox) = ( 2w exp a V 2 i (70)
2C + P: :r 1 :

written out in terms of purely real quantities.

GAUSSIAN WAVEFORM

Let waveform

s(t) = ao exp( ) ao complex (71)

(Parameters will be real unless indicated otherwise.) Use of (3) and

(68) yields WOF

W(t,f) = 2E exp -- - (21fa) , (72)

0

where E is the waveform energy:

E = vrF0 2 a • (73)

The WDF consists of a single positive lobe in tf spacecentered at the

origin.
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Observe that W(O,O) is equal to 2E for this example; in fact, from (3),

W(O,O) = dr s(r/2) s (-t/2) = 2E if s(-t) = s(t) (74)

Thus waveforms s(t) with this even symmetry result in peak WDF values of 2E

at the origin. However, if s has odd symmetry about zero, s(-t) = -s(t),

then W(O,O) = -2E.

The contours of equal height of the WDF in (72) are ellipses. The

contour for the case where the levels are down to exp(-l) of their peak

value is the ellipse indicated in figure 4. The area of this particular

level ellipse is 1/2 in the t,f plane. When this area is multiplied by the

peak height of 2E, the product is E, which is just the volume under the WDF;

see (14). Thus the "effective extent" of the WDF in (72) is that given in

figure 4, for relative level l/e of the peak.

t

Figure 4. Contour of WOF (72) at l/e Relative Level
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GAUSSIAN-MODULATED TONE

s(t) = bo cos(2rfot + *0) exp . (75)

The energy of this waveform is

E I r-b2 .o(I+ cos(20o)exp(-y0 )] , (76)

and its WDF is

( b W(t,f) = ex-1x _ (y - yo) 2 ]- exp[7x _(y + y)2] +

2 _ 2],77
+ 2 cos(4vfot + 200 ) exp[-x 2 _ 2 (77)

where dimensionless variables

x = t/y y = 21f o Yo = 2rf0 "0  (78)

There are two positive lobes centered at (t,f) = (O,f0 ) and (O,-f 0 ), each of

peak height approximately E (if y0 is large). The contours of each of these

lobes are circles in the x,y plane, or ellipses in the t,f plane, as indicated

in figure 4. There is also an oscillating lobe centered at the origin; this

is an example of the general situation depicted in figure 1.

It should also be observed from (77) that if a slice in frequency is taken

of the WDF, at fixed time t, that there is no fast oscillation in any of the

three lobes. Whatever value of the cos is encountered, that value is main-

tained, and the only variation with y (frequency) is the Gaussian dependence.

Thus if we locally averaged the WDF with respect to frequency alone, that

would not eliminate the undesired oscillating lobe centered at (0,0).
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MULTIPLE MODULATED TONES

Consider complex waveform

s(t) = ak exp [2fkt (- k) 2akj complex (79)

k

This is a collection of tone bursts centered at (tk9fk} in the t,f

plane, with energy Ek K1The corresponding WDF follows

from (3) and (68) as

W(t,f) = 2 Ek exp (t tk) a 2 41r2 (f - fk) +

k L k

+ 4V? exp ;2 42(f- f )

__ __ 
t

R kaa exp 21(fk- f)t _ f 2,r(f - fkj) tk , (80)

where

-2 1 J2 2) 1 1(

'k k -2 (81)
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The first line of (80) represents the desired positive lobes centered at

(tk9fi), each scaled according to its energy. The remaining undesired

lobes are centered at

t + -t f +i-fk 2 -1 1k 2 for all k ol (82)
2 ' 2

and oscillate with t and/or f. These locations in (82) are halfway between

every possible pair of desired lobes; their amplitudes are proportional to

the geometric means of the corresponding interacting lobes, and therefore

constitute significant interference effects to interpretation of the

computed WDF. Furthermore, the locations in (82) can occur in time where

the waveform s(t) is zero, and/or in frequency where the spectrum S(f) is

zero. This most undesirable feature of the WDF has been reported previously

in (7,8]. The only saving feature, that should allow salvaging the WDF, is

that the undesired lobes, k <,Q in (80), oscillate positive-and-negative and

can be averaged out by smoothing the WDF. Of course, via this smoothing

procedure, the desired lobes will also be smeared somewhat, but this

trade-off appears to be required in order to make a meaningful, useful

interpretation of the WDF at all points of the t,f plane.

The envelope of the kj lobe in (80) is proportional to an exponential

of an elliptical function. When this exponential has decreased to l/e of

Its peak value, the corresponding elliptical contour has area

(83)
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in the t,f plane, the latter value of 1/2 being the area of every desired

lobe. Thus the undesired oscillating lobes are smeared out more than the

desired positive lobes.

If we restrict (79) to two equal-duration bursts with the same time

center, but different center frequencies, the undesired lobe oscillates only

with t, not f. This is similar to example (75)-(77). On the other hand, if

(79) is restricted to two equal-duration bursts with different time centers,

but the same frequency center, the undesired lobe oscillates only with f,

not t.

More generally, for two equal-duration bursts with different time and

frequenc, centers, the undesired lobe has no fast oscillation along lines in

the t,f plane which are parallel to the line joining the centers of the two

positive lobes in the WDF. For two unequal-duration bursts, the situation

is more complicated, and there is generally oscillation along all straight

lines in the t,f plane.

What these simple examples demonstrate is that if we want to locally

smooth (average) the WDF, in an effort to wipe out the undesired oscillating

cross-terms, that smoothing must be applied in both t and f, not either one

alone. Of course, such smoothing will also tend to smear the desired

positive lobes; thus the minimum amount of smoothing to guarantee a

nonnegative WOF is of interest.
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Although these conclusions have been drawn from the particular example

of Gaussian-modulated tone bursts in (79) (for analytic simplicity), they

hold generally. Appendix 8 demonstrates the oscillating character of the

interacting cross-terms of the WOF for a waveform with two separated energy

bursts in time of general shape.

The ambiguity function of waveform s(t) in (175) is considered in

appendix C. It has some similar properties to the WDF and some significant

differences, which make it much less desirable as a descriptor of a signal's

concentration in time-frequency space.

LINEAR FREQUENCY MODULATION

Here, we consider waveform

s(t) = a° exp 2-2+ 1 2 t ; > 0 ao complex. (84)
00

The instantaneous frequency, according to (31) and (32), is a linear

function of time,

a0

Pf(t) = 00 t (85)

while the envelope is Gaussian. When

t - t0  ± 0ov/2, (86)

the magnitude of the waveform s(t) is

js(t 0 )j - la01 exp(-w/4) - .4561s(0)j. (87)
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If we define the duration, At, of s(t) as the time between these

function values, then

At = oo"p. (88)

During this time interval, the instantaneous frequency in (85) sweeps

through a bandwidth

Af = At = C o0 /V . (89)

The time-bandwidth product of waveform s(t) is therefore

2
At Af = O0 0 (> 0), (90)

when the time duration is defined as the interval between the function

values in (87). This quantity, e0 , is an important parameter of the

linear frequency modulation waveform (84).

The WOF of (84) follows, upon use of (3) and (68), as

W(t,f) = 2E exp - - a (2wf - ot) =2 o0

- 2E exp[P 2 -(y X80)] =

2E expLIx (I +e%) + x 00 y2 (91)

where we employed (78) and (90). This is an everywhere-positive lobe

centered at the origin of time-frequency space, with contours that are

tilted ellipses. The peak value, 2E, is independent of the amount of

frequency modulation.
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For a given value of time t, the frequency f that maximizes the WDF in

(91) is

f =0
= t , that is, y = xeo , (92)

which is just the instantaneous frequency in (85). However, this line,

(92), in the t,f plane is not the major axis of the elliptical contours of

the WDF. A similar observation regarding the ambiguity function (OT),

(23). of the linear frequency modulation waveform, namely

X(r)= E exp [x. {x2(l + 2) - 2x-y' - y+ 1211 (93)

where

xf = , y' = 21uo 0 , (94)

has been made in [4; page 124].

What this means is that, if the WDF of a waveform is evaluated

numerically from a given data sequence (via (61) for example), then the tilt

of the major axis of the contours of the computed WDF is not directly the

amount of linear frequency modulation in the waveform. Rather, the major

axis of the ellipse in (91) lies along the line

y = x tan (95)

in the x,y plane, where

tan/ .0 0 > e . (96)

2 > Go
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(See appendix D for detailed derivations on the rotation of coordinate

axes.) Thus, the major axis (95) of the ellipse is more tilted than the

instantaneous frequency line (92). Equation (96) can be inverted and solved

for the linear frequency modulation parameter 8o according to

eo = tan+ - 1/tan* , (97)

in terms of the measured or calculated major axis tilt, tan*, in the x,y

plane. The detailed procedure for solving for both o and a0, in terms

of a computed WOF in the t,f plane, is discussed in the example in appendix

D, especially (D-28) and (0-29).

When the exponential in (91) is down to l/e of its peak value, the

ellipse at that level has area w in the x,y plane. This may be seen by use

of (D-1) and (0-20), with A = 1 + 2o B = -20 , C = 1, D = E = 0, F - -1,

for which G = 1 via (D-19). This corresponds to area 1/2 in the t,f plane,

as seen by (78). Therefore, the peak height, 2E, times the Neffective" area

is again E, as it was for the simple Gaussian pulse of (71) and figure 4.

Thus, although the volume of the WDF in (91) has been redistributed in the

t,f plane, by virtue of linear frequency modulation, the effective area is

maintained, although now located as a tilted ellipse.

A plot of the ellipse of (91) at the l/e level, namely

x2 + (y - Xeo)2 = x2(l 2 8) - 2xye + y2 - , (98)

is given in figure 5, when 8 = 1.5. The instantaneous frequency line

(92) as well as the major axis (95) are delineated, and are clearly seen not

to overlie each other.
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-I-

Qxls /

Figure 5. Contour of (91) for 00= 1.5
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GATED LINEAR FREQUENCY MODULATION

All the previous examples in this section had Gaussian envelopes. We

now consider a rectangularly gated waveform with linear frequency modulation:

S(t) = a expi- t for Itl < a complex (99)

Equation (3) yields directly WDF

sin[(2wf - aot)(T - 21t1)]
W(t,f) = 2E (2*f - a0t)T for Itl < , all f, (100)

and zero otherwise. Along the instantaneous frequency line, (85), the WOF

is 2E (1 - 21t/T) for Itl < T/2, which is nonoscillatory and positive.

However, in other portions of the t,f plane, (100) does go negative, due to

the sin term.

For a given value of t, the quantity W in (100) is maximized by choosing
f = a t/(2,r), but, again, this is not the major axis of the contours of the

WDF. In figure 6, these contours are plotted for a T2 = 1 and a0T2 = 10.
2 2

In fact, the contours are no longer ellipses, although they tend to resemble

ellipses near the origin, when frequency modulation parameter o0T2 is large;

see the bottom figure, where the instantaneous frequency line and the

mountain ridge (curve of slowest descent) have been sketched.
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2-wf

-2

-31

3X

21f
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The ambiguity function of waveform (99) is

1sin[ (2wv - aj)(T - Iti)]
(P.) - E 1 for IJj< T , all v (101)

i(2vv - uoT)T

and zero otherwise. It is similar to the WDF in (100), but is spread out

more in the v,t plane.
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SHORT-TERM SPECTRAL ESTIMATION

Some advantageous features of the WDF have been brought out by earlier

examples, such as the concentrated positive lobes in the t,f plane about

locations corresponding to obvious bursts of energy. However, the WDF also

goes negative in surrounding regions, causing difficulty in interpretation;

see figure 1, (80), appendix B, or [7,8]. What is needed is some form of

smoothing of the WDF so as to eliminate or suppress the oscillating

components; however, this averaging must be two-dimensional, carried out in

both time and frequency, for the reasons presented in the sequel to (83).

We now present one method of smoothing the WDF, which guarantees a

non-negative distribution in time-frequency.

WEIGHTED SPECTRAL ESTIMATE

The voltage density spectrum S(f), corresponding to waveform s(t), was

defined in (9) as the Fourier transform over all time. In order to bring

out properties which are local in time, a weighting must be applied before

transformation. In particular, we generalize (9) to

I *
Su (t,f) = dt1 exp(-12ift l ) s(tl) u (t - tl ) =

r *
- exp(-i2ift) 1 df1 exp(12irtfl) S(fI ) U (f - fl) , (102)
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where weighting u will tend to be a narrow function centered about its

origin; thus the weighting in (102) will accent the behavior of waveform s

in the neighborhood of time t. The function U is the Fourier transform of

u. The short-term power spectral estimate (at time t and frequency f) of

waveform s, relative to weighting u, is then defined as

IS u(tf)j 2  (103)

See also [2, p. 768].

The following symmetry properties of definition (102) follow:

S u(t,f) = U s(t,f) exp(-12ift)

1Su(t~f) = lUs(t,f) 2, (104)

where Us is the spectrum of waveform u relative to weighting s. That is,

Us is the <ual of Su . Also, by use of (53), we carn express

in terms of the complex cross-ambiguity function of s and V, where U is the

mirror image of u: U(t) = u(-t). Also, the same shifting property, given

in (66) and (67) for the WDF, holds as well for quantity (103). TA " ,y}d

RELATION TO WDFs

There is a very important relation between the short-term spectral

estimate (STSE), (103), and the WDFs of s and u; namely, by use of (102),

(2), and (3), we have
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iSu(t,f)1 2 =J f dt l dt 2 exp (i2rf(t I - t2)) s(t 1 )s * (t 2 )u * (t - t 1 )u(t - t 2 ) =

= JcdT dt- exp(-12vfrf) s(t' + 21) s*(ti - 1) ut -Vt + 21) u (t -t' -2

= fd1 dt' exp(-i2,wf-) Rs(t', ) R u(t - t',T)

= fdt' df' Ws(t',f') Wu(t - t',f - f') =

tf
= Ws (t,f) ) Wu (t,f) 4 (106)

VIQ (101).
This relation states that the STSE is a double convolution, in both t and f,

of the WDFs of waveform s and weighting u. That is, the STSE ISu(t,f) 2

of waveform s, relative to weighting u, is a smoothed version of the WDF of

waveform s, where the smoothing function is the WDF of weighting u.

Furthermore, since the left-hand side of (106) can never be negative, and

since s and u are arbitrary, (106) shows that the double convolution of any

two WDFs is never negative for any values of t,f. This furnishes a

possibility of accomplishing smoothing of a computed WDF of waveform s, with

a guarantee of a nonnegative distribution resulting; of course, Wu must be

a legal WDF, as discussed in (25) et seq., in order to guarantee this

nonnegative property.

Since su  is a double convolution of WDFs Ws and Wu, it

follows that the double Fourier transform of the STSE is given by
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SSdt exp(1ifT - 2vtv) iSu(t, f ) 2 =ZK(vT) X5(vr.) (107)

where Xu and Xs are the complex ambiguity functions of u and s,

respectively; see (23). This leads to an alternative expression for the

STSE as

1Su(tf )I2 = Jf d dv exp(-12ifr + i2itv) Zu(vt) Xs(V' . (108)

Therefore, if the complex ambiguity function of s is computed, it can be

multiplied by the ambiguity function of an arbitrary weighting function u,

and followed by a two-dimensional Fourier transform. There is no need to

calculate the WDF W via this route; also several different weighting

functions could be utilized, each at the expense of a two-dimensional

Fourier transform. The end result for the STSE is always nonnegative. Of

course, the same result is obtainable directly by taking the magnitude-

square of definition (102).

MARGINALS OF SPECTRAL ESTIMATE

There follows, from (106) and (12), the marginal relation

$ d ISu(tf) 2 = J . (t.)l 21u(t - t.)1 2_ Is(t)l2 t Ij(t)12 . (109)

Thus, the time marginal of is 12 is not directly Is(t)12, but is
smeared by the weighting, according to Iu(t)l 2. In a similar fashion,
from (106) and (11). the frequency marginal is
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d IS.(tf)l 2- Is(f)l 2 f IU(f)l 2 (110)

Again, IS(f)l 2 is smeared by window IU(f)l2

Finally, completing either of the integrations in (109) or (110), over

the remaining variable, yields

Jdt df ISu(tf) 2 = E, E. (111)

where Es and Eu are the energies of s and u, respectively; see (14).

Since weighting u is arbitrary and under our control, we can easily choose

Eu to be 1, without loss of generality; then the volume under the STSE

will be equal to the energy in waveform s being analyzed, just as for the

WDF in (14).

MOMENTS OF SPECTRAL ESTIMATE

If we use (110) and (14), we find the following development:

ffdt df f 1Su(tf)l2 = fdf f fdu IS(v)1 2 JU(f - )12=

- fd1 IS(,)l2 fdf (f - + )lU(f - v)12=

f Sdw IS(V)I 2 [fdf1 f1 fU(f I))12 + vE ul =

=Es fdf, f1 IU(f1)l 2 + Eu fv v IS(v) 2 (112)

47



TR 8225

Combined with (111), there results

-ffdt df f2 jU(f)12 + dffS(f)12 (113)

s dt df j u(t'f) S fdf If12 S fSfj

That is, the first moment in f of the STSE is the sum of the frequency

centers of jU1 2 and IS12. This should be compared with the

corresponding result in (36) for the WDF, where only the last term in (113)

is present. The presence of weighting u in definition (102) adds an

additional term to the frequency center unless IU(f)l is even about f = 0;

in this latter case, (113) reduces to (36).

In a similar fashion, the first moment in t of the STSE is found to be

fS dt df t lSu (t, f)1 2 = dt t Iu(t)I 2 fdt t js(t)j 2(14

,dt dfISu(t~f)I2  Sdt Iu(t)1 2  + JSdts(t)j 2 14

Again, a sum of time centers results; but if weighting Ju(t)l is even about

t = 0, then (114) reduces to the same result, (31), as for the WDF.
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CONDITIONAL MOMENT

Just as in (28)-(35) for the WDF, conditional moments of the STSE can be

defined. For example, directly from (105), we have

S df fISu(t,f) .I2- fdf f 1X.U(ft)j 2 (115)

in terms of the cross-ambiguity function of s and U, where U(t) = u(-t).

An alternative time-domain expression is possible for the frequency

moment in (115): define

g(t't l ) = s(t l ) u*(t - t l )  (116)

Then from (102) and (29),

fdf fl Su(tf) 2 = fdf f JS dt1 dt 2 exp (-12rf(t 1 - t2)) g(t,tl ) g(t,t2) =

-- 3dt1 dt 2 g(t,t 1 ) g (tt 2 ) F- 6'(t I - t 2 ) =

'- SJdt g'(ttl) g*(ttl) ' (117)

where

g, (t't )_ Lat g(ttl) _ s(tl ) u*(t - t1 (118)

If we represent waveform s in terms of its magnitude and phase according to

(31), and do likewise for weighting u as
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u(t) = E(t) exp(iP(t)] , (119)

then substitution in (117) results in the simplified form

fdf fISu(t,f)I2 2 ' f dt1,[ '(t , + P,'(t - t 1 ] M2(t ) (t - tl) (120)

When this result is combined with (109), the normalized conditional

first moment is

fdf fISu(t1f)12  fdtI '(t1 ) - p(t t1 M2(t1 ) E
2(t - (121)

fdf ISu(tf)I2 2w j dt1 M2 (t 1 ) E2 (t - t1)

(This reduces to (38) when E(t) = 1, P(t) = 0, that is, u(t) = 1, in which

case S u(t,f) = S(f).) Generally, (121) is an average of 0'(t) - P'(t - tl),

weighted according to the instantaneous powers of s and u.
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EXAMPLES OF SHORT-TERM SPECTRAL ESTIMATION

Here we will reconsider many of the examples presented earlier for the

WDF investigation. The particular example of weighting u adopted here in

spectral definition (102) will be, for the time being,

u(t) 2 ) /exp( , (122)

where duration measure a is under our control. The energy Eu of this

waveform is unity, in keeping with the discussion in (111) et seq., which

guarantees that the volume under the STSE will be the energy Es = E of the

waveform s being analyzed.

GAUSSIAN WAVEFORM

The waveform s was given in (71); its transform Su (t,f) is obtained by

substituting (71) and (122) in (102) and using (68):

1 ( 'a /2 a 2

Su(t,f) = E e --I- _ 2 arg(a (123)

ua a aa2h
4a ca

where E is the energy of s and

(a + 0  , I + ,- + _ . (124)
a 0I )'2 2 $ 22) a h 2 Oro C

5
0

51



TR 8225

22 2

The quantity o is the arithmetic average of a and 0o' while

2 is the harmonic average. The STSE then follows immediately (or by

use of (70) directly) as
12 h 2l 42f2o 15

~(t~f) 2  E -a exp [ (- a 4 15= 2 2 h

The volume under STSE (125) is readily verified to be E, as it must be.

The half widths of the ellipse at the l/e relative level are 2 0a' / (2ua h)-1

respectively, in the t,f plane. The area of this ellipse in the t,f plane is

a
-a 1 - (126)

This area is at least twice as great as that for the corresponding WDF in

figure 4, and even then, only when the proper guess is used for the

weighting u, namely o = a . Since waveform duration o will likely be

unknown in practice, the mismatch factor in (126) will smear the

concentration of the STSE somewhat. For example, if a is off by a factor of

2 from a (either double or half), (126) is 1.25 instead of its minimum0

value of 1.

The area enlargement factor Oa/Oh in (126) is also the same factor

by which the peak of the STSE in (125) is down from its best value of E.

Thus, the STSE has a decreased peak and enlarged effective area relative to

the WDF, the relative factor being at least 2, and being a/a + o 0/a ino0

general. Both distributions contain volume E, independent of a.
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This example demonstrates the presence of "window effects" in the STSE

that are not seen in the WDF. That is, whereas the effective ellipse in

figure 4 depended only on waveform parameter a0 , the ellipse here depends

additionally on weighting parameter o, in such a fashion as to always smear

the concentration of energy in the t,f plane by at least a factor of 2. In

trade, we always have the guarantee that the STSE (103) will be nonnegative,

and that it will not contain the large interference phenomena inherent in

the WDF; see (80)-(81).

MULTIPLE MODULATED TONES

The waveform of interest is given in (79). The transform S u (t,f) is

found by use of (122), (102), and (68):

Su (tf) =2 hk / exp 2 f f 2

u~ (Ek;a k42k)h~k ak L Oak -~ h

2 t +02 tk

- (f - f k 2 + I arg(ak  , (127)
0ak

where energy Ek = Pl'akI2 Ck9 and averages

2 1 2 + 2) 1 1 + (28)

hk k
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The STSE is the magnitude squared value of (127); the resulting double

sum has diagonal terms

k exp 2S+ 4'2(f - )2. (129)
Ek %k L ak

which are identical to (125), except for the indexing by k and the shift to

center tk'f k in the t,f plane, as expected. If one value of weighting

parameter o is used to evaluate the STSE for all t of interest, it cannot

simultaneously match all the different possible values of fckI for the

various pulses. This will cause some of the components in (129) to be more

severely degraded than others, in terms of decreased peaks and spread

effective areas; the pertinent factor is again

0ak 2 + (130)

ahk 2 "

for the k-th component lobe. If some apriori knowledge of the values of

{Ok1 is available, this suggests using different values of a for those

values of t near the corresponding values of ftk , in an effort to

minimize the factors (130) for different k.

As for the off-diagonal terms of ISu(tf)l2 in (127), the kterm is

proportional to

(t - tk )  (t-2 _ 2 2 2 2 2 2
exp 2 2 I (f _ fk)2a hk - (f - fie) (131)

ak 4R
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If t is not near one of the time centers {tj, or if f is not near one of

the ifk1' this term will be very small, due to the exponential decay. In

particular, halfway between the dominant desired peaks of (129) at ftkfkl',

the quantity (131) will be essentially zero. This is in distinction to the

WDF result in (80) et seq.

LINEAR FREQUENCY MODULATION

This waveform is specified in (84). Its STSE is, upon use of (70),

lSu(t'f))2 =V 2 exp- r.221 .i x2(1 + r + r e +12(~f1 2

+ y 2(1 + r)/r - 2xy eoil (132)

where

2

2 S 2 1 H
0 a 0 . -r , H2 = r + 2 + r + ro (133)

G
O

and where we define, here,

t y = 21f a (134)

By means of the results in appendix D, the area of the contour ellipse

in (132), at the l/e relative level, is found to be

area = 2 in the t,f plane. (135)
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Thus, the product of the peak height of the STSE in (132) and the effective

area is again E, the volume under the STSE, regardless of the values of a,

a eo. (For e° = 0, (135) reduces to (126), as it must.)

To minimize the effective area and to maximize the peak value of the

STSE, the common quantity H2 in (133) should be minimized. This is

accomplished by choosing the weighting parameter d in (122) as

ao
= , r = (136)

opt 2 1/4 opt2 /1+ e(1 + Op

which would require knowledge of both the duration o and the amount of

frequency modulation e in waveform s. Even if that information were

available, the minimum area in (135) becomes

mininum area = in the t,f plane , (137)

which still increases as f-/24for large e. Thus, even the best choice

of a for the weighting results in considerable spreading of the concentration

ellipse and in peak reduction of the STSE; searching in a is not overly

helpful because the simple weighting pulse (122) is a poor facsimile to the

linear frequency modulation waveform (84), especially for large amounts of

frequency modulation, as measured by parameter eo.
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MORE-GENERAL WEIGHTING

There is no need to restrict the weighting u in STSE (102) and (103) to

be the simple Gaussian pulse in (122). In this section, we generalize it to

allow for some linear frequency modulation:

u(t) = ( 21/4 exp t2 + i 1 t ; = 1 (138)12a 2 2 .

The waveform of interest here is again the linear frequency modulation

example

s(t) = a exp >- + 0 - lt = >0 (139)

as in (84).

The STSE follows from (102), (103), and (70), after a considerable

amount of manipulations, as

is t~~l =2E rlr[- f2l+r+ 2 +r2q2 02 +

+ y2 (1 + r)/r - 2xy(l + rq)eo}O , (140)

where

2
21 2 2r = q 0 H3 r + 2 + r + r(q- ) e , (141)

0 0O

0
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in addition to (134). The quantities r and q are mismatch factors,

reflecting the lack of knowledge of weighting (138) about the waveform (139).

The area of the contour ellipse of (140) at the l/e relative level is

(by means of appendix D)

aa r in the t,f plane (142)

This is also the same factor by which the peak of (140) is down from E.

Thus, a minimum value for H3 is desired. This can be achieved by choosing

r = 1, q = 1 in (141), for which the minimum H3 = 4 and the minimum area = 1;

however, this requires that we choose a = a0 and m = G , which is not a

likely situation in practice, without some apriori knowledge about the

waveform s. If this fortuitous situation of perfect match of the parameters

does occur, the STSE in (140) reduces to

S2~~~ = E exp[1- {x 2 ( + 0~ 2 2xy 0 + y 2}*j (143)

which is identical to the corresponding WDF in (91), except for a factor of

2 outside and Inside the exponential. Thus, the effective area is doubled

and the peak is halved.

As special cases of weighting (138), if = = 0 (no frequency modulation

in the weighting), then H3 in (141) reduces to H2 in (133). Alternatively, if

a 0- 0 (no frequency modulation in the waveform s), then e0 (q -1) =

a ao (2 /o - 1) -- a2 and
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H + 2 2 r r a o 5 + (2 a 0o " (144)

H3  r 2 r~a 0  0

This is minimized by choosing a = 0 and o = , giving value 4

as usual. Finally, for given q, H3 in (141) is minimized by
chooing (1 -(q 12 _2.-1/2

choosing r- (1 + (q 1) eo2) , for which the minimum H3 =

2 + 2(1 +(q o1)2 e2) 1 2 ; however, again, this increases as
0

21q - lleo as 0o increases.
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SMOOTHING THE WOF

It was demonstrated in (106) that the double convolution of any two WDFs

is always nonnegative, and is in fact equal to the STSE of one waveform

relative to the other:

tf '2

Ws(t,f) 4D Wu (t,f) ISu(t,f)l (145)

This suggests that one should choose a (legal) WDF for weighting u which is

as narrow as possible (least area or spread) in the t,f plane, in order to

minimize the inherent spreading that (145) implies. The simple examples in

the previous section demonstrated that, for the best choices of duration and

linear frequency modulation parameters in the Gaussian weighting, an

increase of .5 in the effective area in the t,f plane of the STSE, relative

to the WDF, resulted.

PHILOSOPHY AND APPROACH

Since fine detail of the WDF Ws (t,f) will likely vary in different

portions of the t,f plane, this suggests the following possible procedure

for analysis: For a given waveform s(t), compute and plot the WDF Ws (t,f)

according to (3) or (61). Locate a t,f region of interest in the plane,

where large (perhaps oscillatory) values of Ws occur; denote the center of

the region as tc 'fc. Estimate the duration, ac, and linear frequency
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modulation index, c, of this particular region in the t,f plane. Perform

the STSE of waveform s(t) according to (102)-(103), with weighting

2[t-1/4 x - t 2 + c 2] . 2  (146)u~) c) e 2p 2- 2 i- t e= c c

c

(for reasons to be given below), but only for locations tf in the plane

near t = tc  f = f .c

The WDF of weighting (46) is (with mc = 2 rBc)

Wu(t,f) = 2 exp t2 - 4w2  (f - Bct)2 =

oC

a cJ
=2 exp 2- 11 + e ) + 4,rftlac - 41r2fo a , (147)

1 c

which has a contour ellipse, at the l/e relative level, of area 1/2 in the

t,f plane, regardless of o and a . This STSE procedure is equivalent

to smoothing the WDF W of waveform s with the WDF in (147), for values

near tcof c in the t,f plane. Thus we have two alternative procedures

for conducting the smoothing of a calculated WDF Ws , the first via direct

evaluation of double convolution (145) for values of t,f near regions of

interest, and the second via the STSE in (102) and (103). Which one to

adopt will likely depend on the number of points that must be closely

investigated in the t,f plane.
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For other regions of interest in the t,f plane of the original WDF Ws ,

different values of tc , f c , O c must be extracted and the smoothing

procedure repeated. Although tedious, this procedure will minimally spread

the WDF Ws (by area .5) and it will guarantee a nonnegative distribution.

This procedure is similar to that given in [2]; however, the information

required to implement [2] is not easily available, and the current approach

is not limited to constant-magnitude waveforms. A fine-grained analysis of

a given general waveform s, for various t,f values and yielding nonnegative

distribution values, is not going to be achieved without the expenditure of

considerable effort and interaction between a user and preliminary analysis

results.

This two-stage procedure, of observing the raw WDF and then computing

different smoother versions in different regions, avoids the arbitrary

pre-selection of time duration and frequency modulation content of the

weighting in the STSE, which would overly smear the modified WDF for

improper matches of parameter values. It also guarantees nonnegative

estimates. In trade, there is approximately an increase of .5 in the

effective area of the distribution in the t,f plane that must be accepted,

in addition to a decreased peak value. For WDFs, Ws , with lobes which

already occupy portions of the t,f plane with areas significantly greater

than .5, this additional spreading (by area .5) is not very damaging,

provided that ac and ac are chosen correctly. Perhaps simultaneous

plots of WDF Ws (t,f) and STSE ISu(t,f) 2 would yield maximum

information about waveform s.
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In actual practice, where the integral definition in (102) is replaced

by a numerical summation of samples taken at increment a, the quantity (145)

is necessarily approximated. This problem is addressed in appendix E, where

it is shown that the dominant term in the numerical approach is

approximately the desired quantity (145). Furthermore, since the definition

in (E-1) involves a magnitude-square, the approximation is guaranteed to be

nonnegative. This need not be the case if the double convolution of WDFs

Ws and Wu in (145) is approximated by sampling directly in the t,f plane

and performing a double summation. However, for small enough increments in

both t and f, this nonnegative aspect should be small and probably

negligible; this latter approach was used in [1], although the smoothing

function was not a legal WDF.

ALTERNATIVE AVERAGING PROCEDURES

Instead of using R(t,r) = s(t + (t in (2) as the instantaneous

correlation at time t and separation T, one could use a local average, in

hopes of improving the correlation and distribution functions. That is,

consider correlation definition

A t t
R(t,T) = v,(t) 0 R(t,T) f dt' Vllt - t') s(t' + 2) s (t' -) , (148)

where v1 is a fairly sharp, even, real function centered at the origin.

The corresponding "locally averaged" WDF is
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W(t,f) = dc exp(-i2ifr) R(t,-C) =

t
- dt' v1(t - t') W(t',f) = vl(t)@W(t,f) . (149)

This is a convolution, in time only, of the WDF of s with weighting v1.

Reference to the discussion following (83) reveals that this form of

averaging is inadequate, since it does not average additionally on

frequency. Also, (149) need not remain positive, as would be desired of a

smoothed WDF.

Furthermore, the Fourier transform in (149) (as well as (3)) is over all

t, thereby involving argument values of waveform s in (148) which are very
A

distant from the time point, t, of interest. If W(t,f) or W(t,f) is to be

considered as the "spectrum at time t," it is hard to justify why

arbitrarily distant time points from location t should enter into their

evaluations. Therefore, in addition to the local average in (148) for

stability purposes, there should be a weighting in in (149) to better

confine the Fourier transform to local values of waveform s about time

instant t of interest.

To this aim, consider the more general form of average given by

t
R(t,t) = v2(tr)OR(t,T) = Jdt' v2 (t - t',t) R(c',T) =

= Jdt' v2(t - t',T) f df' exp(12vr.f') W(t'.f') , (150)
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where weighting v2 depends additionally onC. Define its transform

V2(tf) = fdl exp(-i2irft) v2(t,") (151)

A

Then the modified WOF corresponding to R in (150) is

W(tf) =Sfdt' df' W(t',f') V2 (t - t', f - f') =

tf
= W(t,f) *b V2(tf) , (152)

which is a double convolution of W with V2. on both t and f. However,
A

since V2 need not be a WDF, W in (152) can become negative for some t,f

values. This form of smoothing was considered previuusly in [9; (1.5)] and

(10; (2.1)].

An additional justification of two-dimensional smoothing, from the

frequency domain alternative viewpoint, is given in appendix F. Also, a

generalization of the Gaussian WDF (147), with arbitrary area and linear

A

frequency modulation content and which guarantees a positive distribution W,

is given in (F-7)-(F-19); this result generalizes that in [11] for no

frequency modulation.

If we specialize weighting v2 in (150) to the form

v2 (tt) = u(t + 2) u*(t -P (153)

then (151) yields

V2(t,f) = Wu(t,f) , (154)
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and the general result in (152) specializes to (106), which is guaranteed

positive. Thus the special case of weighting v2 in (153) leads to the

STSE of s, relative to u.

EFFICIENT CALCULATION OF SHORT-TERM SPECTRAL ESTIMATE

If we employ the weighting u in (146) with linear frequency modulation

parameter ac, the spectrum in (102) becomes

Su(tf) = fdt I exp(-12vft 1 ) s(tI) u*(t - t 1 ) =

r *
= exp(-12ft) f dt2 exp(-12ft2) s(t + t2) u (- t2) -

2-1/42
=iv %c) exp(-12ft) dt2 exp(-12.ft2) sit + t2) exp _L2 2

2c

(155)

The exp t2/(2c 2)) term gates out the portion of s(t + t2) near

the origin in t2, while the exp(-i act/2) term cancels linear

frequency modulation in waveform s.

An approximation to (155) is obtained by sampling at increment A and

using the Trapezoidal rule:
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2 expt2 -1/4

Su(tf) ( c) exp(-2ft) A exp(-12ifAk)*

s(t + ka) . } k2A2 + 1 (156)

which has period 1/A in f. In particular, the approximation to the STSE,

at selected points, is

~(m 
2 /exp(-12wnk/N)*

c* s(mA + ka) exp _ k2a2(- 1 + I aic] , (151)

which is an N-point discrete Fourier transform; m, n, N are integers.

The procedure for analysis is as follows: for a region of interest

centered at tc 'fc in the t,f plane, choose time values ma near tc.

Then for each m, sweep out n such that frequency n/(NA) is near fc; an FFT

will give all f values in (0,1/a). Plots of (157) give a fine-tuned STSE

near tc 'fc for the particular choices of ac t c. Additional estimates

with different parameters will be required in other regions; there is no

globally optimum smoothing that will yield high-quality positive spectral

estimates for all t,f values.
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The numerical evaluation of the exponential quantities

Q2 (k) ff exp 1 k A2~ , i:] = Q2(-A) (158)

in (157) can be effected very efficiently by the methods given in [12).

They are given by recurrences (which need to be evaluated only once for each

Ql(k) = Q1(k - 1) exp(2c 2)

Q2 (k) = Q2 (k - 1) Ql(k) for k > 1 
(159)

with starting values

QI(O) = exp(- c2) , Q2(O) = 1

c 2  1 - A2(l 1 c) (160)

Only two complex multiplications per stage are required in (159).

Furthermore, since

exp(- c2) =exp )expI 2 E (C + iS) , (161)

and
C2  S 2 - 12SC(12

exp(2c2 ) = C2

only one exp, cos, and sin must be evaluated to accomplish (159) for all k.
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WDF WITH MINIMUM SPREAD

The virtues of smoothing WDF Ws of waveform s with the WDF Wu,

(147), of weighting u, (146), were discussed earlier in this section. At

that time, the selection of form (146) for the weighting was seemingly

arbitrary. However, it is shown in appendix G that the weighting, u, which

has a minimally spread WDF, is precisely that given in (146). The measure

of spread is

I = dt df Wu(t,f) (f - 2ct) (163)

where BC is a specified (observed) slope of interest in the t,f plane, and

Lc = 
24 c. This measure of spread concentrates the WDF about the

specified slope; see (147). The actual minimum value of spread (163) is

given in (G-24) as

minimum I - (164A)

C

when weighting u is constrained to have mean square duration

22
fdt t2 lu(t) 2  c (164B)

in addition to unit energy. Without these two constraints, the minimization

of spread (163) is ill-posed; see appendix G.
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PERFORMANCE IN NOISE

In this section, we investigate the bias and stability of a WDF estimate

obtained from a noisy waveform. In particular, the given waveform x is

x(t) = s(t) + n(t) , (165)

where s is a deterministic signal of interest, and n is an additive

zero-mean stationary noise. In fact, we have

n(t) = 0 n(t1)n(t 2) = Cn(ti - t2)

Gn(f) = f d exp(-i21rfr) Cn(t) , (166)

where Cn and Gn are the noise covariance and power density spectrum,

respectively.

WAVEFORM WEIGHTING

If the WDF of given waveform x in (165) were directly evaluated via

definition (3), the result would be infinite, since the NxN (noise-

cross-noise) terms do not decay for large arguments. Also, since the signal

s will be assumed to be transient and decay to zero for large arguments,

some gating or weighting of given waveform x is appropriate, in order to
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concentrate on the time regions where signal s is largest. Accordingly, we

consider the weighted waveform

y(t) = v(t) x(t) = v(t) [s(t) + n(t)] , (167)

where v(t) Is a deterministic function under our control.

The WDF that will be calculated is therefore

Wyy(tf) = dr exp(-12wfv) y(t + X) y*(t - )=

=a + b + c + d , (168)

where

a = Idt exp(-12,wfr) Rvv(tT) s(t + 2) s*(t

b = Jdt exp(-i21f-) R (t,l) n(t + 1) n(t -

c = dT exp(-12,fT) R (t, ) s(t + 1) n (t _ T) ,

d - fdT exp(-12wf?) R (t,T) n(t + 1) s(t - T) , (169)

and

R (t,T) = v(t + ) v (t - ) . (170)

The first two quantities in (168) are, respectively, SxS and NxN terms,

while the last two are SXN terms; hereS Qenotes signal, while N denotes

noise. The SxS term, a, in (169) is real and non-random, while NxN term, b,

is real and random. On the other hand, the SxN terms, c and d, are complex
*

random, with d = c.
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MEAN VALUES

An alternative expression for the SxS term in (169) is

a = Jdt exp(-i2irfT) Rvv(tr) Rss(t,T) =

f
= Wv(t,f) Wss (t,f) , (171)

in terms of the WDFs of weighting v and signal s.

The mean of the NxN term is

b = fdtr exp(-i2rft) R vv(tt) Cn r =

f
= W vv(t,f) OGn(f) , (172)

where we made use of (166). And since noise n has zero mean, there follows,

for the SxN terms, T= T= 0. Collecting these results together, the mean

of WDF estimate (168) is

f

W yy(t,f) = W vv(tf) a [Wss(t,f) + G n(f)] (173)

No additional statistical properties on the noise n, such as a Gaussian

process, are needed for result (173); this holds for an arbitrary stationary

noise process. The difference in mean outputs, for signal present versus

signal absent, is just a, as given by (171).
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VARIANCE OF WDF ESTIMATE

In order to determine the variance of estimate (168), we need to assume

that noise n is Gaussian. Furthermore, in addition to properties (166), we

will presume that

n(t1 ) n(t2) = 0 , (174)

as is true when n is an analytic process or a complex envelope [13, ch.2].

Then (168) yields

W tf) W Wy(t~f)j 2 = a2 +b 2 +Id 2 + Id 12 +

+ 2 ab + cd *+ cd , (175)

the other terms being zero due to n being zero-mean Gaussian noise.

The second term on the right-hand side of (175) can be developed from

(169) as

b 2 lb)12 - T Jt 1 Cr2 exp(-12,rfCC1 -C2 ) Rvv(t,*Tl)

+R ,2j1 T2'~ (116)
vv(tT2) n(rl) Cn(t 2 ) + C 2 / 2 j1]

where we used (166) and (174). Referring to (172), we have
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b 2 22+ f dr d 2 exp (12irf(r 1 -T2)) Rvv(t,"t1)*

*Rv (t ,2 )C2! (177)
vvn 2"

At this point, It Is convenient to define

6(2 )lf) = jdt exp(-14wf-t) Cn2 (t) . (178)

Then

6(2)(f/2) = fdct exp(-12wfT) C2(t) = n(f) Gn(f) (179)

and

2 S (2)
Cn (C) = df exp(12ifT) 6n '(f/2)

= 2 f d, exp(14vuiT) 6(2) (V) (180)

n

When this result is substituted in (177), there follows

- 2(2
b2  + 2Jdvv(t.f _" 6( 2(u)

- b + 2 W4(tf)6(2)(f) (181)
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The third and fourth terms in (175) are

ldl= jcl = dli dl2 exp(-i21rft(1 - t 2 )) Rvv(tTCl)*

*vv(tl 2) s (t + L2) st + -) 2)n =2

= dv Gn(V) lB tf - 2 ,(182)

where

B(tf) s dt exp(-12rfT) Rvv(t,) S + S=

= Jdv exp(i2Fvt) Wvv(t.f 2 S(l) (183)

(As special cases, if weighting v(t) = I for all t, then R vv(t'-) 1

and

Icl 2 = 4 dv Gn(V)IS(2f - .)1 2 (184)

while, instead, if G n(f) = Nd for all f, then Cn (T) = Nd 6(r) and

jcj2 2 Nd sd Rvv(t,t) st - (185)

If both conditions above hold, then

A

Icld=4Nd E (186)
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Returning to the general case again, the fifth term in (175) is given by

combining (171) and (172), while the sixth term is

cd = )dT 1 dr 2 exp-i2f1rfl - r 2  Rvv(t,tl) *

• Rvv(t , 2 ) + s )n*(t + 2 0 , (187)

by use of (174).

Combining the above results, we have, for the variance of the WDF

estimate,

VarW yy (tf)I = a2 + b 2 2c12 + 2ab - (a + -)2

2
= b 2 -b+ 2 Ic2

2 f 2)
= 2 Wvv(t,f) G n M(f) + (NxN)

2 fdu Gn(u) jB(t,f - ) 2 2 (SxN) (188)

This result holds for arbitrary signal s, weighting v, and noise spectrum

Gn  The quantities G( 2 ) and B are defined in (178) and (183),n' n

respectively.
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If we do not weight waveform x(t), that is, choose v(t) = 1 for all t in

(167), then R vv(t,t) = 1, W vv(t,f) = 6(f), and the NxN term in (188)

becomes infinite; that is, the WDF estimate (168) has infinite variance if

we do not weiqht in time, regardless of what the actual ncise spectrum,

Gn is.

On the other hand, if the noise n is white, then Gn (f) = Nd for all f,

C(t) = Nd 6(r), and G(2) in (178) is infinite, which makes the NxN term

in (188) infinite. Thus, if we do not filter out the noise which is out of

the band of the signal, the WDF estimate has infinite variance, regardless

of what time weighting v is employed.

WDF PROCESSOR

In view of the above observations, we now consider the general WDF

processor depicted in figure 7. The only new element here is the

W+f F- Itel a) 4 0W YD s

Figure 7. WDF Processor

time-invariant linear filter with transfer function H. The input noise no

is presumed to be white over the band of the input signal so; mathematically,

this is handled by letting
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Gn (f) = Nd for all f , (189)

where Nd is the double-sided noise spectral density level in watts/Hz.

The linear filter H(f) approximately matches the bandwidth of the input

signal ahd passes S0 (f) essentially unaltered, while filtering out

undesired noise spectral components. The actual filter output signal s is

given by

s(t) = h(t)O S0 (t) = fdf exp(12ift) H(f) So(f) . (190)

The weighting v(t) approximately matches the duration of the signal and

passes s(t) essentially unaltered, while gating out undesired noise temporal

components. Representative plots of the various quantities in figure 7 are

given in figure 8.

A numerical example of the WDF processor in figure 7 is carried out in

complete detail in appendix H, including the mean and variance results given

earlier in this section. In particular, the input signal so0 is a linear

frequency modulation waveform with Gaussian amplitude modulation.
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H~f

Figure 8. Time and Frequency Characteristics of Figure 7
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SUMMARY

When a segment of a stationary random process is available, the method

of Blackman and Tukey [141 tells us that, to estimate the correlation

function at delay , we should average the product of waveform values

separated in time bytC seconds, and that we should carry out this averaging

over the total available data record, in order to reduce the effect of

random fluctuations. For a nonstationary process, the averaging interval is

further limited to that in which a significant change is statistics does not

occur.

After obtaining the estimated correlation, the Blackman-Tukey method

further directs us to weight the correlation values in the neighborhood of

C= 0 more heavily than those for larger T, and to Fourier transform the

weighted correlation estimate. The weighting should taper off to zero for

largert, so as to suppress these more noisy estimates, and the taper should

be gradual so as not to create significant positive and negative sidelobes

in the frequency domain.

These two operations, averaging in time and weighting in delay, are both

totally absent in the WDF, as may be seen from (2) and (3). In fact, (2)

and (3) might be viewed as the ultimate in greediness of a spectral

estimate, since they include no averaging and no weighting. Viewed in this

light, it is not surprising that the WDF has some very debilitating behavior

in terms of negative distribution values and large interference terms.
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The inclusion of averaging and weighting in the spectral estimate, as

typified by (150)-(152) and (F-1), results in a modified distribution

function which is a double convolution with a smoothing function in the t,f

plane. Furthermore, the averaging and weighting in (F-l) takes place both in

the f and v domain (line 4) just as well as in the t andT domain (line 3".

Alternatively, line 2 indicates that the complex ambiguity function may be

weighted in two dimensions and doubly Fourier transformed. However, the

resultant modified WDF need not be positive.

The identity of this double convolution with a positive STSE, when the

smoothing function is a legal WDF, allows for an alternative approach that

is very attractive computationally and is easy to interpret. The preliminary

calculation of the WDF serves to point out regions of interest in the t,f

plane and to quantify the time and frequency extents, as well as the amount

of linear frequency modulation, to utilize in weighting u in the STSE. This

procedure is illustrated in appendix I for the waveform s(t) = t exp(-t 2/2)

and shown to yield a physically meaningful smoothed distribution function,

whereas the WDF is very difficult to justify and interpret on any physical

grounds.

It was pointed out earlier that double convolution of a given WOF with a

Gaussian WDF increases the spread of the smoothed function by area .5 in the

t,f plane, since the effective area of a Gaussian WDF is .5. Strictly

speaking, this is only true when the Gaussian WOF contour ellipse has the

same tilt and the same ratio of major-to-minor axes as the given WDF

(assumed Gaussian in the region of interest in the t,f plane). More
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generally, if there is a mismatch in tilt or ratio of major-to-minor axes,

the effective area is increased by more than .5, thereby leading to

additional spreading in the t,f plane. The detailed derivations are

presented in appendix J.

The pcrformance of an estimator of the WDF of a signal in the presence

of noise depends on the amount of filtering and weighting employed to

suppress noise components in frequency and time. Exact relations for the

mean output, the bias, and the variance of the WDF estimate are given.
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APPENDIX A. SLICES IN TIME OF THE WDF

The voltage density spectrum of waveform s(t) was given in (9). If s(t)

is sampled at increment At, an approximation is afforded according to

S(f) = f dt exp(-i2ift) s(t) =

At ; exp(-12wfkAt) s(kAt) r 9(f) for all f. (A-I)

k

The summation on k runs over the rahge of nonzero suummand. Since

+ 1i)=f) (A-2)

then (f) has period 1/at in f. We limit the evaluation of S(f) to the

values

ft . t exp(-12vnk/Nf) s(kht) for 0 < n < Nf - 1 , (A-3)

k

where n and Nf are integers, and thereby cover a full period of S(f). A

representative plot of r'(f)land its sampled values appears in figure A-1.

For the low-pass case of 19(f) depicted in figure A-1, it is necessary to

choose

at < (2fH)
-1  (A-4)
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4at 0

Figure A-1. Low-Pass Spectrum (f)

0 1(F ).
In order to avoid aliasingA We will also need frequency spacing

(Nf at) < (2T) , that is, Nf > 2T/at (A-5)

~o

in order to track the wiggles of S(f) in frequency, where T is the effective
-1

time duration of s(t). In fact, we may need frequency spacing (Nfat) to

be very small if we are to do further accurate integrations on S(f). Thus

we need

Nf > 4 fH, (A-6)

and perhaps much larger for further manipulations.

The WDF can be written in terms of the spectrum S(f) according to (10):

W(t,f) = dv exp(12ivt) S(f + R) S*(f - =

= 2Sdu exp(14iut) S(f + u) S*(f - u) (A-7)
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If we sample S(f) at increment Af in frequency, the Trapezoidal

approximation to the WDF is

A

W(t,f) 2 Af 2exp(14rtAf) S(f +.Af) S (f -Atf)= (A-8)

for all t,f. 
Since

f) = W(t,f) , (A-9)AW( + 2 f -f

A -1
then W(t,f) has period (2Af) in t. Accordingly, we evaluate only

A

for 0 < ni < N t - 1, where m, n, N t are integers. In this manner, we get

a slice of W(t.f) in time t (m) for fixed frequency f (n). The operation in

(A-10) can be efficiently realized as an Nt-Point FFT of collapsed samples

when Nt is a power of 2.

Now the only information on S(f) that we have available are the samples

of S(f) given in (A-3). If we choose, without loss of generality,

A=f o(.Nft) -  (A-11)

then (A-l0) becomes (exactly)

Nt f t) f tk exp(12vm1/Nt) S( + S * n -- a (A-

A

for 0< m < Nt - 1. We then adopt as our approximation to W, which itself

is an approximation to W, the quantity
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r2tt ftj N f At Re Ln (t/ Rft/

for 0 < m < Nt -1, where

I Ln denotes In ±_1 < Nf/2 , (A-14)

and we presume that S(f) has been calculated for Ifi < (2At)-; see

figure A-i.

The quantity NfAt may have to be large, in order to sample 9(f)

finely enough for an accurate WDF. Then since the spacing in t, applied to

NA~

W(t,f), is Nt , it may require a large value of N in order to keep track
Nt

of the variations versus t. Also, n may not have to run through consecutive

integer values, but may take on decimated values, so that n/(Nf At)

tracks the f behavior adequately.

wk+f)

L _- I- ..__
2.6; I 2A.I 2A;

\\ K 0 fbr ,t> -/2, We ,,L .

.p 2T iv p"A
ivi Qv&#r -6 qVOj~jT 0'siitr o W(,) f ) W1f.j)w7~wk r',; t (A-11), wt< M,,,t 6,VP- .> 2T/,,t i, o..w 4o< <,,,<;<
ot1;*.ri,,j, T6 is iWe,,ic,, (A-0.
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APPENDIX B. OSCILLATING WDF FOR SEPARATED PULSES

Consider the waveform s(t) in figure B-i consisting of two separated

energy bursts of general shape. Let tI and t2 represent the "center" of

each pulse, and let T1 and T2 be some measure of their durations. Define

tc -- 1(t + t2) (8-i)

Let us investigate the WDF of s(t) for t near tc, that is, near the center

of the two pulses. In particular, let time

t = tc + a, (8-2)

where a is small. Then from (3),

[ *

W(tc + A,f) = dt exp(-12irft) s(tc + a +S) s*(t =
s t 2 x *(t

exp(-i2,f(t I - t2)) dx exp(-i2wfx) s(t + A + 4) s*(t + A - x), (B-3)

I t

Figure B-1. Waveform s(t)
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where we let T= t2 - t1 + x.

It can be seen from the integral expression in (B-3) and figure B-1,

that for small A, only small values of x will contribute to the value of the

WOF. In fact,

lxi < min(T1 ,T2 ) (8-4)

is the dominant range of contribution to the integral. Thus the variation

with f of the integral component of (B-3) is slow. By contrast, the leading

exponential term in (8-3) varies much faster with f, since

t2 - tI > max(Tl,T 2) > min(T1 ,T2) . (B-5)

Since these faster varying oscillations of the exponential term cannot be

cancelled by the slower integral contribution of (8-3), the WDF will

oscillate in f, for times t near tc = (t1 + t2)/2. Thus separated

time pulses will lead to oscillations (in f) of the WDF, near times midway

between the pulses, regardless of their detailed shapes. An analogous

argument can be presented for spectral components, based upon form (10) of

the WDF.

Notice that as t2 approaches t1 , and the two pulses become one, the

oscillating exponential term in (B-3) disappears, allowing for the

possibility of a slowly varying (hopefully positive) lobe in the WDF.
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APPENDIX C. AMBIGUITY FUNCTION OF (79)

The complex ambiguity function of waveform s(t) in (79) is obtained by

substitution into (22) and use of (68):

,P1) g kt k)!ep 1

2 2-". )

1 k+ -2+ TAVA + if2,fT -it k) V + i2f k (t- ) (C-1)

OA k

where

-1 1

-2 120 1 1 1ki (Ok + i) Z, 1 0

T kA =T+ - tk, Vu = 2w(, + 11 - f k)  (C-2)

The diagonal terms of (C-1) are

SEk exp 1~ _C 1 2~ 4w,1 12wf T - 1irwt] (C-3)

k a

which are complex and oscillate with T. and v due to the imaginary terms.

The contour at the l/e relative level, of the magnitude of the k-th term, is

an ellipse with axes twice as large as those depicted in figure 4. In

addition, the peak amplitude is decreased by a factor of 2 below that for

C-1
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the WOF in (80). Thus the ambiguity function is a more smeared function of

time-frequency than the WDF.

The ambiguity function has peaks of value

V? akaA I. exp V(fk + )(tk - t (C-4)

centered at

(tr") - (tk - t - ) (C-5)

for all kj. The phases of (C-4) are virtually random relative to each

other. A slice in u, for fixedt, varies (in addition to the Gaussian

envelope) as

exp 21r 65 k T  -t (C-6)

which could be either a slow or fast variation, depending on the particular

parameter values. All of these features make physical interpretation of the

ambiguity function very difficult.
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APPENDIX 0. ROTATION OF AXES

Consider the general second-order curve described by

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 . (D-l)

If we rotate the x,y coordinate axes according to figure 0-1, we have

x = x' cos(B) - y' sin(B)

(D-2)

y = X' uin(p) + Y' cos(B)

Substitution in (0-1) yields

A'x'2 + B'x'y' + C'y'2 + D'x' + E'y' + F = 0 , (0-3)

where

~X

Figure D-1. Rotated Coordinate Axes
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A' = i[A + C + (A - C) cos(2B) + B sin(20)]

B' = B cos(20) + (C - A) sin(2B)

C' = [A + C - (A - C) cos(28) - B sin(20)]2

D' = D cos(B) + E sin(B)

E' = - D sin(B) + E cos(O) (0-4)

If we want to eliminate the cross-product term in (0-3), we must make

B' = 0, that is, take
B

tan(20) - A - C (D-5)

We will also choose 20 in the principal value range:

2B = arc tan (B ); (0-6)

that is

_ < 2<<a< (D-7)
2 - -2 4 - -4

All other solutions for 21 differ by nw; that is, 8 differs by nw/2. These

are the major and minor axes of the curve described by (0-1).

If we now define

2 gnAC) *(-8)R=V(A - C) *+ B~ P =sgn(A - ),(D-e

where f" denotes the positive square root, we find
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cos(2 =1A - C A - C
R R P ; (0-9)

see figure 0-2. And since sln(20) has the same polarity as tan(20) in the

principal value range,

sin(20) - JB sgn = . D-10)

Also, since

Cos 2(8) = 1 14 cos(20)) =(-1

then

cos(B) 2R

stn(O) -C R A C sgn .(-2

It then follows that the coefficients in (D-4) simplify to

B' = 0

C' 1 (A + C - RP) , (D-13)

A-C

Figure 0-2. Triangle Interpretation of (D-5)
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from which there follows

A'C' = AC - 1 2 (D-14)

4

Additionally, we have

tan(B) -PR - (A - C)
B

cot(B) PR + (A - C) (D-15)8

As a result of the above, the general equation in (D-3) can be written as

I O,2  eI +E'\2 . D2 E'12
A' (' + 2A' 2C') =+ -F , (D-16)

where

1 A + C -RP 1 A + C + RP
2A' 4AC -B 2  ' - 4AC - 82 (-)

The simplest expressions for 0' and E' appear to be those given in (0-4), in

conjunction with (D-12). However, D'2 and E' 2 can be simplified,

resulting in expression

(x ?A(A' ' C'(Y' +2- ' 6 , (0-18)

where

6= AE2 + CO2 -BDE -F (0-19)
4AC - B2

2Now suppose that A and C in (D-1) are positive and that 4AC > B

Then A' > 0 and C' > 0, meaning that (D-18) is an ellipse if G > 0.
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Furthermore, if A < C, then A' < C' and x' is the major axis. On the other

hand, If A > C, then A' > C' and x' is the minor axis. See figure D-3. The

area of this ellipse is Ay 1-Bn + C-, + D)x +- + F = o

Area = _ , (0-20)
F' y4AC0 -

by use of (D-14), where G is given by (D-19).

It follows directly from (D-18) that the curve is a circle if and only

if A' = C', that is, R - 0 via (D-13), which in turn means A = C and B = 0

from (0-8).
+ 1c--

x+ r

Figure D-3. Ellipse in Rotated Coordinates
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EXAMPLE

Consider the ellipse in (91), for which

A = I + e2 , B = - 2e , C = 1; e > 0 (D-21)
0 0 0

Then (D-5) yields

tan(2B) = - 2/eo , (0-22)

from which there follows

tan2 +(2 = -l/tan(20) = /2

B3 arc tan -) - I (0-23)

As 00 varies from 0 to +@, 1 varies from -w/4 to O; thus B always lies in

the principal value range, as required by (D-7).

However, since A > C in (D-21), then 1 is the angle in the x,y plane of

the minor axis of ellipse (91). The major axis angle in the x,y plane is

1 + , (D-24)

which varies from f/4 to w/2. There follows

tan(2* = tan(2 + ir) = tan(20) - - 2/eo  (D-25)

from (D-22), whereupon the slope of the major axis in the x,y plane can be

obtained as
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tan" = +'T ).(-26)

This slope varies from 1 to + as 00 varies from 0 to +0o. Conversely,

given a measured slope, tan*, of the major axis of a WOF contour in the x,y

plane, the corresponding amount of linear frequency modulation can be

determined from (D-25) or (D-26) as

eo = tan* - l/tan* . (0-27)

The final determination of frequency modulation parameter o0 in (84)

requires the additional knowledge of ao in (90).

In practice, where both oo and =o are unknown apriori, the WOF

will likely be plotted directly on the t,f plane. According to (78) and

(0-24), the major axis will then lie on the line

f = t tan* (0-28)

0

which can be observed and measured. But co can be determined separately

from a slice in f (at fixed t) of the WDF, since the variation in f in (91)

is proportional to

exp[ 1 00(2irf - st)1 (0-29)

Thus the distance, between frequency values that are down by l/e from the
-l

peak on this frequency slice, is (so) , and can be used for direct

calculation of oo* Then (0-28) and (0-27) yield tan* and 00,

respectively.

0-71/0-8
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APPENDIX E. DISCRETE APPROXIMATION TO SHORT-TERM SPECTRAL ESTIMATE

The STSE is given by (10?) and (103). A discrete approximation, by

means of the Trapezoidal rule, is furnished by

*2

J(t,f) j a exp(-12wfak) s(ka) u (t - ka)
k

= A2  exp(-12wf&(k -A)) s(ka) s*(ja) u*(t - ka) u(t -jA) =

k)

a ~2>2 exp (1i21f Ak -R +R5 (-j A,ka Ru k -1 a, ka

k 2A(E-l)

where a is the sampling increment in time. Let

m = k -,n = k + , (E-2)

to get

(tf) a 2 2 exp(-12*fAm) R n,mA) Ru (t - "-, mA) . (E-3)

m+n
even

Define, for use below, the function

f
C(t1,t,f) = Ws(t1,f) O Wu(t - t1,f) =

= fdf 1 Ws(til) Wu(t - tif - f1) , (E-4)

E-1
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which is the convolution, on f, of WDFs W and W . When the integral onS U

ti is effected, it yields the desired double convolution:

tfJdt 1 C(t1,t,f) = Ws(t,f) 6 W u(tIf) (E-5)

We now express R and R in (E-3) in terms of the inverse transforms

of Ws and Wu, respectively, according to (24), interchange summations

and integrations, and use the facts that [4, chapter 2]

exp(-1irwxm) = la(x-1

m even

exp(-i 2u'xm) =TJ(-1 ? &(x ~ (E-6)
m odd

to get approximation (E-l) in the form

2 n even

A n odd

The R= 0 terms together give, where the sum is now over all n,

E-2
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C(- ,~f) ,(E-8)

n

which is a discrete approximation to desired quantity (E-5).

The A= 1 terms in (E-7) yield

A (_1) n C(nA.t,f - 1 ))

which is approximately zero. A similar result holds for R= -1.

The A= 2 terms in (E-7) are

C(-,t,f - , (E-1O)

n

which Is a discrete approximation to convolution (E-5), but shifted by

frequency 1/A. For small sampling increment a in approximation (E-l), the

quantity (E-1O) will be small in the fundamental region centered at f = 0,

and can be neglected. Thus (E-8) is the dominant term, giving

J~t~f 2 2t(~t,f)
n

r tf
f dt1 C(tl t,f) - Ws(t,f) * Wu(t,f) . (E-11)

E-3/E-4
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APPENDIX F. SOME SMOOTHING CONSIDERATIONS

This discussion complements and extends that given in (148)-(152)

regarding two-dimensional smoothing of the WDF. For easy reference, we

repeat the diagram under (24) and furnish an additional one for the

smoothing functions that will be employed here. An arrow denotes a Fourier

transform.

WAVEFORM FUNCTIONS

s5 ) s*(t - = R(t,T) W(t,f)

( 1 22 t jf t pS + S i

(,) f A(Vf) ) (f* 2

SMOOTHING FUNCTIONS

Vzt) V V(t~f)

q2(tr) 2 f

f Q2(vf)

By using the basic Fourier transform relations above, we may readily

show that two-dimensional smoothing of WDF W with general function V2 may

be written in several alternative forms:

F-i
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tf

wW(t,f) *9 V 2(t'f)

= jfdv dr exp[12v(ut - ftA X(v,c) q2(v,T) =

I. t
= dcexp(-12.wf) [R(t,t) 9 v2(t, )] =

I" f
= dv exp(12irt) [A(v,f) a Q2(vf)] . (F-i)

The second line says that the ambiguity function X of waveform s should be

weighted by q2 and the product then double Fourier-transformed into the

t,f plane. The third line indicates smoothing of R on t, followed by

transformation of a weighted function of Wt. The last line performs

smoothing of A on f, followed by transformation of a weighted function of u.

These relations extend those given in (150)-(152). The function V2 above

need not be a legal WDF. The volume under the smoothed distribution (F-1)

is the product of the volumes under W and V2; if the latter volume is

unity, the energy of waveform s results again, as is desired.

INADEQUACY OF TIME SMOOTHING ALONE

Consider the special case where smoothing function V2 is a delta

function of f; then

V2(t,f) = vl(t) 6(f)

v 2(t )  =vl(t)

q2(vr) =Vl(v)

Q2(vf) = Vl(v) 6(f) . (F-2)

F-2
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Equation (F-I) then simplifies to an averaging of the WDF solely in time:

t

W(t,f) *vl(t) =

= dt exp[i2v(ut - fc)] X(v,,r) Vl(V) =

I- t

d" exp(-2-ft) [R(t,) 0 vl(t)] =

= f di exp(12wvt) A(v,f) Vl(u) , (F-3)

which is an extension of (148)-(149).

The advantageous feature of locally averaging the instantaneous

correlation R in time, indicated in line 3, is equivalent to weighting the

"local spectrum"

A(v,f) = S(f + ) S*(f (F-4)

in line 4 by function Vl(v), prior to Fourier transforming back into the t

domain. This weighting on v is sensible, since if WDF W(t,f) or some

modified version is to represent the spectrum at f, the transform on v in

line 4 of (F-3) ought not to involve arbitrarily distant values of V;

otherwise, waveform spectrum S in (F-4) will then be utilized at argument

values very different from the frequency f of interest and would be

nonrepresentative. However, there Is no weighting onT in line 3 of (F-3),

thereby allowing arbitrarily distant argument values of signal s, from the

F-3
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time instant t of interest, to be considered; this unrealistic feature of

the WDF is one of the reasons for its undesirable properties.

INADEQUACY OF FREQUENCY SMOOTHING ALONE

Now consider the alternative special case where V2 in (F-l) is a delta

function of t; then

V2(t.f) = 6(t) Vl(f)

v2(tE) = 6(t) vl(T)

q2(v-r) = v,1C)

Q2(vf) = Vl(f) (F-5)

Equation (F-l) then simplifies to an averaging of the WOF solely in

frequency:

f
W(tf) S Vl(f) =

- ffdv dr exp[12w(ut - ft)] Y(v,r) vI(t) =

=S dt exp(-12.ft) R(t,T) vl(r) -

f
- Jdv exp(12wvt) [A(v,f)*Vl(f)] (F-6)

F-4
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The advantageous feature of averaging the "local spectrum" A in

frequency, indicated in line 4, is equivalent to weighting the instantaneous

correlation R(t,7) in line 3 by function vI(r), prior to Fourier

transforming back into the f domain. This weighting on t is sensible, since

if WOF W(t,f) or some modified version is to represent the time behavior at

t, the transform onT in line 3 of (F-6) ought not to involve arbitrarily

distant values ofT; otherwise, waveform s will then be utilized at argument

values very different from the time t of interest and would be non-

representative. However, there is no weighting on v in line 4 of (F-6),

thereby allowing arbitrarily distant argument values of spectrum S, from the

frequency f of interest, to be considered; this unrealistic feature of the

WDF is an additional reason for its drawbacks.

SEPARABLE SMOOTHING

If smoothing function V2 is separable, then

V2(t,f) = va(t) Vb(f)

v2(tT) = va(t) Vb(t)

q2(u,t) = Va(u) vb(t)

Q2(vf) = Va(v) Vb(f)

Then (F-l) gives, for example,

F-5
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t f
W(t,f)* Va(t) SVbDf) =

= dt exp(-i2vft) vb(t) Sdtm R(t - t',t) Va(t')

This has both the desirable features of locally averaging the correlation

and suppressing large-t contributions. However, it restricts the form of

averaging in the t,f plane and specifically disallows tilted smoothing

regions which are not parallel to the t or f axes.

GENERAL GAUSSIAN TWO-DIMENSIONAL SMOOTHING

The inadequacies of smoothing in time alone or frequency alone suggest

consideration of the general two-dimensional result in (F-l):

A tf
W(t,f) FW(t,f) * V2(tf) -

= fdt exp(-12w-f) f dt' R(t - t',T) v2(t',T)

= dC exp(-12wfT) fdt' s(t - t' + g) + (t-t' -) v2(t',?) (F-7)

t

If we let tI = ti + , t2 = t' - this becomes

2t2

W(t,f) =JjdtI dt2 exp(-12wf(tI - t2)) s(t Pt2) s*(t t) v2  22 ) = - t2 s (t tY v2 ( 2

(F-B)

F-6
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Now let two-dimensional smoothing function V2 have the general

Gaussian form

V2 (t,f) = 2VM'exp(-a 2 t2 - 2 2b2f2 - 4uctf) , (F-9)

where a,bc are real constants and

Q= a2b2 - c (F-10)

The scale factor, 2V', is chosen so that the volume under V2 in the t,f

plane is 1; this keeps the volume under the smoothed distribution in (F-b)

or (F-7) at E, the energy of waveform s. In order that V2 tend to zero at

infinity in the t,f plane, we must have Q > 0. The area in the t,f plane of

the contour ellipse of (F-9), at the l/e relative level, is (appendix D)

Area 1/2 1/2 (F-ll)

The transform on f of V2 in (F-9) is

v (t,-r) =1Z' exp~ [-_ fQ t2 + e + ictll (F-12)

For completeness, the two remaining smoothing functions in (F-l) are

q (v,"T) -exp [ _1.(a kr2 + 4w2 b 2t2 + 4.wcrv)J

Q2 (.f) V' exp Qf 2 + -- icf 

We can now determine the quantity necessary for evaluation of (F-8), namely

F-7
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v = 'exp -- (Q +1 + i2c) 1
2 (-4 - t 2) 1 2{ 1L4b2

+ (Q + 1 - 12c) t2 + 2(Q - 1) tlt2ll. (F-13)

By the discussion in (25) et seq., this function in (F-13) is separable in

t 1 and t2 if and only if

Q = 1, that is, a2b2 - c2 = 1. (F-14)

Then V2 in (F-9) is a legal WOF and the areaAin (F-I) becomes 1/2. Also,

smoothing V2 in (F-9) is then exactly equivalent to the Gaussian smoothing

considered previously in (147).

We are interested here, however, in the more general case of V2 where

Q is not necessarily 1, and therefore V2 is not a legal WDF. If we

substitute (F-13) in (F-8), the smoothed WDF becomes

W(tf) dt 2 x(t 1 ) x (t 2 ) exp l t , (F-15)

where

x(t 1 ) = s(t - t 1 ) exp 12irft 1 - (Q + 1 + 12c) 4b2 (F-16)

By expanding the exp in (F-15) in a power series, there follows

n;E 1 2b/ In-0

F-8
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It is obvious from (F-17) that a sufficient condition for smoothed WDF W

to be non-negative is Q < 1, that is

a2b2 - c2 < 1 (F-18)

(The special case of c = 0 was given in (11, (5)].) When this condition is

used in (F-11), we see that the area of the concentration ellipse of (F-9) is

Area z 1/2 in & f 4k t . (F-9)

Thus, smoothing with the Gaussian two-dimensional function V2 in (F-9) always

results in a non-negative distribution, provided that the areaAof the ellipse

at the l/e relative level is greater than or equal to 1/2. It is not

necessary that V2 in (F-9) be a legal WDF; that is, the area of the ellipse

need not be precisely 1/2. However, the most concentrated V2 in (F-9), that

guarantees nonnegative results, has area 1/2. The only restrictions on

parameters a,b,c are given by 0 < 1 .1, that is, 0 < a2 b - c2 < 1.

F-9/F-I0
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APPENDIX G. DERIVATION OF MINIMUM-SPREAD WDF

The short-term spectral estimate of waveform s, relative to weighting u,

is given by the double convolution (106),

2 tfis u(t,f )I 2  Ws(t~f ) 0 W u(t,f), (G-1)

of the WDFs of s and u. It is therefore important to use, for weighting u,

a function which has as narrow a WDF as possible, so that the smearing

implied by (G-1) is minimized. In particular, since we are interested in

analyzing waveforms with linear frequency modulation, we are interested in

minimizing the spread of WOF Wu, as measured by the quadratic quantity

I = fjdt df Wu(tf) (f - Oct) 2 , (G-2)

where Bc is a specified (observed) slope in the t,f plane.

By expanding the quadratic in (G-2), we obtain spread

1= 0 + 11 + 12 , (G-3)

where

1. = fdt df f2 Wu(t,f)

1= 1 -20c Idt df t f Wu (t,f) ,

12 = c Sf dt df t' Wu(t,f) (G-4)

G-1
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Reference to (43), (28), and (12), respectively, allows the terms in (6-4)

to be simplified and expressed solely in the time domain as

i10 .... ,dt Iu,(t)I 22

1c 0Im dtu(t) u

Il=- - dt t *mu()u(t ,

1 2 f dt t2Iu(t) 2  (G-5)12 = c .( - )

Adding these results together, the spread in (G-3) becomes

I - Jdt lu (t) i.ct u(t) 2  (G-6)41r

where we define

cc = 24 c (G-7)

Observe that the spread I in (G-6) is nonnegative, for all weightings u.

The function that minimizes I in (G-6) is

u(t) = a0 exp( - t2) , a0 complex, (G-8)

for which

6-2
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I = 0 W u (t,f) = Jaoj 2 6(f - ect) (G-9)

That is, the WDF is concentrated on the f = B t line in the t,f plane.c

However, the energy of (G-8) is

Eu = ., (G-10)

which is unacceptable.

If we attempt to approximate (G-8) by unit energy weighting

2-1/4 _ t2 + 1 1 \u(t) =(a )  exp (2'a 2 2 -1

the spread of u, as given by (G-6), turns out to be

= + ,(21 -_ a) . (6-12)

Now if C = c' that is, the linear frequency modulation parameter a in

weighting u is exactly equal to given quantity ac (from (G-7) and (G-2)),

the spread is

l
I 812 > 0 (G-13)

However, as duration o of weighting (G-Il) gets larger, the spread I tends

to zero, even though the weighting has finite (unit) energy. Also, then

(G-11) tends to a scaled version of (G-8) at each fixed t.

G-3
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In order to eliminate these undesirable features of the weighting, it

will not be sufficient to minimize spread I, subject only to a constraint on

the energy of u. Rather, it will also be necessary to constrict the time

duration of the weighting u. Accordingly, we will minimize spread I in

(G-2)-(G-6), under the two constraints that

fdt lu(t) 2 1 = Jdt df Wu(t,f)

2

dt t2iu(t)I = -c= dt df t2 W u(t,f) ; (G-14)

see (14) and (12).

Thus consider

Q = Idt Ju'(t) - iact u(t)12 + x dt u(t)12 + P fdt t2 Ilu(t)12 (G-15)

where K and v are real Lagrange multipliers. Replacing u(t) by

u(t) + cn(t),where n(t) is an allowed variation, we have

Q + 6Q = dt [u'(t) + cn'(t) - i Ct (u(t) + cn(t))] [u (t) + C n' (t) +

+ ifct (u*(t) + c n*(t))] + dt [u(t) + cn(t)] [u*(t) + c n*(t)] (x + v t .2

(G-16)
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Since the coefficient of c* must be zero, in order for u(t) to be the

optimum (15], we require the following:

fdt n'(t) [u'l(t) - iact u(t)] + fdt nIt) (ul(t) - iect u(t)] ic t +

+ fdt n*(t) u(t) ( + vt2) = 0 for all n(t) . (G-17)

We now integrate by parts on the first term of (6-17), and presume that

n,u,ul all decay to zero at ±. Since n is arbitrary, its coefficient

under the Integral must be zero; namely, we find that u must satisfy the

following differential equation:

u (t) + 12act ua(t) + (ita + 0t2 + k + t2) u(t) = 0 for all t (6-18)c ~ c

If we try solution

u(t) = a exp( ct2) , a,c complex , (G-19)

In (6-18), we find that

t2(-c 2 + 12ac + + 2 ) - c + ic + k =0 for all t (G-20)

c c c

Then a solution of the form (G-19) exists with the choices

c - c t . (G-21)
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To determine u(t) explicitly, we substitute (6-21) into (G-19) to get

u(t) = a exp i t V . (G-22)

When the two constraints in (G-14) are satisfied, there follows, for the

optimum weighting,

u = exp __ + i t . (-23)

This is linear frequency modulation with a Gaussian envelope.

The minimum value of the spread I in (6-6) for the optimum weighting

(6-23) is

minimum I 1(-24)8w 2 (224

8w c

and the corresponding WDF is

Wu (t,f) = 2 exp- - 4w202(f -Bct) =

c

=2 exp 1 + e + 4wftec - 41r2f2 1 , (6-25)

Lc

2
where ec = =c c. The area of the contour ellipse at the l/e relative

level is 1/2 in the t,f plane.

The mean-square time extent of the optimum weighting u in (6-23) is

2/2, as required by constraint (6-14). The mean-square frequency

extent is obtained from voltage spectrum

G-6
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U(f) =l/( ec) exp - e0 ,(G-26)

as

1 +2
df JU(f)J 2 = e 2, (G-27)

G-7 /6-8
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APPENDIX H. EXAMPLE OF WDF PROCESSOR

The processor of interest here is depicted in figure 7, while

representative characteristics of the waveforms and devices are sketched in

figure 8. The mean output is given by (173) and the variance is given by

(188). We will use the definitions and results in (165)-(189) freely in the

following.

INPUT INFORMATION

The input signal waveform to figure 7 is Gaussian-modulated linear

frequency modulation:

so(t) = ao exp [ 22 +i -2 t , o = V 1ao 2 % . (H-l)

0

where a can be complex. The instantaneous input signal power,

i M12 = I eo2 xp(- t2/ 2) (H-2)

peaks at t = 0 and has effective duration d .

The corresponding signal voltage density spectrum is

/ 2 2

So(f) = a 0( 2le) e 1 le)' eox (. (H-3)

H-1
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The energy density spectrum is

2va2a2 /412 a2f2

1S0(f)i2 a01 exp 1 2 (H-4)

which peaks at f - 0. When

fo + (H-5)

the energy density spectrum is reduced to l/e of its peak value; hence f

is a measure of the bandwidth of the linear frequency modulation waveform.

The input noise n0 to figure 7 has a white spectrum

Gno(f)= Nd for all f (H-6)

The filter transfer function is

H(f) = exp ( (H-7)
2)/

which peaks at f - 0; this coincides with the signal spectrum peak, which

means that we are considering the most fortuitous situation. The weighting

in figure 7 is taken to be

v(t) = exp 2 2 (H-8)

H-2
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which peaks at t = 0; again, this coincides with the signal peak and is most

favorable. The maximum values of H and vbeing equal to 1, are chosen for

convenience, without loss of generality; absolute level does not influence

the performance of the processor in figure 7.

CALCULATIONS OF BASIC FUNCTIONS

We will make frequent use of (68)-(70) in evaluating the following

quantities which are needed in (165)-(189); the choices for Gaussian

functions for so,Hv, above, were made for analytic simplicity, since the

various integrals can be conducted in closed form. More general cases would

require numerical integrations.

The noise spectrum at the output of the filter is

Gn (f) = Gn (f)IH(f)1 2 = Nd exp(- f2/B2) (H-9)
0

The corresponding noise correlation is

CJ)= fdf exp(12rft) Gn(f) = Q Nd B exp(-w 2B2 2 ). (H-1O)

The auxiliary spectrum in (178) is

6 2 )(f) 2 dt exp(-i42fr)C 2(t)= N B exp(- 2f 2 /B2 ) . (H-11)

The instantaneous correlation of the weighting is

H-3
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Rv(tT) = v(t + )v*(t - )= exp L2 , (H-12)

and its corresponding WOF is

Wv(tf) = dt exp(-12irfc) Rv t,t) = 2V L exp 2- - 4v2L2f (H-13)

The filter impulse response is

h(T) = Idf exp(i2wfr) H(f) = V '8 exp(-2r2B2t2 ) , (H-14)

leading to filter output signal

s(t) = dt h(T) s0(t -t) =

/ o\112 r-o  x 1- 1 I
a D exp -2 2 B2  0(H-15)

1 +0 -ie1 +D-ie0  J

where

e = T 2o D (21Bao ) 
2  (H-16)

This filter output signal is again a Gaussian-modulated linear frequency

modulation waveform.

In general, for signal

s(t) = co exp(-ct 2/2) , cc complex E = v ICoI2/fE7', (H-17)

H-4
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the WDF is

W (t,f) 2?. O expCo l - 2c 2 +4r2f 2 + 4 ftcij (H18)

When applied to example (H-15), we identify

D o I / 2  2 2=1- ie
Co = a + D- o = 4C B  1 + D (H-19)

to obtain

1 + 
2

Iol 2 = aol Icl 2 = (2B) 4  02

2201 22 Deo

Cr = 4v2B 0 c  4,2B D (H-20)

where

DD 1 +D+e 2 0 =(l + D) 2 + o  (H-21)
1o , 2

When substituted in (H-18), there follows, for the WDF of s in (H-15),

W(t,f) - 2E 0(bD) 12exp [ _If(, + 2~)(2,wBt)2 + 4- f) - 2eO (21yBt)(f)J]

(H-22)

As bandwidth B of filter H in (H-7) tends to infinity, then D 4 0,

D1 - D, D2 -* D
2 , and (H-22) yields

Ws(tf) - 2Eo exp (1 + e2) 2 2 + 4wof as B * 6 (H-23)

0

H-5
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This agrees with (91) and (78). More generally, in order to keep the scale
1/2

factor (D/D1) in (H-22) near 1, we need

0 > 1 + 2 that is, 8 > e% (H-24)

according to (H-21) and (H-16). But this latter quantity is just the

bandwidth of signal so; see (H-5). Thus condition (H-24) yields the

physically intuitive statement that the filter passband should be wider than

the input signal bandwidth, in order not to decrease the peak value of the

WDF of the filter output signal.

The area of the elliptical contour of the general WDF in (H-22), at the

l/e relative level, is 1/2 in the tf plane, regardless of the values of any

of the parameters of the input signal and filter; this follows by the direct

use of (D-1), (0-19), and (D-20). It is also consistent with the general

fact that this is true for any signal of the form of (H-l), as may be seen

by application of appendix D directly to (H-18), where c and c0 are

arbitrary complex constants.

The peak height of the signal WDF in (H-22) is 2EoCD7; hence, the

product of peak height and effective area is E oVM71 , which is just the

energy of s:

E dtlst1 E0 I- Jdt df W (t,f) .(H-25)

This follows directly from (H-15) or (H-i).
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The tilt of the major axis of the elliptical contours of (H-22) is given

by 8 radians in the (2wBt,f/B) plane, where

0
tan(20) = 1 + D/2 ' (H-26)

according to (D-5) and (H-21).

MEAN SIGNAL OUTPUT

The mean signal output of the WDF processor in figure 7 is given by

(171) as

a = dr exp(-12rfC) Rv(t,-r) Rs(t,.r) =

. jdt exp(-12vf) Rg(tr) = Wg(t,f) , (H-27)

where

1(t) - v(t) s(t) = c0 exp(-Z t2/2) (H-28)

and

C + (H-29)
L 2

according to (H-8) and (H-15)-(H-19). By analogy to (H-18), we have

H-7
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Icol_ ft2 c + 412f2 + 41ft -C
a = W(t,f) = 2 r exp =

1Rc/ ep 01 2 Lx2 xw f i- 4 1 3t 0

= 2E 0() [ 1 2 + 02y
2 - 2RDe° x4] , (H-30)

where we defined

2
R= (2iBL) , x = t/L , y = 21fL

2

H2 = D2 + RD, (I + O)(l + D + R) + (  + R) 22 ,

H2= D + 2RD + R2(1 + ) = (1 + D + R)2+ (1 + R)2e o2  , (H-31)

and used

H ROHH1  0 % , 2 H2
S= -I = L (H-32)r L202  L2D 2  L4D2

The area of the concentration ellipse of WT in (H-30) at the l/e

relative level is 1/2 in the t,f plane, regardless of the sizes of D and R;

so the signal WDF is not spread by the filtering and weighting operations in

figure 7, at least for this example of (H-1) coupled with (H-7) and (H-8).

The peak height of WDF W is given by the leading factor in (H-30).

Since the effective area of this WOF is 1/2, the product of peak height and

effective area is Eo0 HV', which is just the energy of 9:

C E(DR ~ 1/2
E =Jdt I (t)I2 = Eo 1 + D)(l + D + R) + (1 + R) . (H-33)
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The parameters eo,D,R are given in (H-16) and (H-31).

We now define

Lb  L L 1 1 + 22
. n . 2 +(2mB) (H-34)

1+RV1 + (2wBL) Lb

Then (H-30) and (H-31) become

W(t,f) = 2Eo 0 1 exp Hl  R ( )2 + D2(lI+R)(21rLbf - 2Ro(2 Lbf)(

(H-35)

The major axis of the elliptical contours is at angle 1 radians in the

(t/Lb,21rLbf) plane, where

e (1 R)
tan(2) = 1 + D RD/2

Given measurements or observations t and o, this can be immediately

solved for e0 , where it is presumed that B and L are known since they are

under our control.

As alternative fundamental parameter is more useful than the above; we

introduce

M = (L/oo) 2 , (H-37)

which is the square of the ratio of weighting time to input signal duration.

Then (H-31) yields

R = DM , (H-38)
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where D = (2Boo0)2 just as defined in (H-16). Eliminating R in favor of

D and M, the peak height of WI in (H-30) becomes

Peak = 2E0 ( D 2M . (H-39)
+ D)(I + 0 + OM) + (1 + DM)e0)

As checks on this quantity, observe that as D 4@, the factor of 2E0

in (H-39) approaches (M/(M + 1)) 1/2; in order to keep this latter quantity

near 1, we need M > 1, that is, L > 0 . This is consistent with physical

reasoning on figure 7. Alternatively, as M 4c6, the factor of 2E in

(H-39) approaches (D/(l + 0 +- e2 ))1/2; In order to keep this near 1, we
0

need (H-24) to be observed, just as before.

More generally, in order to keep the signal factor in (H-39) near unity,

we need to choose the combination of 0 and M large enough. For example, to

keep the factor at value F, that is, maintain

O2 = F (< 1) (H-40)

(1 + D)(l + D + OM) + (1 + DM)e

we need to choose L in (H-37) such that

F2[(1 + 0)2 + 02

M = 2 (H-41)
D(D - F (1 + 0 + 0)]

However, this relationship is useful only for

1 F F2  0 (H-4 )
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A representative sketch of (H-40) is displayed in figure H-i. Small values

of parameters N or D are not realizable without the other parameter tending

to infinity, in order to maintain the factor in (H-40) at value F. Three

numerical examples, for e0 = 0,1,5 are given in figures H-2, H-3, and H-4,

respectively. The larger F values can only be achieved through rather large

D and/or N values.

There is, however, a minimum value of the product, MD, required to

realize a specified value F for the factor in (H-40), when 00 is

specified. In fact, we find from (H-41) that, for given F and 0o, the

product MD is minimized by the choices

2 4~1 +e 2 + =F

o t.DF 1 + ;(-3

2F2j +F ]

opt 4 (H-43)

The value opt is relatively insensitive to e0; in fact, it varies from

4F2/(l - F4 ) to 2F2 (1 - F2 ) as so varies from 0 toeo, which is

less than a 2:1 variation.

The corresponding minimum product is

(MD) min '(1- 2 2 [1 + F e; (1 + 0;)(1 + F ] (H-44)

H-l1
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F1

I -DF

0 2(t~
F'

Figure H-i. Plot of (H-40) or (H-41) for Fixed e.

12 - - _ _ _ _ _ _ _ _

10

Figure H-2. Plot for 00=0
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14--

12 - - - _ _ __ _ _

10--

2

01

0 2 4 'D 1 z 1

Figure H-3. Plot fore go1

0 16 32 49D C 10 76

Figure H-4. Plot for 00 5
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In particular,

(MD)m 4F 2  (1 + F2e2 ) + 1 as eo ; (H-45)

mn (1 -F2)200

in fact, this is a good approximation except near 0= 0. Thus, large

amounts of linear frequency modulation, or values of F near 1, require very

large MD.

At the other extreme,

F2

(MD)min 4 2 2 for eo = 0 . (H-46)

For example, if F = l/j', this product is 8; thus relatively large values of

the product are required, even at the low end where there is no linear

frequency modulation. A plot of (H-44) is given in figure H-S, for various

specified values of factor F.

200

12.0

go

40

0o 
20

Figure H-5. Minimum MO Product
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As a particular numerical example, for eo = 0, F = IiV, we find

8
D =3 , M =j, (MD). =8 (H-47)opt opt =3min

So both Dop t and Mopt are somewhat larger than unity, even for F stul 1z

l/V'. All these conclusions are drawn relative to the mean signal output

alone; we now consider the noise output contributions.

MEAN NOISE OUTPUT

The mean noise output of the WDF processor in figure 7 is given by

(172), (H-9), (H-13), and (H-31) as

fW v(t,f)W Gn(f) =

N R / ex t f R~ (-48)=Nd +R RL B2 1 + (

(As L 4*O, that is, no weighting, thn R -*ce, and b 4 Nd exp(-f 2 /) = Gn(f),

as expected.)

The noise factor in (H-48), namely

(iD ON (H-49)

is~_ vital ) + (1DM 1/

is virtually unity when the mean signal degradation is small, according to

the results of figure H-5. Thus the ratio of peak signal-to-noise means is

approximately 2Eo/Nd, according to (H-30) and (H-48). These latter
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quantities, E0 and Nd, are directly the input parameters to the WDF

processor in figure 7; see (H-1) and (H-6).

VARIANCE OF NxN TERM

The variance of the NxN term at the WDF processor output is given by the

third line of (188) as

f
V NN 2 W2 (t,f) 0 G 2 )(f) =

2 2 R exp 2t2  2f8 2  R (5
ld ++ xI-L 2 B R" (H-5O)

Here, we also used (H-1l) and (H-13). As L ob, then M 4 o, R 4 oo, and

VNN -o. Alternatively, as B oo, then 0 - , R oc, and VNN .1

These results for this particular example confirm the general observations

in the sequel to (188).

The standard deviation of the NxN term, namely VVNN is precisely equal

to the noise mean output in (H-48) for all t,f, except for a constant factor
1/4 1/4

(I + R) = (1 + O .) Also, the axes of the elliptical contours of

(H-48) and (H-50) are parallel to the t and f axes and are independent of

eo , the amount of linear frequency modulation in the input signal.
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VARIANCE OF SxN TERN

The variance of the SxN terms at the WDF processor output is given by

the last line of (188) or by double the results in (182). Upon substitution

of (H-1O), (H-12), and (H-15) in (182) and an extreme amount of

manipulations, there follows variance

VSN 4E N exp[-#(t,f)] , (H-51)

where

2

H3 = (1 + D + R/2)(1 + D + R + DR/2) + (1 + R)(1 + R/2) eo  (iH-52)

and 6(t,f) is an elliptical function with minimum value at t = f - 0.

Namely,

C(tf) 2t 2  *2 + =p*2 + 2xdul2L2  + 2 2( I=12 - 2 )
- - 2) (H-53)

where

+1 0e

1 +Z+ 2 12B 2

= - ( t + i2wf)

122
= i 2 B . (H-54)
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The quantity in the denominator of (H-53) can be simplified to

H2(lel 2 _ y2) 3 (H-55)

2L4 D2

however, e(t,f) has not been reduced to its most compact form,

bIt 2 + b2f 2 + 2b3tf , (H-56)

due to the excessive amount of labor required to simplify and obtain

bl,b 2,b3 '

QUALITY MEASURE OF PERFORMANCE

We define a quality measure for the WDF processor output in figure 7 as

Q . Difference of mean outputs a (H-57)
Standard deviation of output (VsN+ VNN/.

The relevant quantities are given by (171) and (188) generally. For the

specific example in this appendix, the quality measure, at peak signal

location t = f - 0, is obtained by combining (H-30),(H-50), and (H-51):

Q .(i~ /24E_ 
Dl T1 R 1/2

(d H (H-58)

d o 01+ R)
Nd H3

For convenience, we repeat the parameter definitions here:
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2 2 20o 0= 0 0 , D = (2M)MB=)2  (L/d 0 )

R = OM

2H1 = (1 + D)(I + 0 + R) + (1 + R)e 0

H3 = (1 + D + R/2)(l + 0 + R i DR/2) + (1 + R)(l + R/2)e 2  (H-59)

It has already been observed in (H-24) and in the sequel to (H-39) that

~ 2D > 1 + % and M > 1 are desirable, in so far as the mean signal output is

concerned. However, if filter bandwidth B (D) is made too large, then too

much noise is allowed through; alternatively, if weighting duration L (M) is

made too large, a noise degradation also results. Thus, it is expected that
2

the quality ratio Q will peak for D in the neighborhood of 1 + 2 and

for M near 
1.

It should be observed from (H-58) that even if input signal-to-noise

measure Eo/Nd gets extremely large, the quality measure Q behaves

according to VF7i'd , and not Eo/Nd. This is due to the saturation

effects caused by the SxN term in the denominator of definition (H-57); it

can also be seen directly from the quantitative result in (H-51), where

variance VSN is directly proportional to input signal energy E as well

as the noise density level Nd.
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The quality ratio Q in (H-58) is plotted versus M in figures H-6, H-7,

H-8 for e° = 0,1,5, respectively. The input ratio E oN d is kept at

value 20 in all cases; the only other fundamental parameter, D, is varied

over a range wide enough to encompass the maximum of Q. However, for ease

of plotting the results, the values of D which are less than the critical

value, which leads to the peak Q, are separated from those that are greater

than the critical value. For example, in figure H-6, D = 1 leads to the

maximum value of Q that can be achieved for any value of M; thus, the upper

part of figure H-6 contains results for D < 1, while the lower part contains

the remainder for 0 > 1. The corresponding critical values of D are 8 and

80 in figures H-7 and H-8, when e = 1 and 5, respectively.

One important observation that is made apparent by these figures is that

near the maximum, the quality ratio Q is not too sensitive to M and D; that

is, the maximum is broad in the neighborhood of the best parameter pair

M,D. It should also be observed that as e0 increases, the peak value of 0

decreases, although the decrease is not very significant, at least over the

range e = 0,1,5 used here. Finally, the values of the peaks in these0

figures are slightly less than F7 d, as anticipated above.
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Figure H-6. Quality Ratio for 00 0, Eo/Nd =20
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Figure H-7. Quality Ratio for go =1, EO/Nd =20
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Figure H-B. Quality Ratio fore = 5, Eo/Nd 20
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APPENDIX I. SMOOTHED WDF FOR s(t) = t exp(-t 2/2)

For the waveform

s(t) = t exp(-t 2/2) for all t , (I-1)

the WDF is

Ws(t,f) = 2yrwexp(-t 2 - 42 f 2)(t 2 + 42f2 - ) = 2f? exp(-r 2)(r - 1) , (1-2)

with energy

E = fdt Is(t)l 2 = 1'/2 . (1-3)

Contour plots of the WDF in (1-2) are concentric circles in the (t,21f)

plane; in fact, (1-2) is a function only of r2 = t2 + (2 f)2 . The

origin value of Ws is -2E = -r, and the WDF is negative for r < l/V',

while it is positive fLr r > I/'.

Let us smooth this WDF with the most compact WDF; namely, use the

Gaussian weighting function in (G-23) with WDF (G-25) with ec = 0, c =

Wu(tf) = 2 exp(-t 2 - 42 f 2 ) = 2 exp(-r 2 ) . (1-4)

The reason for these parameter choices of e and o is that the contoursc

of (1-4) are also circles in the (t,21f) plane and exactly match those of

the waveform WDF in (1-2); this should lead to minimal spreading.
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The result of smoothing (1-2) by (I-4) is

tf
ISu(t,f)1 2 - Ws(t,f.) 0 W u(t,f )

F (t2 +4r2f2 xp_ i(t 2) 4,2f = f i r2 exp(-r2/2) , (1-5)

which has volume E as given by (1-3). Again, this is a function only of

r2 , but it is never negative. This smoothed distribution is zero at r = 0,

and peaks at r = r'2 with value .326. By contrast, the WDF in (1-2) is -1.77

at the origin, a large negative value. However, the waveform WDF in (1-2)

does decay faster than the short-term spectral estimate in (1-5); this is an

example of the tradeoffs that must be accepted when using short-term

spectral estimation versus the WDF.

To lend credence to (1-5) as a better measure of the time-frequency

content of s(t), we observe that at t = 0, the center of gravity of (1-5) is

S dfjS0=f)j2  (I -6)

f= df ISu(0,f) 2

Then we expect that

A sin(2irf t) (I-7)

ought to be a good fit to s(t) of (I-1) for t near zero. In fact, plots of

(1-1) and (I-7) for A = exp(-.5) overlap for -l < t < 1.
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If we attempt this same procedure for WDF W in (1-2), the denominatorS

is

fodf W5(0,f) = 0 (1-8)

giving rise to f = 'o, which is useless.
0

With respect to t = 1 instead, we find center of gravity

- dflSu(l,f)1 2 f 1FZ
f= I= 1 19

Since s(t) in (I-1) peaks at t = 1, we expect that

A cos(2fl(t - 1)) (I-10)

ought to be a good fit to s(t) for t near 1. In fact, plots of (I-1) and

(I-10) for A = exp(-.5) show very good agreement for .8 < t < 1.7.

Thus, smoothing of the WDF Ws in (1-2) by means of WDF Wu in (1-4),

for this example, results in a very meaningful distribution function.

1-3/1-4
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APPENDIX 3. DOUBLE CONVOLUTION OF TWO GAUSSIAN FUNCTIONS

By means of the double integral result

ff dx dy exp[- x2 -1 By2 + yxy + ux + y] =

2w exp 2 + =&2 + 2yuv"
= 2x1/2 e2 - (-1)

2for ar > 0, 8r > 00 rar > r , it is readily shown that the

double convolution of two general Gaussian functions is given by

exp[- 1x2  - bya - pxy] x exp(- cx - i dy2 -dyxJ= (J-2)

2,r w Nix2 + N2y
2 + 2N3xy (-3)

D 1/2 2D

for abcd > 0, Ipj < 1, )XI < 1, where

D - ab(l - p ) + cd(l - X 2) + ad + bc - 2Vabcdp x

N1 = ac[b(l - 2) + d(l - X 2

N2 = bd[a(l - p2) + c(l - x 2

3 = Vad [5' ( - + . Va-p(l _ 2)] (J-4)
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Also, a useful auxiliary relation is

2 2 2
NIN 2 -N3 = D abcd (1 - p2)(l _ x2) .(3-5)

Now let

p= sin(e), where- 1 <e<
2 2

= sin(o), where - C 0 2f (3-6)

Then the area of the contour ellipse at the l/e relative level of the first

exp in (3-2) is

A 21 (J7)
A V' cos(e)

in the x,y plane, where we used (D-1), (D-19), and (D-20). Similarly, the

area of the second exp in (3-2) is

2w (J-8)
A2 =Wcos(o)

The sum of these two effective areas is

A1 + A2 = 2v a" cos(e) + 'cos(0) (3-9)
Vabcd cos(e) cos( 0)

On the other hand, the area of the contour ellipse at the l/e relative

level of the smoothed exp in (3-3) is

A 3-2v (J-10)
A3 Z 2cos(e) cos(0)
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in the x,y plane, where we can express D from (J-4) as

D = ab cos2 (e) + cd cos 2 (0) + ad + bc - 2fab-c sin(e)sin(i) =

= [Oi5 cos(e) + fcT cos(0)]2 + IYa- exp(ie) - VB- exp(io))2 )(-l)

Comparison of the square root of (J-ll) with the numerator of (J-9) reveals

that

A3 2 A1 + A2 , (J-12)

with equality occuring if and only if

and e = . (J-13)

That is, in order for A3 = A + A we must have

c - a and = p. (3-14)c a

Physically, this requirement states that the contour ellipses of the two exp

terms in (3-2) must have the same ratio of major-to-minor axes and they must

have the same tilt. If either condition is violated, then A3 > A1 + A2,

the exact amount depending on the second term in (J-11).

EFFICIENT CALCULATION OF GAUSSIAN FUNCTION

If the general two-dimensional Gaussian function in (J-2) is sampled on

an equi-spaced grid, for purposes of convolution, it will be necessary to

compute the quantity

Q2(m,n) = exp(-am 2 - bn2 - cmn) (3-15)
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for integers -M < m < N, -N < n < N. The following efficient procedure is

based upon the general method given in [12].

We observe first that

Q2(-m,-n) - Q2(m~n) ,(J-16)

which cuts the effort by one-half. There also follows

Q2 (m,n) = Q 2(m~n -1) Q 1(m,n) ,(J-17)

where

01(m,n) - exp[-b(2n - 1) - cm] =Ql(m,n - 1) exp(-2b) .(J-18)

These recurrences can be started with

Q1(MO) = exp(b -cm)

Q2 (m,O) = exp(-am 2) =Q 2(-m,O) . (J-19)

Furthermore, these latter two quantities are available through the

recurrence

01 (mO) - Q I(m -1,0) exp(-c) I

for m >1I (J-20)

Q1 (m - 1,0) - Q1(m,0) exp(4c) J
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with

Ql(O,O) - exp(b) , (J-21)

and the recurrence

Q2(mO) = Q2(m 1,0) E(m)

E(m) = E(m - 1) exp(-2a)

with

Q2(O,O) = 1, E(O) = exp(a) . (3-23)

The only case not covered by the above recurrences is for m = 0; then

for n > 1 ,(J-24)Q2(O,n) - 2(O,n - ) F(n)

F(n) = F(n - 1) exp(-2b)

with

F(O) = exp(b) . (3-25)

A program for the evaluation of (3-15) is given below. Only three

exponentials, in lines 90-110, need to be evaluated. Also, the only storage

required is for the final quantity Q2(mn) in lines 60-70. The auxiliary

variables QI(m,n), E(m), F(n) introduced above need never be stored. The

check on accuracy in lines 390-470 would be discarded, of course, in any
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practical application; it is appended as a check on any typographical errors

In entering the program into another computer.

16 A.037 1 txp(-R .m-2 - B n^2 - C m n)
20 B-.051 ! for -M<xm<=M, -N<an<N
30 C=.044
40 M=5
50 N-?
60 REDIM Q2(-M:M,-N:N)
70 DIM 02(50,50)
86 DOUBLE M,N,Ms,Ns I INTEGERS
96 Ea-EXP(R)
10 Eb-EXP(B)
110 Ec-EXP(C)
120 Q2(O,O)-1.
136 E=Eb
140 E2b-Eb*Eb
156 FOR Nsal TO H
160 E=E/E2b
170 Q2(0,Ns)-Q2(0,Ns-1)*E
186 NEXT Ns
196 E=Ea
206 E2a-Ea*Ea
210 Qlpo=Qlmo-Eb
220 FOR Ms$I TO M
236 QIpwQlpo-Qlpo/Ec
246 QlmuQ1moiQ1mo*Ec
250 E=E/E2a
260 Q2(-Ms,O)=Q2(Ms,6)=Q2(Ms-1,0)*E
270 FOR Ns=l TO N
280 Qlp=Qlp/E2b
290 Qlm=Qlm/E2b
300 Q2(Ms,Ns)=Q2(Ms,Ns-1)*Q1p
310 Q2(-Ms,Ns)=Q2(-Ms,Ns-I)*Qlm
320 NEXT Ns
330 NEXT Ms
340 FOR Ms--M TO M
350 FOR Ns=I TO N
360 Q2(-Ms,-Ns)uQ2(Ms,Ns)
370 NEXT Ns
380 NEXT Ms
390 BigmO. I MRXIMUM ERROR CHECK
400 FOR Ms--M TO M
410 FOR Ns--N TO N
420 E=EXP(-A*Ms*Ms-B*Ns*Ns-C*Ms*Ns)
430 Error-E-Q2(Ms,Ns)
440 Big=MRX(Big,RBS(Error))
450 NEXT Ns
460 NEXT Ms
470 PRINT Big
480 END
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ABSTRACT

The Wigner distribution function (WOF) w. a. minimum
quadratic spread corresponds to a Gaussian amplitude-modulated
waveform with linear frequency modulation. The optL-num WDF
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THE WIGNER DISTRIBUTION FUNCTION

WITH MINIMUM SPREAD

INTRODUCTION

A number of advantageous features associated with smoothing a Wigner

distribution function (WOF) were discussed in a recent report [1]. At that

time, it was shown that the WDF with minimum quadratic spread, about the

line f = B3 t in the time-frequency plane, was a two-dimensional Gaussianc

function, when constraints of finite energy and mean-square duration were

imposed [1, app. G]. However, a more appropriate measure of spread about

the origin in the t,f plane is adopted here and minimized, yielding a unique

waveform, and corresponding WDF. Additionally, a reward measure for

concentration is shown to yield identically the same optimum WDF.

An additional property of smoothing two-dimensional WDFs was also

demonstrated; namely, if two Gaussian mountains are doubly-convolved with

each other, the effective area of the result is greater than the sum of the

two effective areas, unless the contours of both WDFs have the same tilt and

ratio of major-to-minor axes [1, app. J]. A quantitative investigation of

the effect of mismatch in these parameters on the effective area is

conducted herein.

It is assumed that the reader is familiar with the content and approach

of the earlier report; accordingly, this follow-on effort will be briefer

and will not review the considerable history and background of the WDF.

anmnmnum~ nm ~ nnn
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MINIMUM QUADRATIC SPREAD

It was shown in [1, (102) and (106)] that the short-term spectral

estimate is equal to the double convolution of the WDF of the waveform s(t)

being analyzed with the WDF of the weighting u(t) employed. That is,

(Su(tf)l )fdt1 exp(-i2wftI) s(tl) u*(t - tl) =

~tf

- dtI df1 Ws(tl,f l) Wu(t - tlf - fl) = Ws(t,f)) Wu(tf) , (1)

where d denotes convolution. Here,

Wu (t,f) = fd exp(-i2ifr) u(t + 2 u*(t (2)

is the WDF of complex weighting u(t); a similar definition holds for WOF

W s . (Generalizations to non-Wigner smoothing functions for Wu are given

in [1, app. F].)

Since the WDF Ws of waveform s(t) has some good energy localization

properties (and some deleterious negative oscillations), it is desired that

the smearing in the t,f plane, implied by convolution (1), be minimized.

That is, we would like WDF Wu of weighting u(t) to be as concentrated as

possible about the origin of the t,f plane. The ideal of an impulse,

6(t)6(f), is not a legal WDF, and must be discarded. Since the left-hand

side of (1) can never be negative, we can be assured, by this smoothing

procedure of two WDFs~that we will always get a physically-meaningful

distribution in the t,f plane; that is, the smoothed distribution will

always be non-negative for all t,f and have a volume equal to the energy of

waveform s(t),h For example, see R, (111) et seq.].

2
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PENALTY MEASURE AND SPREAD

In order to confine WDF Wu near the origin, we define a penalty

measure which is zero at t,f = 0,0 and which increases quadratically with t

and f. Namely, the penalty measure is

P(t,f) = a2t 2 + 4-2b2f2 + 4ctf , a,b,c real, (3)

and the corresponding spread of the WDF W is defined as
u

I = ff dt df Wu(t,f) P(t,f) . (4)

Contours of equal penalty in (3) are tilted ellipses in the t,f plane; these

would be selected upon observation of a calculated WDF W of waveform s(t)

in regions of interest, i.e., high activity.

Therefore, real constants a,b,c are presumed known. Define quantity

Q = a2b 2 - c 2  (5)

Then, in order that penalty

P(t,f) > 0 for t,f s 0,0 , (6)

it is necessary that

Q > 0 . (7)

The property (6) was not satisfied by penalty function (f -1c t)2 in

[1, app. G]; that function was zero all along the line f = 8 t, allowingc

the WDF to become impulsive there.

3
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We also want WDF W in (1) and (4) to have unit volume, for two

reasons. First of all, thib will guarantee that the short-term spectral

estimate on the left-hand side of (1) will have a volume equal to the signal

energy, regardless of weighting u(t) employed. Secondly, without this

volume constraint, u(t) and Wu would collapse to zero, giving a

meaningless spread value of I = 0 in (4). Thus we require that

1 = $fdt df Wu(tf) = fdt Iu(t)I 2 (8)

Subject to this integral constraint, we want to minimize spread I in (4),

and find the particular weighting u(t) and corresponding optimum WOF Wu.

Notice that we are imposing no constraint of positivity on Wu

DERIVATION OF SPREAD

Substitute (3) into (4) to get spread

I = Jfdt df Wu(t,f) (a2t2 + 42)b2f2 + 41ctf) (9)

where WDF W is given in terms of u(t) according to (2). By using theu

results in [1, (G-4) and (G-5)], we can express (9) solely in the time

domain as

I a 2cIdt t2 Iu(t)I 2 + b 2 fdt I u'tMI12 + 2c fdt t Imfu'(t) U*(t)j

= dt [a 2 t 2 u(t)12 + b 2 1u(t)12 + ict u(t) u.*(t) _ ict u*(t) u'(t)]. (10)

For reasons to become apparent shortly, define complex constant

B = + ic (11)
b4
2

4
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then, by using (5), we find

b2 1BI 2 = a2  (12)

Now consider the quantity

T(t)= b2 ju'(t) + Bt u(t)J2 =

= b2 lu'(t) 2 + b2 1B1 2t2 lu(t)1 2 + b2Bt u(t) u'*(t) + b2B* t u*(t) u'(t) =

b b2Iu'(t)12 + a 2t2 ju(t)J 2 +- (fr4+ ic)t u(t) u,*(t) +-

+ (fl- ic)t u*(t) u'(t) . (13)

Comparison of (10) and (13) imnediately reveals that

I dt T(t) = I + VV Sdt t (u(t) u'*(t) + u*(t) u'(t)] (14)

We now integrate by parts, letting

U = t u(t), dV = dt u'*(t) , (15)

to find that

dt t u(t) u'*(t) = - Sdt [u(t) + t u'(t)] u*(t) =

=- .dtlu(t)12 _ Sdt t ul(t) u*(t) (16)

We presume that u(t) goes to zero at t = too, consistent with energy

constraint (8).

When (16) is employed in (14), there follows

$dt T(t) = I - W dt a(t) 2 (7
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Thus the desired expression for spread I is given by (17) and (13) as

I = b' dtju,(t) + Bt u(t)l 2 + Y jdt u(t) 2 . (18)

This general result holds for any weighting u(t); it is obviously positive

in all cases, since Q > 0.

OPTIMUM WEIGHTING

The last term in (18) cannot be altered; it is equal to V7, as seen by

reference to constraint (8). Furthermore, the minimum value for the

remaining term in (18) is zero and is obtained for weighting u(t) which

satisfies the differential equation

u'(t) + B t u(t) = 0 for all t (19)

The only solution to (19) is

uo(t) = A exp(- Bt ) for all t , (20)

where complex constant A is chosen for unit energy, and B is given by (11).

That is, u (t) has Gaussian amplitude-modulation and linear frequency-
0

modulation. The phase of A is ambiguous.

The resultant minimum value of spread I in (18) is obviously

1= 2 - (21)

where we employed (5). It is always positive, as seen by reference to

requirements (6) and (7).

6
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OPTIMUM WDF

The WDF corresponding to optimum weighting (20) is obtained by

substitution in (2), and use of [1, (H-17) and (H-18)], as

Sa2t2 +4~ 2  f1

Wo(t,f) = 2 exp + 42b2f2 +  4(22)

The area of the contour ellipse at the l/e relative level is 1/2 in the t,f

plane, as expected.

Observe that the numerator of the exp in (22) is identically the

quadratic penalty function P(t,f) imposed in (3). That is, the contours of

optimum WDF (22) are identical to the contours of equal penalty of P(t,f) in

(3). This result is intuitively satisfying: the optimum WDF packs as much

volume inside a given penalty contour as possible, to the extent that the

resultant WOF values are equal all along that given penalty contour.

Observe also, that although positivity of the WDF Wu was not imposed

as a constraint in the minimization of spread I in (4) or (9), the resultant

optimum WDF in (22) is, in fact, everywhere positive. Although the optimum

weighting (20) has an ambiguous phase, the optimum WDF has no ambiguity;

there is a unique optimum WDF, namely (22).

7
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ALTERNATIVE REWARD MEASURE

Instead of penalizing the spread of WOF Wu about the origin in t,f

space, we could alternatively utilize a measure which rewards concentration

about t,f = 0,0. In particular, consider reward function

R(t,f) = exp[-a 2t2 - 41r2b2f2 - 4wctf] (22a)

and reward value

v =ffdt df R(t,f) Wu(tf) (22b)

for WOF Wu. The origin value of R(t,f) is 1; in order for R(t,f) to decay

to zero as t and/or f tend to infinity, we must have condition (7) satisfied

again. Notice that the contours of equal reward are ellipses in the t,f

plane.

The maximization of reward value V, subject to volume constraint (8) on

W , is conducted in appendix A. It is shown there that the optimum

weighting is again (20), and that the optimum WDF is (22). The maximum

value of reward V is

= 1 (22c)Vmax I +V' I + ab

More general results, for arbitrary reward functions R(t,f) in (22b), are

presented in appendix A.

8
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GENERALIZATION TO SMOOTHED WDF

A general class of distributions* has been presented in [2, (1.7) and

(1.8)]. In current notation, that class is given by [1, (F-l)] as

tf
D(t,f)= W u(t,f) a V2 (t,f) =

= ff dv dt exp(i2,r.t - i2wft) 7 v,t) q2 (vr) , (23)

where WDF Wu is given by (2), and V2 (t,f) is a general two-dimensional

smoothing function. The complex ambiguity function of u(t) is

& (V,) = Jdt exp(-i2rvt) u(t + r) u*(t - g) , (24)

while

q2(vt) = S.dt df exp(-i2vvt + 12wfr) V2(t,f) (25)

is a double Fourier transform of the smoothing function V . Observe that

if there is no smoothing, then

V2(t,f) = 6(t) 6(f)

q2 (v,t) = 1 for all vr

D(t,f) = W u(t,f) (26)

*This section is based upon a suggestion by Leon Cohen, Hunter College, New

York, NY, that the optimum WDF results here actually apply to a wider class

of distributions.

9
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Now it is shown in appendix B that the following second moments of

generalized smoothing distribution D can be expressed in terms of

derivatives of Xu and q at the origin:

dt df t2 D(t,f) 0- 42 [(O,0) q2(0,0) + 22 (0,0) q2(0,0) +

+df u(0, 0 ) q2 (0,0)] ,

f2  1

dt df t f D(t,f) T- 42o 2( O,(0,0) q 2 (OO) +

+X"(0,0) q r(0,O) + Xu(0,O) q Vr (o,o)],

dt df f 2 (t,f) =-1[X'rT(0,O) q2(0,O) + 2 '(0,O) qT(O,O) +

+ u(0,0) q2 (0,0)] (27)

Here, for example, superscript v denotes a partial derivative with respect

to v, which is then evaluated at the origin vr = 0,0.

If follows immediately that if origin value

q2 (O,0) = 1 , (28)

and if the five origin derivatives

qV(0,0) = qr(O,) = qU(0,0) = qu'(0,O) = qT(oo)= 0o (29)

then (27) reduces to the moments that would have resulted from employing the

no-smoothing result (26) in (27). Thus, distributions D(t,f) resulting from

(23), with properties (28) and (29) for q2 f have the same second moments

10
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as the WDF W u (t,f). Hence, the spread ID of distribution D(t,f) is

given by (see (9))

I0 = JSdt df D(t,f) (a2t2 + 4w 2b2f 2 + 4,ctf) =

dt df Wu(t,f) (a2t2 + 4r2b2f 2 + 4rctf)=I , (30)

which is exactly the spread I of WDF W (t,f). That is, smoothed

distribution D(t,f) in (23) has the same spread as WDFWu(t,f), when

smoothing function V2(t,f) (actually transform q2) satisfies the

properties in (28) and (29). Notice that these properties are considerably

less restrictive than requiring

q2(VO) = q2(0,T) = 1 for all vt, (31)

which arises when one is interested in maintaining the marginals [2, (1.6)].

We must also observe from (23) that the volume under generalized

smoothing distribution D is equal to the product of the volume under Wu

and the volume under V2* But the latter quantity is unity, by virtue of

(28). What all this means is, that if we minimize spread ID in (30),

subject to a unit volume constraint on D, the end result is precisely (18)

and (20), and the optimum WDF Wu is again given by (22). The

corresponding distribution 0 is obtained by substitution of (22) into (23)

and specification of the complete V2 or q2 functions. The properties in

(28) and (29) are not sufficient to completely specify q2 or D; all that

is specified by (28) and (29) are the second order moments of 0 in (27). It

should also be noted that all the conditions in (29) cannot be met by the

general tilted Gaussian q2 function employed in [1, (F-9) and sequel to

(F-12)].
\i
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SENSITIVITY TO MISMATCH

In [1, app. J], it was shown that if two Gaussian mountains are

doubly-convolved in x,y space, the effective area A3 of the resultant is

greater than the sum of the individual areas, except when the two elliptical

contours have the same tilt and the same ratio of major-to-minor axis (shape

factor). Here, we wish to investigate, quantitatively, the increase in

effective area above the minimum value, when the tilt and shape factors are

not at their optimum values. This situation can arise when observation of

WDF Ws of waveform s(t) is contaminated, in a particular region of

interest in the t,f plane, by interference effects, thereby making

estimation of the tilt and the shape factor of the elliptical contours

somewhat inaccurate.

The general situation is considered mathematically in appendix C.

Ellipse 1 has

area A1 , tilt 0l, shape factor F1 P (32)

while ellipse 2 has

area A2 , tilt 82, shape factor F2 . (33)

The ratio

A3

A1 + A2

is presented in (C-13) in terms of a number of auxiliary quantities.

12
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The initial example we consider is where ellipse 1 has seven different

areas, namely

= .5,1,2,3,4,5,6 31 = 4 F1 = 2 (35)A 1 4

The tilt is fixed at -/4 radians and the shape factor at 2. On the other

hand, ellipse 2 has

A =2 2= - 4 to F2 = 2 (36)2 2 4 4 2
That is, the shape factor is perfect at F2 = F1 = 2, but the tilt is

swept over a w/2 range (greater discrepancies than w/2 lead to obvious

periodicities and symmetries centered about 12 = 81 as well as about

B2 = a I t/2 and about 02 = a1 + w). The situation under

investigation is depicted in figure 1, where ellipse 2 is dotted.

The effect of mismatch in tilt is presented quantitatively in figure 2.

As expected, ratio (34) is 1 at 82 = 0l = w/4, regardless of area A1 .

The most degradation (upper-most curve) is realized for A1 = 2, i.e., when

the areas of the two ellipses are equal. The maximum increase in area is

only 25 percent, when 62 is off by v/2 radians; however, if the shape

factor is significantly larger than 1, the sensitivity to the tilt would be

much greater, as figure 1 shows.

The final example utilizes the exact same parameter values as (35) for

ellipse 1, while ellipse 2 has

2 2 F 2iF 2  2 to 6. (37)

13
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Now the tilt is perfect at 0 2 = 01 = /4, but the shape factor F2

varies above the best value of 2. The situation is depicted in figure 3,

where ellipse 2 is again dotted.

Ratio (34) is plotted in figure 4 versus the shape factor F,. Again,

the upper-most curve corresponds to the case where A, = A2 = 2. There

is no need to compute ratio (34) for F2 < F1 = 2, because the values for

F2 = Fr are the same as those for F2 = F 1/r. Additional cases of

interest can be investigated by use of the program listed in appendix C.

14
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Figure 1 Contour Ellipses for Mismatched Tilt

1.25

J.20

A3

I.+A 10IN

Z:0 71 T-

Figure 2. Area Ratio (34) for F1 =2, F2 = 2, A2 = 2, P1 7/

15
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Figure 3 . Contour Ellipses for Mismatched Shape Factor

1. 16

A.=2

A3

3 4 F
Figure 4 .Area Ratio (34) for F1 =2, A 2 = 2, P1 w/4,~ P2 =1--/4
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SUMMARY

The most compact WOF W that can be used for two-dimensional smoothing
u

of a measured WDF W is a Gaussian function in two variables, when the

measure of spread is quadratic in the time and frequency variables t and f,

or the reward measure is exponential. Furthermore, this two-dimensional

convolution guarantees a non-negative modified distribution, since the

result is equivalent to a short-term spectral estimate. Extensions to a

particular class of generalized distributions yields the same optimum WOF.

The corresponding waveform has Gaussian amplitude modulation and linear

frequency-modulation.

The additional smearing caused by mismatched smoothing functions to the

true parameters of a measured WOF has been investigated numerically for a

few examples, and found not to be overly sensitive to the exact values.

However, the multitude of parameters has prevented simplification of the

area spread factor; accordingly, a program allowing calculation of

particular cases is included to allow for further investigation.

The WDFs for the Hermite functions of order n are given in closed form,

in terms of a Laguerre polynomial of order n. This result is extended to

cross-WDFs in appendix A; in this manner, we can investigate the WDF of an

arbitrary waveform when expanded in a weighted sum of Hermite functions,

including linear frequency-modulation.

17
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APPENDIX A. MAXIMIZATION OF REWARD VALUE

We want to find that WDF, W u(t,f), which is maximally concentrated

about the origin in t,f space, where the measure of reward for concentration

is

R(t,f) = exp[-a2 t - 42 b 2f - 4octf] , a,b,c real (A-1)

Thus, the maximum reward occurs at the origin,

R(O,O) = 1 , (A-2)

and the contours of equal reward are ellipses in the t,f plane. In order

for R(t,f) to decay to zero as t and/or f tend to infinity, we must have

Q > 0, (A-3)

where

Q= a2b - c (A-4)

The reward value associated with WOF W is the real quantityU

V = dt df R(t,f) W (t,f) , (A-5)u

which we wish to maximize, where

Wu(t,f) = d exp(-12ifr) u(t + 1) u*(t - ) (A-6

in terms of weighting u(t). We must constrain the volume of Wu, in order

that V in (A-5) not tend to infinity as u(t) is simply increased in level.

Thus, we have integral constraint

1 = Sjdt df Wu(t,f) - fdt Iu(t)1 2  (A-7)

18
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ALTERNATIVE FORM FOR V

If we substitute (A-6) in (A-5), there follows

V= dt dt r(t,t) u(t + u*(t -(A-8)

where

r(t,tC) = fdf exp(-12rvft) R(t,f) (A-9)

A more useful alternative form for (A-8) is

V = Sdx dy K(x,y) u(x) u*(y) ,(A-10)

where kernel

K(x,y) = r(M~ , X-). (A-li)

EIGENFUNCTIONS OF K

In this and the following subsection, kernel K is Hermitian, but

otherwise arbitrary; it is not limited to form (A-il) with (A-9) and (A-i).

Suppose tN1 and Ion I are the elgenvalues and eigenfunctions of kernel

K; i.e.,

I dx K(x~y) on (X) - x n 0 y for n =0,1.2,.., (A-12)

where x 0 ? x1 X2 .. and

Jdx 0*(x) om(x) = 6 m (A-13)

19
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Then the kernel can be expanded according to

*0

K(x,y) = ) n (x) 0n(y) (A-14)

n=O

Also, there follows immediately

5Jdx dy K(xy) 0 (x) Y) = Xn (A-15)

EXPANSION OF u

Suppose we expand weighting u in a series of etgenfunctions of Hermitian

kernel K:

u(x) g 0 (x )  where gn fdx u(x) 0*(x) (A-16)

n=O

Then general reward expression V in (A-1O) becomes

V = fdy u*(y) Idx K(x.y) 2 g n 0n(x) =

n=O

S gn Idy u*(y) Xn On(y) = 'gn12 )*, (A-17)

n=O n=O

where we used (A-12) and (A-16). At the same time, the energy of u in

(A-16) is

E u - f dx ju(x)j 2  :F Igi (A-18)

n=O

20
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Now if the energy E of u is constrained at 1, as in (A-7), then theu

best choice of coefficients JgnJ to maximize V in (A-17) is, since

0 > X1 _ X.2 ..., obviously

Igol = 1 and gn = 0 for n > 1 (A-19)

That is, the optimum weighting is

u (X) = o (x) exp(ie) , (A-20)

where constant e is arbitrary, while the maximum reward is

V x= . (A-21)max o

That is, the zero-th order eigenvalue and eigenfunction of general Hermitian

kernel K in (A-12) are the solutions to the problem of interest here, namely

maximization of reward value V in (A-10) by choice of weighting u. For a

general kernel, a recursive numerical procedure could be employed on (A-12)

to determine x and o , if desired.

The formulation in these last two subsections is actually general enough

to cover the earlier penalty function considered in (3) et seq. The only

difference is that the eigenvalues JxnJ now increase with n, and we must

select the eigenfunction corresponJing to the minimum eigenvalue, in order

to realize the least penalty. This approach is the subject of appendix 0.
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SPECIAL CASE OF EXPONENTIAL REWARD

We now specialize the general results of the previous two subsections to

the reward function (A-1). Substitution in (A-9) and use of (A-4) yields

1t t2 + 4T2 _ ict

r(t,t) - 21'b exp 2  ; (A-22)

compare [1, (F-9) and (F-12)]. Then (A-ll) immediately gives Hermitian

kernel

b1 expr x2 D* + v2D + 2xy(O-l (A-23)
K(x,y) - 4b2 ,

where

D = 0+1 + 12c (A-24)

At this point, we refer to Mehler's expansion [3, (67)] to obtain

(after some labor)

@0

K(xy) = *. n ( n(y) , (A-25)

n=O

where

n = (1 go V' )n

(1 + )n+l (A-26)

mn(X) =2A exp n 2 -2 .. Hen (1/2 Q1/ 4  (A-27)

and

JA1 2  (A-28)
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The function Hen (x) is the Hermite polynomial [4, 22.2.15]. It is easily

verified that (A-27) satisfies orthonormality relation (A-13).

OPTIMUM WEIGHTING

Since Q 0 by (A-3), the elgenvalues in (A-26) satisfy

0 > Xl > X2 Therefore, the maximum reward is

V 1 1 (A-29)Vmax = o 1 + 1 +/a z  c z " (-9

and the corresponding weighting is

uo(t) = 0o(t) = A exp 2  + ic (A-30)
2 b2

from (A-27) and (A-28). This is identical to (20) combined with (11).

Therefore the optimum WDF is again (22) for reward measure (A-l), as well as

penalty measure (3). The waveform in (A-30) has Gaussian amplitude

modulation and linear frequency-modulation.

HIGHER-ORDER HERMITE FUNCTIONS

For n > 0, the reward valuesfkn il (A-26) are all less than optimum

value x We have succeeded in obtaining these explicit values without

having to evaluate the WDFs of the corresponding Hermite waveforms in

(A-27). We now rectify this situation. The WDF of n(t) in (A-27) is

given by integral
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w IW t,f) idv exp(-1irwfr) 0 Ct + - 0*(t - -
n - ,2 n 2

12 2 2 (

IA .dr exp 12ifSt - 1 A2  B

n! J 1 2 2~ 2 (t-

*He n(F (t + 12)) He n (F (t - 12))' (A-3l)

where

B o c bJ1 (A-32)

Now a more general integral result already exists in closed form; from

(5, p. 292, (30)], we have, in a form more useful for present purposes,

dx exp(- I x2 + ax) Hem(b + x) He (b - x) =

= 2 (-1) m m! (b - a)n-m L(n-m)(b 2 - a2) exp(a 2/2) for m < n
m

(A-33)

where L()(x) is the generalized Laguerre polynomial (4, 22.2.12]. When

(A-33) is used on (A-32), there follows, for the WDF of waveform 0 n(t) in

(A-27), the compact result

Wn(t,f) = (-1) n 2 Ln(2U) exp(-U) , (A-34)

where

U = a2t2 + 4w2b2f2 + 41ctf (A-35)

This result reduces to (22) for n = 0. Again, contours of equal values of

the WOF are ellipses in the tf plane.
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CROSS-WDFs

Suppose a general waveform u(t) is expanded in a set of orthonormal

Hermite functions with linear frequency-modulation (, positive real, 8 real)

1/4
(t) exp[- 1 + iB)t ] Hen(y'ot)/ . ,  (A-36)

according to

ut) = Un On(t) (A-37)

n=O

Then the WDF of u(t) becomes

W (t,f) = dtexp(-12fr) u(t + u*(t

S U W (tf) (A-38)= n mn
m,n=O

where cross-WDF

Wmn(tf) = drexp(-12irf) 0m(t + *)(t - - (A-39)

When (A-36) is substituted in (A-39),and (A-33) is utilized, the

cross-WOF can be expressed as

Wmn(tf) 2 (-l)m 'zn- m L n-m)(z, 2) exp(-jz12 /2) for m < n

(A-40)

where

z -f [(t + l(2vf + Bt)]

142 2 [(a2 + 02)t2 + 42f2 + 41rtf] (A-41)
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These results generalize [6, pp. 456-7] and [7, p. 547].

The origin value of (A-40) is

Wmn(0,0) = 2(-l) m &mn (A-42)

consistent with unit energy of 0n (t) and their even or odd character. The

cross-WDF in (A-40) is a function only of the three variables m,n,z, where z

is the complex combination in (A-41). The parameters a and B in (A-36) are

perfectly general; when they are specialized to match (A-27), and when we

set m = n, then (A-40) reduces to (A-34). Equations (A-38) and (A-40)

afford a direct calculation of the WDF of a general waveform u(t), once the

coefficients are determined by

= dt u(t) 0*(t) (A-43)
n
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APPENDIX B. MOMENTS OF DISTRIBUTION D

The generalized smoothing distribution D is given by (23) in terms of a

double Fourier transform of product

P(u,t) = u q2 (u,) . (B-1)

Therefore, the inverse relation is

P(u,t) Jfdt df exp(-i2irvt + i2irfT) D(t,f) (B-2)

If we let superscript v denote a partial derivative with respect to V, therE

immediately follows from (B-2),

P(O,O) = JJdt df D(t,f)

P"(O,O) = -12v jjdt df t D(tf)

PC(0 ,0 ) = 12w idt df f D(t,f)

PVU(0 ,0 ) = -4r2 YS dt df t2 D(t,f)

Pv'(OO) = 412 Jf dt df t f D(t,f)

P t (0 ,) - -4w2 Sf dt df f2 D(tf) (B-3)

When these relations are written out explicitly in terms of and
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q2 9 according to (B-i), we find that the moments of D are

ffdt df O(t,f) = Z(O,O) q2(OO)

Sdt df t D(t~f) = j- [D((0.) q2(0,O) + Xu(O,O) 4;(O,)]

dt df t D(t~f) = ' EX4(0,0) '0q2v(,0 v-Z(0 0 10q),

3) fs f ~~)=~(~OO 2(0-O) + Xd(O.O) ql'(,O)

dt df t2 D(t,f) - - [ 2x(0,0) q2 (O,O) + 24(0,0) q2(0,0) +

+ Xu(0,0) q20(0,0)]

Jdt df t f D(t,f) = X VC- '(0,0) q2(0 It 0.0) q 9(0 0) +41 2- [u (00 2(O1O) + V

+X(.)q T(0.0) +Xu(0,O) o(0)
4w2

,S1dt df f2 D(t,f) 4w 2 1 x [Xr 0) q 2(010) + 2~00 ~00

+ Xu(OO) q'T(O,O)] .(B-4)

Since q2 is a double Fourier transform of V2 9 of exactly the same form

as (B-2), it follows immediately, by similarity to (B-3), that the required

derivatives of q2 in (B-4) can be found from smoothing function V2 as
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q2(O,O) - Sdt df V )

qV(o0o) - -12v Jf dt df t V2(t,f)

q (Oo) - i 2w SSd t df f V2(tf)

plp
q2 (0,0) - -412 SSdt df t2 V2(tf)

q;'(O,O) = 4 2SSdt df t f V2(tf)

qT'(O,O) - -4w2 SSdt df f2 V2(tf) . (8-5)

COMPLEX AMBIGUITY FUNCTION PROPERTIES

The required derivatives of K in (8-4) can be determined from

definition (24). We list them here for completeness and future reference:

Xu(OO) = Sdt ju(t)1 2

X-:(oo) - -12, fdt t ju(t)1 2

y0o)o - , Idt Imlul(t) u*(t)1

XV (0,0) - -4w 2 fdt t2 ju(t)j 2

VC (0,0) - 2v dt t Imtu'(t) u*(ti]2u I u*(t1

0o0)- - udt ()l (B-6)
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These quantities are all real, with the exception of the two single

derivatives, both of which are purely imaginary. These second-order

derivative values of K can be expressed solely in terms of u(t) and u'(t).

Since we can express complex ambiguity function ) in terms of the WDF

W according to

XU ( '  = S dt df exp(-i2wvt + i2wf*) Wu(tf) , (B-7)

it readily follows from (B-6) that

5I dt df W u(t~f) = f dtlu(t)12

SS dt df t W u(t,f) = fdt tlu(t)12

Sfdt df f Wu(t,f) = 1 fdt Imfu'(t) u*(tj

ifdt df t2 W u(tf) = Sdt t2)u(t)l2

Jdt df t f Wu (tf) = 1Jdt t Imu'(t) u*(t)3

udt df f2 W(tf) = -- Sdt.utI 2  (8-8)
43
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APPENDIX C. GENERAL TILTED ELLIPSE

It will be convenient to be able to specify the area, tilt, and shape

factor of an ellipse directly, instead of trying to solve for these

quantities from the general form

2 2ax + b2+F xy=1(C-l)

employed in [1, (3-2)]. Accordingly, as done in [1, app. D], we employ the

rotated coordinates depicted in figure C-1 below. The equation of the

ellipse in x',y' space is

1(C-2)

Figure C-1. Rotated Coordinate Axes
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But since the area of this ellipse is

A=rx' (C-3)

while its shape factor is

Xi

Yo- -, 
(C-4)

it is a simple matter to find that

AF =irx 2  0A/F = y 2 (C-5)

leading to the desirable form

X 1_2  2 A
F + F y,2 = A. (C-6)

Furthermore, the coordinate axes in figure C-1 are related according to

X= xC + yS
x= xS +- yC J C = cos(D) , S = sin(B) . (C-7)

y, = -xS + yCJ

Substitution in (C-6) yields

-- ~F+ FS) + y2 + FC, + xy SC( -F = , (C-B)

which is of the form (C-l) under identifications

a = 2-r + FS2) b + FC ,

P - Y with y SC F) (C-9)

Once area A, tilt B, and shape factor F are specified, (C-9) affords a ready

calculation of a,b,p; quantities C and S are given by (C-7). Since
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p = sin(e) in [1, (3-6)], we have

sin(e) Y - cos(e) (C-10)

which are needed below.

In order to distinguish the two Gaussian mountains being doubly

convolved in [1, (3-2)], we label them with subscripts 1 and 2,

respectively, thereby obtaining

21 1 1

Yl = SC1 1(2 - FI) sin(e) = cos(e) = =' ., (C-11)
+ Y1 l Y1

and

(22

A=2 F2 + 2 , d A - F2C) S2 = sin(8 2) C2 = cos(8 2 )

2 $22 F2 2sn)

2 S 2 C2~ - F2) , sin() Y 'cos(O) = . (C-12)

We are now in a position to evaluate the effective area A3 of the

resultant convolution; namely from [1, (3-9)-(J-11)], we have

A3  _ _ _ _ _

A3 - TD" (C-13)A1 + A2  Va-'cos(e) + ccos(e) 1-13)
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where

D = ab cos 2(e) + cd cos2 () + ad + bc - 2ja'bd' sin(e) sin(O) . (C-14)

The minimum value of (C-13) is 1, attained when shape factors F= F2

and tilts 1 = 032. More generally, when we specify

A1,01,F Ifor ellipse 1 ,

A2,02,F2 for ellipse 2 , (C-15)

equations (C-11) and (C-12) allow for evaluation of all the parameters

needed in (C-13) and (C-14). A sample program in BASIC is attached.

Subroutine E computes a, b, sin(e), cos(e) as given by (C-9) and (C-10) in

terms of given area A, shape factor F, and tilt 8 (-B).
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10 GINIT
20 PLOTTER IS "GRAPHICS"
30 GRAPHICS ON
40 WINDOW -PI'4,PI'4,1,1.25
50 GRID PI'8,.85
60 F1=2 SHAPE FACTOR
70 B1=PI,4 !TILT
80 A2=2 !AREA
90a F2=2

100 DATA .5,1,2,3,4,5,6
110 DIM A1(1:7)
120 READ A1(*)
130 FOR 1=1 TO 7
140 A1=A1UI)
150 CALL E(A1,F1,D1,As,ES,St,Ct)
160 Ab=Rs*Bs
170 FOR 32=-PI/4 TO PI/4 STEP PI/100
180 CALL E(A2,F2,32,Cs,DsSsp,cp)
190 CcI=Cs*Ds
200 D=Ab*Ct*Ct+Cd*CP*CP+s*Ds+s*Cs-.2. *SQRCAb*Cd)*St*Sp
210 A312=SQR(D)*A1*A2/(2.*PI*(A1+A2))
220 PLOT 92,A312
230 NEXT 32
240 PENUP
250 NEXT I
260 PAUSE
270 END
280
290 SUB E(A,F,B,RS,Bs,St,Ct)
300 SaSIN(D)
310 C=C053B)
320 GmS*C*( 1 */F-F)
330 Sq-SQRC 1 *+G*G)
348 St-G/Sq
358 Ct1I.rSq
360 C2=C*C
378 S2=S*S
388 T=2.*PI/A
398 AsST*'C2/F+S2iiF)
488 BssT*.S2,F.C2*F)
418 SUBEND
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APPENDIX D. KERNEL APPROACH TO PENALTY FUNCTION

The general formulation in (A-11) through (A-21) will be applied in

this appendix to the penalty function (3):

P(t,f) = a t2 + 42 b2f2 + 4wctf (D-l)

Substitution in (A-9) (in place of reward R) yields

r(tt) = jdf exp(-12irft) P(tf) =

= Jdf exp(-1irft) (a2t2 + 42 b2f 2 + 41ctf) =

= a t2 6(t) - b 26"() + i2ct6'(c) (0-2)

Then kernel K follows from (A-11) as

K(xy) = r -+v , x y)

a- (x + y) 6(x - y)- b26"(x - y) + ic (x + y) 6'(x - y) , (D-3)

which is Hermitian.

The integral equation (A-12), that must be solved, can be simplified by

use of the facts that

1 2 2 a2y2n
1a2 dx(x + Y) 6(x - y) 0n(x) = ay2(y)

_b2 f dx 6"(X - y) mn(X) = -b20(y)

Ic S dx (x + y) 6'(x - y) n (x) = -ic[2yo (y) + On(y)] (D-4)
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where the last two results are obtained by integration by parts. Then

(A-12) yields differential equation

b 2*(y) + i2cy o (y) + N + c - y 2) 0n(y) = 0 . (0-5)

If we try solution

0o(y) = A exp(- By2) (D-6)

In (0-5), we find it to be acceptable if we take

B = o+ = "  (0-7)

These results agree with (11) and (20), as expected. To find the general

solution of (0-5), we try solution form

O(y) = exp(- By 2 ) H(y) , (0-8)

with B still given by (0-7). This form in (0-8) is no loss of generality

since H is still arbitrary. Use of (0-8) in (0-5) results in

b2H"(y) + 2y H'(y) (-b2B + ic) +

+ H(y) (-b2B + b2B2y 2 - 12cBy2 + X + c - a2y) = 0. (0-9)

When the value for B in (0-7) is utilized, (0-9) simplifies to

b2HO(y) - 2V y H'(y) + (X - fj ) H(y) = 0 (0-10)

(As a partial check, if H(y) = A, then X = VQ, as in (0-7).)

Now, in (0-9), let

H(y) = G(Fy) , H'(y) = F G'(Fy) , H"(y) = F2 G"(Fy) , (D-11)
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where F is arbitrary for the moment, thereby obtaining

b2F 2 G(Fy) - 2f'y F G'(Fy) + ('x - y!') G(Fy) = 0 (D-12)

Now let x = Fy to get

G"(x) - _2- 6'(x) + -'- -'G(x) = 0 (D-13)
b2F2  b2F2

If we now let (without loss of generality)

21/201/4

F- b (D-14)

then (D-13) simplifies further to

G"(x) - x 6'(x) + x2- G(x) = 0 . (0-15)

We now appeal to (4, 22.6.21] and observe that if

- n = integer , (0-16)

then a solution of (D-15) is

6(x) = Hen(x) , M ='(1 + 2n) . (0-17)

Also, (D-11) yields

H(y) = G(Fy) = He (Fy) , (D-18)n

while (0-8) gives

0n(y) = A exp(- By2 ) Hen(Fy)/V' , (0-19)

with

B = 
+  F = 21/201/4 1201/4
b2  b A = ' (D-20)
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where the unit energy normalization of 0n has been imposed. The

corresponding elgenvalue follows from (0-17) as

xn = (1 + 2n) = 2bT - c2 (1 + 2n) . (0-21)

The minimum obviously occurs for n = 0.

Result (0-19) agrees with (A-27). However, the Xn given here by

(D-21) differs from that given by (A-26), because we are solving for the

minimum penalty here versus the maximum reward there.
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Alias-Free Wigner Distribution Function
and Complex Ambiguity Function for Discrete-
Time Samples

A. H. Nuttall
ABSTRACT

If an arbitrary complex continuous waveform s(t) with finite
overall frequency extent F Hertz is sampled with time increment
A < 1/F. the aliasing can be controlled and the continuous
time waveform s(t) reconstructed exactly at any desired time
instant from waveform samples (s(kA)). On the other
hand. It is commonly believed that aliasing of the corresponding
Wigner distribution function (WDF) can only be avoided by
sampling twice as fast; i.e., a < (2F)- l is thought to be
required. Alternatively. Interpolation of the time data has been
suggested as a means of circumventing aliasing of the WDF;
however, the computational burden has proven excessive If done
by sinc function interpolation.

It Is demonstrated here that this conjecture is false and that
the usual sampling criterion . a < I/F. suffices for exact
reconstruction of the original continuous WDF as well as the
complex ambiguity function (CAF) at all time/frequency locations
without an excessive amount of computational effort. The
inadequacy of earlier investigations was due to incomplete
processing of all the information available in data samples
(s(ka)}. Correct processing eliminates the troublesome
close-in allasing lobes, leaving only the standard aliasing lobes
that can be suppressed If sampling increment a < 1/F. The
new feature is a diamond-shaped gating function in the
two-frequency domain where interspersed allasing lobes occur.

The required data processing for an alias-free WDF and CAF
is strikingly simple. It requires that the available time data be
immediately transformed to the frequency domain and that the
frequency domain versions of the WDF and CAF integrals be
employed rather than the time domain forms. Discretization of
the reconstructed alias-free WDF and CAF in both time and
frequency is then Investigated and the required FFT sizes and
ranges of variables are determined. Interpolation of samples
(skA)) or reconstruction of s(t) from these samples is
neither necessary nor utilized.
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W(t,f) time domain WOF approximation, (123)
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ALIAS-FREE WIGNER DISTRIBUTION FUNCTION AND

COMPLEX AMBIGUITY FUNCTION FOR DISCRETE-TIME SAMPLES

INTRODUCTION

The attributes of the Wigner distribution function (WDF) have come under

close scrutiny in recent years; see, for example, (1,2,3] and the references

listed therein. However, the numerical calculation of the WDF from discrete

time data still suffers from the belief that the sampling rate of a given

time waveform must be twice as large for computation of an alias-free WDF,

as the rate required for reconstruction of the original continuous

waveform. If true, this would double the number of data points that must be

collected to cover a given time interval, and greatly increase the number of

subsequent computations. This contention applies to the complex analytic

waveform as well as to a real waveform.

It is the purpose of this report to establish the fact that the sampling

rate need not be doubled, and that an alias-free WDF, as well as complex

ambiguity function (CAF), can still be quickly and efficiently obtained,

provided that all the information in the available data stream is extracted

and properly processed. Some recent effort on this topic [4,5,6] did not

discover the particular complete set of processing required, leading to the

conjecture [5, page 1068] that it was not possible to accomplish the desired

goal for the WDF.
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We will show not only that the desired goal can be achieved, but that

the required data processing for an alias-free WDF and CAF is strikingly

simple. Our approach to the solution initially involves the four

time/frequency domains associated with the WDF and its various Fourier

transforms. However, in hindsight, an extremely simple and direct method of

obtaining the WDF and CAF will be presented, which requires only FFTs (fast

Fourier transforms) for its implementation.

An alias-free discrete WDF and CAF have been achieved in [7] and [8], by

means of interpolating either the waveform time samples or the spectrum

frequency samples. Also, the ranges and required increment sizes in time

and frequency of the various two-dimensional functions have been carefully

scrutinized in [7], by discrete Fourier transform techniques. However, that

approach does not illuminate how the various aliasing lobes interact and can

be controlled. Furthermore, we utilize a continuous approximation approach

(rather than a discrete Fourier technique), which lends tremendous insight

into the shortcomings of current processing methods and brings out the

fundamental properties of the various two-dimensional functions and their

domains of definition. The final discretization in time and frequency is

only done with deference to practical computer evaluation.

In fact, we will not define a discrete WDF or CAF here. Instead, we

attempt to recover the WOF and CAF of the original continuous time waveform,

by developing approximations and then controlling or, eliminating the errors

in these approximations. Only after this is accomplished, do we then address

discretization of the time and frequency arguments of the two-dimensional

functions of interest.

2
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NOTATION

For economy of presentation, a number of notational and manipulative

shortcuts are employed here. We have collected them all together at this

point, and will employ them freely later, with minimal comment. We define

rect(x) = 9 (1){ otherwise

sinc(x) = sin(wx) for all x . (2)IrX

The symbols I and I without limits denote that integration and summation

are to be conducted over the complete range of nonzero integrand and summand,

respectively.

The convolution of two functions g(x) and h(x) is denoted by

g(x)@ h(x) = fdu g(u) h(x - u) . (3)

The two-dimensional convolution of two functions is

xy ,fu guv 4
g(xy) Q h(x,y) = du dv g(u,v) h(x u,y - v) (4)

The Fourier transform of a time domain function s(t) into its spectrum

in the frequency domain f is according to the pair of relations

S(f) = fdt exp(-12vft) s(t)

s(t) = fdf exp(12wft) S(f) (5)

3
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Then the Fourier transform of a product of time functions is equal to the

convolution of the two spectra:

J dt exp(-12,wft) a(t) b(t) = A(f) B(f) . (6)

The infinite impulse train in time t, with spacing A, is

26(t - na) , n integer (1)

n

Its Fourier transform is another infinite impulse train in frequency f, with

reciprocal spacing:

dt exp(-i2irft) a 26(t - na) = - ) (8)

n n

Combination of (6) and (8) leads to a very useful relation that is employed

frequently in the following:

fdt exp(-12,ft) a(t) a >6(t - nA) =

n

A(f) 6(f - ) = A(f - . (9)
n n

The discrete Fourier transform operation arises frequently; consider

Z(n) exp(-12,wkn/N) z(k) for all n (10)

k

4
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The periodicity of Z(n) means that it only need be computed for one period,

namely 0 < n < N - 1. The absence of limits on the sum in (10) means that

it goes from k =- to +-. However, since z(k), z(k ± N), z(k ± 2N),

... all receive the same weight in (10), regardless of the value of n, the

values of {z(ki) can be "collapsed" according to

z(k + JN) for 0 jk E N - 1

0 otherwise

and (10) becomes identically

N-l

Z(n) exp(-i21kn/N) 7(k) for all n (12)

k=O

For N highly composite, FFT routines can be employed for efficient evaluation

of (12) for 0 - ri < N -- 1. The manipulation of (10) into (12) is called

collapsing (or prealiasing), and the operation in (11) is modulo N addition.

The nonzero values of {ZkI in (lo) can occur anywhere on the k-axis, and

there can be an arbitrary number of them; nevertheless, (12) is an identity

with (10). The value of Z(n) for any n can be obtained immediately from the

FFT output, by looking up the value in location n modulo N.

I I I I
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WAVEFORM CHARACTERIZATION AND RAIE OF VARIATION

The continuous complex waveform of interest is s(t), with

F~sirier spectrum

S(f) = fdt exp(-i2wft) s(t) for all f (13)

We presume here that spectrum S(f) is bandlimited, with total extent F Hz;

i.e.,

S(f) = 0 for Iff > F/2 . (14)

Notice in figure 1 that spectrum S(f) is centered at f = 0, without loss of

generality, since waveform s(t) could be multiplied by exp(-i21f 0 t) to

downshift it by f0 Hz, to any convenient center frequency, as desired.

If we were given a real waveform, we would replace it by its analytic

waveform or complex envelope, thereby allowing the minimal possible

time-sampling rate that can still exactly represent and recover the complex

waveform. This sampling rate is half that required for sampling the

corresponding real lowpass waveform, without loss of information.

Nevertheless, the decreased sampling rate applied to the complex waveform is

still sufficient to get an alias-free WDF and CAF. (Of course, the samples

are now complex, whereas they were formerly real for the real waveform case.)

6
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-F2 0 F/l

Figure 1. Bandlimited Waveform Spectrum S(f)

I F 0 . 1.f
A 1 2 a

Figure 2. Spectrum 9(f) of Sampled Waveform
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SPECTRUM OF SAMPLED WAVEFORM

Waveform s(t) is sampled at time increment A seconds, yielding samples

s(ka) for all integer k . (15)

The spectrum of this sampled waveform is defined by means of a Trapezoidal

approximation to defining integral (13):

9(f) A 2 exp(-i21rfak) s(kA)

k

dt exp(-i2irft) s(t) a 6(t - kA) =
k

= S(f) 6 6(f- ) = S(f- ) for all f , (16)

k k

where we used (6)-(9). The approximating spectrum S(f) has period 1/A in f

and is depicted in figure 2. It will have nonoverlapping aliasing lobes if

A< (17)

This fundamental sampling rate condition will be presumed to be true,

henceforth. In fact, in order to keep the number of samples {s(kAiI small,

(17) will be presumed to be closely met. It is very important to minimize

the number of samples that must be manipulated, so that the computational

burden in evaluating the WDF is not overwhelming.

Another interpretation of approximation 9(f) is afforded by line 2 of

(16): S(f) is the spectrum (Fourier transform) of the signal s(t) sampled

(multiplied) by the infinite impulse train at spacing A. This alternative

interpretation will also arise later, when we investigate sampling relative

to the WOF and its various two-dimensional transform domains.

8
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Since sampling rate condition (17) is presumed to be met, then spectrum

S(f) in figure 2 can be gated with a rectangular function, and S(f) can be

recovered; i.e.,

S(f) = S(f) rect(fa) for all f . (18)

Therefore, the time waveform s(t) can also be recovered exactly, for all t,

by means of inverse transform (5):

s(t) 3 df exp(i21rft) S(f) rect(fA) -

= 0 1 sinc(l) (19)a A

However, since from line 2 of (16), product waveform

s(t) = s(t) A 26(t - kA) = A 2s(kA) 6(t - kA) , (20)

k k

then (19) becomes

s(t) s(ka) sinc(- - k) for all t , (21)

k

which is the standard interpolation formula for a bandlimited waveform.

It should be pointed out here that (21) is not an attractive

computational procedure, and that an excellent alternative is available.

Namely, from (16), compute from the available samples,

S(f) = A exp(-i2irfAk) s(k&) for Ill < (22)

k

and then use the top line of (19) to recover waveform

9
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2A

s(t) = Sdf exp(12wft) S(f) for all t (23)
-l
2A

The reason this gating procedure is attractive is that (22) and (23) can both

be done by FFT procedures.* Also, this seemingly trivial sidelight will

reoccur in WDF and CAF reconstruction, where it will have a significant

impact.

Notice that we have not defined a discrete spectrum, per se. Rather, we

have concentrated on getting an approximation S(f) to the original continuous

spectrum S(f), both defined for all f. If sampling condition (17) is met,

a < I/F, the approximation affords the possibility of exact recovery of S(f)

at any f. This philosophy, namely avoiding arbitrary definitions of discrete

functions, in favor of direct approximations to the desired continuous

functions, is pursued throughout this report. It is believed that this

clarifies the fundamental limitations and processing that must be performed

in order to achieve the desired quantities. Finally, after demonstrating

the viability of this approach, in order to reduce the mathematical equations

to practical calculations, we discretize the time and/or frequency arguments

of the approximations, as appropriate, and manipulate the equations into

attractive FFT forms. We end up, of course, with discrete data processing

forms that are suitable for efficient computer realization, but the

*Actually, termination of the sum in (22) at finite k limits will yield an

approximation to (f); the error can be controlled to any desired degree by
taking enough terms. Also, the integral in (23) will have to be
approximated, say, by the Trapezoidal rule; the attendant time-aliasing can
be minimized by choosing the frequency increment small enough. These details
will be investigated later.

10
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discretization in time/frequency is deferred to the latest possible

location, since it is not fundamental to the ideas of controlling or

eliminating aliasing.

The sampling increment A will not be set equal to 1 in this report, for

several reasons. It is easier to keep track of dimensions, and dimensional

checks on the equations are accomplished more readily. It is also easier to

obtain physical interpretation of time instants and increments, as well as

frequency limits and bandwidths. Finally, it will be seen to eliminate

confusion ard ambiguity as to precisely where time and frequency samples of

the temporal correlation function, WDF, and CAF are being taken; the

importance of this last point can not be overemphasized.

EXAMPLES

It is very informative at this point to consider a couple of continuous

waveforms and their corresponding WDFs, in terms of their rates of variation.

Consider first, spectrum

Cl F for jfi < Ff2
S(f) rect( (24)

Lo otherwise

for which the waveform is

s(t) = sinc(Ft) sin(irFt) for all t (25)wFt

The corresponding WDF, at time t and frequency f, is [9, (10)]

11
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W(t,f) f dT exp(-i2frfT) s(t + 1) s*(t - =

= fdu exp(i2rut) S(f + 3) S*(f - !) =

sin[21rFt(1 - 21fl/F)1 for if E <

irF2t f 7
for all t

L for JF
2(- 2 LF)sinc [2Ft(l - 2f-F)] rect(4) (26)

Then, for instance, the slice of the WDF at zero frequency,

W(t,O) F sinc(2Ft) , (27)

varies twice as fast as waveform s(t) in (25). Therefore, although sampling

s(t) in (25) with time increment a < I/F is sufficient to reconstruct s(t),

we need a time increment half as large in order to adequately sample slice

(27) of the WOF at f = 0. In fact, W(t,f) in (26) varies faster with t then

s(t) does, whenever (fi < F/4.

This example points out that the WDF must be computed twice as finely as

the waveform samples, lest important information about the energy

distribution of s(t) in t,f space be lost. In fact, if (27) were computed

at time points

tn = (n + ) for all n , (28)

12
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which have time increment At = l/F, then the WDF values obtained would be

W n + i ) 1. , 0) = sinc(2n +- 1) =0 for all n (29)

We would be led to believe from samples (29) that there is no energy along

the f = 0 line in t,f space, whereas continuous version (27) indicates a

considerable contribution.

A second example is

s(t) = exp (22)

S(f) =VT"a exp(-2 2 af 2) , (30)

for which the WOF is

W(t,f) = 21/X0 exp ( j - 42 222) . (31)

This WDF varies faster with t than s(t) does, and faster with f than S(f)

does. In fact, the rates of variation of W(t,f) and Is(t)[ 2 are the same

with t, while those of W(t,f) and I(f)12 are the same in f.

Both of the examples above illustrate the need to compute the WDF at

finer increments than are adequate for the time waveform or spectrum.

However, this does not mean that the time waveform need be sampled more

frequently than requirement (17). Rate (17) is fine for sampling waveform

s(t), but the corresponding WDF can and must then be computed at finer

increments.

13
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TWO-DIMENSIONAL CONTINUOUS FUNCTIONS

For a continuous waveform s(t) with spectrum S(f), there are four useful

two-dimensional characterizations. The first is the continuous temporal

correlation function (TCF)

R(t,T) = s(t + T) s (t - 7) for all t,T . (32)

Variable t is absolute time in seconds, while T is relative time or time

separation. The corresponding Wigner distribution function (WDF) is a

Fourier transform on T:

W(t,f) = dT exp(-i2vfT) R(t,i) for all t,f . (33)

The alternative Fourier transform on t yields the complex ambiguity function

(CAF):

X(,T)= f dt exp(-i2wvt) R(t,) for all v,T .(34)

Functions W and x are two-dimensional Fourier transforms of each other.

Finally, completing both routes (by t or by T), we have the spectral

correlation function (SCF) as another Fourier transform, according to

several equivalent forms

14
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A(v,f) fdt exp(-i2,wut) W(t,f) =

- fdr exp(-12wfT) X(v,r) =

dt dr exp( -i2ivt - i2ifr) R(t,r) =

= S(f + 1) S*(f - )) for all ,,f (35)

This last relation in terms of the spectrum S(f) of waveform s(t) will turn

out to be extremely important and useful. It also enables interpretation of

f as absolute frequency in Hz, while v is relative frequency or frequency

separation.

The names for the TCF and SCF have been drawn from the similarity of

their forms in (32) and (35), respectively, to correlation operations. The

latter name is also used in (10, (5)-(7)] for a similar quantity.

Recalling the bandlimited character of S(f) in (14) and figure 1, we see

that SCF A(,,f) in (35) can be nonzero only when

. (36)

12 2

This region in the two-frequency domain (v,f plane) is depicted in figure

3. It is a diamond-shaped region centered at the origin of the v,f plane.

Outside this diamond, SCF A(v,f) is identically zero. Thus, a bandlimited

spectrum S(f) is reflected in the u,f domain as a diamond-limited SCF A(w,f).

15
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Since (35) can be inverted to give

W(tf) = fdu exp(i21rvt) A(u,f) ,

x(V,T) = fdf exp(i21rfT) A(v,f) , (37)

it follows from figure 3 that

W(tf) = 0 for Il > F/2

X(v,T) = 0 for Ivj > F . (38)

Thus the WDF and CAF are bandlimited in their respective frequency variables.

These properties will be useful later when we study the effects of aliasing

in the various domains. More generally, the extents and rates of variation

of the TCF, WDF, CAF, and SCF are summarized in appendix A.

The following symmetry properties on the TCF and SCF reduce computational

effort by a factor of two:

R(t,-T) = R (t,T) ,

A(-v,f) = A (v,f)

These follow immediately from (32) and (35), respectively.

-F F , F

Figure 3. Extent of Spectral Correlation Function A(t,f)

16
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TWO-DIMENSIONAL FUNCTIONS FOR DISCRETE-TIME SAMPLES

The available data samples of waveform s(t) are, as given in (15),

{s(kah) for integer k

SAMPLED TEMPORAL CORRELATION FUNCTION

From these values, the totality of information, that can be computed

regarding the continuous TCF R(t,T) in (32), are the two sets of discrete

values

R(ma,2qa) = s(ma + qa) s (ma - qh) (39a)

and for integers
m and q.

R m + 1)a, (2q + l) = s(ma + qa + a) s (mA - qa) (39b)

Thus both the t and T variables in R(t,i) are discretized, as indicated

in figure 4. However, observe that the available information is

interspersed in the t,T plane. Thus, for fixed t, the separation in

available T values is 2a, not A, whether t/A is integer or half-integer.

Similarly, for fixed T, the separation in available t values is a, not

A/2, whether T/& is an even or odd integer. This lack of intermediate

values in both slices is what has led (in the past) to incomplete processing

of the available information. What is needed to solve the aliasing problem

is a combination of all the interspersed information in figure 4 into a

single unified two-dimensional description. That solution will be found to

reside in the SCF domain, v,f.

17
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I

3--

* 2. 0

-I o 2

* -I 0 9

* -24

Figure 4. Available Values of TCF R(t,T)

APPROXIMATE WIGNER DISTRIBUTION FUNCTION

Guided by definition (33), we adopt the following Trapezoidal

approximation to the continuous WDF W(t,f) at time t = ma, m integer:

Wa (mA,f) = 2a exp(-12irf2qa) R(mA,2qa) for all f .(40)

q

Subscript a on Wa denotes that it is only an approximation to the true

continuous W. Notice that the T increment in (40) is 2A, as it must be,

according to (39a) and figure 4; we are taking a vertical slice at t = ma in

figure 4. The approximation in (40) is always real. It utilizes only the

upper line of information available in (39). Notice also that this function

is defined for all f.

However, there is an additional approximation to W(tf) available at

time t = (m + i)a , by use of the bottom line of (39); namely, guided again

18
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by definition (33), we have Trapezoidal approximation

Wa(m + i )Af La 2A7 exp[-12irf(2q +- 1)A] R m +- i)&. (2q + 1)) for all f

q

(41)

m Is still an integer. Again, the T increment is 26, but it is shifted by

A, as (39b) and figure 4 dictate. We are now taking a vertical slice at

1t = (m + )A in figure 4; this is in keeping with the philosophy developed

earlier in (24)-(31). Approximation (41) is also real.

Equations (40) and (41) can be developed into some informative forms;

from (40) and (9), approximation

Wa (mAf) = 5 dT exp(-i21fi) R(mA,T) 2a 6(T - 2qA) =

q
f

W(mAf) 0 6(f - 2A =

q

= 2 W(ma,f - -A) for all f . (42)
q 2

Similarly,(41) yields

Wa m + )1f) = Jdi exp(-12,wfT) R(m + )A..r) 24 6(r - 2qA -a)

q

- Wm + i)A,. (-1)q 6(f- 2)

q

(_)q Wmf for all f (43)

19
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The (-1 )q factor is due to the time delay of a seconds in the impulse

train; more generally, for delay Top

fdT exp(-12wfi) 2A>I 6(T - 2qA -T

q

exp(-i2wfTo) 6(f - A)

q

= exp(-iwq To/A) S(f 2 (44)

q

The two relations, (42) and (43), are equivalent to those given in

[4, (9)] and [6, (14)]. Observe that the aliasing lobes are separated by
-1

only (2a) in the frequency domain, not l/A as was the case for the signal

aliasing lobes in figure 2. These approximations, Wa, are illustrated in

figure 5, for two adjacent time instants at ma and (m + . We have used

property (38) in drawing figure 5.

In order for either approximation, by itself, to be free of aliasing, we

would need

F <  _ F i.e., A < (45)

2 2A 2 *2F (5

This relation, obtained directly from both plots in figure 5, is the usual

one quoted regarding an alias-free WDF. It is seen to require a sampling

rate twice as fine as (17). If we satisfy (17), but not (45), then the

approximations in figure 5 are significantly aliased.

The case where s(t) is a real waveform is treated in appendix A.

20
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The two approximations, (40) and (41), use all the available information

(39) about the TCF R(t,T) in the t,x plane. However, we cannot average

these two WDF approximations, in hopes of cancelling out the close-in lobes

centered at f = t(2A) - , because the two times, ma and (m * )A, are not

identical. (This timing observation is one reason for keeping a itself in

all the equations, rather than setLing A equal to 1 and losing track of the

meaning of m vs. m 2 ). Nor can we discard either one of approximations

(42) and (43), especially if criterion a < 1/F is closely met; the examples

in (24)-(31) amply demonstrate the rapid variation of the WOF with time t.

We see from (40) and (41) that approximations to the continuous WOF are

available at discrete time values with separation At = A/2 and at a

continuum of f values. Thus we have succeeded in eliminating the discrete

nature of one of the two initial time variables in the 1CF, namely T.

22
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APPROXIMATE SPECTRAL CORRELATION FUNCTION VIA WDF

Guided by line 1 of definition (35), we adopt the following Trapezoidal

approximation to the original SCF A(v,f):

AMW(v'f) = - exp i2yu Wa(-,f) =
a 2 2 \ 2 a 2

n
+~~ exp-dl ,nA Rif

e n exp(-i21 DA) Wa(-,f) for all v,f (46)
a een n odd

Notice that this function is defined on a continuum in v,f space. The

superscript w on approximation A denotes the fact that we have used thea

WDF route to get into the u,f plane. The increment on t in (46) is At - a/2,

in keeping with the available WDF values in (40) and (41) together. This

( (w) *approximation satisfies the symmetry rule, A a (-vf) = Aa(Vf) I just as

for the original SCF A(v,f).

We let n - 2m in the first sum in (46), and let n = 2m + 1 in the second

sum. There follows, upon use of (42) and (43),

AMW(v,f) = _2 exp(i2.Avm) Wa(maf) +

m

4+ ~expi21rvat(m + ~)(m 4- ~)tf
m

1 A exp(-i 2ram) W(ma, f -- A)

2 2At
q m

+ I;F(_1 )q a 2~ exp[(-i 2r.f(m + 1-)] W (m + -)A ift~ (47)

q m

23
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But

m

J dt exp(-i2wvt) W(t,fl) a 6(t -MA)

m

=A(v, f' 6(v -

m

A~v -(48)
m

while

exp[ -i 2wtiA(M + W Wm +-
m

= dt exp(-i2wrvt) W(t,f') a a s~ (m +
m

=A(v,f') @ 2 l S ( -NI

m

2 (l)1 A(v - 9!,f-) (49)

m

24
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The use of these two relations in (47) yields the approximate SCF

A(W)(Vf) I 5 5 f q (50a)
aA - f - A

q m

q m

2 A(v f' fo all v~ (51)
q m

q+m even

We now have a function defined on a two-dimensional continuum in the

two-frequency domain, v,f.

At this point, the reason for pursuing the use of all the available

information becomes obvious. All the close-in lobes that caused problems

have precisely cancelled in the SCF domain! Figure 6 depicts the regions in

the v,f plane where approximation A(w)(vf) in (51) can be nonzero; see
a

also figure 3.

The SCF term in (50a) corresponds to use of only the information about

the TCF given in (39a), within a factor of 2, whereas (SOb) arises from

(39b). Term (50a) by itself contains all the allasing lobes centered at

= M,f = -, with separations A /A, Af = (2A); condition (17) is then

insufficient to prevent overlap, and (50a) is seriously aliased. A similar

situation exists for (SOb) by itself. It is only the average of these two

pieces of information that succeeds In elimination of the troublesome

close-in aliasing lobes in v,f space. And it is only in this last domain,

where the functions are continuous in both variables, that this average can

be conducted.
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There will be no overlap of any of the remaining aliasing lobes in

figure 6 if we choose, as in (17),

<1
< . (52)

-1

Notice that we do not have to require A < (2F) , in order to avoid the

overlap. Furthermore, if we define the diamond gating function (see

figure 6)

D(v,f) f7(53)

0 otherwise

then we can recover exactly the original SCF from approximation (51)

according to

A(w)(vf) D(u,f) = A(u,f) for all u,f , (54)

Out recovery of A(u,f) is tantamount to recovering the exact continuous WDF,

since

W(tf) du exp(i2mut) A(u,f) for all t,f . (55)

Thus, criterion (52) is sufficient to guarantee the possibility of getting

an alias-free WDF from discrete-time data.

Additional interpretations of (54) and a simple method of computing

A W)(v,f) are addressed in the next section, after we
approximationa

have also looked at the route to the vf plane by way of the CAF.
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APPROXIMATE COMPLEX AMBIGUITY FUNCTION

Based on definition (34), we utilize the Trapezoidal approximation to

the continuous CAF x(v,T) at delay T - 2qh, q integer:

Xa(v,2qa) = A; exp(-i2rvAm) R(mA,2qA) =

m

= Sdt exp(-i21rvt) R(t,2qa) A 6(t - mA) =

m

X 
m

= x(v,2qA) S(V - )=
m

X(v- , 2qA) for all v (56)

m

Notice that the t increment is A, as it must be. according to (39a) and

figure 4; we are taking a horizontal slice at T = 2qA in figure 4.

However, there is an additional approximation available to the CAF, at

delay T = (2q + 1)A; again, referring to (34),

Xa ~ (l(q )A) =- a exp[-i21rva(m +s 1)] Ra(m + j-)A,(2q +I 1))=

m

,fdt exp(-l2, t) R((t, m(2q + I)a) a) 6(t =-(i i-)&)

m

- (u. (2q +- 1)A) 6(~1) v - ~
a(~ m _

= (l) x - , (2q + l)A) for all v (51)

m
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The t increment is again A, but it is shifted by A/2, in keeping with (39b)

and figure 4. We are now taking a horizontal slice at r (2q f I)A in

figure 4. The (-) m factor is explained by (44).

The aliasing lobes in (56) and (57) are separated only by Au = 1/A and

will overlap on the v axis unless A < (2F)l ; see (38) and figure 7. Thus,

the approximate CAF, x a(v,n&) for n integer, suffers overlap due to
n

aliasing, just as the WOF, W (- A, f) for n integer, does; eliminationa 2

of overlap is achieved only if the stringent requirement A < (2F) is met.

Furthermore, again, we cannot directly average the two results in figure 7,

in hopes of canceling the close-in lobes centered at u ± 1/A, because the

two delays, 2qA and (2q + 1)A, are not identical.

Equations (56) and (57), together, illustrate that approximations to the

continuous CAF are available at discrete delay values with separation A = A

and at a continuum of v values. Now we have succeeded in eliminating the

discrete nature of the other of the two initial time variables in the TCF,

namely t. The remaining Fourier transform into the SCF domain will

eliminate the other discrete variable.
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Figure 7. CAF Approximations
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APPROXIMATE SPECTRAL CORRELATION FUNCTION VIA CAF

Guided by line 2 of definition (35), we obtain the following

approximation to the original SCF A(v,f):

A c)(,,f) A exp(-12wfnA) Xa (,nA) =

n

+ even n2E exp(-12wfna) xa(
'.na) for all v,f . (58)

The superscript c on approximation A a denotes that we are obtaining this

result by way of the CAF. The increment on T in (58) is A = A, in

keeping with the available CAF values in (56) and (57) together.

Let n = 2q in the first sum in (58), and let n = 2q + 1 in the second

sum. There follows, upon use of (56) and (57),

A(c)(Vf) - A exp(-12wfa2q) X (v,2qA) +a a
q

+ A exp[-i2wfa(2q + 1)] xa (,(2q + 1)A) =

q

exp(-12ifA2q) - , 2qA) +

m q

+_exp[-12wfA(2q + 1)] x - (2q + l) (59)

m q
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But

a 2. exp(-i2,irfA2q) x(v',2qA)

q

= JdT exp(-i21rfT) X(V',T) A 6(T -2qa)=

q

2A
q=

= " YA(v',f - (-) , (60)
q

while

A2 exp[-i2fa(2q + 1)] x(',(2q + 1)a) =

q

Jd-r exp(-i21rfT) x(v',T) - (2q + I)A) =

q

A(v',) *l (-l)q 8(f- f)) =

q

_I" .~-f - -q) .(61)

q

The use of these two relations in (59) yields the approximate SCF
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A( (-l A(i -A , f - + =

a' 2A

mmq

= + - m" f A) for a f . (62)
2 2 Ai ' -2tA

m q

m+q even

But this result is identical to the approximate SCF A(W)(u,f) givena

in (51) and figure 6. That is, we obtain the same continuous approximation

in the u,f domain, whether we approach it via the WDF or the CAF. This

apparently fortuitous result is due to the fact that we used all the

available information about the TCF when we started with (39), and kept all

of it in passage through the WOF or CAF domains.

Figure 6 is again applicable, and we now see that we can drop

superscripts w and c from (51) and (62), respectively, since there is only

one approximation in the SCF domain. (The comments following (51) are also

directly applicable here.)

A rigorous proof of the equality of the two approximations available for

the SCF is given in appendix B. It utilizes an impulsive sampling approach,

similar to (9) but in two dimensions, and can be considered as an alternative

to the approximation approach developed in this section. Of course, the end

result for the SCF in the vf domain is again (51) or (62) or figure 6.
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SUMMARY STATUS IN ALL FOUR DOMAINS

The results for the approximations to the TCF, WDF, CAF, and SCF are

sketched in figure 8. These plots are a condensation of the exact

analytical results given by (39), (42) t (43), (56) t (57), and (51)gf (62),

respectively. For example, the approximate WDF in the lower left of figure 8

is available only along the slices where t = nA/2, n integer. Along these

slices, the aliasing lobes (in frequency) alternate in polarity if n is odd,

but remain positive for n even. (Positive lobes are drawn toward the right

side in the figure).

Horizontal movement from one diagram to another in figure 8 is

accomplished by a Fourier transform from t to u (or vice versa).

Vertical movement is according to a Fourier pair relating T and f.

Finally, the diagonal connection between Ra and A a , or between Wa and

Xa, is by means of a double Fourier transform.
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RECOVERY OF ORIGINAL CONIINUOUS TWO--DIMENSIONAL FUNCTIONS

We have seen, by means of (52)-(54) and figure 6, that the original SCF

can be recovered from the approximate SCF

Aa(V,f) =A(v- 9, f - 2) for all v,f , (63)a A 2a
q m
q+m even

by means of the diamond gating function D(v,f) in (53), provided that

a < 1/F. We have used (51) and (62) here, and dropped the superscripts in

accordance with the discussion following (62). This means that we have the

possibility of evaluating the original continuous TCF R(t,T), WDF W(t,f),

and CAF x(u,T) at any argument values we please.

SIMPLIFICATION OF SCF Aa(v,f)

It would be an extremely tedious task to evaluate the approximate SCF

A directly by its definition (46) coupled with (40) and (41), which, ina

turn, are based upon starting information (39). In fact, there is a

startingly simple way of computing Aa '

Recall from (16) that spectrum

S(f) = a 2 exp(-i2wfak) s(ka) =

k

S(f - )) for all f . (64)

k
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Therefore

~91'* U - "S' 4v k * u 9
S(f + 2) S (f -S(f + -

kt

k-I f k + 1\, - - - for all U,f (65)
k

where we used (35). Now let m = k - .and q = k * 1; then

m+u k, -m
2 = k , =I , meaning that m ± q must always be even. Therefore,

(65) can be expressed as

S(f + U) (f A(v f - ) for all v,f (66)

q m
q+m even

But (66) is identical with (63)! Thus we have the compact result for the

approximata SCF

Aa(Vf) = S(f + ) S (f - ) for all v,f , (67)

where

9(f) = a exp(-i21rfak) s(ka) for all f , (68)

k

in terms of the original time samples {s(kA)1

It is convenient at this point to define, for all f, the function

exp(-i21rfak) s(ka) for jj<2

S(f) = S(f) rect(Af) = , (69)

otherise
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which can be computed directly from the samples fs(ka)1 . Then since

& < I/F, reference to figure 2 and (18) reveals that

S(f) = S(f) for all f . (70)

The only reason for distinguishing between S and S is that we think of S as

being computed directly from samples {s(ka) via (69), whereas we think of S

as being computed from s(t) via Fourier transform (13). Strictly, since S(f)

is bandlimited to ± F/2, *(f) in (69) only needs to be computed in that

somewhat smaller range of f.

At this point, we refer back to (52)-(54) and figure 6 to find that

A(u,f) = Aa(Uf ) D(Vf) = (f+ - ) for all v,f , (71)

since only the origin lobe in figure 6 can contribute, and there is no

overlap. Thus we have a very direct way of recovering the original SCF from

the time data samples: compute S(f) from (69), and then A(v,f) from (71).

All these results are predicated on sampling rate condition a < 1/F; they do

not require a < (2F) 1

If we substitute (70) in (71), we have original definition (35). Thus we

have come full circle on the SCF, returning with an obvious relation. This

indicates that a shortcut could have been taken with regard to getting the

key result (67). We have pursued the longer route because it indicates what

the complete set of fundamental processing equations are, and it clarifies a

number of points that have been under contention in the literature.
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RECOVERY OF ORIGINAL WDF AND CAF

From (37) and (71), we obtain the original continuous WDF as

W(t,f) = dv exp(i21rvt) S(f + ) S (f- for all t,f , (72)

where 3(f) is given by (69) in terms of samples {s(ka)) . The truncation of

'(f) at f = ± (2A) -l in (69) is what prevents all the distant sidelobes of

Aa(v,f) from contributing. We could hardly have expected a simpler result.

From (37) and (71), we also obtain the original CAF according to

df exp(i2ifT) S(f + 3) S*(f - )) for all ut (73)X ( U, T ) = 2

Thus, both the WOF and the CAF can be recovered by single Fourier transforms

of the same product function, but on complementary variables u and f,

respectively.

RECOVERY OF ORIGINAL TCF

Probably the best way to recover the original TCF R(t,r) is by means

of a combination of (32), (5), and (70):

R(t,T) = s(t + r) S (t - T) , (74)

with

s(t) = fdf exp(i21rft) S(f) . (75)

All the above procedures employ S(f) and a Fourier transform in some

fashion. The quantity 3(f) can be computed at any f of interest, directly

from samples [s(kAj , by means of (69).
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DIRECT TIME DOMAIN RECOVERY OF CONTINUOUS WDF

We have given two alternatives for the recovery of continuous time

waveform s(t) from samples {s(kai}. They are (21) or (75)d'(69). If we

employ the former in the time definition of the original WDF (line 1 of

(26)), we find, for all t,f,

Wit,f) JdT exp(-i2f) s(t + 1) s (t - )=

= exp[-12irfA(k - 1)] s(ka) s *t - &-~t k + (16)
k

where

sinr2w(l - 21fl&) t/al for Ifi <  -

W0 (t,f) for all t (77)

0 for Ifi > 2A

This result is equivalent to [5, (5)4(6)]. However, as noted there, this

alternative for the WDF is not computatlonally attractive, although (76) is

certainly alias-free because it is restoring W(t,f) itself, and not some

approximation to it.

As an aside, if the frequency domain version of the WDF is used instead

(line 2 of (26)), and if (21) is immediately transformed into the frequency

domain, we get directly
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S(f) = S(f) rect(Af) = 5(f) , (78)

in complete agreement with (72).

In the sequel to (62), it was mentioned that an alternative approach

involving impulsive sampling could be used to get various impulsive

two-dimensional functions from samples {s(kat. In a similar vein, the

continuous two-dimensional functions can be recovered by direct convolution

(interpolation) in the domain(s) of interest. These alternative forms are

not as numerically useful as the ones presented above, and so are deferred

to appendix C. However, some useful insight into the inadequacy of some

past attempts at interpolation is gained by this alternative viewpoint, and

the readers attention is directed to these results.

DISCUSSION

In retrospect. (72) and (69) are an obvious result. We know that the

original continuous WDF is given by (line 2 of (26))

W(t,f) = du exp(12wut) S(f + !) S (f - for all t,f (79)

So if we can get S(f) exactly from samples js(kAh), in some (any) fashion,

we can get W via (79). But, in fact, S(f) in (69) is identically equal to

S(f) for all f, when a < 1/F. Condition a < (2F) -1 is patently unnecessary

and too restrictive. A similar comment holds with regard to the CAF.
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Given samples !s(ka)), the function (f) in (69) can be computed at any

desired f values of interest. Therefore the product

9 (f -3) (80)

required in (72) and (73) can be computed at any v,f values needed, and the

integrals for W(t,f) and x(t,T) evaluated very accurately at any

arguments of interest.

This is the major difference relative to the TCF R(t,T), (74), which

could only be calculated at interspersed points in the t,T plane from the

available data; see (39) and figure 4. Strictly, waveform s(t) could be

interpolated, and then TCF R(t,T) filled in at the intermediate points of

interest in figure 4. This viable alternative requires just slightly more

calculations that the frequency domain approach given above; we will discuss

and compare both alternatives in a later section.

In practice, S(f) will only be calculated at a discrete set of

frequencies, in order to economize on computational effort. We then find

that the product function (80) is available at interspersed points in the

u,f plane in an identical manner to that for TCF R(t,T) in figure 4.

In fact, if S(f) is computed only for f/Af integer, then (80) is

available only at

f/Af = integer , u/Af = even integer (81)

and at

f/Af = odd integer/2 , 7/Af = odd integer . (82)

Just as this type of interspersed sampling required a finer sampling interval

in the time domain (see figure 5 and (45)), so also is a finer increment

required here in the frequency domain. Namely, we must have
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(83)
f 2T

in order to avoid aliasing in the t domain of the reconstructed WDF via

Fourier transform (72). The same requirement holds for aliasing control in

the T domain of the reconstructed CAF via (73). Here, T is the overall

effective duration of waveform s(t):

s(t)1 Z 0 for Itl > T/2 (84)

See figure 9. (The waveform can be centered at t = 0 without loss of

generality, merely by time delaying it.) However, there is a very convenient

and efficient way to meet requirement (83), as will be shown shortly, whereas
-l

requirement (45), a < (2F) , is very unattractive, at least through direct

sampling of time domain waveform s(t).

Since the total extent of the spectrum S(f) is F Hz (see (14) and

figure 1), waveform s(t) cannot be strictly time-limited. However, we

assume that a finite T value can be found for figure 9 such that

approximation (84) is a good one. Strictly, (84) should read

Isti << 1 for Itl > T/2 . (85)

maxJs(t)j

-/ 0 

Figure 9. Waveform s(t)
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DISCREIE PROCESSING IN FREQUENCY DOMAIN

Thus far, we have not discretized in the frequency domain; both V and f

have been allowed to take on continuous values. So we have, from (69),

S(f) = a exp(-i21rfAk) s(kA) for Ifi < -1 (86)

k

Now, suppose that we only evaluate S(f) at a set of discrete frequencies,

according to

S(n) = A exp(-i21rnk/N) s(kA) for nj 1< (87)

k

Since the sum on the right-hand side of (87) has period N in n, we can

evaluate it quickly via a collapsed N-point FFT; see (10)-(12). The

negative n values desired in (87) are easily accommodated by means of a

modulo N look-up in the FFT output.

EVALUATION OF WDF

The increment in argument f of S(f) in (87) is

A = 1  (88)f Na

In order to use these results in approximating integral (72) for the WDF,

W(tf) = dv exp(i2ivt) S(f + 1) S(f- (89)

we need to have the increment in v satisfy (due to the v/2 arguments)
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1 1 2
SNA' I.e., A N (90)

23.

So if we limit u in (89) to the values , one possible Trapezoidal

approximation to W is

exp1w 2tt) S(f + A) f j~ for all tjf (91)

This function is defined on a continuum in time,frequency space. But this

can be developed according to

W(t,f) = du exp(i2irvt) S(f + R) S (f - V) 6(u 2) =

t N

W(t,f)(b 6(t - t N2

W(t- t , f) for all t,f , (92)

where we used (72).

Since waveform s(t) is approximately limited to Itl < T/2 (see (84) and

figure 9), then WDF W(t,f) is also approximately limited to Iti < T/2, as

may be seen from line 1 of (26). The approximation (92) then appears as in

figure 10. f

W(+f).

• - J AA-.0 t

Z 2

Figure 10. Time-Aliased WDF
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In order that approximate WDF W not suffer significant overlap in time,

we see that we need

T N. T 2T
2 2 2' (93)

The FFT size, N, In (87) must be at least twice as large as the number of

samples, T/a, taken of waveform s(t). Recalling (88), this inequality

becomes

.1(1
tf NA 2T' (94)

consistent with (83), as predicted. Thus, approximation W(t,f) is an

extremely good approximation to W(t,f) for Itl < T/2 if FFT size N satisfies

(93). The goodness of i depends critically on the degree of satisfaction of

(85).

More generally, we could limit the u values in (89) to

V = Vo + NA arbitrary ( = Z) 1 (95)

getting alternative approximation

=at f fdv exp(1irwtv) 9(f + 1) 9*(f v ) -Z '( - V. ?b21

= W(t~f)0 fexp(12to) 6(t - t =

W(t - t NA f ) exp(iivo NAt) for all t,f . (96)

The plot for lW(t f)1 is identical to that of I(t f) I in figure 10, since
the magnitude of phase factor exp(ivu 0NAt) is 1 for all t. The main lobe,

t - 0, is unaffected by the choice of u . So criterion (93) is again

sufficient to avoid time-aliasing in ;a , regardless of shift
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DISCRETIZATION IN TIME AND FREQUENCY

For convenience, we therefore return to W in (91) and get, in particular,

the values

w(t, j) = 2 exp(12v 2 t) ----- ) S*( N) for all t (97)
t

where we must choose frequency f = , in order to use the available

samples of S in (87). We now further choose time

t N 2 N (98)2 M

and get the approximation in the form

-mAN !'n) = - exp(1irmi/M) gnt + 9*n (99
2(- MqNA NA A NA ~ NA~~ .(9

t

The reason for this choice of t values is that this sum can be accomplished

as a collapsed M-point FFT as described in (1O)-(12). The range of values

that must be covered is

2 N T i.e., ImI < I N (100)2 A ""N

and

nL < E i.e., In < FA N(11)
NA 2 2 (

Coincidentally, this identical procedure above has already been derived

by the author in [9, (A-13)4(A-14)]. However, it was done, at that time, to

generate slices in time of the WDF, without realizing that the procedure also

had an alias-elimination feature. Requirement (93) was [9, (A-5)4(A-6)].
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INCREMENTS IN t AND f

The increments in t and f in approximation W(t,f) in (99) are

= A N and A = . (102)

Since the original WDF is given by

W(t,f) = fdT exp(-i2fT) R(t,T) , (103)

and the effective extent of R(t,i) in T is ±T for the waveform s(t)

satisfying (84), then we must require

1 2TAf < - ' i.e., N >-a(4

in order to track the variation of W(t,f) in f. (See appendix A.) However,

this was a condition already encountered in (93).

Furthermore, since we have the alternative Fourier transform

W(t,f) = du exp(i21rut) A(u,f) , (105)

and the extent of A(v,f) in v is ±F, then we must also have

A < 1 i.e., A < 1 M (106)
t 2F' F N'16

in order to track W(t,f) variations in t. Now if we choose M smaller than N,
-l1

say M = N/2, then we obtain condition A < (2F) , Out this is a finer time

sampling increment than required. Also (102) gives At = A, which does not

track W(t,f) adequately in time; see (24)-(31). Conversely, if we choose M

larger than N, say M = 2N, then we get A < 2/F, which is already accommodated

by the earlier requirement
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a < 1/F. And at = A/4, which is overly fine in time. So, in order to

minimize the range of m values needed for investigation, we choose

M = N . (107)

Notice that the time increment at in (102) for W(t,f) is then at = A/2,

not the A that was sufficient for sampling s(t). This is consistent with

the fact that W(t,f) can be sharper in t than s(t).

SUMMARY OF WDF EQUATIONS

Here we summarize the major assumptions and requirements and list the

major equations by which the approximate WDF W can be computed.

Assumptions:

S(f) = 0 for IfI > F/2

Is(t)i 0 for Iti > T/2 (108)

This is no loss of generality, since the waveform can be time delayed and

frequency shifted as desired.

Requirements:

1
F'

N>-2 (> 2TF) (109)

Equations:

'Al. exp(-i2rnk/N) s(ka) for In[ <

() = (Ho)

0 otherwise
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-,-n = 2- ' exp(i2irmt/N) §(-n-t nt

t

for Iml < I Inj < N Fa (111)

Operation (110) can be accomplished by a single N-point FFT with

collapsing, while (111) requires an N-point FFT for each n value of interest.

The latter N-point FFT (for a given n) will sweep out N values of integer m;

this will cover a total time range of N 4 > T , as desired. The total number

of n (frequency) values to be searched is NFA. Values of W for negative

values of m are available in location m modulo N of the FFT output.

For the most advantageous choices of

_1 _2T

A= , N - A 2TF , (112)

we have ranges

Iml < TF Inl < TF

EVALUATION OF CAF

The equations for calculation of the CAF, from discretized frequency

samples of S(f), are very similar to those given above for the WOF.

Accordingly, they are deferred to appendix 0.
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INTERPOLATION OF TIME WAVEFORM

It was mentioned in the sequel to (80) that available data samples

{s(kael could be interpolated in time, to fill in the vacant spots of TCF

R(t,T) in figure 4. One procedure to accomplish this is by direct use of

sinc-function interpolation in (21). However, a more efficient procedure is

by use of FFTs.

From (22), we can get samples of the approximate spectrum according to

S(M) = a exp(-i2irmk/M) s(ka) for Iml < , (113)

k

which can be accomplished by an M-point FFT. The frequency increment is

Af (MA)-  The original continuous time waveform is

s(t) =Jdf exp(i2ift) S(f) =

(2A) 1

df exp(i2irft) 9(f) =

-(2A)

M/2

= d exp(i2 j9 t) =

m=-M/2

S(t) for all t , (114)
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where we have utilized the fact that a < I/F. (The tic mark on the summation

symbol indicates that the sumand values at m = ±M/2 must be scaled by 1/2')

gut approximation 4(t) can be developed in the form

1
2A M/2

(t) = df exp(i2rft) S(f) MA Z 6(f -A

-1 m=-M/2
2A

= fdf exp(i2rft) S(f) 6(f- =

m

s(t)O 6(t - mMA) =J s(t - mMA) for all t (115)

m m

This aliased function is illustrated in figure 11.

-M- 0 X Ia-I Mt

Figure 11. Time-Aliased Waveform '(t)

52



TR 8533

In order to avoid time overlap in figure 11, we must have

T
M > ; (> TF) . (116)

If this FFT size requirement for (113) is met, then figure 11 reveals that

S(t) = s(t) for Itl <M_(1
II 2 ; (117)

that is, we can expect that 1(t) is a good approximation to s(t).

In particular, if we want to interpolate samples {s(k&,5 by a factor of

2, we have, from (117) and (114),

M/2
nA f.A. 1 _ exp(i2n ) 9(R) for in) < M (118)s(--' s expai2-M)

m=-M/2

This can be done by a 2M-point FFT with zero-fill, and (MA are made

available by the M-point FFT in (113). The two requirements that

must be met are

A < , 2M > -T (> 2TF) (119)Ft A

This is the procedure utilized in [8].
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DISCUSSION/SUMMARY

We have two alternatives for computing an alias-free WDF and CAF. The

requirements that must be met are

1 T 2T
< i . M > N 2M > - . (120)

The processing equations are summarized below.

TIME DOMAIN APPROACH

)= A exp(-i21rmk/M) s(kA) for Iml (121)
MA 2m 2'

k

M/2

:5 exp(i2rmn/N) ( ) for ln < M

m=-M/2

A(n) , (122)

0 otherwise

W n A exp(-i2rnt/N) 1m 2t *m2

for ,ml < , < FA < N (123)

In the last equation, we obtain slices of the WDF in frequency (n) at fixed

time (m). (This result is in essential agreement with (7, (7) and (14)];

however, we are not restricted here to T = MA.)
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FREQUENCY DOMAIN APPROACH

a exp(-i2mwk/N) s(ka) for jnl <

k

NA =(124)

0 otherwise

,( A n 2 exp(i21rmt/N) (n + n t

forIn < t Fa (125)

Here, we obtain slices of the WDF in time (m) at fixed frequency (n). (This

result is in essential agreement with [7, (81)]; however, we are not

restricted here to 2T = NA.)

COMPARISON

Since waveform s(t) = 0 for Itl > T/2, the sum on k in (121) can be

confined to Iki < -1 < M , N while the sum on k in (124) can similarly be
2A 2 4

confined to Iki < T <N

The time domain approach requires one M-point (M = N/2) FFT, one N-point

FFT, and then an N-point FFT for each time index m of interest. The

frequency domain approach requires one N-point FFT and then an N-point FF1

for each frequency index n of interest. Thus, the time domain approach

N
requires one additional M = H - point FFT, which is a negligible difference,

2

compared with the multiple FFTs that must be performed for (123) or (125).

The major difference between the two approaches appears to be whether one

wants slices in frequency, or slices in time, of the WDF.
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It should be emphasized that the procedure here reconstructs the

original WDF of the continuous waveform s(t), at any time,frequency (t,f)

arguments of interest, from the samples fs(kaj . There is no need to define

or set up some arbitrary discrete form of the WDF. The discretization of

the tf arguments of the WDFs is undertaken only after this reconstruction

procedure has been delineated (via the u,f plane) and the sufficiency of

sampling requirement A < 1/F established. Of course, this eventual

discretization in time/frequency is necessary in order to reduce the general

procedure to a practical efficient algorithm. A similar set of arguments

applies equally well to the reconstruction of the CAF.

An alternative philosophy, to developing Trapezoidal approximations for

the various two-dimensional functions, is given in appendix B in terms of a

pair of interspersed impulsive trains in the t,T plane. The end result

for the approximate SCF in the u,f plane is shown to be identical to that

obtained earlier.

The connection of this two-dimensional impulse train with direct time

domain sampling of the waveform s(t) is considered in appendix E. Again,

the two appro hes, time domain sampling versus t,T domain sampling, are

shown to yield the same result. Finally, the fundamental rules and patterns

relating two-dimensional interspersed infinite sampling trains are displayed

at the end of appendix E.
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APPENDIX A. EXTENTS AND RATES OF VARIATION

OF TCF, WDF, CAF, SCF

From (5), we have Fourier pair

S(f) = dt exp(-i2wft) s(t)

s(t) = Sdf exp(i2.rft) S(f) ; (A-i)

and from figures 1 and 2, we know that if

S(f) = 0 for Ifi > F/2 , (A-2)

then samples ((At)j are sufficient for reconstruction of s(t) if at < 1/F.

That is, if a spectrum is bandlimited in the frequency domain to total

extent F Hz, samples of the corresponding time function must be taken with

time increment a t < I/F, in order not to lose any significant information.

In a similar vein, the duality of the equations in (A-1) indicates that

if, instead,

s(t) = 0 for Itj > T/2 , (A-3)

then spectrum samples JS(nAf)) are sufficient for reconstruction of S(f) if

frequency increment Af < lI/T.

The general rule, here, is that if a function in one domain is

essentially limited to overall extent E, samples in its Fourier transform

domain must be taken finer than l/E, in order not to lose any information.

This rule will be used frequently below.
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EXTENTS OF TCE, WDF, CAF, AND SCF

Henceforth, we assume that

S(f)& 0 for ]fi > Ff2

and

s(t)z 0 for Iti > T/2 .(A-4)

Thus, the overall frequency and time extents are approximately F Hz and T

seconds, respectively. It then readily follows from (32)-(38), namely,

R(t,T) = s(t + )~ S (t - ,) (A-5)

A(v,f) = S(f + 31) S*(f -) (A-6)

W(t,f) =fdT exp(-12wrfT) R(t,T) =(A-7)

= dv exp(i2wvt) A(v,f) , (A-8)

x(V'r) fdt exp(-12wuvt) R(t,r) =(A-9)

- 5df exp(1irwfT) A(v,f) , (A-10)

that the extents of these functions are as depicted in figure A-i. The solid

curves depict the contour level within which the function is essentially

t2
concentrated. In fact, for Gaussian waveform s(t) = a exp(- -~,the

22
choices T - 4a, F - for example, give these exact results in figure A-1,

at the exp(-4) - .018 level.
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RATES OF VARIATION

We now combine the sampling rule deduced under (A-3) with the extents in

figure A-1. From (A-7) and (A-8), we must have sampling increments (i.e.,

spacings of argument values on left-hand side) satisfy

f <2T
lt "  to adequately track WDF (A-11)

<f <

At<2F

From (A-9) and (A-1O), we need

A 1I

I

to track CAF . (A-12)

By inverting (A-7)-(A-10), we express

R(t,T) fdf exp(i2wfr) W(t,f) (A-13)

= fdv exp(i21t) x(v,T) , (A-14)

A(,f)= dt exp(-i21ut) W(t,f) = (A-15)

= {dT exp(-i21fT) x(u,T) . (A-16)

There follows from (A-13) and (A-14), that we need

to track TCF (A-17)

At 2
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while from (A-15) and (A-16),

< <1
T

to track SCF (A-18)
Af 2 T

These last four restrictions are identical to those given in (A-1l) and

(A-12). The total number of samples required to completely describe any one

2 2
of the four two-dimensional characterizations is T F

SAMPLING RATE FOR REAL WAVEFORM

Requirement (17) on the time sampling increment, A < 1/F, for recovery of

the time waveform s(t), is based upon figures 1 and 2 for a complex envelope

waveform s(t). If s(t) were, instead, a real waveform s1 (t), the earlier

development covers this case as well, but with a change in notation. The

spectrum SI(f) of waveform sI(t) is symmetric about f = 0, as depicted in

figure A-2. F is now the total frequency extent of the positive-frequency

components of sl(t).

We now have frequency limit

F1 F
2 - c + 2 '(-

and the stringent requirement (45), for an unaliased WDF, becomes

S + 2F (A-20)
Y<F~l'4c+2

For a narrowband waveform, f >> F, this requires an unnecessarily highc

sampling rate, compared to what would be required for the waveform
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corresponding to single-sided bandwidth F. Extraction of the complex

envelope (or analytic function) of sl(t) would return us to WDF requirement

*1
a < - , as in (45). This pre-processing feature is recommended for all real

waveforms. However, we also want to avoid this more stringent WOF

requirement and be subject only to the a < I/F limitation.

f P%

Figure A-2. Spectrum of Real Waveform
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APPENDIX B. IMPULSIVE SAMPLING APPROACH

Instead of trying to develop Trapezoidal approximations to the WDF, CAF,

and SCF integrals from the available information about the TCF in (39), we

adopt here the philosophy that continuous TCF R(tT) has had a pair of

impulsive trains applied to it, yielding the impulsive approximation

Rit,T) 2 A2 R(t.T)[m 6(t - mA) ( - 2qA) +

q

m q

A RMtr) 6(t n fl-) 6(T - ta)
n t2

n+t even

A2  R(-- ,A) 6(t - )6(- IA) . (B-I)
n 2

n+t even

That is, a couple of two-dimensional Impulse trains, interspersed in the

t,T plane, have been applied, so as to use all the available information

In (39). This is identical to the result for the TCF of impulsive time

waveform si(t), obtained by multiplying s(t) by a sampling train; see

appendix E.

We now define the corresponding WDF, CAF, and SCF as rigorous Fourier

transforms of (B-i), using the standard forms, for all argument values,

B-1
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Wi(tf) = dT exp(-i2mfT) Ri(t,r)

xi(uT) = fdt exp(-i2wut) Ri(tr)

Ai(u,f) = dt exp(-i21ut) Wi(t,f)

= £dr exp(-i2vfT) Xi(V,T) =

= dt dT exp(-i21rvt - i2ifT) Ri(tT) (B-2)

These exact interrelationships indicate that the same SCF A. will result

from TCF Ri. whether we proceed by way of the WDF or the CAF.

We have, in detail, WDF

Wi(tf) fd- exp(-i21rfT) Ri(tr)

= l a. 6(t - mA) dr exp(-i21rfr) R(t,T) 2A 6(T 2qA) 4

m q

2 (t (m + 2-A) fdT exp(--i2irfr) R(t,r) 2A2 6(T (2q +- 1),&)

m q

I 'A 6(t - mA) W(t,f) - _) +
2 2A

m q

+ a (t - (m + 1)A) W(t,f) O (- 1 )q 6(f-2A)=

m q

A 1 2 6(t - MA) 2 W(t'f - 2-A) +

m q

2A 6(t - (m + 2) ( W(tf-2- (8-3)m q
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A 2 6(t - MA) ' W(mA,f - 2A

m q

+L 6 2 - (m + ) (I)q Wm + )Af - _

m q

_ 1 a 2(t - m() Wa ( + t - (m + 2) a m A )

m m
-a 7 n W "nAl )f~

A 6(t - -II) a(-, , (B-4)

n

using (42) and (43). Thus, the areas of the impulses in W. are equal to

the approximations W developed in (42) and (43). within a scale factor of3

A/2.

Continuing on, from (B-3), the SCF is

Ai(V'f) =;fdt exp(-i21rut) W i(t~f)=

1 ;dt exp(-i2wut) W(t,f - LA) A 6(t -ma) .
2 2A.. 2 .

q m

+ / (_l)q dt exp(-i2irvt) W(t,f- -q) A 6( (m ) )

q m
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= -A(., f 6(

q m

1  (-1) q A(,,f - ~2-- (-1)m 5(,,- ) =

q m

+ (-I ( _ 2A ( -I,m 6 - ) =
q m

+ ~ ~ A 1)Q1l , f +

q m

A. f - ~) for all v,f .(B-5)

q m
q-m even

Thus, the SCF Ai , resulting from the impulsive sampling approach applied

to the TCF, is not impulsive at all in the v,f plane, and is identical with

the approximations A developed in (51) and (62).
a

Proceeding instead via the CAF, we have

xi(',,T ) = Jdt exp(-12irut) Ri(t,')

= S(T - 2qA) fdt exp(-i21rut) R(t,T) A 6(t - mA) +

q m

+A 6(A - (2q + l)a) fdt exp(-i21rut) R(t,T) A 6(t - (m 4 1)) =

q m

B-4



TR 8533

+ A 6(T - 2q) X(+.)9' - 6(u - )=

q m

= A 6( ( - (2q + l)A) . (- , )

q m

A A 6( - 2qA) x(- ) +-
q m

+ A 6 (T - (2q + .)A) 2(-l)m X(v (B-6)
A

q m

- 6(T)- x - .2q,) +
q m

+ A~ 6 (T - (2q + 1)2 (-l(1 )m X (v - M.l (2q + 1))

q mA

A , 6(T - 2qA) Xa(,. 2 q a) + a 6( - (2q + 1)A) Xa (.(2q + 1)A) =

q q

6(T - nA) Xa(vUnA) . (B-7)

n

via (56) and (57). Thus, the areas of the impulses in xi are equal to

the approximations Xa in (56) and (57). within a scale factor of A.
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Now strictly speaking, there is no need to proceed to SCF A. via the~1
CAF xi. since (B-2) shows that there is only one Ai function, regardless

of how reached. Nevertheless, for completeness, we also present the last

route. We have, using (B-6),

Ai(Vf) = f dT exp(-i21rfT) xi(U,T) =

= j r exp(-i2rfi) x(v - I,i) 2A 6(T - 2qA) +

m q

2 l (-)m dT exp(-i2irfT) x(v - M,T) 2hC 6( - (2q + l)A) =

m q

2~A(.i -~ G11  6(f _-q
m q

2 24

m q

S A( - m1, f - -) + 1  )mq A( - f
2a 24 2 '.' 2A

m q m q

2 2 A(v f- -- )  for all uj. (B-8)
m q

m+q even

As anti.,ipated, this is identical with (8-5). Thus we get a unique SCF in

the v,f plane.
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APPENDIX C. RECOVERY VIA DIRECT CONVOLUTION

This appendix is closely coupled with the previous one; it shows how to

recover the original continuous two-dimensional TCF, CAF, and WDF from their

impulsive counterparts. From (B-5), (B-8), (51), (62), (53), (54), and

figure 6, the original SCF is

A(v,f) = Ai(v,f) D(v,f) (C-1)

WDF RECOVERY

We have, using (8-4),

W(tf) = fdv exp(12ivt) Ai(v,f) D(Vf) =

t
- Wi(t,f) 0 d(t,f) =

W d(t - -A,f) for all tf (C-2)

Wa(!!A2f) 2 ~ 2'' l
n

where

Ad(t,f) =a =~~f fdv exp(1irut) D(v,f)=
2 2J

s in[ 2, t(l - 2Ajfj)]

2A for <f <

A
for all t

0 for IfI > 2,l

(1 - 2AIft) slnc[2 i(l - 2AIfI1 rect(tf) .(C-3)
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These results agree with [6, (27)4'(28)]. Interpolation rule (C-2) uses the

available slices of information in the t,f plane of figure 8. A particular

case of (C-3) is

_ d(O,f) = (I - 2AlfI) rect(Af) (C-4)

CAF RECOVERY

From (C-l) and (B-?), there follows

x(v,T) df exp(12WfT) Ai(vuf) D(vf) =

= x1(u,i) ®(,) =

= Xa(U,nA) A d(u,T - nA) for all u, , (C-5)

n

where

A= A f df exp(i2wfT) D(u,f) =

sin[w 1(I - Alul)] 1

a for v, < -

for all T

0 for > I

&-vl) sinc !( I- AlII rect(lAv) (C-6

Interpolation rule (C-5) uses the available slices of information in the

V.T plane of figure 8. A special case of (C-6) is

a (u,O) = (1 - ajIl) rect( AV) (C-7)
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TCF RECOVERY

From (C-1) and (B-1),

R(t,T) ffdv df exp(i2wvt + i2fr) Ai(v,f) D(v,f) -

tT
Ri(t,,) S * t,,)

-R(E-jA) a (t - k, - tA) for all t,, , (C-8)

n t
ne- even

where

A2 ,(t,,) = A2 Jfdv df exp(12,rtt - i2ifr) D(V,f)

sin2irt/A) sin 2t-)
2 ,2

A(2  4

it I . it I.
sin(-l) + sin(I- sin(Ia) - sin(!.)

2  s A 2A for all t,. (C-9)

Particular values are

A2 Pr(+ 1.T) = sinc(l) (C-10)

It should be observed that (C-8) dictates two-dimensional interpolation in

the t,T plane of figure 8. Attempts at simpler one-dimensional interpolation

in t or Y alone are bound to fail.
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PROPERTIES OF(t,T)

The two-dimensional function J(t,T) is unlike any proposed previously

for interpolation of TCF R(t,r). Some of its properties are listed here.

J1(-t.T) =J1r(t, - T) =J.t (c-11)

2Xr(mA sin (rm) - sin 2 ((C1)
2(m2 _ q2 )

If m s q or m s -q, then 0. If m = q, then t = T/2, while if m = -q,

then t = -T/2, giving

A 2k (±qA, 2qA) = sinc(2q) (C-13)

Therefore.fr(mA,2qA) = 0 for all m,q, except that A2.r(O,O) = 1. Similarly,

(m + !)A,(2q + l) ) 0 for all m,q (C-14)

If we define

S(t,T) = Dr(t,2,) = s 2(t2  - i2(/) s2 (C-15)I (t 2  2

then

l (,.t) 2t , (C-16)

meaning that J(t,T) is symmetric about the 450 line in the t,T plane.

Figure C-I depicts some sample values ofk in the first quadrant. In

particular,
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A2 Or (m,(2q + 1) ) 2a2 - 12

I [m -(q.4j

A & m+ lOa, 2qA (C-17)A2  m + )a,2q 2[ C(m + 1)2 _ q23j )_1(-,

Interpolation function 0(t,T) decays slowest along the t _T/2 lines in

the t,T plane, and fastest along the t = 0 and T = 0 lines. So direct

interpolation of the TCF is not best approximated by horizontal or vertical

slices, but in fact, by points between these slices.

'r -C-= -C12

/
0 4 0 -4

/

/

-4 4. o

/

+ o

01 2. 3

Figure C-1. Sample Values of A2J)(t,r)
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APPENDIX D. EVALUATION OF CAF

The original CAF of waveform s(t) is given by (73), in terms of

spectrum S(f) defined in (69). As in (87), we again presume that only the

discrete frequency calculations

9(-R) = a exp(-i21rnk/N) s(kA) for n< (-1)NA 2

k

-1

are available. Since the frequency increment is Af = (NA) , we

approximate CAF (73) according to

1 Zn - n -*

i(v,r) E exp(i21 _ _) S( + j) S

n

= df exp(i21rfT) S(f + 31) S(f 6(f
n

S(v,T) 6(T - n NA) =

n

X(v, T - n NA) for all i,1 . (0-2)

n

Since waveform s(t) is approximately limited to Itl < T/2 (see (84) and

figure 9), then CAF x(v,T) is approximately limited to JTJ < T, as may

be seen by substituting (32) into (34):
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x(VT) fdt exp(-i2ut) s(t + 1) s*(t - T (0-3)

Therefore, the approximate CAF ' takes the appearance shown in figure 0-1.

It is seen that overlap is negligible if we take

9T
T < NA - T, i.e., N > - (0-4)a *

This requirement on the FFT size in (0-1) is the same as that established in

(93) for the approximate WOF W.

DISCRETIZATION IN v and T

In order to utilize available samples (D-l) in the evaluation of

approximation (0-2), we restrict the evaluation of the approximate CAF to

frequency-shift values

x( 'M, T) = -1 : exp(i2, - x) n m) )S(, m) for all . (-5)
X(~ ) pj NA Sn NA NA NA

n

Furthermore, we consider only the particular values of time delay given by

-2 M, qA) = exp(i2rnq/N) S n S *(nm ) , (0-6)
N(j A) NA L7 ' NA' NA

n

since the right-hand side Is now an N-point FFT for each m value of interest.

N values of q are swept out by each FF1. Compare (0-6) with (111).
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-NA NA-7 NA

Figure 0-1. Delay.-Aliased CAF
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APPENDIX E. TCF OF IMPULSIVELY-SAMPLED WAVEFORM

Suppose continuous waveform s(t) is sampled with an infinite impulse

train (with delay t ) yielding impulsive waveform

si(t) - s(t) A . 6(t - t0 - kA) (E-l)

k

The corresponding TCF is

R1(t,T) -- slt + ) s*(t - )

2) s1(

R(t,.) a6(t- to+ - ) 6(t t - A- ) (E-2)

k m

This function has impulses in the tgr plane at

0 2 0 2

ti .e., at (E-3)

t -t o - A - (k - m)A.

Furthermore, the area of each of these impulses is 1:

ffdt d 6(t - to + -ka) 6(t-t - I - ma) = fd ( + ma -ka) 1

(E-4)

So (E-2) can be expressed alternatively as

R1 (t.,) - R(t.,) a2 2 6(t - to k + m A) 6(T - (k - m)A) (E-5)2 A
k m
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Now let

n = k m t=k - m. (E-6)

Then n ± t must be even, giving

Ri(t,T) = R(t,T) 62 6(t - to - 2 6) 6(- - !L) =

n t
nt even

= A' . R(t + ! A, t9) 6(t -to 2) 6(T - t.). (E-7)
n 02

n+t even

This is a slight generalization of (B-1), to allow for delayed sampling.

Thus, the two approaches, (B-1) and (E-1), yield identical results.

FUNDAMENTAL TWO-DIMENSIONAL SAMPLING PATTERNS

Suppose, in (B-1), that we let

R(t,w) = 1 for all t,T . (E-B)

Then Ri(t,r) there approaches

ri(t,T) = a2 6(t_ (- 6( _ t) (E-9)

n
n+t even

But, at the same time, use of (E-8) in SCF (35) yields

A(v,f) = 6(v) 6(f) , (E-1O)

E-2
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while (B-5) and (B-8) approach

q m
qmn even

Thus, (E--9) and (E-ll) are a double Fourier transform pair:

a1(Vf) = ffdt di exp(-12wut - i2rfT) ri(t,r) (E-12)

They generalize one-dimensional result (7)c(8) to two dimensions with

interspersed sampling. The impulse patterns of ri(tT) and ai(v,f) in

their respective domains are displayed in figures E-l and E-2.
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tC/A

j3 .

* 1. . •

I ~ it/

* -2.••

Figure E-1. Impulse Locations for ri(tr) in (E-9)

* 0

0

*P -. /, 0 0
-2

Figure E-2. Impulse Locations for ai(vf) in (E-I1).
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ABSTRACT

The receiver operating characteristics, namely detection
probability versus false alarm probability for a combiner which
employs nonlinearities with dead zones In each of its channels, are
derived In closed form as a function of N, the number of channels;
F. the fraction of data passed by the nonlinearity in each channel;
R. the signal-to-noise ratio In each channel; and T, the system
output threshold. Plots of these results for N = 1, 2, 4. 6, 8, 16.
32, 64 and F - 1. .1. .01, .001 reveal that Inclusion of the dead
zone does not significantly degrade performance, the typical loss
being of the order of I dB for small N, and 3 dB for larger N. in
the important operating ranges. The only limitation is that
certain ranges of false alarm probabilities are unachievable;
however, since these ranges generally correspond to undesirable
operating conditions, the limitation is not too relevant.

Approved for public release; distribution is unlimited.



TR 8595

TABLE OF CONTENTS
Page

LIST OF ILLUSTRATIONS ii

LIST OF TABLES iii

LIST OF SYMBOLS iv

INTRODUCTION 1

PROCESSOR DESCRIPTION 3

ANALYSIS OF PERFORMANCE 5

EXPONENTIAL EXAMPLE 9

Statistics of Detector Output 9

Characteristic Function of Output z 11

Auxiliary Functions 12

Exceedance Distribution Function of Output z 13

Detection and False Alarm Probabilities 14

Special Cases 15

GRAPHICAL RESULTS 17

Achievable False Alarm Values 18

Erratic Behavior of Receiver Operating Characteristics 19

Observations 20

SUMMARY 51

APPENDIX. Program for Receiver Operating Characteristics 53

REFERENCES 59



TR 8595

LIST OF ILLUSTRATIONS

Figure Page

1. Processor Block Diagram 4

2. Nonlinear Device Characteristics 4

3. ROC for N = 1, F = 1. 22

4. ROC for N = 2, F = 1. 23

5. ROC for N = 2, F = .1 24

6. ROC for N = 2, F = .01 25

7. ROC for N = 2, F = .001 26

8. ROC for N = 4, F = 1. 27

9. ROC for N = 4, F = .1 28

10. ROC for N = 4, F = .01 29

11. ROC for N = 4, F = .001 30

12. ROC for N = 6, F = 1. 31

13. ROC for N = 6, F = .1 32

14. ROC for N = 6, F = .01 33

15. ROC for N = 6, F - .001 34

16. ROC for N = 8, F = i. 35

17. ROC for N = 8, F = .1 36

18. ROC for N = 8, F - .01 37

19. ROC for N - 8, F - .001 38

20. ROC for N - 16, F - I. 39

21. ROC for N - 16, F - .1 40

22. ROC for N - 16, F - .01 41

23. ROC for N - 16, F - .001 42

24. ROC for N - 32, F - i. 43

ii



TR 8595

LIST OF ILLUSTRATIONS (cont'd)

Figure Page

25. ROC for N - 32, F - .1 44

26. ROC for N - 32, F - .01 45

27. ROC for N - 32, F = .001 46

28. ROC for N = 64, F - 1. 47

29. ROC for N = 64, F = .1 48

30. ROC for N - 64, F = .01 49

31. ROC for N - 64, F - .001 50

LIST OF TABLES

Table Page

1. Required Signal-to-Noise Ratio for PF - 1E-6, P D 5 21

2. Required Signal-to-Noise Ratio for PF - 1E-8, PD 9 21

iii



TR 8595

LIST OF SYMBOLS

N number of channels, figure 1

F fraction of data passed by nonlinearity, (3),(27)

R signal-to-noise power ratio in each channel

T system output threshold, figure 1

r n n-th input to system, figure 1

x n  squared-envelope filter output, figure 1

L breakpoint (threshold) of nonlinearity, figure 2,(28)

Yn output of nonlinearity, figure 1

z system output, figure 1

Px(u) probability density function of random variable x

P (u) cumulative distribution function of x, (1),(13)

Qx(u) exceedance distribution function of x, (1),(13)

py (u) probability density function of random variable y, (4)

f y(M characteristic function of random variable y, (5),(14)

z summer output, (6)

f () characteristic function of random variable z, (7),(16)

PF false alarm probability, (8),(26),(32)

P D detection probability, (8),(25),(32)

a auxiliary parameter, (12)

B auxiliary parameter, (15)

E(u,n) auxiliary function, (17)

Pn(u) normalized probability density function, (18)

f n() normalized characteristic function, (19)

Qn(u) normalized exceedance distribution function, (20)

iv



TR 8595

LIST OF SYMBOLS (cont'd)

Pz(U) probability density function of output z, (22)

QZ (u) exceedance distribution function of z, (23)

R(dB) signal-to-noise ratio R in decibels, (33)

ROC receiver operating characteristic

v/vi
Reverse Blank



TR 8595

OPERATING CHARACTERISTICS FOR COMBINER

WITH A DEAD ZONE IN EACH CHANNEL

INTRODUCTION

Some data processing shortcuts are often required in order to

keep the computational burden in today's detection and tracking

systems within manageable limits. One strategem to accomplish

this goal is to quantize the signal levels at various points in

the receiver processing chain. Another is to reject low-level

quantities, and retain only the larger terms, in the belief that

only the latter will lead to statistically meaningful decisions

on signal presence versus absence.

Here, we investigate one such technique, where all levels

below a breakpoint or threshold value are rejected, that is, set

to zero, while those signal levels above the breakpoint are

retained in their full accuracy. In particular, this approach is

employed in each branch of a combiner, as encountered in

diversity or multiple ping transmission. The question to be

addressed is the cost of this data reduction procedure, in terms

of the additional signal-to-noise ratio required to maintain a

desired level of performance, as measured by the false alarm and

detection probabilities.

1/2
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PROCESSOR DESCRIPTION

The processor of interest is depicted in figure 1. Received

inputs rl,..., rN are either composed of noise-only or they all

contain signal plus noise. An example of this situation is

afforded by a multiple ping transmission, with search on the

range of a possible target. The received signal in each channel

(if present) is match-filtered and square-law envelope-detected

at the candidate time instant of suspected or hypothesized peak

output.

At this point, instead of simply summing up these multiple

outputs, and in an effort to reduce the amount of information

sent on for further data processing, the squared envelope xn in

the n-th channel is subjected to the nonlinear operation depicted

in figure 2. Namely, all input levels to the nonlinearity below

breakpoint (threshold) value L are replaced by zero, whereas

those levels above the breakpoint are kept as is. The breakpoint

value L is chosen so that a specified fraction F of the input

data to the nonlinearity is passed, when noise-alone is present

at the inputs; the hope is that F can be chosen very small,

without significant degradation in performance. Finally, the

output of the summer in figure 1 is compared with output

threshold T for purposes of deciding on signal presence versus

absence.

3
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ANALYSIS OF PERFORMANCE

The inputs (r nI to figure 1 are presumed to be statistically

independent of each other, whether signal is present or not. The

squared-envelope outputs Ixn) are, therefore, also statistically

independent of each other, with probability density function

Px(u), which is presumed known for both cases of signal present

as well as signal absent. The corresponding cumulative

distribution function and exceedance distribution function are,

respectively,
u

Px(u) - f dt px(t) - Prob(x < u)

u)- f dt px(t) - Prob(x > u) . (1)
U+

The nonlinear device in figures 1 and 2 is characterized

mathematically by

f 0 for x < L

x for x > L

Breakpoint L is presumed nonnegative, since the output of the

squared-envelope detector in figure 1 can never be negative. The

fraction of data passed by the nonlinearity is

F - Prob(x > L) - Qx(L) . (3)

Since exceedance distribution function 0x is known, this equation

can be solved for the required breakpoint value L, once fraction

5
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F is specified. This calculation is done for the noise-only case,

since the breakpoint is desired to be set for this condition.

Inspection of figure 2 immediately reveals that the

probability density function of random variable Yn is given by

py(u) - Px(L) 6(u) + P x (u) U(u - L) , (4)

where 6 and U are the delta function and the unit step function,

respectively. Therefore, the characteristic function of random

variable yn is

fy( -M du exp(itu) py(U) -

- x (L) + J du exp(itu) px(u) (5)

L

Finally, using the statistical independence of the system

inputs, the summer output,

N

z - Yn (6)

n-i

has characteristic function

f ZM - [f (.)]N N[P(L) + du exp(itu) p(U)] N

L

For general given probability density function p x (u), the

integral on u in (7) can be done efficiently by means of a fast

Fourier transform. Then the numerical evaluation of the

exceedance distribution function of z, namely Qz(u), can be

6
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accomplished by the techniques utilized in [1, 2, 31. This

numerical approach would have to be carried out for both cases of

signal absent and signal present, in order to get the false alarm

probability PF as well as the detection probability PD'

Specifically,

PF ' Qz(T; noise-only)

PD - Qz(T; signal-plus-noise) . (8)

In essence, (7) characterizes the performance of the

processor in figures 1 and 2. The remaining effort is the

analytical and numerical manipulation of (7) into useful computer

forms and evaluation.

7/8
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EXPONENTIAL EXAMPLE

STATISTICS OF DETECTOR OUTPUT

If the inputs In ) to the processor of figure 1 are Gaussian,

then the squared-envelope detector outputs Ix n) are exponentially

distributed. We take the probability density function of xn to

be

(0 for u < 0

Px(U) xpu) for u 0 for noise-only . (9)

This corresponds to a mean value of

x = du u px(u) - 1 for noise-only . (10)

This choice of scaling at the detector output does not constitute

any loss of generality, since absolute level obviously has no

effect upon the receiver operating characteristics of the

processor in figure 1.

For Gaussian signal also present at the system input, the

probability density function of x n is

(0 for u < 0
Px(u) - a exp(-au) for u 0 for signal-present. (11)

Here,

a1 (12)

where R is the signal-to-noise power ratio at the matched filter

output. (If R - 0, then a - 1, and (11) reduces to (9).) Thus,

9
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any signal processing gains associated with the filtering process

are incorporated in the value of R. Observe that R is the

signal-to-noise power ratio per channel or per ping, not the

"total signal-to-noise ratio" at the system output.

Another signal model, which also leads to probability density

function (11) for the detector output, is slow Rayleigh fading in

the medium through which the transmitted pings traveled. That

is, during a single ping duration, the medium attenuation is

constant, but from ping to ping, the attenuation is statistically

independent and governed by a Rayleigh probability density

function on the received signal envelope.

10
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CHARACTERISTIC FUNCTION OF OUTPUT z

We will determine the statistics of output z of figure 1 for

the signal-present probability density function of x, as given by

(11). The case for noise-only will then follow immediately by

setting a - 1.

The cumulative distribution and exceedance distribution

functions of xn are given by substitution of (11) in (1), that is

{0 for u < 0}

(u1 - exp(-au) for u < 0

f1 for u < 0
x(U) - .(13)'I exp(-au) for u > 0 (

The characteristic function of random variable y is obtained by

substituting (11) and (13) in (5); thus

f y(M - 1 - exp(-aL) + [ du a exp(itu-au) -

L

- 1- B+ Ba exp(i&L)
- +B -a (14)

where we define

B - exp(-aL); L > 0 (15)

The characteristic function of output z is given by (7) as

fz~) -[1 s sa exp~i&L) ]N
f~ Z M - [1 -B

N

(N (1 -Bl)N-n B n exp(i&Ln) (16)
n-0 

(1-it/a )n

11
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AUXILIARY FUNCTIONS

Define the set of functions

1 for u < 0

tn exp(-t) ( k

E(un) dt n- exp(-u) en(u) - exp(-u) (17)

u k-O

for u > 0

for n > 0. Here, we used the partial-exponential notation e n(u)

given in (4; 6.5.11]. The expansion of the integral in (17) may

be verified by repeated integrations by parts.

Also, define the set of normalized probability density

functions

0 for u < 0

Pn(u) n-  exp-u) for u > 0 forn1,

Po (u) - 6(u) for all u . (18)

The corresponding characteristic functions are

1
f ((1) n for n > 0 , (19)

while the exceedance distribution functions are

Qn(u) - E(u,n-1) for all u, n > 1 ,

f1 for u < 0
00(u) W ( 0 for u > 0(20)

12
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EXCEEDANCE DISTRIBUTION FUNCTION OF OUTPUT z

Since pn(u) and fn(E) are a Fourier transform pair for n > 0,

it follows that

1 and a p (au) (21)

(1-i /a) 
n

are a Fourier transform pair. Then (16) allows us to determine

the probability density function of output random variable z as

N

P(u) - > ()(1-B )1 B na p (a(u - Ln)) for all u , (22)
Z .U n n

n-0

where the "shift factor" u - Ln is due to the exp(itLn) term.

This is a useful expansion, even for large N, since all the terms

are positive or zero; there is no cancellation, as there would be

for an alternating series.

The exceedance distribution function of z follows

immediately from (22) as

N

(u) - ) (l-B)N-n Bn Qn(a(u - Ln)) for all u . (23)

n-0

Again, this series has no negative terms. Also, the Qn terms are

sums of positive quantities, as may be seen by referring to (20)

and (17). We will be interested only in u > 0 in the following;

then the n - 0 term in (23) is, by use of (20),

(1 - B)N Q o(au) - 0 for u > 0. (24)

13
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DETECTION AND FALSE ALARM PROBABILITIES

we now utilize (8), (23), (24), and (20) to obtain the

detection probability as

N

P (N (1-B) Nn B n E(a(T - Ln), n-1) .(25)

n-i

Here, B is given by (15), and a is given by (12).

The false alarm probability is obtained by setting R - 0,

that is, a - 1:
N

P (1-F)N-n Fn E(T - Ln, n-i) . (26)

n-1

Here, we have utilized (3) and the sequel, (13), and the fact

that B in (15) reduces, for a - 1, to

exp(-L) - Qx (L; noise-only) - F , (27)

which is the fraction of data passed by the nonlinearity in

figure 1, for noise-only. In fact, (27) allows us to explicitly

solve for the required breakpoint value L, for this exponential

example, as
L - - ln(F) . (28)

To summarize, (25) and (26) give the detection and false

alarm probabilities in terms of fundamental quantities

N, number of channels,

F, fraction of data passed,

R, signal-to-noise power ratio per channel,

T, output threshold. (29)

14
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The remaining variables in (25) and (26) are given by (28), (12),

and (15) as

1
1 I+R

L - -ln(F) , a = -+R B B = exp(-aL) - . (30)

SPECIAL CASES

For N - 1, one channel, (25) and (26) reduce to

F for 0 < T <Li
PF - F QI(T-L) = exp(-T) for L < T

F( a for 0 < T <
PD = B Q1 (a(T-L)) = exp(-aT for L < T (31)

That is, PD " PFa for N - 1, independent of the value of fraction

F. This is obvious from (13) in this case.

Instead, if fraction F = 1, that is, no nonlinearity, then

(28) and (15) yield L - 0, B = 1, and we find

P F E(T,N-1)

P D E(aT,N-I) for F - 1 . (32)

PD- E(aT,N-1)

These results agree with [5; (7) and (8)]. A program for the

evaluation of general results (25) and (26), as well as the

special case (32), is presented in the appendix.

15/16
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GRAPHICAL RESULTS

In figure 3 , the receiver operating characteristic (ROC) is

given for N - 1, F - 1. That is, there is one channel and the

nonlinearity is not active. There is no need to consider values

of F less than 1, according to the comment under (31); however,

see the subsection below on achievable false alarm values. The

curves in figure 3 are parameterized according to

R(dB) - 10 logl0 R . (33)

The remaining fundamental quantity, threshold T in (29), has been

eliminated, and PD is plotted versus P F on normal probability

paper.

In figures 4, 5, 6, 7, the number of channels is kept at

N - 2, while fraction

F - 1, .1, .01, .001, (34)

respectively. Additional cases for

N - 4, 6, 8, 16, 32, 64, (35)

in figures 8 through 31, complete the coverage in a similar

fashion.

*Figures 3 through 31 are grouped at the end of this section.

17
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ACHIEVABLE FALSE ALARM VALUES

Not all values of false alarm probability can be reached by

the processing system of figure 1. Since the nonlinear device

output yn can only take on the values yn = 0 and yn L, the sum

z can only assume the values z - 0 and z > L. Also, since the

probability of z - 0 is (1 - F)N for noise-only, where F is the

fraction of data passed by the nonlinearity in each channel, then

N
the probability of getting z > L is 1 - (1 - F)N . Thus, the

range of reachable false alarm probabilities is

NP F 1-(-F) . (36)

This bound holds regardless of the form of the probability

density for random variables (xn) in figure 1.

For the special case of N - 1, this rule yields PF F. Thus,

the plot in figure 3 for N - 1, F - 1 must be modified for F < 1,

to the extent that only the values for PF F are achievable.

For N > 1, the rule in (36) first becomes obvious in figure 6

for N - 2, F - .01. Namely, (36) yields

PF < 1 - (1 - .01)2 - .0199 . (37)

Thus, the curves in figure 6 are terminated to the right of this

value of the false alarm probability. This termination feature

occurs in numerous other figures, always governed by (36).

18
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ERRATIC BEHAVIOR OF RECEIVER OPERATING CHARACTERISTICS

Some of the curves develop significant kinks for larger

values of the false alarm probability; see figure 31 for the most

pronounced example in this set of results. This behavior is not

due to computer round-off error; rather, it is due to the shifted

components of probability density function (22) "kicking in" when

the output threshold reaches various multiples of breakpoint L.

Equivalently, the shifted E-function components of the detection

probability and false alarm probability in (25) and (26) are

activated at different threshold levels, reflecting the inherent

abrupt change of behavior of these functions at zero argument.

For example,

1i for u < 0
E(u,0) M

I exp(-u) for u > 0

r 1 foru<O0
E(u,1) - 1.o (38)

1 exp(-u)(l+u) for u > 0

Thus, E(u,O) has a discontinuous slope at u - 0, while E(u,1) has

a discontinuous second derivative at u - 0.

19
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OBSERVATIONS

The required signal-to-noise ratios for various values of N

and F are presented in tables 1 and 2 for two different levels of

performance, as read directly from figures 3 through 31. The

overriding impression is that the degradation in performance is

not severe, even for small values of F, the fraction of data

passed by the nonlinearity. For example, from table 1, the

decibel difference at F = .001 versus F = 1 is, for N = 1, 2, 4,

6, 8, 16, 32, 64, respectively, just

0, 0.3, 0.8, 1.0, 1.2, 1.7, 2.2, 2.7 dB.

For table 2, these differences are substantially the same:

0, 0.2, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5 dB.

Thus, the losses inc-ease from 0 dB at N = 1 channel, to less

than 3 dB for N = 64 channels.

The situation is slightly worse for the lower-quality case of

PF = 1E-3, PD = .5. Namely, as F is changed from 1 to .001, the

required increment in signal-to-noise ratio is 0 dB for N - 1,

whereas it is 3.4 dB for N = 64.

20
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Required R(dB) for F =
N 1 .1 .01 .001

1 12.8 12.8 12.8 12.8

2 9.5 9.6 9.7 9.8

4 6.8 6.9 7.2 7.6

6 5.4 5.5 5.9 6.4

8 4.5 4.6 5.1 5.7

16 2.3 2.6 3.2 4.0

32 0.4 0.7 1.6 2.6

64 -1.4 -1.0 0.1 1.3

Table 1. Required Signal-to-Noise Ratio for PF - 1E-6, PD .5

Required R(dB) for F -

N 1 .1 .01 .001

1 22.4 22.4 22.4 22.4

2 16.0 16.0 16.1 16.2

4 11.6 11.6 11.8 12.1

6 9.4 9.6 9.9 10.2

8 8.1 8.2 8.6 9.1

16 5.3 5.6 6.1 6.8

32 2.9 3.3 4.0 4.9

64 0.8 1.2 2.2 3.3

Table 2. Required Signal-to-Noise Ratio for PF 1E-8, PD .9

21



TR 8595

.99

.96

.01

E-1E- .- - - E5E4 E3 .0.2.5.

Probablity f Pals0Alar
Figre . RC fr 1, F1/

.5 10,22



TR 8595

. 999

.998

.995

c .99
.900

.9)

0

- .5

-oo

.71

.51E- - E-.00- EE3.1.2 .5 .

Figur 4. RO frN o,

.23



TR 8595

.995 -- -0-- -- _

Uo

C3o

0 'o

000

.24



TR 8595

.999

.998

.985

.9

0-

01

001
a. .3 o zoo

.2

.02

.01

E- 10E-9 E-8 E-? E-6 E-5 E-4 E-3 .01.02 .05 .

Probability of False Alarm

Figure 6. ROC for N=2, F=.O1

25



TR 8595

.999

. 998

.99

.98

4-,

01

Fiur 7. RC1o"N2oF.O

.026



TR 8595

c .9

00

.95

0 
z

.01 
1-,o

.E 00-IO- - - - - - 0.2 .5 .
Prbblt0f as lr

Fiue4. RC-oP=4 1
0000 0027



TR 8595

.999

099

.99

.9 -0

612

0 
0

Prbblt oF Fale0Aar

Fiur 9. /OROCfrN4

>. .ooI.,".-,: /000,128



TR 8595

. 999

. 995

99 I

0I

.9

0

-o -o

000

.4

00

E-1.- E- - - E5 E4 E3 .0.2.5

Prbailt of FaseAlr

Fiur /o O o 4 .Y

72



TR 8595

.995

. 99

.98 1"

00

4 J

0.0

+11

.. 0

.7

E-1E- E8 -7 -6E- E4 -3 0102.0 .

Proabiit of,0 Fas 1lr
Figur ii."oC o"4 .O

01 Z .30



TR 8595

95 1-' 1-0

908 -11 -,1*

13 k-

.95 - 2 .- , -I

- .5 ,0.

0000L00

4-)0 0

Prbailt A f Fas/lr

Z z71



TR 8595

.98

o00-

.94-o,~ ~ " "Oo ooez oo

C7.

4-)

- .
0

Fiur 13.0 RO'0rN, F.
"Oo, 032



TR 8595

.999

00,

.95 ____'o 
.1 oo

c4 .9
0 00

0,00
L)

024

E-1%- .- 8 E- -6 E5 E- - .10 .5

PrbbiiyofFle)lr

Fiur 14.RO fr N, .O

S z .*,33



TR 8595

.998

.99

00

000

4J .2

4- 34



TR 8595

.999

.998 0,.0

.95x

I0.1

63.

99

. 98 .7

Z0"

..)

0

. 01 *' 0.

Probability oFFaseAlr

Fiur 16. ROoorN8

.035



TR 8595

.9 9 9 oo. 7

-ol

Figur 1.RCfrN8 F.10

000- 
-36



TR 8595

. 999

.98

a, Iaf. 11
.99 op

.0 '1 11

.- g1o "o

0l 

,

L

.7

0 0

.51

Prbblty4as Al

Fiue18.O .3r N=, F

.27



TR 8595

.999

C .95

007;

.0

a)

4-P

0

1/

E-O-9E8E- - E5 E- - .10'.5.

Prbailt of10 FaseAlr
Figure 1. ROC fR(A8BIIOO

38V



TR 8595

. 998

* 99501"X,

95 o,00

c .9
0

4v .8A

0

4-2

-. 5 O

. .

00

.2 
/ / / X

.051

.02

.01

E- 10E-9 E-8 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

Probability of False Alarm

Figure 20. ROC for N=16, F1I.

39



TR 8595

.99

.9800

4 4/

.- 1.40,Oo
0

.7)

.0 .

.5 0

.11

*o 05

. 02//wd

E-10E-9 E-8 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

Probability of False Alarm

Figure 21. ROC for N=16, F=.1

40



TR 8595

. 999

.996 0 0

.98

'00

q- .700 V kr & ,

0

.6
.4

000
0
L .

.05

.02

.01

E-I0E-9 E-8 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

Probability of False Alarm

Figure 22. ROC for N=16, F=.O1

41



TR 8595

.995

.99

000

>1 .2

.01,

E-10E-9 E-8 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

Probability of False Alarm

Figure 23. ROC for N=16, F=.001

42



TR 8595

.998 ,)

.98

.95

.9 7
0

4) .8F

>% .6

0 
/

EL. .301

.02

.01

E-1OE-9 E-8 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

Probability of False Alarm

Figure 24. ROC for N=32, F=1.

43



TR 8595

.995

1,

0".6

4.7

.500

CL .3

.2

.1?

.05

.02

E-1OE-9 E-8 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

Probability of False Alarm

Figure 25. ROC foar N=32, F=.1

44



TR 8595

C .99

0,

c. .9

.0

C.)

.8 

o00

.01

.0545



TR 8595

.99

.95000-z - 0

4-P ..

Z001

4- .7

446



TR 8595

.99

.)8

00

- .7

0

-)

0
L
C. .3

.2 Y V

.1 e

.05

.02

.01 1OF X IF/

E- 10E-9 E-8 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

Probability of False Alarm

Figure 28. ROC for N=64, F1I.

47



TR 8595

011

0"

.07

448



TR 8595

.999 -I-A 
-

.99 6-- - 1-

.99V

0

4-3

0

.4 V

00

.301

. 02

E-IOE-9 E-8 E-7 E-6 E-5 E-4 E-3 .01.02 .05 .1

Probability of False Alarm

Figure 30. ROC for N=64, F=.O1
49



TR 8595

C .9

.00

4-) ,o

02 ,,

E-1%- .- 8 z- E-6 E-5 /- 0. .0X .

Fiur 31 ROCloo fo N4, .O

05



TR 8595

SUMMARY

The cost of suppressing the low-level outputs of the detected

squared-envelopes is generally minimal, unless the number of

channels becomes very large. This conclusion has been drawn only

for the example where these squared-envelopes have an exponential

probability density function for both the noise-only as well as

the signal-plus-noise cases. It should also be checked out for

other candidate forms of probability density functions besides

exponential.

One line of reasoning that makes this conclusion more

acceptable is that it is only the larger outputs from the

detectors that are going to lead to positive statements about

signal presence. Thus, suppression of the smaller outputs should

be inconsequential, at least for few channels. However, for a

large number of channels, the sum of many nonzero low-level

quantities may add up to a significant value and affect an

occasional detection decision.
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APPENDIX A. PROGRAM FOR RECEIVER OPERATING CHARACTERISTICS

10 !GENERATE PD VS PF; COMBINER WITH DEAD ZONE IN EACH CHANNEL, TR8595
20 N=64 N NUMBER OF CHANNELS; 1>=l
30 F=.001 I FRACTION OF DATA PASSED; O.<F<=1.
40 DIM T(100) THRESHOLD VALUES
50 COM PH(100),Pdl(100),Pd2(100),Pd3(100),Pd4(100),Pd5(100)
60 COM Pd6(e100),Pd7(100),Pd8(100),Pd9(100),PdlO(100),Pdll(l0)
70 COM Pdl2(100),Pdl3(100),Pdl4(100),Pdl5(100),Pdl6(100),Pdl7(100)
80 CON PdlS(100),Pdl9(100),Pd2O(10O)
90 DOUBLE N,I,J I INTEGERS
100 T=.01
110 T=T+.OI
120 Pf*=FNPf'(T,F,N)
130 IF Pf'>.l THEN 110
140 T1=MAX(T-.01,.01)
150 T=T+.OI
160 Pf=FNPf(T,F,N)
170 IF Pf>IE-10 THEN 150
180 T2=T
190 DeIt=(T2-TI)/100.
200 FOR 1=0 TO 100
210 T=T+Delt*l
220 T(I)=T I THRESHOLD VALUES
230 Pf(I)=FNPC(T,F,N ) FALSE ALARM PROBABILITIES
240 NEXT I
250 Rldb=-5 I STARTING SIGNAL-TO-NOISE RATIO (dB)
260 Delr=.5 INCREMENT IN SNR (dB)
270 FOR J=1 TO 20
280 Rdb=Rldb+(-1)*DeIr I SIGNAL-TO-NOISE RATIO PER CHANNEL (dB)
290 R=10.'.(.1*Rdb) POWER RATIO
300 FOR 1=0 TO 100
310 T=T(I)
320 Pd=FNPd(R,T,F,N) I DETECTION PROBABILITIES
330 IF J=1 THEN Pdl(i)=Pd
340 IF J=2 THEN Pd2(1)=Pd
350 IF J=3 THEN Pd3(lD=Pd
360 IF J=4 THEN Pd4(1)=Pu
370 IF J=5 THEN Pd5(I)=Pd
380 IF J=6 THEN Pd6(1)=Pd
390 IF J=7 THEN Pd7(I)=Pd
400 IF J=8 THEN PdS(1)=Pd
410 IF J=9 THEN Pd9(1)=Pd
420 IF J=10 THEN PdlIU>l/Pd
430 IF J=11 THEN Pdll(I)=Pd
440 IF J=12 THEN Pdl2(I)=Pd
450 IF J=13 THEN Pd13(1)=Pd
460 IF J=14 THEN Pdl4(1)=Pd
470 IF J=15 THEN Pdl5(1)=Pd
480 IF J=16 THEN Pdl6(1)=Pd
490 IF J=17 THEN Pdl7(1)=Pd
500 IF 3=18 THEN Pdl8(1)=Pd
510 IF J=19 THEN Pdl9(I)=Pd
520 IF J=20 THEN Pd2O(I)=Pd
530 NEXT I
540 NEXT J
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550 FOR 1=0 TO 100
560 Pf(I)=FNInvphi(PC(I))
570 Pdl(I)=FNlnvphi(Pdl(I))
580 Pd2(I)=FNlnvphi(Pd2(I))
590 Pd3(I)=F~lnvphi(Pd3(I))
600 Pd4(I)=FNInvphi(Pd4(I))
610 Pd5(I)=FNlInvphi(Pd5(I))
620 Pd6(I)=FNInvphi(Pd6CI))
638 Pd7(I)=FN~nvphi(Pd7CI))
640 PdS(I)=FNInvphi(PdS(>))
650 Pd9(I)=Ft-lnvphi(Pd9(I))
660 PdlOCI)=F-Inph-i(Pd1OCI))
670 Pdll(I)=FNInvphi(Pdll(I))
680 Pdl2(I)=FNlnvphi(Pdl2(I))
690 PdI3 I )=FNInvphi (Pdl3( I))
700 Pdl4(I)=FNInvphi (Pdl4(I))
710 PdlS(I)=FNInvphi (Pd15UI))
720 Pdl6(1)=FNlnvphi (Pdl6(I))
730i Pdl7(I)=FNlnvphi(Pd17(I))
740 Pdl8( I )=FNInvphi (Pdl8( I ))
750 Pdl9( I )-FNInvphi (PdI9( I))
760 Pd20(I)=FNInvph-i(Pd2O(I))
770 NEXT I
780 CALL Plot
790 END
800
810 DEF FN.Inv.phi CX) AMlS 55, 26.2.23
820 IF X=.5 THEN RETURN 0.
838 P=M I N(X,1. -X)
848 T=-LOG(P)
850 T=SQR(T+T)
860 P=1.+T*(1.432788+T*(. 189269+T*.001308))
870 P=T-(2.515517+T*( .802853+T*.010328))'P
880 IF XM.5 THEN P=-P
890 RETURN P
908 FNEND
910
928 DEF FNE(U,DOUBLE N) N>=0
930 DOUBLE K INTEGER
940 IF U<=0. THEN RETURN 1.
950 S=T=EXP(-LI)
960 IF N=0 THEN RETURN S
970 FOR K=1 TO N
980 T=T*U/'K
990 S=S+T

1000 NEXT K<
1010 RETURN S
1020 FNEND
1030
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1048 DEF FNPf(T,F,DOUBLE N) I FALSE ALARM PROD. T>80,8<F<=,H>s1
1850 DOUBLE Ns,NI I INTEGERS
1860 IF F<I. THEN 1898
1878 PC=FIE(TN-1)
loe RETURN PC
1898 L=-LOG(F)
1100 HI=N+1
liie FI=1.-F
1120 A=F/F1
1138 Tn=FIAN
1148 C=T
1158 Pf=8.
1168 FOR Ns=1 TO N
1178 C=C-L
1188 Tn=Tn*A*(Nt-Ns)/Ns
1190 Pf=Pf+Tn*FNE(C,Ns-1)
1208 NEXT Ns
1218 RETURN Pf
1229 FNEND
1230
1240 DEF FNPd(R,T,FDOUBLE N) I DETECTION PROD. R>inT>8,<F<-I,N>us
1258 DOUBLE Ns,Nt I INTEGERS
1268 Rs=1./(I.+R) I a
1278 IF F<I. THEN 1388
1288 Pd=FNE(As*T,N-1)
1298 RETURN Pd
1308 L=-LOG(F)
1318 N1=N+1
1328 B=EXP(-Rs*L)
1338 BI=1.-B
1348 R=B/B1
1350 Tn=BIAN
1368 C=T
1378 Pd=8.
1388 FOR Hs1 TO N
1398 C=C-L
1488 Tn=Tn*A*(Nt-Ns)/Ns
1410 Pd=Pd+Tn*FNE(Rs*C,Ns-t)
1428 NEXT Hs
1438 RETURN Pd
1448 FHEND
1458
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1460 SUB Plot !PLOT PD VS PF ON NORMAL PROBABILITY PAPER
1470 COM PfX*) ,Pdl (*) ,Pd2(*) ,Pd3(*) ,Pd4(*) ,Pd5(*)
1480 COM Pd6(*) ,Pd?*) , Pd8(*) ,Pd9(*) ,PdlO(*) ,Pdl 1 *)
1490 CON Pdl2(*), Pdl3(*), Pdl4(*),PdlS(*), PdlE(*),Pdl7(*)
1500 CON PdlS(*),Pdl9(*),Pd2OC*)
1510 DIM AS(30J,BSC3O],CSE31J
1520 DIM Xl abel SC1:30),YViabel S(1:30)
15-30 DIM Xcoord( 1:30), Vcoord( 1:30)
1540 DIM Xgrid(1:30),Ygrid(1:30)
1550 DOUBLE N,Lx,Ly,Nx,Ny, II INTEGERS
1560
1570 AS'"Probabilitv of' False Alarm"
1580 BS="Probability) of Detection"
1590 C$="Figure ROC for 14=64, F=.001"
1600
1610 Lx=12
1620 REDIM Xl abel 5(1 :Lx) ,Xcoord( I:Lx)
16:30 DATA E-1O,E-9,E-8,E-7,E-6,E-5,E-4,E-3,.O1,.02,.05,.1
1640 READ Xlabel$C*)
1650 DATA IE-10,1E-9,1E-8,1E-?,IE-6,1E-5,1E-4,.0o1,.01,.02,.os,.1
1660 READ XcoordC*)
1670
1680 Ly=18
1690 REDIM Vi abel 5(1:Lp),Vcoord( :4p)
1700 DATA .O1,.02, .05, .1,. 2,. 3,. 4,.5, .6,.?, .8,.9
1710 DATA .95,.98,.99,.995,.998,.999
1720 READ YlabelS(*)
1730 DATA .01, .02, .05,.1, .2, .3, .4, .5, .6,.?, .8,.9
1740 DATA .95,.98,.99,.995,.998,.999
1750 READ Ycoord(*)
1760
1770 Nx=14
1790 REDIM Xgrid(1:Nx)
1790 DATA 1E-10,IE-9,1E-8,1E-?,IE-6,1E-5,IE-4
1800 DATA .001, .002, .005, .01, .02, .05, .1
1810 READ Xgrid(*)
1820
1830 Ny=18
1840 REDIM Vgrid(1:Ny)
1850 DATA.0,.2.0.1.2.3.4.5.6.,8,9
1860 DATA .95,.98,.99,.995,.998,.999
1870 READ Vgr-id(*)
1880
1890 FOR 1=1 TO Lx
1900 XcoordC I )FNlnvphi (Xcoord( I))
1910 NEXT I
1920 FOR 1=1 TO Ly
1930 Vcoord( I)=FNInvphi (Ycoord( I))
1940 NEXT I
1950 FOR 1=1 TO Nx
1960 Xgrid(I)=FNInvphi (Xgrid(I))
1970 NEXT I
1980 FOR 1=1 TO NV
1990 Ygrid(I)=FNlnvphi (Vgrid(I))
2000 NEXT I
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2010 Xl=Xgrid(1)
2020 X2=Xgrid(Nx)
2030 Y1=Ygrid(1)
2040 Y2=Ygrid(Ny)
2050 GINIT 200./260. i VERTICAL PAPER
2060 PLOTTER IS 505,"HPGL"
2070 PRINTER IS 505
2080 PRINT "VS2"
2090 LIMIT PLOTTER 505,0.0200.,0.,260. 1 1 GDU = 2 mm
2100 VIEWPORT 22.,85.,19.,122.
2110 WINDOW XI,X2,YI,Y2
2120 FOR I=1 TO Nx
2130 MOVE Xgrid(I),Yl
2140 DRAW Xgrid(I),Y2
2150 NEXT I
2160 FOR 1=1 TO Ny
2170 MOVE XI,Ygrid(1)
2180 DRAW X2,Ygrid(1)
2190 NEXT I
2200 LDIR 0
2210 CSIZE 2.3,.5
2220 LORG 5
2230 Y=YI-(Y2-Y1)*.02
2240 FOR 1=1 TO Lx
2250 MOVE Xcoord(1),Y
2260 LABEL Xlabel$(I)
2270 NEXT I
2280 CSIZE 3.,.5
2290 MOVE .5*(XI+X2),Y1-.06*(Y2-YI)
2300 LABEL A$
2310 MOVE .5*(XI+X2),Y1-.I*(Y2-YI)
2320 LABEL CS
2330 CSIZE 2.3,.5
2340 LORG 8
2350 X=XI-(X2-X1)*.O1
2360 FOR 1=1 TO Ly
2370 MOVE X,Ycoord(I)
2380 LABEL Ylabel$(I)
2390 NEXT I
2400 LDIR PI/2.
2410 CSIZE 3.,.5
2420 LORG 5
2430 MOVE Xl-.15*(X2-Xl),.5*(Yl+Y2)
2440 LABEL B$
2450 PENUP
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2460 PLOT Pf(*),Pdl(*)
2470 PENUP
2480 PLOT Pf(*),Pd2(*)
2490 PENUP
2500 PLOT Pf(*),Pd3(*).
2510 PENUP
2520 PLOT Pf(*),Pd4(*)
2536 PENUP
2540 PLOT Pf(*),PdS(*)
2550 PENUP
2560 PLOT Pf(*),Pd6(*)
2570 PENUP
2580 PLOT Pf(*),Pd7(*)
2590 PENUP
2600 PLOT Pf(*),Pd8(*)
2610 PENUP
2620 PLOT Pf(*),Pd9(*)
2630 PENUP
2640 PLOT Pf(*),PdlO(*)
2650 PENUP '

2660 PLOT Pf(*),Pdll(*)
2670 PENUP
2680 PLOT Pf(*),Pdl2(*)
2690 PENUP
2700 PLOT Pf(*),Pdl3(*)
2710 PENUP
2720 PLOT Pf(*),Pdl4(*)
2730 PENUP
2740 PLOT Pf(*),Pdl5(*)
2750 PENUP
2760 PLOT Pf(*),Pdl6(*)
2770 PENUP
2780 PLOT Pf(*),Pdl7(*)
2790 PENUP
2800 PLOT Pf(*),Pdl8(*)
2810 PENUP
2820 PLOT Pf(*),Pdl9(*)
2830 PENUP
2840 PLOT Pf(*),Pd2O(*)
2850 PENUP
2860 BEEP 500,2
2870 PAUSE
2880 PRINTER IS CRT
2890 PLOTTER 505 IS TERMINATED
2900 SUBEND
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Optimum Memoryless Nonlinear Transformation
For Weak Narrowband Signals In Noise

A. H. Nuttall
ABSTRACT

The optimum memoryless nonlinear transformation for weak
narrowband signals in narrowband noise is derived in terms of the
Joint probability density function of the noise amplitude and phase
modulations. The optimization is In terms of maximizing the
magnitude of the deflection of the complex envelope at the
nonlinearity output for small signal inputs of arbitrary
characteristics. The optimum nonlinearity is complex, in general,
meaning that a phase modulation, in addition to that present at
the input to the nonlinearity, is superimposed. A problem with
the behavior of the optimum nonlinearity is traced back to a
shortcoming in the approximate analysis, and a method for
circumventing the problem is presented. Two methods of treating
the spurious weak signal component at the nonlinearity output are
considered and compared quantitatively. Finally, the optimum
nonlinearity for processing phase differences is derived for a
particular model of noise statistics and shown to be closely
related to an earlier processor.
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OPTIMUM MEMORYLESS NONLINEAR TRANSFORMATION

FOR WEAK NARROWBAND SIGNALS IN NOISE

INTRODUCTION

For strong additive noise that is not Gaussian, a nonlinear

transformation that suppresses the noise, but passes the signal,

is useful in aiding in the detection of weak signals. Here, we

will first review the standard memoryless nonlinear transforma-

tion of a lowpass real waveform composed of signal-plus-noise or

noise-alone and maximize the deflection. A problem arises for

the "optimum" nonlinearity, which indicates the possibility of

infinite deflection; this behavior is traced to a shortcoming of

the approximate analysis, and a method for circumventing it is

presented.

Then, we extend these ideas to a narrowband waveform contain-

ing both amplitude and phase modulation on the signal as well as

the noise. In both cases, a deflection measure, for small input

signals with arbitrary characteristics, will be maximized by

choice of the arbitrary memoryless nonlinearity characteristic.

The presence of a spurious weak signal component at the non-

linearity output will be fully discussed and treated in two

different ways. Also, the apparent infinity of the "optimum"

nonlinearity and its corresponding deflection will be thoroughly

investigated, and a method will be presented for ameliorating the

shortcomings of the approximate analysis.
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Some of the results of this investigation confirm those in

[1,21. However, we give a full derivation of the method and

elaborate at length on how to handle the spurious signal

component and anomalous behavior. Additionally, the loss of

detectability, caused by the desire to completely suppress the

spurious signal component, is evaluated quantitatively.

A complete derivation of the optimum nonlinearity operating

in the presence of noise with phase dependence of a particular

kind is also presented. The corresponding maximum deflection is

derived in terms of the amplitude and phase difference

probability density functions. The anomaly for small noise

amplitudes is discussed and illustrated by examples.
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LOWPASS REAL WAVEFORM

Received real waveform x(t) is composed of signal-plus-noise

or noise-alone, where the additive noise n(t) is considerably

stronger than the signal and can be non-Gaussian. That is, input

s(t) + n(t)

x(t) - or , (1)
n(t)

where s(t) is the signal waveform with arbitrary characteristics.

This waveform is passed through arbitrary memoryless nonlinearity

g giving output

y(t) = gfx(t)} = {t - { . (2)

g rn(t)} yo(t)

Transformation g need not be analytic.

MEAN OUTPUTS

For a given signal amplitude s(t) at time t, the mean output

of the nonlinearity is given by averaging over the noise

statistics:

y1(t) - gfs(t) + n(t)} = du p(u) gfs(t) + u} , (3)

Integrals without limits are over the range of nonzero
integrand.

3
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where p is the known probability density function of noise n(t)

at time t. (We have suppressed any t dependence of p, but this

analysis allows for nonstationary additive noise, if need be.)

Now let the change of variable, x - s(t) + u, be made in (3) to

get

yl(t) - f dx p(x - s(t)) gfx) - (4)

- dx [p(x) - s(t) p'(x)] g(x) , (5)

where we expanded the noise probability density function p about

the point x, through linear terms in (weak) signal amplitude

s(t).

A note of caution is in order regarding expansion (5). Since

x can range over (--,+m), we are presuming that probability

density function p(x) has a local tangent for all x; that is,

p(x) has no discontinuities in slope. If we attempt to employ

the following results on a density p(x) that violates this

condition, the conclusions may be incorrect and a closer

investigation is warranted.

For noise-alone, we set s(t) - 0 in (4) to get mean output

YO(t) - f dx p(x) g(x) . (6)

The difference in mean outputs, that is, signal-present versus

signal absent, follows from (5) and (6) as the approximation

Yl(t) - yo(t) 0 - s(t) f dx p'(x) g{x) . (7)

4
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OUTPUT DEFLECTION

At the same time, the variance of the output of the non-

linearity for noise-alone is

var(y (t)) y -(t) yt) , (8A)

where mean-square value

y(t - g2 (n(t)) - dx p(x) g2(x) . (8B)

Combining (6)-(8), we define an output deflection from the

nonlinearity g as

d y(t) - y0 (t)]

var(yo(t))

2 [ dx p'(x) gx)] 2

f dx p(x) g2 (x) - I dx p(x) g(x) ] 2

This is an approximation to the deflection since it utilizes

(5). Therefore, the following results based on (9) are also

approximations.

5
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MAXIMUM DEFLECTION

we would like to maximize this small-signal deflection at the

nonlinearity output by choice of the nonlinearity characteristic

g. However, two observations should be made. First, the

absolute scale of g is immaterial to the deflection; that is,

a g(x} obviously gives the same deflection d2 as does gfx).

Second, an additive constant to g does not affect the deflection;

that is, gjx) + b gives the same value of d2 as does g{x). This

is easily verified by direct substitution of g(x) + b for g(x)

in (9), whereupon b is seen to cancel out everywhere. More

generally, nonlinearity a gfx) + b gives the same deflection as

gix).

What this means is that, without loss of generality, we can

set the nonlinearity mean output for noise-alone, y0 (t), equal to

zrro, and not detract from the attainable values of deflection

criterion (9). So, setting (6) to zero, (9) becomes

[2 dx p'(x) g x}]2
d- s2(t) 2 (10)

J dx p(x) g 2x)

But now, by use of Schwartz's inequality, this ratio is maximized

by the optimum memoryless nonlinearity

g [x _ p'(x) - - ln p(x) (11)mp(x) " -dx

Here, we have taken advantage of the scaling independence in

order to supply the factor -1 for convenience. The resulting

maximum deflection is

6
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dx22 J 2d s (t) dx P'2(x) (12)m f p(x)"

Substitution of optimum nonlinearity (11) into noise-alone

mean output (6) immediately yields zero, consistent with the

assumption utilized in reducing (9) to (10). We should also

notice that signal value s(t) appears as a multiplicative term in

general deflections (9) and (10); thus, the optimum nonlinearity

9. can be selected, as in (11), without regard to the particular

signal amplitude. It also allows s(t) to be deterministic or

random, as the case may be. These approximations are all

predicated on the small-signal assumption utilized in (5).

EXAMPLE

As an example of (11) and (12), consider Gaussian noise for

which

1~ [ (X-un) 2l

p(x) exp - for all x

n n

As noted under (5), this probability density function has no

discontinuities in slope. Substitution in (11) and (12) gives

x -uP
gm(x } " 2 n for all x

anon

and

2
m 2

n

7
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Thus the (approximate) optimum nonlinearity is, in fact, linear,

and the maximum deflection is the instantaneous signal-to-noise

power ratio at the input to the nonlinearity.

By the arguments given in the sequel to (9), we could equally

well use nonlinearity

9M{xJ - x

2
and realize the same maximum deflection dm . This latter

nonlinearity, §m' would have a nonzero noise-only mean output,

namely on; however, this is not a problem since it is known and

could be subtracted from the output of §m' if desired.

In the general case, we can always use (modified) optimum

nonlinearity

m fx) = a gm fxJ + b

2
instead of (11) and still get maximum deflection dm in (12),

where a and b can be chosen for convenience. The major

difference is that the noise-only mean output is then b, not

zero; however, since b is known, this constitutes no limitation

or problem.

8
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PHYSICAL INTERPRETATION

The general situation is depicted in the series of plots in

figures 1 - 3. The noise-only output y0 (t) is given on the left

side of each plot, while the signal-plus-noise output y1 (t) is

given on the right side. The mean of each waveform is indicated

by a horizontal dashed line. Figure 1 represents the starting

point of the analysis, namely (2). Figure 2 indicates the output

waveforms for the case of the optimum nonlinearity gm in (11),

that is, y0 (t) now has zero mean. The nonlinearity gm maximizes

the ratio of the mean of y1 (t) to the standard deviation ao of

YO(t). Finally, figure 3 biases both y0 (t) and y1 (t) by constant

b and scales both by factor a; it represents the outputs of non-

linearity 4m"

Another note of caution is in order relative to approxima-

tions (11) and (12). If p(x) is zero at any value of x, the

optimum nonlinearity gm approaches infinity at that point, and

the maximum deflection d2 may become infinite as well. This ism

physically unrealistic and indicates that certain forms of the

noise probability density function p are disallowed or that the

approximations have gone awry. For example, if p approaches zero

at an isolated point, it must do so faster than linearly in order

that integral (12) remain finite from the contribution in the

neighborhood of that point. However, integral (12) is itself an

approximation and must also be investigated more closely.

9
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Y ot)tt)

-/ tw Vt

Figure 1. Outputs from General Nonlinearity g

Y(t) y (t)

v v%1t t

f

Figure 2. Outputs from Optimum Nonlinearity gm

Y (t)

b-
vt 

t

Figure 3. Outputs from Modified Optimum Nonlinearity §m
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This possibility of infinite deflection is not entirely due

to inadequacy of the approximation utilized in (5) and the

sequel. In general, if we use (4), (6), (8), and the upper line

of (9), we have, for any g, exact deflection

2 S) = [f dx [p(x-s) - p(x)] gfxj] 
2

J dx p(x) g {x)

where we have replaced s(t) by s for notational brevity. Now

suppose that we consider signal value s known and that non-

linearity g can be chosen with this knowledge. The optimum

nonlinearity is then (with no approximations)

g fx;s) = p(x-s) - p(x) p(x-s)
e p(x) p(x) 1

Although it is physically unrealistic to presume signal value s

known, this approach is informative in that it pinpoints the

source and rate of approach of the infinities. It is immediately

seen that if p(x) approaches zero somewhere, then ge (x;s)

approaches infinity at that x value (unless s - 0). The

corresponding maximum deflection for nonlinearity g e{x;s) is

2

2 (S) rdx [p(x-s) - p(x)] 2_(__
e p(x) p-x) 1

and will remain finite only if p approaches zero less fast than

linearly. Thus, the condition on the rate of approach of p to

zero, in order to maintain finite deflection, is reversed from

the conclusion above based on approximation (5). This reversal

11
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is very important to know about, but the possibility of infinite

deflection still remains.

If we now make the small-signal assumptions on the exact

results above, we find

ge (x;s) - s p'( s gm{x)
dxp (x) =

d2(s) s 2 J dx p(x) 2

consistent with (11) and (12), respectively. (The multiplicative

factor of s in ge(x;sl is merely an irrelevant scale factor, as

far as the deflection is concerned.) No nonlinearity can

outperform a2(s) for any signal value s, since the latter resulte

allows for use of knowledge of p(x) as well as value s. So if d2
m

in (12) gives a result larger than 2e(s), it means that the

approximation giving rise to (12) was faulty. In that case, we

should revert to exact deflection U2 (s) and substitute the

particular nonlinearity g being employed. For example, if

approximate optimum nonlinearity gm in (11) is utilized, the

corresponding deflection is found to be

2

is) - [[ dx p(x-s) p(x)/P(x)J dx p'2 (x)/p(x)

of course, d2(s) < ae(s) in all cases.

Some examples are useful at this point. For Gaussian noise,

we have

12
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p(x) -(2n)4 exp(-x 2/2) for all x

-X -p' (x)gmp(x) X

m (x) 2
d2  -2 ~ ,2

mms

gefx;s) = exp (sx - -T2 -1 sx = s g MfxI

de (s) - exp(s 2) - 1 S 2 .=

The quantity j1()is lre thnd2for all s (except s -0).e m

All of these results are self consistent.

For exponential noise,

1p(x) - T exp(-lxl) for all x

g (x) - - 2'() sgLxmp(x) =snx

2 2~ 2 f 2
- P(x) s

d 2i (S- exp(-Isl)] 2  
- 2 - S 3

ge jx;s) -exp(-Ix-sl + lxI)-1

a2 2 1s2 1 Is3
(s exp(Isl) + 1- exp(-2Isl)-1 - 11

Now, 2(s) is less than d2for 0 < Isi < 2.07; thus the

approximation d 2 is somewhat optimistic and 12 (a) should be usedM m

instead. A sketch of nonlinearity g e(x;s) reveals that it

13
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resembles s sgn(x), especially for small s. This example is

consistent except for d2  despite the fact that p'(x) ism'

discontinuous at the one point x = 0.

For a noise probability density function with a zero (at the

origin for convenience), we have, for example,

p(x) = a lxiN exp(-IxI') , > 0, 'U > 0,

IX_ = p'(x)
gxl p(x) x - as x 0,

ds 2 F dx p' (x)< 0 fvl
gm j p(x)
dm =  p 2fx) < if V > 1,

d 2 (s) = 0 if V < 1m

e{x;s} = p(x-s) - 1 - p(-s) as x 4 0

p(x) a lxi -v

d2 (s) < if V < 1e

As anticipated, the condition for finite deflection is reversed

in the exact result (v < 1) versus the approximation (v > 1). In

addition, the rate of growth of the optimum nonlinearity near

x - 0 is milder for the exact result and of a veL/ different

--2character. The reason that d 2s) is zero for v < 1 is thatm

p'(x)/p(x) - 1/x, whereas p' 2(x)/p(x) - xv - 2 as x 4 0+; thus, the

integrand of the denominator of d2(s) has a higher-order

singularity at x = 0 and approaches infinity at a faster rate

than the numerator. This example exemplifies the need for close

scrutiny of a noise probability density function which has a zero

value anywhere in its range.

14
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NARROWBAND WAVEFORM

The available input waveform of interest in this section has

the form

A x(t) cos[2rf ot + fx(t)] , (13)

where f is the known center frequency, and Ax (t) and fx(t) are

the lowpass amplitude and phase modulations, respectively. The

complex envelope of this waveform, which can be easily extracted

from (13), is

x(t) = Ax (t) exp[ifx (t)] (14)

We will allow an arbitrary complex memoryless nonlinear

transformation h of Ax (t) ana fx (t); that is, the output is

modified complex envelope

y(t) - h(Ax(t),fx (t)) = hfIx(t)I, arg(x(t))) a g{x(t)) , (15)

where g is an arbitrary complex function of complex argument

x(t). Transformation g need not be analytic.

The input x(t) to nonlinearity g is composed of signal-plus-

noise (or noise-alone); thus, we can express the signal-plus-

noise output as

Yl(t) - g{As(t) exp[i s(t)] + A n(t) exp[i*n(t)] } , (16)

where As(t) and fs(t) are the arbitrary input signal amplitude

and phase modulations, while An (t) and fn (t) are the input noise

amplitude and phase modulations, respectively. We presume a low

15



TR 8611

input signal-to-noise ratio; that is,

2 (t) A 2 (t) (17)s n

However, there are no limitations on the sizes of phase

modulations +s(t) and *n (t), nor on the signal characteristics.

The joint probability density function of the noise amplitude and

phase modulations is presumed known; that is, p(AnI n) is given.

(Again, although we suppress any t dependence of p, the following

analysis allows for nonstationary noise simply by reinstating any

t dependence in p.)

MEAN OUTPUTS

For given signal amplitude and phase modulations A s(t) and

#s(t), the complex mean output from the nonlinearity g is, from

(16),

yl(t) - dAn d+n g{As(t)exp[i ns (t)]+Anexp[in] P(An, n). (18)

We now make the change of variables

A exp[i+J - A s(t) exp[i s(t) ] + An exp(i# n ]  (19)

in j18). The Jacobian of this two-dimensional transformation is

derived in appendix A; it is

(An'*n) A A

a(A,#) - A n IA exp[i*J - As(t) exp[i+ s(t)II (20)

16
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At this point, for notational convenience, we will suppress

the t dependence of As and #s; this time dependence will be

reestablished after all the following mathematical manipulations

have been completed. The use of (19) and (20) converts (18) into

the following exact result for the complex mean output

yl(t) - dA d# JA exp(i ) - A s exp(i# )t g(A exp(i#)) x

x P(IA exp(i#) - A s exp(i*s)l, arg{A exp(i#) - As exp(i.s)}).(21)

This expression could be written in an entirely equivalent form

by replacing g{A exp(i+)J with h{A,#}; that is, from (14) and

(15),

h{A,#} - g(A exp(i+)) for all A,# (22)

This latter form, in terms of h, more clearly accents that a

completely arbitrary transformation of A and + is allowed;

however, since g is arbitrary, the same is true of the form

g(A exp(i#)), which is used henceforth.

17
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SMALL INPUT SIGNAL-TO-NOISE RATIO

We now make use of the low input signal-to-noise ratio

assumption, (17), by expanding (21) through first-order terms in

the signal amplitude modulation As. Since

2 2'il-c - i6( = J(1 - )2 -- 62 1 -c€,

and

arg(l - c - i6) ~ - 6

through linear terms in real variables c and 6, then

IA exp(i#) - As exp(i*5 )I - A - As cos(# s - *) for As << A

(23)
A

arg{A exp(if) - A exp(i s)} - - - sin(+ - #) for A « A
5 s A s s

Substitution in (21) yields

yl(t) - [ dA dA A A g{A exp(i#)) x
Aj AsCos(+5 -

A

x pIA - As cos( s -C), s - -- sin(+ - . 24)
1 s s A s

Define

Pl(A,#) - - p(A,#) , p2 (A,#) - p(A,+) , (25)

where it is presumed that these derivatives of p exist. Then the

term in (24) involving joint probability density function p can

be expanded as

18
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Ap1(,* A~ sin( s - ) P2(A,*) , (26)p(A,#) - A S Cos(# s S ) pl(A 'O) -A snsP2(6

to linear terms in A . Coupled with

A A
1 + - Cos(* ) for A << A , (27)A-A Cos(T A S S

(24) develops into

A

x yp(A,) - AS COS( ) P1(A1 ) - A s - * g2 (i*))

A

X dA d g{A exp(i) ) [p(A,+) + AC os(#- )p(A,)-

As ]

A s Cos(+ - 1 pl(A, ) - .-- sin(+ - ) p(A,f) , (28)

through linear terms in A There is no presumption about the

form of nonlinearity g in these expressions.

There is a fundamental flaw in the use of approximations

(23) and (27) in integral (21). The approximations specifically

require that A > As , yet they are used in end result (28) all the

way down to A - 0. The results in (23) should be augmented with

JA exp(i#) - AS exp(i)I ~ A o

arg(A exp(i+) - A exp(i s ~ Os + n

19
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This would not only eliminate the troublesome I/A dependencies

for small A in (23)-(28), but in fact convert the Jacobian to a

linear A dependence for small A, a very marked change.

The reason we do not incorporate this behavior is that it

would greatly complicate (28), and the intermediate range,

A = As, would still not be covered. What this means is that we

can anticipate some problems with approximation (28) and further

results based on (28), for small A; in fact, we must be willing

to modify or discard the I/A dependency in some cases and ranges,

since it is based upon an invalid approximation. We will return

to this point later and elaborate in more detail.

The mean output from complex nonlinearity g, for noise-only,

is available directly from exact result (21) by setting As - 0:

YO(t) - JJ dA d+ g(A exp(i+)} p(A,+) . (29)

20



TR 8611

DIFFERENCE IN MEAN OUTPUTS

The difference in complex mean outputs from nonlinearity g,

for signal-present versus signal-absent, is then available from

(28) and (29) as

yj(t) - Yo (t) As - Ifj dA d* g(A exp(i+)) x

x [cos(# s - #) ql(A,+) + sin(# s - *) q2 (A,#)] , (30)

where, using (25), the real quantities

ql(A,+) - A .- ((A) , q2 (A,,) - 4 (p( . (31)

The approximate result in (30) is similar to that in (7) for

the lowpass real case in that signal amplitude As appears

multiplicatively as a linear factor. However, (30) is still

complicated by the appearance of signal phase +s inside the

integrals. If we expand the cos and sin terms in (30), we find

yl(t) - y (t) - A (cos+ s za + sin# Zb) , (32)

where complex numbers (due to the allowed complexity of g)

za - If dA d# g{A exp(i,)} [cos# ql(A,,) - sin+ q2 (A,)] I

Zb" If dA d* g(A exp(i,)) [sin# ql(A,#) + cos, q2 (A,+)] (33)
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An alternative form of (32) is more useful; specifically, the

difference of mean outputs can be expressed as

1

yl(t) - yo(t) - - Asexp(i+ s ) (za-i~b) - A Aexp(-i+ s ) (za+iZb)-

(34)

1 As(t) exp(i+ (t)] (Za-iZb) - 1 As(t) exp[-i+ (t)] (z +iZb),

where we have reestablished the time dependence of the signal

amplitude and phase modulations As(t) and +s (t), respectively.

The two complex numbers in (34) can be written as

Za-iZb - Jj dA d# g(A exp(i*)} exp(-i#) [q1 (A,+) - iq2 (A,+)],(35)

Za+iZb - jj dA d+ g{A exp(i+)] exp(+i+) [ql(A,+) + iq2 (A,+)].(36)

The leading term in (34) contains a replica of the input

signal to the nonlinearity g, namely,

A s(t) exp(i*s(t)J , (37)

and will be called the desired signal component in the difference

of mean outputs. The remaining signal-dependent term in (34),

namely,

A s(t) exp[-i s(t)] , (38)

is of no interest since it has a distorted phase modulation.

That is, (38) will not correlate with the local reference, since

the latter has exactly the same form (38). Henceforth, we simply
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ignore the extra term (38) in difference (34). Thus, for the

desired signal component, we have

t - Yo- t dsred - - As(t) exp[i*s(t)] (39)

where the complex number za - i zb is given by (35).

The simplest example of this behavior is furnished by the

nonanalytic nonlinearity

g{z) - Izi 2 ,

for which the output is

2Yl(t) - 1As(t) exp[i s(t)] + An (t) exp[i*n(t)II -

- A 2(t) + A (t) exp[-i+ (t)] A (t) exp[i+ (t)] +n n n s s

+ An(t) exp[i+n(t)] As(t) expl-i s(t)] + AS(t)

Both types of signal terms, (37) and (38), are exhibited here.

23



TR 8611

VARIANCE OF OUTPUT

At the same time, the variance of the output of the

nonlinearity, for noise-alone, is

var(y (t)) = IYo(t) - Yolt)12

2 _2 F
I IYO(t)J -J 0 (t)J 2 (40)

where y0 t) is available from (16) by setting Aslt) - 0:

YO(t) - g{An (t) exp[i+n(t)]} . (41)

There follows immediately the exact result

var(yo(t)) - g(An(t) exp[i+n(t)]}I - 1g{An(t) exp[i+n(t)]} -

- dA d+ Ig{A exp(i+)l1 2 p(A,+) -

-il dA d+ g(A exp(i+)) p(A,+) , (42)

where p(A,+) is again the joint probability density function of

the noise amplitude and phase modulations.
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OUTPUT DEFLECTION

We are now prepared to define an output deflection from

nonlinearity g (analogous to (9)) as

d 2 y1(t) - To~t))desrd
var(y (t))

1 2 (t f dA d+ gJA exp(i+)} exp(-i+) q(A,+) - q2(,+ I
T4s JfdA d+ g[ )12 p(A,+) - ffdA d+ g( )p(A,+)1 2

(43)

where we used (39), (35), and (42). Since (30)-(39) are based on

approximation (28), deflection (43) is likewise an approximation.

MAXIMUM DEFLECTION

We would like to maximize this small-signal deflection (43)

at the nonlinearity output, by choice of the nonlinearity

characteristic g. However, as in the sequel to (9), two

important observations must be made. First, the absolute scale

of g is obviously immaterial to the value of d2. Second, an

additive complex constant to g does not affect d2 ; this last

property is derived in appendix B. Thus, nonlinearity

a g(A exp(i+)) + b gives the same deflection as g{A exp(i*)},

where a and b are arbitrary complex constants.

What this means is that, without loss of generality, we can

set the complex nonlinearity mean output for noise-alone, y0 (t),
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equal to zero, and not detract from the attainable values of

deflection criterion (43). So, setting (29) to zero, (43)

becomes

d A!(t) Iff dA d+ gA exp(i+)) exp(-i#) [q(A,+) - iq2(A, 2

4- i~~f dA d+ Ig(A exp(i+)l 12 pA*
(44)

But now, since g is completely arbitrary, this ratio is maximized

(according to Schwartz's inequality) by the (approximate) optimum

memoryless nonlinearity

exp(i*) (q1 (A,+) + iq2 (A,+))gm (A exp(i+)} = hm{(A,+)= p(A,+)

ex_+ A IpA+ + i 8(p(A,+)) -

p(A,) *)
S- 1

expli+) A + ip)- (45)

where we used (22) and (31). Here, we also have taken advantage

of the scaling independence in order to supply the factor -1 for

convenience. This result agrees with [1; (9)].

The resulting maximum deflection is

d2 1 2 M r d ql(A,') + iq2 (A,+)2
m " As(t) sdA d p(A,+) -

q2 (,)+q2(A+
-1 A 2 M dA d+ - 2 (46)

s26f ) (46)
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where ql and q2 are available from (31) as

~ P(A.*) PA+ql(A,*) - A A q2 (A,+) = A (47)

Whether the phase term, q2 (A,O)/p(A,+), in optimum nonlinearity

(45) is important or not can be ascertained from (46) by

2evaluating it with and without the q2/p term present. Some

limitations of approximations (45) and (46) concerning the 1/A

dependencies are given in appendix C, as well as an alternative

approach.

Substitution of optimum nonlinearity (45) into noise-alone

mean output (29) immediately yields the conjugate of the integral

in (B-i), which is shown to be identically zero in (B-4). This

is consistent with the nonrestrictive assumption utilized in

reducing (43) to (44). It should also be noted that signal

amplitude As(t) appears as a multiplicative term in general

deflections (43) and (44); thus, the optimum nonlinearity gm can

be selected, as in (45), without regard to the particular signal

amplitude. It also allows As(t) exp[i*s(t)] to be deterministic

or random, as the case may be. This is all predicated on the

small signal assumption utilized in (22)-(28). The actual output

time waveform from the optimum nonlinearity g. in (45) is

obtained by replacing argument A exp(if) with

A s(t) exp[i s(t)J + A n(t) exp[i n(t)]; see (16).
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PHYSICAL INTERPRETATION

A physical interpretation of what is taking place in this

complex envelope case is given in figures 4 - 6. The noise-only

output y0 (t) is plotted on the left side of each figure as a

complex point in the plane, which moves as time progresses. The

noise-only mean output for arbitrary nonlinearity g is indicated

by a dashed arrow in figure 4 to the complex point y0 (t) given by

(29). For any nonlinearity g selected, this is a known point

since joint probability density function p(A,#) is known.

When signal is also present, the situation for output y1 (t)

is depicted on the right side of each figure. The mean output

for arbitrary nonlinearity g is indicated by a dashed arrow in

figure 4 to the complex point y1 (t) given by (21) or (28). This,

too, is a known point for specified g, As, #S.

When we choose the class of nonlinearities g that have zero-

mean noise-only output y0 (t), as done in (43)-(44), we are taking

advantage of knowledge of these locations and the situation is

as shown in figure 5. The mean location of complex waveform

YO(t) is now at the origin of coordinates and its standard

deviation from the origin is indicated by ao" Then the plot of

y1 (t) appears on the right side of figure 5, where the dashed

arrow is drawn to the point y1 (_t). When we maximize the

deflection criterion d2 in (44), we are maximizing the ratio of

the length of the arrow on the right side to the standard

deviation a on the left side. Physically, we are trying to make
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Yoi~~ir t)~t

--- " or t) -- lr t

Figure 4. Outputs from General Nonlinearity g

Yoi( t ) Yi (t )

Yor(t) Ylr(t)

Figure 5. O utputs from Optimum Nonlinearity gm

Yi(t)29

-Y r( t) Y lt)

Figure 6. outputs from Modified Optimum Nonlinearity m
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the signal-present average distance from the origin as large as

possible relative to the signal-absent deviations from the

origin.

Finally, figure 6 represents the outputs when the optimum

nonlinearity is scaled and biased by an arbitrary factor and

additive constant. Both yo(t) and y1 (t) are similarly scaled and

shifted, but the maximum deflection is unchanged.

EXAMPLES

As an example of (45) and (46), suppose the narrowband noise

is zero-mean Gaussian; then

A 2 ~
p(A,f) - - exp - 2 for A > 0, IfI < n (48)

n n%

giving
1

gm(A exp(i+)) - -- A exp(i+) (49)
On

and

S 2(t)/2
d2 As (50)

an

Thus, the optimum nonlinearity in (49) is linear and the maximum

deflection is the signal-to-noise power ratio at the input to the

nonlinearity. A more thorough analysis of this example is given

in appendix C.
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By the arguments given in the sequel to (43), we could

equally well use nonlinearity

§m(A exp(i#)) - A exp(i#)

and realize the same maximum deflection d2 in (50). In them

general case, we can always use (modified) optimum nonlinearity

§M{A exp(i#)) - a gm(A exp(i#)) + b

instead of (45), and still realize maximum deflection d2 in (46),

where complex constants a and b can be chosen for convenience.

The major difference is that the noise-only mean output is then

b, not zero; however, since b is known, this constitutes no

limitation or problem. This case is depicted in figure 6.

As a second (more general) example, if the noise amplitude

and phase modulations are statistically independent, then

p(A,#) - pa (A) pb( , (51)

and (45) reduces to

gm[A exp(i#)) - hm(A,#) - - exp(i.) in(.... + i A pb()

(52)

This result agrees with [1; (10) and (16)]. The maximum

deflection, (46), is
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t2  1 2 [p;(A) - p(A)/A]2
Am " 4 Pa(A) +

+ F dA ) d+ (53)

The relative importance of the p;(+) term can be easily

ascertained from here. The 1/A dependencies are thoroughly

discussed in appendix C.

DISCUSSION OF IMAGINARY TERM

In general, for the optimum nonlinearity in (45), the exp(i#)

factor indicates a replication of the phase-modulation at its

input; that is, from (16),

argA s(t exp[i s(t)] + A n(t) exp[i+n(t)] }  (54)

is reproduced at the output of gm. And if the imaginary term

inside the bracket of (45) were zero, that is, q2 - 0, this would

be the totality of phase modulation at the output of the optimum

nonlinearity. Since q2 - 0 corresponds to p(A,+) being

independent of #, the modification of the amplitude modulation at

the nonlinearity input would then be according to

ln -( A (55)

and the maximum deflection is
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2 . A1(t) dA [PA5 Pa(A)/AIV

d m 2 s Pa(A) (56)

However, the presence of the extra imaginary term in (45)

means that additional amplitude and phase modulations to those

given in (55) and (54), respectively, are superposed on the

output. Whether this is significant, in practice, will depend on

a quantitative investigation of the relative sizes of q and q2

in maximum deflection (46).

SIZE OF NEGLECTED TERM

When we expressed the difference of mean outputs from

nonlinearity g in the form (34), we discarded the second term as

being of an undesirable form. To see how this neglected term

compares with the retained term, in terms of magnitude, we need

to compare Iza - iZbl with Iza + izbl. For the optimum

nonlinearity gm in (45), we have, from (35) and (36),

rr 2 2
z - iz - dA d# (57)
a bim - Jp(A,#)

2

IZa + izbm dA d+ exp(i2#) 
p(A,) 

-~ 2' dAd x~2)q(A,#) - q 2(A,#) + i2 ql(A,#) q (A,#)dA d# exp(12#) - _ p(A,+) 2 .(58)

Thus, the exp(i2+) term chops up the + integral, since 2+ ranges
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over 4,, leading to a small value for (58). In addition, the q2

and q terms cancel each other in (58), whereas they add in (57).

It can also be observed that (57) is identical with the maximum
2

deflection (46), except for factor A (t)/4. Some alternative

forms to (57) and (58) in rectangular coordinates are given in

appendix D.

Of course, in all cases,

Fql(A,+)+iq2 (A,#) 2
za + izb~ dA d* Iexp(i2+)I p 2,*

M I z a- iz bI (59

however, it is expected that we will have

I za + iz bI <<I« - iz bI (60)

in most practical cases. As an example, the Gaussian noise

considered in (48)-(50) yields

Za - iZb m 2Gn

+Ca inb A A3  exp [2 a 2 )] - 0. ( 1
za + izJbm dA d+ exp(i2*) 6 "

0 -n n

Thus, neglecting the second term in (34) is justified, both in

terms of physical interpretation and in terms of magnitude of

contribution.
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OPTIMUM NONLINEARITY FOR PHASE CHANGES

It is hard to conceive of an independent physical narrowband

noise process for which the phase #n(t) would not be uniformly

distributed over a 2n interval. In that case, (51) is relevant,

with pb(#) constant of value (2n) -1 . Then the second term in

optimum nonlinearity (52) is absent, as is the additive term 3.n

(53); see also (55) and (56).

NONLINEAR PROCESSING

In this situation, it may be advantageous to resort to

additional processing of the phase changes between adjacent time

samples of input x(t); regular phase changes would occur for a

frequency-shifted narrowband process, such as encountered in FSK

communication. In particular, we consider nonlinear processing

of adjacent time samples of the received waveform, namely,

Ax(t), x(t), A x(t-6), *x(t-6), (62)

where A is the time between samples; see also (13) and (14).

Thus, the output of the nonlinearity is generalized from (15) to

y(t) - h{Ax(t), *x(t), Ax (t-6), *x(t-A)) , (63)

where h is an arbitrary complex nonlinear transformation of four

real variables.
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INPUT NOISE STATISTICS

The required statistical information about the input noise

process is now the joint probability density function of noise

quantities

An(t), n (t), An(t-6), *n(t-A) . (64)

We denote these random variables by

An, #n'l An' 'n' (65)

respectively, and presume that their joint probability density

function has the form

Pa(An) pb(#n ) Pa(An) Pc(#n - #n) . (66)

That is, all the random variables (65) are statistically

independent except that *n - +n (t) depends on #n = #n(t-A); thus,

probability density function Pc can be expected to peak at a

point(s) related to the frequency shift(s) of the noise carrier.
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MEAN OUTPUT

The mean output from the general nonlinearity, for signal

present, is

Yl(t) - h{A xMt) , %x(t), A x(t-A), %~-)

- JJJJ dA nd~n d~n din Pa(Kn) PbTn Pa(A n) PC(#n-* n) x

x h{ IAn exp(i#n) + As exp(i*s )l, arg(An exp(i+n) + As exp(i+ s)}

IAn exp(i#n ) + As exp(is )1, arg{An exp(i n) + As exp(is ))},(67)

where we suppressed the time dependence of the signal terms (for

now) by using the notation

As = A St) S + = *S(t), As A s(t-A), is W *S(t- A ) " (68)

Now make the changes of variables (using appendix A)

A exp(i#) - An exp(in ) + A s exp(i S)

exp(ii) - An exp(i n ) + As exp(iT ) , (69)

to obtain mean output

yj(t) - ~fdA d+ dK d*T A K a~p Pb'd x

X pa() Pc(O-g) h{A,#,AT, (70)
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where

p - u(A,*) - JA exp(i ) - A s exp(is ,

p - p(A,T) = IA exp(iF) - As exp(i )lI

e - O(A, ) = arg{A exp(i+) - A s exp(is)) ,

-- (A,*) = arg[A exp(i*) - As exp(i s)) " (71)

This result, (70), is exact.

SMALL INPUT SIGNAL-TO-NOISE RATIO

For small signal-to-noise ratios, we caA now expand the

quantities in (71) in power series in As and As through linear

terms. Reference to (23) yields

p A - A cos(# - #)5 s

p A - As cos(* s - for A s << A

A (72)

e - - -- sin(+ s - *) and A << A

As
S~ - - sin(T s - T )

Therefore
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A - A Cos(+ - A_ _ _ _ _ _

AS

- 1 + cos( - , (73)

where we used (72) and (27). Substitution in (70) gives

approximation

AAyj(t) -JfdA d* dA dT [1 Cos(*5 - )1 + -iCos(-+ -

X pa(A T As cos(S - .)) Pb('- As sin( s - T) Pa(A - AS cos(f s-

+ )- sin(# -S ) + - sin(+ - h{A,+,A, . (74)-*)J PcVA Jh

Again, however, as noted below (28), the 1/A and 1/A dependencies

are incorrect for small A or A; we must be prepared to modify or

discard the 1/A dependency in some cases where infinities in

behavior arise. The discussion in appendix C is again very

relevant.

Now we could expand mean output (74) through linear terms in

A and As" However, since we have only one nonlinearity h( ) to

choose, we will not be able to simultaneously maximize the

coefficients of both A and A S Instead, we concentrate solely

on As - A (t) and maximize its coefficient; this is consistent

with the observation that the output of nonlinearity (63) at time

t-A will already have maximized the coefficient of As A S(t-A)
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when it was the current output. Then, to linear terms in As,

(74) becomes

Yl(t) - 1111 dA d+ dA dj {Pa(A) pb() Pa(A) pc-( +

A
+ A cos(* s - )Pa() Pb() Pa(A) Pc( - j-

- A s cos(* - *) Pa(A) Pb() P () c( - ) -

A

--- sin(* s  - ) Pa(A) b Pa(A) p1(+ - T) h{A, ,A ) . (75)

The leading term in (75) is y0 (t), the noise-only mean

output. The remaining terms contain As linearly and a

combination of exp(i# s ) and exp(-i# s ) terms. As explained in

(34) and the sequel, the desired signal term is that containing

just exp(i#s). It is, from (75),

1 A exp(i* s) J dA d+ dA di h(A,,KJ} exp(-i) Pa (A)b x

{PaA - c(+ - *) - a pc(+ - ;) + i A P)} • (76)

A ( A PC
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VARIANCE OF OUTPUT

At the same time, the variance of the nonlinearity output

(63) for noise-only is exactly

var(y 0 (t)) - fJfdAd~d~dj hjAo 1Kj) 1 2 Pa(K) Pb( Pa (A) pC#j

(77)

where we have set yo(t) - 0 as usual. The deflection is equal

to the magnitude-squared value of (76) divided by (77). This

deflection is maximized by the optimum nonlinearity

-- = -~ p'(A)1 _ _ _ _

h m(A,#A,#41 exp(i#)[ I a -(AK ___4)

= - exp(i#) dln- in + i c (78)

where we have canceled out common terms involving pa (A) and

pb(#). We must again take note that (78) is only an

approximation and is not accurate for small A.
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OPTIMUM NONLINEARITY

Nonlinearity (78) is identical to (52) except for the

replacement of pb(+) by pc(+-*); this agrees with the comment in

(1; second paragraph under (10)1. Thus, the optimum nonlinearity

hm is independent of amplitude variable K and depends only on

difference, #-T, of phase variables, except for leading factor

exp(i#), which reproduces the phase of the input; see the second

argument + x (t) in (63). In order to employ (78), the probability

density function pa of noise amplitude, and the probability

density function pc of noise phase changes between samples, must

be determined.

If we define auxiliary functions

ha (A - - d in(A) '

dhc {CI - - a. in pc(0) , (79)

then (78) can be expressed as

hm(A,A,) - exp(i+) ha(A) + i hc{.-* }  , (80)

and the optimum nonlinearity output is, by use of (63),

explicitly

rh (* (t) - #* (t-A))
y(t) - exp[i#x (t)J ha(Ax(t) } + i c x (t) x t- . (81)

All of these results are predicated on the particular model of

42



TR 8611

noise statistics as given by (66). Another model for the noise

joint probability density function would lead to a different

optimum nonlinearity.

When the optimum nonlinearity, (80), is substituted into the

deflection, which is the magnitude-squared value of (76) divided

by variance (77), the maximum deflection is found to be

2 1 22

dm " T As(t) I dA Pa(A) h2{A) +

+ a(A) h29] (82)

+ A  depc(e) c]

This quantity depends only on the probability density functions

Pa and pc; see (64)-(66) and (79). The presence of the pa (A)/A 2

term has been discussed earlier and is not valid for small A; see

also appendix C.
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EXAMPLE

Suppose that probability density functions

Pa (A) -A exp A for A > 0

a a

Pcle) - (2na - exp 2a 2) for all e . (83)

Then (79) yields

hAaA - A for A > 0 hc(O6J -2 (84)

a c

and optimum nonlinearity (80) becomes

hm{A,*,A,* } - exp(i#) A- + ( .m ~2 A 2].(5
a Vc

The maximum deflection follows from (82) as

2 2(t)/2 A:(t) A 2

d2 S - + dA Aexp 2 , 86
m a 2 T2- fA 2 a2

da c 0 a'

However, the last integral on A does not converge at A - 0; this

is an example where the inadequacies of the small-signal

approximations in (72) and (73) cannot be ignored, and (86) is

useless. The 1/A dependency in (85) and the 1/A2 term in (86)

are incorrect for small A and must be eliminated in that range.
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SUMMARY

The transformation of coordinates in (19) and the sequel was

performed so that the series expansion of yl(t) could be done in

terms of derivatives of noise joint probability density function

p, rather than derivatives of nonlinearity g. This allows g to

be discontinuous, but presumes that probability density function

p is differentiable. An alternative approach based upon an

analytic transformation g is given in (E-20) and the sequel.

The deflection criterion has been based upon a difference of

complex mean outputs for arbitrary signal waveform, as given by

(30). This philosophy has been explained in figure 5; it takes

full advantage of the fact that noise-only mean output yo(t) is a

known complex quantity and can be subtracted out. Equivalently,

restricting the nonlinear transformation to the class with zero-

mean noise-only outputs does not detract from the attainable

deflection values.

Even for small input signal amplitudes, the difference in

mean outputs, (34), contains a spurious term in addition to the

desirable term, for a general nonlinearity g. we have chosen to

ignore the undesired term and to concentrate on maximization of

the desired one. After pursuing this approach, we returned to a

quantitative measure of the size of the undesired term and found

that it was generally quite small; see (57)-(61). Thus, our

approach was confirmed to be a consistent one. An alternative

viewpoint is given in appendix E, where it is shown that
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deliberate suppression of this spurious term causes a degradation

in the maximum deflection attainable.

In equations (45), (52), (78), and (80), there is a 1/A term

in the imaginary part of the "optimum" nonlinearity. This would

appear to indicate that the imaginary component is very important

for small inputs; see (81) for example. However, we have then

violated the assumptions under which these results were derived,

such as in (23), (26), (27), (72), (73), and (75). For example,

(23) presumes that A is much larger than As  What this means is

that the true optimum nonlinearity does not really have a 1/A

dependence for small A; however, we do not know what the exact

dependence is for small A, because our presumptions preclude

investigation in that region. In practice, this means that, for

small inputs, we must somehow limit the size of the imaginary

part of the nonlinearity output, but the exact transition value

and behavior is unknown. A discussion of this problem is

presented in appendix C, along with an example of its application

and illustration of the basic principles.
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APPENDIX A. JACOBIAN OF TRANSFORMATION

Suppose we want to make the two-dimensional transformation

between polar coordinates r,e and p,#, according to

r exp(ie) - p exp(i+) + a exp(ib) , (A-i)

where a and b are arbitrary real constants. The Jacobian of this

transformation is

Sap ar

8(rO) - (A-2)8(p,+) 3e ae

From (A-1), there follows directly

8r3- exp(ie) + r i exp(ie) le - exp(i#)

are
exp(ie) + r i exp(ie) 1- p i exp(i#) . (A-3)

Equating real and imaginary parts of these two equations, we have

ar = cos(#-e) r lo - sin(#-G)
op

- - p sin(-e) , r e p cos(+-e) . (A-4)

Substituting in (A-2), there follows the desired result
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(r, e) l l P l
8(p,+) r Io exp(i#) + a exp(ib)j

=, -1 P (A-5)
(p2 + a2 + 2ap cos(#-b)) '

where we used (A-i).

If there were a need to solve for the individual terms in

(A-2), they can be obtained from (A-4), by using the real and

imaginary parts of (A-i) to eliminate cose and sine, with the end

results

5- _F p + a cos(4-b)]

ar a__a sin(-b)

W#r

_8 . a sin(#-b)

ae _

a+ MR2[p + a cos(+-b)] (A-6)

with

r (P2 + a2 + 2ap cos(#-b)) (A-7)
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APPENDIX B. INDEPENDENCE OF ADDITIVE CONSTANT

We will show here that the deflection (43) is unchanged if

g[A exp(i+)) is replaced by g{A exp(i#)) + b , where b is a

complex constant. This is a simple exercise for the denominator

of (43), as a direct substitution and expansion immediately

reveals that b cancels out everywhere.

For the numerator of (43), we have an additive term (inside

the magnitude-squared) of value

b J'J dA d+ exp(-i#)[A 1(2(A,+)) - i -- (,)(B-i)

However, integration by parts yields

dA A ,p(A'+) ._ dA p(A,) (B-2)

as well as

d+ exp(-i+) i fA) d+ exp(-i#) p(A,+) (B-3)

Substitution of these two results in (B-i) yields

b[f d+ exp(-i,) (-1) f dA p(A,) i f dA i f d+ exp(-i+)p(A,+)]

(B-4)

which is identically zero. Thus, the additive term dependent on

b is zero.

Result (B-2) is true if p(0,#) - 0.

The 2n periodicity of p(A,#) in * is utilized in getting (B-3).
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APPENDIX C. BEHAVIOR OF OPTIMUM NONLINEARITY

Some problems with the approximations utilized in (23)-(27),

in order to simplify the mean output y1 (t), were pointed out in

the sequel to (28) and were manifested in the example in (53) by

means of the 1/A dependencies for small A. To circumvent these

limitations, we will adopt the procedure used just after figure 3

for the lowpass case, namely, investigation of the exact

deflection and corresponding optimum nonlinearity with knowledge

of signal amplitude As(t) and phase *s(t). Again, although

physically unrealistic, this approach is informative and does

furnish an absolute upper bound on performance.

The starting point is the exact result (21) for the non-

linearity mean output,

yl(t) - dA d+ A g(A exp(i+)} p(zI, arg(z)) , (C-i)

where (dropping explicit signal t dependence)

z - A exp(i+) - A exp(i s). (C-2)

The noise-only mean output is obtained by setting As = 0:

YO(t) - ff dA d+ g(A exp(if)) p(A,+) (C-3)

The variance of y0 (t) is given by (42).

We now define exact deflection
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2 - ll(t) - Yo( t)2
(As, s  var(yO(t)) (C-4)

where the dependence on signal parameters is made explicit.

Since the absolute scale of nonlinearity g and an additive

constant to g do not affect the deflection, we can simplify

(C-4) to

2 *) dA d# g[A exp(i ) [ -z p(lzl,arg(z)) - p(A,#) 2

ff dA d I g[A exp(i+)) 2 p(A,)

(C-5)

By Schwartz's inequality, the optimum nonlinearity (with no

approximations, but with assumed knowledge of A and +s ) is

AA A( 5 z), arq(z)) _1 ,ge (A'+;As's =+ I--- p(A,+)1(C6

where z is given by (C-2). The corresponding maximum deflection

follows from (C-5) as

de(A (A ) - J dA d# [ A p(IzI, arg(z)) - p(A,+) ]2/p(A,#)

rdA d# A2 P2(IzI arg(z)) 1 (C-7)

dA IZI 2 p(A,+)

From (C-2), since

IzI - [A 2 + A~ 2_ 2 A A Cos(+ (C-8)
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it follows that

IZI - A s as A 4 0+ (if As 0 0) (C-9)

and, therefore, exact optimum nonlinearity ge in (C-6) has no 1/A

dependency for small A (unless probability density function

p(A,+) approaches zero rapidly for small A), but in fact has a

linear dependence on A. That is,

A p(A s+S +)

ge (A,';A SPY) p(A,) - 1 as A 4 0+ . (C-10)

-2
Similarly, the integrand of maximum deflection de in (C-7) has no

1/A2 dependence, but in fact, an A2 dependence for small A:

A2  p2 (A ,+S +n)
p(A,#) A2 as A 0+ . (C-li)

s

These are marked differences in behavior from the approximate

results of (45)-(47).

It should also be noted that optimum nonlinearity ge in (C-6)

is real. (More precisely, one of the possible optimum non-

linearities is real since complex multiplicative constants can be

dropped.) The reason this disagrees with the complex solution in

(45) is that As and + are presumed known in (C-6). When *s is

unknown, then even if (C-6) is developed in a power series in As,

it is not possible to extract a nonlinearity that is independent

of #s7 this information is too deeply embedded in optimum form

(C-6). Thus, (C-6) should only be regarded as a guide to good
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processing, especially for small A, but otherwise it is not

overly useful. The corresponding maximum deflection in (C-7) is

probably more useful since it furnishes an absolute upper bound

on performance for any nonlinearity. If an approximate result,

like (46) or (50) or (53), outperforms (C-7), it is in error and

must be modified or discarded. The apparent infinity in (53) at

A - 0, for example, is conspicuously wrong; reference to (C-11)

indicates that the true near-origin behavior is significantly

different.

The philosophy in this appendix is very different from that

utilized in (34)-(39). There, a desired type of signal term was

identified up front, while the nonlinearity characteristic g was

still arbitrary; then, that particular type of term was maximized

by choice of g. Here, the entire nonlinearity output difference

of means was maximized without any type of term being designated

as desired. Thus, we should expect to be able to realize a

larger deflection in this latter case since no terms have been

suppressed or ignored. The only problem with this approach is

that, after the maximization, it is not generally possible to

extract a meaningful nonlinear device that is independent of the

input signal values of amplitude and phase.

An example to illustrate these points is furnished by

Gaussian narrowband noise as in (48):

p(A,#) - A exp 2 for A > 0, 1i1 < n (C-12)

Sann
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Then, (C-6) and (C-8) immediately yield optimum nonlinearity

AA A2]

ge(A,+;As, ) - exp - cos(#5  - 1 - . (C-13)
G n 2ani

For small As, this behaves according to

A A
gA (A,#;A , ) 2 Cos(# -) as A 4 0 (C-14)
ge(A ;s's) 2 s s"

a
n

Even though there is a linear term in A8 , which could be factored

out, the remaining nonlinearity, namely A- cos(s - *), depends

on + It is now too late to express n

A A
2 c°s(s -
a2 s
n

- 21A exp(-i+) As exp(i#s ) + A exp(i+) As exp(-i s)] (C-15)
2n

and to drop the As exp(-i*s) term as being undesired since this

component has been an integral part of the maximization of

deflection (C-5). In fact, if we drop that term in (C-15), we

are left with nonlinearity

As

A exp(-i#) S exp(i#s) , (C-16)
2a 2  s
n

which can be modified to A exp(-i+) since complex multiplicative

factors on the nonlinearity are irrelevant. However, A exp(-i+)
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manifestly has the wrong phase behavior; see (49). Thus, this

series of (late) approximations and replacements can lead to a

nonsense processor and must be avoided.

The maximum deflection for this example is obtained by

substituting (C-12) in (C-7):

+CD n
a f dA d# A exp[- _(1 2  A2 - 2AA cos(,s_)l]_1

'(A -2n 2 2 + S - )

0 -n n n

dA A exp L 2 A I] 0(A -1 - exps) - 1 , (C-17)

n 0 n 2o n n n r yn

where we used [3; 6.631 4]. Observe that this quantity is

independent of signal phase s For small input signal-to-noise

ratio, this becomes

A2 A

+(A - as - 0 . (C-18)e s s 2
n

This latter approximation is twice as large as (50) and is due to

the fact that, here, we have retained all the signal terms at the

nonlinearity output, whereas the method leading to (50) discarded

one of the two possible terms. See the discussion immediately

after (C-Il).

For some purposes, it may be more useful to express the above

relations in terms of the joint probability density function of

the in-phase and quadrature components of the narrowband noise

rather than the amplitude and phase. Thus, if we let w(u,v) be
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the joint probability density function of

un + ivn - An exp(i#n) , (C-19)

then the joint probability density function p of amplitude and

phase is given by

p(A,#) = A w(A cos#, A sin#) (C-20)

57/58
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APPENDIX D. ALTERNATIVE FORMS IN RECTANGULAR COORDINATES

In (C-19) and (C-20), the joint probability density function

w(u,v) of the in-phase and quadrature components of the input

noise,

un + ivn - An exp(i+n) , (D-1)

was introduced; it is related to the joint probability density

function p of amplitude and phase by

p(A,+) - A w(A cos+, A sin+) . (D-2)

When we employ this result in (31), there follows

ql(A,+) - A[ cos+ w1 (A cos+, A sin+) + sin+ w2 (A cos+, A sin)],

(D-3)

q2 (A,+) - A[-sin+ w1 (A cos+, A sin+) + cos+ w2 (A cos+, A sin+)]

and therefore

ql(A,+) + iq2 (A,+) - A exp(-i+) W(A cos+, A sin+) ,

ql(A,+) - iq2 (A,+) - A exp(i+) W*(A cos+, A sin+) , (D-4)

where

W(u,v) a w(uv) + iw2 (uv) + i-+ i1w(uv) . (D-5)

When (D-4) is employed in (35) and (36), there follows
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za - izb - dA d* A g(A exp(i#)) W (A cos+, A sin+) -

- i du dv g{u + iv) W*(u,v) (D-6)

and

Z a + iz b - 55 dA d+ A g(A exp(i+)) W(A cos#, A sin+)

. 5f du dv g(u + iv) W(u,v) . (D-7)

When the optimum nonlinearity, (45), is expressed in the

notation of (D-2)-(D-5), we have

(A exp(i)) -W(A cos#, A sin#) (D-8)

m w(A cos+, A sin#) '

or

U + iv) - - W(u,v) (D-9)

u w(u,v) "

When this is utilized in (D-6) and (D-7), the following

alternatives to (57)-(59) result:

2P 2 (, +w2 uv(za.iz'm - II du dv , u,', - d d w1(,v) w2(u,
" - w(u,v) - du w(u,v)

r d w 2 u-vl r [w 1 (u,v) + iw2 (u,V]
(Za+iZb)m - - jjdu dv w(u:v'- - du dv w(uv)

2I w(v) - w2 (u,v) w (u,v)

- du dv 2 2u+ i2w(u,v) 1  2  (D-10)
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As an example of these results, suppose that joint

probability density function

w(uv) - f(u 2 + v2); that is, p(A,+) - A f(A 2 ) . (D-11)

The noise joint probability density function is independent of

angle. Then

wl(u,v) - 2 u f'(u
2 + v2

w 2 (u,v) - 2 v f'(u 2 + v ) , (D-12)

and (D-10) yields

(z - i " -4 du d (u2 + v2 ,2 (u + v 2

a- dv 'l + v 2 2f(u2 + v)

+= 2 A2

8n +8 D dA A 3 f ' (A ) (D-13)

0 f(A2

( z + zl- -4 ff du dv (u + iv , 2(u 2+ v2
f(u 2 + v )

n 3 V 2 (A2
- - 4 J d+ exp(i2#) J dA A3 f' (A - 0 . (D-14)

-n 0 f(A

Example (D-11) is a generalization of Gaussian probability

density function (48) and (D-14) generalizes (61).
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APPENDIX E. CONSTRAINED MAXIMIZATION OF DEFLECTION

When the difference of mean outputs was expanded through

linear terms in signal amplitude A s(t), the end result for

arbitrary nonlinearity g was (34):

1

Yl(t ) - Yo~t M A s Mst explifs(t)] (z a - iz b )

y As(t) exp[-i s(t)] (za + izb (E-1)

At that time, we ignored the second term as being of no interest

and maximized the first (desired) term; see (39) and (43). Then,

we later returned to investigate the relative sizes of these

terms in (57)-(61) and appendix D.

Here, we adopt a different viewpoint: we force the second

term in (E-l) to be zero and then we maximize the magnitude of

the first term by choice of nonlinearity g. More precisely, we

maximize deflection (43), subject to integral constraint

J du dv glu + iv) W(uv) - 0 (E-2)

this last equation comes from (D-7) and (D-5).

The first point to observe is that the absolute scale of g

does not affect (43) or (E-2). The second is that the same

independence is true for an additive complex constant, b, to g.

This was proven in appendix B for (43) and follows for (E-2)

since
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du dv b W(u,v) - b du dv [ + i w(u,v) -

- b r dv I du -w(u,v) + ib F du F dv -w(u,v) - 0 , (E-3)

where we used (D-5) and the facts that

du aw(uiv) M W(U'v) + Cl(V) "= 0,

dv Tv(u,v) - w u'v) + c2(u)I - 0 . (E-4)

What this means is that, without loss of generality, we can

set the complex nonlinearity mean output for noise-alone, yo(t),

equal to zero. This results in deflection (44), which can be

expressed in the form

Iff du dv glu + iv) W*(u,v)1
2

d2  A A(t) , (E-5)
4 t if du dv Ig{u + iv) 2 w(u,v)

where we used (D-4), (D-1), and (D-2). The problem of interest

here is to maximize (E-5), subject to constraint (E-2), by choice

of nonlinearity g.

Since (E-2) is really two constraints on the real and

imaginary parts, we need two real Lagrange multipliers; letting I

denote the integral in (E-2), we must add to (E-5) the two real

terms
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1ri ii rI+1I I -I 1 ( *' * ')

X I2 + Xi (I = I + I* X , (E-6)
Xr r i 1i >r 2 1 i2 2 X E6

where X is a complex Lagrange multiplier. Then, the essential

quantity we must maximize is

g 2 - g W - X  g * , (E-7)

Jf igi2 w ifjj wifg

where we have dropped irrelevant scale factors and adopted an

extremely abbreviated notation for the time being.

If we replace

g(u + iv) by g u+ iv) + C n(u + iv) , (E-8)

where gm } f is the optimum nonlinearity, ( ) is any

perturbation, and c is an arbitrary complex constant, the new

value of Q is

O -+J f (gm + en) if (gm + en) * W

Jf (gm + en (gm + Cri) w

ifX J(gm + en~) W - X JfJ(gm + en)* W . (E-9)

Let constants

N- gm , D - igm 12 w ; (E-10)

N is complex, while D is real. If we set the partial derivative

of Qm + 6Q with respect to c (for fixed c) equal to zero, and

then set e - 0, c - 0, we find that we must satisfy
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D N Jj r) W - INI gm n w - X f W* - 0 (E-11)DI 2

for all perturbations n = n{u + iv). That is,

fJ *[j W- W- X W*] - 0 for all n (E-12)

The solution for the optimum nonlinearity is therefore (dropping

irrelevant scale factors)

DX*N
gm M - Rw " (E-13)

In order to solve for the unknown constants, we must

substitute (E-13) into the constraint (E-2). But, first, we

define the two additional quantities

JJ 2 (E-14

M is real, while C is complex. Then the substitution yields

0 - gm W - - C + D- M . (E-15)JJ N

Equation (E-15) can be solved for

DX C (E-16)

Use of this result in (E-13) gives the optimum constrained

nonlinearity
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C *

W(uv) - W (uv)
9 (u + iv) - - w(u,v) (E-17)

where constants M and C are given by (E-14). By comparison, the
*

unconstrained optimum nonlinearity did not have the W term; see

(D-9).

The corresponding maximum deflection is obtained by the use

of (E-17) and (E-14) in (E-5):

d2  1 2 (t) M 1 - j (E-19)
m s 5 t

The factor

1 - -CI - du dv W2 (u,v)/w(u,v) 2 (E19)
M 2 fJ du dv ,W(uv) 2/w(u,v)

is the amount by which the constraint (E-2) degrades the

attainable deflection; see (46) and (D-4).
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ALTERNATIVE APPROACH

If we return to exact mean output y1 (t) in (18) and presume

now that nonlinearity g is analytic, then a serie s expansion in

A s(t) yields directly

yl(t) - y0 (t)-

- A(t)expi t) dAnd p(A 1+ ) g'(A exp~i+ 1). (E-20)

The subscript a on g denotes that nonlinearity g is now required

to be analytic. We immediately see that the second term in (34),

of the form A 5(t) exp(-i* s(t)), is absent. Now use (D-2) and

(D-1) to obtain

yl(t) - y 0 (t) - As(t) exp~if5(t)J Jf du dv w(u,v) g;(u+iv).(E-21)

The double integral in (E-21), denoted by I, can be put in

two different forms: first, since

a ((u'v) g (u + iv)) W w(u'v) g (u + iv) +w(u'v) g;(U + iv)

(E-22)

then

Jdu w(u,v) g~fu + iv)-

-Jdu j.I(w(u,v) ga (u + iv)) -fdu w 1(u,v) ga (u + iv) . (E-23)

The first term is
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]u=+CD

1w(u,v) ga(u + iv) + c(v) - 0 (E-24)

since we presume that probability density function w(u,v) goes to

zero fast enough at u - ±-. Therefore, integrating (E-23) on v,

I - rr du dv w(u,v) g;fu+iv) - - fr du dv w1(uv) g fu+ivJ.(E-25)

A similar approach to (E-22), but involving 8/8v instead, yields

the alternative expression

I - i ff du dv w2 (u,v) ga (u + iv) . (E-26)

Since (E-25) and (E-26) are equal, we obtain

j'f du dv W(u,v) g (u + iv) - 0 ,(E- 27)

where we used (D-5):

W(u,v) - w1(uv) + iw2(u,v) - W- + iA-w(u,v) . (E-28)

But (E-27) is identical to the constraint (E-2) that we adopted

earlier in this appendix. Thus, the assumption of analyticity of

nonlinearity ga automatically realizes the constraint that

eliminates the second (undesired) term in (E-1). This is also

obvious directly from expansion (E-20).

Since I is given by both (E-25) and (E-26), it is also given

by the linear combination
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I- PJ du dv w 1(uv) ga (u+ivl+(1p)if du dv w2 (u,v) ga{ U+iv) -

- - f du dv ga u+iv) [p w1 (u,v) - i(l-p) w2(u,v)l , (E-29)

where p is any complex constant. Notice that an additive

constant to ga does not affect I, since

du w_(u'v) - dui w(uv) - w(U'v) + c(v)] - 0 (E-30)

and similarly,

J dv w2 (uv) - . (E-31)

Then, by reference to (42) and the upper line of (43), the

deflection can be expressed as

d 2  2 )M I du dv ga{U+iV}[P w1 (uv) -i(l-p) w2(u'v)]I2 (E 32 )if du dv Ig au+ivl 2 w(u'v)

where we used (E-21), (E-29), (D-2), and (D-1). Now if ga were

unrestricted, the optimum nonlinearity is now

* p*

g (u+iv)- -2 p W1 (uv) + i(1-P ) w2 (u,v)
am w(uv)

- _ p (W + W ) + (I-p) (W - W
w

* *

W(uv) - (1 - 2p ) W (u,v) (E33)
w(u,v)
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where we used (E-28). But since (E-27) must be satisfied by this

candidate nonlinearity gam' we find that

* C
1 - 2p - , (E-34)

where C and M are given by (E-14), and (E-33) becomes identically

(E-17).

The only thing wrong with this latter alternative approach in

(E-20) and the sequel is that there is no guarantee that (E-33)

yields an analytic nonlinearity g for any p. Thus, (E-33) may

not be a valid solution. Furthermore, it is unnecessarily

restrictive to limit g to being analytic, and the identical

optimum nonlinearity, obtained earlier in (E-17), was not

restricted to being analytic. In summary, (E-17) is the optimum

constrained nonlinearity which eliminates the As(t) exp[-i*s(t)]

term, while (D-9) is the optimum nonlinearity which ignores this

latter term.
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Directly From Spatial Correlation for Linear,
Planar, and Volumetric Arrays
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ABSTRACT

The spatial correlation between two points of an array is given
by a two-dimensional integral in terms of the noise field
directionality. Depending on the dimensionality of the array, this
integral equation can be partially solved to yield explicit
expressions for the noise field directionality in terms of a
multidimensional Fourier transform. In particular, for a linear
array, a one-dimensional collapsed field distribution can be
determined; for a planar array, the sum of symmetrically-arriving
rays can be solved for; and for a volumetric array, the complete
field can be found. The effects of finite length and discrete
arrays on the estimate of the noise field directionality are also
considered.
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DETERMINATION OF NOISE FIELD DIRECTIONALITY DIRECTLY FROM

SPATIAL CORRELATION FOR LINEAR, PLANAR, AND VOLUMETRIC ARRAYS

INTRODUCTION

When an array is located in a homogeneous stationary noise

field, measurement of the crosscorrelations between all pairs of

separated elements, at each temporal-frequency of interest, is

the most general second-order statistical information that can be

extracted. These spatial correlations depend upon the

directionality of the surrounding noise field, which is the

primary quantity of interest here. Instead of beamforming the

element outputs, for example, and trying to suppress the inherent

sidelobes by proper weighting procedures, we want to avoid any

preconceived notions about data processing and go directly from

the spatial correlation to the noise field directionality in as

direct and simple a manner as possible.

However, because the noise field directionality is a two-

dimensional function of polar and azimuthal angles, some inherent

loss or condensation of information takes place with a linear

array and, to a much lesser extent, with a planar array.

Nevertheless, we want to preserve and extract the maximum amount

of information about the noise field directionality, consistent

with the dimensionality of the array employed, and to minimize

the amount of data processing required.
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We begin by assuming the array to be an infinite continuous

line in the one-dimensional case, and solve the integral equation

for the integrated (or collapsed) noise field directionality, at

each temporal-frequency, in terms of the spatial correlation

along the line. Then, we discretize the line, so as to be an

equi-spaced array, and determine the effect that this limitation

has upon the estimated directionality. Finally, we investigate

the smoothing that is caused by the practical requirement that

any physical array must have finite length. Thus, the facts that

the spatial correlation will never be available on a continuum,

nor for infinite separations, are included in the analysis.

A similar procedure is pursued for the two-dimensional case,

where the planar array is presumed to have equal spacings Ax and

ay in the x and y dimensions, respectively. Again, the aliasing

effects are considered, as well as the limitation of having to

employ a finite-size planar array. Finally, in the three-

dimensional case, where the problem is overdetermined, a

plausible and efficient procedure for collapsing the surplus

information is presented, although it is recognized that an

unlimited number of alternatives exist.

Although it was stated that the noise field directionality is

of interest, this does not preclude the presence of plane-wave

arrivals, that is, additive signals or interferences in the

background. In fact, the examples are specifically of that type,

for these can be considered as the fundamental building blocks of

a general noise field.

2
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Some related results on this problem of restoring the noise

field directionality from the spatial correlation are given in

[1,2,3,4], but limited to the line array. Specifically, (1] gave

a least squares approach, starting from a discrete finite-length

array. However, ill-conditioning of the simultaneous linear

equations for the noise field directionality precluded its use

for more than approximately ten elements. This ill-conditioning

is circumvented here by deferring the discretization until after

the integral equation is solved; this procedure for the line

array was first given in [4].

3/4
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CHARACTERIZATION OF NOISE FIELD

Let Nf(e,) be the intensity of the homogeneous stationary

noise field at temporal-frequency f, arriving from direction e,+,

where 0 < 9 < n, -n < + < n; see figure 1. The amount of power

received in solid angle d9 d* sine about e,# is

d9 d+ sine Nf(O,#). (1)

We call Nf(9,0) the noise field directionality; the product

sine Nf(e,+) could be called the plane-wave density.

z

arrival
0 <e <

y

Figure 1. Coordinate System

Consider general field point xlylz 1 . Then if the time of

arrival at the origin, of the component from direction e,+, is

zero, then the time of arrival at xlylz 1 is

1
T " - 1 (xl sine cos+ + Y, sine sin# + z, cose), (2)

where c is the speed of propagation. Therefore, the transfer

function at xlylZl applied to the arrival from direction e,+ is

5
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H1 (f) - exp(-i2nfT)

- exp i-- (x1 sine cosf + y1 sine sin+ + z1 cose) (3)

where wavelength X - c/f.

The elemental contribution to the crosscorrelation between

this arrival at x1 ,YlZl and x21Y2 ,z2, at temporal-frequency f,

is then

de d# sine Nf(e,#) H1 (f) H2 (f) - de d+ sine x

x Nf(e,.) exp i--j (x sine cos* + y sine sin+ + z cose) ) (4)

where separations

X X X1 - 2'

y = yl - Y2 '

z -z - z2. (5)

If the arrivals from different directions are uncorrelated, the

spatial correlation (at frequency f) between two points separated

by x,y,z is then given by integrating over all angular space,

Gf(x,Y,Z) j J de f d+ sine Nf(e,) x

0 -n

x exp J-- (x sine cos+ + y sine sin# + z cose)). (5)

The problem of interest is: given spatial correlation

Gf(x,y,z) versus x,y,z (or restricted slices of Gf(x,y,z)), solve

for noise field directionality Nf(e,#) (or smoothed versions of

6
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Nf(O,)). That is, invert integral equation (6) for noise field

directionality Nf(0,4) or for whatever can be determined. There

are three cases that must be distinguished, namely, linear,

planar, and volumetric arrays.

7/8
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LINEAR ARRAY

It is most convenient mathematically to locate the line array

along the z axis, that is, x - y = 0. Then the exponential in

(6) is independent of +, and (6) reduces to*

n n

Gf(z) = d d+ sine Nf(e,#) exp (i- z cose

0 -n

d sine f (e) exp i-- z cose , (7)

0

where

Nf(e) = f d# Nf(e,.) for 0 < e < n (8)

-n

is the integrated or averaged noise field directionality, and

Gf(z) is the one-dimensional spatial correlation at separation z

along the line, both functions evaluated at frequency f. Gf(z)

is the only second-order function that can be measured (or

estimated) from the line array, and N f(e) is the only field

function that can be determined. There is no possibility of

undoing the integration of (8); this is a mathematical

representation of the inherent conical symmetry of response of

*The case where the line array is located on the x axis is

treated in appendix A.

9
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a linear array. It is also one reason for choosing the line

array to lie along the e = 0 axis, since all the two-dimensional

field information is conveniently collapsed into a one-

dimensional function of e alone. See appendix A for the problems

associated with choosing a different coordinate system.

SOLUTION OF INTEGRAL EQUATION

To solve integral equation (7) for noise field directionality

Nf (e), consider the following:

+0

fdz exp(ii u z) Gf(z)-

n! + C

- de sine Nf(e) J dz exp(_ii z (u - cose))

0 -0

f de sine Nf(e) X 8(u - cose), (9)

0

where 6 is the delta function. Now let t - cose, which is a

one-to-one transformation for 0 e < n, to get

+0 1

dz exp(-i u z Gf(z) - J dt Nf(arccos(t)) 6(u - t) -

~0 -1

X X Nf(arccos(u)) for Jul < 1

0 for lul > 1

where arccos is the principal value inverse cosine function.

10
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That is,

+0

Nf(arccos(u)) = dz exp(-i -n u z) Gf(z) for lul < 1, (11a)

cc

or

+c

Nf(9) dz -exp - cosE z Gf(z) for 0 < e < n. (llb)

Compare (11b) with starting point (7).

Thus, given the spatial correlation Gf(z) for all possible

separations z along the line array, the integrated noise field

directionality Nf is available via a single one-dimensional

Fourier transform.

11
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EXAMPLE

An example is informative at this point. Let

Nf(e) = SO - 90 ), 0 < e < n.

Then the spatial correlation is, from (7),

Gf(z) = sine0 exp (i- z cose O) .

Observe that as e 0 or n, that is, endfire of the line array,

the strength of this quantity decays to zero, due to the sine

term in the area element in (1). Substitution of correlation

Gf(z) into (lb) yields noise field directionality

Nf(9) = sine0 S(cos0 - cose o) for 0 < 0 < n.

Now the delta function here is located at 9 - e0 and has area
1/sine . Thus, Nf(e) is 6( - e ), as it should be; however, the

trigonometric form shows Nf(9) as the product of two terms, the

first of which tends to zero as e0-+ 0 or n, and the second of

which has an area that tends to infinity as Go 0 or n. This

behavior will re-occur in the following investigations.

We have employed the following useful property above: if

g(x) has an isolated zero at xo , then in the neighborhood of xo ,

= 8(g'(x o) (x-xo ) = Ig'lxo)I 0

That is, the area of the delta function at x0 is equal to the

reciprocal absolute slope of the argument at xo, if nonzero.

12
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DISCRETE INFINITE-LENGTH ARRAY

If samples of spatial correlation Gf(z) at increment 6 in z

are available, an approximation to (11a) is afforded, for

lul < 1, by

+0

Nf(arccos(u)) = . exp(-i-- u A n) Gf( n), (12)
n=-w

the right-hand side of which has period X/A in u. Since the

integrated noise field directionality in (11a) is defined on an

interval of length 2, that is, -1 < u < 1, aliasing will occur in

approximation (12) unless A < X/2. Thus, the spacing 6, between

samples of Gf(z), must be less than a half-wavelength at the

temporal-frequency f of interest. This is presumed true

henceforth.

Now if u is restricted to the values

u m X for - m !<1, (13)us = R W - - ,(3

which cover a full period, there follows, for I < 1,

+W

Nf(arccos(M )) = exp(-i2nmn/M) Gf(A n). (14a)
n=-w

The sum on the right-hand side can be accomplished via an M-point

fast Fourier transform when collapsing is employed [5; page 5].

The resultant angles at which Nf(8) is available are

em -arccos , or cose m = M - for - M < m < - , (14b)

m )o M o 2 -2

13
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provided that JAL < . These values are equally spaced in coseM a

space.

The right-hand side of (12) can be rewritten in the form

[5; pages 3-4J

+00 +00

1 dz exp(-ii- u z) Gf(z) A S(z - 6 n) -

+W +D

N f(arccos(u)) * S(u - af~ = farccos u -
2~,(15a)

n=-c n1-c

where * denotes convolution. The separation of these aliased

lobes (for n # 0) is X/A on the u scale; then, since the extent

of RNf(arccos(u)) is 2 on the u scale, overlapped aliasing lobes

do not occur if A < X/2. This is a mathematical back-up to the

claim under (12).

14
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DISCRETE FINITE-LENGTH ARRAY

The effect of a finite-length array can easily be

incorporated by modifying (15a), so as to include weighting w(z).

Then, we have, for the estimated noise field directionality,

~ Jdz exp(-ii _ u z) Gf(z) A 6(z - n) w(z)-

+CV

- Nf(arccos(u)) * W(u - (15b)

where window

+40

W(U)- dz exp -- u z w(z). (15c)

Thus, not only is the noise field directionality aliased at

separations X/A in u, but, in addition, it is smoothed by window

W. Sampling, per se, does not distort the estimated

directionality, if done finely enough, that is, A < X/2.

However, the finite length of the array always causes smearing,

with a window width of the order of X/Lz, where Lz is the

effective length of weighting w(z).

15/16
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PLANAR ARRAY

It is now most advantageous mathematically to locate the

planar array in the x,y plane, that is, at z - 0. Then the

exponential in (6) is independent of cose, and (6) reduces to

nt n

Gf(x,y) - de f d+ sine Nf(,+) exp(ii- sine (x cos+ + y sin#))-

0 -n

n/2 n

- J de f d* sine FNf(e,#) exp(iO! sine (x cos+ + y sin+)), (16)

where

Nf(e,) - Nf(e,+) + Nf(n -

for 0 < e < n/2, -nt < + n. (17)

Rf is the sum of the elemental components in symmetrically-

arriving rays on opposite sides of the planar array; recall that

e - n/2 now corresponds to the plane of the array. Spatial

correlation Gf(x,y) is the only function that can be measured (or

estimated) from the planar array, and Nf(e,#) is the only field

directionality function that can be determined. There is no

possibility of undoing the summation of (17); this is a

mathematical representation of the inherent two-sided symmetric

response of a planar array. It is also one reason for choosing

the planar array to lie along the e - n/2 plane, since the

totality of the two-dimensional field information is conveniently

collapsed into a one-sided function of e, that is, 0 < 6 < n/2.

17
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SOLUTION OF INTEGRAL EQUATION

Consider the two-dimensional Fourier transform of (16),

+40

I(uv) z fJ dx dy exp(-i2- (ux + vy)) Gf(xly) -

(18)
u/2 n

- Jde d+ sine Rf(e.,) X 2 6(u - sine cos,) 6(v - sine sin#).
0 -n

Let

a - sine cos+, 6 - sine sin+ for 0 < e < n/2, -n < + < n. (19)

These relations can be inverted by using

a + i0 - sine exp(i+), (20)

to give

sine" lo + i " - + 2) , * - arg(t + io). (21)

Thus, (19) is a one-to-one two-dimensional transformation in the

ranges 0 < e < n/2, -n < n < allowed in (18). From (19) and

(21), the Jacobian is

cose cos+ -sine sin+ -

cose sin+ sine cos+

s'ecoe I2 +/21 1 2 821

"sinecose - + 11- - . (22)

Substitution of these results in (18) yields

18
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I(u,v) - X2 fJ da dO F(*,O) (1 - 2 _ o2)4 (u-0) 6(v-O) -

C1

XF(u,v) (1 - u 2 _ v 2 )4 fo I 2<1(3

0 otherwiseJ

where C1 is a circle of radius 1 located at the origin, and

F(a,0) - Rf(arcsin(Ic + iOI), arg(a + i)). (24)

Here, arcsin is the principal value inverse sine function. From

(23), (24), and (18), the noise field directionality is

N f(arcsin(Iu + ivi), arg(u + iv)) -

u2 - v2)4 +4j dx dy exp(ii2 (ux + vy) Gf(xY)

for u2 + v2 < 1. (25)

An alternative form is available by letting

u - sine cos+, v - sine sin# for 0 < e < n/2, -n < + < n, (26)

namely
+4D

f(e#) - cose dx dy exp(-i- sine (x cos+ + y sin.)) Gf(x,y)

for 0 < e < n/2, -n < + < n. (27)

It is interesting to compare this form with starting result (16).

An alternative, when the planar array lies in the y - 0 plane, is

given in appendix B.

19
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BEHAVIOR NEAR PLANE OF ARRAY

At first sight, the presence of the cose term in (27) would

appear to be a problem for 9 = n/2, which is the plane of the

array. However, the following example illustrates what is

happening; et

Nf(eI,) - S(8 - 8 ) 6(+ - *o) for 0 < eo < n/2, -n < # 0 n.

Then (16) yields spatial correlation

Gf(x,y) - sine0 exp(i-- sine o (x cos* ° + y sin+0 ).

The strength of this quantity tends to zero as e0 4 0. Substitu-

tion of this Gf(x,y) into (27) yields noise field directionality

Nf(8 ,*) = sine cose 6(sine cos# - sine ° cos# ) x

x 6(sine sin+ - sine sin+0 ).

By use of the property

6(ax + by) 6(cx + dy) 6(x) 6(y)
a lad - bcl

it may be shown that RNf(e,#) is 6(8 - e0 ) 6(# - *0 ) , as expected;

however, the trigonometric form shows Nf as the product of two

terms, the first of which tends to 0 as 804 0 or n/2, and the

second of which has impulses with area which tends to infinity as

eo 0 or n/2. Thus, the sine and cose terms are not a problem

since they are compensated by multiplicative terms; however, they

may lead to inaccuracies in numerical computation.

20
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DISCRETE INFINITE-LENGTH ARRAY

The form in (25) gives the noise field directionality sum

qf, defined in (17), as a double Fourier transform of the two-

dimensional spatial correlation function Gf(xy). If samples of

Gf(xy) at increments A in x and Ay in y, respectively, are

available, an approximation to (25) is afforded, for u2 + v2 < 1,

by

f(arcsin(1 u + ivj), arg(u + iv)) C1 - u2 - v2)h A X

x exp(-iiR (u Ax k + v a~ j)) Gf(Ax k, a J). (28)

A2 T Xy ×

k---j--

The summation on the right-hand side of (28) has periods X/Ax in

u, and X/Ay in v. Since the sum Nf is defined within the circle

u + v2 < 1, overlapped aliasing lobes will occur in (28) unless

a < X/2 and A y < X/2; that is, the spacings between samples of

Gf(x,y) must be less than a half-wavelength at the temporal-

frequency f of interest. We presume this to be true henceforth.

Now if we restrict u and v in (28) to the values

u m X for - N < m < f - 1,Um K N3 2 2
x

Vn X for - < n <-, (29)
y

both of which cover full periods in u and v, respectively, there

follows
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Nf(arcsin(Iu + iv n), arg(u + iv - - -

+ +-o

x x A y exp(-i2nmk/M-i2nnj/N) Gf( 6x k, jy J), (30)

k-- j=-w

provided that

turn + iVn< 1. (31)ju +ivni I 4x NAyl

The double sum in (30) can be accomplished as an MxN two-

dimensional fast Fourier transform, when collapsing is employed

[5; page 51. The resultant angles at which noise field

directionality RNf(9,+) is available are

0 < emn - arcsinjs - + ia L

-n<+ agm X n X, 5 -< n (32)x y
-- <%a arg( x + i N) ay32

or

sinemn - A + + -
x y

(E [( 2 X ( )2] , (33a)

x y

where

- < m < -1, - < n < - , (33b)
"T-2 2 --

but remembering that (31) must remain true.
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The right-hand side of (28) can be re-written in the form

[5; pages 3-41

u2 --2) dx dy exp(-i2- (ux + vy)) Gf(xy) x
x2

+0 +0

X x )7 s(x - k) A~ Z "y - Aj) -

k-- j

- Nf(arcsin(u + ivi), arg(u + iv)) *

+0 +0

k=- - x j= _C y

The separations of the aliased lobes (for (k,j) # (0,0)) are X/Ax

on the u scale and X/Ay on the v scale. Then, since the extent

of the noise field directionality Nf is u2 + v2 < 1, overlapped

aliasing lobes do not occur if A < X/2 and Ay < X/2. This is a

quantitative restatement of the claims made in the sequel to

(28).
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DISCRETE FINITE-LENGTH ARRAY

The effect of finite lengths in the x and y directions can be

incorporated by modifying (34a) so as to include weighting

w(x,y). Then, we have, for the estimated noise field

directionality,

( u2 _2) j dx dy exp(-- (ux + vy)) Gf(x,y) x

+O +C

xx . S(x - Ax k) Ay .6(y - Ay j) w(x,y) =

k=-- j=-GD

+0 +0

- Nf(arcsin(Iu + ivl),arg(u + iv)) 0 Z W(u - --,v - ,

k=-o j-o x y

(34b)

where window

+0

W(u,v) = , dx dy exp ill (ux + vy) w(x,y) . (34c)
2A

Thus, not only is the noise field directionality aliased at

separations X/Ax in u and X/ay in v, but, in addition, it is

smoothed by window W. Sampling alone does not distort the

estimated directionality if done with A x < X/2 and A y < X/2; see

(34a). However, the finite lengths of the array always smears,

with window widths of the order of X/Lx in u and X/Ly in v, where

Lx and Ly are the effective lengths of weighting w(x,y) in x and

y, respectively.
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VOLUMETRIC ARRAY

We now have the full version (6):

nt I

Gf(xyz) = f de f d sine Nf(e,.) x

0 -n

x exp(i-- (x sine cos + y sine sin+ + z cose)). (35)

However, since noise field directionality Nf is a function of two

variables, while spatial correlation Gf has three arguments, some

of the information in Gf is superfluous and must be reduced or

collapsed in some fashion.

SOLUTION OF INTEGRAL EQUATION

We begin by defining triple Fourier transform

+00

I(u,v,w) m dx dy dz q(z) exp (i-- (ux + vy + wz) Gf(xy,z) -

- de f d+ sine Nf(eI,) X2 6(u - sine cos+) 6(v - sine sin#) x

0 -n
x Q(w - cose), (36)

where we use a weighting q(z) on the z variable, and define

+ C

Q(t) = f dz exp(-i2ntz/X) q(z). (37)

(If q(z) - 1 for all z, then Q(t) = X 6(t).)
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We now break the right-hand side of (36) into two parts

according to

it it n/2 it it n

f de f d+= J de f d+ + fde f d , (38)

0 -n 0 -n n/2 -

and in each region, we make the change of variable used in (19)

and the sequel, namely

- sine cos+, 0 - sine sin#. (39)

Then + - arg(oz + iO), while

e . f arcsin(. + iO.) for 0 < e < n/2 (40)

n - arcsin(jI + i01) for n/2 < 0 <

and

( 2 _ 2) for 0 < 9 < n/2
cose = _ -m2 - 02 f (41)

-( - - for n/2 _< e _J

Define, for future use,

s(,) = 1- O2 ~2)h for 2 + 02 < 1. (42)

Using these results in (36), there follows

I(u,v,w) - X2  ff dc do S(c,o) -I F1 (OCO) 6(u-c) 6(v-1) Q(w-s(ce,O))

C1

+ X2 fj da do s(a,o)-1 F 2 (cx,0) 6(u-C) 6(v-O) Q(w+s(a,O)), (43)

C1

where C1 is a circle of radius 1 located at the origin, and
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F1( ,0) - Nf(arcsin(Ic + i 1), arg( + i Ifor I + i01 S i.

F2 (t,o) - Nf(R - arcsin(Ia + i01), arg(c + i )) (44)

Evaluating the integrals in (43), we have

I(u,v,w) = x2 S(U,V) - I [FI(U,V) Q(w - s(u,v)) +

+ F2 (u,v) Q(w + s(u,v))] for u2 + v2 < 1. (45)

SIMULTANEOUt EQUATIONS

If we evaluate the triple Fourier transform in (36) at two

different values of w, we have

s(uV) I(u v,wI ) = Fl(u v) Q(wI- s(uv)) + F2 (uv) Q(Wl+ s(u,v))k2 2 1

(46)

and

s(uv) I(uvw ) = Fl(Uv) Q(w2- s(uv)) + F2 (uv) Q(w2 + s(u,v)).k2 2 ,W2 2 ,

(47)

Also, if we define

Qn(+) - Q(wn  + s(u,v)) ,

Qn(-) = Q(w n  - s(u,v)) , (48)

and denominator

D - Q1 (-) Q2 (+) - QI(+) Q2(-), (49)

the solutions to (46) and (47) are
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F (u'v) M s(u,v) (Q(+ I(u,v,w ) - Q(+ I(u,v,w) for
SD 

I(uv'w2)}u 2 + V2 < 1,

Fu)(uv) - S(UV) ( -) I(u,v,w2 ) - Q I(u,v,w (50)X2uv " 2 D 12 21

provided that D 0 0. Function s is defined in (42).

There is a great deal of leeway in these solutions. Namely,

Q(t) in (37) is arbitrary, and the values w1 and w2 are arbitrary

as well; the only restriction is that D in (49) not be zero. In

the special case where weighting q(z) in (36) is real and even,

then Q(t) in (37) is also real and even; we presume this to be

the case henceforth. If we then choose w2 - -w1 , (49) becomes

D - Q2(w 1 - s(u,v)) - Q 2(w1 + s(uv)). (51)

If the effective length of weighting q(z) is Lz , a represent-

ative plot of Q2(t) is displayed in figure 2. For small s, a

good location for w1 is at the point where Q 2(t) has its maximum

slope. For larger s, a value for w1 near s would guarantee a

large value for D in (51).

z

I I I
w1 -s 0 w1  w1 t+S

Figure 2. Window Function Q2
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ANGULAR REPRESENTATIONS

If we make the substitutions

u - sine cos+, v - sine sin+ for 0 < e < n/2, -n < n, (52)

then (42), (44), and (51) yield

s(sine cos+, sine sin+) - cose
for

F1 (sine cos*, sine sin+) - Nf(e1)

F2 (sine cos+, sine sin#) - Nf(f - e,f) 0 < e < n/2, -n < + n

D - Q 2(w1 - cose) - Q2(w 1 + cose) (53)

Then (50) becomes

cose Q(wl - cose) I(+) - Q(wI + cose) i(-)fe x 22 (w - cose) - (w1 + cose)

-Ne(*) -,0Q(w 1 - cose) I(--) - Q(w1 + cose) I(+)

f(-, - x2 Q 2(wI - cose) - 0 2(w1 + cose)

for 0 < e < n/2, -n < + < n,

where we define

+C

I(±) - I(sine cos#, sine sinf, ±w1 )- JJJ dx dy dz q(z) x

x exp(-i! R- (x sine cos+ + y sine sinf ± z w1 )) Gf(x,y,z), (55)
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upon use of (36). we repeat that these results for the noise

field directionality apply only for Q(t) real and even;

otherwise, Q(t) and w1 are arbitrary.

An alternative form to (54b) is available, if desired, by the

substitution e' = n - e, namely

cose' Q(wl + cose') I'(-) - Q(w - cose') I'(+)Nf(e',*)
fX2  Q2(w I - o - Q2 (w1 + cose')

for n/2 < e' < n, -n < n , (56)

where

I'(±) = I(sine' cos+, sine' sin#, ±wl). (57)

The most extensive calculation required here is that given by

(55); rewriting it differently,

+0

I(u,v,±wl) = f dx dy exp(-ii£ (ux + vy)) x

+0

x f dz exp(-i -n (±wl)z) q(z) Gf(x,y,z). (58)

The innermost integral, the Fourier transform on z, only needs to

be accomplished for the two values +w1 , whereas the outer

integrals must be done for ranges of u and v. This is the

collapsing operation alluded to under (35). On the other hand,

the inner integral must be repeated for every x,y value of
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interest; nevertheless, (58) is not as difficult as a three-

dimensional Fourier transform.

An example of this procedure for the volumetric array is

carried out in appendix C; it illustrates the care that must be

taken with respect to the e variable in (54).

31/32
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SUMMARY

The noise field directionality for the cases of one-, two-,

and three-dimensional arrays have been solved for, explicitly, in

terms of the appropriate spatial correlation available in each

case. In the one-dimensional case, only the polar directionality

can be determined, while in the two-dimensional case, the sum of

symmetrically arriving rays on both sides of the planar array can

be evaluated. For the three-dimensional case, all ambiguity can

be eliminated, but the overdetermined nature of the problem

requires some collapsing of information and leaves many options

to consider. For example, one could let the volumetric array be

a thin-shelled sphere; however, the resulting two-dimensional

integral equation for the noise field directionality cannot be

solved explicitly. The attractive feature of large stacked

planar arrays is that it permits the use of Fourier transforms

and, therefore, an explicit expression for the noise field

directionality in terms of the three-dimensional spatial

correlation. Also, Fourier transforms are efficiently evaluated

by the use of fast Fourier transforms.

In this investigation, we have presumed exact knowledge of

the spatial correlation Gf(z) or Gf(x,y) or Gf(x,y,z), depending

on the dimensionality of the array employed. In practice, Gf

must be estimated from measurements made from a physical array;

in this case, maximum advantage should be taken of the

stationarity and homogeneity of the noise field. Thus, for a

line array of equi-spaced elements, Gf(nA) should be estimated
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from all the available pairs of elements that have separation nd

in space and over the total available observation time that data

have been recorded on all elements.

A comparison 161 is underway between the methods of this

report and the Fourier series method given in [41, at least for

the line array. Results are similar, but not identical; in

particular, the aliasing of the Fourier series method is more

severe than for the Fourier integral approach.
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APPENDIX A. ALTERNATIVE LOCATION OF LINEAR ARRAY

If we locate the line array along the x axis, that is,

y - z - 0, then (6) reduces to

n n

Gf(x) -f de d# sine Nf(e,+) exp(i n x sine cos) -

0 -n

n/2 n

- de d+ sine Nfle,) exp(iit x sine cos+), (A-l)

0 0

where

Nf(e,4) - Nf(e,) + Nf(i - e,*) + Nf(e,-*) + Nf(. - e,-) (A-2)

for 0 e < n/2, 0 < # < n. Therefore, Fourier transform

+C0

I(u) m dx exp(-ii u x) Gf(x) -

n/2 n

- de f d+ sine Nf(e,+) X 6(u - sine cos#). (A-3)

0 0

Now let

S - sine, t - cos+, (A-4)

which are one-to-one transformations in the ranges allowed in

integral (A-3). Then
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1 1I(U) ds s dt Nf(arcsin(s),arccos(t)) 6(u-ts).

o (1 _ s2) -1 ( t2 )

(A-5)

The innermost integral on t yields

Nf(arcsin(s), arccos(u/s)) fuI/ for lul < s
(1- ,u

2/S2)f (A-6)

0 for Jul > s

thereby giving

1
ds s

I(U) -- (s2 -2 Nf(arcsin(s), arccos(u/s))J ul (1 -s )  ( 2  -u 2

for Jul < 1. (A-7)
.J

This integral equation for noise field directionality Nf is more

general than Abel's integral equation, because limit u is also

involved in one of the arguments of Nf. We have been unable to

simplify (A-7) and extract any simple descriptor of the noise

field directionality analogous to (8). Placing the linear array

along the y axis, instead, encounters the same problem.
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APPENDIX B. ALTERNATIVE LOCATION OF PLANAR ARRAY

Suppose the planar array lies in the x,z plane, that is,

y = 0. Then (6) becomes

nt n

Gf(xz) f de f d# sine Nf(e,#) exp(i2-(x sine cos# + z cose)) -

0 -n

= f de f d# sine Nf(e,+) exp i2j(x sine cos# + z cose)) , (B-i)
0 0

where

Nf(e,#) - Nf(e,.) + Nf(e,-.) for 0 < e < n, 0 < _ n. (B-2)

Then

+ c

I(u,v) . dx dz exp(-ii- (ux + vz)) Gf(x,z) -

n n
- de f d# sine Nf(,e,) X2 6(u - sine cos#) f(v - cose). (B-3)

0 0

Now let

s - sine cos+, t - cose, (B-4)

for which the Jacobian is
a(s,t) 2esi)-
a(e,t) = sin2e sin+ = (i _ t2) (i - s 2 - t2). (B-5)

Then
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Nf arccost,arccos s(-t)- )

I(u,v) - 2Jf ds dt (is 2 
- 6(u-s)6(v-t)-

c1 (1 _ 2 _ t2)4

N arccos(v), arccos for u + < 1
(l-u 2_v 2 ) f

0 otherwise

(B-6)

Thus, we have the explicit representation for the noise field

directionality,

Nf (arccos(v), arccos (_ ) = (v 2 f dx dz x

x exp(-iln (ux + vz)) G (xIz) for u 2 + v2< 1 . (B-7)

If we now let

u - sine cos#, v - cose, (B-8)

this becomes

+ C

)2n) sin+ dx dz exp(iL(x sine cos# + z cose) x
2 mf

x Gf(XZ) for 0 < e < n, 0 < # < n. (B-9)

This is a viable alternative to (27). Compare with starting

result (B-i).
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APPENDIX C. EXAMPLE FOR VOLUMETRIC ARRAY

Let the noise field directionality be given by

Nf(e,+) - 6(8-0) 6(4-40), 0 < e0 < n, -n < + 0 n. (C-1)

Notice that arrival angle eo can range over an interval of length

n. We distinguish two cases:

A: 0 < o < n/2,

B: n/2 < e < n. (C-2)0

From (35), the three-dimensional spatial correlation is

Gf(x'y'z) - sine exp ij (x sine0 cos +

+ y sine sin# O + z coseo)) . (C-3)

The problem addressed here is the reestablishment of (C-1) by

means of the solution procedure given in (54)-(57). Recall that

Q(t) is real and even.

First, substituting (C-3) in (55), there follows

I(±) - sine 0 2 &(sine cos+ - sine 0 cos 0 ) x

x (sine sin# - sine0 sin+0 ) Q(±w I - cose o ) . (C-4)

Now, when we recall that e is limited to (0,n/2) in (54), the

delta functions in (C-4) are located at

A: e - e0 , * - *

or B: e - n - 90 , - o0 (C-5)

39
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By means of the two-dimensional transformation employed in

(19)-(22), we find that

2

A: I(+) - Cose O SO - eo) 6(# -# ) Q(wI  cose O)

B: I() - icose 6(0 - n + e 6 - Q(w I 4 cosO O ) . (C-6)

Substitution of (C-6) in the numerator of (54a) yields

x
2

A: cosO cos0 6(9 - 0o ) 6(+ - +0) c(e,e0 )

B: cose icoso 6(0 -n + 0) 8(* - *o) C(ee o ) , (C-7)

whe re

C(le o ) = Q(w-cose) Q(wz-coseo ) - Q(wl+cose) Q(wl+cos0o). (C-8)

But since
C( 0 ,0) - Q2 lw1 - cose0) - Q2(w 1 + cos o )

C(n-00 ,eo ) M 0, (C-9)

we find that

f6( - eo ) 6(* - o) for case A
Nf(e,4#) - (C-10)

1 0 for case B(

On the other hand, substitution of (C-6) in the numerator of

(54b) yields
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x2

A: COSe cose0 6(e - e0 ) 6(+ - *o) D(e,eo) ,

B: cose e 6(e - n + e ) 6( - ) D(e,e o ) , (C-li)
cose 01 0 0 0

where

D(e,e ) - Q(wl-COSe ) Q-wco+cOS ) - Qll+COSe ) QlWz-cOSe). (C-12)

But since

D(e ,e ) 0,

D(-eo ,e ) - Q2(w1+CoSeo) - Q2 (w1-COSeo  , (C-13)

we find that

f 0 for case A
Nf(f-e,.) = . (C-14)

N f6(e-n-+ o ) 6(+-* o ) for case B (

This last case could be written in a form similar to (56) as

Nf(e',.) = 6(9'-0 ) 6(*-+ O ) for n/2 < 0' < n. (C-15)

In any event, (C-10) and (C-14) confirm starting result (C-i) for

the noise field directionality.
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ESTIMATION OF NOISE FIELD DIRECTIONALITY;

COMPARISON WITH FOURIER SERIES METHOD

INTRODUCTION

The possibility of estimating the directionality of a

stationary homogeneous noise field, directly from the element

outputs of a line array, was investigated in [1,2,31 and found

feasible only for small array sizes, due to ill-conditioning of

the solutions of the fundamental least-squares equations relating

the observed discrete spatial correlations to the impingent

field. In addition, the possibility of incorporating a priori

information about the field directionality and allowing for

additive uncorrelated noises at the elements were considered in

(2].

Recently, the ill-conditioning associated with these

approaches was circumvented in [41 by employing a Fourier series

method for the unknown field. However, this method requires

numerous Bessel function evaluations and can have inaccurate low-

order expansion coefficients, leading to bias in the estimated

field directionality. Here, we will eliminate both of these

drawbacks.

1/2
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NOISE FIELD CHARACTERIZATION

Consider a (wide-sense) stationary homogeneous noise field

characterized by Jirectionality N(f,e,#) that measures the power

density spectrum at temporal-frequency f, due to noise arrivals

from direction (e,#). See figure 1. This characterization

presumes that noise arrivals from different directions are

uncorrelated and thereby precludes multipath arrivals, for

example.

0 < e < n

I -, y

Figure 1. Angular Geometry

Suppose a collection of M receiving elements with arbitrary,

but known, locations is immersed in this field. The largest

amount of second-order information that can be extracted from

these element outputs is the set of joint probability density

functions between elements. However, in so far as estimating

N(f,e,#) is concerned, there is no need to retain anything more

about the element outputs than the (Hermitian) matrix G(f) of

their cross-spectral functions Gkj(f), 1 < k,j N.

3
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In order to relate Gkj(f) to noise field directionality

N(f,e,#), consider the power density spectrum of the elemental

contribution due to solid angle de d+ sine centered at (e,+),

namely
de d+ sine N(f,e,+). (1)

In addition, let xk(e,#) be the time taken for a noise arrival

from direction (e,#) to reach sensor k of a receiving array.

Consequently, the transfer function applied to this arrival in

reaching the k-th sensor is

exp[-i2nfTk(e,#)] a Hk(f,e,#). (2)

Then the cross-spectrum of the outputs of omnidirectional sensors

k and j, owing to the elemental contribution (1), is

*

de d+ sine N(f,e,+) Hk(f,e,#) H.(f,e,.)

- de d+ sine N(f,e,+) exp[-i2nf('Tk(e,+)-rj(e,#)]. (3)

Assuming that the noise arrivals from different directions

are uncorrelated, the cross-spectrum Gkj(f) of the outputs of

sensors k and j is given by the sum of components (3) over all

angular space:

Gkj(f) - i do j d* sine N(f,e,+) exp[-i2nf[Tk(e,)- j(e,+))]. (4)

0 -n

This result holds for 1 < k,j < M, where M is the number of

sensors in the receiving array. N(f,e,#) is called the noise

field directionality at temporal-frequency f. The product

4
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sine N(f,e,#) could be called the plane-wave density.

Equation (4), for all k,j, constitute3 the totality of

information about N(f,e,#) from the available elements. The

problem is to estimate N(f,9,*) from measurements of [Gkj(f) }.

It should be noted that not all IGkj(f) } contain independent

information. Thus, Gkk(f) = Gll(f) for all k, and Gkj(f) - Gjk(f)

for all k,j. Also, for example, if elements 1,2 and 3,4 have

I -T 2 = T 3 -T 4 for all 0,+, (4) indicates that G1 2 (f) - G34(f);

this is due to the homogeneity of the noise field.

Array processing techniques, whether they are standard delay

and add, weighted, or optimum (adaptive), result in a

preprocessing of noise field directionality N(f,e,O). Attempts

to then estimate N(f,e,*) from these processed quantities must,

in some sense, undo what the array processing has already done.

But why should array processing be used on the elements at all,

when we are interested in estimating the noise field

directionality? An "optimum" estimation technique should accept

matrix G(f) as its input and emit an estimate of N(f,e,#) as its

output. This is the goal of this investigation.

5/6
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LINE ARRAY

In this report, we will address only the case where the

receiving array lies entirely on a single line in space. In

figure 1, let e be measured with respect to the location of the

line. That is, let the line array lie along the 0 - 0 axis,

namely the z-axis. See figure 2. Then if dk is the distance

(measured downward) of the k-th element from some reference point

on the line, we have delay

dk
T k(e,*) - cose for I < k < t. (5)

The values e = 0 and n correspond to endfire of the line array,

and c is the speed of propagation.

'rz

I
k

Figure 2. Geometry of Line Array

7
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INTEGRATED DIRECTIONALITY FUNCTION

It follows from (4) and (5) that cross-spectrum

1! [!r dk- dc

Gkj(f) - fd9 d+ sine N(f,e,+) exp -i2nf cos] - (6)

0 -n

f de sine exp[-i2nf k c cose] N(f,e) for 1 < k,j M N, (7)

0

where we define integrated (or collapsed or averaged) noise

directionality

Nf(f,e) I [ d+ N(f,e,#). (8)
J

Notice that N(f,e,#) is defined in terms of a coordinate system

centered on the line. According to (7), the only quantity that

can be estimated about the noise field directionality is the

integrated function N(f,e) in (8); this is a manifestation of the

inherent conical symmetry of a line array response. The problem

is to invert the measurements [Gkj(f)) in (7) and solve for the

quantity N(f,e), if possible.

8
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EQUISPACED LINE ARRAY

For an equispaced line array, figure 2 can be specia±ized to

dk = k d for 1 < k < M, (9)

where d is the element spacing. Then, (7) becomes

n

Gkj(f) =f dO sine exp -i(k-j) cose] N(fe) =

0

1

= du exp[-ix(k-j)u] N(f, arccos(u)), (10)

-1

where arccos is the principal value inverse cosine function and

M f- fo c u = COSe. (11)

The quantity fo is the (design) frequency at which spacing d

would be a half-wavelength:

X0 = S--= 2 d. (12)

Also, u - 0 corresponds to broadside of the line array.

At this point, a change of notation is very convenient. We

suppress the explicit appearance of frequency f (it still appears

through o in (11)) and express (10) as a spatial correlation

1

C(k-j) - du exp(-it(k-j)u) B(u), (13)

-1
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where we recognize that the only dependence on k,j is through

their difference and define the noise directionality function

B N(f, arccos(u)) for -1 < u < 1(
) 0 for Jul > 1

Finally, we modify spatial correlation (13) to

1

C(p) f du exp(-iapu) B(u). (15)
-1

This can be considered as an integral equation for noise field

directionality B(u), where a is known, and spatial correlation
*

C(p) - C (-p) is available only for integer p satisfying I~l < N;

this was the approach considered in [1; section 2.31.

10



TR 8599

FOURIER INTEGRAL METHOD

Suppose that spatial correlation C(p) in (15) were available

for all continuous p, not just the integers IPI < M. Then

multiplying (15) by exp(impu') and integrating over all p, we

have, using (11),

+W +C0 1

J dp exp(iopu) C(p) = dp exp(iapu') J du exp(-iopu) B(u)-

1 _ S(u') if -i < u' <1

.du B(u) 2n Bu') (16)

-1 0 otherwise

That is,

B(u) f- J dp expliaup) C(p) for -1 < u < 1. (17)
2f0

This is an explicit integral relationship for the (integrated)

noise field directionality B(u) at bearing u, in terms of spatial

correlation C(p) at separation p. We will call this the Fourier

integral method for the determination of the noise field

directionality.

As an example, if the field is composed of a single plane-

wave arrival,

B(u) - 6(u-u ), lUo < 1, (18)

then (15) gives spatial correlation

11
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C(p) - exp(-impu0 ) for all p, (19)

and (17) restores directionality (18). We should also note that

the highest rate of variation of spatial correlation C(p) is

exp(±iap), obtained when u0 4 ±1. If we insert a higher variation

for C(p) into solution (17), such as (19) with luol > 1, we get

nonzero values for directionality B(u) outside the allowed (-1,1)

range of u, namely 8(u-uo). Since this is disallowed according

to (14), noisy estimates of spatial correlation C(p) require some

preprocessing prior to insertion into (17); alternatively, non-

zero values of B(u) for Jul > 1 might be ignored, but this is not

an attractive approach.

12
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INFINITELY-LONG DISCRETE ARRAY

Equation (17) gives the impression that spatial correlation

C(p) is required for all continuous p. But since (13) indicates

that C(p) will only be available for integer p, we consider that

case first; in fact, we consider spatial correlation C(p) to be

known for all integer p, which corresponds physically to an

infinitely-long equispaced line array. The corresponding

trapezoidal approximation to integral (17) for the noise field

directionality is denoted as

+W

Bb(u) - 4 exp(imun) C(n) for all u. (20)

But this can be developed according to

+CD +W

Bb(u) - 4 dp exp(ixup) C(p) Z (p-n) -
-nm

- B(u) - nB - n -

n=- nm-co

)7B u -n for all u, (21)

n=-4

where 0 denotes convolution, and we used (11). Function Bb(u)

has period 2f0 /f in u; if we define X - c/f, this period is X/d,

where we used (12).

13
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B b(U)

aliasing

B(u) lobe

I 2,u
2f° 2f0  -1 2f° 1 2ff f -f- fo

Figure 3. Approximation Bb(u)

The plot of approximation Bb(u) to the noise field direction-

ality in figure 3 reveals aliasing lobes separated by 2f0/f on

the u-axis. If f < fo, that is, if the array is being used below

its design frequency, then these lobes do not overlap, and we

have
Bb(u) - B(u) for -1 < u < 1. (22)

Thus, exact recovery of the noise field directionality B(u) is

possible from knowledge of spatial correlation C(p) at integer p,

provided that

f < fof that is, d < X/2; (23)

here, we used X - c/f and (12). The element spacing must be less

than a half-wavelength at the temporal-frequency f of interest in

order to avoid aliasing. The discrete nature of the array does

not, in itself, prevent recovery of the field; it is the finite

length of a physical array that causes problems.

14
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If spatial correlation C(p) contains a component with too

high a rate of variation, as, for example, (19) again with

u01 > 1, we get B(u) - 6(u-u ) as before. However, a plot of

the corresponding Bb(u) in figure 4 (for u0 > 1) reveals an

aliased component within the fundamental range (-1,1). We would

be led to believe that the noise field directionality has a

component

S(u - U1 ) - (U - uo + T2--° , (24)

which is incorrect. Thus, the discrete nature of an array can be

a problem if the measured spatial correlation C(p) contains

disallowed components, which show up as aliased components inside

the fundamental range (-1,1) of u. This problem exists even if

the array has infinite length.

Bb(u) 4
I I
I I

-1 u 0 1 u 0 u2

2f0  2f0
U1  o Uo u2  u 0 +f

Figure 4. Aliasing of Disallowed Component

15
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FINITE-LENGTH DISCRETE ARRAY

The approximate noise field directionality for a finite array

of M elements is a modification of (20):

+CO

Bc(u) f exp(iaun) C(n) wn  for all u, (25)Bc(U 2f-- n

where weights

wn = 0 for In[ > M. (26)

We consider that weights (wn} are samples of a continuous

function w(p); that is,

wn - w(n), (27)

where function w satisfies

w(p) - 0 for IPI > M. (28)

See figure 5. It then follows immediately from (25) and (20)

that

w(p)

I /I
I p

- 0 M

Figure 5. Weighting Function w(p)

16
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Bc(U) - Bb(u) * W(u), (29)

where window

+00

W(u) - 2- dp exp(iup) w(p). (30)
0

(For the case of no weighting, that is, w(p) - 1 for all p, then

W(u) - 6(u), and (29) reduces to (21).) The window W(u) has

i2fo

effective width f in u. (31)

(For flat weighting, that is, w(p) = 1 for IjP < M, the effective

width is half of (31); however, the sidelobes of W(u) are then

significant.)

Although the aliasing of Bb(u) in figure 3 can be controlled

through satisfaction of (23), the convolution result in (29)

reveals that the true noise field directionality B(u) will be

smeared by window W(u). This is a result of the finite length,

(26), of the array. Also, (29) and (31) reveal that

approximation Bc (u) has no superresolution capabilities; in fact,

the smaller that f is chosen below design frequency f0 , the more

smeared Bc (u) becomes. Thus, there is good reason to operate

near the design frequency, that is, maximize f/fo, in order to

minimize the width in (31); however, there is the conflicting

requirement depicted in figure 3 and (29), which points to

smaller values of f/f0 . A compromise is in order.

17
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If spatial correlation C(p) contains a disallowed component

such as (19) with Iu0 1 > 1, (29) and figure 4 indicate the

presence of a smeared and aliased component within the

fundamental range (-1,1). Thus, such disallowed components

should be preprocessed out of spatial correlation C(p) before

submission into approximation (25).

APPROXIMATE FIELD

The approximate noise field directionality that we will

consider at length, here, is obtained by setting wn - 1 for

Inl < M in (25):

M-I

B - I exp(iun) C(n) for -1 < u < 1. (32)Ba(U) n 1-M

This is a sampled box-car approximation to the exact integral

result for B(u) in (17). B a (u) has period 2f0/f in u. If IC(n)I

for Inj > M is substantially smaller than C(O), (32) could give a

good approximation to B(u). If not, then one of the super-

resolution techniques, such as maximum entropy, could be used to

effectively extrapolate spatial correlation C(n) out to n -

and the transform carried out analytically in closed form.

Approximations (32) and (25) have the same form as

(1; (41) & (42)), if weighting 0(f,u) there is independent of u.

Also, if f - fof (32) reduces identically to [1; (47) or (51)).

18
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However, we do not solve any ill-conditioned equations here, when

f < fo; on the other hand, we have not minimized any error

measure either.

The actual numerical evaluation of approximation Ba (u) is

best done by specializing to the particular argument values

M-1

Ba12 J - . exp(i2nkn/K) C(n)

- 2 C() + 2 Re exp(-i2nkn/K) C*(n) , (33
In-l

which can be accomplished by a discrete Fourier transform. The

K values of k, that are swept out, cover an interval of length

2f0/f in u, which is broader than the length 2 interval required,

when f < f0  See figure 3.

The exp(ix) function in (32) is being sampled at increment

f0

So, if f < f0 and lul < 1, then 16x I < n, meaning that exp(ix)

has at least two samples per period. This is well known to be

the requirement for avoidance of overlapped aliasing lobes and is

corroborated by figure 3. This sampling rate interpretation will

be very important later when we discuss the Fourier series method

[4).
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Similarly, the spatial correlation C(p) in (17) is being

sampled at increment A - 1. But since the sampling increment ofp

exp(-ix) in (19), for basic elemental example (18), is

A= Uo = f -0  (35)

we again have Ax I < n if f < f0 and u0 1 < 1. Thus, at least two

samples per period are taken of spatial correlation C(p), as

well, even if values of u0 near ±1 occur.

DISCUSSION

It can be seen from (34) and (35) that the most troublesome

cases will be when frequency f is near fa and u0 is near ±1, that

is, when the array is employed at its design frequency and when

arrivals come in near endfire. Since arrivals come in of their

own accord, no control is had of uo , except to turn the line

array. And although one could choose f < f in order to

alleviate aliasing, losses in resolution will then occur, as (31)

indicates. Thus, a trade-off is in order in regards to choice of

f/f0 ; perhaps, values somewhat less than 1 are a reasonable

compromise, as was done in [1; figures 3,4,5]. Of course, a

larger number of elements, M, always helps in improving

resolution, as shown by (31); this is now a viable alternative,

since there is no ill-conditioning as there was in (1].
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The reason that we have been able to circumvent the ill-

conditioning is that we have deferred the inherent sampling of

(15), with increment Ap - 1, until after we solved the integral

equation for noise field directionality B(u) in explicit form

(17). So, instead of facing up to the discrete issue, as

explicitly posed in (13), we have put it off as long as possible,

and have then addressed it in the various forms (20), (25), and

(32), which are reasonable approximations to the ideal continuous

result (17). This procedure of temporarily ignoring the discrete

sampling associated with a line array was first presented in

[4; section 31 in connection with a cosine series expansion for

the field distribution; this latter procedure is fully developed

in the next section.

21/22
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FOURIER SERIES METHOD

In order to derive this method, we return to a combination of

(14) and (15):

1

C(p) = du exp(-impu) N(f, arccos(u)) -

-1

= f de exp(-iap cose) sine N(f,e) (36)

0

This equation relates the measured spatial correlation C(p), at

integer separations p, to the integrated noise field

directionality N(f,e) (see(8)). We again suppress the f

dependence and define plane-wave density

A(8) = sine N(f,e) for 0 < e < n (37)

to obtain

C(p)= de exp(-iap cose) A(e) (38)

0

As in (15) and the sequel, spatial correlation C(p) is known only

for integer p satisfying IPI < M. Function A(9) is the unknown

field function that must be estimated. It is related to the B

function of the preceding section according to

A(e) = sine B(cose) for 0 < e < n (39)

See (37) and (14).
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FOURIER SERIES EXPANSION

We expand A(O) in a cosine series according to

+CD

A(e) -) aq cos(qe) for 0 < e < n . (40)

q-0

This basis is a complete set on interval (O,n). See [5; page 92].

If we substitute (40) into (38), and interchange operations, we

get

C(p) T. aq f de exp(-imp cose) cos(qe) -

q-0 0

+ C

- ) aq (-i)q J (oZp) , (41)
q-0

where we used (6; 9.1.211. As a special case,

C(0) - n a0 , (42)

which allows explicit determination of a0

Equation (41) constitutes an infinite set of complex

simultaneous linear equations for coefficients (aq)J . If we

split this equation into its real and imaginary parts, we have
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+40 +00

C (p) - aq (-i) q Jq(Cp) Z a2k (-I) k J (p) (43)

q-0 k-0
q even

+00 
+40

C.(p) - a (-i) q + l J (p) - a2kl 1P)n E q q T k12-
q=1 k-i
q odd (44)

We now have two infinite sets of real simultaneous linear

equations, one for the even coefficients, the other for the odd

coefficients, in cosine expansion (40).

Since spatial correlation C(p) in (38) is only known for a

finite number of discrete p values, namely integer IPI < M, there

is no hope of solving for the infinite number of unknowns (a q in

(43) and (44). What we shall do, for the time being, is to

ignore this limitation and pretend that C(p) is known for all

continuous p > 0. (Of course, C(p) is then also known for p < 0,

according to C(-p) - C (p) from (15), since field B(u) is real.)

This procedure was first propounded for the line array in [41.

We multiply both sides of (43) by J2m (p)/p and integrate

over p, to obtain

1 +M dp 2m('Xp1  += 1  k r dp -nfdp P C r(p) a a2k (-i) k f dp P J2k(mp)-

0 k-0 0

a2m (-1)m
a 2(2m) for m > 1 ; (45)
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here, we used [6; 11.4.61. In a similar fashion, from (44),

+ W CP + CD + 4DO

1 dp P C ) - a2kl (-i)k f dp 2m-1 P)p J k1P2k-1 ( p

0 k-i 0

a 2m-l (-1) m

a 2(2m-1) for m > 1 . (46)

Combining (42), (45), and (46), we have

a 1 C(1) - 1 C (0)

)2 +C J2m (O p )

a2m - (-i) 2m dp Cr (p)

0
for m > 1. (47)

2 lm (2m-1) 2m-1(iP)
a2m1 - I p Ci(p)

0

Convergence of the first integral at p - 0 is guaranteed since

2m (ap)/p + 0 as p 4 0, because 2m > 2. The second integral also

converges at p - 0, since J2m-1(ap) Ci(p)/p 4 0 as p 4+0, because

2m-1 > 1 and Ci(0) - 0. Thus, both integrands in (47) approach

zero at the origin.

we now have explicit integral relations for the coefficients

(a q in the cosine series expansion of A(G) in (40). They are

exact results for (a q, presuming that spatial correlation C(p)

is available for all continuous p > 0. They agree with

(4; (13)-(15)].
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EXAMPLE

Consider the same single plane-wave arrival given in (18):

B(U) = 6(u- U0 ) , U0 1 < 1. (48)

Then (39) yields

A(e) = sine 8(cose - u 0 - eo ) for 0 < e < n , (49)

where e0 = arccos(u0 ), 0 < 0 < n. Substitution in (38) gives

spatial correlation

C(p) = exp(-iap cose o) = exp(-iopu0 ) , (50)

as in (19). When this result is used in (47), the coefficients

are found to be (see appendix A)

1
a-0 n

2
a = cos(q eo ) for q > 1 , (51)
q n0

independent of a. Then the summation on the right-hand side of

(40) becomes (appendix A)

+CD

R(e) - . [6(e - eo- m2a) + S(e + e° - m2n)] for all e. (52)

The plot of this function in figure 6 reveals that the only

impulse component lying in the allowed range of e, namely (0,n),

is that at e - eo. Therefore,

27



TR 8599

A(9) - 6(0 - 9 ) for 0 < e < n , (53)0

as desired. Thus, the use of all the exact coefficients (a q) in

(51) restores field distribution A(e) precisely.

R(e)

I I I
I I I

, I ii iI Ie
-2n e0-2n n -e0 e 2n-e0  2n

Figure 6. Summation R(e) in (40)

DISALLOWED COMPONENT

The highest rate of variation of spatial correlation C(p) in

(50) is exp(±iap), just as in (19) and the sequel. If we insert

a higher variation for C(p) into integral solution (47) for the

coefficients, namely

C(p) = exp(-itpu0 ) , u0 > 1 , (54)

we obtain [7; 6.693 1&2J
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1ao n

a Qq for1q I (55a)q n

where

1Q Uo _ U2  (55b)

u+ ]u2 0

0 0

independent of c. Use of these coefficients in summation (40)

gives reconstructed field (right-hand side of (40))

R(e)) I- 1(561n uo - cose (56)

A plot of this function in figure 7 reveals that it is spread out

over the entire (0,n) interval; this is in contrast to the

Fourier integral method in (19) which correctly restored a zero

field in the fundamental interval, namely

B(u) - S(u - u0 ) , uo > 1 , (57)

nR(e)

r r uo+1

1
r

S e
Figure 7. Reconstructed Field R(e) for uo > 1
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for this example. Thus, the Fourier series method gives nonzero

field values for 0 < e < n, even when all the coefficients (a q)

are determined exactly by the integrals in (47). The use of

noisy estimates for C(p) in (47) is therefore more debilitating

for the Fourier series method than for the Fourier integral

method, and some preprocessing (that is, low-pass filtering) of

the available spatial correlation C(p) values is required prior

to insertion into ,47). If this is not done, a spurious

background will be yielded from the Fourier series method in the

fundamental range 0 < e < n, due to "spillover" from disallowed

components of C(p).

Substitution of the reconstructed field R(6) of (56) and

figure 7 into the right-hand side of (38) does not restore the

spatial correlation (54) for this example with u0 > 1. This is

expected, since the coefficients (a q in (55) decay with q,

preventing summation (40) for A(e) from retaining the arbitrarily

narrow behavior required versus 6, namely the delta function in

(49).
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DISCRETE ARRAY

For an equispaced line array of M elements, (13) indicates

that spatial correlation C(p) will be available only for integer

IPI < M. We therefore adopt, as approximations to the exact

integral results in (47), the forms

2 ~M-1I2m(n
-2 m 2m J2m(n) n)

2m n (-). n r
for m > 1

a2 m-1 n(-1)m (2m-1) Ji n C (n)

n-l (58)

along with go = ao = Cr (0)/n; see [4; (16)-(18)]. These are

explicit finite sums for the approximate coefficients 5q ), to be

used in the cosine series (40) in place of the exact, but

unknown, (a q). (The terms for n - 0 in the summands of (58) are

zero by virtue of the discussion under (47).)

Several potential problems exist with approximations (58).

First, the increment in the Jk(x) Bessel functions in (58) is

f
ffi a - n - .(59 )x fo

f0

For the design frequency f f f0 , (that is, d - X/2), this

increment is n, which is rather large. The plots of Jk(x) in

figure 8, for 0 < x < 20n and selected k values between 1 and 35,

reveal that the low-order Bessel functions are very poorly

sampled at values xn - nn, especially for small n. For example,
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the peaks of J1 (x) at x near .6n and 1.7n are badly represented

by samples at x - n and 2n. (The curves in figure 8 are scaled

relative to the largest value of J1 (x) at x near .6n.)

Of more relevance are the plots of weighted functions Jk(X)/x

in figure 9, because this is the actual integrand in (47). (The

curves in figure 9 are scaled individually for plotting

appearances, so that each has the same peak value.) We again

observe that the low-order weighted functions are poorly

represented by samples taken at xn = nn.

For larger arguments x, the "period" P1 of J1 (x), indicated

on figure 8, is approximately 2n; thus, we are getting just 2

samples per period at Ax = n, which is barely adequate for J1 (x)

at large argument values. For the higher-order weighted Bessel

functions, the initial peaks (near x = k+2) are well represented

by samples at Ax = n. In addition, the period P2 in figures 8

and 9 is greater than 2n, for larger arguments; thus, we are

getting more than 2 samples per period of the higher-order Bessel

functions. Of course, eventually, for large enough x, all the

Jk(x) have period 2n. (See [6; 9.2.1].)

These sampling considerations indicate that the low-order

coefficients &q will likely be inaccurate, especially when f is

near f0 , while the higher-order coefficients will not be badly

affected by this particular feature. A numerical investigation

of these effects is undertaken in appendix B. In particular,

coefficients 50 a2' a 0 are computed for a variety of values of
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uO (cOSeo), a (nf/f 0 ), M, and compared with the exact values

a1, a2, a1 0. The results quantitatively confirm the above

expectations.

The second problem with approximations (58) is that the

increment in the samples of spatial correlation C(p) is A - 1.p

The discussion surrounding (35) is directly relevant again and

should be reviewed. Arrivals near endfire, e0 - 0 or n, will be

most severely affected.

A third problem with (58) is that M is not infinite;

therefore, the summands may not have decayed sufficiently to

terminate the summation at M-1, with negligible error. As seen

earlier, for plane-wave arrival (48)-(50), spatial correlation

C(p) does not decay at all with p, and since [6; 9.2.1]

Jk(X) 1" O 1 as x 4 +, (60)
x x3 /

2

the integrands of (47) can decay very slowly with p.

Furthermore, if a in (11) is less than n, J2m(an) and

J2m-1 (an) in (58) may not yet have even reached their substantial

range of values by the time n reaches M-1. To develop this

point, observe from figure 8 that

Jk(x) = 0 for Ixi < k - 2n. (61)

Therefore

J2m(an) = 0 for 2m > an + 2n. (62)
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So, for example, if M - 64 and f = f0, then -,

max n - M-1 = 63, and (62) indicates that the Bessel function is

essentially zero for 2m > 204. Thus, approximate coefficients

a q, determined from (58), will be substantially zero for q > 200;

this is the limit that was unknown in [4; under (5b) and bottom

of page 16511.

As another example, if M = 64 and f = f /2, then (62)

indicates that the approximate coefficients 5q for q > 105 will

be substantially zero; this is verified by (4; figure 31. Thus,

figures 8 and 9, with (62), give a quantitative indication of

when the Fourier series method will collapse, in terms of the

loss of the higher-order coefficients and the attendant degraded

resolution.
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RESOLUTION CAPABILITY

The general situation is as follows: approximate coefficient

Sq in (58) involves Jq(en) for n - 1 to M-1. Reference to (61)

therefore indicates that if

q > a nmax + 2n - a(M-1) + 2n a q', (63)

then Sq = 0. Thus, summation (40) for field A(e) will have zero

terms for q > q'. For the same plane-wave example considered in

(48)-(53), this would result in a resolution capability of the

order of (appendix A, especially (A-9) and (A-10))

n n X X
q'+ - (M-l) w 2d(M-1) 2L (64)

at broadside, where we used (63), (11), and defined L as the

length of the line array. However, the coefficients { q

deteriorate before q reaches q', typically for q > q'3/4. This

results in a resolution of the order of

4 X 2X
8 3 2L L * (65)

This is somewhat sharper than the standard quoted result of X/L,

but not significantly so. Thus, the Fourier series method has

slightly better resolution than standard beamforming, which

corroborates several of the results in (4].
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DISCUSSION

It was demonstrated in (51)-(53), that for the plane-wave

arrival of (48)-(50), use of all the exact coefficients (a q in

the Fourier series method restored the field A(9) precisely for

all e. However, when we discretize the array and must resort to

approximations (q ) in (58), this restoration capability is lost,

even if the array is infinitely long; see the tabular results in

appendix B for M - 100, 1000, 10000, 100000. This result for the

Fourier series method is distinctly different from that for the

Fourier integral iethod, as a review of (21) and figure 3

reveals. In both methods, we are presuming that f < f0, that is,

that the array is used at or below its design frequency. Thus,

sampling (in space) is more detrimental to the Fourier series

method than to the Fourier integral method; this is related to

the fact that the latter employs a (single) Fourier transform in

(17), whereas the former uses (numerous) Bessel transforms in

(47).

The summation on q in (40) for field A(9) cannot be carried

out to -. However, when employed with approximate coefficients

(aq , it should be carried out at least to the limit q' given in

(63), after which (I q are essentially zero; this will maximally

preserve the resolution capability of the Fourier series method.

This procedure was not employed in [4; figures 1,4,61; thus, some

inherent resolution of the Fourier series method was lost in

those examples.
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GRAPHICAL RESULTS

We shall re-do the examples given in (41, where the Fourier

series method was introduced, but now using more coefficients and

comparing the results with the Fourier integral method presented

here. The first example is that of five plane-waves with arrival

angles 540,570,600,630,660, as given in [4; figures 1 and 21.

(Angle 900 corresponds to broadside of the line array.) The two

arrivals at 570 and 630 each have twice the common power of the

other three arrivals. The exact cosine series coefficients (a q

for 0 < q < 250 are plotted in figure 10A, and are listed

numerically in table 1 for 0 < q < 30. We have normalized the

total power so that the origin value of the spatial correlation

is ClO) = n; then ao  = 1.

For a line array with M = 64 elements, employed at its design

frequency, f = fo0, the approximate coefficients (5q , as

determined via (58), are given in figure 10B and table 1. A

comparison of the numerical results in table 1 shows a very large

discrepancy between a1 and a and between a2 and a2' However,

this discrepancy decreases to about 5% for q - 3 and 4, and is

much smaller for q > 4. Comparison of the plots in figure 10

reveals that 5q is substantially zero for q > 205, in agreement

with (62) and the sequel, and that 5q and aq are very similar for

2 < q < 175.

This figure is not in complete agreement with [4; figure 2).
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Table 1. Cosine Series Coefficients

q aq aq

0 1.0000 1.0000
1 .9977 .4837
2 -.9906 -.4407
3 -1.9580 -2.0569
4 -.9628 -.9130
5 .9423 .9265
6 1.8349 1.8428
7 .8887 .8868
8 -.8561 -.8535
9 -1.6399 -1.6395

10 -.7806 -.7784
11 .7383 .7390
12 1.3869 1.3895
13 .6463 .6471
14 -.5974 -.5942
15 -1.0938 -1.0933
16 -.4954 -.4916
17 .4431 .4433
18 .7809 .7852
19 .3379 .3376
20 -.2857 -.2810
21 -.4687 -.4697
22 -.1841 -.1793
23 .1353 .1335
24 .1766 .1811
25 .0433 .0406
26 -.0007 .0031
27 .0790 .0754
28 .0769 .0794
29 -.1114 -.1157
30 -.2857 -.2851

For these same parameter values, the reconstructed field

distribution, via the Fourier integral method of (32), is

depicted in figure 11A, while that for the Fourier series method

of (58), (40), and (63), using approximate coefficients (5 q, is

displayed in figure 1iB. This latter figure is an improvement

over (4; figure 1] for two reasons: 250 coefficients (5 q were

used instead of 140, and the angular sampling increment was
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previously insufficient to track the detailed behavior of the

field distribution. The two parts of figure 11 are very similar,

except for the drift in the Fourier series method near 9 - n, due

mainly to inaccurate low-order coefficients al and &2"

Both plots yield some negative values for the reconstructed

field distribution, due to sidelobes from the plane-wave

components. These can be suppressed at the cost of decreased

resolution. See (25)-(31) for the Fourier integral method. As

for the Fourier series method, if approximations (58) (to exact

results (47)) used a taper, instead of box-car weighting out to

p - M-I, a similar control of sidelobes is achievable.

If all the parameter values above are kept unchanged, except

that the arrival angles are squeezed closer together, namely

560,580,600,620,640, we then have the example considered in

[4; figures 4 and 5]. The exact and approximate cosine series

coefficients are given in figures 12A and 12B, respectively. The

field distribution for the Fourier integral method is plotted in

figure 13A, while that for the Fourier series method is plotted

in figure 13B. All five plane-waves are resolved by both

procedures; in fact, the only essential difference is the slight

drift in figure 13B near e - n, due to poor values of a and A2 "

Figure 13B is a significant improvement over [4; figure 4], again

due to additional coefficients and finer angular sampling in e.

The third example of the Fourier series method, from

(4; figure 6], corresponds to three plane-waves with arrivals

closer to endfire, namely 270,300,330. The power level of the
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33* arrival is one-half of the common power level of the other

two arrivals; all other parameters are unchanged. The exact and

approximate coefficients are given in the two parts of figure 14;

the approximation appears to deteriorate for q > 100. The field

distribution for the Fourier integral method is depicted in

figure 15A, while that for the Fourier series method is plotted

in figure 15B. The major discrepancy is again the drift in the

latter plot near e - n; this is in spite of the seemingly poor

results for coefficients (5 q in figure 14S.

The final example considered here is that given in

[1; page 15], namely

0 for -1 < u < 0

B(U) 2u for 0 < u < 1(66)

However, those earlier results were limited to N < 12 due to

ill-conditioning. The spatial correlation follows from (15) as

C(p) 2 2 [exp(-imp) (1 + imp) - 1] . (67)

The reconstructed field distribution via the Fourier integral

method, for N - 64 elements, is presented in figures 16A and 16B

for flat weighting (32), with f/fo M 1 and .5, respectively. The

corresponding plots for Hann weighting, (25) and figure 5, are

depicted in figure 17. The familiar tradeoff between resolution

and sidelobes is quite evident. Perhaps a plot of both results,

with and without weighting, would yield important information not

available from either plot alone.
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Figure 10A. Coefficients a q
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Figure lOB. Coefficients q

Figure 10. Coefficients for Five Separated Arrivals
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Figure 11A. Fourier Integral Method
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Figure 11B. Fourier Series Method

Figure 11. Directionality for Five Separated Arrivals
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Figure 13. Directionality for Five Close Arrivals
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Figure 14. Coefficients for Three Arrivals
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Figure 15. Directionality for Three Arrivals
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Figure 16. Directionality for Flat Weighting
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SUMMARY

The Fourier integral method and the Fourier series method

have very similar performance; the major difference is the slow

drift in the background level of the noise field directionality

for the Fourier series method due to inaccurate low-order cosine

series expansion coefficients. There is a rather large

difference, however, in terms of the amount of computation, since

the Fourier integral method can employ a fast Fourier transform

to good advantage, while the Fourier series method requires

numerous Bessel function evaluations.

Use of the array somewhat below its design frequency eases

the aliasing problems associated with both methods; but there is

a tradeoff connected with this approach, namely, a loss of

resolution. Similarly, weighting can be used to suppress

sidelobes, but again, only at the expense of resolution.

It has been presumed throughout this report that the spatial

correlation is known exactly, for all required argument values,

without any random error. In practice, the spatial correlation

must be estimated from a finite observation time on random

processes. This limitation will further degrade the performance

of both techniques considered here; which one will suffer most,

and by how much, is unknown.

Extension of the Fourier integral method to two- and three-

dimensional arrays have been undertaken in [9). The effects of

finite array length and discrete sampling on the estimate of the

full noise field directionality have also been considered.
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APPENDIX A. EXAMPLE OF FOURIER SERIES METHOD

The single plane-wave arrival was given in (48); it yields

spatial correlation (50):

C(p) - exp(-iap cos9o); 0 < o < n. (A-l)

Substitution in (47) yields coefficients [7; 6.693 2&1]

a = (- 1) cos(2mg)
2m n

for m > 1 , (A-2)

a2 (l)m-l sin[(2m-1)0]a2m-1 n

where

0 = arcsin(cos O ) - (A-3)

Although spatial correlation C(p) depends on x, coefficients (a q)

do not. Also, observe that

cos(2mO) - cos(mn-2meO ) - (-1)m cos(2meo),

sin[(2m-1)0] - sin[(2m-l)(1 - o)] - (- 1 )m- l cos[(2m-1)eo1, (A-4)

giving
2

aq = j cos(q eo ) for q 1 1. (A-5)

When these coefficients, along with aO  1/n, are substituted

in the right-hand side of (40), we obtain (letting 9 be

arbitrary)

53



TR 8599

+0

R(e) + cos(qe ) cos(qe) =
n nr 0q-l

+0

1+ [cos(q(e-e )) + cos(q(e+e M. (A-6)n A-6 0 0q-1

But [8; page 28]

+a +W +W

+ coslqt) cos(qt) - 6(t-m2n) (A-7)

q=1 q=- 0  mM--
0

giving

+W

R(e) - ( M(e - e0 - m2n) + 6(8 + 0 - m2n)] for all e. (A-8)

m-CD

This function is discussed in (52) and the sequel.

For future reference, if the sum in (A-7) were terminated at

q', we have

1cos(qt) 1 sin[(2q'+l)t/2]

i n 2n sin(t/2) (A9)
q-1

The first zero crossing of this function is at

to = n (A-10)q'+ •

This is approximately the resolution of waveform (A-9).
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APPENDIX B. NUMERICAL INVESTIGATION OF (58)

For the single plane-wave arrival given in (48)-(50), the

spatial correlation is

C(p) - exp(-iccpu0 ) , a = nf/fo lU 0 J < 1. (B-i)

Substitution in (58) gives approximate coefficients

R ~M-1 (n
.4 Jl( n)

a, = n sin(onuo)
21 L n 0

n=l

M- 1

22 Tz nn 0

n=l

The exact coefficients are given by (51) as

a. cos(qe~) - cos(q arccos(u0 )) for q > 1 (B-3)

and are independent of a.

Numerical values of approximations (B-2) are given in tables

B-i, B-2, B-3, respectively, for several values of u0 , a, and for

M - 100, 1000, 10000, 100000. The exact values, from (B-3), are

listed in the right-most column for comparison purposes.

Several observations can be made from these tables. Except

for u° - 1, the sums in (B-2) for M - 100 are not too different

from what they would have been for M - . Part of this is due to

the fact that M - 100 is considerably larger than the biggest

coefficient order, 10, that we considered here.
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The values of the approximate coefficients S and A2 are poor

for a - n, that is, for frequency f equal to design frequency fo,

even for a large number of elements M, independent of arrival

angle uo. However, if = is decreased, so that f is well below

the design frequency f0  d < X/2, then A1 and a2 are rather close

to a1 and a2, respectively. However, the loss in resolution is

unlikely to be tolerable in this case.

By contrast, the values of A10 in table B-3 are good

approximations to a1 0 , with two exceptions:

UO  1 , a - n , all M ;

u0 - 1, all a, M - 100 . (B-4)

That is, endfire arrivals will cause the most problems, as is

expected physically.
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nn
Table B-i. Values of -

Y for:

u c M-100 M-1000 M-10000 M-100000 a
0 2 1

0 all 0 0 0 0 0

.25 n .129232 .129164 .129166 .129166 .25

.25 .75n .187050 .187166 .187169 .187169 .25

.25 .5n .223371 .223390 .223387 .223387 .25

.25 .25n .244032 .243504 .243520 .243520 .25

.5 n .243202 .243356 .243361 .243361 .5

.5 .75n .371340 .371278 .371273 .371273 .5

.5 .5n .446531 .446295 .446302 .446302 .5

.5 .25n .487704 .487032 .487014 .487014 .5

.75 n .312112 .311716 .311728 .311728 .75

.75 .75n .548651 .548352 .548355 .548355 .75

.75 .5n .668571 .668247 .668229 .668230 .75

.75 .25n .730345 .730503 .730458 .730456 .75

1 i 0 0 0 0 1
1 .75n .675038 .700277 .708228 .710741 1
1 .5n .843507 .874322 .884057 .887135 1
1 .25n .910216 .953689 .967453 .971806 1
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Table B-3. Values of - S

ai0 for:

uo  a M-100 M-1000 M-10000 M-100000 al0

0 m -1.001835 -1.000047 -.999998 -.999996 -1
0 .75n -.997211 -1.000083 -1.000002 -1.000000 -1
0 .5n -1.004328 -1.000142 -1.000004 -1.000000 -1
0 .25n -.993657 -1.000337 -1.000013 -1.000003 -1

.25 n .818745 .816853 .816903 .816904 .816895

.25 .75n .815431 .816916 .816897 .816895 .8i6895

.25 .5n .815723 .817043 .816890 .816894 .816895

.25 .25n .823767 .816816 .816904 .816892 .816895

.5 n -.501787 -.499985 -.499935 -.499934 -.5

.5 .75m -. 501841 -. 499903 -. 500002 -. 499999 -. 5

.5 .5n -.495030 -.500171 -.500005 -.500000 -.5

.5 .25n -. 492036 -.499587 -.500016 -. 500003 -.5

.75 n .589326 .587351 .587401 .587402 .586426

.75 .75n .592357 .586315 .586433 .586429 .586426

.75 .5n .593192 .586680 .586418 .586426 .586426

.75 .25n .593387 .586898 .586445 .586423 .586426

1 n 1.329489 1.797572 1.936303 1.979867 1
1 .75n .606719 .882941 .963235 .988393 1
1 .5n .504084 .856082 .954934 .985763 1
1 .25n .252087 .794347 .936197 .979862 1
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