DTIC EILE COPY AD 505 COXIELLA BURNETII VACCINE DEVELOPMENT: LIPOPOLYSACCHARIDE STRUCTURAL ANALYSIS **AD-A222** MIDTERM REPORT V. N. REINHOLD **DECEMBER 29, 1989** Supported by U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701-5012 Contract No. DAMD17-88-C-8133 Harvard University School of Public Health 665 Huntington Avenue Boston, Massachusetts 02115

Approved for public release; distribution unlimited

The findings in this report are not be be construed as an official Department of the Army position unless so designate by other authorized documents.

20030206187

	N PAGE	PAGE		Form Approved OM8 No. 0704-0188			
1a. REPORT SECURITY CLASSIFICATION Unclassified			1b. RESTICTIVE MARKINGS				
28. SECURITY CLASSIFICATION AUTHORITY			3. DISTRIBUTION / AVAILABILITY OF REPORT				
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE			Approved i	for public r	elease	2;	
		57(3)	5. MOM/ORANG				
 NAME OF PERFORMING ORGANIZATION Harvard University School (<i>if applicable</i>) of Public Health 			7a. NAME OF MONITORING ORGANIZATION				
6C ADDRESS (City, State, and 665 Huntington Av Boston, Massachus	d ZIP Code) venue setts 02115		75. ADDRESS (C	ty, State, and ZiP (Code)		
Le. NAME OF FUNDING/SPONSORING ORGANIZATION U.S. Army Medical Research & Development Command			9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER DAND17-88-C-8133				
k ADDRESS (City, State, and ZiP Code) Fort Detrick Frederick, Maryland 21701-5012			10. SOURCE OF	FUNDING NUMBER	5		
			PROGRAM ELEMENT NO. 63002A	PROJECT NO. 3M2- 63002D807	TASK NO. AF	WORK UNIT ACCESSION M	
 PERSONAL AUTHOR(S) V. N. Reinhold I3e. TYPE OF REPORT Midterm 6. SUPPLEMENTARY NOTAT 	135. TIME CI FROM9/2	OVERED 6/88_ to <u>9/25/</u> 89	14 DATE OF REPO 1989 Decen	RT (Year, Month, aber 29	Day) [1	5. PAGE COUNT 47	
12. PERSONAL AUTHOR(S) V. N. Reinhold 13e. TYPE OF REPORT Midterm 16. SUPPLEMENTARY NOTAT 17. COSATI (13b. TIME CI FROM9/2 ION	OVERED 6/88_ TO 9/25/89	14 DATE OF REPO 1989 Decer	RT (Year, Month, aber 29	(Day) [1]	5. PAGE COUNT 47 Dr Bioce montest	
12. PERSONAL AUTHOR(S) V. N. Reinhold 13. TYPE OF REPORT Midterm 16. SUPPLEMENTARY NOTAT 17. COSATI C FIELD GROUP	13b. TIME CI FROM9/2 ION CODES SUB-GROUP	OVERED 6/88_TO 9/25/89	14 DATE OF REPO 1989 Decer Contour on repo lysaccharide;	RT (Year, Month, aber 29 Theressay and Immunogen;	Oey) [19	5. PAGE COUNT 47 by block member).	
12. PERSONAL AUTHOR(S) V. N. Reinhold 13a. TYPE OF REPORT Midterm 16. SUPPLEMENTARY NOTAT 17. COSATI C FIELD GROUP 07 03 (\06 01	13b. TIME CI FROM9/2 ION CODES SUB-GROUP	OVERED 6/88 TO 9/25/89 1, SUBJECT TERMS PA 1, Lipopo Coxiella bur	14 DATE OF REPO 1989 Decen Contour on The lysaccharide; net11	RT (Year, Month, aber 29 Thereasery and Immunogen;	Day) [1]	5. PAGE COUNT 47 by block nombes).	
12. PERSONAL AUTHOR(S) V. N. Reinhold 13. TYPE OF REPORT Midterm 16. SUPPLEMENTARY NOTAT 17. COSATI (FIELD GROUP 07 03 (06 01 19. ABSTRACT (Continue on a This Midterm re endotoxin structure those techniques to reagent synthesized a second development and sequence, by per spectrometry. Thes oligosaccharide structures these newly develop	13b. TIME CO FROM9/2 FON CODES SUB-GROUP SUB-GROUP Poverse if necessary eport details as at much impo <u>Coxiella bur</u> to provide at focuses on eriodate oxid se techniques fucture. The lpid-A from <u>S.</u> s of Lipid-A bed analytical	OVERED 6/88 TO 9/25/89 1. SUBJECT TERMS BA-1; Lipopo Coxiella bur and identify by block of new analytical proved sensitiv rnetii LPS. Fo femtomole (10 ⁻¹) methodology to ation, supercri combine to pro- utility of sup- almonella minne- from Coxiella b- 1 techniques.	14 DATE OF REPO 1989 Decen 1989 Decen lysaccharide; netii . TES womber) approaches of ty and speci remost in this b) detection extract the tical fluid of vide the element extract the tical fluid of the specified of the second ota has been wrnetii is defined of the second tract the second tical fluid of the second tract the second tical fluid of th	RT (Year, Month, aber 29 Innunogen;) Heveloped for lficity, and is methodolo for 0-antig details of thromatograp ments of a g luid chromat accribed usi	Dey) [19 I identify I identify I identify an ap gy is en oli linkag hy, an lobal ograph ed. F ng a c	determination oy block number). determination oplication of a reducing-end gosaccharides. ge, branching, id mass approach to hy for a finally, the combination of	
 PERSONAL AUTHOR(S) V. N. Reinhold 13a. TYPE OF REPORT Midterm SUPPLEMENTARY NOTAT SUPPLEMENTARY NOTAT 17. COSATI C FIELD GROUP O7 O3 O6 O1 19. MSSTRACT (Continue on a This Midterm reendotoxin structure those techniques to reagent synthesized A second development and sequence, by pespectrometry. These oligosaccharide structural features these newly develop 20. DISTRIBUTION/AVAILABILE DUNCLASSIFIED/UNUMITITION (AVAILABILE TARY Frances Bostia 	13b. TIME CI FROM9/2 FON CODES SUB-GROUP Proverse if necessary eport details es at much im to provide to provide to provide to provide to focuses on eriodate oxid se techniques cucture. The lpid-A from S. s of Lipid-A bed analytical LITY OF ABSTRACT ED ED SAME AS F	OVERED 6/88 TO 9/25/89 1. SUBJECT TERMS <u>BA 1</u> , Lipopo <u>Coxiella</u> bur and identify by block of new analytical proved sensitiv rnetii LPS. Fo femtomole (10-1 methodology to ation, supercri combine to pro- utility of sup- almonella minne- from <u>Coxiella</u> bi 1 techniques.	14 DATE OF REPO 1989 Decen 1989 Decen lysaccharide; netii . ITES womber) approaches of ity and speci remost in thi b) detection extract the tical fluid of vide the elen ercritical fluid of vide th	RT (Year, Month, aber 29 Thereasery and Innunogen; Innunogen; Innunogen; Innunogen; Innunogen; Interpretation for 0-antig details of thromatograp ments of a g uid chromat a demonstrat escribed usi CURITY CLASSIFIC fied	Day) [19 	determination optication of a reducing-end gosaccharides. ge, branching, nd mass approach to ny for a finally, the combination of	

- とうし、意思を読みるのであるとなるをない

FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to poljcies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

Vanlield 12/29/89

CORP SPECTED Accession For NTIS GRA&I P DTIC TAB П Unannounced Justification By_ Distribution/ Availability Codes 🐇 Avail and/or Special Dist

TABLE OF CONTE ITS

٩

٩

1.14

「ないない」でないないので、「ないない」

.

I. INTRODUCTION:
II. METHODS DEVELOPMENT4
A. O-ANTIGEN DETECTION AT FEMTOMOLE SENSITIVITY
a.) Introduction
b.) PFBAB Synthesis and Characterization
c.) Oligosaccharide Glycosylation With PFBAB
d.) Negative Ion Chemical Ionization HS Sensitivity
B. LINKAGE, SEQUENCE & BRANCHING
a.) Periodate Oxidation and Derivatization
b.) Collision Induced Dissociation
C. ENDOTOXIN CHARACTERIZATION BY SFC
III. COXIELLA BURNETII LPS CHARACTERIZATION
A. EXPERIMENTAL
a.) Mass Spectrometry
b.) Hydrolysis and Methanolysis of Lipopolysaccharides
c.) Gas Phase Reduction
d.) Composition Analysis
e.) Acetylation and De-O-Acylation
f.) Permethylation; Diasomethylation, Deuterodiasomethylation
g.) Periodate Oxidation and Linkage Determination
B. RESULTS
C. REFERENCES
D. FIGURES

I. INTRODUCTION

The complications of vaccine development can be related, in large part, to a lack of understanding LPS structure and its underlying cause, the woeful state of glycolipid and oligosaccharide analytical methodology. As a consequence, an unknown structure brings forth a problem of research focus: (i) to utilize established methodology and grind out results that demand an inordinate amount of material; or (ii) invest in a research approach focused on methods development with the hope of improving methodology in this difficult area.

Throughout this contract we have pursued both activities, introducing new instruments and methodclogy whenever it seemed to offered some hope of success, and challenging these techniques with two LPS samples, a known structure from <u>Salmonella minnesota</u>, and an unknown LPS from <u>Coxiella burnetii</u>. In this late Midterm Report, (selected aspects detailed in previous reports), we discuss these developments and apply the methodology to these two LPS samples. This report summarizes that effort and introduces a global approach to the sequence determination of carbohydrate materials and defines the major structural elements of <u>Coxiella burnetii</u> Lipid-A.

II. METHODS DEVELOPMENT:

A. O-ANTIGEN DETECTION AT PENTOHOLE SENSITIVITY a.) Introduction

The difficulty of detection during chromatographic separation of carbohydrate materials has been frequently addressed by one of two techniques: (i) pre-column reducing-end conjugation with fluorescent or UV-absorbing groups (1-5); and more recently, (ii) post-column amperomeric detection of base ionized samples (6,7). Reducing-end conjugation has involved either reductive amination (2) or direct glycosylation (5). This later technique provides improved column resolution, when compared to reduced samples (5), and, as described below, important advantages for subsequent chemical manipulations. Both conjugated products are well suited for analysis by fast-atom bombardment (FAB) because of terminal charge localization and improved sensitivity (3,4,8). This sensitivity, however, still falls short of that routinely available for other biopolymers. Moreover, the primary sequence derived is wholly inadequate for complete oligosaccharide characterization. For this reason alternative procedures were investigated to improve O-antigen and oligosaccharide detection.

Halogenated materials, or samples prepared as such, have proven most successful in extending detection limits when coupled with negative ion chemical ionization (NCI). A specific example of this approach was demonstrated for derivatized prostaglandin samples, using electron capture detection (9-11) and NCI-MS (12-15). In an effort to bring comparable sensitivity to the structural problems of <u>Coxiella</u> <u>burnetii</u>, we have developed and describe a derivative which imparts improved chromatographic properties, appropriate chemistry for Oantigen and oligosaccharide conjugation, facile negative-ion chemical ionization (NCI) lability for maximum MS sensitivity, and aromatic character for anionic charge stabilization.

> b.) Synthesis of Pentafluorobenzylaminobenzoate (PFBAB) One hundred milligrams of para-amino benzoic acid (PABA)

were dissolved in 2 ml of acetonitrile followed by the addition of 200 μ l of pentafluorobenzyl bromide and 500 μ l diisopropylethylamine. The mixture was vortexed and allowed to sit 10 minutes at room temperature and the solvents were evaporated under vacuum. The PFBAB product was purified by preparative C-18 HPLC, using isocratic elution with acetonitrile and water (58:42) as the solvent.

.

These procedures were essentially those first reported by Wickramasinghe, et al., for the derivatization of prostaglandin F2 $_{\alpha}$ (11).

These workers modified the earlier derivatization procedures for phenols, mercaptans (9) and organic acids (10) by using acetonitrile as the solvent and introduced diisopropylethanolamine as the hindered base. Several recent reports have continued to use the same general derivatization procedures (12-15) using negative-ion chemical ionization mass spectrometry. The conditions described in this report are a simple scale-up of the earlier work (11) without heating and longer reaction times. The product yields were evaluated by both HPLC and GLC. Minor peaks appear in both chromatograms which were analyzed by mass spectrometry. The spectra of these minor fractions could be accounted for as pentafluorobenzylation products of the free amine group on FFBAB and the unreacted free acid, PABA. These extraneous components were in such low concentration, and easily resolved by HPLC, that no attempt was made to diminish their accumulation by modifying the reaction conditions. The HPLC-purified PFBAB product exhibited a UV absorption maxmium, λ_{max} , at 293 nm with a minor red shift following glycosyl conjugation, (Fig. 1a). Using this absorption maximum, the extinction coefficient (c) of PFBAB was determined to be 2.0 x 10⁴ M⁻¹ cm⁻¹ and 1.9 x 10⁴ M⁻¹ cm⁻¹ for the fucose glycosylated derivative. The concentration of the latter derivative was determined by GLC. The UV detection limits were determined to be 1.6 μ Molar, ($\epsilon/n = 10$). Using a similar approach, the pyridinylamine (PA) derivative of fucose was determined to have an $\varepsilon = 0.8 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$, indicating less sensitive detection limits. The PA-fucose derivative was measured at its absorption maximum of 232 nm.

The PFBAB reagent was also found to be fluorescent. The fucose derivative provided a $\lambda_{max} = 350$ nM upon excitation, ($\lambda_{ex} = 296$ nM), (Fig. 1b). Based on fluorescent scans of equal molar solutions, the PFBAB-fucose was a better fluorophor than PA-fucose by roughly two orders of magnitude. As expected, fluorescence monitoring extended the detection limits of PFBAB-fucose, in this case from 1.6 μ M for UV

5a

monitoring, to 24 η M for fluorescence monitoring; an approximate 60 fold increase in detectability. Both detection limits were taken from fluorescence scans with signal to noise ratio of about 10/1. By HPLC the UV detection limits of the injected PFBAB-fucose was found to approximate 8 ng, (17 pmoles. The quantum yield (Q) of PFBAB was determined to be 0.04 using L-tryptophan as a reference standard, (Q = 0.13).

c.) Oligosaccharide Glycosylation With PFBAB

One hundred micrograms of a reducing (free reducing-end) oligosaccharide was solubilized in a reaction vial with 50 μ l of a 1:1 mixture of methanol and acetic acid. To this clear solution was added a 10 molar excess of the PFBAB reagent in 25 μ l of the same solvent. The 75 μ l volume was sealed (Teflon-lined screw tops) and heated for 20 min at 65 °C. The reaction vessel was brought to room temperature and dried by vacuum centrifugation. For sample storage, and to remove all traces of acetic acid, the tubes were twice dissolved in methanol and dried. The reaction was followed and yields determined by SFC following peracetylation. Supercritical fluid chromatography, and peak area integration, provides a measure of yield as determined by reactant/product ratios, which under these conditions were always greater than 90%.

Preliminary conditions for PFBAB glycosylation were initiated using established procedures (5) and fucose as a model compound. The low molecular weight product could be acetylated for easy analysis by GLC. Extension of these conditions to oligosaccharides was facilitated by SFC which allowed both reactant and product evaluation via flame ionization detection. Increased product yields were a combination of achieving reactant solubility while avoiding product degradation. Although aqueous acidic solvents were most effective for solubilizing larger glycans, they were more prone to degradation with reaction time. Non-aqueous conditions with acetic acid-methanol solvents proved most successful. The solvent polarity was adequate for bringing glycans into solution and, under the reaction conditions established, degradation was undetected. To

evaluate this latter point, the loss of a labile group, (neuraminic acid), from glycans was evaluated. It was noted that this acid (both 3- and 6-linked) was not lost from the trisaccharide, neuraminyllactose, nor from α_1 -acid glycoprotein under the PFBAB derivatization conditions. The kinetics of PFBAB conjugation can be followed by SFC which allows a determination of products and reactants in each analysis using FID detection. For small saccharides (dp = 2 - 27) derivatization is quantitative, but with larger oligomers, 20 minutes was insufficient (Fig. 2). When PFBAB glycosylation was applied to a mixture of N-linked high-mannose glycans obtained from a plant glycoprotein, the product yields decreased, but approached quantitation with longer reaction times and/or higher temperatures. Different classes of oligosaccharides will undoubtedly have to be evaluated separately to maximize yields. From these limited studies, however, it does appear that the chemistry of PFBAB glycosylation with hexoses and amino sugars proceeds satisfactorily, and under conditions that insure product stability. Although somewhat less than quantitative, the striking increase in sensitivity achieved by PFBAB glycosylation and NCI-MS (see below) greatly offsets these small losses in derivatization.

d.) Negative Ion Chemical Ionization MS Sensitivity Min, et al., (12) using the PFB derivative and singleion monitoring, $[(M - C_7H_2F_5)^-, NCI-MS]$ had indicated sensitivities for prostaglandin $F2_{\alpha}$ approximating 1 pg (injected). This value was reported to be five fimes better than electron capture detection (EC-GLC) and twenty-five times better then a completely silylated derivative, (M - TMSOH)⁻. Similar comparisons between NCI and positive EI have been reported and the striking stability of the carboxylate anion noted (15). In a preliminary effort, to access the limits of detectability, the PFBAB-fucose derivative was analyzed by SFC-NCI-MS using full mass spectral scans (100 - 1000 Da) (16). Using a series of dilutions, injection of 55 femtomoles provided an abundant signal for the $(M - C_7H_2F_5)^-$ fragment. No total ion current was detected at this level, however, an ion plot $[(m/z 408, M - C_7H_2F_5)^-]$ provided one major peak with a s/n = 10, Fig. 3. Sensitivity studies at higher mass has provided comparable data. Presented in Figure 4 is the total ion plot of a complex mixture of glycans isolated from a plant, labeled with FFBAB anu analyzed by SFC-NCI-MS. Recessed to the right in this figure are a series of ion plots representative of each component comprising the mixture separated by these mass chromatograms.

The extraordinary sensitivity developed with these techniques can be attributed to several factors. Most important, and as observed by others (12-15), is the unique character of the PFB moiety to serve as an efficient electron trap. The high electronegativity of F leads to a lowering of the lowest unoccupied molecular orbital energy and thus an increase of electron affinity. The resident negatively charged PFBAB residue is than stabilized by ester bond rupture to leave, in high abundance, the carboxylate anion. Secondly, is the level and distribution of fragmentation energy which is adequate for ester rupture only and not dispersed into alternative fragmentation pathways. Thirdly, is the unique stability of the carboxylate anion. These factors combine to provide excellent detecting sensitivity.

7a

7Ъ

B. LINKAGE, SEQUENCE & BRANCHING

The procedures described above, (which were developed to maximize sensitivity), provide a molecular weight analysis with little structural detail. In fact, the soft ionization of SFC-NCI is a major factor that contributes to this excellent sensitivity. Sequence, linkage and branching detail, however, can not be obtained from this analysis. Classically, this problem is approached by sample permethylation, hydrolysis and acetylation with the products analyzed by gas chromatography and mass spectrometry, (e.g., alditol acetate procedure). Unfortunately, this approach provides only a composition of linkage type, not linkage data in a sequential array.

a.) Periodate Oxidation

To approach the problem of determining monomer linkage, we have introduced a series of chemical steps to impart greater molecular specificity.

From these structural modifications intervening moiety linkage can be determined. The reasons for this can be explained by considering the change in the residue molecular weight upon oxidation and aldehyde derivatization, Scheme 1. Inter-residue linkages that leave adjacent hydroxyl groups are subject to oxidation, thus, periodate oxidation of 2-, 4-, and 6-0-linked moieties, (3-0-linked unaffected) result in different structural products which contribute variations in structure and changes in glycan molecular weight. Periodate oxidation, reduction and permethylation has been utilized by Nilsson, et al., (17) for samples studied by FAB-MS. For the aldehyde derivatization step, we have investigated several derivatives to

Ωa.

capture the products of periodate oxidation. At present, the chemistry appears to be more quantitative and the fragmentation following CID, (see below), more structurally informative when using the O-methyl oxime derivative. In addition to providing greater insight on linkage, there is information on furan/pyran structure. From the summation of residue molecular weight changes, a linkage composition analysis can be ascribed. The experimental conditions of oxidation and aldehyde derivatization has been established with diand trisaccharides of different linkage type and more recently with highly branched N-linked glycans and oligosaccharides.

Fast atom bombardment mass spectrometry has been utilized to follow the chemistry. Presented in Figure 5 is the FABMS of a highly branched oligosaccharide periodate oxidized and conjugated with methoxamine. The spactral and molecular weight information provided by this analysis indicates the chemistry to be correct and quantitative. We have investigated other complex PFBAB-labeled oligosaccharides by SFC-NCI-MS with comparable results, Fig. 6. The application of this methodology to the O-antigen obtained from <u>Coxiella burnetii</u> hydrolysates is under investigation.

b.) Collision Induced Dissociation

An important follow-up of this chemical strategy would be to capture the inner-residue molecular weight changes in addition to the total molecular weights obtained by FAB. This can be done by collision induced dissociation (CID). We have previously reported on the structural determination of the O-antigen from Coxiella burnetii using CID. This technique allows the selection of parent ions and focuses these molecular weight-related materials into a collision cell that induces fragmentation at glycosidic linkages yielding oligomer sequence and branching. Combining CID with the periodate chemistry described above would provide for the first time an inner residue linkage assessment for oligosaccharides. As a summation of the chemical and instrumental techniques introduced in this Midterm Report, we would wish to indicate their potential significance when applied to a problem; the structural characterization of two highly branched oligosaccharide isomers, Man7GN-PFBAB, Fig. 7. Although we have already resolved these structures by conventional methods, (using large amounts of material), and several weeks; it may now be possible to arrive at the same structural result with picogram amounts of sample and a few hours. The Figure illustrates the expected MS-CID spectra, that could be expected from each isomer following PFBABderivatization, periodate oxidation, aldehyde trapping and acetylation, (in this example we considered the sample to be prepared as the nitrile instead of the O-methyloxime....this would change the masses, but the relative shifts would be unchanged). The fragments speculated are limited to only those of labile glycosidic cleavages, and although it is easy to see spectral differences there is a wealth of information in each of the fragments indicating linkage, furanpyran relationships and branching. Thus, these techniques introduce the possibility of glycan sequencing at enhanced sensitivity using periodate oxidization, reagent-labeling, and instrumental analysis by SFC-NCI and MS-CID.

C. ENDOTOXIN CHARACTERISATION BY SFC

The characterization of Lipid-A materials from Gram negative

0.000

500

9c

bacteria has, over the years, been a most demanding and challenging analytical problem. We introduced SFC to assist in the study of Coxiella burnetii LPS fractions, and with known glycolipid and oligosaccharide samples, developed separation parameters and a mass spectrometer interface for product characterization. The direct application of this instrumentation to <u>Coxiella</u> <u>burnetii</u> LPS has been thwarted by the earlier difficulties of partial degradation to release sufficient amounts of material for study. The value and power of this analytical approach is directly demonstrated in this section with the multi-component mixture obtained from <u>Salmonella minnesota</u> LPS. have separated by TLC, extracted, and studied by FAB-MS all the entities comprising this Lipid-A sample (18). This preliminary effort has aided in the development of chromatographic parameters to separate this complex mixture by SFC. Presented in Figure 8 is an SFC chromatogram of the Lipid-A components detected in the partial hydrolysate of LPS obtained from Salmonella minnesota R595. The identification of these SFC peaks relates to our earlier study by TLC and FAB-MS. We are currently completing these studies by direct SFC-MS and SFC-MS-CID-MS.

III. COXIELLA SURNETII LYS CHARACTERIZATION: A. EXPERIMENTAL

a.) Mass Spectrometry

Fast atom bombardment mass spectrometry (FABMS) was performed on a VG ZAB-SE instrument (VG Analytical, Manchester, UK) operated at 8 and 10 kV in the negative and positive modes, respectively. The Ion Tech gun was operated at 8 kV with 1 mA of current at the cathode; xenon was used as the FAB gas. Current controlled scans were acquired at a rate of 30 sec/decade, and 3-5 scans were summed as continuous data before converting to bar plots using the VG 11-250 data system. The resolution was typically 1:2000; CsI clusters were used for calibration. For positive FABMS, the matrix was a mixture of 1:1 meta-nitrobenzyl alcohol (MNBA) and thioglycerol, and for negative FABMS, 1:1 MNBA and triethanolamine was Direct chemical ionization mass spectrometry (DCIMS) was used. performed by depositing sample on a platinum wire, and heated at a rate of 16 mA/sec in an ammonia plasma with a source housing pressure of 1 x 10^{-4} mbar. Mass analyzed ion kinetic energy spectra (MIKES) were acquired by focusing the beam of FAB-generated ions into the collision cell in the second field-free region, and scanning the electric sector at a rate of 30 sec/scan. Helium was admitted into the collision cell at a pressure sufficient to attenuate the precursor beam to 30-50%.

b.) Hydrolysis and Methanolysis of Lipopolysaccharides Hydrolyses of the lipopolysaccharides (LPS) were carried out in 1:1 water:methanol (1-2 mg/ml) at HCl concentrations varying from 0.01 to 0.65 N HCl or 1% acetic acid (vol/vol) at 100 °C for two hours. A time study was also carried out using 0.04 N HCl in 1:1 water:methanol at 100 °C for 0.5, 2, and 6 hours. The same HCl acid concentration and time studies were also performed in anhydrous methanol. Methanolysis or methanolic hydrolysis products were extracted in 1:2:4 water (or 0.1 N HCl):methanol:chloroform. There usually were insoluble particulates at the organic-aqueous interface following centrifugation. This was somewhat greater in the mathanolic

hydrolysis, but was decreased by slight warming of the tubes and extracting with 0.1 N HCl rather than water.

c.) Gas Phase Reduction

A thin coating of the sample was dried onto the bottom centimeter of a capillary melting-point tube, and placed in a gas phase reaction vessel (19). A series of three gas phase reactions were carried out: (i) 0.25 N BH₃ (or BD₃) in THF for 1 hr at 45 °C; (ii) 0.5 N HCl in methanol for 3 hrs at 45 °C; and (iii) 1:1 30% $H_2O_2/3$ N NH₄OH for 1 hr at 45 °C. The first reaction reduces amides to amines the second step solvates any boronic esters, and the last step oxidizes any carbon-boron bon s that form if any carbon-carbon double bonds are present (20).

d.) Composition Analysis

To characterize the ipophilic anchor and sugar backbone of this lipopolysaccharide, 5 mg of strain 9MIC7 LPS from C. burnetii was subjected to a 0.65 N HCl anhydrous methanolysis (1.25 mg LPS/ml) for 2 hours at 100 °C. The product was dried and extracted four times using 0.1 N HCl:methanol:chloroform 1:2:4, (discarding the top, aqueous layer each time), to insure no contamination from the core or O-antigen regions. To hydrolyze all of the amide bonds, this organic phase was dried and dissolved in $2 \ge \mu 1$ of THF, suspended in 2 m1 of 6 N HCl and heated for 18 hrs at 100 °C. The hydrolysis products were dried, extracted two times with chioroform:0.1 N HCl, 1:1, and the aqueous fraction back extracted twice to remove trace residues of fatty acids. The components in the aqueous fraction were characterized using GLC as the N-acetyl, O-silyl derivative. These derivatives were prepared by disso ving the dried residue, obtained from acid hydrolysis, in 100 μ l methanol, 50 μ l pyridine, and 50 μ l acetic anhydride and holding for 3) min at room temperature. The dried N-acetylated material was si ylated in 2:1 pyridine:99% BSTFA + 1% TMCS at room temperature for 45 min. The products were separated on a SE-54 column (Alltech Econocap) using a HP 5890A gas chromatograph. The chromatogram showed three peaks that eluted between 265-275 °C, which were shown to be due to 2,3-diamino-2,3dideoxy glucose by coinjection with a synthetic standard, (United States Biochemical Corp., Cleveland, OH).

Composition analysis was performed on the intact phase II LPS before and after dephosphorylation with HF (21). Methanolysis (0.65 N HCl) was carried out at 60 $^{\circ}$ C for 2 hrs, which is optimal for KDO analysis (22); sam es were N-acetylated and silylated as described earlier.

e.) Acetylation and De-O-Acylation

Methanolic and methanolic hydrolysis products were peracetylated using 1:1 pyridine:acetic anhydride for 16 hrs at room temperature. Two methods of de-O-acylation were used - triethylamine (10 μ l) in water (300 μ l) at 200 °C for 15 min, or a saturated ammonia/anhydrous methanol solution at 65 °C for 16 hrs.

f.) Methylation, Diaxomethylation, Deuteromethylation

Permethylation was carried out using the NaOH/DMSO method (23). Methylation with diazomethane and deuterodiazomethane was performed by first dissolving the sample in 100 μ l of THF and then

adding an ether solution of the reagent until the yellow color appeared indicating completion of the reaction. Deutermethylation was carried out using a deuterodiazomethane generating kit (Diazald, Aldrich Jhem. Co., Milwaukee, WI).

B. Results

Isolated Coxiella burnetii LPS samples, hydrolyzed in 1-2% acetic acid or 0.1 N HCL to free Lipid-A moleties, always resulted in large insoluble residues which appeared as a flocculate at aqueousorganic interfaces. Organic phase extracts of these hydrolysates, and mass spectrometrometric analysis using fast atom bombardment ionization, gave no useful fragments for structural characterization. However, when these fractions were highly concentrated and ionized by positive ion direct chemical ionization (DCI, methane as the reagent gas), major icns and fragments were detected at 14 mass unit intervals, which suggested the first clues to a Lipid-A moiety, m/z 640, 658, and 672. No higher mass ions were detected, even at shorter hydrolysis time. This difference in ionization is significant in that the DCI approach is initiated by probe heating, suggesting that the major ions could be products of pyrolysis rather than a consequence of sample hydrolysis. The 14 mass unit interval was also troublesome because such alkane heterogeneity is not observed with Lipid-A from other species. Within a single bacterial species, there are, however, different molecular entities that seem to serve equally as an LPS anchor, and this hoterogeneity can usually be attributed to the presence or absence of specific acyl groups (24-27). Most important however is the observation that fatty acids methyl esters derived from Coxiella burnetii Lipid-A fractions yield a distribution of C_{14} , C_{15} , C_{16} , ϵ C_{17} branched hydroxy fatty acids (33) and this ion distribution is comparable with these higher mclecular weight samples.

The poor yields of this suspected Lipid-A material focused our attention to alternative acidities and solvents for LP3 degradation. The aqueous conditions currently used suggested that the classical conditions are inappropriate for <u>Coxiella burnetii</u>. It was soon observed that more lipophilic solvents greatly increased the abundance of the 658 ion. When these conditions are applied to the LPS obtained from <u>Coxiella burnetii</u>, ions at higher mass were obtained for the first time, m/z 766, 1405 and 2079 (Fig. 9a). At higher acid concentrations (1.5 N HCl), the ion at m/z 751 is predominant while lower concentrations favors the m/z 1405 ion, (Fig. 9b & 9c). Consistent with these differences, it has been reported that higher acylated homologs of Lipid-A were detected from the LPS of <u>Salmonella</u> typhimurium when hydrolysis was carried out in aqueous methanol. rather than 1004 water (25).

Assuming these ions to be deprotonated molecules, $(M-H)^-$, a relationship between them can be deduced where two molecules of $M_r = 752$, minus water and a phosphate group equals the molecular weight 1406. The use of a milder acid during hydrolysis, (1% acetic acid rather HCL), resulted in an ion cluster 80 amu higher than the cluster at m/z 1405, $[(752 \times 2) - (18) = 1486]$, m/z 1485, (Fig. 10). Thus, from these data, an organic phase component appears to be a dimer associated with two phosphate groups, one somewhat more labile than the other. A decrease in the solvent polarity during hydrolysis followed by lipophilic extraction and FABMS, provided similar ion clusters extended to a tetramer region (Fig. 9a). Other than the

12a

125

!b

12c

· 5 8 .

12d

higher masses detected, there are significant differences observed between aqueous vs nonaqueous methanolysis. These results can now be understood as a consequence of the addition of one or more methyl groups, e.g., the masses are shifted by ±14 mass units. The shift from m/z 751 to 765 is guite apparent, and demonstrates the involvement of a hemiacetyl, carboxyl, or phosphate group, (Fig. 11). To define which of these groups are present the sample was reduced with NaBH₄. Analysis of these products indicated a 2 amu shift of the m/z 751 ion to 753, strongly suggesting a free reducing-end, (Fig. 12). Closer examination of this spectrum, however, shows incomplete reduction; note 2 amu lower satellite ions at m/z 751 and 765, but not for the sample lacking a phosphate group, m/z 671 and 685. This differential sensitivity to reduction may reflect isomeric structures as a consequence of methyl group location, as a methyl phosphate vs methyl glycoside. More interestingly, an associated pair of fragments incremented by 74 amu (m/z 825/839, see also Fig. 9a), also fails to shift upon reduction and is suggestive of an added glycerol moiety. This suggests that methanolysis yields three fragments; half of which are non-reducing methyl glycosides (Structure A, see below; also a small amount of a glycerol phosphate moiety, C), and the remaining half, a methyl phosphate residue that would provide a structure with a free reducing-end (A). These ion fragments can be accounted for by the following structures:

Further proof of these isomeric structures was approached by collision induced dissociation (CID) and peracetylation. In the former case ion focusing of m/z 765 and CID produced two daughter ion fragments in approximate equal abundance, $(m/z \ 667 \ 6 \ 653)$, indicating an elimination of methyl phosphate and phosphate from the parent ion. These results corroborate the presence of the isomeric structures (A) and (B). Blocking the free hydroxyl groups and FABMS should also differentiate the isomeric m/z 765 structures by adding four (A) and three (B) groups. Peracetylation and negative ion FABMS provided the spectrum shown in Figure 13a. The mass shifts to m/z 891 and 933 represents the correct mass increments for the addition of three and four acetyl groups. The enhanced abundance for m/z 933 was not

ž Elmert

13c

anticipated but could represent incremental acylation at the amide hydrogens, (this partial reactivity was also observed when the heptaacyl monophosphoryl Lipid-A from Salmonella minnesota was peracetylated). The combination of CID, peracetylation, and reduction appears to support the two structures represented above.

To corroborate the number and type of carbohydrate-acyl linkages, the sample was investigated by base treatment. Two methods of basic hydrolysis were used, both known to induce complete de-Oacylate of carbohydrate samples and not effect N-acyl groups (25,29). Treatment of the peracetylated sample (Fig. 13a) with triethylamine in water, or ammonia in methanol and FABMS analysis of the products provided a spectrum identical with the starting material. This indicates that the added acetyl groups were O-linked and any other acyl groups are either amide- or ether-linked. Figure 13b shows the molecular ion region of the peracetylated methanolic hydrolysis product. The most abundant ions corresponds to the addition of seven acetyl groups, $[(7 \times 42) + 1406 = 1700]$ with a mass shift equal to two methylene residues caused by the incremental reactivity of the amide groups. This ion envelope does not show a split due to the difference in the number of acetyl groups, as was observed in Figure 13a for triand tetra-acetylated products. However, with such complexity it may be difficult to notice such detail. These results may be accommodated by the following structure:

This work suggested the alkane heterogeneity may be linked through acyl-amide linkages; a consideration directly investigated by methanolysis with 3N HCl, (Fig. 14). These conditions are expected to induce quantitative methyl glycoside formation and cause partial acylamide degradation. As expected, the spectrum can be rationalized by considering de-N-acylation (monoacyl, m/z 433/457) and methyl esters of the released acyl groups (m/z 273/287). To further confirm the acyl-amide composition, the products m/z 657 and 737 were reduced and analyzed by +FABMS following treatment with diborane and deuterodiborane, procedures specific for amides (19,20):

$$\begin{array}{c} O \\ \parallel \\ -C - NH - \end{array} \begin{array}{c} BH_3 \\ -CH_2 - NH - \end{array}$$

14.

145

.

As shown above, the procedure reduces amides to amines decreasing a compounds mass by 14 amu for each amide residue, (this procedure also hydrates carbon-carbon double bonds incrementing the weight by 18 This technique was applied to the methanolysis hydrolysis amu). products to ascertain mass shifts associated with the diacyl glycose components, m/z 671/685, (Fig. 9a). The reduced material provided ions in the monomer area, m/z 645/659, (Fig. 15a), indicate a reduction in mass expected for the presence of two amide groups, (28 amu, incremented by 2 amu due to positive vs negrtive FABMS). Conformation of this amide reactivity was supported with deuterodiborane reduction, where the same products (N+H)⁺ appeared four mass units higher, m/z 649/663, (Fig. 15b). The methylene envelope in the (M + H)⁺ region inproduces isobaric problems (28 amu shift) and deuterodiborane was necessary for confirmation. The assignments proved to be correct for the monomer, but, four deuterium atoms were not introduced into the phosphorylated monomer (m/z 739/735, Fig. 15a) indicating incomplete reduction. Control experiments with Lipid-A from Salmonella minnesota showed the same incomplete reduction. This Lipid-A contains two amide groups, and only one reduced; thus, it would seem as though a proximal phosphate group on the terminal amino sugar somehow interferes with this reaction.

Fatty acids are not released under de-O-acylation conditions suggesting them to be either ether or amide linked. Reduction with BH3 supports the latter possibility and the mass shift indicates two such groups. Ether linkages has been observed in archaebacterial membranes (12), but this data indicates acyl linkages to amide groups of a diamino hexose, as observed in other LPS's (27,31). Furthermore, the molecular weight of this subunit is in agreement with what would be expected given the amount and types of fatty acids previously described (32,33).

The above data has indicated two amide groups, linked with a homologous fatty acids series. Satellite clusters 80 amu above and below other prominent ion clusters suggest the presence of phosphate. Collision of the isobaric components, m/z 765, and daughter ion analysis have shown losses of 98 and 112 amu, a mass equal to phosphate and methyl phosphate, respectively. To obtain more direct evidence, samples were treated with diazomethane to methylate phosphoryl groups and the products analyzed by FABMS, (Fig. 16). Two clusters are observed, surrounding the ions m/z 687 and 795; the former cluster appears unchanged and appears at the expected mass for molecules not containing phosphate, (cf., m/z 673/685, Fig. 14). The latter group of ions shifted upwards by 28 amu, (cf., unmethylated, Fig. 11), expected for a dimethylphosphoryl ester. When the most abundant ion in this envelope, m/z 795, was mass selected and fragmented by CID an abundant fragment (daughter ion) was detected at m/z 669, Fig. 17. This can be accounted for by considering a dimethylphosphate elimination.

Two amide groups, an aliphatic fatty acid series, and a phosphate group are components of the monomer structure. The location of the phosphate group was investigated by reduction, periodate oxidation, aldehyde trapping with methoxime and acetylation, (see Page 8, Section B. a). A methanolic hydrolysis of Lipid-A was carried out to obtain higher yields of the monomer ($M_{\rm f}$ = 752) (Fig. 9a). This sample was reduced to the alditol with NaBH₄ and the product periodate oxidized, methoximated, and acetylated. Analysis by -FABMS provided Page 15

15a

ŝ

150

.

15đ

an ion at m/z 875 (Fig. 18) which can be accounted for by considering periodate cleavage of a 5,6-diol, placing the phosphate group at position 4, (Scheme II, A = 6-0-, B = 4-0-Phosphate).

The 4-O-phosphoryl-diacyl-diamide monomer was suspected to be 2,3-diamino-2,3-dideoxy glucose, a component previously identified in other Lipid-A samples (27). To check this possibility, a Lipid-A fraction was extensively washed and hydrolyzed under very harsh conditions (6 N HCl at 100 °C for 18 hrs) to remove all amide-linked fatty acids. The released fatty acids were extracted and the aqueous fraction dried, N-acetylated and O-silylated and compared with a commercially available sample. The <u>Coxiella burnetii</u> derived sample was identical to that of a standard 2,3-diamino-2,3-dideoxy-D-glucose sample, as determined by gas chromatography after derivatization.

This data confirms the amino sugar present in Coxiella burnetii Lipid-A to be a 2,3-dideoxy-2,3-diamino-D-glucose with each amino group acylated to provide a monomer molecular weight of 672 These acyl-amide residues impart an envelope of molecular daltons. ions differing by 14 amu characteristic of the aliphatic methyl ester determined earlier (33). Of the two phosphate groups, one is located at position C'-4 on the non-reducing amino sugar monomer, and the second is located on the reducing amino sugar at either position C-4 or C-6. Dimer linkage analysis is currently undergoing studies with model compounds according to the diagram presented in Scheme III. Placement of this linkage would establish, by default, the position of this second phosphate group. Consistent with other Gram-negative species, this O-antigen membrane anchor appears to be an amino sugar dimer providing a molecular weight equal to 1486 daltons. A summary of these results are presented below:

An interesting finding, in the unraveling of this LPS structure, is the apparent alkane heterogeneity that exists in Lipid-A. Fatty acid methyl ester analysis of Lipid-A preparations isolated earlier suggest this heterogeneity originates with these acyl groups, but since these are total compositional analysis, site specific conjugation remains to be determined. Moreover, since successful attempts at extraction and isolation have always involved methanol, a technical question must be considered whether this apparent alkane heterogeneity (14 amu intervals) may in fact be due to partial ester formation on phosphates or glycoside formation on hemiacetyls (also providing 14 amu intervals). To address these questions we have underway two expensive experiments involving stable isotope. The

16a

Mr=767 CH10AC H---HC=NOCH1 CH,0Ac HC=0POH HC=NOCH, M =87.7 RNH-RNH---1.] BH. 2.] IO. 3.] M,NOMe 4.] Ac.O/Pyr 4 ä

Scheme II

Scheme III

16c

first in methanolysis hydrolysis in the presence of CD₃OD and check alkane heterogeneity; the second experiment will involve reduction and perdeuteriomethylation of the monomer, m/z 751.5 (Fig. 9b). Collision should provide daughter ion fragments between the labile C₂-C₃ bond splitting the acyl-amide groups. Multiple or single daughter ion fragments would answer the problem of site-specific alkane heterogeneity, (Scheme IV).

Three strains from phase I, phase II, and the intermediate phase (strains 9MIC7, 9MIIC4, and RSA514, respectively) were each subjected to both methanolysis and methanolic hydrolysis, examined by negative FADAC, and all gave similar spectra (Figs. 9 and 10). These results seem to suggest that the differences in the virulant and avirulent phases are due to the oligosaccharide portion of the LPS and not in the Lipid-A moiety.

REFERENCES SENSITIVITY

- 1.) Hase, S., Ikenaka, T., and Matsushima, Y. (1978). Biochem. Biophys. Res. Commun. 85, 257-263.
- 2.) Hase, S., Natsuka, S., Hisashi. O., and Ikenaka, T. (1987). Anal. Bochem., 167:321-326.
- 3.) Reinhold, V.N., Coles, Eric., and Carr, S.A. (1983). J. Carbohydr. Chem. 2:1-18.
- 4.) Wang, W.T., LeDonne, Jr., N.C., Ackerman, B., and Sweeley, C.C. (1984). Anal. Biochem., 141:366-381.
- 5.) Her, G.-R., Santikarn, S., Reinhold, V.N., and Williams, J.C. (1987). J. Carbohydr. Chem. 6:129-139.
- 6.) Hardy, M.R. and Townsend, R.R. (1988). Proc. Nat. Acad. Sci. (USA), 85:3289-3293.
- 7.) Hardy, M.R. and Townsend, R.R. (1989). Carbohydr. Res. 188:1-7.
- 8.) Webb, J.W., Jiang, K., Gillece-Castro, B.L., Tarentino, A.L., Plummer, T.H., Byrd, J.C., Fisher S.J., and Burlingame, A.L. (1988). Anal. Biochem. 145:337-349.
- 9.) Kawahara, F.K. (1968). Anal. Chem. 10:1009-1010.
- 10.) Kawahara, F.K. (1968). Anal. Chem. 10:2073-2074.
- 11.) Wickramasinghe, J.A.F., Horosowich, W., Hamlin, W.E., Shaw, S.R. J. Pharm. Sci., 62:1428-1431(1973).
- 12.) Min, B., and Pao, J., Garland, W., deSilva, J., and M. Parsonnet. (1980). J. Chrom. 183:411-419.
- 13.) I. Blair, S. Barrow, K. Waddell, P. Lewis and C. Dollery. (1983). Prostaglandins, 23:579-589.
- 14.) Waddell, K., Blair, I., and Wellby, J. (1983). Biomed. Mass Spec. 10:83-88.
- 15.) Strife, R., and Murphy, R. Jour. Chrom., 305:3-12 (1984)
- 16.) Angel A-S, Lindh F, Nilsson B. Carbohydr Res, 168:15-31 (1987). 17.) Reinhold VN. (1989) Proc. of the 37th ASNS Conf on Mass Spect.
- and Allied Topics, May 21-26, Fiami, FL. p.1476.
- 18.) Lipid-A paper
- 19.) Vath JE, Zollinger M. Biemann K. (1988) Fresenius 3 Anal Chem 331, 248-252.
- 20.) Vath JE, Biemann K. (1908). Proc. of the 36th ASMS Conf on Mass Spect. and Allied Topics, June 5-10, 1988, San Francisco, CA, p.167.
- 21.) Sonesson A, Bryn R, Japtzen E, Larsson L. (1989) J Chromatogr, 487, 1-7.
- 22.) Bryn K, Jantzen E. (1982) J Chromatogr 240, 405.
- 23.) Ciucanu I, Kerek F. (1984) Carbohydr Res, 131, 209-217.
 24.) Qureshi N, Mascagni P, Ribi E, Takayama K. Monophosphoryl Lipid-A obtained from lipopolyraccharides of <u>Salmonella</u> minnesota R595. J Biol Chem, 260:5271-5278(1985).
- 25.) Qureshi N, Takayama K, Ribi E. Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of <u>Salmonella</u> typhimurium. J Biol Chem, 257:11808-11815(1982).
- 26.) Rietschel ET, Hase S, King MT, Redmond J, Lehmann V. (1977) Microbiology (Schlessinger D. ed) pp 262-268, American Society of Microbiology, Washington DC.
- 27.) Galanos C, Luderitz O, Rietshel ET, Wesrphal O. (1977) Int Nev Biochem, 14:280-288.
- 28.) Qureshi N, Takayama K, Heller D, Fenselau C. J Biol Chem, 258/12947-12951(1983).

- 29.) Reinhold VN. Methods in Enzymology, 25:244-249(1972).
- 30.) DeRosa M, Gambacorta A, Gliozzi A. (1986) Microbiol Rev, 50, 70-80.
- 31.) Mayer H, Weckesser J. In: Handbook of Endotoxin, Vol. 1: Chemistry of Endotoxin, Ed., E.T. Rietschel, Elsevier Science Publishers, pp. 232-234, 1984.
- 32.) Wollenweber H-W, Schramek S, Holl H, Rietschel ET. (1985) Arch Microbiol, 142, 6-11.
- 33.) Annual and Final Report Submitted to USAMRIID 30 November 1987, page 28. Her GR and Reinhold VN.

FIGURE LEGENDS

- Figure 1a: UV Absorbance Scans of PFBAB (-----), and PFBABmaltoheptaose (---). Absorption maxima at 292 and 296 nm, respectively.
- Figure 1a: Fluorescence Scans of PFBAB-fucose. Excitation wavelength = 296 nm. Scan rate = 1 sce/nm. A = 1.2μ m; B = 24.0nm; C = 6.0nm; D = 12.0nm; E = solvent blank.
- Figure 2: Supercritical fluid chromatography of PFBAB labeled maltodextrin sample prepared as the acetate derivative. Cyanopropyl SFC column using CO₂ as the mobile phase.
- Figure 3: Sensitivity study using PFBAB labeled fucose. Product ion (m/z 408) loss of PFB group. Mass spectrum taken at dilution of 55 femtomoles. Insert showing mass chromatograph at m/z 408 and expanded spectral scan.
- Figure 4: SFC-MS of PFBAB-labeled highly branched glycan obtained from plant lectin by endoglycosidase treatment. Foreground, total ion plot with mass chromatograms (ion plots) offset to the right for selected components in the complex mixture. M = mannose, G = glucosamine. Note resolution of branched isomeric doublet at M7G.
- Figure 5: Positive ion fast atom bombardment mass spectrum of highly branched Man₆GN sample labeled with pyridinylamine. Previous to FABMS analysis sample was prepared for sequence, linkage and branching studies by periodate oxidized, methoximation, and acetate derivatization.
- Figure 6: SFC negative ion chemical ionization mass spectrum (SFC-NCI-MS) of PFBAB 1-beled MangGN isolated from plant lectin prepared for linkage, sequence, and branching studies by periodate oxidation and derivatization.
- Figure 7: Expected results of combined SFC-NCI-MS-CID-MS analysis of complex branched glycan. Sample prepared as nitrile derivative. CID provides monomer mass intervals for sequence, periodate oxidation yields linkage and branching, and (M-H)⁻⁻ ion yields Mr and supporting linkage and branching information.
- Figure 8: SFC of Lipid-A obtained from <u>Salmonella minnesota</u> Re595 sample prepared by acetylation. Cyanopropyl column with FID detection. Structure and peak correlation by isolated TLC fractions only; SFC-MS studies expected to be completed soon.
- Figure 9a: Aqueous methanol hydrolysis of CB514 organic phase analyzed by negative ion FABMS.
- Figure 9b: Aqueous methanol hydrolysis (1.5N HCl) of CB9HIC7 organic phase analysed by negative ion FABMS.
- Figure 9c: Aqueous methanol hydrolysis (0.15N HCl) of CB9MIC7 organic phase analysed by negative ion FABHS. Dimer area in high conc.

Figure 10: Methanolic hydrolysis (1% HoAc) of CB9MIC7 organic phase analyzed by negative ion FABMS. Added phosphoryl group.

- Figure 11: Negative ion FABMS of monomer prepared in 3N HCl methanol. Two component isomeric mixture by CID, reduction, and acetylation.
- Figure 12: Negative ion FABMS of monomer and monomer phosphate prepared by reduction with NaBH4.

- Figure 13a: Negative ion FABMS of monomer following peracetylation. Determination of free hydroxyl groups.
- Figure 13b: Negative ion FABMS of dimer phosphate prepared by peracetylation; Determination of free hydroxyl grooups.
- Figure 14: Positive ion FABMS of monomer following 3N HCl hydrolysis. Acyl-amide methanolysis to produce monoacyl monomer and fatty acid methyl esters.
- Figure 15a: Positive ion FABMS of monomer by BH3 gas phase reduction of amides to corresponding amines.
- Figure 15b: Positive ion FABMS of monomer by BD₃ gas phase reduction of amides to corresponding amines.
- Figure 16: Positive ion FABMS of monomer and monomer phosphate following diazonathylation for phosphate methylation analysis.
- Figure 17: Collision induced dissociation spectrum of monomer phosphate indicating methyl phosphate elimination.
- Figure 18: Negative ion FABMS of monomer phosphate following reduction, periodate oxidation, aldehyde trapping, and acetylation.