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Block 19, Continuod

It Is imperative that the exact cause of the instability be illuminated so that future systems can be corrected at the design stage, On a
short-term basis, better understanding of the problem is needed in order that attitude control systems can be designed on a rational basis,
Capability to estimate likely nutation amplitudes Is also needed In many system design decisions. These needs are met in the present
program in the form of rational scaling ;aws that allow extension of the available experimental data to new motor/spacecraft configurations.

Numerous physical mechanisms have been proposed to explain the origin of the PAM-D disturbing torque. Most of these have been
eliminated by their failure to comply to key features of the telemetry data. Two mechanisms still remain to be more fully evaluated. The
first Is the 'slag sloshing" hypothesis, which links the instability to sloshing of accumulatinns of aluminum oxide slag within the aft closure
of the rocket motor combustion chamber. This mechanism is preferred by some Investigators because it Is similar to the familiar liquid-
stores stashing nutatlon source. In this case, the driving mechanism is linked to the mass center offset caused by the relative motion of
the assumed pool of liquid material. However, this interpretation predicts a sensitivity to vehicle acceleration that does not appear In the
data. A much more massive vehicle, the SOS-.Il first stage, also employing the STAR 48 exhibits a torque gain factor that does not refl•lc
acclertlon sensitivity. ... ) (-

Our study of the PAMWD coning problem has focused on forces and torques caused by Interaction of the motor Internal gas flow with
the wobbling motions of the spacecraft. The mechanism Is closely related to the well-known jet damping effect. During the early part of the
STAR 48 motor burn, the standard jet damping estimates apply fAirly well. However, as burning proceeds the damping gradually changes
Into a oriving influence as if the damping force switches direction. The magnitude of the disturbing torque remains In a range typical of jet
damping. We refer to this situation as the Jet g~an or gas dynamic driving effect.

Jet damping calculations assume the motor flow Is uniform with respect to the chamber despite the nutation wobbling, A careful
analysis shows that Jet damping theory does not apply for spinning motor chambers when a critical size Is exceeded. Wobbling Induces an
unsymmetrical traveling vorticity wave that drastically alters the Internal pressure distribution and a destabilizing effect arises when the
waves are in resonant coincidence with the vehicle precession frequency, The gas motion Is analogous to a sloshing liquid In the more
familiar liquid-induced coning, However, instead of free-surlace waves, elastoid-Inertla vorticity waves are involved. Corlolis forces
provide the "spring constant that allows oscillatory response In the effectively incompressible behavior of the relatively slow moving gases
within tho motor chamber. The wave system exhibits numerous natural frequencies In close proximity to the wobbling frequency.
Predi-tesd resonant points coincide with peaks in nutallon growth rate appearing in flight telemetry data,

Wet have verified this *Jet gain* model of nutation Instability using cold flow simulations. The angular velocity environment
characteristic of a spinning, nutation rocket chamber Is reproduced in the laboratory by spinning the test chamber simultaneously about
two axes with a properly chosen angular separation. Inducad wave motion In the chamber Is made visible by a suspension of fine particlils
or by dye filaments, Data Is recorded on a video camera that rotates with the chamber. The observed vorliclty waves closely follow the
pattern predicted by the analytical results.

A full three-dimensional Navier-Stokes numerical algorithm for study of the Induced wave motions has also been developed, In order
that this tool can be used In practical situations, special attention was devoted to design of a grid generation method appropriate to the
motor chamber geometries typical of spinning space motors. The code was tested extensively by comparing results to known solutions for
chamnber flow, In Its current state of development, it verifies many of the physical features of the jet gain mechanism displayed In the
theory.

Methods for rmesuring the nutation interaction gain factors have been developed using laboratory scale spinning rocket motors.
Alth',ough the nutatlon InternMilon torques generated In these small motors (two-inch outside diameter propellant grains) are very small,
useful experience in desl Ing and carrying out such tests was gained. The techniques are readily scaled for full-size motor
charactaritation. r'o acquire useful quantltative data with small motor tests (say two-inch motors), the spin rates about both axes with an
angular separation of about 20" must be over 2000 rpm In order to achieve dynamic similarity and sufficient torque resolution.

The Jot gain model provides the basis for scaling laws for propulsion driven nutation Instability. Unlike other proposed mechanisms,
this allows the instability to be described in terms of known system parameters such as motor mass flow rate, chamber size, vehicle
moments of inertia, and propellant burning rate. It Is not necessary to Introduce unknown parameters such as fictitious pendulum lengths
or spring constants. These scaling laws make It possible to extend available PAM-D experimental data in making reliable estimatos of
expected coning In new spacecraft system configurations.
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GUIDE TO READING THIS REPORT

This report deals with a complex phenomenon, the PAM-D coning problem, that is still under
intensive study by several research groups. In order to make the findings readily accessible both to
experienced nutation instability investigators and to interested newcomers, it is organized to
facilitate reading and reference. Each key topic is identified verbally, and each is preceded by an
overview so that the reader can determine easily whether to read the complete discussion or to
move to parts of greater interest.

An executive summary is provided immediately following this guide for those concerned only
with the main findings of the study. It is completely self-contained and includes a brief description
of the PAM-D coning effect and its history. Emphasis is on the physical interpretations of interac-
tions between the internal combustion gas motion and spinning vehicle dynamics.

Introductory material of a more detailed type in the form of overviews is included in each
chapter of the main body of the report to enable those new to the problem to understand the
motivations for each of the program tasks and the methods used in their execution, This material is
easily identified and can be skipped by those familiar with the nutation problem.

All main elements of the gas flow theory for nutation instability are introduced initially by
means of the simplest possible example problems and formulations. All assumptions are carefully
described and justified as required. For some readers this will be a sufficient level of study to grasp
the main essence of the analytical findings. For others, the detailed mathematical analysis is of
greatest significance.

Since understanding of the results depends heavily on a thorough understanding of the physics
and its mathematical basis, a very czmplete derivation of all major elements of thn theory is
included. Pivotal algebraic steps are included in all developments in which there is any possibility
of misinterpretation. Recent literature makes it clear that there is widespread misunderstanding of
many of the concepts on which flow-induced nutation instability model depends. We hope by this
means to provide aid to those who require an in-depth understanding of the influence of the motor
internal ballistics on the dynamics of spinning rocket propelled vehicles,

A very extensive bibliography is included that will enable any interested reader to access the
vast literature that provides the basis for the work reported.
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EXECUTIVE SUMMARY

Coning (also known as nutation or wobbling) degrades performance of modern, spin-stabilized
solid rocket motors used to raise payloads to synchronous orbit. Figure I describes tile key
features of the phenomenon showing that it occurs during the perigee motor burn and is linked in
some way to motor operation.

The unexpected wobbling motion threatens several aspects of the orbital injection process, and
has resisted correction based on current models of the behavior of rotating vehicles. Conventional
analysis has failed to solve this potentially costly problem. Therefore designers have resorted to
inefficient and expensive corrective measures. These are in conflict with the basic principals of
spinning solid propellant upper.stage design, which are founded on the inherent simplicity and

t -a 85 sec: Mo•u.roiut
Inital coning has been
enormously amplified.
Final cone angle, 0, may
reach 20 degrees.

t =50 sec: midb,,
Original small nutation
begins to grow larger
instead of decaying as
predicted by conventional
jet damping theory

t 0 sec: otor L l
Vehicle soins at about -
50 rpm. A small initial
wobble is induced mech-
anically during deployment - Flight Path
from the launch vehicle 0

Figure 1. Development gf Coning Instability During Motor Burn (PAM-D. STAR 48)
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relatively low cost of such systems. The most common approach has been the application of a
strap-on attitude control system to counteract the disturbing torques created within the system.
This adds systern complexi!y and cost as well as decreasing reliability.

This report describes a program to provide improved understanding of the physics of nutation
instability with the goal of identifying approaches for avoiding it in the design of new upper-stage
vehicles so that the advantages of spin stabilization and solid rocket propulsion can be restored.

Program Objectives
This research and development program explored the origins of coning instability by applica-

tion of three twols:

* Mathematical analysis of internal ballistics cf a spinning, nutating rocket motor

0 Numerical simulation of interactions between spin, nutation, and motor gas flow

* Laboratory scale experimentation using both cold flow and small spinning motors

Program objectives included:

"* Clarification (if the role played by combustion as flow in driving coning

"• Development o, methods for labora:gry experimentation on coning mechanisms

"* Development of scaling rule,; for use in upper stage design to avoid coning

"• Development of comprehensive analytical understanding of coning

"• Exploration of numerical procedures for accurately determing flow effects

"* Formulation of correccive design procedures

A much impro,,ed physical understanding of the nutation phenomenon has resulted from a
careful analysis of the motor internal ballistics. Although our contract specified that only the
initial steps be taken in developing comprehensive numerical tools, a complete three-dimensional,
Navier-Stokes model of flow in a spinning motor was brought to a highly developed form before
the end of the study. The experimental studies demonstrated that both small-scale and full size
nutation instability tests can be successfully undertaken.

Features of the Nutation Phenomenon
Several features of the PAM-I) observations must be emphasized. These allow us to eliminate

many potential disturbing mechanisms. The features of mosi importance are:

"• PAM-D coning originates within the rocket motor (its growth either ceases or abruptly
decreases at end of burn.

"• The disturbing to;rque vector moves relative to the vehicle and rotates in a lateral plane in
the retrograde direction at the precession frequency. Its phase angle with respect to the
wobble angular velocity changes dramatically during the motor bum.

iv



"S The driving torque is proportional to the magnitude of the lateral perturbation angular

velocity indicating a closed loop, self-excited oscillation. The factor of proportionality
(called Rgain) varies tremendously throughout motor bumn. Its largest value occurs about
middburn,

"s Coning growth is not a smooth, sustained process. It occurs in a series of spunts with the

largest growth usually appearing about the middle of the motor burn. These spurts and the
associated shifts In frequency follow a pattern suggesting a resonant interaction
with the disturbing mechanism.

" The pitch/yaw rate amplitude growth is accompanied by shifts of wobble frequency that
are strongly correlated with the Rgain factor.

" Rgain is not sensitive to the accleration of the vehicle.

"* Rgain i: sensitive to the vehicle mass properties suggesting that modification• of the
wobbling frequency by differences in lateral moments of inertia may be important.

"• Periods of growth can occur early in motor operation when jet damping is expected to
dominate the mnotor spacecraft interaction.

Many prix,.--d mechanisms have been eliminated because of their lack of agreement with
one or more of these features. In particular, effects relatid to thrust offsets or nonuniform
combustion of the propellant do not fit the experimental data.

The nutation is strikingly similar to that frequently related to sloshing of liquid stores or
vibration of structural components. This brings with it the opportunity for a resonant interaction.
Resonance may allow what might ordinarily be an insignificant disturbance to interact strongly
with the vehicle motion, Thus, we are led to expect a transient phenomenon like sloshing.
Clearly anything in the motor that can slosh or vibrate must be examined with care. Two such
effects have survived a careful assessment of an originally long list of candidate mechanisms.

Search for the Disturbing Torque
The mechanism at the heart of the nutation disturbance must be identified because such knowl-

edge is essential in determining corrective procedures. It is very possible that rather small changes
in motor design geometry or propellant configuration could minimize or eliminate the coning
growth. The spacecraft system designer now needs a new set of rules in selecting spin rates and
mass center tolerances. Design rules that worked effectively in smaller spin stabilized systems are
clearly not working when applied to the larger systems such as the PAM-D and its derivatives.

Knowledge of the mechanism is also required in order that a predictive capability can be
developed. One must have easily applied scaling laws available if estimates of attitude control
needs or estimates of expected coning growth are to be available prior to flight testing. The
economics of commercial and military space operations demands that phenomena such as the
PAM coning effect are totally understood in order that costly failures can be avoided.

Two theories have evolved that attempt to provide physical understanding of the origins of the
distubing forces that drive the unexpected wobbling motion, These are compared in Figure 2.
They are what remain of an originally long list of twenty-two potential mechanisms. Most of the
mechanisms proved unable to fit one or more key features of the experimental data collected in

V
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about twenty flights of the PAM-D, SGS-II, and PAM-DII vehicles. 1
Some investigators prefer the "slag" theory2, which assumes that aluminum oxide slag pro-

duced in the combustion process accumulates in a liquid pool within the motor chamber and
sloshes in response to the wobbling spacecraft. Under certain conditions, this hypothetical slag
pool moves in resonance with the wobble and a torque is produced on the vehicle because of the
center of mass offset relative to the thrust line. Therefore, the torque should be proportional to the
vehicle acceleration. This expected sensitivity to thrust (or acceleration) does not appear in the
flight data. Laboratory experiments, numerical simulation, and flight tests of small spinning
rockets containing a simulated slag pool do not appear to support the slag accumulation nutation
instability theory. The theoretical results are unsatisfactory because they introduce physical vari-
ables such as spring constants or pendulum lengths that cannot be determined from the motor or
spacecraft characteristics. Tbus, one can make the theory fit the data by adjustment of the variable
parameters.

The second mechanism, which is the subject of the present study, links the instability to
nonuniform pressure forces induced within the internal motor gas flow by the vehicle motions, I
This Interaction has its origin in the same physical processes that produce the well-known jet
damping effect, If a rocket rotates about a lateral axis, internal pressure forces are generated that
usually tend to stabilize the motion. However, as this report shows, classical jet damping theory is
not applicable when

0 The motor combustion chamber exceeds a critical size

o The system rotatation exceeds a critical spin rate

Inclusion of the effects of motor geometry and size roupled with spin effects on the internal gas
flow lead to ant interaction with the spacecraft dynamics that may cause nutation growth instead of
the decay predicted by classical jet damping theory.

The Inadequaty of Classical Jet Damping Theory
The analytical tasks have led to greatly improved understanding of the complex flow effects

that occur in a spinning rmcket combustion chamber. An important finding i,; that conventional jet
damping ideas do not apply in large, spinning motors of the type now in use in satellite orbit
raising missions,

The classical theory of jet darnping3 1° appears t,) be reliable for smaller systerrs and has been
correctly applied in previous situations. However, when the motor chamber exceeds a critical size,
the internal flow of combustion products becomes mncreasingly sensitive to the external motions of
the vehicle.

Even when the system is not spinning, the flow field simplifications usually assumed to be
adequate in jet damping calculations do not apply. The gas motion is greatly affected by spin,
which leads to an array of flow phenomena in the chamber that are not addressed by let damping.
In particular, the assumptions that the flow is steady and uniform are incorrect.

Nevertheless, jet damping theory yields an interaction torque with a magnitude very similar to
the nutation disturbing moment observed in flight. We will show in this report that, when time-
dependent gas motions are properly accounted for, the interaction force between the chamber and
the flow is altered mainly in its direction relative to the angular motions of the spacecraft. A
destabilizing, rather than a stabilizing, interaction may result under certain conditions.
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The Significance of Jet Damping
Figure 3 compares the expected flow interaction moment based on accepted jet damping

theory to the disturbing moment actually present during flight. The conditions shown correspond
to a typical PAM-D near the end of its motor run. Several crucial observations are summarized in
the figure. They are:

i Jet damping shows that gas flow interaction forces are significant

"* The predicted jet damping moment is nearly equal to the acwai nutation moment

"* The actual moment has a componzno in the same direction as the nutatlon rate
rather than opposite to it as predc,'ted by jet damping theory

The theory of the dynamics of rotating bodies shows that it is necessary that the applied
moment have a component In the wobble direction in order that nutation is amplified. The other
component, the one perpendicular to the nutation angular rate vector, causes the wobbling fre-
quetncy to change. In effect, if we can find the reasons for the change of direction of the jet
damping moment then we have, in all likelihood, found the source of PAM-D wobble,

As Fig. 3 emphasizes, the jet damping torque is created by the nonuniform pressure distribu-
tion in the combustion chamber, The conditions that lead to a purely damping flow interaction
must be examined, This will g.ve us useful guidance regarding conditions needed to rotate the
pressure distribution into the driving configuration shown in Fig. 3(b),

The Fluid Dynamics of Jet Damping
Figure 4 illustrates the physical content cof the jet damping concept. A portion of the chamber

wall and the nearby gas strearn is shown. The figure. shows how the direction of ihe stream must
change in response to the iotation of the chamber. In jet damping, it is assumed that the flow
stream changes in direction only, without being affected in any other way. This is equivalent to
assumiiig that the gas acts as a rigid bcKiy, Clearly this is not a realistic description of the fluid
mechanics.

The flow is avsioned to be completely uniform and more importantly to stay that way even
though it is acted upon by a very complex set of internal stresses created by tie lateral wobble of
the system coupled with the relative gas motion and spin. The Coriotis and angular acceleration
suesses are assumed in jet damping theor" to be balanced by a nonuniforni pressure. This pressure
distribution mreates the damping moment as the figure shows,

This is a realistic pictare only if the gas moves through •he chamber and out of the. nozzle very
rapidly. In small rockets this condition is met, but in large ones like the STAR 48, the gases move
very slowly over very large distances. For example, a gas particle leaving the propellant grain
travels throagh the chamber at an average speed of about 3 rn/s (10 ft/sec). It must travel a distance
of about 1.2 m (4 ft) to reach the nozzle entrance where it rapidly accelerates to high speed and
compressibility effects then dominate its motion. Thus, the particles remain within the influence
of the chamber boundaries for about a half-second, a significant length of time. In this time the
spacecraft has rotated about 2 full revolutions. Clearly the effects of spin am likely to be more
important when then gases remain in the chamber for multiple revolutions. The gas stay-time in
the STAR 48 is typically teu times longer than in earlier, smaller spin stabilized rockets. We must
determTine if the assumption of uniform flow relative to the chamber is appropriate under these
condition:i.
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* Coriolis Force is one of the effects of rotation on the apparent motion of particles as ohserved
ill a coordinate system fixed t) the rocket. The Coriolis force on a particle of mass din is

FcOrj(ol = (20)' x U)dm

This apparent force acts perpendicular to the plane of the relative velocity, U, and the angular
velocity, d'. In jet damping theory, tlc. Coriolis force is assumed to be balanced by pressure
forces (hence the negative sign in the figure), The particle motion is assumed to be unaffected
by the Coriolis effect. Under these assumptions, the reaction torque is "damping," that is, it acts
to resist the rotation.



The nature of the force system acting on fluid particles is described in Figure 5. This shows the
system from the point of view of an observer moving with the rocket motor combustion chamber.
This is the point of view that must be used to properly determine forces acting on the walls of the
chamber.

The angular velocity is separated into two parts in the figure. Figure 5(a) illustrates the effect
of Coriolis acceleration due to the chamber rotation about its symmetry axis. The gas particles
pick up an azimuthal velocity component as they move through the chamber producing a vortex
flow. The azimuthal velocity increases enormously as the particles move through the nozzle due
to conservation of angular momentum.

Figure 5(b) shows the Coriolis force produced because of the nutation wobble, Diametrically
opposite particles are illustrated to show that the force system is not symmetrical. If the gas is not
allowed to move in response to this force (as jet damping theory assumes) then this is of no
consequence. However, we must question this assumption. What would happen if the gas were
free (as we know It is) to move in response to the Coriolls force? It appears by analogy with the
effect of axial spin that the gas must acquire a lateral velocity. Since the angular velocity
perturbation of rotates with respect to the chamber (see Figure 3) the velocity pattern it produces
must also rotate in the retrograde direction.

It is useful to attempt to visualize the resulting flow by means of simple geometrical argu-
ments. The lateral Coriolis-induced flow can be taken to be a small perturbation superimposed on
a uniform mean flow. Obviously the sideward motion must be balanced by an axial mass flux in
order that continuity is satisfied, so the axial velocity on one side of the chamber is higher than on
the other. A circulatory flow perturbation is created by the Coriolis acceleration. Since this entire
pattern revolves around the chamber as do rotates, it exhibits wave-like behavior. Wo will describe
this as a traveling vorticity wave or inertial wave as it is called in the literature. 11.17 Such waves
are a familiar topic in the study of rotating fluids. 11 They play a central role in the jet gain theory
of nutation instability.

We have now demonstrated that complex waves should be expected in spinning rockets. Their
importance in the behavior of the motor depends on the relative size of the Coriolis forces. These
forces play an increasingly important role in the gas motion as the chamber size Increases as we
have been careful to point out, If one accepts that a uniform axial flow is not a realistic description
of the flow under the conditions described, then one must also accept that the associated pressure
distribution is modified, That is, the expected jet damping pressure distribution that leads to the
usual damping influence is highly suspect.

It remains to be shown that the pressure distribution is modified in such a way that the
integrated pressure force acting on the chamber is no longer pointing in the direction indicated by
jet damping theory, Much of the analytical material in Chapter 4 of this report is devoted to
establishing that the result is a pressure pattern much like that illustrated in Figure 3(b). That is, jet
damping becomes jet gain.

Wavelike Behavior of Chamber Gas Flow
Itit -y.ul-known that when a rotating fluid or gas is disturbed, the disturbance propagates like a

wave . In the last subsection we demonstrated the origin of such "inertial" waves by a simple
interpretation of the Coriolis acceleration acting on the gas particles. They are called inertial
waves because the restoring force that leads to oscillatory behavior is the Coriolis force, one of the
inertial correction terms In the equations of motion written In rotating coordinates. It is important
not to confuse them with free surface waves or waves of compressibility (acoustic waves), These
waves owe their existence solely to the Coriolis inertial force.
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These waves have been studied extensively, mainly in the context of meteorology.' , 16

Unfortunately, many engineers trained in this country are not introduced to this concept so it is
difficult to convey to them the significance of inertial waves in the PAM-D coning problem.

Inertial oscillations were first studied experimentally by Lord Kelvin13 . The theory of inertial
waves was developed by Poincare'1 4 and Cartant 5 . Later, it was elegantly demonstrated in cxperi-
rnents by Fultz16 and A ldridge.1 7 Their methods for exciting inertial waves were adopted in some
of the cold flow experiments carried out in the present program to aid in visualization of the
complex gas motions in a spinning rocket.

An example of the importance of inertial internal flow internctons can be found in the
extensive work done on spinning, liquid-filled, artillery projectiles. 8-25 In this case, there is no
net mass flow through the system. However, the problem is analogous to the PAM coning phe-
nomenon in many respects. Wobbling instability is introduced because inertial waves are induced
by small initial nutation. This case was recently studied by numerical means by Vaughn, et al. 26 ,
Navier-Stokes finite-difference methods were used. Several of their plots are shown here to
illustrate the type of wave motion induced by wobbling. The reader should study the flow patterns
with the discussion of the last subsection in mind. It will be. clear that the numerical results are
precisely what we would expect on the basis of the Influence of the Coriolis forces.

Figune 6 shows induced velocity vectors in the closed cylindrical chamber studied by Vaughn.
The flow resembles a recirculation pattern. However, to an observer at rest In the rotating frame
attached to the cylinder, the motion is oscillatory, and would be described as wave-like.
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Figure 6. Induced Flow in a Closed Spinning. Nulating Cylinder (Vaughn et al. Ref, 261
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Figure 7 shows the induced flow pattern in cross sections near the chamber cnds. The motionrcould be described as a "sloshing" of fluid partitc-s back and forth across the chamber. Notice that
the oscillations are out of phase at the ends with a nodal plane ai the center of the chamber. The
unsymmetrical flow pattern is accompanied by shear and pressure forces at the walls of the
cylinder that yield a net lateral tor up. The disturbing torque was determined from the integrated-
computations to be destabilizing. 6 This is in full agreement with flight test observation of
spinning liquid-filled projectiles.'25
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Numerical Verification of Theoretical Results
The program of research was aimed at exploring all facets of the proposed jet gain nutation

mechanism by application of every available tool. Considerable progress was made in developing
numerical solutions simulating all of the physical and geometrical details of the flow in a spinning
nutating rocket.

Although the program (Task 4, Planning of a Complete Numerical Model) was intended only
to determine the best means to produce these tools, we made significant progress in development
of a full threc-dlmensional Navier-Stokes computational algorithm that solves the entire time-de-
pendent flow throughout the chamber and nozzle. The code was completed at the end of the one-
year program, but has not been fully exercised In pursuit of the solutions we seek, However, it has
been used to verify many of the assumptions used in the analytical work. It is discussed in detail in
the body of the report.

Unlike the method used by Vaughn,26 our algorithm is not limited to small a Reynolds number.
It solves the full flow field with conditions that match all geometrical and physical features of an
actual large rocket motor. A full three-dimensional grid generation package was also developed to
simulate actual motor nozzle and grain burnback geometry. Figure 8 shows the grid, and Figure 9
shows calculated streamlines in a STAR 48 motor at 50 seconds after ignition. Notice that the
solution extends throughout the entire chamber and the nozzle.

BURNING SURFACE / /1'

NOZZLE ENTRANCE

Figure 8. Comnutational Grid For STAR 48 Space Motor Flow
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Figure 9. Sranila~ainj Spinig TAR 48 Motor, Navier-Stokes SolUtiglo
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Experimental Verification of Theoretical Results: Cold Flow Tests
The program also supported two experimental tasks. The first was a cold flow study intended

to verify the theoretical work by giving flow visualization of the fluid motion in a spinning.
nutating chamber.

Figure 10 shows the experiment.l arrangement. Fig.ire 11 shows one of the transparent test
chambers with submerged nozzle. The inertial wave mechanism was activated by means of the
two-axis spin method that is described in detail in the body of the report. It allows precise
simulation of the angular velocity environment expl.rienced by the gases in a spinning, nutating
chamber. Two rotating platforms are used with their rotation axes offset at an appropriate angle.
This produces an angular velocity environment In the test chamber that is identical to that
experienced in a spinning, nutating rocket motor combustion chamber.

A video camera is used to record the Induced-flow effects. A suspension of fine aluminum
particles or dye filaments injected into the fluid make the flow oscillations visible. Some of the
flow visualization recordings are presented in the video summary of the program included as part
of the final report package.

A sensitive pressure transducer was also used to measure the fluctuating, pressure signal
associated with the wave motion. All observations support the theoretical model for the jet gain
mechanism, A retrograde traveling inertial wave formed in response to the two-axis spin excita-
tion, The waveform was not sensitive to the presence of the submerged nozzle entrance,

Experimental Verification of Theoretical Results: Hot Motor Tests
A method is needed to test chamber geometry, propellant, and nozzle modifications on the

nutation jet gain factor. We developed two methods to accomplish this by means of laboratory..
scale motor firings. Figure 12 shows an Implementation of the first method by United Technolo-
gies (Chemical Systems Division). This device utilizes the two-axis spin method, It is arranged to
measure the interaction torque directly by means of a four-component torque transducer fixed in
laboratory coordinates, Testing of this hardware had not begun at the time of writing.

A second method is based on the Froude pendulum concept as shown in Figure 13, The rocket
motor and an electric spin motor are suspended as a physical pendulum in a double gimbal
arrangement. At the beginning of a test the pendulum motion is initiated with a known amplitude.
The subsequent motion is recorded during motor burn and the nutation interactions can be deduced
from this data. In order that the small nutation interactions are measurable the spin rate must be
high. A direct drive was selected that produced a spin rate of approximately 17(X) rpm. This
required use of a large electric motor producing a power output of one Hp. The large mass of the
spin motor results in a small pendulum frequency, which is undesirable in terms of resolution of
the forcing effects as discussed later,

The rocket motor utilizes cylindrical propellant grains cast from actual STAR 48 propellant
mixes. The grains are two inches in outside diameter and have a web thickness of 0,5 inches as
shown in Figure 14, Three grain lengths (2.5, 3,0 and 3.5 inches) are used to deduce effects of
chamber length/diameter ratio. The motor is equipped with a replaceable graphite submerged
nozzle.

Figu:e 15 shows the Froude pendulum univemral joint and drive motor. The nutation torques
induced in the system are very small. This makes them very difficult to measure accurately,
However, test data indicates that there is a definite nutation growth during the burn. The effect is
small, but appears to confirm the theoretical findings of the study. Improvements in the test
facility and method of data analysis are planned. These are discussed in detail in the report and are
aimed at direct measurement of the nutation interaction torque.
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Figure 10. Cold Flow Nutation Simulation Using Two Spin-Axis Method

xviii



Figure 11. Tlst Chamber Showing Submerged Nozzle Entrance

Figure 12. Two Spin-Ai Measurement of Interaction Torque (CSD. R, S. Brown)
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Figure 13. Froude Pendulum Nutation InstabilitX Simulation

Figure 14. T2yg-nch g.odet Motor and Propellant Grains
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Figure 15, E~ud..Pln.tgu Pivot and Spin Motor

The Jet Gain Mechanism
The jet gain mechanism for nutatiolt instability is defined here to be art extension of the

classical jet damping effect with corrections that account for the size and shape of the motor
combustion chamber. It is also necessary to introduce corrections for nozzle effects that have not
been treated correctly in previous analyses. The high-speed compressible flow in the nozzle
greatly modifies the gas interactions with chamber wobbling in that part of the flow field.

The proposed mechanism is consistent with every major feature of the PAM-D phenomenon
discussed earlier. It is useful to summarize the points of agreement between the jet gain model anc
the experimental data-

* The gas motion responds to the chamber wobble in a nearly linear way. 'The
&rrplitude of the induced velocity and asstxiated pressure perturbations are directly
proportional to the magnitude of the wobble angular velocity.

0 The pressure forces acting at the internal surfaces of the combustiorn chamber are
the source of the destabilizing torque. The torque has a component parallel to and
with the same sense as the wobble angular velocity. Under certain conditions this
torque produces a strong growih of nutation.

0 The torque also has a large component normal to the wobble angular velocity. This
produces a significant shift of nutation frequency similar to that obhsnrved in
telemetry data.

xxi



0 Since the gas motion in a spinning chamber exhibits wave-like behavior, it is
enhanced when resonant conditions exist. It is of the greatest significance that the
wobbling frequency is in resonant coincidence with low-order inertial modes of
osc illation at just those times in motor burn when large shfts in frequency and large
changes in nutation growth or decay appear.

0 The gas dynamic mechanism is insensitive to vehicle acceleration because it is not
dependent on center of mass offsets as is the slag slosh mechanism, This agrees
with lelemetry data showing that the nutation torque gain factor is not dependent
on acceleration.

These findings lead us to the conclusion that the interaction of vehicle nutation with the
combustion chamber gas flow produces destabilizing torques in the proper range to explain the
observed PAM-D phenomenon. Furthermore, the timing of all key events such as multiple periods
of coning growth and decay are well represented even using simple analytical representations of
the jet gain effect. Numerical and experimental tasks carried out in this program support the
analytical results in considerable detail.

It is also appropriate to compare the predictions of the jet gain model to data from flight tests.
A parameter which best characterizes the nutation disturbing torque is the factor of proportionality
between the torque and the nutation angular velocity. This has been called Rgaln by designers of
nutation attitude control systems, and we will adopt this nomenclature. Figure 16 shows the
correlation for PAM-D flight vehicles at two times near the end of burn. It is clear that a straight
line relationship of the form

Nutation Torque = Rgain X Nutation Angular Rate

is a good representation of the correlation, The average value of Rgain for PAM-D vehicles is
approximately 5. However, at several times during burn Rgain reaches much higher values as
though the system passes through resonance.

Figure 17 is a plot showing the variation of Rgain with time through the flight of WESTAR V,
a typical PAM-D vehicle. Please note the strong evidence of resonance at several times. There is
a large peak at about 55 seconds that marks the beginning of the nutation growth. Lesser peaks are
also present near ignition at at about thirty seconds. Figure 18 is the theoretical prediction based
on a simplified motor geometry that closely approximates the actual motor configuration. Al-
though one would not expect close agreement, there is ample evidence that the theoretical model
provides an amazingly good estimate of what actually occurs.

Scaling Rules for Nutatlon Instability
An important program task was to deduce scaling laws based on the jet gain theory for use in

sizing nutation attitude control systems and for estimating possible nutation effects in new
spacecraft designs. It is noteworthy that such rules are readily found for the gas flow interaction
model without the need to introduce auxiliary parameters such as spring constants, damping
factors, pendulum lengths, or amounts of slag accumulation that can only be determined by fitting
experimental data. All parameters appearing in the ga:dynamic model are real physical quantities
that can be readily estimated for any system configuration,

It happens that theform of final scaling rules are effectively the same reganJless of which of the
two coning mechanisms is chosen. However, the similarity parameters involved are quite differ.
ent. The torque depends on the same main system parameters. For example, motor thrust is
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clearly important in the slag model; mass flow rate of combustion products is crucial in the
gasdynamic model, Since thrust and mass flow rate are proportional, then they are represented
identically in the scaling laws. T1hec basic length variable involved in either mechanism is the
motor radius. In the slag mechanism, this limits the lateral offset of the sloshing pool of liquid
slag; in the gasdynamic mechanism it determines the moment arm of the unbalanced pressure
forces.

Using simple dimensional analysis, and using the parameter set for the jet gain model, one
finds the the disturbing moment is of the form

Mflew = Rgain = {Ph LV- CT 1

where o) is the amplitude of the nutation wobble angular velocity perturbation. The main parame-.
ters are the mass flow rate and the center of mass position relative to the motor exit plane. The
numerical coefficient CT depends on a set of dimensionless parameters including the spin rate and
the Rossby number

Ro ,_

where vb is the gas flow speed at the burning surface, R Is the motor chamber radius, and il is the
spin rate. The Rossby number is a measure of the relative importance of Coriolis forces in shaping
the internal flow field. A small value indicates that Coriolis effects play a strong role itl the
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sensitivity of the flow field to nutation wobbles. It is significant that in the PAM-D and DII
vehicles the Rossby number was much smaller than in earlier system that did not cone. Figure 19
illustrates the variation of Rossby number with time for PAM D (STAR 48), DII (STAR 63) and
the smaller STAR. 37E prepelled vehicles. The latter did not experience significant coning despite
the similarity of their design to the larger PAM vehicles.

The scaling relationships correlate the experimental data in a completely satisfactory way,
This establishes their validity as a reliable intcrim means for estimating disturbing torques in new
spacecraft designs.
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Conclusions

This program of research was motivated by a need to understand, in detail, the mechanics of
interaction of an internal flow in a rocket motor with the spin dynamics of a nutating vehicle.
Proposed mechanisms have not been successful either in predicting coning effects in new vehicles
or in suggesting corrective procedures, The problem is currently handled in the industry by use of
strapon nutation attitude control systems (NCS). These are sized by means of extrapolations of
earlier coning experimental data that do not take account of the physical characteristics of the
nutation mechanism, This often results in NCS devices that are overdesigned, and therefore ex-
pensive in terms of both cost and loss of useful payload capability. In other cases, (for example,
light-weight spinning vehicles such as the Ulysses spacecraft due to be launched in 1990)
uncertainties in the coning mechanism characteristics lead to the possibility of mission failure,
since in such systems there is very limited mass available for control systems that were not
anticipated during the design pt xess.

The use of an NCS system is in direct conflict with the basic design concept of spin-stabilized
solid propellant upper stages. Their value is based on their simplicity and relatively low cost. The
use of strapon control systems adds measurably to the cost, decreases the payload capability, and
increases the possiblity for failure because of increased complexity. Thus, it is imperative that the
source of the nutation instability be determined, and that means for dealing with it at its source be
formulated. This program has been carried out with these two needs as its primary focus.

We have found that

0 Therm are are strong resonant, wavclike interactions between the flow of combus-
tion gases in the motor chamber and the angular motion of a. wobbling spacecraft.

* These interactions have been previously accounted for by a simple theory, the
classical jet damping model, that is based on an overly simplified description of the
internal flow, namely that the relative motion of gases passing through the motor
chamber and nozzle are unaffected by the wobbling of the vehicle.

0 The magnitude of the jet damping torque predicted by the classical theory follows a
time-history and exhibits similar magnitude to the torque that drives the coning in-
stability, However, the direction of the torque vector predicted by this model is
always such that it decreases the amplitude of nutation wobbles.

* If proper account is taken of the details of the time-dependent internal flow effects,
then the flow interaction torque vector changes direction, Nutation growth may
then occur.

* Jet damping theory applies only in small rocket systems, In large spinning space
motors (such as those in used in the PAM-D and DII series), jet damping results are
no longer applicable if typically high rates of spin (- 60 rpm) are used.

* Although it is possible that slag accumulation mechanisms affect nutation charac-
teristics, the gas dynamic effects alone are st6qicient to explain the observed
nutation instability.
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"* All effects predicted in detailed theoretical treatments of the problem are borne out
in simple cold flow experiments. The basic wavelike nature of the internal flow
response to vehicle wobbling is clearly present in flow-visualization experiments.

"* it is possible to simulate tie nutation effects in small-scale rocket motor firings.
However, in order that measureable interaction torques are produced, it is neces-
sary to spin the motor at very high angular rates, Also, the torque varies approxi-
mately as the fourth power of the average diameter of the combustion chamber, so
motors of the order of six inches in diameter may be needed to make laboratory
scale experiments useful. Tests run with two-inch motors in this program were in-
conclusive.

"* Scaling rules have been devised that show that the nutation torque generated by the
gas flow is proportional to the mass flow rate of combustion products and to the
square of the distance from the motor chamber to the vehicle center of mass. The
torque depends on several similarity parameters, the most important of which is the
Rossby number.

"* The theoretical results show that changes in internal configuration of the motor
chamber, placement of the motor relative to the vehicle mass center, and axial spin
rate can be used to control the tendency for nutation growth in a given jystem.

We have developed means for detailed modeling of the gas flow in a nutating rocket motor
chamber, This method is based on advanced CFD techniques, and in Its final form will allow
simultaneous consideration of both the gas dynamic effects and two-phase motions of entrapped
aluminum oxide slag particles. We recommend that this approach be the primary focus of future
research efforts.

Experimental studies should also continue. Small scale motors using both aluminized and
nonaluminized propellants will be used in continued development of the laboratory scale nutation
simulation technique. However, we have concluded that the most fruitful experiments would
involve full-scale motors. The simplest and most revealing flight test that could be performed at
the present time would be a full-scale PAM launch with a much reduced spin rate, We feel on the
basis of the work reporled here that reduction of the spin rate to about half the value used currently
would effectively eliminate the nutation instability problem.
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INTRODUCTION

It has been known from the earliest days of modem rocketry that the flow of combustion
gases through the motor chamber and nozzle interact significantly with the lateral dynamics
(such as yawing or pitching deviations) of the vehicle. This has come to be known as the jet
damping or thrust damping effect because under normal conditions it leads to a decay of any
wobbling caused by an angular perturbation of the vehicle axis of symmetry from the flight
path. However, flight data from large spinning rockets indicate that the jet damping mecha-
nism does not always operate as expected and significant angular deviations (called nutation or
"coning") may develop. That is, jet damping may become jet driving. The purpose of the
research described in this report is to determine why simple jet damping theory seems to
become less applicable as motor size increases. Interactions between the motor internal flow
and the vehicle dynamics are described in detail using analytical, numerical, and experimental
tools,

The propulsion driven nutation phenomenon, often called the PAM-D coning anomaly,
was first observed about ten years ago. Nutation is a wobbling motion of spin-stabilized
spacecraft that grows to an undesirable degree during the perigee propulsion maneuver. Its
source is evidently related to operation of the rocket motor, since coning growth ceases
abruptly at the end of motor burn, Such instability was not observed in earlier systems utilizing
smaller but otherwise similar solid rocket motors and spacecraft configurations. Its late
appearance is evidently related to increasing motor size as the payload mass carried in orbit-
raising missions has increased. Other basic system design features have changed very little.
The PAM-DII system employing a larger version of the motor (STAR-63) used in the PAM-D
flights also experienced coning instability; earlier PAMs based on the smaller STAR 37 motors
did not experience significant coning. There is considerable evidence that it appears only in
spinning vehicles since there have been numerous flights of large solid propelled vehicles with
three-axis attitude control systems in which no unusual wobbling tendencies have been
detected during motor operation.

No orbit raising operations are known to have failed as a result of the PAM-D nutation
effect alone, Nevertheless, the observed wobbling is at the threshold of posing a serious
performance problem. Systems that carry liquid stores present a special risk due to the
tendency for sloshing in partially filled tanks. The sloshing is triggered by the propulsion
driven coning effect and may cause additional coning growth after motor burnout. This
occurred in several PAM-D flights and led to severe coning. Also, lightweight, high-perform-
ance vehicles such as the Ulysses spacecraft to be launched in 1990 are at risk because large
coning amplitudes will arise due to the low lateral moments of inertia for such vehicles.

It is clear that a complete understanding of the physical conditions and design features that
promote propulsion driven coning is mandatory, Design rules that work for smaller spill
stabilized vehicles appear to become inadequate as motor size increases. A major difficulty is
the lack of an acceptable analytical model revealing the details of the coning mechanism, The
search for such models is hampered by th-. difficulty of acquiring detailed data describing
motor operation under spinning spaceflight conditions. All acceptable mechanisms, thus far
proposed, Involve some featwe of the internal flow field or associated feature such as slag
accumulation that are difficult to handle experimentally. Motor ground tests conducted in
existing fixed-axis spin facilities using traditional testing methods cannot excite the disturbing
mechanism.



Nutation is apparently triggered in flight by small residual wobbling induced during
ejection from the spin platform or during the pre-ignition coast phase. The motion interacts
with some feature of motor operation such that it is amplified instead of damped as conven-
tional jet damping theory piedicts. The available flight data consist mainly of rate gyroscope
and accelerometer Information describing the growth of the instability In body-fixed coordi-
nates. The data are not sufficiently complete to serve as a statistical basis for critical design
decisions. Hence, developers of vehicles requiring yet larger upper-stage motors arc faced
with difficulty in selecting spin rates, attitude control system configurations, and allowable
launch tipoff wobble.

A multitude of physical mechanisms has been proposed to explain the observations. Most
of these have been systematically eliminated by testing them against the flight data. The two
that have not been eliminated at the present time are:

0 Stag Sloshing - a mechanism closely akin to the liquid sloshing effects that
have appeared frequently in spaceflight operations in which particulate material
formed In the combustion process acts to produce a center of mass offset and a
corresponding disturbing torque.

* Gas Flow Interactions - a variation of the jet damping effect In which unsym-
metrical internal pressure forces produce an unbalanced torque with a phase
relative to the vehicle wobble that leads to amplification instead of damping.

The aim of this research program is to focus on the second mechanism with the object of
either eliminating it or providing support for its role as the primary source of nutation
instability, It will be referred to in this report as the jet driving mechanism to emphasize its
close relationship to jet damping.

l)escription of the Research Program
This work was motivated by the need to understand the origins of the PAM-D nutation

instability phenomenon and to establish methods for minimizing or eliminating such instabili-
ties. The purpose of the study is to provide quantitative evidence of the influence of the flow of
combustion gases within a spinning rocket motor on the nutation dynamics of the vehicle,
Emphasis was on development of experimental methods for the study of interactions of the gas
flow with vehicle spin dynamics. However, analytical and numerical tools were also devel-
oped to enhance the interpretation of experimental data acquired in this and in subsequent
investigations, An important feature of the program is the interactive use of the available tools,
An important task was development of scaling rules to serve as an interim tool in sizing
nutation attitude control systems in new vehicle designs, Another was to take the first steps
toward a comprehensive numerical treatment of the gas flow interactions that can eventually
be used for testing design changes,

Specific program taskk were designed to establish:

e Validity of the flow-induced nutation mechanism (jet driving

* Improved description of the jet damping flow Interaction
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9 Scaling rules for use in design of nutation control systems

* Methods for cold-flow simulation of motions in a spinning rocket chamber

• Methods for small-scale experimentation with the nutation phenomenon

a Methods for full-scale and flight test nutation experiments

0 Analytical techniques for characterizing flow-induced nutation instability

* Numerical approaches for study of internal flow nutation interactions

The resulting analyses, cold flow simulations and experimental data strongly support gas flow
interactions as a completely acceptable model for the observed nutation instability phenome.
non. The failure of classical jet damping theory is shown to be a direct result of the size of the
motor chamber coupled with the relatively slow burning rate of the solid propellants used in
current space motor designs. This conclusion is applicable for the prolate mass distributions
usually employed in spinning stages and for spin rates dictated by standard stability algo-
rithms.

Status of the PAM Coning Mechanism Search
Rate gyroscope and accelerometer data from about thirty flight vehicles establish beyond

any reasonable doubt that the PAM coning instability results from a dynamical interaction with
some feature of the burning solid propellant rocket motor. A set of about twenty proposed
mechanisms has been systematically reduced to the two described schematically in Figure 2,
These mechanisms represent two totally different ways in which the spacecraft dynamics can
interact with the propulsion system.

Of these, the one favored by several analysts is the slag sloshing model, which assumes
that aluminum oxide slag produced in the combustion process accumulates during motor burn
in a liquid pool and sloshes in response to the wobbling spacecraft. This proposed mechanism
has found much support because it is similar to familiar instabilities observed in previous flight
experience. Nutation driven by sloshing of liquid stores or by mechanical vibration of elastic
structures has been a common problem in spin-stabilized satellites. It is natural to attempt to
extend this experience from coasting flight into the PAM-D problem which afflicts tile
powered phase of flight, In effect, the slag sloshing as applied to powered flight generates an
offset in the mass center with resulting thrust-induced torques as shown in Figure 1. If the
offset has the correct phase relative to the angular velocity vector representing the lateral
motion, the system may be unstable to small angular disturbances present in the vehicle before
ignition, In modeling slag sloshing, it is necessary to incorporate some form of restoring force
and damping, Several analyles have been completed using various combinations of pendula
and spring-dashpot models.," Such models can be made to f*t the experimental data by proper
selection of the adjustable parameters, Some very sophisticated experimentation including
simulated slag motion in a nutating chamber and scale model flight testing has been carried out
to verify this mechanism, but the results are inconclusive, They have yet to be published in the
open literature.
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It is quite difficult to construct rational fluid-dynamical models describing the slag motion
because of the complex geometry, unknown physical properties of the material as it occurs in a
burning rocket, and amounts of slag accumulation. Data from ground-based spin motor tests
are not a reliable indication of slag accumulation because the effect of axial acceleration is
missing. Characteristics of the material in its mobile state during burn must be deduced by
examination of solidified fragments remaining in the motor case after the test. Some useful
information may come from real-time X-ray cinematography.

The second remaining mechanism, thejet gain ,jet driving, or gasdynamlc coning effect, is
rclated to interactions between the vehicle dynamics and the motor internal gas flow, Again, a
kind of sloshing motion in response to vehicle angular motion is the basis for the mechanism
and development of an asymmetrical flow field must be considered. This produces, in effect, a
small deviation In the direction of the exhaust flow and an associated unbalanced side force. It
is the unsymmetrical pressure distributions produced in the combustion chamber and nozzle,
especially around the submerged nozzle entrance, that create the disturbing torques in the jet
gain mechanism. Unfortunately, development of a quantitative mathematical description
requires solution of a very complex problem in gas dynamics that involves several elements
not studied previously. An Air Force sponsored study' led to some progress in generation of
the necessary solutions. A destabilizing effect was identitied that agreed qualitatively with
experimental data without arbitrary a'.justmcnt of the physical parameters. Other work on
flow interactions 3 4 ',35 based on less complete representations of the system fluid mechanics
did not lead to a source of nutatlon driving associated with the internal flow,

The present work is intended to aid in resolving the mechanisms issue so that further
progress can be made in eliminating coning at its source. Emphasis is on development of
experimental methods that can be used for studying a variety of driving effects However, only
a limited number of tests could actually be accomplished in the course of the one-year
program, Thus, considerable attention was paid to development of interim methods for the
practical treatment of the problem, One such task led to a set of sealing laws that can be used in
estimatinp. coning behavior of new spacecraft configurations.

The Need for Scaling Rules
In order to establish an organizing framework within which one can deduce the nutation

instability scaling laws, it is necessary to choose a set of parameters associated with a definite
physical model, rhe latter of the two mdlels just described, the gasdynamic model, is chosen
as the basis for the scaling system described in this paper. A compelling reason for this choice
is that it is not necessary to introduce auxiliary parameters such as spring constants, damping
factors, pendulum lengths, or amounts of slag accumulation that can only be determined by
fitting the experimental data, All parameters appearing in the gasdynamic model are real
physical quantities that can be readily estimated for any system configuration,

It happens that the structure of the final scaling rules is the same regatdless of which of the
two coning mechanisms is chosen. Ultimately, the same basic parameters appear in each of
these in-slightly different form, For example, motor thrust is clearly important in the slag
mnodel; mass flow rate of combustion proKducts is crucial in the gasdynami" model, Since thrust
and mass flow rate are proportional, then they are representcd identically in the scaling laws.
The basic length variable involved in either mechanism is the motor radius, In the slag
mechanism, this limits the lateral offset of the sloshing pool; in the gasdynamic mechanism it
determines the moment arm of the unbalanced pressure forces,
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The scaling relationships will be shown to properly represent the parametric relationships
implied in the experimental data set. This establishes their validity as a reliable interim means
for estimating disturbing torques in new spacecraft designs. It does not constitute proof of the
validity of any particuilar mathematical model. There are surely other phenomena not yet
investigated that could give rise to similar disturbing torques. Unfortunately, the mechanism
controversy can be resolved only if an experimental program is devised that can adequately
simulate the spinning propulsion maneuver. A strong motivation for the analysis given here is
the need to establish guidelines for the rational configuring of such experiments. Any testing
with full-scale space motors is a costly endeavor, and must be approached with the best
possible understanding of the dependence of the nutation torque on the physical variables.

The Need for New Experimental Techniques
In a situation as complex as that encountered in the nutation instability effect, analytical

models for quan,',ative assessments, for data interpretation, or for design purposes may not be
reliable. It is vital that experimental techniques be developed both for verificati'n of models
and for characterizing a new system quantitatively.

Questions regarding the use of small-scale experiments must be addressed, Full-scale
system tests are exceedingly costly, There are many other reasons equally compelling. It is
notoriously difficult to secure detailed information concerning the internal workings of a full-
scale solid rocket motor. It is difficult or impossible to implement appropriate instrumentation,
Most information is deduced from measurements made external to the motor chamber. Full-
scale tests of satellite spin motors are performed in facilities that do not provide the correct
physical environment for simulation of nutation effects on the internal flow. Tests conducted
in fixed-axis spin test facilities do not produce data of direct use in the nuLation problem. It is
necessary to simulate the angular velocity environment experienced during wobbling flight to
activate the feedback mechanism that produces coning.

An important task in this study was to establish useful procedures for securing the needed
data from scale motor testing and from flow visualization experiments. It is also anticipated
that full-scale verification will be needed in the future, therefore test procedures to yield the
necessary information were studied.

The Need for a Complete Numerical Analysis
In order to fully understand how the gas flow interacts with the vehicle motion, it is

necessary to treat a very complex gcometry containing a compressiole viscous gas. Although
our analytical models give invaluable insight into the workings of this flow, it is necessary to
utilize numerical methods if a truly complete and quantitative result is required.

The effort devoted in this program to the development of a comprehensive numerical tool
for analysis of the interactive flow field in a spinning solid propellant rocket combustion
chamber was considerably beyond that originally planned. We did this because we found that
such analytical capability does not presently exist. The full Navier-Stokes treatment of a
realistic spin motor internal ballistics problem gives us the ability to determine, in detail, the
nature of the flow when it is perturbed by motion of a spinning, nutating spacecraft. This, in
turn, provides a method for accurately determining the reaction forces on the spacecraft and the
resultant driving or damping of nutation wobbling. The program accommodates the complex
flow conduit geometry typical in an upper-stage space motor. It has been designed to work in
a realistic range of Reynolds numbers and represents the full flow field continuously from the
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propellant burning surface, through the burning pon, into the nozzle entrance region, and
through the supersonic part of the nozzle expansion cone. The only physical effects riot
represented are turbulence and detailed multiphase near-surface chemical reactions, which we
do not feel play an essential role in the coning problem. Eventually, an appropriate turbulence
model will be added to verify this assumption.

Plan of the Report
The report is intended for use by individuals with a very wide spectrum of backgrounds.

Since it is expected that the most interested readers will be spacecraft dynamicists and
designers with little or no background in fluid dynamics, considerable detail is provided in the
sections on the modeling of motor internal flow effects. In order that the findings of the study
can be easily accessible to those interested in the physical descriptions, rather than the detailed
mathematical developments and descriptions of experimental facilities and data rmduction
methods, an executive summary is provided at the beginning of the report, A video presenta-
tion describing the nutatlon instability problem, the experimental results, and the origins of the
jet driving mechanism in animi~ted form is also available as part of the final report package,

The report consists ot a comprehensive description of the coning phenomenon and its
analysis from the viewpoint of internal flow field Interactions, The experimental characteris-
tics of the nutation problem as represented by telemetry data from about twenty flights are
reviewed briefly to emphasize certain important features, There is much guidance in the flight
data in our search for the source of the nutation driving torque.

Since the nutation problem is mainly one of spinning body dynamics, a complete section
is devoted to a careful analysis of the motion including effects of contained flowing gases.
'rhis clearly establishes the manner in which interactions between the internal flow of combus-
tion products and the vehicle motion take place. This provides guidance for the analyses to
follow by indicating the parts of the system that must be adequately modeled, It shows in
detail how motion of the gas is affected by wobbling and spinning of the vehicle and how the
perturbed flow affects the growth or damping of the nutation disturbances.

Analytical and numerical methods for resolving the details of this complex flow environ-
ment are developed in detail. A very detailed discussion of the jet damping phenomenon is
presented since it yields valuable clues regarding flow interactions. rjrthermore, it clearly
estaHlishes the range of applicability of current jet damping models. Of great importance is the
demonstration that jet damping theory does riot apply in large spinning vehicles such as the
PAM-D class spacecraft.

Much of the fluid dynamics chapter is devoted to providing a correct understanding of the
jet damping gas flow model, The jet damping model used previously to represent flow
interactions is shown to be a completely inadequate representation and does not properly
reflect spin and motor geometry effects. Improved understanding is built by systematically
analyzing the flow field dynamics by means of increasingly more complete models. These
provide valuable insight into the complex time-dependent gas response to vehicle wobbling.
The results are then interpreted in terms of the effects on vehicle dynamics and a comprehen-
sive instability mechanism emerges. The origins of the jet driving effect can be found in the
omnissions and constraints built in to the classical jet damping model.

As one attempts to produce a complete representation of the three-dimensional, time-
dependent, compressible viscous flow in the wobbling motor chamber, it becomes obvious that
conventional aralytical methods cannot be used to generate quantitative design information.
Thus, considerable work was done on a numerical approach to solving the complete problem.
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A program task was aimed at setting out the criteria for a complete numerical description.
Since we believe that this is a vital part of the problem, we devoted much more effort on it than
originally intended, and the result is a full three-dimensional Navier-Stokes finite difference
algorithm and grid system for realistically representing the flow in a spinning, nutating rocket.
The numerical approach and sorr of the initial findings are discussed. Obviously this
represents a major depar'ture from conventional methods for treating rocket flows, especially
spinning ones. We expect to continue development of this extremely promising approach in
future programs.

An important problem is the practical one of application of the results of the study in
making spacecraft systein design decisions. Simple scaling rules are developed that do not
require extensive computations. These are intended to serve as a useful tool for determining
nutatlon attitude control system requirements and for estimating expected nutation characteris-
tics of new vehicle/propulsion system configurations.

Finally the results of the cold flow and laboratory scale nutatlon instability experiments are
described. A new method for studying flow Interactions using inexpensive solid propellant
motors of convenient size is demonstrated. These experiments permit testln'g of both the
scaling rules and the analytical results. Weaknesses are exposed and areas in which further
work is required are identified. Methods for full-scale tests are proposed, Ultimately, full-
scale verification will be required using either appropriately instrumented flight tests or inound
tests in modified spin facilities.

The last section consists of brief interpretations of the results of the entire study ana.i a set of
practical guidelines for their application in the spacecraft design process. The need for
continued development of experimental and numerical techniques is emphasized.
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DESCRIPTION OF THE PAM-D PHENOMENON

Overvie~w

In this section, we present a comprehensive discussion of information contained in the
telemetry data from about twenty flight articles of the PAM-D, SGS-II and PAM-DII space-
craft types. Emphasis is on the features of the data indicating a consistent and repeatable phe-
nomenon. Each feature is carefully assessed in order to extract all information that gives us
hints regarding the origin of the nutatlon instability phenomenon. On the basis of this
information, we construct a set of requirements that must be met by any proposed nutation
instability mechanism, Later in the report we will test the gas dynamic interaction mechanism
to see if it meets the criteria established by these requirements. It will also be useful to examine
other proposed mechanisms in this regard to aid the reader in his search for a viable nutation
mechanism.

For the benefit of readers not familiar with coning, this section begins with a short history
of the PAM-D problem. PAM is the acronym for the McDonnell Douglas Payload Assist
Module. The system consists of a solid propellant rocket motor, a payload attachment
structure, and a spin table/separation module. It is designed to accept a wide variety of
communication satellite payloads, and is used korascent to geosynchronous altitude. The solid
rocket space motor, FLEX PAM-D, STAR 48 is manufactured by Morton Thiokol, Elkton
Division, and is designed for ready off-loading of propellant by machining the propellant
grain. Figure 20 shows a typical PAM-D emerging from the space shuttle payload bay. Figure
21 is a cutaway illustrating the propellant gran configuration and submerged nozzle geometry.

The motor design increases payload by elimination of a gimballed nozzle actuated by a
complex and expensive attitude control system for trajectory control. Instead, spin stabiliza-
tion is used to minimize dispersion during orbital transfer. A spin platform rotates the vehicle
at a preselected rate before it is ejected from the carrier stage by a set of springs mounted in the
separation module. Angular rates have ranged from 40 rpm to over 80 rpm. The vehicle coasts
away from the Spac6 Shuttle (or other carrier stage), and the motor is ignited when the proper
separation distance is reached.

This technique has been used for many years on a variety of upper-stage solid rocket
propelled spacecraft without any apparent difficulty. However, an unexpected problem ap-
peared in the frdst PAM-D flight and has recuremd with varying severity in all PAM-D
operations and more recently in the larger FAM-DU spacecraft utilizing a larger version (63-
inch diameter instead of 48 inches) of the STAR 48 solid rocket used to propel the PAM-D
missions.

Another STAR 48 propelled system was the tandem SOS-Il satellite launchers. This
vehicle employed a mntation control system to suppress coning. Of great interest is data from
the first-stage bunm in which coning growth was too small to activate the nutation attitude
control device. These data show the effect of a much more massive spacecraft with larger
lateral moments of Inertia (about four times larger than a typical PAM-D). The characteristics
of the coning growth were nearly identical to the PAM-D in terms of the torque gain factor.
This demonstrates insensitivity to vehicle acceleration and also to the wobbling frequency
(precession frequency) that characterizes the coning motion.

Spin stabilization of these unguided stages is employed mainly to minimize the effects of
mechanical energy dissipation on the flight stability during ascent. Such dissipation tends to
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Figure 20. Launch of PAM-I) Sgin Stabilized Upper Stage
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Figure 2 1. Internal ConfigUration of STAR 48. PAM-fl Rocket Moto



induce tumbling of prolate (elongated) spinning bodies. Spin also is relied upon to reduce
dispersion due to misalirnment of the rocket motor subassemblies. Nevertheless, the nutation
instability phenomenon occurs during operation of die solid rocket propulsion system then
abruptly stops growing at the end of the motor burn. This was surprising because interaction
between the coning and the gas stream was believed to create only a decay of wobbling: the
"jet damping" effect.

The slight wobble imparted to the spacecraft before motor ignition by the separation
system is at first partially damped out and then enormously amplified during the last ten
seconds of the rocket motor burn. This wobbling motion is often referred to as "coning"
instability, since to an observer fixed in space it would appear as a rotating angular deviation of
the spacecraft and thrust axis from the flight path direction.

To visualize the motion, the reader might consider the precession of a spinning top or
gyroscope, or the flight of a wobbling football. However, the PAM spacecraft wobbling is not
caused by the same physical mechanism that drives the forced precession of a gyroscope. In
other words, it is not a simple forced (or free) precession, even though the natural wobbling
frequency seen in the flight data is very nearly the free precession frequency. The latter is a
function of the spacecraft mass distribution. The correct technical term is "nutation instability"
because the nutation angle Increases with time. The words "coning," "wobbling," and "nuta-
tion" are used interchangeably in referring to this phenomenon throughout this report.

Figure I describes the type of motion that Is observed. The final value of the nutation angle
0, the "cone angle" (actually the cone half-angle), can become almost 200 at the end of motor
firing in some missions. Coning degrades performance by:

"* Wasting motor impulse as the vehicle flies in a helical path

"* Overtaxing the post-bum attitude control system

"* Requiring use of a nutation control system that should be unnecessary
since spin stabilization is employed

Note that coning can afflict any spinning propulsion system. The severity of the problem
depends on a number of factors related to geometry, spacecraft mass properties, and burn time,
Clearly we must understand precisely the dependence of coning on design and environment if
we are to avoid catastrophic mission failures in future systems.

The coning behavior burdens the post-propulsion attitude control system with suppression
of residual wobble as already mentioned. Further, coning degrades performance of the rocket
motor. For example, a cone angle growing exponentially to 206during the final 30 seconds of
the motor run dissipates about 1% of the delivered impulse because of the pinwheel effect.
Since great effort and expenditures arm made in rocket motor development to gain a 1%
increase in impulse (say about 2.5 seconds of specific impulse), this waste is intolerable. At
present the problem is countered by use of strap-on attitude control devices (Nutation Control
System) 28 . This is an expensive and inefficient approach and is contrary to the principles of
tipper stage propulsion design. Modem design emphasizes reduced weight, simplicity, relia-
bility, and relatively low cost. The physical origins of coning must be understood in detail so
that it can be avoided in the design of future spacecraft systems. This is especially important
because PAM-D or similar flexible launch vehicles must accommodate a wide variety of
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spacecraft configurations. Sensitivity of coning to variations of system mass properties and
geometry must be established.

Relaijoship to Classical Jet Damping
The use of spin to stabilize a rocket vehicle is a familiar stratagem, Possibly the first such

application was in the Hale rocket devcloped by the American designer William Ilic as
described in the 1862 U. S. Ordnance Manual. These missiles used canted nozzles to impart
spin. Some bombardment rockets used (mainly by the Germans) in the Second World War
used a similar system. These devices used "fast spin" for the same reason it is used in rifle
projectiles to produce gyroscopic stability. Slow &pin is also frequently useful in unguided
rockets since it tends to cancel the effects of misalignments of the nozzle exit cone or the
propellant burning surfaces, etc. The spin rate for the PAMs is selected to minimize instability
of the prolate spacecraft caused by mechanical energy dissipation within the structure. The
latter can be caused by relative motion of loose parts (such as the whip antennae in the Explorer
I vehicle) or by sloshing of liquid stores, The jet damping effect was expected to stabilize the
craft during the rocket motor burn. However, as the flight data show, this design principle
must be in error for these missions since jet damping either does not work in the expected way
or is always overwhelmed by the coning source mechanism.

The propulsion system is the prime suspect as the source of the energy which drives the
nutation instability. The growth of the disturbance either ceases abruptly or changes radically
at burnout. This seems contrary to prior experience with spinning rockets. It has always been
thought that the flow of combustion gases damps vehicle wobbles by the familiar jet dampi ig
mechanism, and there is an Impressive body of data to back this belief,

Of great significance is that the interaction torques predicted by jet damping are of the
same magnitude as those that drive the coning. That is, If the direction of the jet damping
moment is changed, the result is almost equivalent to what is actually observed. This proves
that flow interactions are sufficiently large to create the instability. Therefore, jet damping will
be subjected to careful scrutiny in this report. Experimental methods were developed to study
the jet damping mechanism and associated flow driving effects.

Most current models of jet damping are adaptations of some rather straightforward calcula-
tions made, apparently, before World War II. All are based on a very simplistic picture of gas
flow in the combustion chamber. Much of the jet damping tradition comes from the trajectory
analysis of small tactical rockets, It was always considered one of the less important effects to
be accounted for in trajectory optimization, and hence was never seriously analyzed. Some of
the words of the investigators in this regard are quite revealing:

"... the system is essentially all rotating at the same rate of rotation as the metal
parts. There may be some variation from this due to the flow of gas inside the rocket
motor. However, one cannot take account of this without a knowledge of the flow con
ditions in side the motor, which ar likely to be very complicated (emphasis ours), In
any case, it is doubtful If such internal flow contributes more than a very minor variation
of the simple picture.'

These words accurately describe the expectations of those responsible for the jet damping
calculations in current mission analysis. The expectations concerning the complexity of the
flow as also correct, as will be discussed later, Perhaps the difficult fluid dynamics problem
thus posed has discouraged prior study since the simpler jet damping model seemed adequate,
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and indeed it has bccn for some vehicles. We will see that jet damping theory .. when
applied to spinning motors especially when a critical chamber size is exceeded.

The main assumption in simple estimates of the sort used today in jet damping analysis is
that the flow is steady; it is also often assumed that the flow inside the motor is one
dimensional and axial. "9 These simplifications may be appropriate in the tactical rocket
situation, but doubt about their applicability to the large, nearly spherical spinning rocket
motors used in modern orbit-raising maneuvers is what motivated the work presented here.

Careful study of flight data taken many years ago in spinning vehicles makes It clear that
nutation instability may have occurred then, but in a mild way. Flight data from eatly Scout
missions are interesting. An example is discussed in the paper by Thomson and Reiter5

describing an analysis of the Explorer VI launch. It is clear that there was evidence of some
trouble with the simple jet damping model, Note is made of a ".., transient observed at the
end of burning . . (that) is not predicted by the theory." Since the burning time for this
spinning motor (The ABL X-248 A4) was relatively short, it is clear that interactions that
depend on the duration of the disturbance might not produce striking effects. It is possible that
the more troublesome PAM disturbances are caused by the same mechanism responsible for
the Explorer VI transient. This mechanism is enhanced by the relatively longer burn time of
the STAR 48 motor.

The first to suspect the possibility of fluid dynamic interactions were analysts at NASA
Goddard Spaceflight Center. The writer recently noticed that J. F. McGarvey anticipated,
conceptually, much ot what has finally come forth in detailed fashion in this study. An
impressive list of other candidate destabilizing mechanisms have also been posed and sub-
jected to intense study. Progress in the fluid mechanics modeling has been slow because
several new aspects of rocket motor gas dynamics required detailed exploration,

Summary of Main Features of PAM.D Telemetry Data
The observed instability is characterized by the development of a wobbling motion of the

spinning spacecraft during the latter part of the motor bum, usually during the last 10-15
seconds. The final autation angle 0 (see Figure 1), between the original spin axis direction and
the longitudinal axis of the spacecraft grows during the final third of the motor run.

The initial wobbling is a classical free precession excited during the tipoff process from the
spin platform. The spacecraft is ejected by springs and always emerges with a small lateral
wobble (usually less thant I degree/second). The nutation continues throughout the pre-burn
coast phase with nearly constant amplitude. Growth or decay during coast may occur in
spacccraft carrying liquids or parts that can slosh or vibrate, respectively, relative to the
structure. The characteristics of the wobbling change noticeably at ignition of the rocket
motor. During the early phases of the burn, the nutation is damped, as expected, by the jet
damping mechanism, although the decay rate is not as high as that anticipated on the basis of
standard jet damping theory. About midway through the motor burn, the effectiveness of the
jet damping appears to diminish rapidly, although the theory indicates that the decay rate
should markedly increase ar the vehicle center of mass moves forward and the combustion
chamber length increases during the latter half of the bum.

During the last 10 .. 15 seconds of the motor run, the nutation perturbations grow rapidly,
The motion can be described as a growing oscillation of the pitch and yaw angular rates as
shown in Figure 22. To an observer rotating with the spacecraft, the angular velocity perturba-
tion would appear to be a disturbance moving relative to the vehicle in a direction opposite
(retrograde) to the axial spin. Figure 22 is typical rate gyroscope telemetry data showing this
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motion. The apparent retrograde direction of rotation of the signal (the yaw signal always
leads the pitch by almost exactly 90° ) is clearly evident. This feature severely limits the array
of possible coning sourecs. Mechanisms related to thrust misalignments, non-unifonn burning
of the propellant, or offsets of the center of mass cannot generate the observed motion.

Self-Excited Oscillations
Analysis of the flight data shows that the apparent destabilizing moment is proportional to

the transverse component (the projection of the angular velocity on a plane perpendicular to
the axis of symmetry) of the angular velocity vector. This clearly shows that the disturbance is
Mltl by aClosed-loop driving mechanism in which the feedback of the snacecraft motion

Sctivates the instabil, in the manner of a self-excited oscillator. Figure 23 shows the propor-
tionality of the driving torque to the wobble amplitude. The slope of this curve is a measure of
the strength of the feedback. We will refer to this as the disturbing torque gain factor, often
called Rgain in the coning literature. Rgain is defined to be the ratio of the component of the
apparent disturbing torque, M, parallel to the nutation angular velocity perturbation to the
magnitude of the nutation perturbation, d3. Thus,

Rgain 5 M (1)

For the PAM-D vehicles this factor is of the order of 5 during the most rapid growth at the end
of bum. A positive Rgain corresponds to a growing nutation disturbance, A negative value
indicates nutatlon decay. The peak value of Rgain may be much larger as examination of the

data will show, Also, the maximum dues not occur during the prominent nutation growth near
burnout, but rather much earlier. This is at about midburn for a typical PAM-D vehicle. The
peak magnitude may be many times larger than the average found by averaging the sustained
growth data. Any viable theory must predict a linear feedback gain with a magnitude in this
range. Furthermore, it must be consistent with the observed large changes in sign and
amplitude,

Figure 24 shows the typical variation of Rgain as a function of time during motor burn,
The time of greatest feedback gain is near the midpoint of the burn rather than at the end of
burn as Is often assumed, This suggests that a resonance interaction mechanism may charac-
terize the disturbance; several peaks and valleys in spacecraft response suggest that the disturb-
ing entity is tuned in sonic way to the angular rate perturbations.

Notice that disturbances are present from the beginning of the motor run, This is evidence
that the nutation instability is not caused by accumulation of particulate material, since a
sufficiently large sloshing slag pool would not be expected until late in the motor burn when
the aft end of the chamber can accommodate it and when the increasing vehicle acceleration
promotes more a rapid buildup.

Figure 25 is the Rgain variation measured in an SOS-I1 first stage flight. This vehicle is
about four times more massive than the PAM-D (WESTAR V) whose Rgaln is shown in
Figure 24. It is important to notice that the Rgain patterns are quite similar. The event times
are altered, but the magnitudes of the torque gain are quite similar. Amplitudes are typically
twice as large as the PAM values during the final seconds of motor operation. This observation
is difficult to reconcile with the slag sloshing nutation instability model because the latter
predicts that the torque should be sensitive to acceleration. If the acceleration is lower, so
should the torque gain be significantly lower,
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The laigest growth and the largest disturbing torque, as shown in Figures 26 and 27, appear
in the last few seconds not because the gain factor is growing rapidly, but because the moments
of inertia are rapidly decreasing. Any useful analytical model must account for these features
of the observations.

Not displayed in the plots shown here is evidence that the coning phenomenon is sensitive
to the spin rate. Large upper stages employing nonspinning motors similar to the STAR series
show no tendency for nutation growth. Limited testing was conducted during the PAM-D
program that suggested the dependence on spin rate is approximately linear. Spin rates are
currently determined by algorithms that do not ticlude a representation of the PAM-D
nutation growth mechanism. They are aimed at minimizing perturbations caused by vibration
of the structure and internal stores. There is a pressing need to upgrade this design process as
the propulsion impulse requirements (and the likelihood of nutation problems) grow with in-
creasing payload mass. Clearly, since spin rate definitely influences the cooing growth rate,
continued use of traditional stability analyses to set rate of rotation is inappropriate.

Since coning is a self-excited phenomenon, the final amplitude of the disturbance is
directly dependent on the initial wobble introduced during deployment from *he spin platform
or other spinup device. Outgassing, deployment of shrouds or other paraphernalia can also
evidently modify the initial conditions at motor ignition. Again, detailed knowledge of the
characteristics of the disturbing entity is required if constraints are to be placed on allowable
initial wobble.

The Evidence for Resonance
The behavior of the gain factor (Figures 24 and 25) strongly suggests that a resonant inter-

action is responsible for the growth in coning. Resonance is an important ingredient in all
known forms of nutatlon Instability. For example, in systems susceptble to liquid slosh
effects, significant coning growthi only occurs when a natural sloshing frequency is in rtsonant
coincidence with the wobbling frequency of the vehicle.

The rapid excursions in gain amplitude in Figure 24 and 25 are quite typical of a resonant
phenomenon. The large transient at midburn is especially noteworthy. In fact, this feature is
largely responsible for the later coning buildup because it introduces a rapid change in lateral
rate even though the accompanying cone angle buildup is much smaller than that appearing at
the end of burn. Remember that the nutation torque is propr.~tional to lateral angulaz rate as
illustrated in Figure 23. Thus, the midburn impulse triggers the evemns that follow. The later
buildup in cone angle is very sensitive to the amplitude of the angular rate disturbance pro-
duced in the midburn event.

It should be emphasized that the identification oi a resonance effect has many practical
implications. It suggests that if the source of the coning disturbance can be isolated then it
might be possible by means of minor changes in system geometry or other physical parameters
to detune the system enough to prevent significant coning growth. Simulations of the motion
show that if the midburn disturbance can be reduced by 50%, then the later nutation divergence
will be practically eliminated.

Effect of Nutation Disturbancgon. Wobbling Frequency
Since the disturbing torque is not nccssarily aligned with the wobble angular velocity

vector, it can modify the frequency of nutation wobbling. This frequency is sometimes called
the free precession frequency. Assuming xl~e spacecraft is essentially a rigid axisymmetric
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txxly, the frequency is given by

(2)

where ! and 1,, are the axial and lateral moments of inertia, and A is the rate of axial spin.
VThe solid curve in Figure 28 is the calculated frequency for a typical PAM-D (WESTAR
V). The downward trend reflects the relative changes in the moments of inertia as propellant is
consumed. Superimposed on this plot are measured frequency data. Please note the major
departure of the actual wobbling motion from the rigid body calculation. This is evidence that
the force system acting on the vehicle is extremely energetic. The frequency shifts appear
exactly at the same points as the, peaks in the Rgain curvt and represent just another manifesta-
tion of the same disturbing mechanism.
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Requirementts for a Satisfactory Mechanism
On the basis of the key experimental data we have described, it is possible to identify the

rodn features that must be present in any satisfactory coning model. To be acceptable, a
coning mechanism must fit the following pattern:

* Disturbing torque mlist be linked to the wobbling kngular velocity
indic4ting a closed-loop, self-excited system. It must move relative
to the vehicle in the sate manner as the angular velocity perturbation.

* Magnitude of disturbing torque must be proportional to the lateral
angular velocity.

* Toique gain factor (factor or proporttonality with angular velocity) must
have frequency dependence and associated resonance characteristics.

e Mechanism must be capable of generating a maximum interaction torque
oi the order of 100 ft-lbf,

The first requirement eliminates many mechanism proposed in earlier studies because they
were b4sed on unbalanced forces related to misalignment or nonuiformities in propellant
geomnwry and so on that produce body-fixed torques. It is interesting that except for its sense,
the jet damping torque fits all of the requirements. This Is an important clue that led us to the
mechwnism studied in this report.

Propoad Nultatlon Mechanisms
In searching for potential c!ning mechanisms, a set of candidates was assembled by the

McDonnell Douglas Company along with a number of PAM user companies and support
organizations. Over a period of several years each separate mechanism has been studied
ca.refully and eliminated from the list only when It became clear that it was inconsistent with
the flight data. To our knowledge, the McDonnell Douglas list of suspects has now been pared
down to the following:

* Sloshing of aluminum oxide slag that collects inside the rocket motor

* Interaction of combustion chamber gas flow

o A combination of these two possibly involving a two-phase flow of gases
and oxide particles

The experimental evidence makes it clear that the disturbing entity must be free to move
relative to the vehicle. The nearly exponential growth of the disturbance strongly suggests a
closed-loop mechanism involving relative motion of part of the spacecraft or motor. Such
Instabilities are quite common. For example, the first American satellite, the Explorer I (a
small Instrument package attached to a spinning, scaled-down Sergeant solid rocket fourth
stage), exhibited tumbling instability caused by relative motion of four whip antennas and
attendant frictional energy aisslpation, Spinning spacecraft carrying liquids often suffer nuta-
tion inmtability due to propellant sloshing. The coning instability of liquid-filled projectiles is
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aiso well-known. Unfortunately, it has not been possible to link the PAM coning with any
similar mechanical feature. Sloshing of liquid propellants affected the nutation amplitudes in
some of the spacecraft, but it is clearly not the main cause of the problem. A recent Ariane
upper-stage (using a spinning STAR 48 motor) failure has been attributed to liquid sloshing,
but it is quite likely that the sloshing was ini iated by the same propulsion-induced coning
mechanism observed in the PAM-D flights. That is, without the triggering events during
motor burn, the sloshing mechanism may not have been activated, Such phenomena are often
highly amplitude dependent, and it is possible that system stability would not have been
affected in the absence of the PAM-D effect.

The flight data strongly implicate the propulsion system as tht; source of the coning energy,
since the growth of instability changes abruptly at the end of the motor burn. A major goal of
this work was the careful evaluation of the interaction gas dynamics involving the propulsion
system internal ballistics. We discovered that the most probable origin of the observed
nutation instability is the unsteady counterpart of the well-known jet damping effect. Inclusion
of the unsteady gas response to the motion of the spinning motor and nozzle boundaries gives
rise to modified interaction moments that can, under certain combinations of flow parameters
and geometry, decrease the net jet damping effectiveness or even cause growth of coning.

Flow Interaction Models
Although it might seem complex upon first examination, the basic instability mechanism is

actually quite simple. To be successful in understanding it, one must learn to visualize the
effects of spin on the flow of a gas stream. Let us state the flow interaction mechanism
succinctly at this point. We will carefully amplify the details in later sections using simple
physical examples and analogies. These will then be backed up by very complete analyses and
numerical solutions.

Lateral angular momentum is imparted to the motor gas flow by the motions of the
chamber boundaries. The initial triggering impetus is the wobble introduced in injection from
the spin platform. The gases react to this excitation in a complex way that is controlled by the
rate of angular gas motion due to spin relative to the convective flow speed of the combustion
products. If the chamber throughflow is slow compared to the spin, then major changes in the
streamline pattern and pressure distributions are produced.

This gas response produces a cireumferentially traveling pressure wave because of the
spin. This is like the jet damping pressure wave, but its orientation relative to the chamber is
modified. Because of this wave-like behavior, energy can be stored in the motor chamber if
there is resonance between the gas response and the vehicle wobbling. The rate of growth
depends mainly on the closeness to a resonance at any particular instant. The lateral torque
vector representing the integrated effect of the unsymmetrical pressure distribution rotates
relative to the rocket motor at the spacecraft precession frequency in the retrograde (opposite to
the axial spin) direction. If the phase of the moving torque vector is such that it has a
component in the same direction as the spacecrqft angular velocity perturbation, then the
wobbling grows.

Mechanisms based on the possible influence of aluminum oxide slag accumulation in the
rocket motor are still being studied. As mentioned earlier, the one favored by many analysts is
the slag sloshing concept. Because the propellant is highly aluminized, aluminum oxide slag
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particles are trapped within the motor because of the submerged nozzle in combination with
axial acceleration and spin. The amount of slag that coll-,cts in the system is very sensitive to
acceleration. The slag model is based on the idea that a pool of slag forms and sloshes in
response to the vehicle wobbling.

Various pendulum models of the slag motion have been prolmsed to account for its motion
relative to the chamber, These have the unfortunate feature of introducing physical parameters
that are unrelated to the actual vehicle and motor configuration. That is, they must be
determined by fitting the analysis to flight data, Given enough built-in flexibility, the models
can be made to fit flight data quite well. Thus, there are many adherents to the slag hypothesis.
Perhaps this is because it resembles familiar nutatlon mechanisms encountered in earlier flight
experience, The slag mechanism is quite similar to other liquid slosh effects that have been
encountered since the earliest days of spaceflight.

On the basis of the obvious potential of the slag ida, there have been several very
interesting experimental studies that attempt to verify its role in the PAM-D problem. The first
of these was conducted by McDonnell Douglas and led to the conclusion that it did not fit the
observations. More recent experiments have involved flight testing of small spinning vehicles
containing a simulated slag pool. The results have not bev.n reported in the open literature.

Modified Slag Models
It has been proposed that a closer description of the 'real environment in a spinning rocket

would involve a combination of gas flow effects and slag motions, The authors concur with
this view, However, we believe that the slag material interacts with the system in the manner
of a two-phase flow. Slng certainly tends to collect during motor operation in the aft end of the
chamber, but we believe it would take the form of stratification layers whose motion Is
controlled more strongly by gas phase effects than by free surface sloshing effects. This is a
major difference of opinion. Virtually all slag models that have been proposed either invoke
some kind of a sloshing liquid pool or a clump of material that is taken to act as a concentrated
mass at the end of a pendulum.

Very little is known of the physical characteristics of slag material in a burning rocket
motor. Most information comes from inspection of the interior of rocket cases after the
material has solidified. X-ray cinematography used in some recent studies at the Arnold Engi-
neering Development Center (AEDC) suggests that the slag material moves more like a gas or
low-density froth than a liquid. Until more is known of actual slag behavior and its physical
makeup, it will be difficult to represent its effect on vehicle dynamics.

We have prepared for study of possible combined gaVslag interactions by developing a
numerical algorithm that can readily incorporate two-phase flow effects and density stratifica-
tion. However, we wish to emphasize that the interaction torques we predict on the basis of gas
flow effects alone are in close agreement with those observed in flight both in magnitude and
in timing of the appearance of resonant peaks. The gas dynamics effects alone satisfy all re-
quirements for a viable nutation instability mechanism.
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MECHANICS OF NUTATION INSTABILITY

In this section we will carefully analyze the motion of spinning vehicles with interacting
internal motion of a contained fluid or gas, This is a familiar problem to spacecraft dynami-
cists who have had to deal with sloshing liquid stores in spin-stabilized satellites, However,
the version of the problem that we must solve involves additional complications resulting from
expulsion of mass, linear and angular momentum, and energy from the system with the
combustion gas flow from the motor. This gives rise to a number of new interaction
phenomena that have not been considered in earlier work on sloshing. For the most part, the
disturbing mechanism created during propulsion, for instance by sloshing propellants, is due to
the center of gravity offset relative to the motor thunst line. We emphasize at the outset that this
is not the mechanism we want to describe, Instead, we will be more interested in the effects of
nonuniform pressure distributions and resulting unbalanced moments oil the vehicle caused by
gas flow response to the angular motion of the vehicle.

The analysis provides the link between the spacecraft motion and the internal motions of
the contained combustion gases. It thetifore provides the necessary tools for assessing the
influence of any such internal flow effects in producing vehicle disturbances of the type
described in the last section. Since this is such an important part of the nutatlon problem, we
devote this entire section to a careful analysis. This material follows the approach used by the
authors of earlier works, 5 but includes a much more thorough interpretation of the dynamics, It
is intended to aid the reader to understand the implications in more depth by means of
examples and analogies with more familiar cases of spinning and nonspinning dynamics,

Equations of Motion
What is required in assessing the interactions between a spinning, nutating body with the

generation and expulsion of combustion gases is a dynamic analysis of a multi-phase system as
depicted in Figure 29. We will carefully derive, the equations of motion starting from first
principles, Newton's second law is the starting point, and the rates of change of linear and
angular momentum are related to the externally applied force system and moments (F and M)
by

f t - -= f vadsfl (3)
dt dt m

where P and H are the linear and angular momentum of the system. We have written these
vectors in continuum form to set the problem up for best handling of the gas phase of the
system. A mass element of any part of the system Is denoted dm and its absolute position is

R - Ro+ r (5)
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The absolute velocity and acceleration of the mass element are

dR
Va h " " Vo +Vre l+tx r (6)

a dt3 !L = ao+ aeI+wxaxr+ 2w xvrel+h xr (7)dt

where v and a0 are the velocity and acceleration of the reference point o (we will find it
convenient to loate this point at the instantaneous center of mass of the system). The angular
velocity and angular acceleration of the coordinates fixed to the vehicle will be denoted as o
and %, respectively. Since relative motion of gas particles or other entities is of prime interest,
this motion is described by the relative velocity Vrfr Note that veAtors are indicated by bold-
faced type.

With these definitions In place, the system motion can be described by

F a fdv,, cd - jabdM (8)

M m

M f d[R x VbS]dn ffR x aabdm (9)
M m

Solving for the terms involving the relative acceleration, we write

f arejd P ao - t(ao x x r + 2 XVr + cx r)dm (10)I m
f Rxa rdm = M- Rx(ao +.xcoxr+2oxvrel+cixr)dm (11)

m m

Now, without loss of generality, we can place the inertial origin at the instantaneous position of
the center of mass so that

RO -0 (12)

The integral terms containing the relative acceleration can be reinterpreted as statements of the
time rates of change of linear and angular momentum as viewed relative to the moving
coordinates as

jU n ± (13)f jt dt dt Irdl

r x a.dmhn f r x dvrel n r xJ rv,,jd~n= dt~r (14)
fm if

This pan of the analysis must be treated with great care because the choices we make will
affect the ease with which interactions between the vehicle and gas motions can be analyzcd.
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We will eventually need to use the tools of fluid dynamics in treating the gas flow, so proper
choices made now will help in later accommodation of these tools.

Application of the Reynolds TrnJMdpTeore
Up to this point, the analysis follows standard practice and differs only in notation from

earlier ones. For example, the equations we have written are Identical to those developed by
Thomson in their general study of jet damping. Unless details of the gas flow must be
incorporated, one can continue to treat the gas and solid components as collections of discrete
particles. To take this approach greatly limits the resolution that can be attained in describing
the gas phase motions.

Instead of treating the system in the Lagrangian sense as a system of discrete particles, we
pass to the Eulerian description by means of the Reynolds Transport Theorem. This is a key
step because it allows us to bring to bear the powerful tools of continuum fluid mechanics in
later vital parts of the analysis. This is accomplished by application of the Reynolds transport
theorem, which can be written in general form for application to some property N of the gas as:

(1N )ste =, ýj 1 p dV+ f r/(u, n)p dS (15)

W &
V

This allows us to pass from a description of the motion of the system of particles to a
continuum description for a control volume V bounded by a surface S. Then tq becomes the
specific property associated with N, For example, if N is the relative linear momentum, then

fN ?Prel-f .rJvr flfud&I
m m (16)

VreI = U

atid similarly if N is the relative angular momentum, we define

N 1frei f r xvreldm f r x~ f (7)t
M m (7I? r X VreI = r x u

For later convenience we have passed from the conventional dynamics notation for the relative
particle tnotion to the standaw notation for gas velocity vectors, u. Thus, we can convert from
a system description of the individual motion of all particles comprising the solid part of the
vehicle, motor and propellants and the gas particles produced by combustion flowing through
the motor chamber out the nozzle and into to plume behind the vehicle, We convert to a force
balance involving only convenient parts of the system. A useful choice of control volumes is
one which encompasses all of the solid parts of the system and the the gas particles contained
within the motor chamber and nozzle. Then the control surface encloses all of these elements
and allows passage of mass, momentum, and energy across the nozzle exit.
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Writing the equations in conventional form, we solve for the external force F and moment
M and find:

F-(J,,wx xr2m u~xrPd ±u pdV+ u(u.n~pdY (18)
V V S

Mfrx(aosinxcxr+2wxu+axr)pdV..±JrxupdV+frxu(u.n~dSs (19)
V SV V S

Definition gf System Mass EPgrdnen

For later use we define at this convenient point the mass properties to be used in describing
the system. Since important parts of the system are to be described in continuum form, it is
appropriate to define the system mass as

m a JpdV (20)
V

where p Is the density and dV the volume element at any location. The equations of motion
then become

Mna 0=F-(QDxaiX+2gX)rpdV-j(2moxu)pdV-± u pdV.-
V V V

_fJu(u.n)pdS (21)

S

1.ac+woxl ol fM+aox rpdV- rx(2a xu)pdV- . rxupdV-

V V V

-j r x u(u, n)p dS (22)

S

In dealing with the angular motion, the inertia tensor will arise naturally. It is defined as

[.X 'zY 1X2
I iyx YY lyy (23)

where L1,X 'Zy Ill.

*= a f (y +z2)pdV 1 yy~ f (x 2 + y2)pdV, ,f(x2+y 2)pdV

V V V (24)

Iy IyfXY -'Xa fxpdV, I., at1.1 n -fJxzpdV', l1 1 2y -- kI y zpdv

V V V
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Please notice that since the volume integrals encompass all parts of the system, then the total
mass and moments of inertia represent the inertia of the contained gas as well as the solid parts
of the system, Effects of the relative gas motion are handled separately as described in the
following subsection. Since In most later applications of the theory we be treating axisymmnt-
ric spacecraft configurations, the inertia tensor will reduce to

1.10 I 1 1 0 (25)
[0 0 t0]

where the products of ine- !a are all zero and the two lateral moments of inertia will be defined

1 f= Y J 2+.•2.z2)Pdv. I w 1'yy f(x 2 + 2')pdV (26)

V V
and the moment of inertia about the axis of symmetry will be denoted as

o =z f(x2 +y2)pdV (27)

V

F'or the remainder of this section we will treat the problem only In the completely general
form. Reduction for specific applications will be accomplished later. Writing the equations in
terms of the general muss property definitions yields

MOO = F -(,XcOX +,X),rp dV-f(2o) xu)pdV -

V V

- fJupdV-Ju(u n)pdS (28)

V S

i-Q+)x i-M M+aoxfrpdV-Jrx(2coxu)pdV-

I, V

-, r x updV-Jr x u(u n)pdS (29)

V S

in standard Newton's law formr.

In some applications, the location of the system center of mass plays an important role in
detenmining the interaction forces, Hlence, let us identify the center of mass position as it arises
in the equations. By definition, the vector position of the mass center relative to the spacecraft
fixed coordinate system is

i a I.rpdV (30)

V
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where m is the total mass contained within the control volume. Rewriting the equations by
means of this definition yield

m ao= F- m( mx0?+axF)- (2cw u)pdV- afu pdV-

V V

- u (u.n) pdS (31)

S

Icz+ X1 W= M~maOx-f rx(2wxu)pdV-1frxupdV-
V V

-Jrxu(u.n)pdS (32)

S
and wc are now in a position to identify potential sources of internally generated disturbing
forces and moments.

Treatment of Internally Generated Interaction FoMes and Moments
Tht equations in their general form (equations 21-22) can be further manipulated to em-

phasize the effects of Witeractions between the solid parts and the Internal gas flow. The form
of equations 31-33 suggests that the unevaluated volume and surface integrals involving
relative motr,, of the combustion gas flow can be interpreted as disturbing forces. Put

im a. = Fext + Forff, + Fnow (33)
i. a + Co X I - = Mext + Moffset + Mnow (34)

where we ha',e now addted a subscript to the external force and moment

F = FCXt, M = Moxt (35)

to keep their identity separated from internally generated forces. The latter are conveniently
separated into two types. Those associated with effects of center of mass offset from the origin
of the coordinate axes wu denote as offset forces and moments defined as

Foffst 0 i-m(O x ) X F + Qx ) (36)

Moffset ma0 x i (37)

These allow handling of situations wherein the mass center departs from the thrust line of
propulsion 3ystem for cases where the motor thrust vector passes through the reference point o.
These effets vanish of course if the system is completely symmetrical with r equal to zero.

The remaining interactions are related to relative motion of materials contained within the
con.ol volume. They can be used to represent either sloshing liquids or gas motions. It Is the
latter case that Is of central interest here, so we denote these as flow related interactions defined
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as

Vflow = -f (2zoxu)pdV- jfupdV-u (u.n)p 45 (38)
V V S

NMflow = -J r × (2o, X u)p dV - r xun)p (39)

V V S

Each of these consists of two ,'olume integrals involviw, Coriolis acceleration and effects of
relative acceleratior due to internal ;notion of the gas psint:-lcs, They also incorporate surface
integrals that account for transfer of momentvin. or angular mome ,tJm, respectively, across the
control surface at the nczzie exit. These cztn 'ideed be potent forces if one remembers that

Thrus= 4 u (u .n) p•dS (40)

S
represents the. motor momentum tl,-ust. A review of the basic effects of momentum flux from
the control volume will provide useful guidance In our search for the origins of nutation
instabilities,

2ormparison.to Egquations iLgrglm Eo.
In order to verify the results prosentod, it is neful to compare them to equations of motion

derived by - .ers in Lagranglan form. In the latter approach, the gases are treated as discrete
particles k- ivau individual motions must -be kmown or assumed in order to t..,aluate the
interaction effects. This is the method. thpt has teen employed in tmost a•ialys"s of jet damping
aS we Shall see in later sections. For example, the analysis of jet damping by Thompson and
R.eiters is based on the equations of motionImRo = F T - + × x (41)

(.A+wxI-(A=M4 M-+AXraF-Ir7 xM[t] -2Yri x (a) x [Pl) (42)

i i
which have been rewritten here in the notation used in earlier subsections for direct compari-
son. Notice that in place uf the volume and surface integrals are summations over the
individual particles. They are readily seen to be completely equivalent to the equations written
in Eulerian form. However, in otdcr to evaluate them, it is necessary to make rather sweeping
assumptions at(iut the gas motion., The usual one is that the flow relative to the motor chamber
conf,sts of a steady, uniform, one-dimensional flow. If this is done, the equations are easily
evaluated and the classical jet damping theory emerges. We will have cause to check these
assumptions in detivil. It accounting for the actual gas motions, we will find the origins of the
foices that drive n,,AtIon instability.

Alterna_.e Control Yo
We have chosen to prese,,t the basic analysis in terms of a control volume completely

surrounding the spacecraft and roc~kct motor, Mass crosses the surface of this volume through
the noy.zle exit plane. This is a convenient definition for general purposes, but to evaluut- the
gas dynamic interactions may require information that is difficult to secure. For example, we

34



would need to know in detail the time-dependent velocity distribution across the nozzle exit to
arrive at a valid estimate of the disturbing torque. Thus, any chamber processes we have
modeled are modified by complex interactions in the nozzle where the flow is dominated by
compressibility. In our earlier study we followed this approach. The results were very
pron•sing, and showed the presence of destabilizing moments found on the basis of estimates
of the angular momentum fluA across the nozzle boundaries. The uncertainties of the nozzle
influence made these results difficult to accept by most analysts.

Thus, it may be more convenient and more acceptable to determine the interaction torques
with a modified control volume. Figure 30 shows a useful alternate definition In this case we
separate the solid parts of the system from the gas at the boundary of the control volume. Mass
crosses this boundary at the propellant burning surfaces. This introduces what might at first
appear to be an unsurmountable problem in that we are now compelled to add knowledge of
the pressure distributions and possibly shear stress distributions at all interfaces between the
solid body and the gas flow. This was not neces;sary in the basic control volume because the
external pressures can be taken to be zero for a fully expanded nozzle flow.

It will become apparent in the next section that in spite of the additional informatiun
required, this represents a superior approach in estimating the interaction torques. Our
knowledge of the flow field inside the chamber must be complete in order to understand the
origins of all flow interactions. This includes the classical jet damping Interaction as well as
modifications that introduce nutation driving, We will show that It is largely the nonuniform
pressure distributions within the chamber and nozzle that drive the nutation instability. De-
tailed information concerning the pressure distributions will be available as part of the solution
of the time-dependent internal flow problem.

When we evaluate tht interaction torques we will use me control volume of Figure 30. The
sanic analysis used in the basic approach is adeqoate. However, we must now account for a
nonuniform pressure distribution, Since the control volume consists of just the solid part of the
system, no volume integrals are needed In the calculation, Therefore, we find for the
gasdynamic disturbing moment:

Mflow -Jr)(,pn) dS- fr x u (u-n)p dY (43)

S S

where the effects of the internal pressure distribution have been accounted for. Since a detailed
description of the gas flow will evolve, it will be quite easy to determine the angular momen-
turn flux term represented by the surface integral over the propellant burning surface.

We will use this approach in the next section to estimate the gas-generated nutation
torques. It will also give us much guidance in understanding jet damping. It will be especially
useful as an aid in focusing on the shortcomings of the jet damping model for flow interactions.

Effect of Internally Generated Moments on Spacecraft Motion
Thu equations we have derived for the angular motion are readily seen to be in familiar

Euler equation form if we interpret the gas flow interactions as applied perturbing forces. It is
useful, at this point, to describe simple solutions of the dynamical motion in order that charac-
teristics of the forces and moments needed in explaining nutation instability can be identified.
We will show that, for small lateral angular perturbations, what Is needed is a set of linear
coefficients that characterize the interaction moments. These represent the factors of propor-
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tionality between the vehicle motion and the interaction moments thus excited. Figure 16
showing the linear nature of the variation of the apparent disturbing moment iui terms of
vehicle motion is of fundamental importance in the following discussion. The bulk of this
report will be devoted to explaining how the gain factors depend on the parameters of the
vehicle and motor system and how they may arise in the nonuniform pressure distributions
excited within the rocket by vehicle wobbling.

Assuming that the solid elements of the spacecraft constitute a rigid body, equation 34 may
be written in component form as

I "1 1 -10)oy+ Mx (44)

11" t- -0(11 - 1O)tVx + My (45)

where we have assumed an axisymmetric vehicle for simplicity, These will be recognized as
the Euler equations written for body-fixed axes. lo and II are the moments of inertia about the
spin and lateral axes respectively. In this discussion we will assume that I I > Io as in a typical
prolate spacecraft layout of the PAM-D type.

The perturbation moment is also written in component form as

Mflow M MXl + AyJ (46)

where we are neglecting any axial torque due to gas interaction effects. The latter disturbing
torque does exist and causes the spin rate to increase during burn. It is readily shown that this
spinup is not due simply to decreasing roll moment of inertia. It appears to be dn.m mainly to
roll torques associated with interaction of a rapidly spinning vortex flow passing through tht
nozzle, These are very likely viscous interactions. For the present discussion, we will focu3 on
lateral intetvctlon torques only.

Both theoretical considerations (to be discussed at length in the next chapter) and the
experimental data strongly indicate that the lateral torque components can be written as linear
functions of the angular velocity

{ Mx f KI ox + K20Wy (47)

My - KI wy - K2 wx (48)

where K, and K2 are proportionality factors that can be estimated from the experimental data
or, hopefully, computed once a sufficiently complete model for the flow interactions has been
devised.

The factor K represents the part of the moment that is proportional to the component of
lateral angular ve~locity corresponding to the same axis. This is the factor often related to jet
damping, in which case it Is a negative number. We choose not to separate jet damping from
other interactions generated internally by gas motions. In fact, we will prove that in motors of
the STAR 48 class and larger, jet damping simply does not work in the classical way and a
more complete description of the gas motion Is needed.

We will also show that nutation growth requires that K is a positive quantity. This factor
is often called Rgain in the recent literature on nutatlon instability (see discussions in Section
2). Its determination is one of the main objectives of analyses to follow,
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Inserting the assumed form of the disturbing moments, we find

11 [Q~(11 - 10) + K2 o~y+ KIOw., (49)
dt

JrQl-10 +K]ox , u (50)dwt

The gas dynamic interaction moment may have components both parallel to and normal to the
nutation angular velocity vector. Factor K2 represents the part of the torque perpendicular to
the angular velocity vector. As we shall now show, this part affects the nutation frequency
while the parallel part K1 controls the decay or growth of the nutation,

Stabilily Calculations
Equations 49 and 50 are readily solved approximately if the mass properties, spin rate, and

moment gain factors are treated as slowly changing functions of time. Numerical solutions are
required if precise results are needed that include effects of changing moments of inertia and
disturbing moments. For the present discussion, we are only interested in the general charac-
teristics of the motion at a given instant of time, That is, we wish to determine the stability of
the system. The pair of equations can be easily solved simultaneously with the result

= (tv)xI + cyJ) = 0oOattli 05o, 5s - isin ýst] (51)

where X. is the wobbling frequency (see discussion of experimental data and equation 2 in the
last sectfon)

(52)

Notice that this is the oscillatory motion described earlier. For a prolate vehicle it can be
interpreted as a perturbation angular velocity vector rotating in the x-y plane in the retrograde
direction just as the experimental data indicate. The amplitude of the wobble is controlled by
the growth rate, cA.

Clearly this theoretical model exactly fits the experimental data (over short intervals of
time) as represented, for example, by Figure 22. As discussed in the last section, the observed
wobbling frequency closely follows the theoretical value unless there is significant nutation
driving present. That is, if K2 is negligible, then the frequency is the free precession
frequency.

The effect of the part of the torque parallel to the angular velocity vector is represented by
the exponential growth rate (53)

Ii

where, again, we have not distinguished between different types of flow interactions. That is,
we have not separated jet damping from other gas flow interactions. Notice that the growth
rate depends on both the size of the jain constant K i and on the lateral moment of inertia of the
vehicle. This explains why rapid growth occurs at the end of burn when I1 approaches its
smallest value while KI is not necessarily at its maximum during this period.
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Some investigators prefer to describe the stability in terms of the inverse of the growth rate,
the time constant, 'v:

I E ± -. (54)
a~ Kj

In order that the system is unstable, it is necessary that (z (or c) be positive. If the flow
interaction consists only of the classical jet damping effect, then cc is negative indicating a
decaying wobble.

The effect of the interaction torque on the wobbling frequency can be written as a
correction to .%:

A~j (55)!1

Armed with these simple relationships, we can proceed to evaluate the effects of any potential
interaction torques from the standpoint of system stability. If more detailed information
regarding the actual spacecraft motion is required, we will need to know K and K as
functions of time throughout the motor burn. Then, the equations of motion can be soved
numerically, and all effects such as variable mass properties can be included.

To make further progress we must carry out an explicit determination of the gain factors.
Unfortunately, this cannot be accomplished until we have acquired much more Information
concerning the time-dependent flow within the rocket combustion chamber and nozzle. This
we will deal with in the next section
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MODELING OF GAS FLOW IN A NUTATING ROCKET

In this section, we develop and solve the equations that represent the motion of combustion
gases ie a spinning, nutating solid propellant motor. This is an Important pan of the nutation
instability problem for several reasons. First, it affords us the opportunity to reexamine the jet
danpiq effect in the light of a complete representation of all Important gas dynamic effects.
In particular, it allows us to introduce corrections for rotation of the gas flow, both in the sense
of spin of the motor chamber and the rotational flow effects related to vorticity transport. We
will concentrate on production of vorticity by the body forces due to angular motion of the
spacecrft. In the present case, vorticity created because of viscous effects plays a much less
important role for reasons that will be come clear as the analysis unfolds.

Jet damping theory as it is now applied in making dece&-,ons on spin rates and other design
features for spin stabilized systems is subjected to intense scrutiny. This is motivated by the
gpeat similarity In magnitude and general chaideterlstics of the jet torque to the nutation
disturbance, Thus, we are led to suspect that they may not be two separate phenomena, but on
the contrary, that the nutation torque is a modified Jet damping or "Jet gain," That is, the jet
damping interaction becomes a nutation driver as a result of certain physical features of the
system. We will show that gradual Increases in spin motor size sid mass flow rate as payload
requirements and resulting increased propulton performance requirements have dictated are
the main feature leading to the transition fhum spin stabilization to spin destabilization in solid
propellant rocket upper stages.

The equations for the chamber internal ballistics are carefully developed and eve'y key
assumption is discussed. These am then reduced to the form that yields the classical jet
damping result in order to emphasize the nature of the assumptions on which it is based, These
assumptions are systematically examined and then modified to better represent the reality of
the flow situation in a spinning rocket, Simple example problems are solved in detail to
highlight the effects of the assumptions, We start with simple nonspinning, two-dimensional
problems and gradually proceed to the full three-dimensional spinning case. Analytical solu-
tions are used wherever possible in order to produce the clearest picture of the interaction
between the several parameters that characterize the problem. These include motor size, spin
rate, mass flow rate, chamber thermodynamic conditions, bum rate, and so on,

The analytical results offer us the opportunity to understand in dettll the origin of the jet
damping torque. This is somewhat obscured by the classical analysis which is based on simple
angular momentum arguments. We will show that the jet damping torque is the resultant of the
surface pressure forces within the motor chamber due to the reaction of the gas flow as it is
forced to conform to the moving chamber walls. As the analysis proceeds, we will make it
clear why jest damping theory fails when applied to large spinning motor cavities. The size
effects wll be shown to be represented by an important scaling parameter, the Rossby number
that controls the nature of the chamber response. Earlier rocket systems were characterized by
a relatively large Roasby number. We will show that in this caso the classical theory of jet
damping is adequate. However, as motor size increases, the Rossby number decreases, and
when it approaches a critical value of about unity, the nature of the flow field changes
dramatically. Vorticity waves are formed and may grow to significtnt amplitude. These
modify the pressure distribution Importantly and because the disturbances have wavelike
characteristics they may interact in a resonant manner with the vehicle dynamics. Energy may
be stored in the oscillating gas flow and significant destabilizing moments can appear under
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certain conditions that we will explore in detail.
A central theme throughout this section will be the exact mechanism by which interaction

torques are produced. In this we will depart from most earlier analyses Including those used
over the years to deduce jet damping effects. These earlier analyses have mostly taken
advantage of the inherent simplicity and elegance represented by the momentum and angular
momentum balances in control volume form. This gives a direct way to assess interaction
forces and moments without detailed consideration of the actual process by which they are
applied within the system. This is analogous to use of the usual momentum balance to deduce
the thrust force produced by a propulsion system. One does not worry about the internal
distribution of pressure forces that actually produce the thrust forces. It is only necessary to
determine the momentum flux through the boundary of the control volume (the nozzle) and the
usual formula showing thrust is equal to the mass flow rate times the average exhaust speed.
We believe that much of the confusion regarding jet damping and the nutation instability
problem, in general, is the result of not understanding how the forces are communicated
internally between the gas and the motor chamber boundaries. In the following analyses we
will carefully develop a more complete picture by closely examining the details of dte internal
flow with special attention to the nonuniform pressure distributions that actually account for
the interaction forces and torques.

As we include more realistic fluid mechanics and geometry, our ability to deal with the
problem using simple analytical techniques finally fails, If effects of compressibility, viscosity
and realistic motor geometries, and boundary conditions are incorporated, the resulting mathe.
matical problem can no longer be handled without recourse to numerical techniques. We
choose to approach this problem with the most powerful tool available, the high.speed digital
computer and a full compressible Navier-Stokes computational tool. A major effort was made
to develop the necessary software so that realistic spinning rocket internal ballistics problems
may be addressed. This program task was intended to be an exploratory effort only. However,
because of its great importance, we decided to develop it to the extent possible within the
contract period. A detailed discussion of our computational program completes this section of
the report. We demonstrate its application in the study of spinning rocket fluid dynamics.
Further, we use it to check many important findings that previously had to be based on simple
analyses without any independent verification.

An important finding of the analytical atudy which is verified by the numerical solutions is
the central role played by vorticity in the spinning rocket internal ballistics problem. The
vorticity in the gas flow has not been properly dealt with in earlier models of flow interactions
with vehicle dynamics, and the significance of its presence has not been appreciated. This is
glaringly obvious in the case of Jet damping and In some earlier attempts to analyze possible
flow-induced nutation mechanisms. Effects of vorticity am important not only in the unsteady
flow resulting from inertial body forces due to spin and nutation but in the steady flow itself.
This results not only from spin effects but also from the type of boundary conditions that
characterize gas flow produced in a chamber by combustion at a propellant surface. We will
demonstrate all of these effects by means of simple examples as we work toward a complete
determination of the flow in a spinning motor system.

As in previous sections, all details of the analytic developments are presented in order that
the findings are available to persons not having extensive experience in fluid dynamics. It is
expected that most readers will be in this category. Those needing only physical descriptions
and discussions of the experimental findings should find the material in the executive summary
sufficient. Again, the attempt is made in what follows to show all details of the transition from

42



fundamentals to their application to the several classes of problems that must be solved. These
include the details of the gas motions in the chamber and the effects of these motions on the
force system acting on the vehicle, All assumptions are justified as thoroughly as It is possible
to do in the available space. Obviously, some subjective judgement is necessary In any
analytical procedure. Whenever possible, the successful application of analogous assumptions
in other fields Is cited as evidence of the validity of the judgement.

Formulation of Flow Equations for a Splnnhllb NutatIng Rocket Chamber
In this subsection, we will show how the governing equations for the unsteady flow of

combustion gases through a spinning, nutating rocket motor am derived from the fundamentals
of fluid dynamics. Two types of formulations will be used. In the first case, we will attempt to
reduce the equations to a form appropriate for the generation of analytical solutions, In the
second, we will set the problem up for numerical solution. The latter is obviously the preferred
approach to the problem because, in principle, it allows direct treatment of all the features that
make the problem complicated. The problems associated with difficult geometrical features
such as a complex propellant burning surface and chamber shape with a submerged nozzle are
fairly easily handled In a finite-difference numerical approach. Similarly, the need to handle a
flow field comprised of seve.al types of flow regimes from inviscid to highly viscous and from
incompressible to compressible can be addressed without difficulty only by numerical means.

However, to rely entirely on numerical techniques would be a ristake at the present stage
of understanding of the nutation instability problem. Development of reliable numerical
solutions is a very difficult undertaking fraught with pitfalls analogous to those we face in
developing experimental approaches to the problem. It is Important that we deduce, insofar as
possible, the nature of the flow from the simplest possible analyses, This brings into focus the
interactions between the parameters of the problem. This information provides guidance for
both the numerical and experimental study of spinning motor flows,

As more is learned of the phenomenon, it will undoubtedly be possible to reduce the main
findings to simple analyses and design tools that are adequate for engineering calculations. An
entire section of the report is devoted to reduction of the findings of the research to this form.
The result is a set of interim scaling rules that can be applied immediately in attacking nutation
instability control system sizing problems and In interpretation of experimental data. These
rules will be improved as more experimental information becomes available, and as experience
accrues in their application in actual system studies.

A basic assumption to be used is that the combustion gases behave as a compressible
Newtonian fluid. We will include the effects of the two-phase flow of particulate matter within
the gas stream produced in the combustion of the metallic additives in the propellant, These
are the source of the aluminum oxide slag that is blamed for nutation instability in other
studies. This will be done in a simple way by adjusting the gas properties to reflect the
Influence of the particulates. The basic hypothesis used here is that it is the gas dynamics that
controls the slag motion. That is, slag does not form liquid pools that oscillate independently
of the gases. Questions related to the effects of slag require a great deal more study than could
be devoted in this one-year program, but first steps are taken in the formulation process. Some.
possible Implications of the Influence of the A120 particles on the nutation problem from the
gasdynamic standpoint will be discussed in later subsections.
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.Gjovening uationas and Mingm ine l arales
The set of equations that describe time-dependent motion of a compressible, viscous flow

of combustion gases consists of continutity, momentum, energy, and state equations shown in
Table 1. The flow is assumed to be Newtonian. The equations shown are in dimensional form,
but it is advantageous to render them dimensionless in order that dependence on the parameters
of the problem can be emphasized. The value of this approach need not be justified further
here.

Definitions for the dimensionless variables are not unique. However, the choices for
scaling parameters are fairly obvious In the coning problem. The motor chamber size provides
the appropriate length scale. Either chamber length or radius can be used since they are
proportional for a given motor. The latter seems more convenient and it is used here, Several
characteristic velocities are available, but one that makes the most sense is one that represents
a measure of the flow speed through the chamber, We select the speed of gas particles
emerging from the burning zone of the propellant as the most appropriate velocity scale. This
velocity is readily estimated from knowledge of the propellant characteristics and the motor
chamber pressure using the standard exponential burning rate law

vb = r =*(*Ja(-L)fl (56)

where p is the gas density and p is the density of the solid propellant, vb is very nearly
constant at any point in the chamnb, The coefficient a and exponent n characterize a particular
propellant.

Table 1. G(overning Equations for Chamber Flow

Equations in Dimensional Form:

ae + V (p *u0) = 0
at*
du* -VPtdn+ u -*.Vu* * x(o *xr* -2 * xu*....... xr-a vV2u (58)

CpL'*-+u*'VT*)=-p--".re* +" '* + ,+---V2T* (59)
~dt* p*~ da'* d*

P p * RT* (60)

There are several choices for a time scale. For instance, the period of nutation oscillations
would be an appropriate choice. However, the nutation frequency is proportional to the rate of
spin of the vehicle about its axis of symmetry, Thus a convenient time scale is the inverse of
the spin rate Q. If we use the mean gas density in the chamber as a measure of the mass
distribution, we can characterize all physical parameters that appear in the problem. Table 2
summarizes the set of dimensionless variables constructed in this way. At this point in the
analysis we must include continuity, momentum, energy and state equations in order that a
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complete description of the gas motion is available. In starting the numerical treatment of the
problem, these are the equations to be addressed. hi a later section we will describe further re-
arrangements necessary to allow efficient numerical solution of this set.

When we use analytical methods in treating the flow within the chamber we will take
advantage of the fact that the Mach number is very small except in the vicinity of the nozzle
entrance. Thus the flow is essentially incompressible everywhere but in the nozzle, 'Ihis is
verified numerically using geometry and parameters for typical space motors.

Table 2. Dlmenslonim Variables

Length: ru. Pressure: P= -

R poRilvb

Time: t * Force: F l F*
.. p0R fl'vb

Velocity: u = M M- *Vb Moment: M =--

Acceleration: a * POR.-vb
flvb

Angular Velocity: w -A uStar * denotes dimensional quantity

Similarity Parameters
Table 3 defines the several similarity parameters that appear naturally in writing the

equations in dimensionless form, If the speed of sound were to be used as the reference speed
(a choice that would be appropriate in regions dominated by compressibility) then the Mach
number appears Instead of the Rossby number. Also, in that cnse, a Reynolds number takes the
place of the Ekman number that appears with our choice of governing variables. Mach number
and Reynolds number represent concepts fanmliar to all; Rossby number and Ekman number
are less familiar, and it is appropnate that we carefully define their physical interpretation.

Table 3. Similarity Parameters

Mach Number: Mb 1h Relative Importance of Compressibilityao

Ekman Number: E - Relative Importance of Viscosity

Relative Importance of Coriolis Acceleration
Roasby Number: Ro - (Small Rossby number indicates important

Rfl Coriolis Effects)
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This is of great importance as we plan the strategy needed for developing analytical solutions.
For instance, solutions for "small Ekman number" imply the same set of assumptions one
would invoke for a "large Reynolds number (inviscid)" solution. A small Rossby number
solution is somewhat analogous to a small Mach number solution although quite different
physical effects are being addressed.

The Rossby number is a very important parameter because it governs the relative effects of
gas motion due to convection and to motion of the chamber. It can be interpreted in a variety of
ways. The standard definition is that it is a measure of the importance of Coriolis forces in the
flow field as compared to convective forces. A very large Rossby number indicates that
Coriolis forces play a minor role, Small values imply that inertial forces are a major influence
on the gas motion. A few simple axamples are useful in developing a feel for the significance
of the Rossby number.

In our definition of the Rossby number, it is the ratio of the mean flow velocity through the
chamber to the product of the characteristic length, the radiust, and the spin rate:

Ro =-1- (61)RQ

It is easy to see that the product in the denominator is a measure of the azimuthal speed (in
absolute coordinates) of a fluid particle due to rotation about the motor axis, so the Rossby
number measures the' relative speeds, Clearly as the motor spin rate or size increased, the
Rossby number decreases indicating that spin effects are relatively more important. It is of
great significance that the major difference between earlier space vehicles that did not cone and
later ones of similar design that did is that the motor chamber size increased. That is, the trend
has been to lower Rossby numbers, We take great pains to show that this means that the
dcparture from a simple flow interaction as in classical jet damping to the complex unsteady
flow in large motors is related to the decrease in Rossby number.

This parameter plays a central role in choosing mathematical strategies for approaching the
nutation instability problem. Notice that for large stay-times implying a large modification of
the internal flow by Coriolis forces, the Rossby number is small. The reason the simple
theories of jet damping worked in smaller rockets was that the Rossby number was very large,
and the assumption of a unifornm gas stream unaffected by the vehicle wobbles was justified.
This is equivalent to the statement that the Coriolis forces in the flow relative to the chamber
are balanced by the pressure forces sting on its boundaries, The integrated pressure force is
the jet damping resistance.

E-QRggimes
In formulating an analytical approach to the formidable problem of flow in a rotating

rocket chamber, it is a great help to take advantage of certain characteristics of the field in
several distinct regions of the chamber, This is a standard procedure that has been used (for
example in aeronautics) to make, it possible to deal with complex flow problems, In effect the
problem is reduced to a series of simpler ones each corresponding to one of the flow regions.
These are linked across boundaries between the regions and may be used to formulate
boundary conditions as one moves from one region to another. A good ,xample is the

'The radius used in the definition of the Rossby number is the instantaneous radius of the
combustion chamber. Since the chamber shape can be irregular, we take this to be the radius of
the "best-fit" right circular cylinder
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treatment of boundary layer flows in which viscous motion dominates iii a thin region next to
the surface of a body anid the flow outside this region that may K-, represented as an inviscid
fluid.

There are several flow regimes of potential im1portance in the presecrt problem. Several
boundary flows may be required. Examples are those gas layers near the burning propellant
surface and the Ekman layers at inert chamber surfaces. We will assume that such regions are
so thin that they may be treated separately from the main chamber in a standard boundary layer
approach. Results from their analysis provide boundary conditions on the main chamnber flow.

Notice that the main chamber volume may be represented by an incompiessible flow since
the Mach number is very small everywhere except within the gas entering the nozzle at which
point compressibility dominates the flow. The small Mach number is the result of the elevated
gas temperature and resulting high speed of sound ani the low mean flow speeds resulting
from low bum rates used in most space motor designs,

Flow in the Main Chamber
Let us now w'rite tic equations that will be of central importance in the analysis, These

govern the motion within the rajor volume of the combustion chamber and strongly control
the behavior of the interactions with the nutating vehicle. In addition to the simplifications
resulting from relegation of viscous effects to boundary layers and to taking wholesale
advantage of the incompressible nature of the flow, we will find it a great benefit to further
break the flow into steady and unsteady parts. This allows us to break the effects of rotation
into two parts. The first represents the effect of the main chamber spin on the gas motion. This
is a steady effect since changes in the spin rate take place very slowly compared to the nutation
oscillations. The latter control the time-dependent motion. In this regard we can also take
advantage of the smallness of the lateral angular velocity amplitude compared to the main spin
and develop a perturbation approach that effectively linearizes the problem. The angular
velocity perturbations representing the nutation wobble are directly responsible for exciting
unsteady gas motions within the chamber. We will see that these are nonuniform and may give
rise to unbalanced torques acting on the vehicle system. Since the wobble angular velocity is
small, it is appropriate to treat the time-dependent gas oscillations also as small perturbations.

In the main chamber, the flow is governed by

V. u = 0 (62)

Ro JRo dr
•÷Rou. Vu -[VP+-I xoaxr -2wxu*o-Rol--xr-ao+EV 2 ut

=-Vp- 2c u - T, ×r -no+ E V(V.u)-VXV X (63)

where the energy and state equations are no longer needed since the flow is incompressible.
The centripetal acceleration is combined with the pressure since it can be written in gradient
fo_'m. We define the reduced pressure as

pP- 1 ( x r)2 = Reduced Pressure (64)
2Ro
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We break the flow into ritýadv and ,r.! jeady parts by writing

u U +u' (65)

P PV+ p' (66)

where.U and Po repftsent the steady flow and uW and p'.represent the unsteady corrections, It is
very important to understAtd that the unsteady terms arc very small compared to the mean flow
effects. OMe expects only a small response in gas motion to the chamber wobbling. This
requires nun)erical verification, but will be assumed to be true at this point.

A9 already brought out in emphatic terms, it ig crucial in dealing with motor flows in
spinning wobble motion to consider the generation and propagation of vorticity. Therefore, we
devote this subsection to a brief review of the associated fluid mechanics and to the steps
needed to rewrite the momentum equation in vorticity form. That is, as an equation with the
vortikity vector as the main variable.

The vorticity is defined as
I CzVXU (67)

and represents a vector with twice the instantaneous angular velocity of the fluid particle
located at its point of evaluation. The vector points along the instantaneous axis of pin of the
particle. In an inviscid flow, there is no decay of particle spin so any vorticity present must
have its origin in body forces of certain types or in effects influencing the flow before it enters
the region of interest. To put the momentum equation in vorticity form one takes the curl of
both sides with the result

-5 Rox E(VxVxC) (68)

where viscous terms have been retained. The vorticity must also satisfy the "vorticity
continuity" relationship

V 0 (69)

since by a well-known vector identity,

V.Vxu HO (70)

Th us in any given situation, the vorticity must satisfy this pair of equations.
Several properties of vorticity are worth reviewing. First of all, vorticity is a property of

the fluid that stays attached and propagates witi fluid particles. If one identifies a particular
particle at a giver. instant and position, its spin, or vorticity would stay constant as it moves
with the stream unless acted upon by body or viscous forces. Descriptions of such fluid motion
is contained in the famous Helmoltz vorticity laws. These provide incredible physical insight
that we will use continually throughout the analysis. Readers not familiar with these ideas are
directed to several excellent discussions (see refs. 31 and 32) that are easily accessed even by
those without extensive fluid dynamics training. Concepts such as vortex stretching, vortex
tubes, and so on will be of great value in interpreting the complex flow in a spinning motor.
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It is very useful to carefully rewrite the momentum equation in a form that can be
interpreted in the usual fluid mechanics fashion. That is, we wish to put the left-hand side in
the form of the total (or substantial) rate of change of the vorticity. This is analogous to the
momentum equation in velocity form. To put the vorticity equation in similar form we expand
the cross product term on the left side. After appl'ying standard vector identities we find

+ Rou. V - Ro(t. V)u- RoCV. u- 2(MV. u- w -Vu)- (71)

I-T-o(aV,- r - a Vr) - E(V x V x

where additional simplifications have been performed on the right-hand terms. The various
terms have clear physical interpretations, Identifying each term we find

_ + Rou. v= Ro(t. V)u - Ro;V. u + 2(-mV. u + c. Vu) +Dt L .. .-

Total Vortlcity Vortex Stretching Coriolis Effect
Rate of Change and Divergence Effect (72)

+I(-aV r + at. Vr)- E(V x vx )
Ro
Angular Acceleration Viscous Shear
Effect Effect

which shows that vorticity changes are affected by several influences that act in spinning
motor problems.

The first term on the right of equation 72 represents modification of vorticity by "stretch-
ing," that is, by lengthening of vortex tubes. This effect is important as gases move into the
constriction represented by the nozzle throat. Vortex lines must be lengthened enormously
with a resultant increase in particle spin. This is closely related to conservation of angular
momentum. For instance, the axial vortex formed in the mean flow spins faster as it is
stretched through the nozzle. We will demonstrate this and similar effects as we develop the
necessary chamber flow solutions.

The second term represents the effect of the Coriolis body force. This will be a key item in
later parts of the analysis where we will find that the Coriolls force is directly responsible for
the jet damping. Its presence in the vorticity transport equation Is significant. We will need to
see how production of vorticity is affected by this important body force.
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The third term is analogous to the Coriolis effect. It represents the fact that the angular
velocity environment may be changing with time. That is, we must account for the angular
acceleration body forces. These are also sometimes included in the jet damping definitions as
we shall see.

The fourth and last term reflects the presence of viscosity. Normally, viscous forces will
onily be important in highly sheared regions of the flow wherin the velocity changes rapidly in
a short distance. Such regions are represented by the boundary layers at solid surfaces and in
the core of rapidly spinning vortices.

We will continually refer to the definitions and observations made in this subsection as we
pursue an understanding of the internal flow in a spinning motor. Again, readers that are
seriously concerned with interpretation of the results presented later should make sure that the
concepts discussed here are understood completely. Again, the stigma of "dirty fluid mechan-
ics" must be dealt with. One must accept that fluid flows, especially rotational ones, are
exceedingly complex and involve a rich variety of physical phenomena. To describe them
requires that we adopt a more broad view of nature than needed in simple particle dynamics or
rigid body dynamics usgally #ssociated with spacecraft dPnamiv problems.

The equations presented in this subsection are completely general except for a few easily
justified simplifying asumptions. The assumption of a Newtonian gas is the most far
reaching, We have yet to deal with assumptionsregarding time-dependence, compressibility,
and viscous forces. In the following sections we will process and simplify the equations
further to tailor thpm to specific applications. This will be done first in regard to the jet
damping effect. It is vitally important to gain a full understanding of this part of the problem
because It represents the "jumping off point" from accepted flow interaction effects into a new
area of rocket motor analysis. We will then deal with the important problem of the mean or
steady part of the flow field in a spinning rocket. This is an important step in treating the
unst-,ady cases that we need in understanding nutatiort instability flow interactions.

Simple Flow Interactions: Jet Damping
T'he jet damping calculation is based on an extremely crude model of the dynamics of

the system and must be subjected to careful scrutiny. Unfortunately, the "classical" jet
damping model has been used for such an extended period of time that its validity is seldom
questioned. It has not previously been subjected to either a searching analysis or a detailed
experimental verification. The classical model apparently has a range of validity that ade-
quately covers earlier applications, such as in small artillery rockets, but Its validity in the case
of large spinning systems has not been established. The purpose of this section is to subject jet
damping to a searching examination in terms of its applicability in modern space motor
applications.

It is very important that one fully understands the jet damping mechanism, the set of
assumptions on which it is based, and the corrections that must be made in order that it can be
applied withi confidence to the case of large spin-stabilized roc.ket systems. Armed with the
detailed formulation of the fluid mechanics of a spinning rocket developed earlier, we are now
in a position to ask the right questions regarding the validity of the accepted jet damping
model.

In this subsection, we will carefully investigate thc origins of the jet damping concept
along with the assumptions and observations on which it is based. We will then proceed to test
these underlying assumptions to detemilne the range of validity of the accepted jet damping
algorithm. Effects of motor size, comubustion chamber and nozzle geometry, and axial spin
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will be carefully examined.
The close correspondence of both the magnitude and time history of the theoretical jet

damping torque to the apparent disturbing torque determined from PAM-D and DII flight data
has been emphasized in earlier sections. This leads to several significant observations:

"* The interaction between spacecraft motion and the motor gas flow leads to a force
system with magnitudes comparable to those producing the coning.

"* The correspondence in amplitude and time history is too close to be
purely coincidental.

"* Jet damping predictions are based on simplistic models of the combustion chamber
gas flow that do not account for potentially important interactions that can affect both
magnitude and direction of the force system acting on the vehicle.

It is also interesting to observe, that if interaction forces determined using jet damping
concepts were applied to the vehicle with reversed sense, then the resulting motion would
closely resemble the observed coning instability.

Origins of Clatsical Jet Damping Concepts
It is useful to trace the origins of jet damping or "thrust damping" as it is sometimes called

in order to expose the underlying assumptions about motor operation on which it is based. The
first formal mention of jet damping was in the text on theory of rocket flight by Newton,
Roster, md Gross,3 This publication was based on a secret wartime study perfoimed during
1944 and 1945 at the Allegheny Ballistic Laboratory by the same authors. The origins of the
concept are not known precisely, but postwar questioning of German rocket experts makes it
clear that jet damping was known to them and accounted for in their missile programs.

Many authors have contributed to the gradual development of the a9cepted theory, Several
improvements were introduced in the text by Davis, Follin, and Blitzei and by Ko.E A clear
presentation of the simple theory both with and without spin is given by Thomson. Thomson
also demonstrated that the theory closely fit experimental data from the Explorer 6 spinning
orbital Injection stage." There were indications of nutation divergence near the end of the
(short) motor burn, but these were small and were perhaps the result of a nonuniform pressure
distribution within the motor as the propellant surface burned to the chamber wall.

With such impressive experimental verification, it may appear to the reader that we are
barking up the wrong tree. However, we will show conclusively that jet damping theory was a
reasonable model for flow interactions until more recent flight operations in which motor size
exceeded a critical litA.

A more recent work by Rott and Pottsepp8 includes a somewhat more careful assessment
of the effects of the details of the internal flow field. However, the authors yield to the
temptation of oversimplification, and finally state that it is appropriate to make the "...
apparently radical simplifying assumption... "that the gas flow is everywhere parallel to the
motor axis of symmetry regardless of the lateral angular disturbances represented by the
nutation wobble, We will demonstrate that this picture of the flow is inappropriate in a large
spinning rocket. It precludes the possibility that the flow streamlines are perturbed by the
external motion of the vehicle.
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Despite the significant attention devoted to jet eamping over the years the model used at
present in making important system design decisions is nearly indistinguishable from that used
in 1947. This is largely the result of the failure to assess the effects of the Internal ballistics in
a realistic way. Also, as we shall show, axial spin greatly affects the jet damtping behavior.
This is contrary to the results of simplified jet damping theory which indicates that the
interaction forces are not affxted by spin. As pointed out by Rousae, et al,, in 1947, no
careful experimentation has been made to verify it and they state that "... in fact the whole
question of jet damping has received little attention.,,. We are thus compelled to leave the
reader with jet damping in ant unsettled status." Unfortunately, the same observations hold
forty years later; little impror, ement has been made in the theory and no detailed experimenta-
tion has been carried out to verify it. The reasons for this are that in most circumstances it
represents a fairly minor influence on the vehicle motion and usually a beneficial one at that.
Thus, until the discovery of the PAM-D nutation phenomenon, there has simply been no
motivation for research on this seemingly simple and well-understood phenomenon.

The!Classical Jet DamWing Effect: Angular Momentum Approach
By the "classical jet damping" effect, we mean thv accepted model that is based on a simple

angular momentum balance for a dynamic system of variable mass. In starting a detailed
analysis, it is essential to understand that simple jet damping does not depend on the presence
of axial spin. It is simply the response of the system to changes in direction of the gas stream
emanating from the vehicle. If the rocket routtes around an axis normal to the nominal
direction of motion, forces between the gas flow and chamber boundaries must arise in the
accommodation of the gas to the changing geometry. That is, the gas must ac:olrate since a
direction change is required.

We start the analysis by reviewing the simplest case without spin. We will determine what
changes result, if any, when axial spin Is Introduced. The approach to be used in this section Is
from the point of view of the fluid mechanics of the problem; this is an aspect given scant
attention in the classical analysis or In subsequent analyses. First, however, we will carefully
review the classical analysis in order to Identify all of the assumptions used and to guide us in
later, more complete, calculations.

In the early analyses given in the literature (Refs.3-7) the problem is attacked from the
point of view of Lagrangian dynamics. The gms flow is treated as a simple stream of particles
produced at an indefinite point within the system. It is often assumed that the particles emanate
from the center of mass. Since no attention is paid to the particle trajectories and interaction
forces within the motor chamber, a simple momentum balance Is used to estimate the effect on
lateral knotion of the vehicle. The analysis given here Is identical to that in reference 3, which
was followed later, with minor variations, and evolved into the form used presently.

At the outset, it is important to notice that no attempt is made to account for axial spin,
Later analysts included spin, but made the strong assumption that this has no effect on the
characteristics of the internal flow. We will examine this situation in detail.

The vehicle is assumed to be yawing about its center of mass in a plane at Instantaneous
rate, , . The moment of inertia about the yaw axis is

I= amk2  (73)

where k is the radius of gysltion and m is the instantaneous mass. If no consideration is given
to the motion of combustion gases within the vehicle ano the flow Is unitbrm across the nozzle
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exit, then a gas particle of mass drn leaving the system has a sidewise velocity component of

/"c8 0 (74)

where L is the distance from the mass center to the nozzle exit plane. Therefore the same
particle 8Lries angular momentum of(

C9

with respect to the mass center. The flux of angular momentum for the entire gas stream Is
therefore t(mk2• )+ '2i,, Externally Applied Torques (76)

again assuming uniform gas motion relative to the vehicle. If one now considers the angular
momentum balance for the entire systenm assuming that no external moments arm present, then

11( * j , - 0 (77)
which states that the rate of change of system angular momentum equals the rate of flux of
laterM angular momentum. We will have cause in the next section of the report to more
carefully derive a more g6neral form of this expresdon. Note that in the form given, the
angular momentum flux can be interpreted as an "interaction torque," which modifies the
angular motion of the system. We will usually refer to this as the jet damping torque, but in the
classical analysis, the vehicle angular momentum Is differentiated to give

flk~~1 *~ - k2)4-.2mk-' (78)

and the jet damping torque is taken as the combinktion shown when all but the term involving
the product of the lateral moment of inertia times the angular acceleration are moved to the
right hand aide. The term involving the rate of change of the radius of gyration Is small and is
usually neglected. Therefore, the classical definition of the apparent jet damping moment is

Mj 8-?k(9- - k2)j (79)

Notice that the damping is negative (that is, lateral oscillations are reduced) when the length
L Is larger than the radius of gyration. This is normally the case for typical slender vehicles
oftonvtntional layout with the nozzle at the rear-most position. The second term in the
expression represents the effect of flow of mass from the system on the lateral inertia. It could
be interrted as a "driving" effect because it Is always negative. The net jet damping is a
balance of the speeding up of the lateral rate, due to loss of system mass against the slowing
down because the gas particles must be accelerated within the system in order that they exit the
system with the same lateral speed as a point on the nozzle exit plane. The original analysts
were somewhat concerned about the simplifications leading to this result as expressed in the
followhig excerpt from their writeup:

"We call attention to one tacit assumption made in deriving the formula for jet
dampir.g. When we gave the sidewise component of velocity of the gas issuing from
the nozzle am we were asuming that the Sas was going "straight" throisgh the nozzle.
Actually, this has not been proved so far as we know... it needs to be shown that the

53



main stream of gas going through the nozzle shares this sidewise motion. One can
make a rough argument as follows: Until the gas reaches the throat of the nozzle, it is
moving more slowly than the speed of sound. Hence disturbances, such as the yawing
motion of the rocket can be propagated into the gas stream faster than they are swept
downstream by the gas flow. Consequently, we may expect the gas stream as a whole
to participate in the yawing motion of the rocket wuti it reaches the throat of the nozzle.
Thereafter, the gas is going faster than the speed of sound and probably leaves the
nozzle without acquiring any additional sidewise motion. Thus the sidewise motion of
the gas is probably where 1. is the distance from the center of gravity of the rocket to t~e
throat of the nozzle. This is multiplied by *4 and so we conclude that probably LV8
should be replaced by 4- Lc in equation 79." t

This Is the first discussion In the literature indicating suspicion that the fluid dynamics of
the situation is more complicated than assumed. Suggestions for possibki experimental means
for checking the validity of the jet damping term then followed. Such experiments have
apparently never been conducted until those carried out in the present program,

The reader should notice that the interaction torque was estimated by a process that
bypassed the need to understand the manner in which the torque is actually applied to the
vehicle. Clearly this must be through an unsymmetrical pressure distribution by analogy with
the origin of momentum thrust. As with the latter force, a good estimate can be made without
recourse to actually determining the pressure distribution or any other details of the internal
flow and the momentum changes that produce the forces. Unfortuna;•,ely, this procedure is
fraught with danger because it is a great temptation to oversimplify the fluid mechanics, In the
thrust calculation such simplifications, such as one-dimensional uniform flow have little
effect, but when subtle changes In angular momentum balance are Involved it would appear
that more care is warranted, In the next section we begin our detailed study of jet damping by
examining the details of the pressure distributions that actually produce the damping torque.

The Classical let Damping Effect: .luid Dynamics Apnroach
In this subsection, we will reexamine origins of the jet damping effect from the point of

view of the flow of gas particles. In order to set the stage for our cumplete calculations to be
presented in later sections, we will base the analysis on standard Bulerian fluid mechanics.
This requires a more involved mathematical formulation than needed in the Lagranglan
approach. The governing equations will be carefully analyzed after being put in appropriate
nondimensional form to bring out the important scaling and similarity parameters. All calcula-
tions will be discussed in rather complete detail for the benefit of readers not familiar with the
Eulerian point of view. Those with fluid dynamics backgrounds will be able to skim to the end
of each subsection in order to concentrate on the results of each calculation. We will review all
assumptions needed to extract the classical jet damping effect from the field equations describ-
ing the gas flow.

In the classical theory, one simply assumes that there is nothing interesting going on inside
the motor chamber. Combustion gas is produced at the burning surface and then commences
to travel in utraight lines through the chamber and out the nozzle despite any lateral oscillations

t Italics were added by the writer for emphasis. Equation numbers and notation have been

modified to correspond to those in the present report.
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of the chamber. Let us see what the fluid dynamics equations tell us about this assumption. If
we assume the gas is incompressible and steady, the flow is governed by

Rou.Vu=-Vp--2wxu-- I xr (80)
Ro a~t

Now, if we further assume the flow is uniform, that is, there is no variation in speed or direction
of the gas particles as they flow through the chamber then the pressure gradient is given by

Vp -2I xu-- IXr (81)

which shows that the pressure forces are balanced by a combination of the Coriolis force and
the effect of angular acceleration. Remember that centripetal effects are Integrated within the
"reduced pressure" p because they can be written as the gradient of a potential. Now, if we
assume that the apgular velocity perturbation follows the.simple pattern we established in the
last chapter for a 'spinning, nutating body, it Is easy to detemrine the pressure distribution
produced in the chamber when it Is wobbling. This angular velocity vector

40, - Cooexp(i)t) - w[l + O]exp(i Xt) - W•er + ieG]e'exp(i Xt) (82)

closely simulates the conditions present in a nutating PAM-D. Please note that this is the
perturbation angular velocity introduced in equation 1, It follows the form suggested earlier
(see development leading to equation 51) in carrying out simple solutions for the spacecraft
motion, The use of complex notation simplifies the bookkeeping involved In keeping track of
the relative angular position or phase angle of the angular velocity perturbation and any
resulting flow phenomena with respect to the body-fixed coordinates. Also, the conversion to
polar coordinates is shown to make evaluation of the equations easier for axisymmetric
chamber geometries.

Since we require the flow to remain uniform with respect to the wobbling chamber, then it
is clear that the pressure must vary in time in the same manner as the angular velocity in order
that the momentum equation is satisfied. The time dependence is accounted for by putting

p' - $exp(il.t) (83)

where A. is the precession frequency as discussed earlier, and 0 is the spatial part of the pressure
distribution.

For simplicity, let us assume that the chamber Is a straight cylinder with an end-burning
propellant grain at the head end. As in classical theory, we assume a uniform flow

U - -k (84)

The position vector for the coordinate system described earlier (body-fixed with the origin at
the mass center) is

r a rer+ (t'- L)k (85)

and we can easily evaluate the pressure gradient. Resolving the gradient into its polar
components, we find
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er[21 +_Lz-Lt)]

or + !- toe + k = wexp(ieW t-.-t (86)

These are readily integrated to yield a simple expression for the pressure distribution through-

out the chamber volume. The result ist

to - exp(iefoo r(z' - Lt) + i(2r)] (87)

and therefore the real part of the pressure perturbation is (using expression 83)

P= [ % r(z' - Lt)cos(k.t + ) - 2rsln(%.t + 0) (88)

The two remaining terms represent the effect of Coriolis and angular acceleration effects. The
Coriolis term (the second term in the brackets) is the one responsible for most of the features of
classical jet damping.

t For the benefit of readers not familiar with complex notation, the details of this derivation

follow:

Note that exp(i Xt) a (cos).t + isin X.t) and exp(i0) = (cosO +isin0) so their product is

cxp(i X t) exp(i O) = (cosA t + i sin .tXcosO + i sin O) =

= (cos, tcosO - sin X t sir 0) + i(cosX t sin 0 - sin•X t cose)

= cos(X t + 0)+ i sin(X.t +0)

where standard trigonometric identities have been employed. If this combination Is multiplied
by any complex number, say (a + ib) as in the square brackets in equation 87, we find for the
real part of the product,

9t{exp(i 0) exp(I X t) (a + ib))} =

=M 9 [cos(Xr +0)+ i sin(Xt + 0)](a + ib))} =

= 9t [acos(X t +8)-b sin(.t +0)]+ i[acos(X t +9)-b sin(X t +0)]1

"- acos(Xt + 0)- b sin(,t +0)
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Notice that in the pressure function ý, the Coriolis term is positive and imaginary while the
angular acceleration term is real. We will show that a positive imaginary part always implies a
damping influence since the torque on the chamber from the integrated pressure distribution
will be opposite to the perturbation angular velocity vector. For later use, we note that in order
for a pressur distribution to be destabilizing the l•nagnaly part must be negative. It is also
worth remembering that any torque component normal to to' has the effect of modifying the
precession frequency. Therefore, in the present cane the Coriolis yields a damping influence,
the jet damping, and the angular acceleration term produces a shift of wobbling frequency.
Also notice that the Coriolis term does not vary with axial position; the angular acceleration
term Is directly proportional to axial position in the chamber.

Figure 31 shows the pressure distribution in the chamber aL a particular location in terms of
isobars, These are straight lines in the simple jet damping case, The isobars are inclined to the
direction of the angular velocity perturbation because of the effect of the angular acceleration.

In order to determine the effect of the pressure perturbation on the vehicle motion, we must
integrate the pressure forces over the chamber surfaces. This has already been set up for the
appropriate control volume in equation 43. Because of our assumption of a uniform flow with
no time-dependent correction, the flow interaction torque is

S= M - -ar x (p'n) dS (89)

This result can be found directly from one of the standard representations of the Jet Damping in
integral form, For example, in Reference 1, the jet damping integral is defined as

Mj -fr x (2c u) dV (90)
V

In some definitions, the angular acceleration term is included too, as we have done in determin-
ing the pressure distribution of equation 88. Let us concentrate on the Coriolis term since it is
responsible for the nutation damping. Using the momentum equation, And assuming the
Coriolis force is balanced by pressure,

2w < u = -Vp' (91)

The reader is reminded that we are now working with equations in dimensionless form, so that
in equation 90, the density does not appear because It is assumed constant and was incorpo-
rated into the dimensionless variable (see Table 2). Replacing the Coriolis term by the
equivalent pressure gradient, the jet damping moment becomes

Mji rxVP'dV (92)

V
A simple application of Green's theorem shows that this is equivalent to the result shown in
pressure surface integral of equation 89. To prove this, note that by simple rearrangement,

rx np' - -n x (p'r) (93)
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Thus

fjrx np'dS =-f n x (p'r) dl =JV x (p'r) dV
S S V

but Vx(p'r)-p'Vxr+Vp'xr and VxraO. Therefore

frx np'dS - -Vp' x rdV. fr x VP'dV (94)

S V V

Finally, it is clear that

a. -M .r x(2ta x u) dV -Jrx(p'n) dS (95)
V S

So we have proved directly that the Coriolis body force on the gas is equivalent, to a
nonuniform pressure distribution acting on the internal surfaces of the chamber. This greatly
clarifies the jet damping mechanism by showing how the interaction torques are produced,

Careful interpretation of the results is of considerable benefit in guiding us to a more
complete representation of the chamber flow. We have just shown that the wobbling of the
spacecraft induces a nonuniform pressure pattern (illustrated in Figure 31) that rotates relative
to the chamber. This pattern can be described as a pressure wave. It has all the wavelike
attributes that we will study in the next subsection as part a more complete model of the
chamber flow,

It is a consequence of the assumptions (mainly the uniform flow assumption) that have
been made that this jet damping pressure pattern always represents a damping effect on the
vehicle angular motion. That is, the high pressure part of the pressure wave leads the wobble
angular velocity perturbation by 900 and thus produces a damping torque. It is ery important
to understand that this is not damping in the sense of frictional dissination of enersv. Some
investigators have misconstrued the meaning of the word damping as used here. This then
introduces a conceptual difficulty in accepting the fact that the pressure pattern may not have
the orientation shown in Figure 31. That is, driving instead of damping might occur.

To summarize, we have shown that wobbling induces a traveling wavelike pressure
pattern. In the case of the classical jet damping assumption of a uniform, steady flow that
always adjusts to the chamber motion without dynamic interaction forces, the pressure bal.
ances the Coriolis forces and a damping torque results. We must now determine whether this
assumption is appropriate in the case of combustion gas flow in a large spinning rocket
chamber.
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Effects of Spin on Flow Interactions
In this subsection we will carefully analyze the motion of spinning vehicles with interact-.

ing internal motion of a contained fluid or gas. This is a familiar problem to spacecraft dy-
namicists who have had to deal with sloshing liquid stores in spin stabilized satellites.
However, the version of the problem that we must solve involves additional complications
resulting fromi expulsion of mass, linear and angular momentum, and energy from the system
with the combustion gas flow from the motor.

The problem we must solve will be shown to be an extension of the jet damping analysis.
As we demonstrated in the previous section, jet damping represents an approximate way to
account for the ihLeraction between the spacecraft motion and the flow of combustion gases
through the systerm. Several features that we identified provide the starting point for an
improved ,nodel:

"* Jet damping is not a dissipative mechanism. It is the reaction torque due to
changing the direction of the gas particles flow through the motor chamber.

"* Analyses based on an angular momentum balance using a control volume
containing the chamber flow gives an approximate result for the reaction torque
that may be valid in some cases but obscures the details of the processes that
create the torque.

• The jet damping force is produced by a traveling pressure wave induced by the
wobbling of the chamber. The unsymmetrical pressure pattern balances the
Coriolis force on the gas particles.

a The gas particles traverse the chamber in such a way that the streamline pattern
relative to the chamber behaves as though no wobble is present.

It now becomes necessary to determine if this picture of the gas flow interactions is adequate.
Our working hypothesis in that it is not a correct picture for large spinning chambers. It seems
quite unreasonable to expect the gas motions to be unaffected by the angular motion of the
chamber walls. We must determine the range of validity of the jet damping formulation and
more importantly, we must deduce corrections for cases where it is not valid. It should be
completely obvious to the careful reader that, if the gas velocity takes part in the response to
the spacecraft motion, then the pressure distribution predicted by jet damping theory is wrong.

We have found many important hints that will guide our thinking. Of great importance is
the knowledge that the jet damping torque is caused by a traveling pressure pattern induced by
the wobbling chamber boundaries. As viewed from the body-fixed coordinates, this distur-
bance has all ýhe attributes of a pressure wave, We are therefore led to expect wave motion
within the chamber. It will be necessary to show that the wave behavior includes velocity
perturbations as well as a pressure disturbance. Again, for emphasis, the simple jet damping
flow field is the result of the assumption that the gas velocity field remains uniform and steady
relative to the --liamber. The pressure gradient balances all inertial forces, particularly the
Coriolis force, due to outation wobbling. We will show that this model does not represent a
correct solution when the chamber Is spinning and when the characteristic size of the chamber
e.ceeds a critical value.
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Simplifying Assumptions
Since we are now confronted with a much more difficult fluid mechanics problem than jet

damping theory addresses, we will need to use every available tool to make it tractable.
Ultimately we will need to rely on numerical techniques to make accurate solutions pussible.
That is, the problem involves a complex mixture of flow regimes and geometry. The complex
burning surface/combustion chamber geometry cannot be handled by analytical methods.
Regions dominated by viscosity and compressibility border other zones that behave as an
incompressible, inviscid medium. However, to jump directly into the problem with an off-the-
shelf numerical code would be a terrible mistake.

The approach to full numerical solutions must be made with as much physical understand-
ing of the problem as we can gather by analysis. This is perhaps the most difficult part of the
problem for the reader because it involves myriad assumptions and mathematical develop-
ments. However, our experience with our earlier attempts to explain the gas dynamic nutation
mechanism1 has led us to conclude that it is necessary to show every step in the mathematical
developments. This is necessary because many of the concepts needed are foreign to readers
with typical engineering backgrounds. We therefore will undertake to lead the interested
reader through each step of every important phase of the analysis.

The first step is to simplify the motor geometry in order that analytical solutions are
possible, Our approach is to model the combustion chamber as a cylinder as depicted in Figure
32. Also defined are several of the geometrical parameters and lengths. Notice that there are
two axial coordinates, z (measured forward from the mass center) and z', measured from the aft
surface of the cylinder. The placement of the burning surface is adjustable. The simples.
choice is to place all gas production on the forward surface in end-burner fashion. This is a
close approximation to the typical modern space motor such as the STAR 48 with its head-end
web. Other motors have a more nearly cylindrical geometry with burning on the vertical
sidewalls of the chamber. Either of these configurations or combinations can be accommo-
dated.

We will pay careful attention to the nozzle because there has been much controversy over
the role it might play in the coning problem. The quote from Newton, et al. 3 in the last section
makes clear that this is not a new concern . In fact, their analysis of the nozzle effect in a
yawing motor is far superior (in the opinion of the author) than in any of the more recent
treatments of jet damping. Their insight that the compressible nature of the nozzle flow
strongly controls the interactions between gas and and the nozzle boundaries is evidence of
much deeper understanding than others have displayed. For the time being, the nozzle will be
relegated to a section of the cylinder surface through which the gas leaves the motor volume.
A more detailed representation will be discussed later.

As discussed earlier, we choose to make wholesale use of the incompressible nature of the
flow within .pe motor burning port. The largest Mach number expected in the motor is of the
order of 10". This is valid to within very close proximity of the nozzle entrance as our
numerical solutions verify. Therefore, an incompressible gas model is an accurate representa-
tion of the flow.

Effects of viscosity are also not expected to dominate the flow by direct action. Our
problem is characterized by a very small Ekman number of the order of l10s. That is not to say
that we are ignoring rotational flow effects. In fact, as the jet damping solution of the last
section demonstrates, it is the rotational nature of the flow field that controls the interactions
with the spacecraft motion. The presence of the Coriolis and other inertial effects force
vorticity into the chamber gas flow, The jet damping pressure wave represents a kind of
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Figure 32. Silripified Motor Geometry for nalytical Solu~tions
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vortical wave. Its identification gives us much guidance in our development of a more
complete solution.

In order to determine the flow interaction cffects, we must use an accurate description of
the vehicle dynamics, We will use the model discussed in the last section, which is based on an
axisymmetric rigid spacecraft. This yields a very simple but accurate picture of the angular
velocity and angular acceleration environment within the motor chamber. This information, in
turn, provides us with a direct link between the gas response and the inertial effects that control
it.

The assumptions we have just listed leave us with a simple but completely adequate model
for the PAM-D geometry. They allow us to use straightforward mathematical procedures to
deduce approximate solutions for the unsteady gas flow. One might object that the problem
has been "assumed out of existence," but such is not the case. We will demonstrate that the
solutions finally ''rrived at are an amazingly good representation for what is actually observed
in the system dynamic behavior.

Mean Flow Analysis
In order to carry out useful solutions of the unsteady flow field, one must first obtain an

adequate representation for the steady part of the flow. We choose to use the simplest possible
representation that contains the necessary physics and matches the boundary constraints. We
will, in fact, use several models to emphasize the role played by several features of the mean
flow. The simplest model (corresponding to an end-burning configuration) will be a uniform
one-dimensional flow of the same type used in the jet damping model. However, we will not
place any restrictions on the unsteady part of the flow superimposed on this mean flow. This is
our main departure from the jet damping approach.

A flow feature often neglected in modeling the mean flow in a spinning rocket is the nearly
potential vortex flow induced because of the radially inward flow into the nozzle entrance. If
the flow does not contain a strong radial component, then the circumferential flow takes the
form of a solid body rotation in the direction of chamber spin. In body-fixed coordinates it is
not necessary to superimpose an additional circumferential velocity component.

Perhaps too much attention was focused on the vortex flow in earlier work on gas dynamic
nutation interactions, t However, the vortex provides a useful way to describe the nonuniform
undulating flow field induced by the inertial accelerations. In other words, it represents a
useful flow visualization device.

The circumferential velocity component plays a significant role in the inertial force
configuration as we will demonstrate shortly. This affects the orientation of the induced
pressure wave and therefore the direction of the interaction torque.

All features of the mean flow we employ in the analysis will be verified directly by means
of full Navier-Stokes numerical solutions to be described later.

perturbation Analysis
The equations of motion for the gas flow were derived in a previous subsection, The

version we need for our analysis is represented by the continuity and momentum equations 46
and 47, respectively. We also now drop the viscous terms on the basis that the Ekman number
is very small. Any viscous effects are assumed to be confined to thin layers near the solid
boundaries. We will assume that our chamber boundaries are just outside the boundary layers
(Ekman layers) in the manner of low-speed aerodynamics. Thus, the analysis requires solution
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of the set V -u O (96)

, +Rou.Vu = -Vp-2xu - r(97)
WRo ~(7

and corresponding boundary conditions. We will devote an entire later subsection to the
boundary condition question. In writing equations 96 and 97, we have also dropped the axial
acceleration term. This is based on the axisymmetric mass distribution of the chamber gases.
Since the flow is incompressible, there are no shifts of center of mass that would result in a net
torque on the fluid from this source. That is, this part of the acceleration field is completely
symmetrical and cannot produce nonuniformities of the sort generated by Coriolis accelera-
tion. We will show that the latter effect is the main source of the flow interaction as strongly
suggested by the jet damping results.

In order to make the problem solvable, we must take advantage of the smallness of the flow
perturbations. We can quantify this assumption of smallness by using the jet damping results.
The jet damping part of the pressure disturbance is from equation 88,

p' = -2 w rsin(a t+ 0) (98)

in dimensionless form. To estimate the actual pressure amplitude in a typical nutating rocket,
we convert to dimensional form using the definitions In Table 2, The maximum pressure
amplitude occurs at the chamber wall where r = 1. Thus, the pressure at a given circumferential
location and time is, In dimensional form

p* (pOR vb)p' = -2(f2)Rpovbson(X*t*+6) (99)
If we insert typical values for th various parameters based on a PAM-D near motor burnout
(R = 2.0 ft., po = 0 .0088 slug/ftr, v b = 15 ft/sec ), we find

- ' 0.5 lbf/ft2 = 3.2.10- 3 psi (10X))

which corresponds to a typical maximum nutation amplitude of 50 degrees/sec (dimensional)

-* -- LI •_50 rad/sec (101)
57.3

This is a very small pressure disturbance. The jet damping torque corresponding to the inte-
grated effect of this pressure over the chamber surfaces is

JMjJ - 40 ft- lbf (102)

This demonstrates that a small pressure amplitude is sufficient to generate a torque of the same
order of magnitude as that which produces the obsrved coning. If velocity perturbations ac-
companied this pressure field they would also, obviously, be small.

The amplitude of the angular velocity perturbation is similarly a very small parameter, Its
amplitude is about 5 degsec near the point of maximum coning growth at midburn, Thus

S5L = 1.6. 10_ (103)

Q 57.3
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in dimensionless form. Recall that in scaling angular velocities we are comparing them to thespacecraft spin rate 0 (typical value about 50 rpm or 5.3 rad/sec). So the angular perturba-

tions remain small throughout coning growth.
We now take advantage of the smallness of these key parameters to linearize the problem.

Put p - P0o+ p

U = U + U (104)

CIA•o + W'

where primes will always denote small quantities. Here, Qo is the dimensionless axial spin
rate and since all angular velocities are normalized to the spin rate, its value is one, Thtese ex.
pansions also, in effect, separate the steady and unsteady parts of the problem. The steady flow
field can be determined independently for later use in solving the unsteady problem. If we
neglect terms involving products of the small quantities, we arrive at the work-ng equations we
need. That is, combinations of the form

(p,) 2 , u' u', '.co', p'u', etc. (105)

are very small and cao be safely neglected. The working equations for the unsteady flow
become

V. -U = 0 (106)

o{t Ro(u VU+U-Vu')=-Vp-2 ox u - I r (107)

This is the standard perturbation approach and is fully justified on the basis of the smallness of
the unsteady terms. There are no singular perturbation characteristics present, so a clean,
regular perturbation problem results,

Unsteady Flow Computations
Before attempting to solve the equationb in complete form, it is advantageous to discuss

certain properties in the light of work in the field of rotating fluids. Before doing so, please
note that equations 106 and 107 describe a gas motion forced by several inertial terms
including the potent Coriolis term. These can be taken as known forces because we are
specifying the angular velocity environment by using results from the dynamics analysis of the
previous chapter.

The job ahead of us is to determine the gas response to the forces created by the spin and
wobble of the vehicle. We will not, as in jet damping theory, assume that these are balanced
only by pressure. We will solve the complete problem by letting the velocity field be deter-
mined by the equations of motion instead of by assumption. We remind the reader that in the
jet damping approach, one sets the perturbation velocity equal to zero:

u' - 0 (JET DAMPING ASSUMPTION)

A very strong (and very wrong) asstwmption,
Before attacking the problem of forced motion of the gas, it is beneficial to study a simpler

case describing the free-motion of the system. We anticipate oscillatory gas behavior, and as
in all vibration problems It is a benefit to use the free solutions (the natural modes) in
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representing the forced ones. This will aid in our recognition of the wave nature of the flow
interactions. The first order of business is to demonstrate that the jet damping pressure wave
should not have come as a surprise. Rotating flows support waves.

Pressure Waves in Spinning Plows
We now demonstrate by direct solution of the governing equations without the forcing

terms, that the 3pinning gas in the combustion chamber can support oscillations in pressure and
velocity. These are, in effect, waves of vorticity and come about because of the Corlolis effect
from the axial spin,

The Cor&)lis effect provides a restoring force that is completely analogous to the presence
of elastic spring forces, compressibility forces, or free surface effects so that wave-like
solutions are expected. We will present a very careful analysis to show this. Such waves are
known in the literature of meteorology as "inertial waves" or "elastoid inertia waves." They
have been subjected to intense study in a number of disciplines but are not known to many
persons in the engineering community. Inertial waves arise in spinning gases or liqt As and are
not dependent on the compressibility of the medium. For a given chamber geometry, there are,
as in most systems capable of oscillatory behavior, an infinite number of possible modes and
corresponding frequencies, However, as we shall prove In the case of inertial waves, the mode
frequencies are confined to the range

0 X :9 20 (108)

where 0 is the spin rate (rad/sec). It is important to compare this frequency range to the natural
wobbling frequency of the spacecrcmt given in equation 52, We rewrite this here for emphasis,
The nutation wobbling frequency is, in dimensional form,

1_10 (1(9)

The wave frequency range coincides with the nutation frequency range, and the possibility for
resonant interactions in the forced motion case clearly exists.

U npertured Inertial Waves: "he.ins are Elrg Ir =
To highlight the properties of the chamber natural modes of oscillation, we will use the

same approach applied in the classical treatment of this problem. We will assume that the
chamber is closed and that there is no mean flow. We will later treat the mean flow as an
additional forcing effect. Since, for the moment, the system is not forced by nutation wobbling,
the equations for the velocity fluctuations become

(V - U,(110)

t= -Vp- 2k x u' (ill)

These" ",)resent the flow in a chamber spinning about its longitudinal axis at rate Q. The 0)
does not appear explicitly in the Coriolis term because angular velocities have been normalized
to this value. The k in equation 1II is the axial unit vector and therefore the dimensionless
spin vector.
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Since we are interested in oscillatory solutions, let us assume that they exist by putting

p= 0 exp(iA t) (112)

u'= Qexp(QA t) (113)

where X, is a frequency to be determined. Amplitudes of the pressure and velocity perturbations
are denoted by 0 and Q. These are functions of position also to be determited The problem
becomes V.Q-O (114)

{ MQ+2kxQ = -VO (115)

A decision must be made at this point regarding which variable to eliminate from the equa-
tions. Poincare14',15 chose to write the equation for pressure, and we will follow his procedure.
This has the usual advantage of allowing us to work with a scalar variable, The corresponding
velocity vector solution can then be found using relationships between pressure and velocity to
be deduced from the momentum equation. The algebraic steps are difficult to find in the
literature, so we will present them in detail, First, take the divergence of the momentum
equation 115: v.(iAQ+2k ×Q) =-v2 € (116

and then apply the continuity equation
V.Q -0

to yield V, (2k x Q) = -V 2 0 (117)

Now expand the term on the left involving the Coriolis acceleration by means of standard

vector identities with the result

V.(2k xQ)-- 2Q.Vxk-2kV×Q (118)

Noting that
Vxk=0

one finds
V (2k x Q) -2k. V x Q (119)

Taking the curl of the momentum equation eliminates the pressure gradient

U VxQ =-2Vx(kxQ) (120)

since V X VO = 0

Solving for the vorticity vector amplitude

VxQ=-AVx(kxQ) (121)
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where the right-hand side can be expanded to

V×(kxQ) -=[Q.Vk-k.VQ+kV.Q--QV.k=:--kVQ (122)

The differentiations involving the axial unit vector k all yield zero so that

VxQ=-2ik.VQ (123)

Therefore, equation 117 becomes A

V0 0 -k. (k VQ) (124)

Consider the term k. VQ, which represents the rate of change of Q in the axial direction.

k.VQ-=i-k.V[2kxQ+V0]=-LL[?ý, 2Qi+2QJ) ,-(o doi + A J )]"

A A. dz Y a dz x dy d J

Hence the right-hand side of 124 becomes

k2(k.VQ). (125)

Inserting this result into equation 124 eliminates the velocity amplitude, Therefore,

A (A d z,

Rearranging yields

or 4
, (k1)0 0026)

AL

its it is often wrtten in the literature, This is the famous Poincare' inertial wave equation. We
will carcfully examine its solutions with the object of learning how wave motions can arise in a
spinning gas, In particular, we need to determine the modte shapes and frequencies of these
",tiveS.

Before attempting to solve the wave equation, it is necessary to deduce the proper form fo~r
the boundary conditions. The basic condition is that the normal velocity component is zero at
the surface. However, since we chose the pressure as the main variable, we will need a way to
relate the pressure and velocity perturbations. This relationship is also needed later to deter-
mine the corresponding velocity waveforms,

From the momentuni equation I 15 it is clear that

Q l-12k X×Q 4 Vol S(127)
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Now, examining the Coriolis term we find

kxQ = -L[2kx(kxQ)+kxVO] (129)

but t kx(k xQ) = (k.Q)k -(k k)Q (129)

Therefore, equation 128 becomes
kxQ:= [2(kQ)k-2Q+kxVo]

Consider the term

2(k.Q)k-2Q = 2k(-k.-V)-2L-[2kxQ+ VO]
Also, UAI

kxQ = •-[2k(,-k.-V.)-2+-[2kxQ+v,]+kxv× ]

Rearranging,
k xQ QI--4)=- 2(k.- VO)k + •VO +. k x V,

Thus,

k xQ =(--- )2(k.V.)k -2V, -i/.kxV,] (130)

Inserting this result into equation 127 gives the required expression for Q in terms of 0:

Q - Q + V[] =k-O + 2+( -- )2(k- VO)k - 2VO -iAkx Ov']A, 7 A 4- 1
orQ f 2k x VO - iAVO + 4(k. V¢)k (131)

which shows the velocity amplitude in terms of the pressure amplitude. We will find several
applications for this result. For example, we can now write the pressure boundary condition.
In order that the velocity is zero at the surface

n.Q=O onS (132)
and we find

n.[2k x VO - 1Aq, +-!'(k.- V)k] - 0

Therefore, at any point on the surface, the normal component of the pressure gradient is

n.VO= -nk×V,+-4nnk(k.V,) on S (133)
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Readers familiar with acoustics will notice that the pressure boundary conditions is far more
complex than in the case of waves of compressibility. In the acoustics case the normal compo-
nent of the pressure gradient vanishes at the wall.

SoUion of Poincare' EqMuation
The pressure fluctuations in a closed chamber without mean flow are governed by the

Poincare' wave equation 126 and the corresponding boundary condition equation 133. We
must solve the set

V 0 4-(k.V 0=0 (134)

n.o -nk~o nkkV)onS (135)

Once solutions have been determined for a particular chamber configuration, we can find the
velocity field from equation 131. 11

Solutions are known only for simple chamber shapes. Greenspan states his belief that
solutions for other than cylindrical, spherical, or oblate spheroidal chambers is virtually
impossible in analytical form. We have chosen to represent the rocket chamber by a cylinder.
This Is a good approximation for the geometry and allows use of relatively simple expressions
to represent the wave motions. For this shape, the equations become (in cylindrical polar
coordinates)

-4, 1 d 2 4I - (136)

do 2i do
r -2 -_= 0 onr - 1 (137)

dr A do

do =0-onz=0, z=2b (138)

where b is the length to diameter ratio (dimensionless chamber half-length). 'This is a simple
linear partial differential equation that is readily solved by separation of variables with the
result

= '(4 r~exp(IkO)cos(~ 2b (139)

The frequency eigenvalue, {, must satisfy

+I& k )J + )=o (140)

and the eigenvalues are given by
2

ki2n b (141)
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Figure 33 shows the variation of the frequencies with slenderness ratio for several low-order
modes. Notice that there are an infinite number of modes in the range (dimensionless becuuse
spin rate was used to define the characteristic Lime) and that they are a function only of the
chamber shape. That is, they do not depend on the size of the chamber. We will find later that
many resonant interactions with vehicle wobbling are possible.

Finally, we can write the expressions for the pressure and velocity distributions, We find

P, x~lt = OXk(O S r)cos( nb! e>xp[l(Xt + kO)] (142)

u'= Qexp(iXt) [i[fI er + f2 eO + if 3 k]exp[i(kt + kO)] (143)

where functionsf 1 ,f 2, andf 3 are

A= I [os(4r) +A4Jk(rcS"-) (144)

f?~k (nx r k(15

f -= r (146)

The set of integers (k,m,n) define a given mode. Mode integer k sets the number of azimuthal
nodal lines. Integers m and n set the number of radial and axial nodes. As In any wave system,
t'e larger the mode integer the more complex the mode geometry. Thus, in nature, the low
order modes are more readily excited because they require less energy input.

The gas motion consists of a traveling wave of pressure and velocity. Unlike the simple
wave solutions In the jet damping case, these exhibit complex three-dimensional motion.
Study of Figures 6 and 7 in the Summary will aid the reader in visualizing the type of gas
motion involved, The latter figures describe numerical solutions of a similar physical problem
that is forced by nutation. We will generate similar solutions later,

It is also worth showing that the waves can be interpreted as waves of vorticity, The
vorticity is generated by the nonuniform Coriolis body force. The vorticity fluctuation is given
by

x= Vxu' =4expkiA. t) - V x Q exp(IA t) (147)

where vorticity amplitude is

=V x Q=[gler + ig2eo + g3 k]exp(ikO) (148)
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Functions g,, g2, and g3 are

I j-Jk(4 )+["J(r)+ 24J(r]sl rz

82=n. [2- jJ((r)+ + 14 ) J•( r) sin nz (149)

83 = l- 2kk r)+ ![; (k-l)+ 2],4(4r)+24 2J4r(4r)}cos( z)

Again, it is important that the reader associates inertial wave motion with production of
vorticity. This is the time-dependent analog of the generation of the axial vortex flow by spin
in the steady parn of the problem.

Summary
The significance of a wavy-ike response to vehicle nutation in the chamber gas flow has

escaped many investigators er nutation instability. The most widely held notion is that the
only important gas response is jet damping. The influence of the internal ballistics coning
problem is viewed as a mild damping effect that is overcome by another interaction such as the
sloshing of slag.

What we have shown in this subsection is that jet damping itself is related to a wave-like
response that produces a traveling pressure pattern exactly balancing the Coriolis acceleration
due to wobbling. We have used this as a hint to look more carefully at the fluid dynamics. We
have demonstrated that, because of the spin, the chamber gas can support waves of vorticity
that are analogous to the jet damping pressure wave, In fact, as we shall demonstrate in
following sections, they are the correct solution to the "jet damping" problem when the
chamber is spinning. The assumption that the gas velocity is unaffected by nutation in jet
damping theory is incorrect. The Coriolis acceleration is balanced by both pressure and
velocity peturbations as the conservation equations require.

These waves are waves of vorticity sometimes called inertial waves because they are
associated with the inertial body forces arising from the combined spinning and nutation
coupled with the relative motion of combustion gas particles through the chamber.

We have concluded this subsection with a detailed derivation of the classical inertial wave
solution for a cylindrical geonmtry. We emphasize this solution because we can use it to
approximate the waves in a motor. Furthermore, we have shown that the natural frequencies of
the waves are in precisely the same range as the spacecraft nutatioa frequency. The possibility
of resonant interaction cannot be denied. Such resonance is, in fact, the very essence of all
nutation mechanisms including those related to sloshing of slag or of liquid stores carried in
partially filled tanks.
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Nozzle Effects
There can be no doubt that the nozzle flow pattern plays a role in producing flow

interactions of importance in the PAM-D coning problem. We have already shown how the
internal flow is rendered unsymmetrical by the driving effect produced by the wobbling
chamber. It is clear that gases do not enter the nozzle in an axisymmetric pattern. Side
forces and resulting lateral moments are thus created. The direction and magnitude of the
force system produced within the nozzle by the nonuniform flow entering from the chamber
is crucial in determining whether the spacecraft system is nutationally stable.

We will treat the nozzle as a separate element in handling the combustion gas flow and its
interaction with the vehicle dynamics. Up to this point, most emphasis in our treatment of
the flow effects has been on the internal flow field sufficiently far from the nozzle that high-
speed motion and compressibility were not of crucial importance. As gas particles approach
the nozzle, these effects begin to dominate, and one must deal with an entirely separate flow
regime as they pass through the throat region into the expansion cone.

It is necessary to formulate appropriate boundary conditions for the interface between the
internal gas flow that is dominated by slow, nearly incompressible rotational effects, and the
nozzle flow that is dominated by high-speed compressible flow and a transition to supersonic
conditions in the expansion cone.

Two nozzle interactions with the coning effects will be evaluated in this subsection. The
first involves establishment of the boundary condition between the nozzle entrance zone and
the contained slow rotationai flow within the chamber as we have just described It. The
second is an assessment of the nonsymmetric forces produced by the nozzle flow and their
influence on the net nutation disturbing torque environment.

Lateral Torques and Side Forces Produced in the Nozzle Flow
Concern for nonsymmetric flow interactions with nozzles has existed for many years.

Darwell and Trubridge carried out a detailed study in 1968.38 A vea elaborate investigation
based on conventional analytical methods was published by Walters" in 1972. This research
also included an experimental verification program involving direct sideforce measurements
and flight testing employing solid rocket motors. Later work has focused on numerical
simulations of the off-axis nozzle flow effects. A study by Hoffman, 40 a well-known nu-
merical analyst, is of direct applicability because the nozzle geometries represented are quite
similar to those used in the STAR motor series of central interest in the coning problem.

A recent cold flow experimental study4l was carried out to determine the effects of
nozzle entrance flowe asymmetry in producing lateral torques. The authors concluded that if
the asymmetry is characterized by the angle of the flow entering the nozzle entrance plane, or
plenum, as they describe it (as opposed to the throat plane), the side force produced was
much smaller than expected on the basis of the theoretical results. They indicate their belief
that, if the nozzle and throat entrance zones are axisymmetric, then the effect of flow mis-
alignment at the entrance plane on the force system is small, They attribute this to the com-
pressible (but subsonic) straightening of the flow in the entrance zone.

h Nozzle.ound CQndjj
In order to properly carry out the tinm dependent solutions of the chamber flow, it is

necessary to treat it as a separate flow regime separated from the nozzle by the arbitrarily
chosen nozzle entrance plane or surface. Obviously there does not exist a sharp demarcation
between the ieones of flow. I lowever, the nature of the field changes so rapidly as the gas
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particles enter the nozzle that it is a useful artifice to define a surface of demarcation. At this

surface, we must match the motions of the gas particles so that continuity and other physical
and geometrical requirements are met.

The problem we are addressing was anticipated by the early investigators of jet damping.
Careful perusal of their analysis is very helpful in guiding us in the direction we must go.
Consider this quotation from Newton, Rosser and Gross 3:

"We call attention to one tacit assumption made in deriving the formula for jet
damping. When we gave the sidewise component of velocity of the gas issuing from
the nozzle as ref, we were assuming that the gas was going 'straight' through the
nozzle. Actually, this has not been proved so far as we know. The rocket walls have
a sidewise motion of ref, but it needs to be shown that the main stream of gas going
through the nozzle shares this sidewise motion. One can make a rough argument as
follows: Until the gas reaches the throat of the nozzle, it is moving more slowly than
the speed of sound. Hence disturbances, such as the yawing motion of the rocket, can
be propagated into the gas stream faster than they are swept downstream by the gas
flow. Consequently, we may expect the gas stream as a whole to participate in the
yawing motion of the rocket until it reaches the throat of the nozzle. Thereafter, the
gas is going faster than the speed of sound and probably leaves the nozzle without
acquiring any additional sidewise motion."

The authors then propose a modification to the jet damping that seems to have been lost to
later analysts who have paid scant attention to the physical realities of the nozzle effects,
They also discussed experiments that would verify the jet damping analysis, but laboratory
scale measurements have not been attempted until those described later were carried out in
the present study.

The approach used here to define the conditions at the boundary plane follows one
successfully used for many years in an analogous problem involving acoustic waves in the
chamber flow, Except for the frequencies involved, the waves of compressibility behave
much like the waves of vorticity that we have described earlier in the report. In fact, in the
rocket combustion instability problem, the two types of waves are inextricably linked.4" 42
When conditions are such that acoustic waves can be amplified, vorticity waves also appear
because rotational flow is generated at the chamber boundaries. This is completely analo-
gous to the problem of interest here. However in our case the vorticity is introduced because
of the angular motion of the chamber boundaries as already described in detail,

In the combustion instability problem, one must analyze the growth and decay of a wave
system superposed on a mean flow just as we must do in the nutation instability problem. It
is also necessary to treat boundary conditions at the nozzle entrance plane in an analogous
fashion. Here we can draw from much experience In the part of the rocket community that
has dealt with instability problems.

The method that has evolved is based on the notion that the deviations from the mean
flow are quite small and a perturbation is completely justified, One is then enabled to treat
the boundary condition by a transfer or "admittance" function, Since the inertial wave
problem is completely similar, it is clear that a nozzle admittance function is a useful way to
approach this important boundary condition. What we must do is define a relationship
between the velocity and pressure fluctuations at the nozzle entrance surface that properly
represents the response of the compressibility-dominated downstream flow to the fluctuations
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at the entrance plane.
The admittance function, in effect, represents the local influence of a complex train of

physical events within the nozzle that act in response to the flow oscillations at the entrance.
One must carefully account for the important physical effects. It is clear that oscillations
excite a compressible response in the nozzle. That is, the inertial pressure fluctuations at the
boundary plane produces a train of acoustic waves in the nozzle. The effects of rotation arenegligible compared to the effects of compressibility In the nozzle. The disturbances propa-

gate at the sonic speed rather than at the local flow speed as they did inside the combustion
chamber.

Account must be taken of the behavior near the throat. At this point, yet another regime
of flow is entered because of the critical conditions at the throat. The sonic plane at the
throat does not allow passage of small disturbances existing downstream to be propagated
upstream because the flow speed exceeds the sonic velocity. Disturbances generated by
wobbling within the, nozzle cannot affect similar oscillatory gas motions within the motor
chamber. This is a problem familiar to combustion instability analysts and we may directly
utilize their results if care is taken to properly define matching conditions at the nozzle
entrance plane. Since there exists an extensive literature on this problem, we will not repeat
it here. Instead we will simply state the results we need and direct interested readers to the
source of the information. There have been very elaborate analyoes designed to account for
interacting wave systems of exceeding complexity. For our purposes we need only the
following information:

"* Relationship between veloci. fluctuations parallel to the surface and the local
pressure fluctuations

"* Relationship between velocity fluctuations normal to the surface and the local
pressure fluctuations

Keep in mind that the inertial waves consist of velocity fluctuations with axial, radial anld
circumferential motions. We must account for velocity fluctuations both parallel and normal
to the entrance plane. The fomier are readily accommodated by noting that any gas motions
across the nozzle entrance are quickly dissipated without important reflection within the
compressible region. This observation may seem conveniently simple, but it is in fact the
result of extraordinarily complex analyses carried out by several investigators. 43 45 We may
also utilize a similarly simple result for the axial motions. In this case, it is known both ana-
lytically and experimentally that a simple transfer function applies in the majority of cases.
Again, an elaborate analysis has been carried out, but the simple theory of Crocco and
Cheng4 ' applies in our case. It was originally deduced by applying an assumption of quasi-
steady flow. That is, it was assumed that the oscillations are fairly slow. In our case this
assumption is entirely adequate; the inertial frequencies are much lower than the acoustic
frequencies characterizing the combustion chamber. From the nozzle entrance gasdynamics,
one finds the following relationship between small pressure and velocity fluctuations at the
entrance plane:

u'. n = AN p' (150)
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The factor of proportionality

2 ao ) 2 (151)

is the nozzle admittance function that we need to complete our treatment of the chamber
boundary conditions. The value for A. has been corrected for the set of nondimensional
parameters appropriate to the study of spinning rockets. The factor in parentheses in equa-
tion 151 corrects the acoustic admittance value for use in the present situation. Notice that
this factor is the ratio of the gas velocity due to spin to the sound speed: a very small number,
This shows that the inertial pressure fluctuations, induced by chamber wobbling, do not
strongly interact with the nozzle. The assumpti,:o

u'. n = 0 (152)

is valid across the nozzle entrance. The flow through the nozzle is dominated by compressi-
bility effects, and it thus appears that the nozzle flow does not play an important role in the
nutation instability problem.
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Forced Motion of the Combustion Chamber Gas Flow

We have demonstrated, in the last subsections, that the gas contained in a spinning
chamber can support inertial waves in the same frequency range as the coning frequency of the
spacecraft. It is now necessary to determine if such waves can be driven by the nutation, The
objective is to see how such waves interact in terms of reaction torques acting on the vehicle.
We expect that these torques will not be the same as those arising in the classical jet damping
analysis because of assumptions that preclude the possibility of relative motion of gas particles
in response to nutation.

To explore these matters further, we must study a more complete representation of the
chamber gas flow, The following elements must be included:

* Inertial forces such as angular acceleration and Coriolis
* Convective fluid accelerations
"* Nozzle flow
"* Combustion
* Compressibility
* Viscous shear stresses
* Combustion chamber and nozzle geometry
€ Resonant intcraction with nutation

To accommodate all of these influences requires a numerical solution. We fully understand the
need for this approach and we will discuss our progress in implementing it in the next section.
We also emphasize, however, that analytical solutions must be pursued simultaneously: bxth
as a guide to the numerical work and to provide better physical understanding of the flow,

We will use the inertial wave model as a starting point in developing an analytical solution,
A cylindrical geometry and several simple mean flow models that simulate the real system
sufficiently well will be utilized. The main objective is to see how the gases react dynamically
to the chamber motion. We will incorporate, to the greatest extent possible, the influences we
hae listed in simple analytical form,

Earlier studiesi attempted to show that gas motions are dominated by vorticity wave
cffects. This was done in terms of the velocity disturbance directly. It is instructive to extend
our discussion of the closed chamber case in a previous subsection, which focused on the
pressure perturbations. We will set up the machinery needed to include nozzle and combustion
effects, We will find that the latter are of no consequence.

Since the vehicle nutation drives the gas motions, it is appropriate to assume that the
system response is ., harnionic oscillation at the nutation frequency. Thus, we put

to' U •)oexp(iast)

u, Qexp(4A•t) (153)

p', 0exp(iAst)
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where A is the spacecraft frequency. Using these expressions to simplify equations 106 and
107 we find

VQ=o (154){; Q,+2kxQ+Vo = F (155)

where F is the forcing function

F = -Ro(Q, VU + U VQ)- 2oo x U - , xr(

consisting of the inertial and convective accelerations, Notice that the latter terms are
proportional to the Rossby number. In large rockets the Rossby number is small, Indeed, as
we will emphasize In the next chapter, it is because of the low Rossby number that flow-
induced nutation was not observed in earlier rockets.

Using Rossby Number as a Small Parameter
In the classical solution of rotating fluid problems, the smallness of the Rossby number

often leads to simplified solutions. We will also be able to take advantage of this smallness in
our problem. One can do this in a formal manner by introducing perturbation expansions of the
form

u = u(O) + Rou(1) + Ro 2 u(2) + O(Ro3 ) (157)

This breaks a complex problem Into a series of simpler linearized ones. In our case, the
linearization has already been accomplished by using the smallness of the nutation-induced
flow disturbances. Further algebraic simplification results if we use expansions using the
Rossby number as the perturbation parameter.

The Inertial forcing function, F, in equation 156 can be expanded using this approach. One
can write

F F0 + RoF, + O(R ) (158)

where 1A
F0 = -2wo x U - joaO x r

F! -(QO VU + U. VQo) (159)

F2  -(Ql VU + U, VQ1 )
etc.

This gives us a method for improving the solution by a simple iterative procedure. In the limit
as Rossby number approaches zero, the first term in the expansion becomes an increasingly
better approximation to the solution.
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Derivation of the Forced Wave Equation for the Pressure
A procedure similar in all respects to that used in deriving the Poincare' equation must be

followed to find the forced wave equation and boundary conditions for the pressure. The terms
on the right of 155 have the fomi of harmonically oscillating forces. We wish to determine
how the chamber pressure field responds to these forces. Eliminating the velocity in favor of
pressure just as we did in the previous subaection, we find the boundary value problem

v2 - -(k. v)20 = G (160)

n + 4
V0+n.kxVo - n--- k(k.V0)=H onS (161)

where functions G and H are given by

[4a F- 2. VXF (162)G =- V F--'z Fk'- k

H=n-F--1(n-k)k F +Lnk xF (163)

This is an inhomogeneous wave equation that must satisfy an inhomogeneous boundary
condition. It is completely appropriate to construct solutions for this set by using superposition
of solutions of the unperturbed problem. This is such a basic approach that it should require no
length~y discussing here, The authors have been chagrined to find that readers of our previous
work that used a similar approach could not understand the benefits of this method, We have
been criticized for associating inertial waves with the gas motion in a spinning rocket. After
very carefully reexamining the problem we insist that this is the proper way to describe the
time-dependent gas motions. The response is basically a forced oscillation of a spinning fluid,
It is perfectly correct to describe this an inertial wave response.

We will therefore attempt to find solutions by superimposing the simple solutions for the
closed chamber by writing

X Am=rm (164)

where the inertial eigenfunctions for a particular mode m =n (remember that iii is a set of three
integers that specify the ni(xic)

On = Jk(4 r)exp(ikO)cos(.-L.J (165)

represents the pressure wave. After some algebraic manipulation, an equation for the coeffi-
ients in the Fourier expansion can be derived, One must so!ve

2 J 4 n f ti f n
SAJ 

(166)
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where

= +{-+ IlkIk. V4nj2 dV fnfn. k xOaVOadS (167)

for the coefficients.Tphe * denotes the complex conjugate. The method described was devel-
oped by Kudlick ' . Notice that this is a set of simultaneous algebraic equations. Solutions
can in principle be found for any forcing functions as represented by functions G and H. To
simplify notation we are using the index n to represent any given mode. Remember that three
mode integers are required to specify a given three-dimensional inertial mode so that each n
represents a set of three integers. A simple numerical procedure can be used to solve the
resulting set of equations since they are a linear set.

Since a cylindrical geometry is assumed, the various terms in equations 166 and 167 are
readily evaluated. For example

k dz 2 /Jk( r)exp(ikO)sin( n,,J (168)

and
Sn. k x× V~ndS = -i(2t b)J"(•) (169)

S
The volume integral is

fr *1 d "2 rj(kr .)sil2(x'rd~dz'm2 f
V 000

=. I x2 (170)
f2b) Jo r~rf'O' ' J sJin 22b ( 2b 0 2b

Thus coefficient Dn becomes

D n= %)b+(1 b )[2()[j+2( 1-1 J?2(4)]-(b)J (n)] (171)

In dealing with the right-hand forcing terms, we must specify the mean flow field and the
chamber geometry as well as the assumed vehicle angular motion. We will Assume a small
Rossby number as already discussed and write

Go = V. FO- 4- -- k. -FO -. V x F0

, Z Xz •(172)

~HO n FO4- (n k)k, FO +. -nkxFo onS

81



where

E() = -2Me,, liuze,, - UzeO + (U0 o -iu•)ed]- 'A m'ofi(z ,_,)e- - (Z'- L, - ire,]Ro

F1  2 c 0  Ize -U (2e() (U0  + [(UZ) + I -L --) o

(Z R fzJ r~, Ro (173)
= +[{2U0 +. + i(2Ur)]ez
l0

These results must now be inserted in equation 166, which can first be simplified by using
equation 169. Thus equation 166, giving the coefficients becomes

4(X2 n- Dn,+'Brl._ "An) (-bL?•)l • dV + 0 ItdS (14

mhdn V S

The position vector (origin at the vehicle mass center) and other quanties needed in the
evaluations are: coo = MO + d) = 0(er + leo)eiO

U = Urer +UoeO+Uzez

r rer + (z'- Lt)k

where 1. locates the aft end of the chamber (see Figure 32). We will insert specific functions
for the mean flow vclocity components later. After some algebra, we find for a cylindrical
chamber:

G 2 Mei14i 2 (175)
(;~-me [ 2 A.dz di +14)dr

'Ind [±0 (J0(I i{K(2Uo+±r +i(2Ur) on endwalls (176);L2- Ro ) JI•]io(,° l+ 2 )[ I (', _I_(17
Me i + -)L "- .Lt)-i(2uz)J on sidewalls (177)

The integral on the right of the coefficient equation can now be evaluated. One finds

1 2h )s~ 4 d1 U r +1 (178),
4) GdV =-irfj J1(ý rOct -II -i- l -d -' + 18

82



S4
(I - 4J cos(nx)J rJd(ý r)[-(Ut + A'r+ i(2Ur)]dr

4
S0HdS =2, (ir ~ rJi(ýr)[-(2U R +- r+i(2Ur)]dr (179)

+(1 2, .wfr2 b c ný " (z' - i(2Uz)]dz'S0o-bAjLo I

Now all that is needed is specification of the mean flow field and final evaluation of the
integrals in order to find the forced solution.

We have investigated several cases using progressively more realistic models for the mean
flow. This was done to determine the sensitivity of the solutions to the actual chamber mean
flow. This mean flow was taken to be the flow field that would be present in the spinning
rocket in the absence of nutatlon disturbances.

Case 1 was defined to be the flow field assumed in jet damping theory and in other gas
interaction studies by other groups,34"37 This consists of a uniform flow such as would be
generated at a head-end web, The chamber contains a solid-body vortex because of the axial
spin, but account is taken of the free vortex component introduced by radial flow into the
nozzle. Table 4 shows this model and the corresponding results for the forcing integrals.

Case 2 again assumes a uniform flow. However, a more realistic azimuthal flow is
included. A potential vortex is assumed in place of the solid body vortex. Table 5 summarizes
the rcsults for this case.

Case 3 represents a simple, but far more realistic, model for the mean flow. It includes the
potential vortex and a representation for the radial flow cor nent required to account for the
nozzle. This solution has been discussed in detail by Or. 'S3"7 Table 6 shows the velocity
components and resulting force integrals

We have also studied more general approximate solutions for the mean flow that account
for the nozzle flow in more detail. However, numerical results for the coefficient in the Fourier
series were not strongly affected. Therefore, no detailed discussion is given here. When a
truly realistic mean flow is needed, recourse must be made to a full finite-difference numerical
treatment of the type discussed in the next section.
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Table 4. Forcing Functions for Case I

Case 1: UNIFORM FLOW, SOLID BODY VORTEX

Ur=(, UO=0, U 2=-1

f 0GdV =O
v

2 22b A, Aj(, 2b

cI Id- cos(nx)]fr JI(4 ~d

2 r0--cos(nhr) - T ~ (I + l J(4)io-( 4o•2 Iir

Table 5. Forcing Functions for Case 2

Case 2: UNIFORM FLOW, POTENTIAL VORTEX

0r=0O, Uo =uz -(- =-I

f • GdV =0

V

v 1+ 2-2

I ji[ 2JI() -. 1)() + ~-1(1 - JO(4))
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Table 6. Forcing Functions for Case 3

Case 3: SIMPLE ROCKET FLOW, POTENTIAL VORTEX

Ur=-r, Uq=L!r .=2z'-(4b+1), dU{Q= 0 , -O)U-JsO, d ~=0

n0"GdV =0
V

f~Hc1 =- -2 W(c2Jx) ii - V'o(ý)) + 1~ (1 - JO(4)

S +i{ _2(l _ 4 ) ' 2J,(4) - 4 o( ) - +(L )2( +. ) }'

Sidewall Effect

f 4) % HS 2rtO~c0S(n7r) - 11 -.- l-(I - 4-A-2(2l4 4JO(4)) + .ý*l J(I
S

Vortex and E~ndwaUl Effect

+i{-2(1 4- 2,4 - 4.i() - 4(L'2b( + KJ( }
Radial Flow and z-Depcndcnt Axial Flow
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S( o1tidn for the Pressure Wave
In order to determine the system stability, we will employ the alternate control volume

shown in Figure 30. Equation 43 is used to calculate the interaction moment. This approach is
deliberately used so that we can bypass the conceptual difficulties experienced in the method
used in Reference 1. In that case, attention was focused on the velocity perturbations.
Interaction torques were determined by estimating the angular momentum flux passing across
a control volume encompassing the entire vehicle, including the motor and contained gas flow.

In order to use the alternative approach in which the control volume boundary separates the
gases from the solid parts of the system, it is necessary to determine the pressure distribution
within the chamber in order to calculate the reaction torque. A computer program was written
for this purpose. It is designed to solve for the coefficients of the Fourier-Bessel series, These
results are then used to determine the reaction torque coefficient, Rgaln, for the system.
Appendix A is the source code for this program. It is arranged in a modular way so that
changes In spacecraft parameters and motor geometry can be readily incorporated, The case
shown represents a typical PAM-D using the Case 3 model for the gas flow. All program
modules are given including Bessel function routines and the routine for solving the simultane-
ous equations. This program will be referred to later in terms of determination of the
disturbing torques. This, of course, is the aim of the entire calculation.

In carrying out solutions for the Case 1 mean flow condition, the departure from jet
damping theory was immediately apparent, What this solution represents is a relaxation of the
restrictive assumptions that resulted in classical jet damping. We have now allowed the gas
particles to play a role In the response to the chamber motion. The result is a greatly modified
pressure pattern. In particular, the pressure is no longer l8et out of phase with the angular
velocity as in jet damping. This is a major difference. In fact, even for this simple mean flow
there is a jet driving effect of the order of what was before a damping influence. This is a very
significant finding, It shows that jet damping is inappropriate when the Rossby number is
small, That is, the jet damping assumptions do not apply when the chamber is large and
spinning rapidly.

Similar results were found for the other cases. The presence of the strong circumferential
vortex flow, induced in the nozzle by chamber spin, produced a significant modification and
further incrrnaed the reaction torque. As the more realistic flow models (such as Case 3) were
used, in which appropriate estimates of the radial mean flow velocity are introduced, the main
effect was the swinging of the reaction torque vector more nearly into line with the nutation
angular velocity vector.

The major difference between the vorticity wave solutions and the jet damping pressure
solution is the introduction of an axial variation in pressure perturbation amplitude and phase.
Notice in the jet damping case (see equation 98) the Coriolis term does not have any axial
dependence. The pressure pattern rotates uniformly with respect to the chamber wall. In the
more realistic case, the pressure distibution along the wall follows more nearly a cosine
distribution, The pressure maxima are on opposite sides at the f-'-nt and rear of the chamber; a
greatly enhanced nutation interaction moment results.

In order to evaluate the interaction moment, we must estimate the momentum flux carried
out of the control volume through the propellant surfaces, That is, we must also evaluate the
second term in equation 96,
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Mflow = -frx~n dS-JfrxQ (U-n) dS (180)
S S

To do this, it is necessary to calculate the velocity perturbation, This is most easily accom-
plished directly by writing the velocity wave equation. Starting again with equations 154 and
155, { IQ + 2k x Q + VO = F (181)

n.Q=G onS

where we are accounting for combustion and nozzle effects as discussed in the last subsection
by means of response functions. As we did with the pressure field calculations it is useful to
use the inertial eigenfunctions to produce a Fourier-Bessel series for the velocity distribution,
Thus, we write q =X-BmQm (182)

m

In order to find the coefficients, it is helpful to use the orthogoiality properties of the
eigenfunctions. Two useful expressions are

, , 0 (m ; n) (183)

V 'QndV = E2 = )

0 (m n)
fkQmQd* 2 (184)
kf. dV L E (M=n)

these are easily derived using the unperturbed momentum equation developed in the Poincare'
solution (see equation 115). The * denotes the complex conjugate.

As before, we expand the forcing function using the Rossby number as a small parameter.
Retaining first order terms, we find

F = F(O)+ RoF(I) + Ro2 F(2)+...= -2o, x U - x r + O(Ro) (185)

Ro
and the expression for the Fourier coefficients is easily found using the orthogonality results.
Thus,

13111 = 4 (186Bm (;,- m Qm' dV(186)

where we have neglected the response function terms because they are very small for cases of
interest.

The same mean flow cases were studied in determining the velocity perturbations. Tables
7 and 8 summarize the results. Unlike the pressure solutions, it is not necessary to solve for the
coefficients by solving simultaneous equations. For the low Rossby number case, equation
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186 gives them directly. The final results are shown in the tables. The velocity distributions
are quite similar to those shown in the numerical solutions for the closed chamber by Vaughn 26

(see Figures 6 and 7) and by Flandro.'

Table 7. Solution for Fourier Coefficients for Case 1

CASE 1: Small Rossby Number, Uniform Flow,Constant Amplitude
Ur=UO=0, Uz=-1I [2Uy(f, - f2) - 2(Ur - iUo)f3]

fQM -2r +fAR rtf(f l Vf2) -frldr

-2 J I 1Ro R

r)+~ rJf( b )

=~2-2f•(c'snz-r \-l){K (Am-2)+' m[J( - Jo()

(M C 2 )J() + 1
fQIFd=-2r7Te ,---l) r.e--2 L

Roe.-2/ ( . - 1) [j(ý- ) n+ -oJ()

ii

2Ai J(1

------ --



__________ Tble 8. Solution for Fourier Coefficients for Case 3

CASE 3: Simiple Rocket Flow with Vortex:

Ur -r, Uor U. 2z'-(4b +1), -= , L0, dzt
Ro r ~dr r d

Bm~ Q~.*FdV

(A m -2) (WJ(4

fQ*1 FdV =-2 Yr0(cos ni - 1) -- L)2I4 - 4 iO(4)]

j (Am-2) .ng)X

(2 +A 2[2) J()

4(2b' 2 ,,W
(A, --2) ( n )Jl'r

BM ___ 2 ,~ nJd
Bm~ ~ ~~~A- -_____ H)J( )2~of)

(A Am),~, 1(Am - 2)(nir)

Ro [ 2[3[1 - i(4)]- £2'-A[2Jj(4)- 4 JO(4 )]
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Calculation of Nutation Interaction Torques
The object of the detailed computation of the unsteady flow field is the estimation of the

interaction torques produced during nutation. As already shown, the pressure field is drasti-
cally altered from the pattern determined when jet damping assumptions are made. The
additional degrees of freedom resulting from properly allowing the gas particles to move freely
greatly affects the response.

All required elements are now assembled for estimating the torque gain factors and associ-
ated stability characteristics for a motor/spacecraft system. We will apply the results to typical
system configurations to determine what features are important in promoting nutation instabil-
ity.

To determine the impact of a realistic unsteady nutatlon-induced flow on the interaction
torques, we use the solutions for pressure and velocity distributions just discussed with the
equation Metow = -f rxpn dS- f rxu(u.n) dS (187)

S S
as derived for the alternate control volume in Section 3, As with the other variables, the
moment can be written in complex form as an amplitude times the assumed sinusoidal time de-
pendence, so that

MflCw = Mexp(iA t) (188)

where

Mflow -- Jfax~n &7- f r xQ (U -n) (IS (189)

S S

The expressions for 0 and Q can then be inserted and the indicated tntegration carried out to
determine the flow interaction torque acting on the spacecraft. The two components are
discussed separately in the following subsections.

P.r saute Torogue

In computing the pressure contribution to the momnent it is necessary to account for both
endwall and sidewall pressure distributions. Since the pressure function, 0, is in complex fonii
as well as the Fourier coefficients, it is necessary to obtain the real part before carrying out the
integrations. Therefore, we put

0 = tu amI = ( a(A) + iAr)+t(!•( 4r)exp(iO)cos(j-b z'J (1990)

m m

and the real part of the complex function is

M A " (~r'cosO-Am•)sin l(4r)cos .9z' (191)
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Thus, in terms of the Fourier coefficients, the sidewall torque can be written

m
2x 2b/ Inerl 2 W2 [(;r)s10521 A~isinecosejl)co(E z§')(z'-Ld z

2s 2b 2(192)4ISy =~ W f Ar)O -m'sncsjl4Cs19Z z-,) dz'
The integrations are readily accomplished (Appendix B gives several important Bessel func-tion Integrals required in the evaluations). The result is

,f .,= -2,v ,01 (2bŽ ,•SJ (193 )

m

Similarly the endwall contribution is

S X (r)A)sin 2  2j,(4 r)drd6Mex = -2 Xf f X[A#)cosZ - Affsln G cos eJ rJ( r s)drde (194)

The integrals are again easily carried out analytically for the cylindrical geormtry and expres-sions for the torque components can be written in series form as

m 2x 2 2"Mef•yrr2,i( ,)d, = -1,X A) ., 2 [A)+j -

m2 ff rs0-AOsn L ¼o rJ( rdd

Since the coefficients are determined in the computer a lgorithm, it is a simple matter togenerate the torque results simultaneously. The progirm source code listing included i
Appendix A implements this calculation.
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The total pressure torque is

MX= -Mw {A(ý{2(2b)'ji(4 ) + 2(4 )+ 1- 1~J( ) ]} (196)
M (196)

UY= -tflrX A )[ 2 j(4)J( + JJ-2(. ) + -. jJ?(4 )]}

Notice that the form taken by the analytical results is exactly that expected on the basis of the
experimental data. The pitch and yaw moment components are proportional to the amplitude
of the nutation wobble, dr.

M natum .rque
The second term in equation 189 represents the flux of angular momentum caused at the

burning surface. The gas particles must, in effect, pick up angular momentum due to the
chamber motion. The momentum is convected into the chamber with the combustion flow,
and must be balanced by a torque acting on the chamber. We must evaluate

MMomcntum f- rxQ (U.n) dS (197)

S
To set up the calculation, recall that

Q=M ~DBm Q11 0 B(r) +iB')m)(ifi Cr+f2 e9+if3 k)eiG (198)

or

Q =M(~r co 0--Q(')5sfl 9) + M(Qý)cOs - Qý) sin eOee +

+M(Q(r)cosO.-Q()sinO)k(19

where the components are

B~~x (i)f Q(i') =- X (r)f

m m

Q~r), Y~r~f2 Q9) = I BM (200)
M M

Fumctions fl f2, and f3 are given by equations 144-146.
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Inserting these results in equation 197 yields the momentum torque. The pitch and yaw
components ar
c pnt are r(xr) 2 _ - Q)sinG cosO) + (Q(r)sin 0 cos 6 - Q(i)sin2 0

Fix L401 %cer r ýrd(201)
I 2x r[(Qýr)sin ocos6- QUi)sin 2 e)-(Q(r)cos2 9- Q(')sin 6cosO)}rdO

where Lh locates the chamber forward end relative to the vehicle center of mass. Carrying out
the integrations, we find

Mx = -5 JtLh Yd mf)Jor(f1 - f 2 )dr

m (202)

My = MrLh B(')Jr(fl -f2)dr
Inmm

where

ft f2= ( L Jl(4r)+ Jf(4 r)] atz=2b (203)(I 2 Am (. r)

Finally, the pitch and yaw momentum torque components are found to be

m (2-Ah ) m (204)

I

As in the case of the pressure torque, the torque components are easily determined in the
computer program because all the necessary coefficients are available.

ML3ain Fact
The form of the moment iesults exactly matches our expectations based on the experimen-

tal data. As written, the torque components correspond to the configuration at some arbitrary
reference time with the perturbation angular velocity pointing parallel to the positive pitch (x-
axis) direction. This makes identification of the parallel and normal (to the nutation angular
velocity vector) components of the interaction torque a simple matter. Remember that the.
moment component parallel to the perturbation angular velocity vector 0' controls the growth
or decay of the nutation; the normal component determines the nutation frequency shift.

We will denote the proportionality factors between the moment and the magnitude of the
perturbation velocity, m• a jo' as the Rgaln and Sgain factors, respectively.
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The total interaction torque is the combination of equations 196 and 204:

A(f (' ()+ J{2(4)+ I- I j(41rn + -ýb B(r)jl4

(2- J (205)

A~r[2( I)' ,( ) + j2(4 )+ (j I )j 2(4 )1] _,

(2. m)

and the gain factors are easily identified as:

A() (L 2j•(R)+ :2(f)+ I- )j2(4)]
Rgain = --XIN (206)

Sgain n r (207)

These expressions are evaluLted in the computer program listed in Appendix A. The results
correspond to the low Rossi y number limitand are increasingly valid as the end of the motor
run in a typical PAM-D orbit raising maneuver is approached. They can be used for stability
calculations by inserting values of the spacecraft parameters at times of interest. Notice that
there is a strong dependence on motor geometry, as represented by the chamber slenderness
ratio, b, and on vehicle geometry, as represented by the position of the motor relative to the
center of mass. The chamber geometry also has a powerful effect because of the resonance
ef•ect when a particular nuxle frequency is close io the spacecraft frequency at a particular
"fine,
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Sample Stability Computations

One can determine the spacecraft system nutation characteristics by examining the gain
factors as functions of time. Equations 206 and 207 provide all of the necessary information,
They can be used to compute instantaneous growth rate (or time constant) if desired. However,
it is perhaps just as useful to examine the Rgain behavior directly in assessing the tendency for
nutation growth. It Is important to realize that the actual cone angle reached at a given time is
a strong function of the initial conditions at the beginning of the motor run, Thus, vehicles that
started with a larger than normal tipoff disturbance will reach correspondingly larger final cone
angles. The dependence on initial nutation amplitude has been found to be approximately
linear.1

Determinatgon of Rgain for Actual Vehiclt Configurations
Let us now apply the results of the last subsection to actual motor/spacecraft combinations.

This will provide us with a measure of the validity of the analysis and its associated set of
assumptions. The sample version of the computer program in Appendix A shows application
of the theory to the WESTAR-V, a typical PAM-D, STAR 48 spacecraft, Rgain data and other
measured system behavior are summarized in the second chapter. We will refer to several of
the figures in that material in assessing the validity of the theoretical calculations.

Figure 34 Is a plot of Rgain vs. time for WESTAR-V. This is similar to plots developed in
earlier studies.1 Differences are attributed to major improvements in the analysis resulting
from direct calculation of the pressure distributions rather than reliance on estimates of angular
momentum flux through the control volume. This yields a considerably sharper model for the
nutation interactions, Of greatest importance is the evidence of resonant response at several
times. The peaks correspond to points in time where there is resonant coincidence between the
vehicle nutation frequency and low-order inertial modes. Higher-order modes produce little
effect because they require much larger energy input for excitation, Comparison of the
theoretical results in Figure 34 with the experimental data of Figure 24 will show a remarkable
degree of correlation. The two major Rgain peaks are reproduced. Event times are not in exact
agreement, and should not be expected to be because the wave frequencies are sensitive to
actual chamber shape. The early peaks are exaggerated because the effects of damping of the
wave motions due to chamber boundary irregularities present in the early stages of the burn are
not represented in the solutions.

To understand the timing of the peaks in the Rgaln curve, it is necessary to examine the
wave spectra for the system, Figure 35 shows the frequency variations with time for a number
of low order vorticity wave modes. Superimposed on this plot is the spacecraft nutution
frequency as computed from equation 2, The reasons for the peaks in the Rgain plot are now
clearly evident. Strong resonant interactions occur precisely at the points where the mode
curves cross the spacecraft frequency trace.

It is significant that, because of the motor design, the inertial mode frequencies increase
slowly with time because the slenderness ratio decreases. The spacecraft frequency on the
other hand slowly decreases with time, Thus, chances of resonant interaction are increased,

The predicted Rgain magnitudes are in reasonable agreement with the measured values. In
making stability assessments, it is noi necessary to obtain exact values for the torque gain
factor. One can make decisions on stability on the basis of the presence of large Rgain peaks
and on the timing of those peaks.
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It should also be clear that the results described give us a means for devising system
changes that can reduce the nutation growth. For example, modifications in motor placement
or grain configuration can be used to shift the point of mode coincidence as a means for
cont -oiling resonance. Notice also for the STAR 48 motor that there is a distinct kink in the
mode frequencies that coincides with the time the sidewall propellant web reaches the chamber
boundary. The length continues to increase as the headend web burns causing the frequency to
decrease, during the last 15 seconds of burn. This may be one of the features of the grain design
that enhances coning growth because it causes the mode (1,3,1) f'equency to remain in the
vicinity of the spacecraft coning frequency during the final seconds of the bum when sustained
coning growth is most dangerous. The final part of the burn is critical because the moments of
inertia arm then low and the system becomes more susceptible to nutation growth.
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NAVIER-STOKES SOLUTIONS OF SPINNING ROCKET FLOW

Overview

As we have mentioned several times, in order that predictive nutation instability calculat-
tions can properly represent all physical and geometrical effects present in a spinning, nutating
rocket, it is necessary to utilize the great potential of finite-difference numerical procedures. A
task was included in this program was intended only to explore possible techniques for gener-
ating such solutions, We realized, however, the great potential importance of such tools in the
nutation problem and have undertaken a much more complete development.

We describe in this section the development and testing of a full three-dimensional, time-
dependent Navier-Stokes solution of the spinning rocket flow problem. Included is full
treatment of viscous and compressibility effects as well as the effects of the inertial forces that
drive wave motions In the combustion chamber. The fine numerical studies and program
development were carried out by Dr. Robert L. Roach at Georgia Tech, School of Aerospace
Engineering.

Since we are concerned about nozzle effects as well as gas motions in the chamber, the
solutions are carried through the entire system from the burning surface to the nozzle exit. This
provides a unique opportunity for exploring the enitre flow field in a completely general way.
This amounts to computational experimentation with no limitations on the amount of detailed
information available at any point in the motor or at any time during the motor run. The tool
we have devised will have a much broader application than the one that motivated its
development,

Numerical Procedure
Several numerical solution procedures for the Navier.-Stokes equations have been written

over the past several years in the School of Aerospace Engineering at Georgia Tech, 7' 5" In
this case a new code was written" based on the hybrid Approximate Factorization (AF)
scheme of Sankar et. al..49 In this method, the solution is generated on one circumferential
plane at a time, Derivatives in the circumferential direction use the latest values available and
are then temporally biased in one direction, The procedure calls first for a solution of all the
planes rotating in one direction around the axis, On the next itcration, the direction of rotation
is reversed. Sankar has shown this to be not only a stable procedure but also time accurate if
sufficient numbers of time steps to resolve the time scale of the phenomenon are used.

For axisymmetric problems, the solution is found on the center of three meridional planes,
After each time iteration, the solution on the adjacent planes is updated based on the new
values of the center plane, During the solution, the full three-dimensional equations are used,
Thus, the axisymmetry is introduced through the metrics in the meridional derivatives, As
fewer planes are required, there is considerable computational savings for axisymnetric cases.
The results presented here are for two cases of axisymmetric spin which take advantage of this
savings.
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The unsteady. 3-dimensional Navier-Stokes equations can be written in vector form for
Cartesian coordinates as:

qt +(F Fv)x +(G Gv~ + H - v~z= K(208)

where: pp vP

pu ~pu 2 + p upw
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and the noninertial terms are:

0

-p x r + 202x V +- 1 x Ox r].i

-p xr+2fLxV+f2xOxr
K I at (210)
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When transformed to a curvilinear coordinate system, then the system becomes:

nn+1 n+l ^n+l A n fn n

+6 +H (F v)+(v I ~~+(V) +k (211)
where 7 7

A KP
pu

b= I(1jtq+nXF+n yG +rzlH) *=- (21K1 1P (212)

S 1 PwH. =-(ýtq+ ;JF+ ;yo +;,) L

Note that with a moving coordinate system the unsteady metrics are nonzero and must be
carried along. These are used in burnback simulation, The derivatives are replaced by
standard finite difference operators and the unsteady term uses the two-point backward
difference:

(_ ý+ I -_ ,n_ 
(213)Sx-" At - At

In the the hybrid scheme49, the convection terms in two of the coordinate directions are treated
as implicit while everything else is evaluated explicitly. The "delta" form is obtained by
subtracting from both sides the nth level convection terms. The equation is linearized by a
Taylor series expansion around the known time level.

n

A n A1 JDF rkA+1 - n~
F F' 4-" -1 (214)
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Finally, the implicit finite difference operator is approximately factored into one-dimensional
operators in each direction to get:

I+ At 8 1 + At 8 4= RS (215)

This formulation allows for relatively efficient block triadiagonal matrices to be solved in each
direction. Thus the two step procedure is to solve the following two systems:

I[+ At 8 Ri-IS (216)

As central difference operators are used for the convection differences, some extra terms must
be added to smooth out the odd/even decoupling that occurs after a few steps into the solution.
These terms are also known to damp out the high frequency errors that may occur in the
vicinity of steep gradients. As suggested by Pulliam and Steger (Ref. 51), to the explicit right-
hand side is added:

A c (217)

To the implicit left-hand side is added:

- At el J-[ +&q]J (218)

where the constants are user input and typicalhy vary between 1 and 3.
To complete the fornulation, initial conditions must be specified to start the solution

procedure and boundary conditions must be Imposed during the solution. Here, explicit
boundary conditions are used wherein the interior flow is computed using boundary informa-
tion lagged by a single time step. This Is a standard procedure and has not been found to
provide any numerical difficulties other than to somewhat reduce the maximum time step size.
The alternative is to solve for the boundary values along with the interior. However, this
results in a computer code that can only run a few restricted classes of problems without major
modification. A description of the initial and boundary conditions for the two axisymmetric
spin cases follows.

Ittiitial .Condition
In order t.; permit a rapid solution for the steady state case, an initial condition was

generated using one-dimensional relations based on an area ratio with the nozzle throat. This
provides an initial solution close to the converged steady solution.
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As mentioned, dependent variables along the boundaries are computed after the values
have been computed on the interior.

Inflow Boundary:
The inflow boundary in this problem is the propellant surface, which we have modelled in

a "cold-flow" fashion. The thermodynamic variables, density and pressure, are specified from
given stagnation conditions and held fixed throughout the computation. Surface velocities are
computed from a one-dimensional Mach number/area relationship with the nozzle throat area
and the stagnation conditions specified. That is, initially, the burning surface area divided by
the geometric throat area specifies the surface Mach number. The cartesian velocity compo-
nents are resolved from the resulting total velocity vector, which is oriented normal to the
burning surface,

To account for the mass flux reduction through the nozzle throat, due to boundary layer
growth on the nozzle walls, the burning surface velocity magnitude is presently adjusted at
various times during the computation, The net mass flux through the throat is computed after
every iteration. The surface velocities are adjusted by a simple ratio every tenth iteration. The
remaining dependent variables on the inflow are held fixed, This procedure produces a very
stable solution. No large pressure oscillations or other transients were noticed prior to
convergence with this method.

An alternative procedure for updating the surface mass flux is to use the empirical
relationship between the chamber pressure and the burnback velocity, This has not yet been
tried but will be implemented in future versions of the code for purposes of verification.

Solid Wall Boundaries:
No-slip walls are imposed by maintaining all velocity components to zero on the nonburning

solid surfaces. In addition, adiabatic walls are assumed which reqt ires a zero-normal tempera-
ture gradient. The surface pressure is found by assuming a zero normal gradient. An
alternative is to compute the normal pressure gradient from the normal momentum equation
evaluated at the surface. As the terms remaining in the equation are usually rather negligible,
the normal pressure gradient is typically negligible as well.

Since both pressure and temperature have zero normal gradients, the state equation re-
quires a ,ero-density gradient as well. Hence, all thermodynamic variables at the no-slip solid
surface are determined from second order, one-sided differencing.

Centerline Boundary:
Zero gradients are imposed on the thermodynamic variables and the tangential velocity

component along the centerline boundary. Again, second order, one-sided differencing is
used. The velocity components normal to the centerline are held fixed at zero.

Outflow Boundary:
The outflow boundary is the most sensitive boundary from a stability standpoint. It

consists primarily of a core of supersonic flow from the expansion nozzle. In this region, all
variables are determined either by linear extrapolation along the (roughly) streamwise coordi-
nate or by a simple wave procedure, The simple wave condition is more stable and is used in
the initial stages of the ..alculation. This boundary condition results from the fact that
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properties are constant along characteristic lines. Hence, characteristic lines from the nozzle
wall are computed at the outflow and are used to determine the direction of extrapolation. In
reality, there are also characteristic lines of a second family emanating from the centerline. To
include these would require a relatively complex iterative procedure and was deemed not
worth the effort. Ignoring the centerline characteristics explains the "kink" in the various
quantities at the exit plane,

The kink can be eliminated by using a linear extrapolation. However, this method Is less
stable and is susceptible to divergence if too large a time step is used. Hence, this method
is used only near convergence of the solution. This means that unsteady runs will likely
require the simple wave procedure.

In addition, near the nozzle wall is a thin boundary layer which includes a subsonic region.
Here, it is not proper to extrapolate all flow variables. In this portion, density and the velocity
components are extrapolated and the total energy is computed from these values and the back
pressure, The back pressure is considered to be the pressure computed at the first supersonic
point above the boundary layer,

Another possibility is to solve the governing equations along the entire exit plane. This
would automatically capture the full characteristics nature of the flow in the supersonic region
and account for the pressure in the subsonic region. But due to the added stability and
accutacy, the entire boundary would have to be solved together as the equations would be
coupled.

Computational Grid
Finite difference solutions to differential equations require the domain to be divided into

small computational regions. These regions are dew-ribed either by points or by small cells.
The pattern of these cells or points resembles a net and is called a computational grid.
Specification of the locnxions of these regions usually requires some care and is the subject of
much research. The interested reader is referred to excellent summaries on the subject (Ref.
52, 53 for example).

Here it is only necessary to briefly describe some of the features of the grids used. The
grids used in the examples done here are presented in Figures 36-37. Only a single meridional
plane is presented as representative. For axisymmetric calculations, three of these planes are
used. For full three-dimensional problems, this plane is rotated around the motor axis to
generate the remainder of the points.

A sheared cartesian grid was used for the SRB-like motor shown in Fig. 36. The outer
boundary is desciibed by piecewise algebraic relations as shown in Fig. 36(a). The various
geometric parameters are user selectable. The resulting shape and interior grid are given in
Fig. 36(b), The interior grid was generated by equally spacing points in the axial direction and
using a hyperbolic tangent distribution in the radial direction. The radial direction spacing
allows for point clustering near the walls and near the centerline. For most of the upstream
portion of the grid, the geometry is simply cylindrical. At the diffuser and nozzle locations,
however, the radial coordinate of the outer boundary changes. Here, the interior grid is
stretched over the radial distance using the same relative spacing as upstream. This is called
"shearing" and produces a smooth change in the radial spacing. In this example, 84 points
were used in the axial direction and 21 in the radial direction.

The PAM-type motors present a far more complex geometry for purposes of grid genera-
tion. Again, piecewise algebraic relations were used to produce the outer boundary (Fig,
37(a)) with user selectable parameters. The parameters chosen here are those that closely
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Figure 36. Filnit Difference Grid for Generic Rocket Mator

resemble the STAR-48 motor. The outer boundary here refers to the centerline, exit plane,
nozzle/combustion chamber walls, and the propellant surface,

The motor outer geometry is specified so that the Intersection of the propellant and
combustion chamber can be found. This is necessary since an additional feature of the grid
generation package is the ability to simulate burnback, Hence, the user must also speoify the
time into the burn. The burnback profiles are shown in Fig. 38, In the results presented here,
the grid was generated at roughly 39 seconds into the burn. This time was chosen as being
about the time that some interesting flow features begin to arise in the motor.

Once the outer boundary is specified, the interior grid is geierated using Poisson-type
partial differential equations, 5 As can be seen in Fig. 37(b) one set of curvilinear coordinates
coincides fairly closely with the expected flow direction. Forcing functions used by the
program require the grid to retain the relative spacing specified at the outflow and along the
centerline.

Again, a hyperbolic tangent distribution of points was used in the radial direction to cluster
points near the solid wall and near the centerline, In the axial direction, clustering is used near
the nozzle throat and at the propellant surface, The grid has 81 points in the axial direction and
47 in the radial.

Since the numerical procedure used the time dependent form of the Navier-Stokes equa-
tions, each solution can be seen as a time-dependent calculation, Steady-state solutions ore
obtained by starting with an initial guess and calculating for sufficient time steps to insure
some convergence criteria.
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While the program is written for a full three-dimensional flow calculation, the problems
solved thus far are axisymmetric. The three-dimensional equations are solved on three meridi-
onal planes with a common intersection at the symmetry axis. Computation of the metrics thus
produce the effects of the axisymmetric geometry.

The flow is solved only on the middle of the three planes. The dependent variabies on the
other two planes are resolved from the center plane after each time iteration. This produces the
axisyrmmetric solution.
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Figure 38. Burnback liofiles for STAR-48.1dotor Typoe
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Results

Results are presented for two different motor geometries, an SRB-type and a submerged
nozzle type modelled after the STAR-48 motor. In each a calculation was performed for both
spin and nonspin. Spin rates were fixed to give a Rossby number less than unity as corre-
sponds to the cases of interest here. In all cases the flow was axisymmetric requiring only three
grids for the three-dimensional flow solver, The solutions were begun from an initial condition
described previously and marched in time to a steady state solution. Steady state was deemed
to have been reached when the maximum residual of the x-momentum equation was reduced
by at least three orders of magnitude.

Figures 39-43 show the calculated flow for the SRB motor. Figures 39 and 40 compare the
axial and radial velocities at x/D - 1.8 with Culick's analytical solution' 0 and with the
experimental data of Dunlap, et al. 55 The results are in rather close agreement even though the
geometries were slightly different. The experimental data is from a chamber with an LwD of
9.5, whereas here the ratio is 10.

Aerodynamic flow features are more evident in the contour plots of Fig. 41(a-d). The
Mach number contours of Fig. 41 (a), for example, show a smooth axial acceleration which is
greatest in the throat as expected. The boundary layer con be seen in the diffuser, throat, and
nozzle walls. At the outflow, the nozzle has become a straight duct so that the growth of the
boundary layer constricts the flow causing a series of supersonic compression waves which
traverse the exit plane,

Similar features are seen in the pressure and density contours of Figures 41(b) and 41(c).
The chamber is seen to have a retaLively constant pressure. As the flow approaches the
diffuser, the pressure begins to drop as the accumulated mass flux causes an acceleration. The
pressure remains constant in the short, straight-duct section just prior to the diffuser, where no
more mass flux has been introduced, and then rapidly drops through the diffuser and nozzle.
Nearly constant pressure through the boundary layer, as expected, is seen by the lack of
contours in that region. However, the density changes greatly in response to the temperature
rise appropriate for an adiabatic wall. A small disturbance near the upper head-end in the
density is likely caused by a slight incompatibility in the boundary conditions at the corner.
The effects do not persist in the domain and later computer runs are expected to have corrected
the incompatibility.

Figure 41(d) shows the rather interesting behavior of the radial velocity component. In the
combustion chamber, the flow turns quickly axial and has little variation until it reaches the
diffuser, Here it is directed, at first, toward the centerline and then parallel again in the nozzle
throat, The resulting series of contours, resembling the crest of a hill, indicate a maximum
about halfway through the diffuser and close to the wall. The effects diminish away from the
wall, The reverse process occurs downstream In the nozzle, The compression waves at the
exit plane are also seen,

The next calculation added a spin rate of 606 RPM to the motor to give a Rossby number of
0,8. The main aerodynamic features of the flow were not affected greatly except to now
include a core vortex. Figures 42(a) and 42(b) present particle traces of the gas flow for the
spin case. In Fig, 42(a), particles were released at seven different meridional stations at the
propellant surface near the head end. As the axial velocity is lowest here, the spin is most
evident. As the flow accelerates out the nozzle throat, the rate of rotation decreases. In Fig.
42(b), the view is more from the head end and particles were released from only three

108



-- Present Results

- -- Culick Velocity Profile
0 Experimental Data (Dunlap, et ul)

0,0 1.0

Figure 39, Cjn).arison of Experilnental and Computed Axial Velocity Profiles

0

-, Present Results

• •-- Culick Velocity Profile
Experimcntal Data (Dunlap, et ul)

-1.5

Figure 40. Comparison of Expcrimental and Conputed Radial Velociy Profilsj

109



(a) Mach Number

(b) Pressure

(c) Density

(d) Radial Velocity

Figure 41. Contours of Dependent Vartablcw for Generic Motor

Ito



meridional locations, but the vortical paths taken by the particles are more clearly seen.
Another spin case was run at 250 RPM in which the time history of the circumferential

velocity was tracked. As in the previous case, the nonspin flow was used as the initial
condition and the spin impulsively imposed. Figures 43(a-f ) show a region in the combustion
chamber and diffuser where the circumferential velocity in the direction of the spin grows. In
addition, a starting vortical region of spin in the opposite direction in the nozzle diminishes as
it is convected out of the domain. The final result shows the expected result of the greatest
velocity at the throat as angular momentum from the larger radius regions is conserved,

SITAR 48/PAM-D Results
Rotating and non-rotating .ases were run for the PAM motor as well. Aerodynamic

features analogous to those in the SRB were observed, though the change in variables was
more severe due to larger area ratios, The particle paths of the nonspin case were already seen
in Fig, 9 and show the expected behavior. Those for the spin case are shown in Fig. 44, The
view is from an angle near the top of the motor looking aft so that the azimuthal motions are
more evident as in the SRB case.

Figures 45-46 show Mach number and circumferential velocity contours, In these figures
the outer motor case was not drawn, so thai the leftmost boundary is the propellant surface,
The large accelerations near the throat cause contour lines to be rather bunched in that vicinity,
so a subset of the range of the variables were used.

The Mach number contours in Fig. 45 range from a value of .025 to 2.0, The expected
acceleration of the mean flow gas and the boundary layer growth are seen in the diffuser and
nozzle. In Fig. 46 the circumferential velocity component has the expected peak near the
throat at about 17% of the throat radius,

EutumWork
The results presented above represent the preliminary efforts of the three-dimensional

Navier-Stokes solution procedure applied to the case of spinning rockets, So far only the
axisymmetric spin has been performed. The computations were performed on the Georgia
Tech CYBER 990, Runs of 400 iterations were typical and consumed approximately 1280
CPU seconds for the STAR-48 configuration, Since the grid consists of about 3800 points, the
speed performance of the code was thus about 0,00084 CPU seconds per time step per grid
point (about 10% to 20% of the rate that would be attainable on a CRAY-class machine).
Converged solutions require about one to two hours of computation time. Since the nutating
case will require using many more circumferential planes, the run time would begin to become
prohibitive. As a consequence, the first task will be to vectorize the code, This has already
been anticipated and a vector version is now in the debug phase, It should be ready sometime
in the Fall of 1989 and should result in a speed-up of about five on the 990 based on experience
with other computer codes. In addition, access to a CRAY-class machine has been made
available at the Pittsburgh Supercomputing Institute on a limited basis and more time is being
applied for,

The next computational task will be to compute the spinning case with nutation. Initial
conditions will be an axisymmet'ic spin result with spin about an additional axis added. This
will require much more run time as at least three cycles of vortex undulation need lo be
captured. Time histories of the aerodynamic forces and moments are to be tracked to assess the
phase relationship between the dynamics and spin rates, In addition, the inclusion of burnback
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is to be examined. As mentioned, the grid generation package already has the ability to model
the burnback, and the numerical procedure has included unsteady grid transformation metrics.

The remaining com, itational tasks include the addition of a dynamics package to examine
the effects of spin and nutation on the net forces and moments, and to allow these to be fed into
the forces and moments applied to the Navier-Stokes equations.
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EXPERIMENTAL METHODS IN FLOW-DRIVEN NUTATION INSTABILITY

In this section, we describe the procedures needed to secure experimental information
regarding behavior of the gas flow and interaction force and torque effects in a spinning rocket
chamber. The experiments described are based on a set of scaling rules that were deduced by
using available flight data from the PAM-D series in concert with a careful dimensional
analysis of the problem. These scaling rules are essential in determining the correct values for
test parameters in small scale.tests in order that data can be extrapolated to full-scale motors,
The scaling rules are also of great utility in estimating nutation effects in new motor/spacecraft
configurations.

Two types of experimental methods were developed. In the first, we seek to understand the
flow field generated in a spinning, nutating chamber by observing the actual flow pattern
generated by the inertial forces. Methods were devised to produce an angular velocity
environment identical to that experienced by gas particles inside an actual motor. The simplest
device was a spinning chamber with lateral fluid motions driven by an oscillating piston, This
produced inertial waves of the sort predicted by the theory. A second method that more nearly
simulates a coning rocket utilizes two spin tables. The secondary spin axis carrying the
simulated motor chamber Is tilted with respect to the primary table, and the combined angular
velocities exactly simulate the effects of nutation and spin. Observation of the fluid motion
induced in the chamber gives information concerning the flow response. All of these experi-
ments confirmed that vorticity waves (ine-'.al waves) are produced in the environment of a
spinning, wobbling rocket. The waves include both pressure and velocity fluctuations and
correspond in all respects to the flows predicted by the theory.

Since it is highly likely that there will be future studies of nutation instability that require
full-scale motor data, considerable effort was devoted to design of techniques that could be
scaled to full size. These are intended to make it possible to measure important motor
interaction information in a direct manner. What is needed is a technique for determining the
Rgaln (torque gain factor) in an actual motor in a ground test environment.

We developed two approaches to this problem. They were implemented for laboratory
scale rockets using 2" diameter propellant grains. The scaling rules predict rather small
interaction forces for such small motors. Spin rates must be high to simulate full-scale
conditions. Thus, the tests were not expected to yield comprehensive nutation data, but rather
to explore the approaches required for larger motor sizes.

We did observe nutation driving in some of these small scale tests, but the effects involved
are quite small. We do not claim to have verified any particular model of nutation instability.
Modifications of the test techniques we have devised may make it possible to measure
interaction torques fairly precisely in both small-scale and full-size systems, Suggestions for
continued effort in this direction are discussed.
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Scaling Laws for Propulsion-Induced Nutatlon
In order to carry out useful experimentation in the study of nutation instability it is essential

to construct appropriate scaling laws so that effects of size and dynamical factors can be
properly accounted for. Rational scaling laws am also a much needed interim tool for avoiding
instability problems, Such information is required in the design of attitude control systems to
limit coning growth. The problem can be handled in a practical way while the search for the
origin of the disturbing mechanism continues. The purpose of this subsection is to establish
appropriate scaling laws by application of similarity and dimensional analysis to a set of
system parameters suggested by the jet gain theory of flow-induced nutation instability. The
results are tested by application to available experimental data. They are then applied, In later
subsections, in the layout of appropriate small-scale experiments.

The analysis indicates that the main scaling parameters are the motor size and mass flow
rate, and a characteristic spacecraft dimension. The scaling rules are readily verified, since
data from at least three distinct motor/spacecraft combinations are available. The results fit
Mther of the two viable physical models (namely the slag sloshing and the gasdynamic or jet
gain mechanisms) although we develop them here for the jet gain model.

The saling rules show that laboratory-scale experiments might yield useful direct infor-
mation regarding the mechanism if it is related to motor gas flow, The interaction forces
produced are small but appear to be in a measurable range. However, such tests do not
simulate the conditions necessary to activate the slag mechanism. Even experiments with full-
scale motors conduct4 ir.. spinning ground tests do not address several crucial features of the
flight environment essential in the slag accumulation theory. Instrumented full-scale flight
tests may be reluired to successfully discriminate between potential disturbing mechanisms.

features of the Jet Gain Nutation Instability Theo=
The basic concepts of the jet gain driving mechanism are now briefly described as a model

for constructing nutatlon instability scaling laws. Its basic physical premises are reviewed in
light of scaling effects. The reader is directed to earlier chapters for a full description of the
theory.

A useful starting point is to review the familiar jet damping effect, since it represents an
established description of an important interaction between the vehicle angular motion and the
combustion chamber gas flow. Except for the fact that jet damping torques usually act to
reduce lateral angular velocities (both with and without axial spin), their magnitudes and time
dependence closely resemble the disturbing torques measured in flight. The basic hypothesis
that led to investigation of gasdynamic driving effects is that it is related to the jet damping
phenomenon, hence the name jet gain. The gasdynamic coning mechanism represents the
influence of powerful spin effects on jet damping, Figure. 47 shows the difference between
effects predicted by jet damping theory and those observed in flight.

There is much to support the idea that disturbing effects arise in a natural way in the
combustion flow field. Jet damping produces a stabilizing torque of the same order of
magnitude as that giving rise to the nutation growth itself. This demonstrates that the
combustion gas flow is capable of exerting forces of the correct magnitude. The word
damping as used here does not mean that the jet damping is a dissipative mechanism. It does
not represent a frictional loss causing decay of the rotational energy of th- system. It is a
reaction force between the gas flow and the combustion chamber and nozzle surfaces. These
forces result from an unsymmetrical pressure distribution that reflects the resistance of the
internal flowing gas particles to changes in direction.
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Before the PAM-D coning effect was first encountered, it was assumed that jet damping
theory, as it had been successfully applied to many smaller systems, was the only motor-
related interaction of any importance. The spin rates for a given system arc selected on the
basis of an algorithm intended to minimize nutation growth from a variety of sources such as
sloshing liquid stores and structural flexibility. During the early part of the motor bum in the
STAR 48 (PAM-D) operations, the standard jet damping estimates account for the observed
motion fairly well. However, as burning proceeds, there Is a gradual transition from damping
into driving, as if the the damping force mysteriously switches direction. The magnitude of the
apparent torque remains in a range typical of jet damping.

The situation is displayed conceptually in Figure 47. The lateral force configuration
expected on the basis of classical jet damping (Fig. 47(a)) is similar in all respects but one to
the actual system shown in Figure 47(b), The latter is the force system deduced from flight
telemetry near the peak of the coning instability. The lateral force now has a component
parallel to and in the same direction as the instantaneous later angular velocity vector. This
component leads to increasing lateral angular velocity. The component normal to the angular
velocity vector causes the nutation frequency to shift. The force and angular velocity vectors
traverse the system In the retrograde direction relative to the rotation of the spacecraft,

Jet damping calculations are based on an exceedingly simplified model of the gas flow In
the motor. An incompressible one-dimensional flow is usually assumed, Models now in
widespread use are only slightly better than the those deduced in the classical literature.14° 1
These work acceptably well for small chambers with large length to diameter ratios such as in
the tactical rockets for which they first used. Figure 48 describes two ways of describing the
jet damping mechanism, Both have been used in developing the standard theory. In the first,
the gas flow is represented by an incompressible fluid with axial streamlines produced at an
end-burning propellant surface. The inertial forces on the gas are balanced by an unsymmetri-
cal pressure distribution as illustrated. This simple model works whether or not the system is
spinning. For the arguments to follow, the second view is more enlightening, Now instead of
representing the forces acting at the walls of the chamber we examine the equivalent reaction
foie to the volume force distribution on the gas particles themselves, In body-fixed coordi-
nates, this force is the familiar Coriolis force as shown. Again, notice that the model takes no
account whatsoever to the fact that the gas is a deformable medium. If there is a force acting
on the gas particle portrayed in Figure 48, this must cause Its velocity and path direction to
change. This is a weakness of classical jet damping analyses that doesn't matter for small,
slender motor chambers. If the gas particles move quickly through the system then the
deviation in the streamlines caused by Coriolls acceleration is negligible and the old view is
still acceptable. In a large rocket with large lateral dimensions, the path lengths to the nozzle
are significantly longer owing to the nearly spherical shape associated with space motors,
Thus, gas particles remain longer within the system, implying an extended opportunity for
exchanges of angular momentum between the gas flow and the vehicle and thus an alteration of
the net reaction torques, A useful estimate of the residence time of a gas particle is the time
required for a particle to traverse the chamber radius

t = R-- (219)vb

where vb represents the typical gas speed in the chamber, For convenience, we will take this to
be the speed of gas particles leaving the burning surface, R is the average chamber radius at
a given bum time. In large motors, this parameter is typically two orders of magnitude larger
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than in tactical rockets. Clearly one must be concerned about the actual gas dynamic effects
when the flow field does riot consist of simple axial streamlines with constant particle velocity.

Another flow feature entirely neglected in jet damping theory is the presence of an
azimuthal flow component, a vortex flow, induced by the spin. Gas particles leaving the
burning surface carry the angular velocity of the solid body. As they move toward the nozzle,
their spin is enormously amplified due to angular momentum conservation. The pressure
distribution (or the equivalent forces acting on the body of the fluid) must clearly be affected
by this complex flow field, The central idea of the gasdynamic nutation theory is that the
pressure distribution, especially in the vicinity of a submerged nozzle entrance is modified by
the Inertial forces acting on the gases as they traverse the chamber, The longer the residence
time, -c, the larger these effects should be. The motor size is then obviously a key parameter.
One must account for the effect of the unbalanced Coriolis force on the particle motion, and
hence the related pressure fields. Calculations described in earlier sections of this report are
aimed at quantifying this complicated situation.

Since we have Identified one key parameter in the jet damping problem, it is useful at this
point to select others that will be needed in carrying out dimensional analyses of the jet gain
effect in the next section. Characteristic parameters in spinning rocket internal flow problems
are easily chosen. A convenient set easily quantified for a given motor design is

Chanrctertstic Letigth: R

Characteristic Speed: vb (220)

Characteristic Time: 0"1

where Q is the spin rate of the vehicle (rad/sec). It' the gas particle residence time is made
dimensionless by dividing by the characteristic time, one finds

tt R l (221)
(I Vh

'This is just the inverse of the Rossby number familiar to investigators in rotating fluid theory. 1

is Ro h] L-) (222)
Ril

This parameter plays a central role in choosing mathematical strategies for approaching the
nutation instability problem. Notice that for large stay-times implying a large modification of
the internal flow by Coriolis forces, the Rossby number is small. The reason the simple
theories of jet damping worked in smaller rockets was that the Rossby number was very large,
and the assumption of a uniform gas stream unaffected by the vehicle wobbles was justified.
T'his is equivalent Io the statement that the Coriolis forces in the flow relative to the chamber
are balanced by the pressure forces acting on its boundaries, 'Nh integrated pressure force is
the jet damping resistatice.

To reiterate, in large spinning rockets such as the STAR 48 and especially In even larger
motors now being developed for orbit raising missions, the residence time of gas particles is
much increased from earlier rockets, Significant induced currents in the internal flow and
associated asymmetrical pressure distributions must be accounted for. To make further
progress, one must determine the nature of the internal flow perturbations and their influence
on the force balance on the vehicle.
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Unfortunately, as we have found in our theoretical studies described in earlier sections,
the fluid mechanics problem thus posed is very complex so it is difficult to present simple
physical descriptions of the resulting time-dependent, three-dimensional flow field. We are
looking for unsymmetrical pressure fields caused by the gas flow perturbations, Unless the gas
is a rigid body, we must account for its relative motion and related impact on the system
dynamics. This Is not done in jet damping theory. Conection of this situation Is the fundamen-
tal basis of the jet gain mechanism. The flow field is modified by the Coriolis forces, and tile
net result is that a lateral velocity perturbation is induced in the flow entering the nozzle. This
results in an asymmetrical pressure distribution. The integrated pressure force on the chamber
boundaries rotates relative to the chamber in the retrograde direction (for a prolate spacecraft
mass distribution). The torque produced by this force can be as large (or larger) than the
predicted jet damping torque, and more importantly, it can act in the opposite direction thus
driving nutation instead of damping It.

Scaling Laws for the Jet Gain Model
The characteristics of the PAM nutation instability are sufficiently well represented by the

experimental data set t that appropriate scaling rules can be established and tested. In order to
apply the familiar methods of similarity and dimensional analysis, it is necessary to select a set
of parameters expected to affect the underlying physical mechanism, The choice of scaling
variables is imposed once the physics of the model have been decided upon. One can then test
the mechanism in a semi-quantitative manner by comparing its predictions to available experi-
mental data. Although the gasdynamic model will be used here, it will be demonstrated that
the resulting scaling laws are also valid for the slag sloshing mechanism in an overall sense,

Dimensional Analysis of the Jet Gain Coning Mechanism
The primary scaling variables that naturally arise in the internal flow problem werc

discussed In the previotus section. Additional variables are added to the list, since the experi-
mental data suggest that they affect the flow-driven instabilities, We propose to write a
functional expression for the disturbing torque based on the following system variables:

ii Motor Mass Flow Rate (kg / sec [slug/ seci)

R Combustion Chamber Radius (m Ifti)
fl Axial Spin Rate (rad/sec)

0) Nutation Angular Velocity Perturbation (rad / sec) (223)
Lcj Location of Center of Mass Relative to Motor (n [ ft ])

vb Gas Speed at the Burning Surface (m / sec [ft / sec])

Po Average Density of Combustion Gas (kg/nm3 [slug / ft3j)

The spacecraft moments of inertia are not included in the set of variables for the disturbing
torque. They will, of course, enter the problem strongly when the torques are used to estimate
the dynamic response of the spacecraft. Applying the Buckingham P1 Theorem In the usual
fashion, and using mass flow rate, center of mass position, and the lateral angular velocity
perturbation as the running variables, we find for the disturbing moment

Mnow=Rgaino 1{i11L ,CT}( (224)
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where the interaction torque coefficient CT is a function of several dimensionless parameters,
must be determined experimentally. The torque is proportional to the nutation angular
velocity; this is one of the features of the phenomenon that is clearly indicated in the
experimental data described in Section 2.

From the dimensional analysis we find

CT = Flow Interaction Torque Coefficient = CT Ro,-,- (225)
LC8 Q )I

Notice that the moment scaling coefficient, CT depends on several dimensionless groups that
reflect mainly the motor characteristics. The Rossby number, the ratio of the disturbance
angular velocity to the spin rate, and the size of the combustion chamber relative to spacecraft
size (as represented by the center of mass distance L ) are the main similarity parameters.
To summarize, on a strictly dimensional basis, weeAnd that the nutation torque gain factor
depends on the physical parameters of the nutating spacecraft and motor according to:

Rgain = ,, cT rRo, (226)

To properly simulate coning behavior in laboratory experiments or in small scale labora-
tory tests, it is necessary that the Rossby number, relative size of the angular disturbance, and
relative chamber size be equal to the values corresponding to the flight data, Some physical
reasons for the, importance of the Rossby number were established earlier. Examination of the
available flight data shows that only spacecraft systems with a relatively small Rossby number
have experienced coning instability related to motor operation. The decrease in the Rossby
number with time (as R becomus larger as propellant is consumed) explains why the distur-
bance is most important at the end of the motor run. Other contributing factors are the
decreasing moments of inertia as propellant is consumed, and the increase in lever arm length
between the motor and the center of mass,

Since spin rates and internal gas flow speeds are similar in most orbit raising vehicles, it Is
clearly the size of the chamber that represents the most important difference between various
systems. Perhaps this is the main reason that the nutatton phenomenon was not apparent in
earlier spinning vehicle operations. As payloads requirements have grown larger, so have the
required propulsion system impulse and, hence, the motor size. It appears from the data that
only if the Rossby number approaches the order of unity or smaller does the coning problem
become important, Effects of vehicle oscillations on the gas motion are more important for
small Rossby numbers as discussed already.

Motor burn time is indirectly involved in the net impact of the coning disturbance on the
spacecraft motion, since the larger motors have thicker propellant webs and hence a longer
action time. Small disturbances arising In the gas flow are likely to be more important if they
act for longer periods of time,

Application of Nulation Scaling Rules
The main result is the simple expression given in equation 224. It can be used to estimate

nutation torques needed in designing nutation attitude control systems, It is interesting to note
that the disturbing torque model could also have been written in the form shown in 224 even it
slag sloshing were the actual physical mechanism. Slag models are usually written in terms of
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the vehicle acceleration, This parameter clearly depends on the thrust, which in turn depends
on motor mass flow rate. A very similar dependence on parameters results, and 224 could be
rewritten to emphasize some of the variables that are important in the slag mechanism.
However, unlike the the jet gain model, the slag model requires knowledge of several parame-
ters that cannot be readily determined. For instance, CTwould be expected to depend on the
amount of slag accumulated at a given time, the physical properties of the hypothesized liquid
material, and any spring constants or pendulum lengths needed to represent the dynamics of
the liquid pool.

To use equation 224 in a quantitative sense, it is necessary to estimate the magnitude of the
dimensionless torque coefficient C This factor can be determined with acceptable accuracy
from flight telemetry data for the iAM-D flights. Examination of this data shows that CT Is
approximately CT ft 2 (227)

during the last seconds of burn when growth of nutatlon is greatest. The corresponding values
of the three similarity parameters corresponding to the jet gain model are

Ro= 0.82
R

-L = 0.21 (228)

. 0,08

In a situation involving similar values, the stated value of CT should provide a reasonable
estimate of the average torque gain factor. However, great care should be taken in using such
estimates. Examination of the flight data shows that large peaks in torque occur (indicating
transient resonant response) and these have an important impact on the actual coning growth.
For instance, in all PAM-D and SGS-I1 data there is a large midburn peak that is responsible
for triggering the wobble that grows in a sustained way during the last 10-15 seconds of motor
burn,

To test the scaling rules one must determine if equation 224 fits available data, Fortu-
nately, all flight data is for motors with similar parameters, so they are also approximately dy-
namically similar to the PAM.D configuration. For example, in the case of the four SGS
vehicles, the experimentally deterniined Rgain near the end of the first stage bum peaks at
Alxut the value

Rgain = 7.5 - ft- lbf (from SGS- !1 first- stage telemetry data) (229)
deg / sec

The corresponding mass flow rate and center of mass position are approximately
,itsl.61.3 ft (230)

see

Using equation 224 and assuming CT = 2 yields a predicted Rgain of

Rgan ca. 6-*-.32*2=408.6-ft-lbf 7.1 ft- IV (predicted value) (231)
rad / sec deg / sec
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This compares favorably with the flight measurement. The small discrepancy (less than 5%
difference) could be the result of the fact that the systems are not completely similar. The spin
rate of the SOS-l's was approximately 1.5 times the PAM-D angular rates, and the length ratio
was also larger by a similar factor. It worth noting that had the slag mechanism been used, then
the effect of the much lower acceleration (about a third the PAM-D axial acceleration) of the
SGS-I1 would need to be accounted for. Considerably less slag accumulation would be
expected under these acceleration conditions. Also, the driving torque should be lessened
considerably. This is strong evidence in favor of the gasdynanmic mechanism.

Application toa Design of Nutation Experiments
As a final example of the application of the scaling laws, consider the problem of

measuring Rgain in a laboratory scale device. Several proposals for tests using cold flow or
small rocket motors have been studied. Three of these were tested as part of the work
described in the following subsections,

To make routine testing economical, one would like to employ readily available motors of
the order of, say, two inches outside diameter and five inch length. For dynamic similarity, It Is
necessary that a spin rate of about 200 rad/sec (-20(X) rpm) is needed to match the flight
Rossby number. Mass flow rate would be approximately 0.01 slug/sec, The resulting torque
gain factor is about

Rgain = 5.-103 ft-lbf
rad / sec

Under these conditions, a maximum reaction torque of about 0.2 ft-lb would be generated
depending on the coning angle relative to the spin axis used during a test, In order to enhance
the torque it is necessary that the angular velocity perturbation also be sufficiently large. This
is a very small but, perhaps, measurable torque.

Such a test is appropriate for simulation of the jet gain effects, but is not useful if slag
motion is the source of nutation growth. Axial acceleration is an important factor in the latter
mechanism, Some slag mechanism simulations using small, free-flight rockets is presently
underway in a program sponsored by the Hughes Aircraft Company. The results of these Inter-
esting experiments have not yet been published. There have also been several captive "cold-
flow" simulations, aimed at establishing the possiblity of resonant response of a trapped pool
of slag. These have not been successful in demonstrating resonant conditions.56

In the next subsection we discuss experimental findings for the jet gain mechanism that
utilize the scaling rules developed here.

Summary
Finally, application of the method of dynamic similarity yields a simple and useful scaling

law for nutation instability experienced during spinning upper stage propulsion maneuvers.
The form of the scaling law is appropriate to either of two viable disturbing mechanisms, The
derivation was carried out using the parameter set corresponding to the jet gain gasdynamic
interaction mechanism, The scaling system described enables data from the PAM-D flight
%eries to be extended in estimating nutation characteristics of new spacecraft configurations.
Thus it can be used in determining required attitude control capacity in systems using geomot-
ricul arrangements similar to those previously experiencing coning instability. It should also
prove valuable in the preliminary design of experimental procedures for simulating the gasdy-
namic coning mechanism in laboratory-scale tests.
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Experimental Techniques
Since the propulsion-driven PAM-D nutation instability problem is known only from te-

lemetry data from about 20 flight vehicles, it is highly desirable to determine methods for
study of the basic mechanisms in a laboratory environment. Also, it is quite likely that
ground tests of full-scale motors will be needed In the future to determine the nutation
interaction characteristics, before risking them in flight. Since extensive qualification testing
is done on new motors for spin-stabilized systems in large spin test facilities, it makes
considerable sense to investigate possible modifications to the test procedures that could
yield nutation data in addition to the other performance data that are presently collected.

This subsection consists of three paes. In the first one, we discuss a method for simulat-
ing the angular velocity environment experienced in a spinning, nutating vehicle. This
method was applied in two laboratory-scale experiments described in the last two sections,
One experiment was aimed at flow visualiztion of the complex wave patterns we expect in a
nutating rocket chamber. The last set of experiments was aimed at developing test methods
for simulating coning behavior in ground tests of small spinning rockets that could be scaled
up for use with full-scale space motor hardware,

The Two-Spin Axis NUtation Simulation Technique
In order to simulate the gas flow behavior in ground testing, it is necessary to reproduce

the angular velocity environment experienced in flight by a spinning nutating rocket motor.
It happens that this can be accomplished by means of a relatively simple mechanical arrange-
ment that requires only two rotational degrees of freedom, No translational motion is neces-
sary.

Consider the wobbling motion as it appears in flight (see Figure 1) in body-fixed coordi-
nates, The angular velocity environment consists of the axial spin with superposed lateral os-
cillations;

One can readily show, by means of the standard Euler angle transformations, that this envi-
ronment is identical to that produced by a body spinning simultaneously about two axes
inclined to one another as shown in Figure 49. In terms of the Euler angles, the body-fixed
angular velocity components are

wx = sinOsin* 0 + cos06

MY w sinecos¢o - sin 0 (232)

To simulate a specific nutation amplitude in which the perturbation velocity is fixed, one can

assume that angle 0 is constant so that

0 - Constant - 0o (233)

Also, for any practical experiment the spin rates in laboratory coordinates must be constant
so the primary spin

Constant - VIo (234)
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is taken to be fixed. Then the following relationships must be satisfied:
ot). = Osink~st =sin~osin~ox

0)y = (IoCCOSxst =sin~ooCOS¢o (235)

I = cos 80 *0o+
Thus the nutation wobble amplitude is related to the primary spin rate and the nutatlon angle
Oo through the first two equations as

ACo %r= *osin8O (236)

Thus, in order that the wobble rate is represented, the secondary spin must be

S= Xs (237)

Finally, the following relationships are found

0= tan-j(°2)

(238)

X8o= (w1 2 2

Picking an appropriate cumbination of the two spin rates and the offset angle allows simula-
tion of any angular velocity environment experienced in flight. For example, in a typical
situation one might expect

o= 20 degree / sec
&i= 50 rpm = 5.24 rad/sec

X,= 0.6' * L= 3.14 rad/sec

which leads io the following test conditions

0 9.4 degrees

$= 3.14 rad / see = 29.98 rpm
*0 = 2.13 rad / sec = 20.33 rpm

The angu!ar rates and !he offset angle are fixed throughout a motor bum at values that
simulate behavior that is reached only near the end of the burn when instability grows to the
chosen condition. Response of the system to realistic perturbations can therefore be assessed
throughout the motor bum and it is not necessary to allow incipient growth of the disturbance
as in other proposed test methods, Thus, in a full-scale test, one can apply two modest
angular rates with a reasonable offset angle. These. are within the ranges of equipment
already in place. However, modification of full-scale test hardware is an extremely costly
venture and may never be undertaken. Therefore, we will explore methods for applying the
suggested technique in laboratory-scale experiments.
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Dcsign of a Laboratory-Scale Test Techniques.
Two approaches have been developed in this program. Although beyond thi' scope of the

original work- statement, they have both bc~n brought to the hardware stage. Additional
funding w.,s made available at the end of the program that allowed testing of the most
promising o. these methods, The fij st approach is a small-scale implementation of the two-
spin axis arrangement already discussed. Figure 50 3hows the test hurdware as assembled by
Dr. R. S. Brown at United Technologies Chemical Systems Division using the concepts
developed in this program. Figure 51 is a schematic of the layout. The goal of this experi-
ment is to directly determine the reaction moment of Ole system t., the imposed nAtation
motion, This is most conveniently done by means of a inulti-axis load cell fixed in labora-
tory coordinates on which the spin apparatu. is mounted This allow. direct measurement of
the interactiri moment. The results th-n yield information on the gain factors produced
during thN test. Since a small rocket motor is used (two inch outer diarueter) short bum times
would not allow natural development of significant nutation from init;ally small wobbling as
in the full scale flight instability.

The second method utilizes the Froude pendulum concept. This consists of a small
rocket motor attached to a physical pendulum ,•ree to swing in any direction about a universal
joint or gimnbal. The pendulum shaft is mounted in bearings so that the motor can be spun by
an ecu'tric motor mounted at the opposite end of the shaft, In the design shown, the
pendulum swings freely i a stable circular arc at the tnomint of motor ignition, The angular
velocity environment -Ie rocket chamber is identical to that experienced in flight. The
sam: interaction torques nrc generated. The effect of these torques can be de.termined in
principle by observing the effect on the pendulum motion.

We have implemented the Froude pendulum technique as shown in Figures 52 and 53
showing the gimbal arrangement and drive motor and the rocket motor firing during a typical
test, The rocket is of conventional d.sign aid utilles two-inch outside diameter propellant
grains with 1/2-inch web thickness. Three grain lengths, 2.3, S, and 3.5 inches were used in
the tests to allow determination of the effects of chamber slenderness ratio. The motor is
equipped with a readily replaceable submerged nozzle with a graphite nozzle entrance sec-
tion. The grains are inhibited at each end so they produce a moderately progressive pressure
trace, Throat size was determined to give an average mean pressure similar to the flight
conditions in a STAR 48 motor (approximately 800 psi). The motors employed the same
propellant used in actual STAR 48 flight hardware. Figures 54 and 55 show views of the
motor hardware. The motor is equipped with a spring loaded closure system to allow fail
safe operation. Chamber scaling was accomplished with O-rings as shown in the figures.

Motors were ignited with I gram BKNO 3 "baggie" ignitors and an electric match. Power
for the ignitor passed through a slip-ring assembly that can be seen in Figure 56. Slip-rings
for transmission of Kistler transducer data were also mounted in this assembly as shown,

Tests were conducted, as described, with the pendulum motion simulating a 300 cone
angle instability at the beginning of the motor run, Motor burn time was about two seconds.
Motion of the pendulum was tracked by means of a mechanical linkage moving an encoding
device. The signals were sampled at 1/60 second intervals and simultaneous analyzed and
stored on a hard disk. Additionally, provision was made to measure chamber pressure near
the motor head end by means of Kistler transducers.

There was evidence of slag deposition, but we noticed that even though the motor was
nutating with large amplitude during the tests the slag was nearly uniflormly distributed
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Figure 50. Two-Axis Spin Lab-Scale Motor Test 12tvice
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Figure 52, Two-Inch Leludis Rocket Firing During Froude Pendulum Nutation Test

Figure 53. Drive Motor and Gimbal ArrPgement in Froude Pendulum Test
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around the periphery. Figure 57 shows a grain fired without spin and an identical one fired
with 1700 rpm spin. The nozzle pointed downward in these firings so that any liquid slag
should have moved to the area surrounding the submerged nozzle as has been expected in
flight. There was no evidence of such "pooling" of the slag in these tests.

Resulta
The availability of two inch propellant grains set the size of the experimental apparatus.

Motors of this size are commonly used In laboratory testing of propellant formulations. As
the scaling laws show, the flow interaction torques produced in such small motors are very
small. As the last subsection indicates, torques less than 0.2 ft-lbf are expected if full
dynamic similarity to the full-scale'motors is achieved. The test conditions chosen resulted
in a Rossby number of about 1, which is similar to that experienced in a full-scale STAR-48
at midburn. Thus, conditions for similarity were achieved, and an Rgain factor of about
0.005 ft-lbf/fad/sec would be present as'predicted by the theory.

In the free precession testing, the effective amplitude of the angular velocity perturbation
is set by the natural frequency of the pendulum swing (see equation 236). The natural fre-
quency was lower than desired because of the large mass of the large electric motor required
to spin the motor assembly at 1700 rpm. The pendulum frequency was approximately 0,6
cycles/sec, corresponding to a wobble amplitude (with a pendulum swing angle of 30') to
about 1.9 rad/sec. Thus, the actual interaction torque present was about 0.01 ft-lbf, which
was not large enough to detect by means of changes In the free motion.

The test results seemed to show evidence of nutation growth during the second half of the
motor burn. These data are not conclusive, and we do not offer them In support of any
particular model of nutation Instability. Also, due to the small size of the disturbing torques,
the reproducibility of the tests was not acceptable, and no conclusions can be reached on the
basis of the present results.

However, we have demonstrated a new experimental technique for study of nutation
characteristics of a spinning rocket motor for the first time. The experimental systems
performed properly and motor operations were generally normal. Ignition difficulties ap-
peared in one firing, but these were apparently due to a debonded propellant grain.

Our main goal of developing practical nutation test methods was met. The conclusions at
this stage of the research is that the two-axis method shows promise as a practical method for
determining the nutation interaction torques in a spinning motor.

Modifications of the experimental procedure can be used to increase the interaction
torque. If small motors of the type used in the present experiments are to be employed, it
will be necessary to greatly increase the primary spin rate. Thus, the pendulum method must
be abandoned since the effective spin rate is dependent on the pendulum frequency. If is
increased to, say, the same rate as the axial spin, 1700 rpm, by driving as in the two-axis
method (see Fig. 49), the interaction torque in a two inch motor would be increased to
approximately I ft-lbf. It should be possible to accurately measure such a torque if the
apparatus Is dynamically balanced so that vibration effects do not affect the torque measure-
ments. In order to produce torques that can be measured with adequate resolution, it will be
necessary to use larger test rocket motors. It appears that use of motors of the order of six
inches in diameter will be large enough to produce nutation gain data in laboratory-scale
testing.

134



Figure 54. Motor Components Showina Typical Grain and Aft Closure

Figure 55. Assembled Motor Showing Pressure Relief System
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Figure 56. Slip Ringt Assembly in Froude Pendulum Test Device

Figure 57. Slag Deposition (Motor on Left Will Eired Without Spin)
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Figure 58. Cold Flow Test Arrangement

Cold Flow Nutation Simulations
The experimental setup is shown in Fig. 58. The main spin platform is a Genisco C-ISO

rate of turn table with mechanical feedback. The rotation rate is stable to less than 0,1
degree/sec. The rotation range is 0.01 to 1200 degrees per second, for loads up to 50 pounds,
The main platform is equipped with sixteen slip-ring assemblies. The secondary spin table
was designed to rotate in the range 0-360 degrees/second, and is equipped with fourteen slip
rings. The secondary platform was modified to operate at a tilt angle up to 300. There was a
slight centrifugal drag generated by the outer table which tended to slow the inner table
compared to its nominal operating characteristics. To compensate for this, the secondary
spin table was driven at a higher voltage to maintain a given rotation rate. It was expected
that the first inertial mode would be excited when the ratio of the main spin rate to the
secondary spin rate was 2.2. The test cell was illuminated with an 18-watt fluorescent light.
Five video tapes were made with a Canon E"0 Camcorder. Voice recording was made on the
video tapes describing the test conditions used in each run.

All tests were run in the clockwise direction as viewed from above. Distilled water and
oil (Cargille Immersion Fluid) were used in the test cell. Photo-Flow 200 solution was used
with the distilled water. The particles used to render the flow visihle to the recording camera
were 0.03 mm, 0.3 mm, and 1.0 mm alpha-alumina powder, 30 mm aluminum powder and
crestule violet dye diluted with distilled water.

A Breul and Kjaer hydrophone was mounted near the sidewall of the forward face of the
chamber to record pressure variations. However, the wave amplitudes were so low that no
conclusive data was produced during these tests. Earlier tests using the piston-driving tech-
nique showed definite pressure wave effects when resonant inertial modes were excited.
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BResult
The flow visualization experiments confirm that the angular velocity environment In a

spinning, nutating chamber produces a traveling wave motion in the contained fluid. The
results confirm earlier measuretnnts in which the waves were driven by an oscillptinj piston
mounted off-axis as described In Reference 1. The recovnings verity that the fluid particle
oscillations are in the form of a reto•roade ib ohr4Insionol traveling wave. They also
confirm that there is a 180 depres phase shift betwen laterallprtcle motions and associated
pressure patterns between the forward a-diaft end of the test chamnber. This is one of the key
features of the unsteady flow in a nutatirnjchamber predicted by the analyses presented
earlier.

Tests conducted with the sinmgated swbiea4od noz&le did not differ substantially from
those using a flush nozze, Thus the now$l apparently has little effect on the oyerall flow
pattern except in its immiediate vicinity.

Recordings from the cold flow tests Ar included in the video tape suwimarling the
program findings. These clearly demonstrate the wave behavior of the flow in a spinning,
nutating chamber,
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CONCLUSIONS

This study was motivated by a need to understand, in detail, the mechanics of interactions
of an internal flow in a spinning rocket with the dynamics of the vehicle. Proposed mecha-
nisms for the PAM-D instability have not been successful either in predicting coning effects in
new vehicles or in suggesting corrective procedures. The problem is currently handled by
guesswork using strapon nutation control devices that cannot be properly matched to the
system because the characterization of the distutbing torque has been Incomplete. It is clear
that the exact nature of the coning mechanism must be determined along with its physical char-
acteristics and its dependence on vehicle parameters

We have found that a strong disturbing mechanism is present in the internal flow field. In
large motors (such as the PAM-D, STAR 48), the gas motions are dramatically affected by
vehicle nutation. The jet damping concept, found to be a reasonable model for gas flow
interactions in earlier, smaller spinning vehicles, does not apply in large motors. The assump-
tion that the gas immediately accommodates to the motion of the chamber boundaries so that
the flow remains uniform is incorrect in a large motor,

Jet damping has been demonstrated in the report to be a consequence of a traveling
pressure wave induced by Coriolis forces in the gas. By assumption, the Coriolis acceleration
is balanced by a nonuniform pressure field in the classical jet damping model. The force
produced by the action of this traveling pressure wave on the walls of the combustion chamber
produces the damping torque. This representation of the flow interactions is not correct in a
large spinning system.

In large spinning rockets, the flow field is significantly perturbed by nutation wobbling.
The velocity field In the combustion gases is modified and complex three-dimensional waves
are produced. The corresponding pressure pattern is dramatically altered compared to the one
predicted by jet damping theory. In particular, the point of maximum pressure is rotated
relative to the chamber and a driving force instead of a damping effect is produced.

As a check on earlier work based on this model, we have computed the interaction forces
directly by determining the details of the internal pressure distribution and their effect on the
motor force system. In earlier studies, the interactions were computed indirectly by estimating
the unsteady flow field and resultant nonuniform angular momentum flux from the system.
This was described as an undulating vortex flow in an attempt to produce a easily visualized
physical model. The fact that the flow leaves the system unsymmetrically is a demonstration
of the presence of unbalanced forces within the chamber. These nonuniform pressure distur-
bances have been directly determined in this report,

We find that resonance of the gas oscillations with the vehicle nutation motion is an
important feature of the instability. Greatest growth of the nutation takes place when there is
resonant coincidence between one of the low-order vortical wave modes of the chamber and
the nutation frequency of the spacecraft.

Expehimental methods were developed to allow verification of the features of the proposed
jet gain mechanism. The cold flow experiments verify, in detail, the flow disturbances
predicted by the theory. Methods for carrying out nutation tests with small spinning motors
were developed. However, the magnitudes of the disturbing torques are very small, and no
conclusive data could be provided within the time constraints of the study. The equipment is
being improved and new motor grains have been acquired so that testing can continue.
Modifications are being made to increase the spin rate about the primary axis by several orders
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of magnitude to improve the resolution of the torque measurements. The free pendulum
method was used in the intial tests because it offered a simple means for both measuring the
nutation disturbance and demonstrating its effects. However, the natural frequency of the
pendulum is greatly reduced because of the mass of the large spin motor needed to rotate the
rocket motor chamber. Therefore the effective amplitude of the simulated nutation disturbance
is greatly diminished. Additional instrumentation has also been installed making it possible to
directly measure the interaction torques. Both aluminized and nonaluminized motors will be
tested in subsequent experiments, The data will be released in the form of a technical paper
during the summer of 1990.

Summary of Program Results

* There are are strong resonant, wavelike Interactions between the flow of com-
bustion gases in the motor chamber and the angular motion of a wobbling
spacecraft.

0 These interactions have been previously accounted for by a simple theory, the
classical jet damping model, that is based on an overly simplified description of
the internal flow, namely that the relative motion of gases passing through the
motor chamber and nozzle are unaffected by the wobbling of the vehicle,

0 The magnitude of the jet damping torque predicted by the classical theory
follows a time-history and exhibits similar magnitude to the torque that drives
the coning Instability, The direction of the torque vector predicted by this
model is always such that it decreases the amplitude of nutation wobbles.

0 If proper account is taken of the details of the time-dependent internal flow
effects, then the flow interaction torque vector changes direction, Nutation
growth may then occur,

0 Jet damping theory applies only in small rocket systems. In large spinning
space motors (such as those in used in the PAM. D and DII series), jet damping
results are no longer applicable.

0 Although it is possible that slag accumulation mechanisms could affect nuta-
tion characteristics, the gas dynamic effects alone are sufficient to explain the
nutation instability.

• All effects predicted in detailed theoretical treatments of the problem are borne
out in simple cold flow experiments, The basic wavelike nature of the internal
flow response to vehicle wobbling is clearly present in flow-visualization
experiments.

9 Unsymmetrical pressure forces within the combustion chamber produce the
major part of the nutation torque, Unbalanced forces in the nozzle appear to
play a less important role than expected on the basis of earlier studies.
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0 It is possible to simulate the nutation effects in small-scale rocket motor firings.
However, in order that measureable interaction torques are prcduced, it is nec-
essary to spin the motor at very high angular rates. Also, the torque varies
approximately as the fourth power of the average diameter of the combustion
chamber, so motors of the order of six inches in diameter may be needed to
make laboratory scale experiments useful. Tests run with two-inch motors in
this program were inconclusive.

9 Scaling rules have been devised that show that the nutation torque generated by
the gas flow is proportional to the mass flow rate of combustion products and to
the square of the distance from the motor chamber to the vehicle center of mass.
The torque depends on several similarity parameters, the most important of
which is the Rossby number.

0 The theoretical results show that changes in internal configuration of the motor
chamber, placement of the motor relative to the vehicle mass center, and axial
spin rate can be used to control the tendency for nutation growth in a given
system.

Methods for accurately representing the time-dependent by means of numerical solutions
of the full Navier-Stokes equations for the chamber gas flow were developed. This part of the
program progessed considerably beyond what was originally expected. It is strongly recom-
mended that this part of the effort be carried out to completion. It offers the capability to
determine, In detail, all of the flow features and interaction forces and torques in a spinning,
nutating rocket chamber. The computer algorithms developed for this purpose are completely
realistic In terms of flow velocity distributions, Mach number ranges, Reynolds number
values, and chamber and nozzle geometry. This code development has obvious applications
beyond the one for which it was intended in this research program.
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APPENDIX A

Analytical Solution for Nutation Gair Factor

This program implements the solutions described in the flow field analyses described in
this report. The unsteady pressure and velocity distributions are represented in Fourier-Bessel
series form. A best-fit cylinder is used to represent the combustion chamber. Results are valid
for small a Rossby number of the order of values appearing near the end of a PAM-D burn.

Changes in chamber size, slenderness ratio, thermodynamic properties, mean flow speed,
vehicle moments of inertia, and mass center position are computed in the program. Using this
data, torque gain factors are computed at selected time points.

The sample program listing includes data representing a typical PAM-D spacecraft con-
figuration. The complete program includes provision for simulating the spacecraft motion
corresponcing to the predicted flow interaction gain factors. It albo provides options for
generating unsteady pressure and velocity distributions in the rocket chamber.

A users manual and complete source code listing for this program is available as a separate
document.
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program Nutation; (NUTATION INSTABILITY IN SPINNING
PROPULSION MANEUVER)

G. A. Flandro, WASATCH RESEARCH, Inc., September 1989
SIMPLE ROCKET MEAN FLOW WESTAR-V PARAMETERS

const ndims = 40,
type matrix arrayl 1..ndims,1 ..ndlms] of extended;
vector = array[ L..ndims] of extended;

jmat =aray[0.. 10] of extended;
var

psi,x,lambda,b,c,10,11 ,Lcg,Lnozz,Ls,Lt,Lh,Rn,Rt,OmegaScfreq,t,p l,p2 :extended;
Rho,Nuo,Vb,Mdot,Mdot I ,Rossby,Ekman,Delta,Rgain,Sgain :extended;
psirt,Rhop,ro,rl,r2,Lo,r,z,Arg,p ,Xr,Vbent :extended;
Mo,R3,L3,aoPo,g ,det ,kO,k ,k2,k3,k4,k5,k6,k7,kS,k9,klO :extended;
fi ,f2,f3,f4,f5,f6,f7,f8,f9 :extended;
j :jmat;
Er,Ei,Fr,Fi,E, Br,Bi,Lam,Xi,JOJ1,J, 111 :vector;A :matrix;
found :boolean;
n,m,i,k,nl,ml ,order :integer;

procedure spacecraft-, (compute variable spacecraft parameters WESTAR-V
hegin

(MASS PROPERTIES:)
I := 2124,097 - t*(12.932835+0.048777056*t); I Moments of Inertia (slug ftA2)
10 :- 586.776 - t*(0.6186363636 +0,027954545454*t);

I LENGTHS:)
r l := (7.462944.t*(0.77697+t*(-0.01 5888+t*( 1.41725e-4))))/12.0;
r2 := (7.46294 +0.1896295*t)/12,0',
ro := (rI + 3*r2)/4.0; 1 Chamber Radius (ft)
if ro > 1.9 then ro:= 1.9;
I.o := (32.8432 +t*(0.23X4 + t* (5.612e-4)))/12 0; I Chamber Length (ft)
b := Lo/(2*ro); I Chamber Slenderness Ratio
1.cg := (6,3025731 +t*(0,02190887+

t*(-7,55762e.5+t*2.678833e-6)))/ro; I CM position
Lnozz := 29.0/(12.0*ro); I Nozzle length (dimensionless)
Rn 14.73/(12.0'ro); I Nozzle exit radius (")
Rt :1 1,8116 + 0,00456*t; I Nozzle throat radius
If t < 40 then Rt:=1.9947;
Rt :- Rt/(12.0*ro); I Dimensionless throat radius
Ls 6,9/(12.0*ro); I " nozzle submergence depth
Lt := Lcg - Lnozz;- Nozzle Entrance Position
Lh:=Lcg-(Lnozz-Ls)-2*b;

(GAS PROPERTIvS: 1
g:=i.18; I Ratio of specific heats
Rhop := 3,36; 1 Propellant density (slug/ftA3)
Mdotl:= (1,34965 l0.0(•3086*t); Mass flow rate (slug/sec)
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Po:= Mdot 11(.94921 36346E-4*pi *(r-o*Rt)**2); !Chamber pressure
ao:= 3592.397; !Speed of sound (ft/seCA2)
Rho: g*Po/(ao*ao); !Gas density
Vb := O.000663062*(Po**(O,3))*RhopfRho; I Gas speed at bumn surface (ft/sec)
V bent: =Mdot I/(Rho*Pi*ro* *2); 1 Gas speed at nozzle Entrance(ft/sec)
Mdot:=Mdotl/(Rho*Vb*ro*ro); I Dimensionless mass flow rate
Omega :- (5.375+t*(-8.2352941 l765e-4) +

t*t*3.87543252595e-5), ISpin Rate (rad/sec)
Rossby :- Vb(Wro*Oega); I osaby number
Scfreq :- (0.0-10/11), 1 Dimensionless nutation frequencuy
Delta := Rho*ro**4*Vb/(Il *Omega); I Scaling parameter

end;
-~Bessel Functions and Derivatives--

procedure Bess (order :integer; x :extended; var j jmat)
var f~h,h l,h2,t,theta :extended;
var kl,v :integer;
begin

v: a order;
f:-=0.5;
h:-0.5;
kl:-0;

If (x<=(7,5+0,3*v) )Then Begin
If v =0 then begin

f:=(- 1)**v/2;

end;
repeat
kl:=kl+lk
f:=f+h;
h:=-h*x*x/(4*k1 *(kl+v));
f:.=f-+h;

until abs(f/h)>2e7;
If v -=0 then begin
j(0J:=f;

Exit(bcss);
end;

repeat
v:=v+1;
f:=2*Cd~v/x;
until v>3;
h:=(1 +2.0*(2,0/(3.O*v*v)- I )/7.0*v*v))/(30.O*v*v*v);
hi :nx/(2*v);
h2: = ln(hl1);
h:=(h- 1)/(l 2,0*v)+v*( I +h2);
f:-f~exp(h)/sqrt(2*pi*v);

If x>(7.5+O.3*v) Then Begin;
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theta :-(pi/2)*(v+h-t*t*x*x);
f:=0.0;
repeat

f.,Mf+t*cos(theta);
t:nt*(h*h-v*v)/((2*h+ 1)*x);
theta := theta +pit/2;
h:=h+l;

until (h*h>((2*h+l)*x+v*v));
End;,j[0J:,,f;

end;

procedure Besfunc (ordernder :integer, psi :extended; vau j jmat);
begin If nder - 0 then begin;

Bess(order,psij);
j[0: -j([0;
ene

If nder - I then begin;If order -.0 then begin;
Bess(1,psij);

End

If order =1 then begin;
Bess(p01js1J);

Jll:=jlo'.

En;
End;

end;
- -Root Finder

procedure Findroom ( function f(x:cxtended) :extended; lowx, highx, del :extended; nroot:
integer; var found :boolean; var root : extended);
( This procedure finds the nth root (root nroot) in the interval lowx < x < highx

var x, flowx,delx,flast,fx,fprimc: extended; i : integer,
begin

if nroot < I then nroot :=fl;
x:- lowx; found:- true;
for i:- Ito nroot do begin

flowx:= f(x);
repeat x:= x + del until (f(x)*flowx < 0) or (x > highx);
if x > highx then begin found ,- false; exit (findrootn) end;

end;
dclx:= 0.005; flast :w inf; x:- x - del/2;
for i:=,I to 100 do begin

fx:.f(x); fprime:= (f(x+delx) - fx)/delx; x:- x - fx/fpnme;
if abs(fx) >= abs(flast) then begin root:-x; exit(findrootn) end;
flast:=fx;

end;
if abs(fx) > 0.01 then found:= false;

end;
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Mode Frequencies -____________

procedure Find~anmbda( n,m: integer; b extended; var psi,Iambda :extended; var found :boolean

var start,c:cxtended;
function f( x :extended ):extended;
var: jmat;

Besfunc(1,I,xj)
f:mx*j[IJ +sqrt(1 + x~ix*cykjI0];

end;

begin
start:= 0.2; c:- I/sqr(n* p ib);
findrootn( f, start, 40,0.2, mn, found, psi);
if found then lambda:-2/sqrt(l+psi*psi*c);

end;

____________________-- Coefficients-
Procedure System(ndlms; integer; var Akmatrix;var F,E :vector; var det :extended);

var 1,k,m:integcr,
k9: extended;

begin
det: -1.0;
for m:- 1 to ndims- I do begin

de:. det*AI~m,ml;
for i:- m+1 to ndims do begin

k9;-.Aji,mI/A[m,m I;
for k:- m+l o~ ndims do A~i,kI : A~iIkj - k9*Alm,kI;
F~iII:-F~il - k9*F[mJ;

end;
end;
det:mdet*AI ndimrs,ndimsj;
for m:-ndirns downto I do begin

E~m] := F[mJ/AIfm,rJ;
for i:- I to m- I do FtiJ:=F~iJ - E~m) *A[iI,ml;

end-,
end;

___________- MAIN PROGRAM ----- _ _

begin
ml:-10; (Number of m indices)
nl:u 7; fNumber of n indices)

t :- 0.0:

repeat
spacecraft-, (Get Spacecraft and Motor Data at time t)
(writein('R "'.ro:9;S,' ','Rossby Nou',Rossby:9:5,' ','bw-Xb:9:5,' ','Vb U.'Vb:9:5,'

','Lambda w',Scfreq:9:5);,)

147



I--- *--------------Calculate Ej,JLamnbda, Xi -______

repeat
m:= 1;
repeat

FfndLAmbd&( n,mn,b, psi,Iambda,found);
:u=m+(mI"*(n-I)) DIV (2);

Lamli i:-Lambda,
XI~i]:Mpsi;
Bcsfunc(1, l~pslJ);
31(11 :mJ(OJ;
31 l~ii ugh;l]
Besfunc(, ,I,psij);
JO(iJ :-j(01;,

Eli] ;m(44Lamfil**2)*((psi**2/2)*(JO~il*i0[l]+30 [Ii *J01I iJ)-
31 (i1*31 [lI)+4*Lamjij*J I11i*J Ili);

Eli] :- Eli] *(2*pi*b/(4..am(iI**2)**2);
EjjiI -- E(iJ+pi* b* ((napi/(2 *Lam[ iI*b))* *2)*(JII(i'' 11 ji*J [.I+( 1- /psl)*J1 ij*J Il(i]):

ino. M + I
until (m>ml)
n := n + 2:

until ( n > ni1);

____________ -- Calculate AIij]

repeat

repeat
A[ i,k] :=Pi*b*(J I Ik I*J I lk)(crqlafi)(at]LmiI-
(writeln i: 3,chr(9X.m: 3,chr(9),n:3,chr(9),Aji,k 1: 14: 10);)
k:-k+l1;

until (k~ndims);
i:=i+1;

until (l>ndimns);

--.--- Calculate Ali,ij, F(1j

n := 1;
ropeat

m:- 1
repeat

i :.mm(mI *(n- 1)) DIV (2);

kI 1:nPi*b*(Scfreq/LamfiI);
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k2:-.( /Lanil ijIl/Scfreq)/(kO*kO);
k3:-Scfreq*~Scfreq/(4*(Scfreq-L~tn1 ii));
k4:=(Scfreq/Rossby)*k0*k0*( 1+2/Scfreq)*J liii;
k5:m.(1.4/(Scfreq* Scfreq))*((Scfreq-2)*(2*Jl i ]/X iii -JOlil) +2*( I-JO~ij))/

(Ro*XifiJ);
k6:=(1I 4/(Scfreq*Scfreq))*(2i I IllfXi(1 1-30 il)/Xili +2*kO*kO*3 I iI*(I +2/

Scfreq);,

k7 :4*Pi/(E[l*(Scfreq-Lan~i]));
kg:u.4*kO*kO*JlI[iII(Lam~ll.2)+2*(2*J ~iti/Xifils.JOWi)/(Lam[il*Xi[iD;-
k9:uScfreq*kO*kO*J 1 [iJ/(Lamn~ij-2);
k 1O:u..(2*( (IJ0[i))/Xi[ij.(2+Scfrcq)*(2*J I (ijdXi[1]-JO[il)/Xi(1])/Lam~i);

Aji,iJ>mikI* (k2*(Jl1 fi)*JIi l]+(1 - /(XiEi]*Xi[i]))*J I i]*'J i 1)-Jl 111*31[ii):
Fr411:- .4*Pj*k3*(k4 + k5)
Fl(1]:. 8*Pi*k3*k6;
Br~l]:=k7*(k9+k 10)/Rossby;,
Bif iimk7 *k8;,

rn:-w M + I
until (m, > ml)
n :- n + 2;

until (n >nI) ;
- -Solve System of Equations- -

System( ndiins, A, Fr, Er, det )
System( ndiins, A, Fi, El, det )

- Print Coefficients -

(1:-i;
repeat
writeln( i:3,chr(9),Erjij: 14: I0,chr(9),Ei~iJ: 14:I10,Br[ij 114: 1O0,chr(9),Biji]: 14: 10);
i:wi4+1;
until (i > ndims);)

--- COMPUTE TORQUE GAIN FACTORS-- -- -- - -- )

Rgaint~O.;
Sgain:u0.0;

repeat

in:- 1
repeat

i :um+(tn I*(n- 1)) DIV (2);
f5:-Pi*(2*(2*W/(n*Pi))**2*J I[l+J1 I I il *2+(1 - /Xil iI **)*JlI I i**2);
f6:-Pi*l~h*J I I iI(2-Lamfi]);

Rgain:uRgatin-f5*El(l-f6*Br1i1;
Spain: mSp~n-f5*Er~ij+f6*Bi[I];
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M;.rn+ I
until (m > mI)
n := n + 2;

untill(n >nl);

(Dimensional Values:)

Rgain:-Rho*o* *4*Vb*Rgain/( 180.0/Pi);
Sgaln.--Rho*ro**4*Vb*Sgain/( 180.0/Pi);

writeln(t: 10:2,chr(9),ro: 14: 1O,chr(9),Scfreq: 14: 1ch()Ran 4: 10,
chr(),Sain14:10);

t: t + 1.0.;

until (t >87.0)
end,
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APPENDIX B

Integrals Used In Evaluation of Cylindrical Cham~ber Results

f* J~I(k r)dr =[ - OQ

Jorji(kr)dr=ý 4m ~ )2 J2-)

, r Ji(ýr)dr = +(Jo(4 ) - iJ( )]

J IrJ'(kr)dr =+ -~iJ()

~2b( i b
Jo sin( 2x z dzm )..cos nic- 1)

j2b(
Jc08L(m zdz 0

fo k 2b)-zd b
,2b

2b Cos (n,)z dz~b

2b 2~
r ~ 'cosý )z Idz= (co n -)
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