
a i- i ~ . -

" UMIACS-TR-90-52 April 1990
CS-TR -2451N Using Program Adaptation Techniques

N for Ada Coverage Testing_
James M. Purtilo

Institute for Advanced Computer Studies and
Department of Computer Science

University of Maryland
College Park, MD 20742

Elizabeth L. White
Department of Computer Science

University of Maryland
College Park, MD 20742

LI

COMPUTER SCIENCE"
TECHNICAL REPORT SERIES• OTIC

~~i ELECT-
JUN 0 71990...''

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

DISTRIBUTION STATfrMN A
Approved for public release;

Distributon Unlimited

UMIACS-TR-90-52 April 1990
CS-TR -2451
Using Program Adaptation Techniques

for Ada Coverage Testing
James M. Purtilo

Institute for Advanced Computer Studies and
Department of Computer Science

University of Maryland
College Park, MD 20742

Elizabeth L. White
Department of Computer Science

University of Maryland
College Park, MD 20742

Abstract

Software development processes often employ program metrics tools to analyze software. Ex-
amples include static program analysis, code profiles, and coverage analysis. Automated tools
can facilitate this study by collecting data and generating the desired measures. Unfortunately,
the implementation of such tools has proven to be difficult and time consuming.

In order to simplify the task of constructing analysis tools for Ada, we have examined a new
parser generator system for use in a source to source transformation approach. Our goal is to
allow developers to easily and compactly express what information they need from the input
language in order to compute the desired statistics. One result of our research is AINT, an
instrumenter and tester for Ada source code which was constructed using the new translation
technology. AINT provides both statement and branch coverage testing of Ada programs,
allowing users to evaluate the adequacy of their test data. This paper summarizes the new
parsing system (called NewYacc) used to build AINT, then describes the implementation of
our testing system. (/,)

Research was begun while supported by Office of Naval Research contract N00014-S7-K-0307.
It is now supported by Honeywell and the DARPA/ISTO Common Prototyping Language
initiative, with oversight provided by Office of Naval Research.

Approved fnr nublic release;

Distribv Uon Unlimited

1 OVERVIEW

Software metrics are important to understanding the software development process. In order to
employ such techniques, the software being studied must either be analyzed manually, or some
automatic tool must be used to process the programs. While small programs may be reasonably
processed by hand, this is too time consuming for analysis of larger software systems. Automated
tools are necessary, but historically these tools have proven very complex to implement.

The complexity in development of automated tools is the result of several factors. When the
metric requires static analysis of programs, the implementor must have access to parsing and
other intermediate program representations which are usually not available for general use from
a vendor. Vendors market a custom analysis system and users are not able to take this software
and modify it for their purposes. Because of this, tools developed for static analysis must be
built from scratch or assembled from other previously built pieces.

Other metrics require the more dynamic approach of installing code into the programs to perform
the metric computation. Previously, implementors have constructed tools for profiling, coverage,
and other metrics by using a low-level approach for adding code as it is compiled. In order to
build these tools, the developer needs to know not only about parsing and symbol information,
but aliasing, preserving coherent data representation, and code generation, as well.

Many of the static and dynamic metrics can be discussed in terms of the language structure
as defined by grammars. This suggests an alternative to the low-level approach traditionally
used for program analysis. The idea is to adapt source programs at a high level so that existing
compilers, code generators and other processing tools can be employed without alteration. In
order to develop automatic tools for use at this high level, a technology which integrates the
parsing process with the computation of metrics is needed. Users need the ability to do high-
level source to source translations quickly and easily by specifying what needs to be done in terms
of the language constructs themselves.

Our current research involves such a translation tool called NewYacc. NewYacc allows users to
associate actions and parse tree traversals with the grammar rules for a language. Use of this tool
is simple and straightforward. Starting with a grammar for the language being analyzed, actions
consisting of outputs, function calls, and tree traversals are added. The resulting parser does
source to source translations, either computing the desired metrics directly, or inserting source
code for later dynamic measurement.

In order to evaluate this approach, our work so far has been on two different analysis tools,
one static and the other dynamic. ASAPP is an Ada Static Analyzer Program which computes
several different metrics including Halstead and cyclic complexity. ASAPP works by traversing
the parse tree for the input program and making calls at different points in the tree to do the
necessary analysis. The second tool, AINT, is the focus of this paper. AINT is an Ada branch
and statement coverage tool. Given an input program, AINT modifies the program in a way
that allows a tester to run this output program multiple times on different data sets, and thereby o

'odes'V:, j 1 nd/or-

Dlst I Special
STATEMENT "A" per Dr. A Van Tilbourg
ONR/Code 1133
TELECON 6/6/90 VG

track which statements and branches were executed on each data set. By knowing that their
test data has executed all of the code in certain ways, implementors can have greater confidence
that design and implementation errors in the software have been exposed, resulting in increased
program quality.

In the next section we introduce the NewYacc development tool, including simple examples.
Next, an overview of the AINT testing system is given along with an example of how we augment
Ada programs. Finally, we give a short description of how AINT was developed using NewYacc.

2 NEWYACC

Our approach to solving the problems with the generation of automatic tools to operate on
complex languages is to use a translation mechanism which allows high-level source to source
translation. An example of this kind of mechanism is NewYacc, an extension of the Unix compiler
generator tool Yacc [John79]. Yacc takes as input a set of grammar rules with associated actions
and produces a parser for the language defined by the input grammar. The parser generated by
YACC parses an input stream bottom-up, discarding the parse tree as it reduces by the rules of
the grammar. The actions specified by the user are performed as the reductions occur. When
the parsing is done, the parse program terminates.

In NewYacc, a parser is also produced from an input set of grammar rules and actions; however,
in this parser the parse tree is retained after an input stream is processed. When the sentence
has been accepted, the NewYacc system allows the tree to be traversed and additional actions to
be performed in user-defined ways. The actions are rewrite rules associated with the productions
in the lahguage.

A rule translation in NewYacc is of the form:

[(display.mask) translation-body]

where the display-mask is a list of display masks and the tr: t' tion body is a list of grammar
symbols, strings, statements, and user-defined functions. .,- - rersal in NewYacc is a user-
specified dynamic walk through the parse tree and correspoit. to a single translation of the
input. The display masks and grammar symbols control the path of the traversal. At each
internal node, the translation items are evaluated in order and at each leaf node, the contents
are simply output.

For example, a grammar for expressions using only + and - as operators can be written in infix
notation as follows:

3

El

2 E + E
10

3 -3 5 E - E 7

6 d =2 d=4 8

Figure 1: Parse Tree for 3 + 2 - 4.

Expression ::= Expression '+' Expression I
Expression '-' Expression I
digit

A parse tree for the input sentence "3 + 2 - 4" is shown in Figure 1. If the task to be performed
is the transformation of infix expressions to either postfix expressions or prefix expressions, this
could be specified in NewYacc with the following actions:

Expression ::= Expression 1+' Expression
C(POSTFIX) #1 . #3 . #23
[(PREFIX) #2 . #1 . #3 J

I Expression '-' Expression

(POSTFIX) #1 . #3#23
[(PREFIX) #2 . #1 ... #3)
I digit

The "#" indicates the traversal of the specified subtree, where the subtrees correspond to the
different elements on the right hand side of the grammar rule and are numbered from left to right
starting with 1. In the above example, the "#I" in the first NewYacc action specifies that the
subtree for the first Expression is to be traversed. Literal strings such as " " are output when
encountered in the translation body. Above, the first NewYacc action for the POSTFIX traversal
indicates a POSTFIX traversal of the first subtree, output of the literal string " ", traversal of the
third subtree as POSTFIX, output of the string " ", and finally traversal of the second subtree.
If the traversal was desired was postorder then the nodes of the parse tree of Figure 1 would be
visited in the order indicated by the numbering and the output would be "3 2 4 - +" simply by
specifying a POSTFIX traversal.

The above example shows an open traversal on the parse tree; other features of NewYacc include

4

conditional traversals, use of scope variables, and selective traversals in which leaf nodes are not
output. For a more complete language description, see [PuCa89].

3 AINT

The purpose of this section is to describe the AINT tool itself, including a concrete example
to illustrate its application. As mentioned earlier, the development of AINT demonstrates how
easily individual users can devise their own desired transformations on a source language using
the NewYacc system. However, details concerning just how NewYacc can generate an AINT tool
will be covered in a later section.

Statement coverage is the computation of which statements in the input program were actually
executed during a test run. Branch coverage involves examination of all places where control
flow can be divided, and informing the tester which execution paths were not followed. This
information is necessary for developers to judge the adequacy of their testing data: if they find
their test data has caused all parts of the application to be exercised, then they would presumably
have increased confidence that any potential faults have been realized; in turn, the more faults
that can be recognized through testing, the greater is the likelihood that program errors will be
exposed.

In program instrumentation, code is added to an application program so that each time a signif-
icant event occurs during a run of the program, the desired event is recorded for later analysis.
Any program testing system of this type has several responsibilities: Statically, it must provide a
language processor to install this instrumentation code; at run time it must record the execution
of statements and branches; and after execution it must analyze the execution trace and inform
the user about statement and branch coverage.

The AINT system to instrument code fulfills all of these responsibilities. Each Ada package to
be instrumented is input to a tool that outputs a new version of the code (suitably augmented to
containing instrumentation calls), a pretty-printed version of the source, and the list of testing
obligations to be fulfilled. Subsequently, the obligation lists from all the Ada packages are con-
catenated and run through a tool which creates a new Ada package (containing the obligations
tables for statement and branch coverage); this package of data structures is compiled and linked
in with the instrumented packages, along with a driver module. The result is an executable
program that not only functions as the original application, but also keeps track of all testing
obligations as they are fulfilled. A diagram of the AINT system architecture is in Figure 2.

Once the test program has been created, it can be run any number of times to test sets of data.
For example, if the Towers of Hanoi program shown in Figure 3 was executed with an input
greater than 0, all of the statements in the main program and in procedure hanoi would be
executed. On an input of 0, none of the code inside the conditional statement in procedure
hanoi would be executed although the rest of the code would execute. When AINT is used to

AIL
3'strga"acd

-mallor PoPr A" rco

ia g ure Ad& ArNTctr f IT

with Text_io; use Text_io;
procedure TOWERS-OFHANOI is

package IOINTEGER is new INTEGERIO (INTEGER); use IOINTEGER;

NUMOF.DISKS. NATURAL;

procedure HANOI (N: NATURAL; X, Y, Z: CHARACTER) is

begin
if N /a 0 then

HANOI(N-1, X, Z, Y);
PUT("MOVE DISK");
PUT(n); PUT("frou");
PUT(X); PUT(" to ");

PUT(y); NEWLINE;

HANOI(N-1, Z, Y, X);
end if;

end HANOI;

begin
PUT("How many disks?"); NEWLINE;

GET(NUMOFDISKS);

HANOI(NUMOFDISKS, 'X', 'Y', 'Z');

end TOWERSOFHANOI;

Figure 3: Towers of Hanoi.

instrument the Towers of Hanoi, this the new version can be compiled and run, producing the
output shown in Figure 4.

In the first run, all of the statements and branches were executed, but in the second run, the
input 0 causes the true branch of the conditional and all of the enclosed statements to be output
as uncovered after the run. The statement numbers in the output correspond the the statement
locations in a pretty printed version of Hanoi.

The input source code needs to be augmented in such a way that the output version is functionally
equivalent to the original code except for the added code to compute coverage. To do this,
coverage information needs to be computed before the execution of every line. The initial version
of AINT worked by placing a call to the instrumenting package before every line of input code.
These calls served to tell the package what statement was going to be executed next. For example,
Figure 5 shows the augmented code for a recursive solution to the Towers of Hanoi program. The
Profile and ProfileIF calls are to the instrumenting package Probe which keeps track of what
statements and branches have been covered. The numbers in the calls indicate the number of
the next statement to be executed and the strings indicate in what package the statement is
contained.

The functionality of the input Ada code was not modified by AINT; however, there is an additional
overhead of one procedure call per statement plus one call per conditional statement which causes
a large slowdown in execution. Upon testing the software, this slowdown was determined to be

7

RUN 1:

How many disks? 2
MOVE DISK 1 from X to Y
MOVE DISK 2 from X to Z
MOVE DISK 1 from Y to Z
All statements covered.
All branches covered.

RUN 2:

How many disks? 0
Statement 11 not covered in "hanoi"
Statement 12 not covered in "hanoi"
Statement 13 not covered in "hanoi"
Statement 14 not covered in "hanoi"
Statement 15 not covered in "hanoi"
Statement 16 not covered in "hanoi"
Statement 17 not covered in "hanoi"
Statement 18 not covered in "hanoi"
Statement 19 not covered in "hanoi"
True branch of statement 10 not covered in "hanoi"

Figure 4: Sample output from execution of example program.

8

with Probe; use Probe;

with Textjio; use Text jo;

procedure TOWERS-OF-HANOI is
package IO..INTEGER is new INTEGER-IO (INTEGER);
use IOINTEGER;

NUM-OF-DISKS: NATURAL;
procedure HANOI (N: NATURAL; X, Y, Z: CHARACTER) is

begin

Prof ile(1O,"hanoi");
if N /= 0 then

Prof ileIF(1, 10,"hanoi"');

Profile(i1,"hanoi"); HANOI(N-i, X, Z, Y);

Prof ile(12, "hanoi"); PUT("NOVE DISK");
Profile(13,"hanoi"); PUTCN);

Profile(14,"hanoi"); PUT("frou");
Profile(15,"hanoi"); PUT(X);

Profile(16,"hanoi") ; PUTC" to "t)

Profile(17,"hanoi"); P1JT(Y;
Profile(18,"hanoi"); NEW-.LINE;
Profile(19,"hanoi"); HANOI(N-1, Z, Y, X);

ELSE
Prof ileIF(O, 10,"hanoi");

end if;

end HANOI;

begin

Prof ile(24,"hanoi"); PUT("How many disks?");
Prof ile(2S,"hanoi"); NEW-LINE;
Prof ile(26,"hanoi"l); GET(NUM-..FDISKS);
Prof ile(27,"hanoi"'); HANOI (NUM-OFDISKS, 'X', 'I', 'Z');

end TOWERS-..F-HANOI;

Figure 5: Augmented version of Towers of Hanoi.

9

with Probe; use Probe;

with Textio; use Text_io;
procedure TOWERS_0FHANOI is

package IOINTEGER is new INTEGER.Ia (INTEGER);

use IO_INTEGER;

NUMOFDISKS: NATURAL;
procedure HANOI (N: NATURAL; X, Y, Z: CHARACTER) is

begin

AINTstatement(AINThanoi,10) : true;

if N /= 0 then

AINTbranch(AINThanoi,10,1) true;
AINTstatement(AINThanoi,11) true; HANOI(N - 1, X, Z, Y);

AINTstatement(AINThanoi,12) : true; PUT("MOVE DISK");

AINTstatement(AINThanoi,13) true; PUT(N);
AINTstatement(AINThanoi, 14) "--true; PUT("from");

AINTstatement(AINThanoi,15) :- true; PUT(X);
AINTstatement(AINThanoi,16) : true; PUT(" to);
AINTstatement(AINThanoi,17) := true; PUT(Y);
AINTstatement(AINThanoi,18) : true; NEWLINE;
AINTstatement(AINThanoi,19) : true; HANOI(N - 1, Z, Y, X);

ELSE

AINTbranch(AINThanoi,1O,0) :- true;

end if;
end HANOI;

begin
AINTstatement(AINThanoi,24) : true; PUT("How many disks?");

AINTstatement(AINThanoi,25) : true; NEW-LINE;
AINTstatement(AINThanoi,26) : true; GET(NUM_OFDISKS);

AINTstatement(AINThanoi,27) : true; HANOI(NUMNOFDISKS, 'X', Y', 'Z');
end TOWERSOFHANOI;

Figure 6: Second augmented version of Towers of Hanoi.

excessive and a new approach was tried. Instead of placing procedure calls before every line of
code, it was decided to put the instrumenting code there and avoid making any procedure calls not
in the original code. In order to do this, the data structures of the instrumenting package had to
be changed. Multidimensional arrays were used to keep track of obligation table information and
to allow fast computation of what obligations had been covered. Figure 6 shows what the newer
version of AINT will output for the Towers of Hanoi problem. AINTstatement and AINTbranch
are boolean arrays in which the individual elements axe set to true when the appropriate statement
is encountered. The first array is two-dimensional with the first dimension indicating in which
package the statement occurs and the second dimension indicating the statement number. The
second array contains a third dimension which indicates which branch of the statement has been
encountered. Initialization of these arrays is done in the Probe package which is created by the
obligations installer. At the end of a test run, these arrays are examined to determine what
obligations were not fulfilled.

10

Using this new approach, the instrumenting overhead is less substantial: one constant-time array
assignment per statement plus one constant-time array assignment per conditional. Although
both versions added the same number of lines of code to the input program, the execution
time of a single array assignment takes much less time than the execution of a procedure call
along with the corresponding procedure code. Overhead for the first attempt at AINT increased
exponentially with the number of statements executed; however, for most code, overhead for the
second version is less than one hundred percent. Code which has many conditional statements
and few or no procedure calls has slightly higher overhead.

While these figures sound poor at first, the second AINT implementation represents a design
compromise. Remember that our objective is for developers to find easy ways to tailor instru-
mentation tools. The sub- one hundred percent figure is a fairly reasonable cost given that an
execution event must be recorded for each program statement in order to obtain true statement
coverage. It is reasonable to ask whether the statement execution obligations could be recorded
on a block, not individ,.al statement, basis, which is in fact how many other internal testing
system are implemented. Unfortunately, when we considered how to perform block-level instru-
mentation, we discovered the grammar we were working with would have required our writing a
much larger number of elaborate statements (to deal with such situations as handling of GO TO
statements, and so on), all while being careful not to accidentally introduce unreachable code
(e.g., by adding an obligations check after a RETURN statement.) The statement level instrumen-
tation, on the other hand, was much simpler in design, and provided what was to us an acceptable
testing performance.

Overall, the development of the AINT system took approx'ately 50 hours, from inception to
demonstration of a distributable product to our funding agent. Most of this time was spent
on the initial version of the translator, used to augment application programs. The remaining
time was spent on extending the AINT system as described earlier, (informally) validating that
our translator would perform reliably on a local test suite of Ada programs (used to ensure
we provided suitable translations for code involving all Ada language constructs)', and finally
checking the costs of addition instrumentation to a large application provided by our industrial
funding agent, for use at their site. The DEC VMS -based implementation of our AINT system,
running on a Microvax, added instrumentation code to an 18.000 source line Ada program in a
matter of a few minutes.

4 IMPLEMENTATION OF AINT

In order to perform statement and branch coverage for input source code, an instrumenter needs
to know what statements and branches must be executed and which are actually executed during
a run. The way AINT accomplishes this is by building an obligations table and then marking

1 We regret to report that our grammar, which is independent of NewYacc, still fails to correctly parse Ada code

involving static initialization of multi-dimensional arrays.

11

statements and branchos as they are executed in a test run. Upon completion of the run, any
unmarked obligations are output.

Development of AINT was a three step process. '[he first step was to add the NewYacc actions
to an Ada grammar so that the necessary statements and branches would be added to the obli-
gations table and the inptut source code would be augmented with the appropriate instrunmentmig
statements. For each Ada statement type, three tasks were added as actions for the grammar
rule:

1. a call is made to a procedure which enters the statement into the obligationw ',able.

2. instrumenting code is added to the output.

:3. the Ada statement is output by traversing the statement itself.

For example. the Ada grammar rule and NewYacc specification for an assignment statement is
as follows:

sim-statement : assignment-stmt
[(AINT) probe() #1 bumpo)

The probe() call adds the statement to the obligations table and outputs the appropriate in-
strumenting statement. The #1 indicates a traversal of the assignment statement itself, and the
bump() increments a global statement counter.

Branch coverage required a little more creativity. To compute coverage for IF statements. two
instrumenting statements were added per input IF statement, one for each possible branch. There
are eight steps for the coverage of IF statements:

1. a call is made to a procedure which enters the true and false branch of the IF statement
into the obligations table.

2. the IF condition THEN part of the statement is output.

3. the instrumenting code for the true branch is output.

4. the statements for the true branch are traversed and output (along with their associated
statement instrumenting procedure calls).

5. the ELSE is output.

6. the instrumenting code for the false branch is output.

7. the statements for the false branch are traversed.

8. the END IF is output.

12

The following is a simplified version of how the above steps could be specified in NewYacc for an
IF statement.

conditional : IF condition THEN stmtlist ELSE stmtlist END IF
[(AINT) #1 #2 #3 probeif("then") #4 #5 probeif("else") #6 #7 #8]

The probeif () calls add the obligations to the table and output the appropriate code. The "#"
symbols indicate traversal of the appropriate parts of the statement.

More complex augmentation must be done for IF statements without an associated ELSE branch,
and for IF statements that use the ELSIF construction. In the first case, an ELSE branch which
has only the single instrumenting statement is added in the augmented code. ELSIF requires more
work, as the code is rewritten as cascaded IF- THEN-ELSE statements to simplify the computation
of the branch coverage. Fig. 7(a) shows a small Ada program which contains both of these IF
statement types. The augmented code (with statement instrumenting code omitted) for branch
coverage is shown in Fig. 7(b).

The second development step involved creating a tool which would take the obligation lists as
input and output the necessary obligation tables. To do this, a grammar written to parse the
obligation lists was augmented with NewYacc statements in such a way that the entire package
was generated by the tool. Figure 8 shows the data structures package which would be produced
for the Towers of Hanoi program in Figure 6. This package initializes array elements for all of
the statements and branches to be covered as false and all other statements and branches as
true. The enumerated type AINTtestnames contains one element for each input package being
covered and the constant AlNTdimensionlimit gives the largest statement number in any of the
input packages. In order to build this package, first the obligations installer outputs the header
information, then it traverses the input obligations file three times. The first traversal outputs the
declarations for AINTtestnames, AINTdimensionlimit and the array type declarations. Then
the obligation list is traversed twice; first to find all of the statements which must be executed
in the packages and finally to find the branches in the packages. The end probe; is output at
the end of the installer run.

As the final step in the development of AINT, it was necessary to write an Ada driver package
that would call the Ada source code being tested, and then inform the tester of the results of
the run. Computing the results of the run proved to be very simple, given the data structures
used by the instrumenting process. Any element of the two instrumenting arrays which is false
at completion time, signals an unfulfilled obligation.

5 CONCLUSION

The study of the software development process requires numerous tools to facilitate analysis.
Automated tools are desirable for this study. Traditionally, this instrumentation and analysis

13

with Text_io; use Text_io;

procedure Iftstatements(in X: NATURAL) is

begin

IF x = 0 THEN
x := x + 1;

END IF;

IF x < 3 THEN
x := x + 3;

ELSEIF x < 5 THEN

x x + 5;
ELSE

x x + 1;
END IF;

end If-statements;

(a)

with Text_io; use Text_io;

procedure Iftstatements(in X: NATURAL) is

begin

IF x - 0 THEN

AINTbranch(AINTifstatements,S,1) true; x := x + 1;

ELSE
AINTbranch(AINTif.statements, 5,0) : true;

END IF;

IF x < 3 THEN
AINTbranch(AINTifstatements,8,1) true; x := x + 3;

ELSE
AINTbranch(AINTiftstatements,8,0) true;

IF x < 5 THEN
AINThranch(AINTiftstatements,10,1) := true; x : x + 5;

ELSE

AINTbranch(AINTiftstatements,10,0) := true; x : x + 1;

END IF;

END IF;

end If_statements;

(b)

Figure 7: Branch Coverage Augmentation.

14

package probe is
AINTdimensionlimit : constant integer := 27;
Type AllTtestnames is (AINThanoi);
Type AINTstmtarray is array(AINTtestnames'First..

AINTtestnames'Last,. .AINTdimensionlimit) of boolean;
Type AINTbrcharray is array(AINTtestnames'First..

AINTtestnames'Last,. .AINTdimensionlimit, 0. .!) of boolean;
AINTstatement: AINTstmtarray :=

AINTstmtarray'(AINThanoi => (10 => false, 11 => false, 12 =>
false, 13 => false, 14 => false, 15 => false, 16 => false,
17 => false, 18 => false, 19 => false, 24 => false, 25 =>
false, 26 => false, 27 => false, others => true));

AINTbranch: AINTbrcharray :=

AINTbrcharray'(AINThanoiz> (10 =>(others => false), others =>
(others => true)));

end probe;

Figure 8: Obligations Package.

has been performed internally by the language processors and execution environment. But this
has made development of such tools time consuming, and, even worse, has made it difficult foi
ordinary users to change or adapt such tools for their own needs.

We have shown how external instrumentation and analysis can be performed with relative ease
by ordinary users. Construction of the necessary language processors and execution environment
is made easier by availability of translation tools such as NewYacc. The user may specify a
desired source to source translation in terms of the constructs of the language being examined.
These specifications are added to a grammar to create a parser in which the parse tree for input
sentences can be traversed in ways specific to the application. Our experiences have been that
this adaptation can be performed with acceptable costs in terms of execution time.

Our claim concerning the utility of external adaptation has been supported by our presentation
of AINT, an instrumentation and testing system for Ada code. AINT does simple branch and
statement coverage analysis by performing a high-level source to source translation of the input
code into a version of the code which, when used with the AINT system packages, does the
computations necessary for the analysis. The development of this simple testing system AINT
demonstrates the ease with which other developers can build tools for different applications,
including testing, debugging, and code profiling.

15

REFERENCES

[Gilb77] Gilb, T., Software Metrics, Winthrop, 1977.

[HoMi8l]Howden, W.E. and E. Miller, eds. Tutorial: Software Testing and Validation
Techniques, IEEE, (1981).

[Huan78] Huang, J.C. Program Instrumentation and Software Testing, Computer, vol. 11(4),
(April 1978), pp. 25-31.

[John79] Johnson, S. YACC: Yet Another Compiler Compiler. Bell Laboratories, (1979).

[Myer79] Myers, G.J., The Art of Software Testing, John Wiley & Sons, New York, 1979.

[PuCa89]Purtilo, J., and J. Callahan. Parse Tree Annotations. Communications of the
ACM, (December 1989).

[Watt87] Watt, D. et al. Ada Language and Methodology., Prentice-Hall, (1987).

16

