
UMAC-2R04 4 April 1990
N

Towards a Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemnes*

Victor R. Basili and H. Dieter Rombach
Institute for Advanced Computer Stucties and

Department of Computer Science
University of Maryland

College Park, MD 20742

COMPUTER SCIENCE
TECHNICAL REPORT SERIS

~~~ u~~ ..JUo07 190 4

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

;.Lblr eZ9Cease;

-' (~" C"



UMIACS-TR-90--47 April 1990
CS-TR-2446

Towards a Comprehensive Framework for Reuse:

Model-Based Reuse Characterization Schemes*

Victor R. Basili and H. Dieter Rombach
Institute for Advanced Computer Studies and

Department of Computer Science
University of Maryland

College Park, MD 20742

ABSTRACT
,N

Reuse of products, processes and related knowledge will be the key to enable the
software industry to achieve the dramatic improvement in productivity and quality required to
satisfy the anticipated growing demands. We need a comprehensive framework of models and
model-based characterization schemes for better understanding, evaluating, and planning all as-
pects of reuse. In this paper we define requirements for comprehensive reuse models and relat-
ed characterization schemes, assess state-cf-the-art reuse characterization schemes relative to
these requirements and motivate the need for more comprehensive reuse characterization
schemes. We introduce a characterization scheme based tpon a general reuse model, apply it
and discuss its benefits, and suggest a model for integrating reuse into software development. (' -

-))

*Research for this study was supported in part by NASA grant NSG-5123, ONR grant N00014-87-K-0307 and Airmics grant
DE-mail-84OR21400 to the University of Maryland.

J--).'Z ¢t.L , ' ' I° -

App12::.>,,z



TABLE OF CONTENTS:

1 INTRODUCTION ............................................................................ ......... ...... 2

2 BASIC REQUIREMENTS FOR A REUSE CHARACTERIZATION SCHEME

2.1 Software Development Assumptions ...................................... 3
2.2 Software Reuse Assumptions ............................... 4
2.3 Software Reuse Characteristics .................................. 7

3 STATE-OF-THE-ART REUSE CHARACTERIZATION SCHEMES .............. 9

4 MODEL-BASED REUSE CHARACTERIZATION SCHEMES .......................... 12
4.1 The Abstract Reuse Model ..................................... 12
4.2 The First M odel Refinement Level ........................................................... 13
4.3 The Second M odel Refinement Level ................ ......................... ............. 15

4.3.1 O bjects-Before-R euse .......................................................................... . 15
4.3.2 O bjects-After-R euse ........................................................................... 16
4.3.3 R euse P rocess ...................................................................................... 18

5 APPLYING MODEL-BASED REUSE CHARACTERIZATION SCHEMES ....... 20
5.1 Example Reuse Characterizations ................................................................. 20
5.2 Describing/Understanding/Motivating Reuse Scenarios ................................ .23
5.3 Evaluating the Cost of Reuse ..................................................................... 26
5.4 Planning the Population of Reuse Repositories ............................................ 27

6 A REUSE-ORIENTED SOFTWARE ENVIRONIMENT MODEL ..................... 28

7 C O N CLU SIO N S ............................................................................................... 31

8 ACKNOW LEDGEM ENTS ................................................................................. 31

9 R EFER E N C E S ................................................................................................ . 32
Accession For

NTIS GRA&I
DTIC TAB
Unannounced 5
Justification

By
Distribution/

STATEMENT "A" per Dr. A Van Tilbourg Availability Codes
ONR/Code 1133 Avail and/or
TELECON 6/6/90 VG Dist SpecialA.



1. INTRODUCTION

The existing gap between demand and our ability to produce high quality software cost-

effectively calls for an improved software development technology. A reuse oriented development

technology can significantly contribute to higher quality and productivity. Quality should

improve by reusing proven experience in the form of products, processes and related knowledge

such as plans, measurement data and lessons learned. Productivity should increase by using

existing experience rather than creating everything from scratch. Many different approaches to

reuse have appeared in the literature (e.g., [7, 9, 11, 13, 14, 15, 16, 21, 22, 231).

Reusing existing experience is a key ingredient to progress in any area. Without reuse

everything must be re-learned and re-created; progress in an economical fashion is unlikely.

The goal of research in the area of reuse is the achievement of systematic approaches for effec-

tively reusing existing experience to maximize quality and cost benefits.

This paper defines and demonstrates the usefulness of model-based reuse characterization

schemes. From a number of important assumptions regarding the nature of software development

and reuse we derive four essential requirements for any useful reuse models and related character-

ization schemes (Section 2). Existing models and characterization schemes are assessed with

respect to these assumptions and the need for more comprehensive models and characterization

schemes is established (Section 3). We introduce a reuse characterization scheme based on a gen-

eral model of reuse (Section 4), and discuss its practical application and benefits (Section 5).

Throughout the paper we use examples of reusing generic Ada packages, design inspections, and

cost models to demonstrate our approach. Finally, we present a model for integrating and sup-

porting reuse in software development (Section 6).

-2-



2. BASIC REQUIREMENTS FOR A REUSE CHARACTERIZATION SCHEME

The reuse approach presented in this paper is based on a number of assumptions regarding

software development in general and reuse in particular. These assumptions are based on more

than ten years of analyzing software processes and products 11, 3, 4, 5, 6, 191. This section states

our assumptions regarding development and reuse (Sections 2.1 and 2.2, respectively), and derives

a set of characteristics required foi any useful reuse characterization scheme (Section 2.3).

2.1. Software Development Assumptions

According to a common software development project model depicted in Figure 1, the goal

of software development is to produce project deliverables (i.e., project output) that satisfy pro-

ject needs (i.e., project input) (251. This goal is achieved according to some development process

model which coordinates personnel, practices, methods and tools.

personnel

projc 
development process model

practices tmethods ools

Figure 1: Software Development Project Model



With regard to software development we make the following assumptions:

(DI) A single software development process model canaot be assumed for all software

development projects: Different project needs and other project characteristics may suggest

and justify different development process models. The potential differences may range from

different development process models themselves to different practices, methods and tools sup-

porting these development process models to different personnel.

(D2) Practices, methods and tools - including reuse-related ones - need to be tailored

to the project needs and characteristics; Under the assumption that practices, methods

and tools support a particular development project, they need to be tailored to the needs and

objectives, development process model, and other characteristics of that project.

2.2. Software Reuse Assumptions

Reuse-oriented software development (depicted in Figure 2) assumes that, given the

project-specific need to develop an object 'x' that meets specification '1', we take advantage of

some already existing object 'xk' e ' Xn ') instead of developing 'x' from scratch. In this

case, '*' is not only the specification for 'x' but also the reuse specification for the set of reuse

candidates 'xl', ..., xn' Reuse includes the identification of a set of reuse candidates 'xi' ...,

'xk , , 'Xn-'1-, the evaluation of their potential to satisfy reuse specification 'R' effectively and the

selection of the best-suited candidate 'xk' the possible modification of the chosen candidate 'xk'

into 'x', and the integration of 'x' into the development process of the current project.

-4-



reuse proc(i v o

0 t.. ..
o 0

Figure 2: Reuse-Oriented Software Development Model

With regard to software reuse we make the following assumptions:

(R) All experience can be reused: Typically, the emphasis is on reusing objects of type

'source code'. This limitation reflects the traditional view that software equals code. It ignores

the importance of reusing software products across the entire life-cycle (which includes the

planning as weil as the production phases of a software development project), software

processes and methods, and other kinds of knowledge such as models, measurement data or les-

sons learned.

The reuse of 'generic Ada packages' represents an example of product reuse. G,.neric Ada pack-
ages represent templates for instantiating specific package objects accordinq to a parameter
mechanisms. The reuse of 'design inspections' represents an example of process reuse. Design
inspetions are off-line fault detection and isolat:on methods applied during the module design
phase. They can be based on different techniques for reading (e.g., ad hoe, sequential, control
flow oriented, stepwise abstraction oriented). The reuse of 'cost models' represents an example
of knowledge reuse. Cost modele are used in the estimation, evaluation and control of project
cost. They predict cost (e.g., in the form of staff-months) based on a number of characteristic
project parameters (e.g., estimated product size in KLoC, product eomplexity, methodology
level).

(R2) Reuse typically requires some modification of the object being reused. Under the

assumption that software developments may be different in some way, modification of



experience from prior projects must be anticipated. The degree of modification depends on how

many, and to what, degree, existing object characteristics differ from their desired characteris-

tics.

To reuse an Ada package 'list of integers' to organize a 'list of reals' we need to modify it. We
con either modify the existing package by hand, or we can use a generic package 'list' which can
be instantiated via a parameter mechanism for any base type.

To reuse a design inspection method across projects characterized by significantly different fault
profiles, the underlying reading technique may need to be tailored to the respective fault profiles.
If 'interface faults' replace 'control flow faults' as the most common fault type, we can either
seiet a different reading technique all together (e.g., step-wise abstraction instead of control-
flow oriented) or we can establish specific guidelines for identifying interface faults.

To reuse a cost model across projects characterized by different application domains, we may
have to change the number and type of characteristic project parameters used for estimating
cost as well as their impact on cost. If 'commercial software' is developed instead of 'real-time
software', we may have to consider re-defining 'estimated product size' to be measured in terms
of 'data structures' instead of 'lines of code' or te-computing the impact of the existing parame-
ters on cost. Using a cost model effectively implies a constant updating of our understanding of
the relitionship between project parameters and cost.

(R3) Analysis is necessary to determine when and if reuse is appropriate: The decision

to reuse existing experience as well as how and when to reuse it needs to be based on an

analysis of the payoff. Reuse payoff is not always easy to evaluate. We need to understand (i)

the objectives of reuse, (ii) how well the available reuse candidates are qualified to meet these

objectives, and (iii) the mechanisms available to perform the necessary modification.

Assume the existence of a set of Ada generics which represent application-specific components
of a satellite control system. The objective may be to reuse such components to build a new
satellite control system of a similar type, but with higher precision. Whether the existing gener-
ics are suitable depends on a variety of characteristics: Their correctness and reliability, their
performance in prior instances of reuse, their ease of integration into a new system, the poten-
tial for achieving the higher degree of precision through instantiation, the degree of change
needed, and the existence of reuse mechanisms that support this change process. Candidate
Ada generics may theoretically be well suited for reuse; however, without knowing the answers
to these questions, they may not be reused due to lack of confidence that reuse will pay off.

Assume the existence of a design inspection method based on ad-hoe reading which has been
used successfully on past satellite control software developments within a standard waterfall
model. The objective may be to reuse the method in the context of the Cleanroom development
method [18, 201. In this case, the method needs to be applied in the context of a different life-
cycle model, different design approach, and different design representations. Whether and how
the existing method can be reused depends on our ability to tailor the reading technique to the
stepwise refinement oriented design technique used in Cleanroom, and the required intensity of



reading due to the omission of developer testing. This results in the definition of the stepwise
abstraction oriented reading technique [81.

Assume the existence of a cost model that has been validated for the development of satellite
control software based on a waterfall life-cycle model, functional decomposition oriented design
techniques, and functional and structural testing. The objective may be to reuse the model in
the context of Gleanroom development. Whether the cost model can be reused at all, how it
needs to be calibrated, or whether a completely different model may be more appropriate
depends on whether the model contains the appropriate variables needed for the prediction of
cost change or whether they simply need to be re-calibrated. This question can only be answered
through thorough analysis of a number of Cleanroom projects.

(R4) Reuse must be integrated into the specific software development: Reuse is intended

to make software development more effective. In order to achieve this objective we need to

tailor reuse practices, methods and tools towards the respective development process.

We have to decide when and how to identify, modify and integrate existing Ada packages. If we
assume identification of Ad generics by name, and modification by the generic parameter
mechanism, we require a repository consisting of Ada gencrics together with a description of the
instantiation parameters. I we assume identification by specification, and modification of the
generic's code by hand, we require a suitable specification of each generic, a definition of
semantic closeness of specifications so we can find suitable reuse candidates, and the appropri-
ate source code documentation to allow for ease of modification. In the case of identification
by specification we may consider identifying reuse candidates at high-level design (i. e., when the
compone:.; specifications for the new product exist) or even when defining the requirements.

We I ave to decide on how often, when, and how design inspections should be integrated into the
devei.opment process. If we assume a waterfall-based development life-cycle, we need to deter-
mine how many design inspections need to be performed and when (e.g., once for all modules at
the end of module design, once for all modules of a subsystem, or once for each module). We
need to state which documents are required as input to the design inspection, what results are
to be produced, what actions are to be taken, and when, in case the results are insufficient, and
who is supposed to participate.

We have to decide when to initially estimate cost and when to update the initial estimate. If we
assume a waterfall-based development life-cycle, we may estimate cost initially based on
estimated product and process parameters (e.g., estimated product size). After each milestone,
the estimated cost can b. compared with the actual cost. Possible deviation.s are used to correct
the estimate for the remainder of the project.

2.3. Soft-ware Reuse Characteristics

The above software reuse assumptions suggest that 'reuse' is a complex concept. We need to

build models and characterization schemes that allow us to define and understand, compare and

evaluate, and plan the objectives of reuse, the candidate objects of reuse, the reuse process itself,

-7-



and the potential for effective reuse. Based upon the above assumptions, such models and charac-

terization schemes need to exhibit the following characteristics:

(Cl) Applicable to all types of reuse objects: We want to be able to characterize products,

processes and all other types of related knowledge such as plans, measurement data or lessons

learned.

(C2) Capable of characterizing objects-before-reuse and objects-after-reuse. We want

to be able to chaiacterize the reuse candidates (from here on called 'objects-before-reuse') as

well as the object actually being reused in the current project (from here on called 'object-

after-reuse'). This will enable us to (i) judge the suitability of a given reuse candidate based on

the tistance between its actual before-reuse and desired after-reuse characteristics, and (ii)

establish criteria for useful reuse candidates (object-before-reuse characteristics) based on anti-

cipated objectives for their (re)use (object-after-reuse characteristics).

(03) Capable of characterizing the reuse process itself. We want to be able to (i) judge

the ease of bridging the gap between different object characteristics before- and after-reuse,

and (ii) derive additional criteria for useful reuse candidates based on characteristics of the

reuse process itself.

(C4) Capable of being systematically tailored to specific project (i.e., development

and reuse) needs and other characteristics: We want to be able to adjust a given reuse

characterization scheme to changing needs in a systematic way. This requires not only the abil-

ity to change the scheme, but also some kind of rationale that ties the given reuse characteriza-

tion scheme back to its underlying model and assumptions. Such a rationale enables us to

identify the impact of different environments and modify the scheme in a systematic way.

-8-



3. STATE-OF-THE-ART REUSE CHARACTERIZATION SCHEMES

A number of research groups have developed characterization schemes for reuse (e.g., [9, 11,

13, 21, 22]). The schemes can be distinguished as special purpose schemes and meta schemes.

The large majority of published characterization schemes have been developed fo- a special

purpose. They consist of a fixed number of characterization dimensions. There intention is to

characterize software products as they exist. Typical dimensions for characterizing source code

objects in a repository are "function", "size", or "type of problem". Examples schemes include

the schemes published in [11, 13], the ACM Computing Reviews Scheme, AFIPS's Taxonomy of

Computer Science and Engineering, schemes for functional collections (e.g., GAMS, SHARE, SSP,

SPSS, lISL) and schemes for commercial software catalogs (e.g., ICP, IDS, IBM Software Cata-

log, Apple Book). It is obvious that special purpose schemes are not designed to satisfy the reuse

modeling characteristics of section 2.3.

A few characterization schemes can be instantiated for different purposes. They explicitly

acknowledge the need for different schemes (or the expansion of existing ones) due to different or

changing needs of an organization. They, therefore, allow the instantiation of any imaginable

scheme. An excellent example is Ruben Prieto-Diaz's facet-based meta-characterization scheme

[14, 17]. Theoretically, meta schemes are flexible enough to allow the capturing of any reuse

aspect. However, based on known examples of actual uses of meta schemes, such broadness seems

not intended. Instead, most examples focus un product reuse, are limited to the objects-before-

reuse, and ignore the reuse process entirely. Meta schemes were also not designed to satisfy the

reuse modeling characteristics of section 2.3.

We have found that existing schemes - special purpose as well as meta schemes - do not

satisfy our requirements. To illustrate the problems associated with their limitations, we use the

following example scheme which can be viewed either as a special-purpose scheme or a specific



I*

instantiation of a meta scheme

Each reuse candidate is characterized in terms of

" name: What is the object's name? (e.g., buffer.ada, sel inspection, selcost_model)
" function: What is the functional specification or purpose of the object? (e.g., integer queue,

<element> buffer, sensor control system, certify appropriateness of design documents,
predict project cost)

" use: How can the object be used? (e.g., product, process, knowledge)
* type: What type of object is it? (e.g., requirements document, code documenm, inspection

method, coding method, specification tool, graphic tool, process model, cost model)
* granularity: What is the object's scope? (e.g., system level, subsystem level, component

level, module - package, procedure, function - level, entire life cycle, design stage, coding
stage)

" representation: How is the object represented? (e.g., data, informal set of guidelines,
schematized templates, formal mathematical model, languages such as Ada, automated tools)

" input/output: What are the external input/output dependencies of the object needed to
completely define/extract it as a self-contained entity? (e.g., global data referenced by a
code unit, formal and actual input/output parameters of a procedure, instantiation parame-
ters of a generic Ada package, specification and design documents needed to perform a design
inspection, defect data produced by a design inspection, variables of a cost model)

" dependencies: What are additional assumptions and dependencies needed to understand the
object? (e.g., assumption on user's qualification such as knowledge of Ada or qualification to
read, specification document to understand a code unit, readability of design document,
homogeneity of problem classes and environments underlying a cost model)

* application domain: What application classes was the object developed for? (e.g. ground
support software for satellites, business software for banking, payroll software)

* solution domain: What environment classes was the object developed in? (e.g., waterfall
life-cycle model, spiral life-cycle model, iterative enhancement life-cycle model, functional
decomposition design method, standard set of methods)

" object quality: What qualities does the object exhibit? (e.g., level of reliability, correctness,
user-friendliness, defect detection rate, predictability)

Let's assess the above reuse characterization scheme relative to the four desired characteristics of

section 2.3:

(C1) It is theoretically possible to characterize all types of experience according to the above

scheme (in case of a meta scheme we could even create new ones). For example, a generic Ada

package 'buffer.ada' may be characterized as having identifier 'buffer.ada', offering the function

'<element>_buffer', being usable as a 'product' of type 'code document' at the 'package

module level', and being represented in 'Ada'. The self-contained definition of the package

requires knowledge regarding the instantiation parameters as well as its visibility of externally

* Characterization dimensions are marked with '-'; example categories for each dimension are listed in parenthesis.

- 10 -



defined objects (e.g, explicit access through WITH clauses, implicit access according to nesting

structure). In addition, effective use of the object may require some basic knowledge of the

lang ,-e Ada and assume thorough documentation of the object itself. It may have been

developed within the application domaini 'ground support software', according to a 'waterfall

life-cycle' and 'functional decompositi-;i design', and exhibiting high quality in terms of 'relia-

bility'.

(C2) The scheme is used to characterize reuse candidates (i.e., objects-before-reuse) only. How-

ever, in order to evaluate the reuse potential of an object-before-reuse in a given reuse

scenario, one needs to understand the distance between its characteristics and the characteris-

tics of the desired object (i.e., object -after-reuse). In the case of the Ada package example, the

required function may be different, the quality requirements with respect to reliability may be

higher, or the design method used in the current project may be different from the one accord-

ing to which the package has been created originally. Without understanding the distance to

be bridged between reuse requirements and reuse candidates it is hard to (a) predict the cost

involved in reusing a particular object, and (b) establish criteria for populating a reuse reposi-

tory that supports cost-effective reuse.

(C3) The scheme is not intended to characterize the reuse process at all. To really predict the

cost of reuse we do not only have to understand the distance to be bridged between objects-

before and objects-after-reuse (as pointed out above), but also the intended process to bridge it

(i.e., the reuse process). For example, it can be expected that it is easier to bridge the distance

with respect to function by using a parameterized instantiation mechanism rather than modify-

ing the existing package by hand.

(C4) Their is no explicit rationale for the eleven dimensions of the example scheme. That makes

it hard to reason about its appropriateness as well as modify it in any systematic way. There

is no guidance in tailoring the example scheme to new needs neither with respect to what is to

changed (e.g., only some categories, dimensions, or the entire implicitly underlying model) nor

- 11 -



how it is to be changed.

The result of this assessment suggests the urgent need for new, better reuse characterization

schemes. In the next section, we suggest a model-based scheme which satisfies all four characteris-

tics.

4. MODEL-BASED REUSE CHARACTERIZATION SCHEMES

In this section we define a model-based reuse characterization scheme satisfying the charac-

teristics (01-4) stated in section 2.3. We start this modeling approach with a very general reuse

model satisfying satisfying the reuse assumptions, refine it step by step until it generates reuse

characterization dimensions at the level of detail needed to understand, evaluate, motivate or

improve reuse. This modeling approach allows us to deal with the complexity of the modeling

task itself, and document an explicit rationale for the resulting model.

4.1. The Abstract Reuse Model

The general reuse model used in this section is consistent with the view of reuse represented

in section 2.2. It assumes the existence of objects-before-reuse and objects-after-reuse, and a

transformation between the two:

- 12 -



OBJECTS REUSE OBJECTS
PROCESS

BEFORE AFTER

REUSE REUSE

Figure 3: Abstract Reuse Model (Refinement level 0)

The objects-before-reuse represent experience from prior projects, have been evaluated as being

of potential reuse value, and have been made available in some form of a repository. The

objects-after-reuse are the (potentially modified) versions of objects-before-reuse integrated into

some project other than the one they were initially created for. Object-after-reuse characteristics

represent the 'reuse specification' for any candidate 'object-before-reuse'. Both the objects-

before-reuse and the objects-after-reuse may represent any type of experience accumulated in the

context of software projects ranging from products to processes to knowledge. The reuse process

transforms objects-before-reuse into objects-after-reuse.

4.2. The First Model Refinement Level

Figure 4 depicts the result of the first refinement step of the general model of Figure 3.

- 13 -



i:~~~~ ~~ .: .. .... ..... ...: ... ... ......

objet iterace'activity interface_-

objec _context activit y context system context

OBJECTS REUSE OBJECTS

PROCESS
BEFORE AFTER

REUSE REUSE

Figure 4: Our Reuse Model (Refinement level 1)

Each object-before-reuse is a specific candidate for reuse. It has various attributes that

describe and bound the object. Most objects are physically part of a system, i.e. they interact

with other objects to create some greater object. If we want to reuse an object we must under-

stand its interaction with other objects in the system in order to extract it as a unit, i.e. object

interface. Objects were created in some environment which leaves its characteristics on the

object, even though those characteristics may not be visible. We call this the object context.

The object-after-reuse is a specification for a set of before-reuse candidates. Therefore, we

may have to consider different attributes. The system in which the transformed object is

integrated and the system context in which the system is developed must also be classified.

The reuse process is aimed at extracting the object-before-reuse from a repository based on

the available object-after-reuse characteristics, and making it ready for reuse in the system and

context in which it will be reused. We must describe the various reuse activities and classify

them. The reuse activities need to be integrated into the reuse-enabling software development

process. The means of integration constitute the activity interface. Reuse requires the transfer of

experience across project boundaries. The organizational support provided for this experience

transfer is referred to as activity context.

- 14 -



Based upon the goals for the specific project, as well as the organization, we must evaluate

(i) the required qualities of the object-after-reuse, (ii) the quality of the reuse process, especially

its integration into the enabling software evolution process, and (iii) the quality of the existing

objects-before-reuse.

4.3. The Second Model Refinement Level

Each component of the First Model Refinement (Figure 4) is further refined as depicted in

Figures 5(a-c) . It needs to be noted that these refinements are based on our current understand-

ing of reuse and may, therefore, change in the future.

4.3.1. Objects-Before-Reuse

In order to characterize the object itself, we have chosen to provide the following six dimen-

sions and supplementing categories: the object's name (e.g., buffer.ada), its function (e.g.,

integer-buffer), its possible use (e.g., product), its type (e.g., requirements document), its granu-

larity (e.g., module), and its representation (e.g., Ada language). The object interface consists of

such things as what are the explicit inputs/outputs needed to define and extract the object as a

self-contained unit (e.g., instantiation parameters in the case of a generic Ada package), and what

are additionally required assumptions and dependencies (e.g., user's knowledge of Ada). Whereas

the object and object interface dimensions provide us with a snapshot of the object at hand, the

object context dimension provides us with historical information such as the application classes

the object was developed for (e.g., ground support software for satellites), the environment the

object was developed in (e.g., waterfall life-cycle model), and its validated or anticipated quality

(e.g., reliability).

The resulting model refinement is depicted in Figure 5a.

- 15 -



- name
- function
- use

- type
- granularity
- representation

~bjct.iteiffei - input/output
....... . . - dependencies

OBJECTS

- application domain
BEFORE - solution domain

- object quality
REUSE

Figure 5a: Reuse Model (Objects-Before-Reuse / Refinement level 2)

A detailed definition of the above eleven dimensions - together with example categories -

has already been presented in Section 3. In contrast to Section 3, we now have (i) a rationale for

these dimensions (see Figure 5a) and (ii) understand that they cover only part (i.e., the objects-

before-reuse) of the comprehensive reuse model depicted in Figure 4.

4.3.2. Objects-After-Reuse

In order to characterize objects-after-reuse, we have chosen the same eleven dimensions and

supporting categories as for the objects-before-reuse. The resulting model refinement is depicted

in Figure 5b:

- 18t -



--- -

- name
- function
- use

- type

granularity
representation

input/output

________________ -dependencis

- application domain
AFTER"J - solution domain

- object quality
REUSE

Figure 5b: Reuse Model (Objects-After-Reuse / Refinement level 2)

However, an object may change its characteristics during the actual process of reuse.

Therefore, its characterizations before-reuse and after-reuse can be expected to be different. For

example, an object-before-reuse may be a compiler (type) product (use), and may have been

developed according to a waterfall life-cycle approach (solution domain). The object-after-reuse

may be a compiler (type) process (use) integrated into a project based on iterative enhancement

(solution domain).

This means that despite the similarity between the refined models of objects-before-reuse

and objects-after-reuse, there exists a significant difference in emphasis: In the former case the

emphasis is on the potentially reusable objects themselves; in the latter case, the emphasis is on

the system in which these object(s) are (or are expected to be) reused. This explains the use of dif-

ferent dimension names: 'system' and 'system context' instead of 'object interface' and 'object

context'.

The distance between the characteristics of an object-before-reuse and an object-after-reuse

give an indication of the gap to be bridged in the event of reuse.

- 17 -



4.3.3. Reuse Process

The reuse process consists of several activities. In the remainder of this paper, we will use a

model consisting of four basic activities: identification, evaluation, modification, and integration.

In order to characterize each reuse activity we may be interested in its name (e.g., modify.pl), its

function (e.g., modify an identified reuse candidate to entirely satisfy given object-after-reuse

characteristics), its type (e.g., modification), and the mechanism used to perform its function (e.g.,

modification via parameterization). The interface of each activity may consist of such things as

what the explicit input/output interfaces between the activity and the enabling software evolut;on

environment are (e.g., in the case of modification: performed during the coding phase, assumes

the existence of a specification), and what other assumptions regarding the evolution environment

need to be satisfied (e.g., existence of certain configuration control policies). The activity context

may include information about how experience is transferred from the object-before-reuse

domain to the object-after-reuse domain (experience transfer), and the quality of each reuse

activity (e.g., reliability, productivity).

This refinement of the reuse process is depicted in Figure 5c.

- name
function

.. ... -type
- mechanism

-activity.

activity: initerace I- input/output
- dependencies

* activity context

REUSE - experience transfer

PROCESS - reuse quality

Figure 5c: Reuse Model (Reuse Process / Refinement level 2)

In more detail, the dimensions and example categories for characterizing the reuse process are:

- 18 -



* REUSE PROCESS: For each reuse activity characterize:

+ Activity:

- name: What is the name of the activity? (e.g., identify.generics, evaluate.generics,
modify.generics, integrate.generics)

- function: What is the function performed by the activity? (e.g., select candidate objects
{x:} which satisfy certain object categories of the object-after-reuse specification '.-';
evaluate the potential of the selected candidate objects of satisfying the given system and
system context dimensions of the object-after-reuse specification '' and pick the most
suited candidate 'xk'" modify 'xk' to entirely satisfy ''; integrate object 'x' into the
current development project)

- type: What is the type of the activity? (e.g., identification, evaluation, modification,
integration)

- mechanism: How is the activity performed? (in the case of identification: e.g., by name,
by function, by type and function; in the case of evaluation: e.g., by subjective judgement,
by evaluation of historical baseline measurement data; in the case of modification: e.g.,
verbatim, parameterized, template-based, unconstrained; in the case of integration: e.g.,
according to the system configuration plan, according to the project/process plan)

4. Activity Interface:

- input/output: What are explicit input and output interfaces between the reuse activity
and the enabling software evolution environment? (in the case of identification: e.g.,
specification for the needed object-after-reuse / set of candidate objects-before-reuse; in
the case of modification: e.g., one selected object-before-reuse, specification for the needed
object-after-reuse / object-after-reuse)

- dependencies: What are other implicit assumptions and dependencies on data and infor-
mation regarding the software evolution environment? (e.g., time at which reuse activity
is performed - relative to the enabling development process: e.g., during design or coding
stages; additional information needed to perform the reuse activity effectively: e.g., pack-
age specification to instantiate a generic package, knowledge of system configuration plan,
configuration management procedures, or project plan)

+ Activity Context:

- experience transfer: What are the support mechanisms for transferring experience across
projects? (e.g., human, experience base, automated)

- reuse quality: What is the quality of each reuse activity? (e.g., high reliability, high
predictability of modification cost, correctness, average performance)

-- 19 -



5. APPLYING MODEL-BASED REUSE CHARACTERIZATION SCHEMES

We demonstrate the applicability of our model-based reuse-scheme by characterizing three

hypothetical reuse scenarios related to product, process and knowledge reuse: Ada generics, design

inspections, and cost models (Section 5.1). The characterization of the Ada generics scenario is

furthermore used to demonstrate the benefits of model-based characterizations to

describe/understand/motivate a given reuse scenario (Section 5.2), to evaluate the cost of reuse

(Section 5.3), and to plan the population of a reuse repository (Section 5.4).

5.1. Example Reuse Characterizations

The characterization scheme of section 4 has been applied to the three examples of product,

process and knowledge reuse introduced in section 2. The resulting characterizations are contained

in tables 2, 3, and 4:

- 20 -



Reuse Examples

Dimensions Ada generic design inspection cost model

name buffer.ada seltinspection.waterfall sel cost model.fortran

function <element>buffer certify appropriateness predict
of design documents project cost

use product process knowledge

type code document, inspection method cost model

granularity package design stage entire life cycle

representation Ada/ informal set of formal mathematical
generic package guidelines model

input/output formal and actual specification and estimated product
instantiation params design document needed, size hi ILO,

defect data produced complexity rating,
methodology level,
cost in staff hours

dependencies assumes Ada knowledge assumes a readable design, assumes a relatively
qualified reader homogeneous class

of problems and environments

application domain ground support ground support ground support
sw for satellites sw for satellites sw for satellites

solution domain waterfall (Fortran) waterfall (Fortran) waterfall (Fortran)
life-cycle model, life-cycle model, life-cycle model

functional de- standard set of standard set of
composition design methods methods

method

olject quality high reliability average defect average predictability
detection rate

(e.g., < 0.1 defects (e.g., > 0.5 defects (e.g., < 5% pre-
per KLoC for a given detected per staff hour) diction error)
set of acceptance tests)

Table 2: Characterization of Example Reuse Objects-Before-Reuse

- 21 -



Reuse Examples

Dimensions Ada generics design inspection cost model

name stringbuffer.ada sel-inspection.cleanroom sel cost model.ada

function string buffer certify appropriateness predict
of design documents project cost

use product process knowledge

type code document, inspection method cost model

granularity package design stage entire life cycle

representation Ada informal set of formal mathematical
guidelines model

input/output formal and actual specification and estimated product
instantiation params design document needed, size in KLOC,

defect data produced complexity rating,
methodology level,
cost in staff hours

dependencies assumes Ada knowledge assumes a readable design, assumes a relatively
qualified reader homogeneous class

of problems and environments

application domain ground support ground support ground support
sw for satellites sw for satellites sw for satellites

solution domain waterfall (Ada) Cleanroom (Fortran) waterfall (Ada)
life-cycle model, development model, life-cycle model,
object oriented stepwise refinement revised set of
design method oriented design, methods

statistical testing

object quality high reliability high defect high predictability
detection rate

(e.g., < 0.1 defects (e.g., > 1.0 defects (e.g., < 2% pre-
per KLoC for a given detected per staff hour) diction error)

set of acceptance tests), wrt. interface faults
high performance

(e.g., max. response times
for a set of tests)

Table 3: Characterization of Example Reuse Objects-After-Reuse

- 22-



Reuse Examples

Dimensions Ada generics design inspection cost model

name modify.generics modify.inspections modify.cost models

function modify to satisfy modify to satisfy modify to satisfy
target specification target specification target specification

type modification modification modification

mechanism parameterized unconstrained template-based
(generic mechanism)

input/output buffer.ada, sel-inspection.waterfall, sel cost model.fortran,
reuse specification/ reuse specification/ reuse specification/
stringbuffer.ada selinspection.cleanroom sel cosl. model.ada

dependencies performed performed performed
during coding stage, during planning stage, during planning stage,
package specification

needed,

knowledge of knowledge of knowledge of historical
system configuration project plan project profiles

plan

experience transfer experience base human and human and
experience base experience base

reuse quality correctness correctness correctness

Table 4: Characterization of Example Reuse Processes

5.2. Describing/Understanding/Motivating Reuse Scenarios

We will demonstrate the benefits of cur reuse characterization scheme to describe, under-

stand, and motivate the reuse of Ada generics as characterized in section 5.1.

We assume that in some project the need has arisen to have an Ada package implementing

a 'stringbuffer' with high 'reliability and performance' characteristics. This need may have been

established during the project planning phase based on domain analysis, or during the design or

coding stages. This package will be integrated into a software system designed according to

- 23 -



object-oriented principles. The complete reuse specification is contained in Table 3.

First, we identify candidate objects based on some subset of the object related characteris-

tics stated in Table 3: string buffer.ada, stringbuffer, product, code document, package, Ada.

The more characteristics we use for identification, the smaller the resulting set of candidate

objects will be. For example, if we include the name itself, we will either find exactly one object

or none. Identification may take place during any project stage. We will assume that the set of

successfully identified reuse candidates contains 'buffer.ada', the object characterized in Table 2.

Now we need to evaluate whether and to what degree 'buffer.ada' (as well as any other

identified candidate) needs to be modified and estimate the cost of such modification compared to

the cost required for creating the desired object 'string_buffer' from scratch. Three characteristics

of the chosen reuse candidate deviate from the expected ones: it is more general than needed (see

function dimension), it has been developed according to a different design approach (see solution

domain dimension), and it does not contain any information about its performance behavior (see

object quality dimension). The functional discrepancy requires instantiating object 'buffer.ada' for

data type 'string'. The cost of this modification is extremely low due to the fact that the generic

instantiation mechanism in Ada can be used for modification (see Table 4). The remaining two

discrepancies cannot be evaluated based on the information available through the characteriza-

tions in section 5.1. On the one hand, ignoring the solution domain discrepancy may result in

problems during the integration phase. On the other hand, it may be hard to predict the cost of

transforming 'buffer.ada' to adhere to object-oriented principles. Without additional information

about either the integration of non-object-oriented packages or the cost of modification, we only

have the choice between two risks. Predicting the cost of changes necessary to satisfy the stated

object performance requirements is impossible because we have no information about the

candidate's performance behavior. It is noteworthy that very often practical reuse seems to fail

because of lack of appropriate information to evaluate the reuse implications a-priori, rather than

because of technical infeasibility.

- 24 -



In case the object characterized in Table 2 has been modified successfully to satisfy the

specification in Table 3, we need to integrate it into the ongoing development process. This task

needs to be performed consistently with the system configuration plan and the process plan used

in this project.

The characterization of both objects (before/after-reuse) and the reuse process allow us to

understand some of the implications and risks associated with discrepancies between identified

reuse candidates and target reuse specification. Problems arise when we have either insufficient

information about the existence of a discrepancy (e.g., object performance quality in our exam-

ple), or no understanding of the implications of an identified discrepancy (e.g., solution domain in

our example). In order to avoid the first type of problem, one may either constrain the

identification process further by including characteristics other than just the object related ones,

or not have any objects without 'performance' data in the reuse repository. If we had included

'desired solution domain' and 'object performance' as additional criteria in our identification pro-

cess, we may not have selected object 'buffer.ada' at all. If every object in our repository would

have performance data attached to it, we at least would be able to establish the fact that there

exists a dscrepancy. In order to avoid the second type of problem, we need have some (semi-)

automated modification mechanism, or at least historical data about the cost involved in similar

past situations. It is clear that in our example any functional discrepancy within the scope of the

instantiation parameters is easy to bridge due to the availability of a completely automated

modification mechanism (i.e., generic instantiation in Ada). Any functional discrepancy tha, ,n-

not be bridged through this mechanisms poses a larger and possibly unpredictable risk. Whether

it is more costly to re-design 'buffer.ada' in order to adhere to object oriented design principles or

to re-develop it from scratch is not obvious without past experience.

Based on the preceding discassion, the motivational benefits are that we have a sound

rationale for suggesting the use of certain reuse mechanisms (e.g., automated in the case of Ada

packages to reduce the modification cost), criteria for populating a reuse repository (e.g., do

- 25 -



exclude objects without performance data to avoid the unnecessary expansion of the search

space), criteria for identifying reuse candidates effectively according to some reuse specification

(e.g., do include solution domain to avoid the identification of candidates with unpredictable

modification cost), or certain types of reuse specifications (e.g., require that each reuse request is

specified in terms of all object dimensions, except probably name, and all system context dimen-

sions).

5.3. Evaluating the Cost of Reuse

We will demonstrate the benefits of our reuse characterization scheme to evaluate the cost

of reusing Ada generics as characterized in section 5.1.

The general evaluation goals are (i) characterize the degree of discrepancies between a given

reuse specification (see Table 3) and a given reuse candidate (Table 2), and (ii) what is the cost of

bridging the gap between before-reuse and after-reuse characteristics. The first type of evaluation

goal can be achieved by capturing detailed information with respect to the object-before-reuse

and object-after-reuse dimensions. The second goal requires the inclusion of data characterizing

the reuse process itself and past experience about similar reuse activities.

We use the goal/question/metric paradigm to perform the above kind of goal-oriented

evaluation [6, 8, 101. It provides templates for guiding the selection of appropriate metrics based

on a precise definition of the evaluation goal. Guidance exists at the level of identifying certain

types of metrics (e.g., to quantify the object of interest, to quantify the perspective of interest, to

quantify the quality aspect of interest). Using the goal/question/metric paradigm in conjunction

with reuse characterizations like the ones depicted in Tables 2, 3, and 4, provides very detailed

guidance as to what exact metrics need to be used. For example, evaluation of the Ada generic

example suggests metrics to characterize discrepancies between the desired object-after-reuse and

all before-reuse candidates in terms of (i) function, use, type, granularity, and representation on a

nominal scale defined by the respective categories, (ii) input/output interface on an ordinal scale

- 20 -



'number of instantiation params', (iii) application and solution domains on nominal scales, and

(iv) qualities such as performance based on benchmark tests.

5.4. Planning the Population of Reuse Repositories

We will demonstrate the benefits of our reuse characterization scheme to populate a reuse

repository with generic Ada packages as characterized in section 5.1. .

Reuse is economical from a project perspective if the effort required to bridge the gap

between an object-before-reuse (available in some experience base) and the desired object-after-

reuse is less than the effort required to create the object-after-reuse from scratch. Reuse is

economical from an organization's perspective if the effort required for creating the reuse reposi-

tory is less than the sum of all project-specific savings based on reuse.

Based on the above statement, populating a reuse repository constitutes an optimization

problem for the organization. For example, high effort for populating a reuse repository may be

justified if (i) small savings in many projects are expected, or (ii) large savings in a small number

of projects are expected. For example, object 'buffer.ada' could have been transformed to adhere

to object oriented principles prior to introducing it into the repository. This would have excluded

the project specific risk and cost.

The cost of reusing an object-before-reuse from an experience base depends on its distance

to the desired object-after-reuse and the mechanisms employed to bridge that distance. The cost

of populating a reuse repository depends on how much effort is required to transform existing

objects into objects-before-reuse. Both efforts together are aimed at bridging the gap betiveen the

project in which some objects were produced and the projects in which they are intended to be

reused. The inclusion of a generic package 'buffer.ada' into the repository instead of specific

instances 'integerbuffer.ada' and 'real-buffer.ada' requires some up-front transformation (i.e.,

abstraction). The advantage of creating an object 'buffer.ada' is that it reduces the project-

specific cost of creating object 'string buffer.ada' (or any other buffer for that matter) and

- 27 -



quantifies the cost of modification.

Finding the appropriate characteristics for objects-before-reuse to minimize project-specific

reuse costs requires a good understanding of future reuse needs (objects-after-reuse) and the reuse

processes to be employed (reuse process). The more one knows about future reuse needs within an

organization, the better job one can do of populating a repository. For example, the object-

before-reuse characteristics of Ada generics in Table 2 were derived from the corresponding

object-after-reuse and reuse process characteristics in Tables 3 and 4. It would have made no

sense to include Ada generics into the experience base that (i) are not based on the same instan-

tiation parameters as all anticipated objects-after-reuse because modification is assumed via

parameterized instantiation, (ii) do not exhibit high reliability and performance, and (iii) have not

the same solution domain except we understand the implication of different solution domains.

Without any knowledge of the object-after-reuse and reuse process characteristics, the task of

populating a reuse repository is about as meaningful as investing in the mass-production of con-

crete components in the area of civil engineering without knowing whether we want to build

bridges, town houses or high-rise buildings.

6. A REUSE-ORIENTED SOFTWARE ENVIRONMENT MODEL

Effective reuse according to the reuse-oriented software development model depicted in Fig-

ure 2 of Section 2 needs to take place in an environment that supports continuous improvement,

i.e., recording of experience across all projects, appropriate packaging and storing of recorded

experience, and reusing existing experience whenever feasible. Figure 6 depicts such an environ-

ment model.

- 28 -



Reuse-Oriented Software Environment Model

Organizational Process Model

characterize plan execute
select SW Development

Process Model
methods & toolsidentify set for construction construct

project ....................................................goals select

characteristics
methods & tools analyze

for analysis

Record Reuse

objects.

before,

reuse

Experience Base

Figure 0: Reuse-Oriented Software Environment Model

Each project is performed according to an organization process model based on the

improvement paradigm (2, 5]:

1. Characterize: Jdentify characteristics of the current project environment so that the

- 29 -



appropriate past experience can be made available to the current project.

2. Plan: (A) Set up the goals for the project and refine them into quantifiable questions and

metrics for successful project performance and improvement over previous project performances

(e.g., based upon the goal/question/metric paradigm [6]).

(B) Choose the appropriate software development process model for this project with the sup-

porting methods and tools - both for construction and analysis.

3. Execute: (A) Construct the products according to the chosen development process model,

methods and tools.

(B) Collect the prescribed data, validate and analyze it to provide feedback in real-time for

corrective action on the current project.

4. Feedback: (A) Analyze the data to evaluate the current practices, determine problems, record

findings and make recommendations for improvement for future projects.

(B) Package the experiences in the form of updated and refined models and other forms of

structured knowledge gained from this and previous projects, and save it in an experience base

so it can be available to future projects.

The experience base is not a passive entity that simply stores experience. It is an active

organizational entity in the context of the reuse-oriented environment model which - in addition

to storing experience in a variety of repositories - involves the constant modification of experience

to increase its reuse potential. It plays the role of an organizational "server" aimed at satisfying

project-specific requests effectively. The constant collection of measurement data regarding

objects-after-reuse and the reuse processes themselves enables the judgements needed to populate

the experience base effectively and to select the best suited objects-before-reuse to satisfy

project-specific reuse needs based upon experiences. The organizational process model based on

the improvement paradigm supports the integration of measurement-based analysis and construc-

tion.

- 30 -



For more detail about the reuse-oriented environment model, the reader is referred to [7].

7. CONCLUSIONS

The model-based reuse characterization scheme introduced in this paper has advantages

over existing schemes in that it (a) allows us to capture the reuse of any type of experience, (b)

distinguishes between objects-before-reuse, objects-after-reuse, and the reuse process itself, and

(c) provides a rationale for the chosen characterizing dimensions. In the past most the scope of

reuse schemes was limited to objects-before-reuse.

We have demonstrated the advantages of such a model-based scheme by applying it to the

characterization of example reuse scenarios. Especially its usefulness for evaluating the cost of

reuse and planning the population of reuse repositories were stressed.

Finally, we gave a model how we believe reuse should be integrated into an environment

aimed at continuous improvement based on learning and reuse. A specific instantiation of such

an environment, the 'code factory', is currently being developed at the University of Maryland

112]. In order to make reuse a reality, more reseafch is required towards understanding and con-

ceptualizing activities and aspects related to reuse, learning and the experience base.

8. ACKNOWLEDGEMENTS

We thank all our colleagues and graduate students who contributed to this paper, especially

all members of the TAME and CARE project.

- 31 -



9. REFERENCES

[1] V. R. Basili, "Can We Measure Software Technology: Lessons Learned fron Eight Years of
Trying", in Proc. Tenth Annual Software Engineering Workshop, NASA Goddard Space
Flight Center, Greenbelt, MD, December 1985.

[2] V. R. Basili, "Quantitative Evaluation of Software Methodology", Dept. of Computer
Science, University of Maryland, College Park, TR-1519, July 1985 [also in Proc. of
the First Pan Pacific Computer Conference, Australia, September 1986].

[3] V. R. Basili, "Viewing Maintenance as Reuse-Oriented Software Development", IEEE
Software Magazine, January 1990, pp. 19-25.

[4] V. R. Basili and H. D. Rombach, "Tailoring the Software Process to Project Goals and
Environments", Proc. of the Ninth International Conference on Software Engineer-
ing, Monterey, CA, March 30 - April 2, 1987, pp. 345-357.

[5] V. R. Basili and H. D. Rombach, "TAME: Integrating Measurement into Software
Environments", Technical Report TR-1764 (or TAMIE-TR-1-1987), Dept. of Computer
Science, University of Maryland, College Park, MD 20742, June 1987.

[6] V. R. Basili and H. D. Rombach "The TAME Project: Towards Improvement-Oriented
Software Environments", IEEE Transactions on Software Engineering, vol. SE-14, no. 6,
June 1988, pp. 758-773.

[7) V. R. Basili and H. D. Rombach, "Towards a Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment", Technical Report (UMIACS-TR-88-92,
CS-TR-2158), Department of Computer Science, University of Maryltid, Oofgc Park,
MD 20742, December 1988.

[81 V. R. Basili and R. W. Selby, "Comparing the Effectiveness of Software Testing Stra-
tegies", IEEE Transactions on Software Engineering, vol.SE-13, no.12, December 1987,
pp.1278.-1296.

[9] V. R. Basili and M. Shaw, "Scope of Software Reuse", White paper, working group on
'Scope of Software Reuse', Tenth Minnowbrook Workshop on Software Reuse, Blue
Mountain Lake, New York, July 1987 (in preparation).

[10] V. R. Basili and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering
Data", IEEE Transactions on Software Engineering, vol.SE-10, no.3, November 1984,
pp.728-738.

111) Ted Biggerstaff, "Reusability Framework, Assessment, and Directions", IEEE Software
Magazine, March 1987, pp.41-49.

(12] G. Caldiera and V. R. Basili, "Reengineering Existing Software for Reusability", Technical
Report (UNIIACS-TR-90-30, CS-TR-2419), Department of Computer Science, University
of Maryland, College Park, MD 20742, February 1990.

[13] P. Freeman, "Reusable Software Engineering: Concepts and Research Directions", Proc.
of the Workshop on Reusability, September 1983, pp. 63-76.

(14) R. Prieto-Diaz and P. Freeman, "Classifying Software for Reusability", IEEE Software,
vol.4, no.1, January 1987, pp. 6-16.

[15] IEEE Software, special issue on 'Reusing Software', vol.4, no.1, January 1987.
[161 IEEE Software, special issue on 'Tools: Making Reuse a Reality', vol.4, no.7, July 1987.

[17] G. A. Jones and R. Prieto-Diaz, "Building and Managing Software Libraries", Proc. Comp-
sac'88, Chicago, October 5-7, 1988, pp. 228-236.

- 32 -



[18] A. Kouchakdjian, V. R. Basili, and S. Green, "The Evolution of the Cleanroom Process in
the Software Engineering Laboratory", IEEE Software Magazine (to appear 1990).

[191 F. E. McGarry, "Recent SEL Studies", in Proc. Tenth Annual Software Engineering
Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, Dec. 1985.

[20] R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROOM Software Development: An
Empirical Evaluation", IEEE Transactions on Software Engineering, vol. SE-13, no. 9,
September 1987, pp.1027-1037.

[21] Mary Shaw, "Purposes and Varieties of Software Reuse", Proceedings of the Tenth
Minnowbrook Workshop on Software Reuse, Blue Mountain Lake, New York, July,
1987.

[22] T. A. Standish, "An Essay on Software Reuse", IEEE Transactions on Software
Engineering, vol. SE-10, no. 5, September 1984, pp.494-497.

[23] W. Tracz, "Tutorial on 'Software Reuse: Emerging Technology'", IEEE Catalog Number
EH0278-2, 1988.

[24] J. Valett, B. Decker, J. Buell, "The Software Management Environment", in Proc. Thir-
teenth Annual Software Engineering Workshop, NASA/Goddard Space Flight Center,
Greenbelt, MD, November 30, 1988.

[25] M. V. Zelkowitz (ed.), "Proceedings of the University of Maryland Workshop on
'Requirements for a Software Engineering Environment', Greenbelt, MD, May 1986",
Technical Report TR-1733, Dept. of Computer Science, University of Maryland, Col-
lege Park, MD 20742, December 1986 [to be published as a book, Ablex Publ., 1988].

- 33 -



UMIACS Technical Report Series

UMIACS.-TR-90-33 Double Coset Networks as Connectors for Parallel Processors
A. Yavuz Orup

UMIACS-TR-90-34 Permuting with Cosets of Symmetric Groups
Melda Y. Orup and Yavuz A. Orup

UMIACS-TR-90-35 A Distributed User Information System
Steven D. Miller, Scott Carson, and Leo Mark

UMIACS-TR-90-36 Yet Another Polynomial Preconditioner for the Conjugate
Gradient Algorithm
Dianne P. O'Leary

UMIACS-TR-90-37 Efficient Parallel Algorithms on the Network Model
Kwan Woo Ryu

UMIACS-TR-90-38 A TCP Instrumentation and Its Use in Evaluating
Roundtrip-Time Estimators
Dheeraj Sanghi, M.C.V. Subramaniam, A. Udaya Shankar,
Olafur Gudmundsson, and Pankaj Jalote

UMIACS-TR-90-39 Generalized Disjunctive Well-Founded Semantics for Logic Programs
Chitta Baral, Jorge Lobo, and Jack Minker

UMIvlACS-TR-90.-40 Recursive Star-Tree Parallel Data-Structure
Omer Berkman and Uzi Vishkin

UMIACS-TR-90-41 Traffic Characterization of the NSFNET National Backbone
Steven A. Heimlich

UMIACS-TR-90-42 Variable-Rate Finite-State Vector Quantization
Y. Hussain and N. Farvardin

UMIACS-TR-90-43 A Structured Fixed-Rate Vector Quantizer from Variable-Length
Encoded Scalar Quantizers
R. Laroia and N. Farvardin

UMIACS-TR-90-44 Fast Modular Arithmetic on a Permutation Network
A. Yavuz Orur, Vinod G.J. Penis, and M. Yanian Orui;

UMIACS-TR-90)45 Permutation Networks Using Radix Sorting
Chingyuh Jan and A. Yavuz Orup

UMIACS-TR-90-46 Performance Study of Two Protocols for Voice/Data
Integration on Ring Networks
Q. Yang, D. Ghosal, and S.K. Tripathi

UMIACS-TR-90-47 Towards a Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes
Victor R. Basili and H. Dieter Rombach


