R,

o e

B0 7z coy

The Operational
Feature Exchange Language

David Alan Bourne; Jeff Baird;

Paul Erion, and Du‘an‘e T. Williams
; !

AD-A222 497

} ‘ R CMﬁ.RI—TR—90-06
?chi’rg R
Ry, JUN 08 1890 ; :

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

March 1990

TEMENE R

ETRIRUTION STA
M&; releasel
et .

Copyright © 1990 Carnegie Mellon University

The work described:i%i:thése documents was supported by Air Force Contract No. F-33615-86-C-5038, In-
telligent Machining Workstation (IMW), sponsored by the Air Force Wright Aeronautical Laboratories,
Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.

90 05 ¢

A
&

e St e e e N ————— e

S —— e

Unclassified -
.SECURITY- CLASSIFICATION OF THIS PAGE

- kS

' ~ REPORT DOCUMENTATION PAGE
‘, la. TFPO T SECL*BJTY CLASSllI’!(fATlON T) ‘1b. RESTRICTIVE' MARKINGS
{1 ~Unclassi 1ed

'3 . DISTRIBUTION/ AVAILABILITY OF REPORT

N L . Approved for public release;
,2b-" DECLASSIFICATION / DOWNGRADING: SCHEDULE distribution unlimited

122, SECURITY CLASSIFICATION AUTHORITY

'4.1PERFORMING’QRGANIZATIQN REPORT NUMBER(S) ’ 5. MONITORING ORGANIZATION -REPORT NUMBER(S) ~
‘CMU-RI-TR-90-06

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
1 The Robotics. Institute . (if applicable)
Carnegie ‘Mellon University, . ,
6¢. ADDRESS (City, State, andZIP Code) "} 7b. ADDRESS (City, State,-and ZIP Code)

Pittsburgh, PA 15213

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION . (If applicable) .
AF Wright Aeronautical Labs. F-33615-86-C-5038
-} 8¢c. ADDRESS (City, State, and ZIP Code) ‘ 10. SOURCE OF FUNDING NUMBERS
PROGRAM | PROJECT TASK WORK_ UNIT
ELEMENT NO. {NO. NO. ACCESSION NO.

11. TITLE (include Security Classification)

1'The Operational Feature Exchange Language

] 12. PERSONAL AUTHOR(S) “payig Alan Bourne, Jeff Baird, Paul Erion, and Duane T. Williams

‘l3a.~ wgh?\FTFéEaP RT ‘3F%J|\|/|ME COVERED'T‘O 14. DATﬁ&E&EP?\gbéYear, Month, Day) Jis. fégE COUNT

16. SUPPLEMENTARY NOTATION

7. 7 . COSATI CODES | 18. SUBJECT TERMS‘(Continue on reverse if necessary.and identify by block number)
_FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This coliection of documents describes the existing Feature Exchange Language (FEL) as it
is implemented in the prototype Intelligent Machining Workstation (IMW). The original design
of FEL is described, the FEL interface to several IMW subsystems (Planning, Modeling, and
Holding) is explained in considerable detail, and the implementations for both the Sun Unix
C++ and the TI Explorer Lisp environments are explained.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT \ 21. ABSTRACT SECURITY CLASSIFICATION
¢ [XIUNCLASSIFIED/UNUMITED [SAME AS RPT. [J DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL. 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

DO fFORM 1‘73' 84 MAR) 83 APR editicn may be used until exhausted. - SECURITY CLASSIFICATION OF THIS PA:’GE
o All other editions are obsolete. . =

S et bt st g+ e 1

&

(&7 B ¢S N N

(o))

Contents.
Executive SUMMATY.ivviviiiiiiiiititiineiiiiiiiiniiiiine.. s 1
FEL Specification: Preliminary Design. ..:..ooovvviiiiiiiiiiiiiiiiiii, e 5
FEL Interface to the:Planning Expert. e, e 31
FEL Syntax for Communicating with a Geometric Modeler................. .e.. 53
FEL Interface for Communicating with %Hélding.Expert. i 75
Generic Environment for Unix-based Experts.cooviviiiiiiinn... 97
Generic Environinent for Lisp-based Experts.........c.oovvviiiiiiiiiinn... 113

Accesion For \
NTIS CRA&I Y,
OTIC TAB a3
Unannounced]
Justiication

By

Distribution |

© Avallability Codes

. Avail el | or
Dist Socclat

M|

idi

St it S ot M, s M oA

Abstract

) This. collection of documents describes the existing Feature Exchange Language (FEL) as
it i implementeéd in the prototype Intelligent Machining Workstation (IMW). The origi-
nal design of FEL is described; the FEL interface to'several IMW subsystems (Planning,
Modeling, and Holding) is explained in considerable detail, and the implementations

v for both.the Sun Unix C++ and the TI Explorer Lisp environments are explained. ,\

t‘)%g%

PR OpIUIVEI P

o ehoe R e ate

5 banbes e o e b b

<t ot it i

S e

“h
t

o Executive Summary
Fer

The Feature Exchange Language (FEL) has been designed as a language for communi-
cating messages in-a distributed’ environment)

Design Feature-1: Mesxgned to make parsing-and generation simiple. The as-
sumption was that possibly many-different computing platforms would require an FEL
interpreter,

Design Feature-2: It was assumed that FEL could tie together processes running,on one
machine or many, and.therefore FEL was designed to-represent the sender; receiver(s)
and otherinformation thatcould be useful in messagianfixp

Design Featuré-3: Features Were chosen as the objects that should be communicated.
Each feature has: a name and a set of built in parameters that ¢ go with it 1)

Design Feature-4: Each sentence of FEL has a verb that- apecxﬁes how a message should
be interpreted by a' parncular receiver.\ There has been a strong effort to keep the num-
ber.of verbs:to a minimum, allowing phessage variations to be specified in the feature-
lists. Note: verbs are overloaded ip-the sense that éach receiver can interpret a message
in a way most meanin i

Design.Feature-5: FEL was designed to represent complex-message exchanges between

- distributed ‘parties. (For. example, verb-tense and a dialogue name are used to open,

keep-track-of, and close\a given dialogue. In this way, it is possible to essentially pro-
cess multiple messages at'onge: every receiver can act as a server.

This document explains how thesé™features were in fact implemented and then how
FEL was used in various applications: ™.

3D Modeler Updates and Queries
¢ Planning Requests for Information-
¢ Holding Expert Queries and Answers

We believe that this language is a good first step towards the development of a messag-
ing system that can easily integrate and coordinate software modules, especially those
found in manufacturing applications.

There is further work that we believe is necessary to have a truly useful manufacturing
language.

 Including feature definition as part of the language
Extending work on dialogue management
* Supporting negotiatior and contract management as part of an FEL implementation

M\%—_\ (}(,,Q) L

e e

i Bt pnn e RS

3

Center for .)
Integrated Manufacturing Decisign Systems

FEL Specification
Preliminary Design

David Alan Bourne

March, 1990

Abstract:

This document is the original (preliminary) design specification for FEL (Feature
‘Exchange Language).

A detailed description of the original syntax of FEL sentences is given, as well as a
detailed overview of the semantics of many of the vérbs and attributes of the language.
The current implementation of FEL was motivated by this document. Some of the
advanced language features described here have yet to be:implemented, but all of the
basic features of the language are employed in'the existing prototype of the IMW
(Intelligent Machining Workstation).

Copyright © 1990 Carnegie Mellon University

Contact:

David Bourne

CIMDS

Carnegie Mellon University
Dittsburgh, PA 15213

(412) 268-8810

o,

G gamm Aen e e amn oo et

T et o A o el el O« -

)

Carneégie Mellon University - (Original)- FEL Specification

1. Background Information:

The Intelligent Machining Workstation includes many dxfferent subsystems, which
must cominunicate with-each 6ther. Each-subsystemn-has its. own features, parameters
and capabxhhes, 50 thé Feature Exchange Language: (FEL). speafles a 51mp1e, yet
unifiéd, approach-for exchangmg this-information.

At the same tine, FEL must cope with part descriptions or product deflmtlons The
spirit of language fanuly ‘PDDI/GMAP/MFGMAP/PDES is to g0 ‘beyond geometry
and encompass process into the part déscription. Since ‘MFGMAP:is meant to'be.our
subset of GMAP it is importarit tokeep the same flavor-to. it - it must specify more than
just geometry. .

Requirements for both product definition and control information hLave two ma)orA
parts: a command -ahd-many-parameters. The parameters. can be:collected. together-to

describe the objects that we wish to manipulate’ -'these.objects-are called feature lists
Each of these feature lists descnbes a collection of attributes and values that constltute a

feature definition; in some cases, it is more convenient to think of the feature lists as de-

scribing objects or nouns.

2. The Feature Exchange Language (FEL)

Since we‘have unified the goal of these two languages into-one way of describing-and
exchangmg features of parts'and procésses, we have decided to rename it.the-"Feature
Exchange Language.” The top-level syntax of this language is described.as:

Sentence::= "(" <Verb> <Feature_Lists>")" | "("")"

Feature_Lists::= <Feature_List> <Feature_Lists> |
<Attrib> <Feature_ Lists> | nil

The language syntax specifies that any.command can have any number of feature lists.

This allows verbs to be written such that they can take any number of objects (i.e., fea-
ture lists) as arguments. It is also possible to add’ additional feature lists that could
describe where the message is sent; and notes that might be useful for debugging and
user displays.

3. The FEL Verb Breakdown
In FEL there are five different types of each verb. These verb styles denote state transi-

tions-in a dialogue between two subsystems. The state transition tables for these dia-
logues are discussed in a later section.

(1) Present -- Command to go to new state
@) Active - JIn-process of going to new state
5

o)

Carnegie Mellon University (Original) FEL Specification

(3 Past -- Have reached new state
4) Not_Past — Have not and will not reach the desired state
(5) Stop_Active~ Terminate an active state

These verbs define: transitions in a simple state network. The:"imperative verbs" are
equivalent-to. the “present-verbs" and-the “declarative” verbs are split into "active” and
"past” verbs. The "interrogative" verbs are still covered by the "present verbs" by
choosing verbs that request information.

There :are also two conﬁﬁb’riented verbs (Not_Past and Stop_Acti_ye).~ In any type of .

error situation it is necessary to communicate that an action has not been accomplished.
On the other-hand, it may be necessary to abort .an ongoing action, because of some
external influences or new information. This will be discussed further in the section on
communication states.

The result is that each.communication has a beginning, an optional middle and an end..

For example, one:interchange-of verbs could be:

Message Out from Source: —-> Make
Message Received at Source: Making <=
Message Received at Source: Made <~

The lexical analyzer-can be responsible for marking the tokens as present, active or past.

~ This scheme will work fine for-most verbs, but may cause some confusion for irregular’

verbs, such as, "is", "being", and "was." There are two solutions to this problem. We can
introduce a special characters, such as, "I","<","=". In this case,."is!", "is<".and "is=". Or
simply, we could choose built-in verbs with reasonable conjugations.

Verbs::= <Present> | <Active> | <Past> | <Not_Past> | <Stop_Active>

Recommendation: There are advantages to using English verbs and conjugations,
because they can be readily paraphrased into full English sentences for the human
interface.

A design goal for FEL is to make its verbs and verb-types orthogonal. That is, every
verb should be able to be put into every form. This should be true no matter what verb
classification scheme is chosen. .

\,"-,"s—\

e

Carnegie Mellon University

4. Built-In Verbs

(Original) FEL Specification

In general, the verbs are meant to-describe.actions on feature lists as well as methods
and states of- negotxanon Fortunately, very-few verbs will go a Iong way, because most
of thé final actions depend ori-the contents of the feature lists. What follows is a neatly

complete list of verbs that will be needed for the IMW.

Negotiation Verbs:
Offer | Offering I Offered. INot Offéered | -

Stop_Offering

Accept | Accepting | Accepted | Not_Accepted
Cancel | Canceling |-Canceled | Not_Canceled

Database Verbs:
Define | Defining | Défined | Not_Defined
Update | Updating |- Updating |Not_Updated:
Delete | Deleting | Deleted | Not_Deleted
Get | Getting | Got |Not_Gotten

Machining Verbs:
Make | Making | Monitoring |. Made 1" Monitored |

Not_Made | Not_Monitored |
Stop_ Momtormg g Stop_Making

Inspect | Inspecting | Inspected | Not_Inspected |
Stop_Inspecting

Defined ﬁxa‘x}}gle
pp- 24-25

pp. 21-23

p-27
p-26

PP. 26-27

ey

o e ettt i o At a4 3 K 3 N

T T I e 7 e Ty v reris W A Cmm % b o L e ————— —o— A a—— P,

- wrm————

Carnegie Mellon University “(Original) FEL Specification

5. Verb Definitions

Offer: This message verb is a command to fill-in suggested values.in a feature list. For
example, if the planner wishes.to ask the cutting expert for suggested spéeds and feeds:
then the planner could use this verb. : '

Accept: This:message verb agrees on negotiated values passed betw<en two systems.
It has the effect of signing a contract between the two systems after an-offer 'has been

made. Eventually, we may impose sanctions on systems that-wish to break contracts.

Cancel: This message verb is the only way to break a contract that has been negotiated
between two subsystems. If it is issued, then it is assumed that the system breaking the
contract is subject to the sanctions of-the contract.

Define: This message verb-allows one subsystem to pass a feature list to another sys-
tem, because it is known a priori that the information is needed. For example, this mes-
sage type would be used to distribute part model information. ’

Update: This message verb allows one subsystem}o update remote copies of a feature

list. This can be used only if the remote copies of the feature list belong to the source of
this message, otherwise there is a-violation.of data security.

Delete: This message verb allows one system to delete another systern’s feature list.
This verb cannot be used to deléte pending contracts, though once contracts have been
completed, then this verb can be used.

Get: This message verb allows one system to get a feature list from another system.
Ownership of the feature list remains with the source of the information.

Make: This message verb commands the system to carry out actions that will make the
defined features in the externdl world. In other words, this verb would command the
system to machine a part, rather than manipulating internal information.

Inspect: This message verb commands the system to carry out actions that would in-
spect the external world. In other words, after a part is machined, this verb could be
used to inspect the final result.

e bt s o Ry e S5

PPV SN

gy R w g

G St

e —— _— L T T R o 0 e BT e e e s = e

Cafnegie Melion University (Original) FEL Specification

6. Representing Parameters as Feature Lists

The primary problem area for both MFGMAP -and'SML was how to.represent many;
many complex parameters. SML chose-a representation kriown as Working Elements
based on work done at NBS. This scheme is essentially named structures, which can be
nested into hierarchies. We represent these hierarchies-by explicitly naming the nodes
-of the hierarchy and then list branches of the hierarchy as its parts with "Has_Parts."

Example Feature List:

((Name PL_Cylinder)
(Type. Cylinder)
(Length 5'inches)
(Radids 3'inchés)
(Has_Parts (CX_Holel CX_Hole2 CX_Hole3)))

This example shows how the plarmer might describe a ¢ylinder with three subpartsas a
feature list. Also nested feature Tists. do. not need to. define a proper hierarchy. For
example, MFGMAP applications mdke'it necessary to répresent loops for edges and
faces.

To'make parsing; as simple as-possible, all special symbols have been removed and the
syntaxis essentially equivalent to association lists in LISP. However, the basic structure

is identical to- NBS-type work elements.

One problem with these feature lists is. that all the different attributes have to be
understood by each subsystem and yet they remain ad hoc. Therefore, as an area of
development, we need to further systematize the attributes and ‘consider computational
devices for dynamically introducing new attributes.

e s e s,

Carnegie Mellon University

7. Feature List Syntax

(Original) FEL Specification

A partial syntax description of a feature list is:

‘Feature_List:i=
Attrib_List:=
Attrib:=
Value:=

Dimensions::=

Units::=

Rates::=

Rate_Unitsu=
Value2:=

Val_List::=

List:=

fo(n < Attrib__l;iSt> ﬁ)n
"(" <Attrib> <Value> ")" <Attrib_List> | nil
<Alphabetic+_> | <Alphabetic+_> <Alphanumeric+_>

<Atirib> | <Integer> | <Floating Point> | <Dimensions> |
| <Rates> | <String> | <List>

" <Integer> <Units> |

<Floating Point> <Units>

"em" | "mm" | "inches" | "mils" | "sec" | "min"
"radians" | "degrees" | nil

<Integer> <Rate_Units> |

<Float,ihg___‘Poirjxtj>~<Réte_U_r‘1it$>
llrpm" I "rpsll I "lpS" I "lpm l nil

<Atirib> | <Integer> | <Floating Point> | <Dimensions>
I <Rates> | <String>

<Value2> | <Value2> <Val_List>

"(" <Val_List>")"

Syntax Notes: In this syntax, the "Name" attribute is required and internal lists are
forced to beflat, that’is, attribute values cannot be lists of lists. This later limitation is to
avoid the temptation to hide feature lists inside other feature lists. This syntax assumes
that the lexical analyzer uses any amount of whitéspace as separators — any number of
spaces, tabs, line feeds or carriage returns. Some syntactic distinctions could be
simplified, e.g.,, rates and dimensions, but these extra syntactic categories should
simplify semantic interpretation.

There are many examples of this syntax in later sections of the document.

10

- e RN oo AL Lt AN ST

e ey b S 1 o S

oy

Carnegie Mellon University

8. Built-In Feature List Types

Simple Machined Features

Block

‘Blind_Hole

Thru_Hole
Hole_Chamfer

Thread

Slot

Thru_Slot
Rectangular_Thru_Slot
Rotational-Groove

Pocket

Thru_Pocket
Rectangular_Pocket (?)
Chamfer

Channel

Shoulder
Squaring_Block (?)
Plane

Angle (?)
Thru_Angle
Convex_Angle
Edge_Round
Wedge

Face

Miscellaneous

Part

Surface
Cutting_Operation
Holding_Operation
Sensing_Operation
Manager_Operation
Message

11

(Original) FEL Specification:

Defined
Joined

< <

2 L 2. 2.2 2 2

Carnegie Mellon University

~ .
e e et e e ottt = oo ar e e e s

(Original) FEL Specification

9. Feature List Definitions

Each built-in feature list has its own set of predefined a_tﬁibufés.

list syntax. The definitions that have been predefined follow:

(

(Name
(Type
(Raygius
(Depth
(P_Vector
(D_Vector
(Has_Parts
(Is_Part

(Name
(Type
(Widh
(Depth
(Length
(P_Vector
(W_Vector
(D_Vector
(L_Vector
(Has_Parts
(Is_Part

EN ame
Type
(ngth
(X_Angle
(Y_Angle
(Intersection
(P_Vector
(W_Vector

(D_Vector

(L_Vector
(Has_Parts
(Is_Part

<Attrib>)

Thru_Hole)

<Dimensions>)

<Dimensions>)

(<Dimensions> <Dimensions> <Dimensions>))

‘(<Dimensions> <Dimensions> <Dimensions>))

<Value>)
<Value>))

<Attrib>)

Thru_Slot)

<Dimensions>)

<Dimensions>)

<Dimensions>)

(<Dimensions> <D1men51ons> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensions>))
(<Value>)

<Value>)))

<Attrib>)

Wedge)

<Dimensions>

<Dimensicns>

<Dimensions>

<Dimensions> ?? This this be a squared value
(<Dimensions> <Dimensions> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensions>))
<Value>)

<Value>)))

12

Some of the

predefined values must have a particular kind of value. -Some of these value types are
considered obvious, e.g., <Integer> and others are defined -above as part of the feature

ey ot FmaAn e AR S i Rt Mt s - .

W

o e ey o

A“

Carnegié Mellon Univérsity

(Name
(Type
(Width
(Height
(Length

(F_Vector

(W_Vector
(D_Vector
(L_Vector
(Has_Parts
(Is_Part

(Name
(Type
(Radius
(Class
(Has_Parts
(Is_Part

(Name
(Type
(Material
(Units
(Source
(Surfaces

(Presentation

(Has_Parts

(Name
(Type
(Class
??Tolerance
(Has_Parts
(Is_Part

(Name
(Type
(Units
(NC_Name
(NC_Frame
(Safe_Zone
(Tools
(Speed
(Feed

(Original) FEL Specification

<Attrib>)

Block)-

<Dimensions>)

<Dimensions>).

<Dimensions>)

(<Dimensions> <Dimensions> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensjons>))-
(<Dimensions> <Dimensions> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensions>))
<Value>)

<Value>)))

<Attrib>)
Edge_Round)
<Dimensions>)
"Convex" | "Concave")
<Value>)

<Value>))

<Attrib>)
Part)
<Materials>)
<Units>

. <Batch_Codes>)

(<S.Type> <S_Type> <5_Type> <S_Type> <S_Type>
<S_Type>) o

(<Side> <Side> <Side>))

<Value>))

<Attrib>)
Surface)
"Sawed" |"Rolled" | "Machined")

<Value>)
<Value>))

<Attrib>)

Cutting_Operation)

<Rate_Units>)

<Attrib>)

<Value>) ; We might want to make this a separate element
<Value>)

<Value>)

<Rates>)

<Rates>))

13

Camnégie Mellon University

(‘(Name <Attrib>)
(Type Sensing_Operation)
(Concerns <Value>)
(Warnings <Value>)
(Errors <Value>))

((Name <Attrib>)
(Type ‘Holding_Operation)-
(Fixtures <Value>)
(Cutter_Paths <Value>)
(Forces <Value>))

((Name <Attrib>)
(Type Manager_Operation)
(Models <Value>)
(Active_Element <Attrib>)
(Concerns <Value>))

((Name <Attrib>)
(Type Message)
(Reply_To <Attrib>) ,
(From - <System_Module>)
(To (<System, Modules>))
(Priority <0..255>).
(Time <Time_Stamp>)
(Subject <string>))

14

(Original) FEL Specification

e i b Yok s e =

e

e

C— - S

7]

e e
A A T Sl Sttt 3. St et

e Sy

Carnegie"Mellon University (Original) FEL Specification

10. SpecialAttributes (Is_Part and Has_Parts)

There are two very speaal attributes called "Is_Part” and "Has_Parts." These two
elemenits are used to tie the structure of feature lists together ‘The Is_Part relation is

‘used:to determine the structure of value inheritance, i.e., what are the default values.

While the Has Parts relation, is used to'indicate that there -are more details in.other fea-
ture lists and it may be necessary to consider the whole. In the case of geometrical
modeling; Has_Parts can be used to trigger modeling primitives that perform additions
and subtractions from the model.

Is_A
‘)

Figure 1: Four feature lists named: AB,Cand D

Figure 1 is a graphical illustration of the-connection between four feature lists. In this
case, we recognize that the Is_Part and Has_Parts relations are not symmedric, because
"B" is not included as part of "A's" description. This hierarchy of feature lists could be

defined as:

(Define ((Name A)
(Has_Parts (C.D)))

((Name B)

(Is_Part A))

((Name Q)

(Is_Part A))

((Name D)

(Is_Part A)))
15

e i o e e 1 B

»
]
et . ot wrmmaiy
1

e~

e v

‘Carnegie Mellon University (Original) FEL Specification

11. Parsing Feature Lists

‘On SUNS:and other UNIX boxes, LEX and. YACC can be used to definé a parser for fea-
ture lists. The output of the parse will, in:these cases, be stored i m C structures.

On Explorers, the LISP reader will bé used. for reading the feature lists. into LISP
association lists. «

12. ‘Message Information

Both the source of a message and the target of the message should be represented. We

can decide to include this in the FEL proper or we-can let the mail system manage this
information for us. Functionally, the result will be the same, buit different modules will
be responsible depending on the choice.

We may also want to add other features to messages, such as, carbon copies,
forwarding and status required-or.not.

13. Feature List Naming Convention

The subsystém, name in italics, that constricts :a feature list must mark it with a two
letter prefix, which corresponds to the name of the module. In this way, it will be clear
which ‘module owns' every feature list. This becomes important when we wish to
maintain consistency between values in our distributed environment.

CT - ‘CutTech Database

CX - Q_uttmg Expert

HI - Human Interface

HX - Holding Expert

MX - Modeling Expert

PM - Plan Manager

PX - Planning Expert

SX - _Sensmg Expert

9)4 - Upstream Processes, e.g., Designer, Scheduler.

We may want to break this category down further.

16

e e - T e e . o mee
- B

P

N

€ AT v v e - e

e s i 4+ JEUUUSRIPPIUNIRII RS S gV i

Q)

Carnegie Mellon University. (Original) FEL Specification

<

14. ‘Convention for Protecting Distributed Data

The featuire lists are meant to- operate in a-distributed environment, which can. cause
many database mariagement problems. To-avoid problems, like havmg two.copies of
the same feature list with different values, we will enforce a restriction that makes fea-
ture lists "read everywhere" and "write.and-delete only at the home: subsystem " Even

this restriction may be-too-weak, unless: -every subsystem reme.nbers who has c¢opiés.of
that ubsystem's feature-lists. This méans it .is even necessary to c¢ontrol when the

owner of the feature list is allowed to make changes.

For example, it is understood that a niegotiation between subprocesses is a time for
making changes. But once values have been jointly settled, then that feature list is
effectively closed. To.understand this better, a negotiation is like coming to terms on a
contract between two parties. Once an agreément has been devised, then both parties
are honor bound to that agreement and its terms. After the contract has been
completed, then the feature list is obsolete and can be safely removed.

There i$-a. further need to formalize when it is safe to modify eéxisting feature lists, so
that consistency can be guaranteed without giving up flexibility.

17

Carnegie Mellon University- (Originial) FEL Specification *

15. Dialogues and Communication States:

The IMW:is designed so that'any two subsystems can catry out-a dialogue at any time:
These dialogues can have many-purposes, which can vary from carrying otit actual
machining to-simply settling on a plan. ‘Whenever two:systéms-participate-in-such a.
conversation, they-must e€ach maintain the-current:state of the dialogue. In fact, these-
states- must be maintained: for évery dctive dialogue that:is going on concurrently.
‘Furthérmore, it is expectéd that both participants in a dialogue mdintain their own state
‘network. ‘ ') -

oeo0 [—Peo
8. ',4 - ; - :,.h
SuBs'ys‘tez‘:dT \ Subsystem?2-

Figure 2: Two subsystems in dialogue

Figure 2 shows two subsystems with identical state machines, which represent the dia-
logue in process. The first-subsystem which began in the first state, issued a message
to the'second subsystem and then advanced to the second state. The second subsystem

remains in the first state until it-receives the incoming message M after which it also

advances to the second state. The dialogue between the two subsystems in not consid-
ered complete-until both state machines return to the initial state. Practically speaking,
the state machines are automatically created and purged as individual dialogues are
started and then completed. :

Most communications can be handled with a simple three state machine. Figure 3
shows a three state machirie for one participant that starts in S and usually proceeds
through two intermediate states-in the process of completing a request. However, on
occasion it is possible to determine that the request can be immediately satisfied or that
it cannot be satisfied at all. In this case, the dialogue can be brought to an immediate
end.

18

e e e e

b

PRI,

B e

i s s =

Carnégie Mellon University (Original) FEL Spécification

Figure 3: Simple Three staté communications

In this network, there are two kinds of arcs: bold arcs indicate that the message is
received and plain arcs represent that the message is sent to the other participant.
Therefore, if a subsystem is the origin of a dialogue then it is allowed to initiate the bold
arcs, while if a subsystem is the target of dialogue then that subsystem is allow to ini-
tiate the plain arcs. ~On the other hand, the origin of a dialogue is expecting to receive
messages on plain arcs, while the target of a dialogue is expecting to receive messages
on bold arcs. Flgure 3 also raises.a potential problem. Once a subsystem is in the
active state, "making" in Figure 3, it may have to be forced out of it by the verb
"Stop_Making," otherwise there -would be no way to cancel an action once it had

started.

These state machines are quite powerful, but cannot handle all of the complexities that
we wish to capture in a negotiation process. However, Figure 4 shows that with the
addition of one state it is possible to add a negotiation loop, between state 3 and state 4,
and still be able to keep track of which subsystem has the proverbial ball.

Offered | Not_Cffered

Accepted | Not_Accepied

Stop_Offering

Figure 4: Complex Four state communications or negotiation

19

e IRt S VIR

T e s s e vt ¢ e s oeame

—— b mp s I

Carnegie Mellon University (Original) FEL Specification

First, the origin of 4 negotiation decides that it requires information on several features.
It then sends out a possibly empty fedture list to be filled in by the source of the mes-
sage. That is the origin requests an “offer”for possible values. When the source of the
message calculates the.appropriate values to return it is “offering” a response, one of
possibly many. The source of the original request.can then make a counter offer or sim-
ply state that the original offer has been “accepted.”

Another strategy, see Figure 5, for a simple.kind of negotiation can use another sub-
:system just to validate the terms of an-agreement. In this case, an “accept” command is
Sent to a second system and a response comes back indicating whether or not the terms
have been accepted.

Not_Accepted
Accepted

Figure 5: Simplest two state interaction

20

{

., T - e - e

Carnegie Mellon University. (Original) FEL Specification

16. Modeling Stock Example

This long example starts:with-one subsystem called a planner sending part information
onto other.systems:that will also:need. the information. ‘Since this information was not
requested, the “define” verb.is used. The idea is that each subsystem will process this
feature list by building up a three dimensional model using tools in MFGMAP.

Note that in this case the feature list was originally defined by an.upstream process-and
passed down to the planner. The planner-at-this point is not given the authority to
delete this feature list without a request fromthe-upstream processes.

Planner: (Define {((Name UP_Stock_Geometry)
(Type Block)
(Width 2.1 inches)
(Height 2.1)

(Length 21
(P_Vector (0.0--0.0 -0.0))
(D_Vector 0.0 2:1 0.0))
(W_Vector (0.00.02.1))
(L_Vector (2.10.00.0))

(Is_Part UP_Stock:_Part)) N
((Name UP_Stock. Part)

(Type Part)

(Units inches)

(Material Aluminum)

(Source <Batch #>)

(Surfaces (Rolled Sawed Rolled Rolled Sawed Rolled))).
(Presentation (123))
(Has_Parts UP_Stock_Geometry))

((Name PL_Init_Stock)

(Type Message)

(From Planner)

(To (Manager Cutting Holding Sensing)))

)

We can see from this first message that there are several desirable system features.
First, optional and required arguments must be handled gracefully, and secondly that
default values can be used at any time. In this case, "inches" are specified by the
"UP_Stock_Part" feature list and the units are essentially inherited from this. Finally, it
should be noted that the definition of the stock material was-defined in an upstream
process, i.e., was input to the IMW.

21

Carnegie Mellon University- (Original)-FEL Specification

Now the answers start coming back from the different subsystems. In cases of simple
data transfer, there is:not a need to represent the active state of verbs. A process has the
option of sending a completed message, i.e., past tense, immediately. However, some
confirmation imust be sent back to-thesotirce of a message for.every feature-list in the
message, except elements of type "message." Also the messages can be received in any
order. :

Cutting: (Defined UP_Stock_Geometry
) UP_Stock_Part S
((Reply_To PL_nit_Stock)
(Type Message)-
(From Cutting)
(To Planner)))
Manager: (Defined UP_Stock_Geometry
UP_Stock_Part
((Reply_To PL_Init_Stock)
(Type ‘Message)
(From Manager)
(To Planner)))
Sensing: (Defined UP_Stock_Geometry
. UP_Stock_Part
((Reply_To PL_Init_Stock)
(Type Message)
(From Sensing)
(To Planner)))
Holding: (Defined UP_Stock_Geometry
UP_Stock_Part
((Reply_To PL_Init_Stock)
(Type Message)
(From Holding)
(To Planner)))

Naming every mail message can be annoying, however, there is a strong need for
accountability. Therefore, it is a good convention to name original mail messages.
Responses can then invoke-the original name (e.g., with Reply_To) and thus it avoids
unnecessary new names. At the same time, this convention simplifies the naming and

management of reply mail.

A future refinement will be to find a more concise way to fully represent all of the
message oriented information.

Carnegie Mellon University (Original) FEL Specification

17. Modeling The Part

In this example, we are going to define a part that is-essentially-a-squared block with
one cut hole, which will be cut ffom the previously defined stock part. Note that in
these definitions the geometry Is_Part part and is not an operation. Again, this feature

list will be used-to.drive the primitive functions of MFGMAP in order to make-a full

o three dimensional model.
Planning: (Define ((Narme ~UP_Geometry)
(Type Block)-
(Width 2.0)
(Height 2.0)
(Length = 2.0)
-(P_Vector (0:0 0.0 0.0))
(D_Vector 0.0 2.0 0.0))
(W _Vector (0.00.02.0)
(L_Vector (2.00.00.0))
(Has_Parts UP_Center_Fole)
(Is_Part (UP_Stock_Part UP_Stock_Geoimetry)))
((Name UP_Center_Hole)
(Type Thru_Hole)
(Radius 25) .
(Depth 2.0)
(P_Vector (1.02.01.0))
(D_Vector (1.00.01.0))
(Is_Part UP_Surface))
((Name PL_Part)
(Type Message)
(From Planner)
) (To (Manager Cutting Holding Sensir.g)))
Manager: (Defined UP_Geometry UP_Center_Hole UP_Part ...)
Cutting: (Defined UP_Geometry UP_Center_Hole UP_Part ...)
Sensing: (Defined UP_Geometry UP_Center_Hole UP_Part...)
- Holding: (Defined UP_Geometry UP_Center_Hole UP_Part ...)

Carnegie Mellon University (Original) FEL Specification

18. Negotiation Example

In this example, the planner sends out-messages to-every subsystem at the same time.
This will cause the subsystems to develop plans that are independent of each other and
will give the planner a chance to study-the conflicts. An optional scenario ‘would be to
send each of the subsystems a message in sequence, while imposing successively
stronger constraints on each system in the list. While, this organization may seem
simpler than the parallel strategy, it will not always converge on the best solution. For
example, a solution proposed first by .the cutting subsystem may unnecessarily over
constrain the holding subsystem, which could result in a second rate solution for

Planner: (Offer ((Name PL_Center_Hole_Op
(Type Thru_Hole)
(Is_Part (Operation UP_Center_Hole))
((Name PL_Offer1)
(Type Message)
(From Planner)
(To ‘(Manager Cutting Holding Sensing))
)
Cutting: (Offermg ((Name CX_Center_Hole_Op
(Type Operation)
(Tools (Drill2))
(NC_Name Peck_Hole)
(Speed 20)
(Feed 20))
((Reply_To PL_Offerl)
(From Cutting)
(To Planner)))
Holding: (Offering ((Name CX_Center_Hole_Op
(Type Operation)
(leture (Fixed)
(Top_Face 4)
((Reply To PL_Offerl)
(From Holding)
(To (Planner Manager)))

holding even though the cutting system was ambivalent.

24

e VY

Carnegie Mellon University

(Original). FEL Specification

At this point in the processing, the sensing system could respond. with potential
problems. For example, without yet knowing about the cutter, it is appropriate to
worry about tool wear and tool breakage. It is also appropriate to worry about
potential clogging of the drill which is often a problem when cutting aluminum.
Finally, the surface finish around the hole might have burrs that have been "pulled out"
from the hole. These problems can be addressed in a number of ways, including using
a different drill and adding more steps to the process, e.g., a-small hole chamfer. Of
course, as concerns, they can be ignored.

Sensing: (Offering ((Name
(Type
(Concerns

((Reply_To
(From
(To

Manager: (Offering ((Name
(Type

((Reply_To
(From
(To

CX_Center_Hole_Op
Operation)
(Tool_Breakage
Surface_Burrs
Chip_Clogs))

PL_Offerl)
Sensing)
(Planner Manager)))

CX_Center_Hole_Op
Operation)

PL_Offer1)
Manager)
Planner)))

Planner:

Sensing:

Sensing:

Holding:

Manager:

Manager:

Holding:

Holding:

Carnegie Mellon University

19. Setup Exaﬁple

(Make

(Making

(Make

(Making

(Get

(Got

(Monitoring HX_Setupl

(Made

UP_Part
((Name
(Type
(From
(To

UP_Part
((Reply_To
(Type
(From

(To

HX_Setupl
((Name
(Type
(From

(To

HX_Setupl
((Reply_To
(Type
(From -
(To

HX_Setup1
((Reply_To
(Type
(From

(To

((Name
)

((Type
(Re)}’aliy_'ro

(From
(To

((Type
(Reply_To
{From

(To

HX_Setupl

PL_Workpackage)
Message)
Planner)
Manager)))

PL. Workpackage)
Message)

. Manager)

Planner)))

PM_Setup1)
Message)

Manager)

(Holding Sensing)))

PM_Setup1)
Message)
Holding)
Manager)))

SX_Get_Setupl}
Message)
Sensing)
Holding)))

HX_Setup1)

Message)
SX_Get_Setup1)
Holding)
Sensing)))

Message)
PM_Setup1)
Sensing)

- Manager)))

26

(Original) FEL Specification

e v —

Carnegie Mellon University (Original) FEL Specification

((Type Message)
(Reply_To PM_Setupl)
(From Holding)

. (To Manager)))

Sensing: (Monitored HX_Setup1

. ((Type Message)
(Reply_To PM_Setupl)
(From Sensing)
(To Manager)))

20. Machining Example: Part Completed

Manager: (Made UP_Part
((Reply_To PL_Workpackage)

(Type Message)
(From Manager)
(To Planner)))

After a part has been accepted by the upstream process, it then issues authorization to
delete the stock and part descriptions, which is then passed on to the various
subsystems. :

Upstream: (Delete UP_Stock_Part
UP_Stock_Geometry
UP_Finished_Part
UP_Finished_Geometry
UP_Center_Hole

((Name UP_Completed)

(Type Message)

(To Planner)

(From Upstream)))
Planner: (Deleted UP_Stock_Part

UP_Stock_Geometry
UP_Finished_Part
UP_Finished_Geometry
UP_Center_Hole

((Reply_To: UP_Completed)

(Type Message)
(To Upstream)
(From Planner)))

27

[Y

M e Tmrm o ST AT S v A b foe T e S . Smmas s gy

e e e i A L

Carnegie Mellon University (Original) FEL Specification

This example suggests "wildcards" in name could be very useful, such as UP_*, which
would mean that all feature lists that start with "UP_" should be deleted.

28

Center for
Integrated Manufacturing Decision Systems

FEL Interface to the Planning Expert

Paul Erion

March, 1990

Abstract:

This document describes the detailed syntax of the FEL (Feature Exchange Language)
sentences that are understood (and generated) by the process planner used in the IMW
(Intelligent Machining Workstation) prototype system.

A description of the Planner's interaction with the modeler is given, together with a
detailed explanation of the meaning of the feature lists received from the modeler. The
method of requesting that.the Planner produce a plan and the FEL sentence that it
produces as a response to such a request are explained in detail.

Copyright © 1990 Carnegie Mellon University

Contact:

David Bourne
CIMDS
Carnegie Mellon University
Pittsburgh, PA 15213
(412) 268-8810

"

& ;\‘V\\\\-\u

A o o

FEL Interface to the Planning Expert

This section assumes that the reader has some familiarity with: FEL syntax, the
MACHINIST!, and the Modeler?.

The Planning Expert (PX) is based on the MACHINIST, a program designed and
written by Caroline Hayes. The MACHINIST is a process planner that produces
manufacturing plans for machined parts. PX is simply the integration of the MACHINIST
and the Lisp-based Generic Expert. This integration allows input to, and output from,
the MACHINIST to be via FEL sentences.

1. Inputto PX

PX’s function is to produce a manufacturing plan for a specified part. In order to
accomplish this task, certain information is required by PX. The Process Planner needs a
description of the stock envelope, the part envelope, and the features that comprise the
part. The Modeler is the expért that will be queried for that information.

1.1.” Creating the Model

In order for PX to plan for the machining of a part, the Modeler must have a model
of the part and stock objects. The model of the part object will include a specification
for each of the part's feature. The ADD sentence that follows is input to MX that would
create a part object named boss, and a stock object® named 50235. The part and stock
models created by this sentence will be referred to in subsequent examples.

(add ((name G0927)

(type message)
(to nx))

((type application)
(name planner))

((name imw)
(type environment)
(application planner))

((name S0235)
(type object)
(material aluminum)
(p_vector (0.0 0.0 0.0))

1. The term Process Planner will be used as a synonym for MACHINIST.

2. The terms MX and Modeler will be used interchangeably to refer to the Modeling Expert.

3. Fora detailed explanation of the attributes used in the ADD sentence, see the section in this
document entitled, FEL Syntax for Communicating with a Geometric Modeler.

31

m‘._m e s e e — — T
Carnegie Mellon University FEL Interface to PX

(w. vector (3.5 0.0 0.0))
(1_vector (0.0 2.5 0.0))
(d_vector (0.0 0.0 1.5)))

((name boss)
(type object)
(material aluminum)
(p_vector (0.0 0.0 0.0))
(w_vector (3.0 0.0 0.0))
(1_vector (0.0 2.0 0.0))
(d_vector (0.0 0.0 1.0)))

((name thrul)
(type thru hole)
(object boss)
(p_vector (1.5 1.0 1.0))
(d_vector (0.0 0.0 =1.0))
(radius 0.3)))

Figure 1 is a graphical representation of boss, the part object added to the
Modeler-

il

Figure 1. The part to be machined.

1.2. Querying the Modeler

MX may contain models for many objects. So, if PXis to construct a plan, it needs
certain information in order to be able to locate the desired part and stock objects in the
Modeler’s hierarchy. That is, the requester of the manufacturing plan must provide the
name of the application, the environment, the part, and the stock. Hence, the initial
function of PX* expects an FEL sentence of the following form®:

(plan ((name <name>)
(type planning_op)
(application <application-name>)
(environment <environment-name>)

4. The initial function is the function executed by the generic expert component of an expert when a
sentence arrives that initiates a new dialogue.
5. Typically, example FEL sentences will not include the feature list of type message.

32

Carnegie Mellon University FEL Interface to PX

(part <part-name>)
(stock <stock—-name>)))

Currently, PX’s initial function is only capable of performing meaningful actions for a
plan sentence (that is, a sentence with the verb plan). The sentence should contain one
feature list of type planning op.® This feature list contains information that will allow
PX to query MX. The values of the attributes application’ and environment specify
the location of the objects in the Modeler’s hierarchy. The values of the attributes part
and stock are the names of the objects-about which the process planner needs feature
information.

Once PX has extracted the names of-the part and stock objects from the plan
sentence, the next step is to query the Modeler for the features that are associated with
both of these objects. Therefore two dialogues are initiated with MX. One of the
dialogues requests the features of the part and, the other, requests the features of the
stock®.

Following are two sentences (a request and a reply) that represent a sample
dialogue between PX and MX. The purpose of the exchange is for PX to obtain the names
of the features associated with the part. The part is an object named boss that resides
in the application, planner, and the environment, imw.

(get ((name px_1)
(type message)
(to .mx)
(from px))
((name boss
(type object)

(application planner)
(environment imw)))

(got ({(name px_1)
(type message)
(to PX)
(from nx))
((name boss
(type object)

(application planner)
(environment imw)
(material aluminum)

6. PX is not smart enough to be able to plan more than one part per dialogue.
7. The attribute :application isoptional. If it is not provided, then the symbol :plannex is used as

the value for this attribute.

8. One’s initial thought might be that the stock has no features; however, that is not th.e case. Associated
with every object is a rectangular bounding box. This is a feature of the object and is known as.the
envelope of the object. Knowledge about the part and stock envelopes is very important to the
MACHINIST.

33

Carnegie Mellon University FEL Interface to PX

(feature {envelope hole))))

‘Once both of the dialogues with MX have terminated, the returned FEL sentences
are dissected. At thispoint, each sentence contains two-attribute/value pairs that are of
interest to PX. The attributes of importance are material and feature.

The value of the attribute:material specifies-the material composition of the
object’. This information is converted into a data structure that will be processed by the
MACHINISTY, In the preceding example, the part will machined out of aluminum.

Associated with each object is a set of features. For each of these features, the
Modeler contains detailed information. The process of acquiring that information from
MX commences once the names of all of the features are known to PX. These names are
the elements of the list that is the value of the attribute feature. These feature names
will generate the next round of dialogues with the Modeler. The above examnple, would
involve two distinct dialogues. One for each of the features named; that is, envelope
and hole.

For each feature associated with an object, a get request will be sent to the
Modeler (each of the requests initiating a new dialogue). The responses to these queries
will contain information needed by the MACHINIST. As an example, if PX wanted to
obtain modeling information about a feature named hole, associated with the object,
boss, in the application, planner, and the environment, imw; then the following FEL
sentence would be sent to MX.

(get ((name px_2)

(type message)
(to mx)
(from pPx))

((name hole
(type feature)

(application planner)
(environment imw)))

The response from MX would take the form:

(got ((name Px_2)
(type message)
(to PX)
(from mx))
((name hole)
(type thru hole)

(application planner)

9. It should come as no surprise that the part and stock objects should hzve the same value for the

attribute :material.

10. The MACHINIST is an expert system that utilizes the rule-based pro
consequence, the data structures processed by the MACHINIST are

34

e s e e e e

ing language, OPS5. Asa
orking Memory Elements.

Carnegie Mellon University FEL Interface to PX

(environment imw)

(opens_on (mx_7 mx 9))
(distance ((mx_11 1.5) (mx 8 0.5)))
(radius 0.3) -

Y (depth 2.0))).

Actually, the Modeler returns more information than is shown; but only a subset
i of the attribute/value pairs returned in the feature list of type thru_hole are needed
by PX. MXis the modeling expert to all experts. Itis the duty of the expert requesting
information to parse the FEL sentence and extract the attribute/value pairs that make
sense to it.

Initially, PX only knows the name of thefeature; in this case hole. Once the
preceding got sentence is received, PX can determine the feature type of hole. First,
the feature list that contains the attribute/value pair, (name hole), islocated!. From
that feature list, the value of the attribute type will provide the type of feature. In the
current example, the value,thru_hole, denotes that the feature is a through hole.

When PXknows the type of feature, then it knows which elements (that is,
attribute/value pairs) to extract from the feature list. The attribute/value pairs arrive in
a form that the MACHINIST is not capable of processing. Therefore, steps are taken to
transform the “raw” information into the data structures used by the MACHINIST. Since
the Process Planner is implemented in OPS5, these data structures are Working Memory
Elements. -

For example, the attribute/value pair: ;
(distance ((mx_11 1.5) (mx_8 0.5)))

is converted into the following Working Memory Elements:

(center dist “of hole
~from <name used by MACHINIST for mx_ 11>
~is 1.5

~status filled)

(center_dist “of hole
~from <name used by MACHINIST for mx_8>
~is 0.5

~status filled).

11. Itis possible, though not likely, for the dialcgue to have the same name as the feature, In other
words, the feature list of type :message and the feature list of type :thru_hole have the same
value for the attribute :name. PX takes this into account, by ignoring the feature list of type

:message.

35

- . e — _a——

e i e am

Carnegie Mellon University FEL Interface to PX

1.3. Feature Lists for Features: the Attribute/Value Pairs of Interest

From the perspective of the Process Planner, the Modeler can currently provide
information for the features'?: blind_hole, envelope, thru_ angle, thru_hole, and .
thru_slot. The following sections cover those five features. Specifically, the
attribute/value pairs of interest to PX are listed and explained for the feature in
question. .

1.3.1. Blind_Hole

In a feature list 6f type blind hole, the attribute/value pairs of interest to PX
are those with the attributes: - '

depth The value of this attribute is a real number which gives the |
depth of the hole.

distance The value of this attribute specifies the center of the hole. The
value is of the form:

((sidei distancei) (sidej distancej)).

This gives the hole’s center by providing the distance of the
center of the hole from two orthogonal sides of the envelope of
the part object.

opens_on This attribute’s value is a list of one element, a face name from
the set of face names assigned to the part envelope by MX. The
face name denotes the face upon which the hole opens.

radius The value of this attribute is a real number that gives the radius
of the blind hole.

1.3.2. Envelope

The envelope describes a rectangular bounding box around an object. Remember,
the MACHINIST expects two objects, the part and the stock. Associated with each of
these objects is an envelope feature. : .

The Process Planner and the Modeler use different naming schemes for surface
finishes and face names. But experts who wish to converse with PX, should not be .
concerned with the naming conventions used by MACHINIST. Hence, mapping
functions are employed by PX to translate between the differing, naming schemes.

12. The Modeler can model more than these five features. However, the other features are currex}tly
described in terms of vectors. Since the Process Planner is feature based, information concerning
vectors is of limited utility.

36

et men e n e o—— e U —

Carnegie Mellon University

‘FEL Interface to PX

For the surface finishes, the correspondence between the two schemes is known a
priori. Therefore, that mapping function is created at system start-up. However, that is

not the case for face names. The names attached by MX to the face of an envelope are
dynamic; that is, they:are created when the model is added to the Modeler. Hence, PX

uses the information provided in the envelope feature list to set up a mapping function

between the names used by the Modeler and the names employed by MACHINIST. The
result is that when experts coriverse with PX, they do not have to be concerned with

how the Process Planner represents face names or surface finishes. A single
representation can be used; that of the Modeler.

In a feature list of type envelope, the attribute/value pairs of interest to PX are
those with the attributes:

distance

finish

The value of this attribute specifies the dimensions of the
envelope. The value is of the form:

((side1 side2 distancel)
(side3 si’c:le4 distancez)
(sides side6 distance3)).

Each element of the list specifies the distance between two
pparallel faces of the envelope. Let X be such an element. The
first two elements of X are face names from the set of face names
assigned to the part envelope by MX, with the added constraint
that the faces be parallel to one another. The third element, a
real number, is the distance between these twe faces. So, if X is
equal to:

(side3 side, distance,)

then sidejis parallel to side, and distance, is the
distance separating these two faces.

This attribute’s value is a list of the form:

((sicle1 finishl) (side6 finish6)).

side; (wherei=1to 6) is a face name from the set of face
names assigned to the part envelope by MX, and f£inish, is the
surface finish of that face. £inish; maybe assigned one of the
values: none!?, machined, rolled, or saw_cut.

13. If the Modeler has assigned a value of none to a face, then PX assumes the face is saw cut. The value
of saw_cut is chosen, since that presents a worst case scenario.

O .. 1 e

37

s e -
'

Carnegie Mellon University -FEL Interface to PX

normal The value of this attribute is a:list of the form:

(‘(side,I normall) (side6 normals)).

side; (wherei=1to 6) is a face name from theset of face
names assigned to the part envelope by MX. normal; is the
unit normal vector for that face.

1.3.3. Thru_Angle

In a feature list of type thru_angle, the atiribute/value pairs of interest to PX
are those with the attributes:

angle This attribute’s value is a list of two-elements. The first element
is a face name from the set of face names assigned to the part
envelope by MX. The second element is a real number between
0 and 90, exclusive. The second element is the degree of the
angle formed by the new face created by the feature and the face
given by the first element. In Figure 2, for example, the value of

the attribute, angle, could be either (B 8),0r (E ¢); where ¢
=(90-6). .

distance The value of this atiribute gives the distance from one of the
faces not affected by the thru angle to a vertex of an angle
formed by the feature. The value is of the form:

((sidei distancei) ¥

side; is the name of a face not affected by the thru angle.

Consequeritly, it will not be an element of the value of the
attribute, opens_on. distance; is the distance along an

orthogonal face to a vertex of the angle formed by the thru
angle. For example, in Figure 2, this attribute’s value could be

either ((D 8)) or ((F ®)).

opens_on This attribute’s value is a list of four elements, all are face names
frorvthe set of face names assigned to the part envelope by MX.
The four faces are those that the thru angle feature will open out
upon. That is, if we envision the tool making this feature, these
faces will have the tool pass through them. In Figure 2, the thru
angle opéens out upon the faces: A, B, C, and E.

38

T T e T Ny

B o

Carnegie Mellon University FEL Interface to PX

Figure 2. A block with a thru angle feature.

1.3.4. Thru_Hole

In-a feature Iist of type thru_hole, the attributes whose values are meaningful to
PX are: '

depth The value of this attribute is a real number which gives the
depth of the hole.

distance The value of this attribute specifies the center of the hole. The
value is of the form:

((side; distance,) (sidej distancej)).
This gives the hole’s center by providing the distance of the
center of the hole from two orthogonal sides of the envelope of
the part object.

opens_on This attribute’s value is a list of two elements, both are face
names from the set of face names assigned to the part envelope

by MX. These two faces are the opposite sides of the envelope
upon which the hole opens.

radius The value of this atiribute is a real number that gives the radius
of the thru hole.

39

S

4

Carnegie' Mellon University FEL Interface to PX

E 1.3.5. Thru_Slot

In a feature list of type thru_slot, the attribute/value pairs of interest to PX are

those with the attributes:
depth This attribute’s value is a real number that gives the depth of
the slot from the part envelope. In Figure 3, this would be ¢. .
distance The value of this attribute gives the distance from a face, to the

closest edge of the thru slot. The value is of the form:

((sidei distancei)).

sidey is the name of a face that meets two conditions: (i) it is

not affected by the thru angle, and (ii) the face is not parallel to
the bottom of the slot. distance, is the distance from side;

to the closet edge of the thru slot. For Figure 3, an example of a
value for distanceis: ((A @))

opens_on This attribute’s value is a list of three elements, all are face
names from the set of face names assigned to the part envelope
by MX. The three faces are those that the thru slot feature will
open out on. That is, if we envision the tool making the feature,
these faces will have the tool pass through them.

width This attribute’s value is a real number that gives the width of
the slot. This is the value, B, in Figure 3.

¢§_ — o —»

|—p —>| :

Figure 3. A block with a thru slot feature.

40

— - — e vt et

Carnegie Mellon University FEL Interface to PX

2. Output from PX

. The MACHINIST is run once the information from the Modeler, that describes the
part and stock objects, has been received and transformed into OPS5 Working Memory
Elements. Originally, the result of a run of the MACHINIST was simply displayed to the

. terminal. This is of little use to an expert-that requests a machining process.plan.
Hence, part of the function of PX is to gather the plan togethéer and construct an FEL
sentence that embodies the plan. This sentence will be returned as the response to the
original PLANrequest.

Each:of the next three subsections is an example that will expand upon a portion of
the preceding paragraph. Following is a brief description of the examples to be used.

(1) Presented is an example of a PLAN sentence sent to PX, requesting a
process plan for the specified part.

{2) The process plan is presented as it would have been originally output
to the terminal by MACHINIST!. This plan is not in the form of an FEL
sentence.

(3) Shown is the PLANNED sentence returned in response to the PLAN
request. This sentence will contain the process plan transformed into a
meaningful form (that is, feature lists of attribute/value pairs).

2.1. Requesting a Machining Plan

If the Human Interface (HI) wanted a process plan for machining the part, boss,
from the piece of stock, $0235; then HI would need to construct, and send to PX, an FEL

sentence of the form:
(plan ((name G0942)
(type message)
(to PX)
(from hi))
((name plan_boss)
(type planning op)

(application planner)
(environment imw)

(part boss)
(stock 50235))).

PX does not need detailed information about the part and stock models from the
expert requesting a machining process plan. All that is required is the names of the part
and stock objects, and their location in the modeling hierarchy. The name of the part
object is the value of the attribute, part, and the name of the stock object is the value of

14. Excluding some inessential graphics.

41

e ittt i o e e bt o i = g e e

o e bt it et s

Carnegie Mellon University FEL Interface to PX

the attribute, stock. The location of these objects in the modeling hierarchy is given by
the values of the atiributes: application and environment.

2.2. Output Displayed by the Process Planner

The previous example was of a PLAN sentence directed to PX. The response
returned by PX is solely determined by the outcome of the Process Planner. If it is not
possible to plan the part, the response will be-a NOTPLANNED sentence. When the
Process Planner is able to plan machining operations for the part, then a PLANNED
sentence is returned. The contents of this sentence are based upon the plan output to
the terminal by MACHINIST. For the part currently under consideration, MACHINIST
produces the plan:

THE STOCK DIMENSIONS:
3.5 x 2.5 x 1.5

THE PLAN:

Set-Up #1, use VISE
~ Put side 1 UP
- Put side 4 DOWN
- Put side 5 ON_SOLID_ JAW
. = FACE MILL 1

Set-Up #2, use Vise
- Put side 2 UP
- Put side 1 ON_SOLID JAW
- Put side 5 DOWN
- FACE MILL 2 to size

Set-Up #3, use Vise
- Put side 4 UP
- Put side 1 DOWN
- Put side 2 ON_SOLID JAW
- END_MILL 3 to size
- FACE MILL 4
= DRILL THRU1l

2.2.1. Explanation of Output
The process plan employs three setups to machine the part, boss. An individual
setup provides (a) the fixturing device to use, (b) the orientation of the stock piece with

respect to the bed of the tool table and the fixturing device, and (c) the features to be
machined.

42

Carnegie Méllon University FEL Interface to PX

In the preceding plan, a vise is the fixturing device utilized in all three of the
setups. A sine table would be an example of another device.

In order to-cut features, the stuck must be placed on the tool table. For an

individual setup, the process plan dictates how to orient the sides of the stock. For
.example, in setup #2, side 5 is placed face down on the tool bed (Put side -5 DOWN),

and side 1 is placed against the solid jaw of the vise (Put side 1 ON_SOLID_JAW).
Directions are also given for orienting side 2; however, that information may be
ignored, since side 2 is parallel to side 5.

2.3. PX’s Response to PLAN Sentence

From the information culled from the process plan generated by the MACHINIST
component of PX, a PLANNED sentence is constructed and returned to the Human
Interface (HI).

2.3.1. Feature List Ordering for Setups and Machined Features

The order of the feature lists in the PLANNED sentence is critical. Itis the ordering
of the feature lists that determines, both, the ordering of the setups and the ordering of
the features machined during each setup. That is, when iterating through the feature
lists of the PLANNED sentence, the setups are executed in the order in which they are
read. This method of ordering (“executing” the feature list as it read) also applies to the
feature lists whose types designate a feature to be machined. Hopefully, the following
example will clear up any confusion. In the PLANNED sentence (in Section 2.3.5),
setup_47 is executed first, followed by setup_49, then setup_51. During
setup: 51, feature face 52 is machined, followed by face_53, and finally, thrul.

2.3.2. PLANNING_OPFeature List

The above discussion concentrated on the feature lists that pertained to setups and
m.achined features, but one feature list precedes all of these. The feature list in question
is of type planning_op. In this feature list, the attribute, translation, is the only one
whose value contains useful information. The value of this attribute, a vector??,
provides the X, Y, and Z offsets necessary to correctly translate the part object within
the stock object. What is meant by a correct translation? If all of the face features, given
in the process plan, are removed from the stock object, then the vertices of the part
envelope will be equal to the vertices of the modified stock object.

15. A vectoris a list with exactly three real numeric elements. In the case of translation, the elements of
the vector specify the translation in X, Y, and Z, respectively.

43

[N -

e e S,

Carnegie Mellor University

s A b et

FEL Interface to PX

2.3.3. SET_UP Feature List

The primary function of a feature list of type setup is (a) to give the basic fixture
that will be employed, and (b) provide information that will allow other experts to
orient the stock with respect to that fixture and any other fixtures!6 employed.

2.3.3.1. Attributes of Generic SET_UP Feature List

A generic setup feature list consists of the attributes (ignoring name and type):

method

major-ref

minor-ref

major-pos

minor_pos

A symbol used to designate the type of fixture to be used in this
setup. Typical valuesinclude: vise, angle_plate,
sine_table, subplate, or toe_clamps.

The attribute’s value is a face name from the set of face names
assigned to the stock by MX. The face name denotes the face
that the Process Planner has designated as the major reference
side. This is important for probing operations.

The attribute’s value is a face name from the set of face names
assigned to the stock by MX. The face name denotes the face
that the Process Planner has designated as the minor reference
side. This is important for probing operations.

The value of this attribute is used in conjunction with the values
of the attributes major_ref and method. It specifies the
orientation of the face named by ma jor_re £ with respect to the
fixture designated by method. For example, the attribute/value
pairs:

(method vise)
(major ref mx 5)
(major_pos on_solid jaw)

state that face mx_5 is to be placed against the solid jaw of the
vise.

The value of this attribute is used in conjunction with the values
of the attributes minor_ref and method. It specifies the
orientation of the face named by minor_ref with respect to the
fixture designated by method. For example, the attribute/value
pairs:

(method vise)

16. In this context, the term fixtures is being used loosely. In addition to what one normally considers a
fixture, include the tool bed, a sine table, or a subplate.

T 8 i S . s e o . ot oot

4

Carnegie Mellon University FEL Interface to PX

minor_ref mx_3)
(minor pos down)

state that face mx_3 is to be placed face down in the vise.

major_normal This attribute’s value is a vector. Specifically, it is the unit
normal. vector of the face denoted by the value of the attribute,
major ref.

mincr_normal The value of this attribute is a vectot. Specifically, it is the unit
normal vector of the face denoted by the value of the attribute,
minor ref.

x_rotation A real number that specifies.the number of degrees the model
must be rotated! about the x-axis; such that, the appropriate
face!® has.the unit normal vector, (0 0 1).

y_rotation A real number that specifies the number of degrees the model
must be rotated' about the y-axis; such that, the appropriate
face®® has the unit normal vector, (0 0°1).

z_rotation The current version of PX always considers (0 0 1) to be the
. desired unit normal vector. Therefore, no matter what the
initial orientation of the model, a rotation about the z-axis can
never bring about the desired orientation. Consequently, The
value of this attribute will always be 0.

The astute reader may have noticed that two of the attributes given for the feature

list of type setup, major_ref and minor_ref, do not appear to be deducible from the
output of the MACHINIST. This information is not concocted by PX. It is internal to the
Process Planner, but is never displayed to the user. However, other experts do require
this information; consequently, it is collected by PX, and added to the setup feature list.

18.

17. The convention is adopted that positive rotations are such that, when looking from a positive axis

toward the origin, a ninety degree counterclockwise rotation will transform one positive axis into the
other. The following table, usable for either right-handed or left-handed coordinate systems, derives
from this convention:

Axis of Rotation Direction of Positive Rotation

X Y->Z
Y Z~->X
yA X->Y

By convention, a face whose unit normal vector is (0 0 1) is considered to face up. In determining
which face should be up, the first step is to examine the values of the two attributes majox_pos and
minor_pos, and note which one has a value of either up or down. Next, find the related “reference”
attribute. Remember, a relation exists between the values of the attributes ma jor_ref and

majox_pos, and also between the attributes minor_ref and minox_pos. Finally, if the value of the
“position” attribute is up, then the value of the corresponding “reference” attribute is the name of the
face to be placed up. If the value of the “position” attribute is down, then the face opposite to the

45

Carnegie Mellon‘University FEL Interface to PX

2.3.3.2. Additional Attributes for Setup Employing-a Sine Table

The preceding attributes were described as belonging to a generic setup feature
list. In other words, those attributes will be found in all feature lists of type setup,
regardless of the value of the attribute method. However, if sine_tableis the value
of method, then there are two-additiondl attribiite /value pairs:

angle The value of this attribute.is a real number which provides the
degree of the angle that should exist between the sine table and
the tool bed.

position This attribute’s value is one of the three symbols: X, Y or 2. The
symbol denotes the axis to which the hinge of the sine table is
parallel.

2.3.4. Feature Lists for Machined Features

When constructing the PLANNED sentence, PX views machined features as falling
into two classes. Features that are originally added to the model (e.g., a thru hole) and
ones that are added by the Process Planner.

2.3.4.1. Original Features of the Part Model

The first class, features originally added to the model, are trivially handled by PXx.
Adding a feature list that describes machining features of this class, requires no more
effort than giving the name and type of the feature. Since the MACHINIST does not alter
anything that would affect MX’s definition of the feature, there is no need to provide
any other information. For example, to describe the thru hole, thrul, the feature list:

((name thrul) (type thru hole))

would suffice.

value of the corresponding “reference” attribute is the face to be oriented up.
For example, given the attribute/value pairs:

(major_ref mx_5)
(minor_ref mx_3)
(major _pos on_solid jaw)
(minoxr_pos down)

the face opposite to mx_3 will be the face to be placed up, since the value of minor_pos is down.

46-

D N NN Y
o 2 2 b i n e whe + o -

— e T

Carnegie Mellon University

FEL Interface to PX

2.3.4.2. Face Features Added by Process Planner

Features added by the Process Planner comprise the second class. The current
version of MACHINIST generates new. features during the process of reducing the stock
envelope to the part envelope (i.e., squaring the stock). To rednuce the stock, MACHINIST
specifies milling operations. The Process-Planner distinguishes between two types of
milling operations, face mills and end mills. However, the Modeler does not
distinguish between the two; they are both simply defined as face features (see Figure

4).

|_vector

p_vector

w_vector

Figure 4. Definition of a Face Feature.

When PX detects one of the milling operations, a feature list of type face is added
to the PLANNED sentence. This feature list should contain the information necessary for
MX to model the feature. Therefore, ignoring name and type, a face feature list
consists of the attributes: '

face

p_vector

1 _vector

w_vector

The attribute’s value is a face name from the set of face names
assigned to the stock by MX. The face name denotes the side
upon which the milling operation will take place.

The value of this attribute is a vector. The origin is the model
origin. The vector points to an open corner of the face that is to
be machined away.

The value of this attribute is a vector. The origin is defined by
the value of the attribute, p_vectoxr. The vector points along
an open edge of the area to be milled away.

This attribute’s value is a vector. The origin is defined by the
value of the p_vector attribute. The vector points along an
open edge of the area to be machined away.

47

Carnegie Mellon University FEL Interface to PX

This attribute’s value is a vector. The origin is defined by the

value of the attribute, p_vector. The vector points along an
open edge of the area to’ >be machined away. However, this

}/ector is dlrectlonally significant. It must point toward the part
ace

d vector

2.3.5. PLANNED Sentence for the Part, BOSS

The following PLANNED sentence is the FEL translation of the process plan
generated by MACHINIST for the part, boss. This is also the reply that would be
generated for our example PLAN sentence.

o s emmere e~

(planned ((name G0942)
(type message)
(to hi)
(from pPx))

((name plan_boss)
(type planning op)
(application planner)
(environment imw)

(part boss)
(stock 50235)
(translation (0.0 0.5 0.25)))

((name setup_47)
(type setup)
(method vise)

(major ref mx_6)
(minor_ref mx_3)
(major_pos down)
(minor_ pos on_solid jaw)

(major normal
(minor normal

(0.0 0.0 =-1.0))
(0.0 1.0 0.0))

(x_rotation 0)
(y_ “rotation 0)
(z rotation 0))
((name face 48)
(type face)
(face mx_5)
(p_vector (3.5 2.5 1.5))
(1_vector (-3.5 0.0 0.0))
(w_vector (0.0 -2.5 0.0))
(d_vector (0.0 0.0 -0.25)))
((name setup 49)
(type setup)
(method vise)

48

R L

e b o £ St T\ TN o i st .

Carnegie Mellon University

(major ref
(minor_ ref
(major_pos
(minor_pos
(major_normal
(minor “normal
(x_ rotation
(y rotation
(z_ “rotation

((name
(type
(face
(p_vector
(l vector
(w_vector
(d_vector

((name
(type
(method
(major_ref
(minor_ref
(major_pos
(minor_pos
(major normal
(minor_normal
(x_rotation
(y rotation
(z_rotation

((name
(type
(face
(p_vector
(1_vector
(w_vector
(d_vector

((name
(type
(face
(p_vector
(1_ “vector
(w_vector
(d_vector

((name
(type

49

FEL Interface to PX

mx_5)
mx_3)
on_solid jaw)
down)

OCOOO
] . . .
NOOoOOoO
t
OO
. L] . L]
oo wu;m
s Vg Nmat®
i

setup_51)

setup)

vise)

mx_5)

mx_1)

down)
on_solid_jaw)
(0.0 0.0 1.0))
(0.0 -1.0 0.0))

180)

0)

0))
face_52)
face)
mx_6)
(3.5 2.5 0.0))
(0.0 -2.5 0.0))
(-=3.5 0.0 0.0))
(0.0 0.0 0.25)))
face_53)
face)
mx_2)
(3.5 0.0 0.0))
(0.0 2.5 0.0))
(0.0 0.0 1.5))
(-0.5 0.5 0.0)))
thrul)

thru_hole)))

Center for
Integrated Manufacturing. Decision Systems

FEL Syntax for Communicating with a
Geometric Modeler

Duane T. Williams

March, 1990

Abstract

This document describes the detailed syntax of the FEL (Feature Exchange Language)
sentences that are understood (and generated) by the geometric modeler used in the
IMW (Intelligent Machining Workstation) prototype system. '

A brief description of the general form of FEL sentences is given, as well as a brief
overview of the hierarchical structure of objects that the modeler is capable of
representing. The bulk of the document describes the details of sentences that cause
models composed of objects to be constructed, that cause features to be added to
objects, that enable information about models to be retrieved by remote processes, and
that enable models to be transformed and graphically displayed.

Copyright © 1990 Carnegie Mellon University

Contact:

David Bourne

CIMDS

Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-8810

This document describes the syntax of FEL sentences understood by the. Modeling
Expert (MX). It also explains the interface between the modeler and the program
(MXD) that displays models on the Sun.

1. General FEL Syntax

The usual syntax of FEL sentences is a parenthesized list whose first element is a verb
and whose subsequent elements are feature lists..

(aVerb featureListl ... featureListN)

A feature list is a parenthesized-list of attribute-value pairs. An attributé-value pair is a
parenthesized list of two elements: an attribute name and a.value.

((attributel valuel) ... (attributeN valueN))

In general, an FEL sentence should contain a feature list that names the sentence and
specifies its source and destination (usually the names of experts, e.g., PL, CX, MX, etc.).
This feature list must contain a TYPE attribute with value MESSAGE. Thus, FEL
sentences will usually have the following form:

(aVerb ((type message) (name aName) (from aSource) (to aDestination))
featureList2

featureListN
)

Each of the other feature lists in a sentence should be a complete and independent pack-
et of information for a single application of the verb. In other words, the sentence
above should be equivalent to the following sequence of sentences:

(aVerb ((type message) (name aName) (from aSource) (to aDestination))
featureList2
)

(aVerb ((type message) (name aName) (from aSource) (to aDestination))
featureListN
)

This condition of feature list independence is not an absofute requirement, but it is
highly desirable, because it simplifies the interpretation of individual sentences.
It is the primary purpose of this document to describe the verbs and feature lists that

are meaningful to the modeler, and the information that it is currently capable of
providing.

53

e e i o e s e 4 e e

Cal;negie Mellon University FEL Syntax for the IMW Modeler

2, Modeler Hierarchy

The basic thing to know about the modeler is that it organizes geometry in-a-hierarchy:

worlds, applications, environments, objects, features; and faces (see Figure 1 on page 54).
Worlds, applications, environments, objects, and features are collections:of the elements

at the next level down in the hierarchy. Each object is associated with a TWIN? BREP

structure that approximates:the-intended geométry of the object. Each face contains a

connection with the corresponding BREP structure that répresents its geometry.

Every element of the hierarchy is given a name, which must be unique within the col-
lection of which the element is a part. Thus, the names of objects within a particular en-
vironment must be unique, but the names may be:reused in other environments, or at
other levels of the hierarchy. In order for an FEL sentence to refer'to-a particular node
in the hierarchy, it must specify the path through the hierarchy that leads to that node.
For example, in order for an FEL sentence to refer.to a particular object, it must specify
the world, the application, the environment and the object. This is done by giving the
name of each of these things.

In the current implementation of the modeler, there is only one world and it is never
named explicitly in FEL sentences. All applications are-automatically part of this de-
fault world. Furthermore, there is a predefined-application named “DEFAULT_APP” and
it contains a predefined environment named “DEFAULT_ENV”; so it is-possible to con-
struct a simple model without explicit mention of either an application or an
environment.

World

/ Application

Environment

BREP

Object /

Feature

Face

Figure 1. Modeler Hierarchy

1. TWIN is a solid modeling package developed by Timothy Mashburn at Purdue University. It is the
basis for his Master’s thesis Mashbur’. 1987).

54

e et . o e o3 e s o+ i
L e o, . e et reectAB¥ . im0

Carnegie Mellon University FEL Syntax for the IMW Modeler

3. Synopsis of Modeler Verbs
There ate six verbs curréntly understood by the'modeler:

Add The primary verb for creating and modifying a model. Five
types of things can be added: features, objects, groups,
environments, and applications. .

Copy Copies objects (and” groups) from one énvironment to ancther
' (possibly the same) environment and' environments from one
application to another (possibly the same).

Draw Generates line drawing commands to an external display
program that is connected to the modeler via a Unix pipe.
Three types of things can be drawn: objects, groups, and
environments. Scaling and translation carn be used.

Get Retrieves information from the model abeut all types of things.

Read Reads a sequence of FEL sentences stored in a disk file and then
presents-them to the-modeler as if they were typed one by one
on the command line. *

Transform - Applies geometrical transformations to either individual
objects, groups, or to all the objects and groups in an
environment. Three kinds of transformations are supported:
translation, rotation (in X, Y, and Z), and scaling.

4, How Sentences are Processed

A single sentence can do lots of work, because a sentence can contain multiple feature
lists. For example, a single add sentence can add an object to an environment and then
add several features to the object. A transform sentence can transform several objects
and environments. A single sentence cannot both add and transform an object, because
a sentence can have only one verb.

4.1, Order

Each sentence received by the modeler is fully processed before work begins on the
next one. The verb is extracted and the indicated action is then performed on each fea-
ture list.

The feature lists are processed in order, as they appear in the sentence. In the case of an
add sentence, this is necessary because the order in which a mixture of positive and neg-
ativefeatures are processed affects the result.

In general, attribute-value pairs within feature lists are not processed sequentially, but
the transform sentence is an exception. Order is significant when rotations about several
axes are performed, or when translations and rotations are intermixed in order to rotate
an object about a point other than the origin. For these reasons, the transformation

55

VST e o e, -

Carnegie Mellon University FEL Syntax for the IMW Modeler

attributes within feature lists of a transform sentence are processed in order, as they ap-
pear in the feature lists.

4.2, Defaults

It has already been mentioned that there is a default application and; within it, a default
environment. They are created when the modeler starts up. Other applications and
environments are created by means of add sentences.

Every feature list must specify what application, environment, group (if any), object,
etc., it is intended to apply to. The modeler remembers-the most recently specified ap-
plication, environment, group, and object; so repeated specification of the same names
is not necessary.

5. The Add Verb

The add verb is used to add applications, environments, groups, objects and features to
the model, but the most common use is to add objects and groups to an environment
and features to an object.

5.1. Adding Objects

The following example shows how to add an object to an environment. The TYPE at-
tribute specifies what kind of thing, in this case an object, is to be added and the NAME
attribute gives the name which will be used to refer to this thing. The APPLICATION and
ENVIRONMENT attributes specify where in the model hierarchy. the new object will exist.
Currently, a new object can only be created with a rectangular envelope. In a future
version of the modeler, arbitrarily shaped envelopes will be allowed.

(add
; possibly other feature lists
((type object) ; what kind of thing is being added
{name boomerang) ; its name
(application planner) ; the application name
(environment part_model) ; the environment name
(p_vector (0 0 0)) ; the rectangular envelope
(w_vector (2.5 0 0))
(1_vector (0 6.982 0))
(d_vector (0 0 .25))
)
) .
5.2. Adding Features

We can extend the above example to show how to add a feature to an object.. Note that
“object”, previously the value of the TYPE atiribute, is now an attribute whose value is
the name of the object to which the feature is being added.

(add
; possibly other feature lists

((type thru_slot) ; what kind of thing is being added

56

e e e PSS S <P 42O o AL~ et e

Carnegie Mellon University FEL Syntax for the IMW Modeler

(name facemill) ; its name

(application planner) ; the application name
(environment part_model) ; the environment name
(object boomerang) ; the object name

(p_vector (0 1.7 0)) ; parameters for a thru_slot
(w_vector (2.5 0 0))

(1_vector (0 3.582 0))

(d_vector (0 0 .1))

)
The above example could have been abbreviated as show below, because the previously

specified application, environment and object names:will have become the default val-
ues for these attributes.

(add
((type thru_slot) ; what kind of thing is 'being added
{name facemill) ; its name
(p_vector (0 1.7 0)) ; parameters for a thru_slot

(w_vector (2.5 0 0))
(1_vector (0 3.582 0))
{(d_vector (0 0 .1))

)

There are currently eleven features that can be added to an object and they are of two
kinds: positive volume and negative volume. Adding a positive volume feature to an
object adds volume to the object; adding a negative volume feature removes volume.
The positive volume features include block, cylinder, swept_cylinder, and wedge. The
negative volume features include face_mill, id_circular_profile, od_circular_profile,
thru_slot, thru_hole, swept_radius, and thru_angle.

5.2.1. Block, Face_Mill, and Thru_Slot

A block (or a face_mill or a thru_slot) is defined by four vectors, a position vector and
the three vectors that form the corner of the block at that position. The corner vectors
determine the size and shape of the block. These four vectors are defined using the at-
tributes P_VECTOR, W_VECTOR, L_VECTOR, and D_VECTOR. The values of these at-
tributes are defined by order triples of real numbers. Here is an example definition of a
feature list that describes a thru_slot that is to be created.?

2. Recall that a feature list is only meaningful in the context of a sentence that begins with a verb, like
“(add ...)".

It is actually unfortunate that new features are described in a manner so closely tied to the underlying
geometrical representation. For example, specifying a slot by length, width, depth, and relative posi-
tion on the part would be much closer to a “feature oriented” description, would be more natural
from the point of view of a designer, and would be easier to interface with our feature oriented plan-
ner.

57

Carnegie Mellon University FEL Syntax for the IMW Modeler

((type thru_ slot)
{name slotl)
(p_vector (0 1.7 0))
(w_vector (2.5 0 0))
(1_vector (0 3.582 0))
(d_vector (0 0 .1))

feature type

its name
position vector
direction vector
direction vector
direction vector

LT T P N

5.2.2. Blind_Hole, Cylinder, and Thru_Hole

A cylinder (or a thru_hole) is defined by two vectors, a position vector and an axis vec-
tor, and a real number, the radius of the cylinder. The position vector defines the center
of one end of the (circular) cylinder and the axis vector determines the length and orien-
tation of the cylinder. The vectors are defined using the attributes P_VECTOR and
D_VECTOR. The radius is define using the attribute RADIUS. Here is an example defini-
tion of a feature list that describes a cylinder.

feature type

its name

position vector
axis vector

radius of cylinder

((type cylinder)
(name arm_holder)
(p_vector (1.62 .52 1.35))
(d_vector (0 0.7 0))
(radius .31)

ws e Ne Ny wo

)

5.2.3. Swept_Cylinder and Swept_Radius

A swept_cylinder (or a swept_radius) is defined by three vectors and two real numbers.
A position vector (attribute P_VECTOR) defines the center of rotation. Relative to the
center of rotation, the W_VECTOR attribute gives the center of one end of a cylinder. An
axis vector (D_VECTOR) defines the orientation and length of the cylinder and the
RADIUS attribute defines its radius as a real number. The attribute ANGLE gives the
number of degrees through which the cylinder is to be swept. Here is an example defi-
nition of a feature list that describes a swept_radius.

feature type

its name

center of rotation

relative position of cylinder
axis vector

degrees of sweep

radius of cylinder

((type swept_radius)
{name top)
(p_vector (.28 .28 0))
(w_vector (.64 0 0))
(d_vector (0 0 .2825))
(angle 360)
(radius .5)

Ne e e Ne Ny Ny wg

5.2.4. ID_Circular_Profile and OD_Circular_Profile

A drcular profile feature describes a surface that is an arc of a cylinder
(see Figure 2, page 58).

58

et armamarnedar

Carnegie Mellon University FEL Syntax for the IMW Modeler

feature type

its name

centexr of rotation
far edge of cylinder
axis vector

((type id_circular_profile)
(name inside_radius)
(p_vector (.28 .28 0))
(r_vector (.64 0 0))
(d_vector (0 0 .2825))
(angle 360)

e We Mo N Ne N

degrees of sweep

r_vector

Figure 2. Circular Profile

5.2.5. Wedge and Thru_Angle

A wedge (or a thru_angle) is defined just like a block or thru_slot, but the edge vectors
are interpreted differently.

5.2.6. Adding Groups (of objects)

In addition to simple objects, the modeler supports groups of simple objects. Groups
can be treated like simple objects, i.e., they can be transformed, copied, drawn, etc.
Groups also behave as complex objects whose parts can be manipulated independently.
Groups are added to an environment in much the way that simple objects are, but there
is no bounding box to be specified.

(add
; possibly other feature lists

((type group) ; what kind of thing is being added
(name toe_clamp) ; its name
(application holding) ; the application name
(environment setupl) ; the environment name

59

U S —

Carnegie Mellon University FEL Syntax for-the IMW Modéler

5.3. Adding Applications

An application can be explicitly created as shown below. Because all applications are
made part of a single predefined world, only TYPE and NAME attributes are given.

{add
; possibly other feature lists

((type application) - ; what kind of thing is being added
{name planner) ; its name
)
)

In a future version of the modeler, applications may be created automatically when
they are first mentioned.

5.4. Adding Environments

An environment can be explicitly created as shown below. The TYPE and NAME at-
tributes indicate what environment is to be created and the APPLICATION attribute tells
where in the model it is to be.

(add

possibly other feature lists

what kind of thing is being added
its name

the application name

{ (type énvironmeﬁt)
(name part_model)
{application planner)

)

LY TR AN

)

In a future version of the modeler, environments may be created automatically when
they are first mentioned.

6. The Copy Verb

The copy verb duplicates an object or an environment, assigns the copy a possibly new
name, and places it in a possibly different environment or application. The TYPE, NAME,
APPLICATION, and ENVIRONMENT attributes are used to specify what is to be duplicated.
The TO_APPLICATION, TO_ENVIRONMENT, and TO_OBJECT attributes are used to specify
where the duplicate is to be located and what it should be called.

6.1. Copying Objects

Objects can be copied from one environment to another or duplicated (with a new
name) within a single environment. The following example shows how to copy an ob-
ject to a different environment. It says that an object named “boomerang” in the envi-
ronment “part_model” of application “planner” is to be copied with the same name to
an.already existing environment named “part_model2” of the same application.

[N — -

: T e - e et e 4 ¢ bl o e me . e e .
H B . T o

Carnegie Mellon University FEL Syntax-for the IMW Modeler

(copy
; possibly other feature lists

((type object) ; what kind of thing is being copied
(name boomerang) ; its name
(application planner) ; source application name
{environment part_model) ; source environment name
(to_application planner) ; destination application

(to_environment part_model2).
; destination environment

’
(to_object boomerang) ; destination object name

)

Duplicating an object in an environment (i.e., when the ENVIRONMENT and
TO_ENVIRONMENT attributes have the same value) requires that the duplicate be given a
new name (the value of the TO_OBJECT attribute).

6.2. Copying Environments

Environments can be copied from one application to another or duplicated (with a new
name) within a single application. The following example shows how to duplicate an
environment within an application. It says that an environment named “part_model”
in the application “planner” is to be duplicated and that the duplicate is to reside in the

same application under the new name “part_model2”.

(copy
possibly other feature lists

((type environment) what kind of thing is being copied

(name part_model) its name
(application planner) source application name
(to_application planner) ; destination application

(to_environment part _model2)
; destination environment

e Ns Ss ~e

)

Duplicating an environment within an application (i.e., when the APPLICATION and
TO_APPLICATION attributes have the same value) requires that the duplicate be given a
new name (the value of the TO_ENVIRONMENT attribute).

7. The Delete Verb

The delete verb deletes an object from an environment or an environment from an appli-
cation. The TYPE, NAME, APPLICATION, and ENVIRONMENT attributes are used to specify

what is to be deleted.

61

Carnegie Mellon University FEL Syntax for the IMW Modeler

7.1. Deleting Objects
The following example shows how to delete an object from an environment.

(delete

possibly -other feature lists

what kind -of thing is being ‘deleted
its name

application name

environment name

((type object)
(name boomerang)
(application planner)
(environment part_model)

Ner we Ny Ne NG

)

Deleting an object from an environment not only removes the reference to the object
from the environment, but also destroys the object structure, its underlying features, as-
sociated BREP structures, etc.

7.2. Deleting Environments
The following example shows how to delete an environment from an application.

(delete

possibly other feature lists

what kind of thing is being deleted
its name ’

application name

((type environment)
{name part_model)
{application planner)

LYTE YRR YR T

)
)

Deleting an environment from an application not only removes the reference to the en-
vironment from the application, but aiso destroys the environmient structure, the objects
within the environment, their features, etc.

8. The Draw Verb

The draw verb causes a group of display commands to be sent to a separate Unix pro-
cess via a Unix pipe. The primary application of this verb is the graphic display of an
environment of a model on a Sun screen by means of the SunCORE-based MXD pro-
gram.

8.1. Drawing Objects

The following example shows how to draw an object. The TYPE, NAME, APPLICATION
and ENVIRONMENT attributes together specify what is to be drawn. The APPLICATION
and ENVIRONMENT attributes may be omitted if the most recently used values are
acceptable. Translation and scaling are often needed to bring the desired portion of the
model into view. These transformations only apply to the display and have no effect on
the model itself.

62

Carnegie Mellon University FEL Syntax for the IMW Modeler

(draw

possibly other feature. lists
what kind of thing to draw
its name

the application name

the environment name

Y translation

X, ¥, 2 scaling

((type object)
{(name boomerang)
(application planneér)
(environment part_model)
_(translation (0 -.7 0))
(scale (.014 .014 .014))
) .

e w2 N

LT N T

)

8.2. Drawing Environments

Drawing an environment is-similar to drawing an object and the same transformations
may be applied. There is, though, a difference between drawing an environment and
drawing all the objects in an environment. When an environment is drawn,.the view-
ing surface is automatically cleared before the first object is drawn. When individual
objects are drawn, no clearing is done.

(draw
.o ; possibly other feature lists
{((type environment) ; what kind of thing to draw
(name part_model) ; its name
(application planner) ; the application name
(translation (0 -.7 0)) ; Y translation

(scale (.014 .014 .014)) ; X, ¥, 2 scaling

)
8.3. Display Commands

The display commands generated via draw consist of a sequence of lines, each contain-
ing a single character code followed by some number of parameters.

Close Syntax: C
Closes the SUnCORE “view_surface” window.

Draw Syntaxx D xy z
Draws a line from the “current position” to the specified 3D po-

sition and updates the “current position”.

Line Syntax: L x; ¥, 2; X, ¥, 2,
Draws a line from the point (x, y, Z,) to the point (x, y, 2,).

Move Syntax: M xy z .
Moves the “current position” to the specified 3D point. ,

New Page Syntax: N
Clears the SunCCORE “view_surface” window.

Translate Syntax: T x offset y_offset z offset
Translates the drawing in each dimension by the specified
amount.

Wait Syntax: W time
. Wait for the specified number of 1/60th seconds.

XRotation Syntax: X x_degrees
Rotates thé drawing-around the X axis by the specified number
of degrees.

Y Rotation Syntax: Y y degrees
Rotates the drawing around the Y axis by the specified number
of degrees.

Z Rotation Syntax: 2 z_degrees
Rotates the drawing around the Z axis by the specified number
of degrees.

8.4. Alternate Display Programs

When the modeler (mx) is executed, the name of an (optional) executable “display”
program may be provided as an argument. For example, if “mxd"” is the name of such a
display program, the modeler could be executed with the following command.

$ mx mxd

This display program is executed as a “child” process under the modeler and is con-
nected to the modeler via a “pipe” so that the display process can receive commands
from the modeler via the display process’ standard input. The commands that it may
receive are described in the previous section.

A display program (mxd) that produces perspective drawings on the Sun (using the
SunCORE library) is currently available. Simple modifications of this program could
be used to generate PostScript or types of output from the modeler.

9. The Get Verb

The get verb is used to retrieve information from the modeler. The format for retrieving
applications, environments, objects, and features is illustrated in the exar.nple below.
Each feature list specifies the type, name, and appropriate context of the thing to be re-
trieved. The amount and kind of information supplied by the modeler depends on the
type of thing requested.

Y e e e s S At et s et e =

| D - ——— !’r
Carnegie Mellon University FEL Syntax for the IMW Modeler
Open Syntax: 0 ,
Opens and initializes the SunCORE “view_surface” window.
Scale Syntax: S x_scale y_scale z_scale
Scales the drawing in each dimension by the specified scale fac-
tor. -

R e

.Carnegie Mellon University FEL Syntax for the IMW Modeler

9.1. Application Request

When you want to know what environments are contained in an application, you send
the modeler a get message with TYPE “application”. You specify the name of the appli-
cation you want with the NAME attribute. Here's how to get a list of environments in

the “planner” application:

(get

{ (type application) ; what kind- of thing to get
{(name planner) ; its name
)
)
(got

type of thing retrieved

its name

the world name

list of environments in this
application

((type application)
{name planner)
(world world)
(environment (part_model))

S N N N e

)

The reply repeats the TYPE and NAME attributes, tells you the name of the “world” con-
taining the application, and gives the list of environments as the value of the
ENVIRONMENT attribute. You can use this information to retrieve information about
each of the environments.

9.2, Environment Request

When you want to know what objects are contained in an environment, you send the
modeler a get message with TYPE “environment”. You specify the name of the
environment you want with the NAME attribute. You specify the application containing
this environment with the APPLICATION attribute. Here’s how to get a list of objects in
the “part_model” environment:

(get
((type environment) ; what kind of thing to get
(name part_model) ; its name
(application planner) ; the application name
)
)
{(got
((type environment) ; type of thing retrieved
(name part_model) ; its name
{world world) ; the world name

Carnegie Mellon University FEL Syntax for the IMW Modeler
(application planner) ; the application name
(object (boomerang)) ; list of objects in this environment

)
)

The reply repeats the TYPE, NAME, and APPLICATION attributes, tells you the name of the
“world” containing the application, and gives the list of objects as the value of the
OBJECT attribute. You can use this information to retrieve information about each of the
objects.

9.3. Object Request

When you want tc know what features are contained in an object, you send the modeler
a get message with TYPE “object”. You specify the naine of the object you want with the
NAME atiribute. You specify the application and environment containing this object
with the APPLICATION and ENVIRONMENT attributes. Here’s how to get a list of features
in the “boomerang” object:

{get

{ (type object) ; what kind of thing to get
(name boomerang) ; its name
(application planner) ; the application name
(environment part_model) ; the environment name

(got
{ (type object) ; type of thing retrieved
{name boomerang) ; its name
(world world) ; the world name
(application planner) ; the application name
(environment part_model) ; the environment name
(feature (envelope holel)) ; list of features of this object

)

The reply repeats the TYPE, NAME, APPLICATION and ENVIRONMENT attributes, tells you
the name of the “world” containing the application, and gives the list of features as the
value of the FEATURE attribute. You can use this information to retrieve information
about each of the features.

9.4. Feature Request
When you want to know about a particular feature in an object, you send the modeler a
get message with TYPE “feature”. You specify the name of the name you want with the

NAME attribute. You specify the application, environment, and object containing this
feature with the APPLICATION, ENVIRONMENT, OBJECT attributes. Here's how to get

T tind

Carnegie Mellon University FEL Syntax for the IMW Modeler

information about a feature named “hole1”:

(get
((type feature) ; what kind of thing to get
(name holel) ; its name
(application planner) ; the application name
(environment part_model) ; the environment name
(object boomerang) ; the obiject name
)
)
(got

((type thru_hole)
{name holel)
(world world)
(application planner)
(environment part model)
(object boomerang)

type of thing retrieved
its name

the world name

the application name
the environment name
the object name

Ny W wg W Ny we

)

The reply repeats the NAME, APPLICATION, ENVIRONMENT and OBJECT attributes, tells
you the name of the “world” containing the application, includes a TYPE attribute with
the specific type of the feature, and gives other attribute/value pairs appropriate for
that feature.

The following sections describe the special attribute/value pairs for each of the features
supported by the modeler.

9.4.1. BREP

The BREP pseudo-feature gives a boundary representation of an object and is included
in the modeler for use by the Holding Expert, which employs preexisting algorithms
that require this kind of non-feature-oriented input. Three attributes are provided in
addition to the standard ones that accompany all feature descriptions.

(got
(...
(vertex ((x; y; Zg) oo xy ¥y zn)))
(loop ((vll"'vlm)“'(VPI"‘vbn)))
{(face ((111...11m)...(lpl...lpn)))
)

67

Carnegie Mellon University FEL Syntax for the IMW Modeler

The VERTEX attribute gives a list of all vertices of the object. A vertex is a triple of real
numbers giving the x-y-z coordinates of a point. The LOOP attribute-gives a list of all
loops of the object. A loop is a sequence of vertices that describe a connected sequence
of edges on a face. Each vertex in a loop is described by an integer index into the
VERTEX list. The FACE attribute gives a list of all the faces of the object. A face is de-
scribed by-a list of loops, the first of which is its outer boundary; subsequentloops on a
face describe holes in the face. Each loop is described by an integéer index into the LOOP
list.

9.4.2. Envelope

The ENVELOPE feature describes a rectangular bounding box around an object. Three
attributes are given in addition to the standard ones that accompany all feature descrip-
tions: FINISH, DISTANCE, arid NORMAL.

(got

((finish ((side, f;)...(sideg £()))
(distance ((s; s, dl) (33 s, dy) (ss Sg d3)))
{noxrmal ((sidel (x1 Yy zl))...(s-x:i.de6 (x6 Ye 26))))

)

The FINISH attribute specifies the surface finish of the sides of the stock. It is given as a
list of pairs, each of which is composed of the name of a side and the name of the finish
property for that side. The DISTANCE attribute specifies the distance between parallel
sides of the envelope. It is given as a list of three triples, each of which has two side
names and the real numbered distance between those sides. The NORMAL attribute unit
face normals of the sides of the stock. They are given as a list of pairs, each of which is
composed of the name of a side and a vector, represented as a three element list.

9.4.3. Thru_Hole

The THRU_HOLE feature describes a hole that opens on two opposite sides of the enve-
lope of an object. Five atiributes are provided in addition to the standard ones that ac-
company all feature descriptions.

(got

((position ((x; ¥, 24) (x5 ¥y 25)))
; position on true faces corresponding
; to the “opens_on” sides
(depth d) ; depth of the hole
{xradius r) ; radius of the hole
(opens_on (side, side,)) ; envelope sides

(distance ((side3 distl) (s:'.de4 distz)))
: distance from orthogonal sides

Carnegie Mellon University FEL Syntax for the IMW Modéler

)

The POSITION attribute gives the position of the hole on each of the surfaces that it
opens onto, in the order that corresponds with the envelope sides given by the
OPENS_ON attribute. The DEPTH attribute gives the depth of the hole as a real number.
The RADIUS attribute gives the radius of the hole as a.real number. The OPENS_ON at-
tribute specifies the two opposite sides of the envelope associated with the hole. The
DISTANCE attribute tells the distance of the center of the hole from two orthogonal sides
of the envelope of the object.?

9.4.4. Blind_Hole
The BLII\Ib_HOLE feature describes a hole that opens on only one side of the envelope of

an object. Five attributes are provided in addition to the standard ones that accompany
all feature descriptions.

(got
{ (position (x; ¥; 24)) ; position on “opens_on” side
(depth d) ; depth of the hole
(radius r) ; radius of the hole
(opens_on (side,)) ; envelope side the hole is “on”

(distance~((side3 distl) (side4 distz)y)

; distance from orthogonal sides

)

The POSITION attribute gives the position of the hole on the surface that it opens onto;
this surface corresponds to, but may not be identical with, the envelope side supplied
by the OPENS_ON attribute. The DEPTH attribuiz gives the depth of the hole as a real
number. The RADIUS attribute gives the radius of the hole as a real number. The
OPENS_ON attribute specifies the side of the envelope associated with the hole. The
DISTANCE attribute tells the distance of the center of the hole from two orthogonal sides
of the envelope of the object.*

9.4,5. Channel (Thru_Slot)
The CHANNEL feature describes a slot that opens on three sides of the envelope of an

object. Four attributes are provided in addition to the standard ones that accompany all
feature descriptions: OPENS_ON, WIDTH, DEPTH, and DISTANCE.

3. For the cutting expert, we also supply the original vectors (possibly transformed) used to define this
feature. These vectors are the values of the attributes P_VECTOR and D_VECTOR.

4. See footnote 3.

69

[, [o e o ——— e e — ——

‘Carnegie Mellon University FEL Syntax for the IMW Modeler
(got
((depth 4y ; depth of the channel
(width w) ; width of the channel
(cpens_on (s1 E 33)) ; envelope sides cut by the channel
{distance (side dist)) i distance from one side -

) . .

The POSITION attribute gives-the position of the hole on the surface that it opens onto;
this surface corresponds to, but may not be idertical with, the envelope side supplied
‘by the OPENS_ON attribute. The DEPTH attribute gives the depth of the channel as a real
number. The WIDTH attribute gives the width of the channel as a real number. The
OPENS_ON attribute specifies the three sides of the envelope associated with the
channel. The DISTANCE attribute tells the distance from one side of the envelope of the
object to the nearest side of the channel.®

10. The Read Verb

The read verb® allows input of FEL sentences from one or more files, which are specified
by the feature lists. This is especially useful for loading models of the relatively un-
changing machining environment. Each such feature list must contain the attribute-val-
ue pair “(type file)” and a pair with attribute NAME whose value is the name of a file.
The following sentence would cause two files to be read and the sentences in them to be
processed before input from any other source, such as the network, is processed.

(read

((type file) (name “model.fel”))
((type file) (name “model-transforms.fel”))

11. The Transform Verb

The transform verb is used to apply geometric transformations to one or more objects.

Translation, rotation, and scaling are supported. Unlike transformations applied with

the draw verb, these actually alter the coordinates of the vertices of the objects. Both en-

vironmerts and individual objects may be transformed. Transforming an environment

has the same result as individually applying the same transformation to all the objects -
in that environment.

What is to be transformed (either object or environment) and what transformation (a
combination of translation, rotation, and scaling) is to be applied are specified by one or
more feature lists. If an individual object is to be transformed, then the list should con-

5. See footnote 3.

6. This is not, strictly speaking, a “modeler verb.” Sentences containing this verb are processed by the
Network task in the Generic Expert and are never.passed on to the application-specific Expert task.
So, the Model task in the MX application never sees such sentences.

70

s = e ahae [

Carnegie Mellon University FEL Syntax for the IMW Modeler

tain the attribute-value pair “(type object)” and a pair with attribute NAME whose value
is the hame of the object. If an environment is to be transformed, the TYPE attribute
should have the value “environment”. Here is a typical transform sentence.

(transform
((type environment) (name envl)
(trxanslation (1. 1. G.)) (scale (2. 2. 2.))

)

((type object) (name obj2)
(translation (-1. -1. 0.))
(z_rotation 30.)
(translation (1. 1. 0.))

)
172.1. Translation

The TRANSLATION attripute takes a vector (i.e., a list with exactly three real numeric ele-
ments) as its value. The elements of the vector specify the translation in X, Y, and z, re-
spectively. For example, the following sentence adds 1 to the X components and -2 to
the Y components of all vertices of all objects in the environment named “env1”.

{transform
((type environment) (name envl) (translation (1. =-2. 0)))

)
11.2. Rotation

There are three rotation attributes: X_ROTATION, Y_ROTATION, and Z_ROTATION. Each
takes a real numeric value which specifies the number of degrees of rotation about the
X, Y, and Z axes, respectively. Positive rotations are clockwise from the point of view of
a positive axis, looking towards the origin. The following example rotates all the ob-
jects in the specified environment by 90 degrees about the X axis.

{transform
((type environment) (name envl)
{x_rotation 90)
)
)

11.3. Scaling

The SCALE attribute takes a vector (i.e., a list with exactly three numeric elements) as its
value. The elemeénts of the vector specify the scaling in X, Y, and Z, respectively. The
following example shrinks all the objects in the specified environment to one fourth
their previous size.

(transform
((type environment) (name envl)
(scale (0.25 0.25 0.25))

)

71

Carnegie Mellon University FEL Syntax for the IMW Modeler
12. Bibliography

Mashburn 1987 Mashburn, Timothy Allen, A Polygonal Solid Modeling Package, Masters Thesis, Purdue
University, 1987.

AV

Center for

Abstract

Integrated Manufacturing Decision Systems

FEL Interface for Communicating
with the Holding Expert

Jeff Baird

March, 1990

The Holding Expert selects and positions fixtures for each setup planned by the IMW
(Intelligent Machining Workstation) system. This document describes the FEL
sentences accepted and generated by the Holding Expert (HX).

A description of the Holding Expert's communication with other IMW subsystems is
given. The bulk of the document is a detailed description of the semantics of every
VERB, feature list TYPE, and ATTRIBUTE handled by the current prototype version of

the Holding Expert.

Contact:

David Bourne
CIMDS

Copyright ©1990 Carnegie Mellon University

Carnegie Mellon University
Pittshurgh, PA 15213

(412) 268-8810

Camnegie Mellon University FEL Holding Expert Interface

1. Introduction

This document -describes the. FEL interface to the IMW Holding Expert. The interface is a
mapping of the program inputs and outputs into FEL sentences. The holding expert was.
developed by Kyoung Kim and is described in his doctoral thesis (forthcoming). This docuinent
provides an explanation of the input requirements and provides a complete reference to the
messages the program sends and-receives.

The IMW is composed.of several dxfferent expert systems, each with its own area of experuse in
different machining tasks. The primary systems are for planning, holding, cutting, sensing,
modeling and execution/control. In order to achieve the goal of machining a part, these different
expert systems must exchange information and agree upon.constraints. .

The goal of the holding expert system is to provide a fixturing plan for a part to the
execution/control system that will hold the -part securely during machining and allow good
access to the part for the cutting and sensing systems. The fixturing plan is a list of fixtures from
a library, a sequence of NC programs for the IMW novel tooling to place the fixtures, and
commands to update the modeler with.the changes in the environment that the plan causes (e.g.,
so other systems querying the modeler see that fixtures have been placed in the environment.)

To generate the-fixturing plan, the holding expert needs several pieces of data. It needs to know
the shape of the part, the location and orientation of the part on the machine tool bed, and the
access paths that.the cutting system would like to use. _

The shape or geometry of the part is maintained by the modeler. A simple bounding box or part
envelope approach is not sufficient enough for the holding expert. Toe clamps cannot be placed
on holes in the part and vises cannot use-curved surfaces. ‘A complete description of the part is
required in order to position fixtures in a rigid, error-free manner. The modeler maintains a
complete boundary representation (BREP) of the part that can be used by the holding expert to
locate good surfaces for fixturing.

The location-and orientation of the part are determined by the planner. The planner orders the
making of features (holes, shoulders, slots, ...) which determines the location and orientation of
the part (e.g., on a 3 axis milling machine, the side to have a hole drilled in it must be facing

up".) This ordering-process in the planner strongly impacts the flow of data among the expert
systems. Since the planner orders features, several features may be machined within one
fixturing setup. Effectively, the entire system is driven on a setup by setup basis.

The primary task for the holding expert is to plan the fixturing for each setup generated by the
planner. The planner also can affect the part location and orientation by selecting special
fixtures to aid in making the part. The part might be on top of a'subplate because it is thin. The
part might have an angled surface that'must be made by mounting the part to a sine table. The
use of these methods must be conveyed to the holding expert. The planner also knows which
part surface is best to-treat as a reference surface. A reference surface is used to accurately
locate the part (e.g., a milled surface is usually better than a saw cut one. So the milled surface
would be placed against the locating pins.) The planner’s selection of a reference surface must
also be sent to the holding expert.

The cutting expert produces tool paths to produce the features in each setup. Obviously the

75

Carnegie Mellon University - FEL Holding Expert Interface

fixtures cannot interfere with the cutting paths. The cutting expert also selects tools and feeds
and spéeds. The tool diameter and the horsepower -along a cutting trajectory impose force
vectors upon the part that the holditig expert must negate in order to hold the part stable. Each
tool path and parameters must be given-to the holding expert for each setup.

Although the above paragraphs describe the logical. flow of information in and out of the holding
expert, the actual flow in the IMW systems is a bit different. The control/execution system,
sometimes referred to as the plan manager, is collecting output from each system for execution.
It has the planner part-location information and the cutting expert tool paths and the "path" in the
modeler of the-part-geometry. (Since machining a part typically involves multiple setups, the
modeler has different models for each setup. The modeler maintains a named hierarchy of
models and the control/execution system knows which.names correspond to each setup. These
names form a. path that can be given to the holding expert to retrieve the part boundary
representationn (BREP) for the part in the current setup.)

The control/execution system can sénd a FEL message to the holding expert with the above
information, then the holding expert néed only query the modeler (using the path from the
control/éxecution system) to get the BREP. Then the holding expert will have all the data
needed to produce a plan fixturing the current setup. This basic cycle of "control tells holding to
plan, holding queries modeler and then produces a plan" is repeated for each setup that the
planner generates.

If the holding expert can generate a fixturing plan, it will return the plan to the control/execution
system. Although the plan contains an ordered list of fixtures, the important output is actually an
NC program. The name of a file containing NC programs to physically place the fixtures at the
appropriate locations is returned. Also the geometric models of the fixtures to be used are
moved to the appropriate place (in the environment that the planner named (path)) from a library
of fixture models in the modeler.

The sections that follow are a very detailed list of the FEL sentences and their components that
implement the interface described above. They are intended to be used as a reference for
implementation. They do not explain functions and terms from other systems. Readers should
be familiar with FEL, the generic expert, and the modeling expert.

2. Flow of Sentences

The basic flow of sentences in and out of the holding expert (cailed HX) is as follows:

HX receives a PLAN a SETUP message. PLAN messages are typically from the plan manager
(PL). The PLAN sentence contains one type SETUP featurelist and zero or more type
TOOLPATH featurelists. The SETUP describes the location of the part model in the modeler,
its orientation, reference sides, and the planner’s fixturing methods. Each TOOLPATH
describes the cutter size, start and stop points of the path, feed rate, horsepower, and the kind of
cut.

Using the setup information HX then sends a GET BREP message to the modeler MX. The
BREP-is the boundary representation of the part. The edges and surfaces of the part are defined
in the BREP,

76

Carnegie Mellon University FEL Holding Expert-Interface

When HX recéives GOT BREP from the modeler, it converts the BREP’s VERTEX, LOOP,
FACE, and NORMAL data plus the TOOLPATH:s into structures usablé by the main fixture
planning routine and calls it. The fixture planning routine returns a list of fixtures-and the name
of a file.containing NC code to position-the fixtures.

HX then sends a COPY sentence and a TRANSFORM sentence to MX. The COPY message
copies each fixture from a library to the current part model. The TRANSFORM message moves
each fixture into-the correct position and orientation in the part model.

When HX receives the COPIED message and then the TRANSFORMED message back from
MX, it sends a PLANNED BUILD_SETUP message back to the originator of the PLAN
message (usually PL). (It should really send back a PLAN SETUP message, but-due to some
restrictions in the plan -manager software, it-uses BUILD_SETUP.) The PLANNED message
contains a list of the fixture names used and the name of the NC file.

Now HX is ready to receive the next PLAN SETUP message:

If any negated verbs (NOTGOTTEN, NOTCOPIED, or NOTTRANSFORMED) are received
from MX or the fixture planning routine cannot give a list of fixtures to hold the part, a
NOTPLANNED message is sent back to the originator of the PLAN SETUP message.

In the current version of HX, version- 0.6,-only-one PLAN message at a time will be handled.
PLAN requests sent while planning is already in progress will print an error message on the
terminal and will then be IGNORED! (no NOTPLANNED is sent back).

3. Verbs

The holding expert accepts a very limited number of FEL verbs. The PLAN verb is the only
verb used to command the holding expert (sent from another expert or typed in to the generic
expert terminal interface.) All other verbs are generated or are received as replies from the
modeling expert.

PLAN The PLAN verb is the primary input that drives the holding expert. It creates
a plan for fixturing a setup using the information in its featurelists and will
query the modeler for part geometry information. PLAN has two featurelists
(TYPES) that it uses. The first is one type SETUP featurelist. The second is
zero or more type TOOL_PATH featurelists. See the Attributes description
for further details.

GOT The GOT verb is the reply from the modeler containing the part BREP.
Only the featurelist type BREP is allowed here.

NOTGOTTEN The NOTGOTTEN verb is the reply from the modeler that the part BREP
was not retrieve do to some error (See the Errors section.) All featurelists of
this verb are ignored.

COPIED The COPIED verb is the reply from the modeler that the fixtures have been
copied from the library into the current part environment. All featurelists of
this verb are ignored.

NOTCOPIED The NOTCOPIED verb is the reply from the modeler that there was an error

77

JRSIEUUBIEE VR

Carnegie Mellon University. FEL Holding Expert Interface

copying the fixtures. from the library into the.current part-environment (See
the Error section.) All-featurelists of this verb are ignored.

TRANSFORMED The TRANSFORMED verb is the reply froth the modeler that the fixtures
have been transformed to the: correct location in the current part
environment. All featurelists of this verb are ignored.

NOTTRANSFORMED »
The NOTTRANSFORMED verb is the reply from the modeler that there
was an error-transforming the fixtures to the correct location in the current
part environment (See the Error section.) All featurelist of this verb are
ignored. .

There are three other verbs that the holding expert accepts: ADD, DELETE, and INSPECT.
These were used in debugging during development and will not be documented here ‘because
they should not be used!

The holding expert generated a very limited number of fel verbs. Only the PLANNED or
NOTPLANNED verbs are sent back to the originator of the plan request. The other verbs are
generated as requests to the modeling expert to retriéve or update feature information.

PLANNED The primary output of the holding expert is return in the PLANNED verb to
the originator of the PLAN request. It has one featurelist type

BUILD_SETUP (Due to some limitations in the plan manager software, it
returns BUILD_SETUP instead of SETUP.)

NOTPLANNED The NOTPLANNED verb is returned to the originator of the PLAN request
whenever.a plan cannot be made. This could be from an error in the input
(PLAN verb) or from an incorrect modeler environment or from lack of
fixtures for the current part configuration/size. This verb has one featurelist
type BUILD_SETUP (see BUILD_SETUP in the PLANNED verb above)
which will have an error message in the ERRORS attribute.

GET The GET verb is sent to the modeler from the holding expert to retrieve part
geometry information. It has one featurelist type BREP which contains the
name of the object, environment, and application of the part.

COPY The COPY verb is sent to the modeler from th * holding expert to copy the
fixtures used in the plan from the fixture library to the current part
environment. It contains one type of featurelist type OBJECT which will be
repeated for each different fixture used in the plan.

TRANSFORM The TRANSFORM verb is sent to the modeler from the holding expert to
transform the fixtures (placed by the COPY verb, see above) into the correct
position in the current part environment. It contains one type of featurelist
type OBJECT which will be repeated for each different fixture used in the
plan. If the COPY verb could also translate each object copied, this verb
would be unnecessary.

Verbs other than those listed above cause the holding expert to print out a error message and to
ignore the rest of the sentence. A negated verb is not returned for unsupported verbs.

78

Carmegie Mellon University FEL Holding Expert Interface

4. FEL Types

Only a few types (FeatureList types) are accepted by the holdmg expert. The ones actually used
in input sentences are SETUP and TOOLPATH. Other message types are primarily replies to
queries. The input types are

SETUP (in PLAN) This feature list contains all the planner specific information required by HX
to.make a-fixturing plan. It also contains the location in thé modeler (MX)
that the part boundary representation can be retrieved from.

TOOLPATH (in PLAN)
This feature list contains the a list.of tool paths generated by the cutting
expert (CX) to make the features used in the current setup.

BREP (in GOT) This feature list contains the part boundary representation returned from the
modeler (MX).

The main Type (FeatureList type) generated by the holding expert is BUILD_SETUP. It
contains the fixturing plan information. Other types generated by the holding expert are modeler
operations. The types generated by the holding expert are

OBJECT (in GET and COPY and TRANSFORM)
This feature list names the part or a fixture to be retrieved/manipulated by
the modeler (MX).

BUILD_SETUP (in PLANNED)
This feature list contains the finished fixturing plan to be returned to the plan
manager. .

The type HOLDING_OP is accepted and ignored. All other types generate an error message and
are ignored. Types returned from the modeling experts COPIED/NOTCOPIED and
TRANSFORMED/NOTTRANSFORMED verbs are completely ignored. Unless mentioned as
optional, all attributes listed under each type are required.

5. Attributes for SETUP in PLAN

The attributes for PLAN SETUP messages contain the information from the planner that the
holding expert needs to generate a fixturing plan. (The holding expert also needs information
from the modeler and the cutting expert to complete the plan.)

NAME The value of this attribute is a string which is used to identify the setup. Itis
returned in the PLANNED and NOTPLANNED messages.

APPLICATION The value of this attribute is a string that names the application in the
modeler that has the part description.

ENVIRONMENT The value of this attribute is a string that names the environment in the
modeler that has the part description.

PART The value of this attribute is a string that names the object in the modeler that
has the part description. The obsolete attribute OBJECT if PART is not
present.

FINISHED_PART The value of this attribute is a string. ‘Currently not used except that it is
required to be returned to PL.

79

R S i
Camegie Mellon University FEL Holding Expert Interface
SETUP_NO: The value of this attribute is an integer that is unique.for each setup. Usedto

generate unique NC_FILENAMES.

X_ROTATION The value of this attribute is an real in units of-degrees that'is the inverse of
the last X axis rotation applied to the pari. See the ANGLE attribute below.

Y_ROTATION The value of this attribute is an real in units of degrees that is the inverse of
the last Y axis rotation applied to the part. See the ANGLE attribute below.

Z_ROTATION The value of this attribute is an real in units of degrees that is the inverse of
the last Z axis rotation applied to the part.

TRANSLATION The value of this attribute is a vector of 3 reals that were the last translations
applied to the part.

METHOD The value of this attribute is a symbol that is the name of the suggested
fixturing method from the OPSS5 planner. Must be one of SUBPLATE,
VISE, SINE_TABLE, or ANGLE_PLATE. It is required, but currently not
used by main fixture planning routine.

SUBPLATE_DEPTH
The value of this attribute is an real that is the height (along the Z axis) of the
subplate used in fixturing. If METHOD SUBPLATE is not used it should
have the value 0.0. The obsolete attribute DEPTH is checked if
SUBPLATE_DEPTH is not present.

ANGLE The value of this attribute is an real in units degrees that is the angle of the
sine table that the part is on. If METHOD SINE_TABLE is not used it
should be the value 0.0. When using ANGLE, the POSITION attribute
should be set to the axis of which this angle of rotation is applied too.
WARNING! It is unclear if it is still necessary to have one of the
X_ROTATION or Y_ROTATION attributes set to the inverse (negation) of
angle so that the axis can be determined.

POSITION The value of this attribute is a symbol that is the name of the axis of rotation
of the ANGLE attribute. Must be one of X, or Y.
MAJOR_NORMAL

The value of this attribute is a vector of 3 reals that is the unit normal vector
of the modeler envelope face that corresponds to the OPSS planner’s major
reference face in the current part ccordinate system in the APPLICATION,
ENVIRONMENT, and PART(=OBJECT).

MINOR_NORMAL
The value of this attribute is a vector-of 3 reals that is the unit normal vector
of the modeler envclope face that corresponds to the OPS5 planner’s minor

reference face in the current part coordinate system in the APPLICATION,
ENVIRONMENT, and PART(=OBJECT).

6. Attributes for TOOLPATH in PLAN

Use of the TOOLPATH featurelist is more complex than just a list of attribute values. It has
several different forms and ordering restrictions. The toolpaths are a the actual cutter paths to
make the part (specified in the part model coordinates.) Each request to PLAN a setup has zero
or more type TOOLPATH featurelists. If none are provided, then the holding expert will make

80

- ———— i e . e e

Carnegie Mellon University FEL Holding Expert Interface

an extremely conservative fixturing plan assuming that no access to the part is needed. There are
four different kinds of toolpaths: RAPID, LINEAR, TAPPING, CIRCULAR. Exactly one of
these name must be present.in each. TOOLPATH featurelist. In every.PLAN message, the first
TOOLPATH featurelist should be a RAPID attribute. The last featurelist should also be a
RAPID, but in the current version of HX this is not checked for and can be omitted. The RAPID
attribute commands the machine tool to move to a position without cutting. It is used purely for
positioning the tool to the place to start cutting. Each successive cut starts at the place where the
last cut left off. This is why the first TOOLPATH featurelist.of each’ PLAN is a RAPID, it sets
the "last" cutting position before the first cut. The last TOOLPATH featurelist should be a rapid
to home the tool to a safe posmon After the initial RAPID, any sequence of LINEAR,

CIRCULAR, TAPPING, or RAPID is permitted. The LINEAR, CIRCULAR, and TAPPING
attributes specify paths that are actually cutting metal. Each one of these-attributes start from the
position the previous TOOLPATH featurelist left off at. Since RAPID does not cut metal, the
HORSEPOWER, SFM, and DIAMETER attributes are ignored when RAPID is present. The
HORSEPOWER, SFM, and DIAMETER attributes are required for the attributes that cut:

LINEAR, CIRCULAR, and TAPPING. The CIRCULAR attribute also requires center point for
the circular path to be specified in the CENTER attribute. See the Sample Sentences section for
some examples of using TOOLPATHS.

NAME The value of this attribute is a string which is used to identify the tool being
used in each cut. Currently, this attribute is not referenced.
RAPID The value of this attribute is a vector of 3 reals that set the starting position
) for the next cutter path.
LINEAR The value of this attribute is-a vector of 3 reals that forms the end of a linear
cutting path. The last cutting path position is used as the starting point.
TAPPING The value of this attribute is a vector. of 3 reals that forms the end of a

tapping cutting path. Currently, the holding expert treats this identically to
the LINEAR attribute. The last cutting path position is used as the starting
point.

CIRCULAR The value of this attribute is a vector of 3 reals that forms the end of a
circular cutting path. The last cutting path position is used as the starting
point. Using this attribute requires that a CENTER point for the circular
path appear in this TOOLPATH.

HORSEPOWER The value of this attribute is a real that is the maximum horsepower used
during this TOOLPATH.

SFM The value of this attribute is a real that is the feed rate of the tool table used
during this TOOLPATH. If SFM is not present, the obsolete attribute
SPEED is check for.

DIAMETER The value of this attribute is a real that is the diameter-of the cutter used
during this TOOLPATH.

CENTER The value of this attribute is a vector of 3 reals that forms the center point of
a circular cutting path., This attribute must be present if the CIRCULAR
attribute is used.

The are several obsolete attribute for TOOLPATHS that are recognized: RADIUS, P_VECTOR,
and D_VECTOR. They will not be documented because they should not be used.

81

e . e o o s Mmsins ot i s . ot e oot o e timmms o oo

e e s = ==~ o e bt e

Carmnegie Mellon University FEL Holding Expert Interface

7. Attributes for BREP in GET

The attributes in- th¢‘~GE’I? BREP (boundary representation) message are used to query the
modeler to get BREP for the-current setup. These attributes are generated automatically from
-attribute values in the PLAN SETUP message.

NAME

APPLICATION
ENVIRONMENT

OBJECT

The value of this attribute is a- symbol which is the hame of current part
object in the modeler. The value used is the value of the PART attribute
from the PLAN verb. This value is the same as the value of the OBJECT
attribute.

The value of this attribute is a symbol which is the name of current part
application in the modeler. The value used is the wvalue of the
APPLICATION attribute from the PLAN verb.

The value of this attribute is a symbol which is the name of current part
envircnment in the modeler. The value used is the value of the
ENVIRONMENT attribute from the PLAN verb.

The vaiue of this attribute is a symbol which is the name of current part
object in the modeler. The value used is the value of the PART attribuie
from the PLAN verb. This value is the same as the value of the NAME
attribute.

8. Attributes for BREP in GOT

The attribute values in the GOT BREP (boundary representation) message are the values
returned by the modeler from a GET BREP query. They contain the part description that the
holding expert uses to locate good surfaces for fixturing.

NAME

APPLICATION

ENVIRONMENT

OBJECT

WORLD

VERTEX

The value .of this attribute is a symbol which is the name of current part
object in the modeler. The value received is the value of the NAME attribute
from the GET verb. This value is the same as the value of the OBJECT
attribute.

The value of this attribute is a symbol which is the name of current part
application in the modeler. The value received is the value of the
APPLICATION attribute from the GET verb.

The value of this attribute is a symbol which is the name of current part
environment in the modeler. The value received is the value of the
ENVIRONMENT attribute from the GET verb.

The value of this attribute is a symbol which is the name of current part
object in the modeler. The value received is the value of the PART attribute
from the GET verb. This value in the same as the value of the NAME
attribute.

The value of this attribute is a symbol which is the name of current part
world in the modeler. This value is not used.

The value of this attribute is a list of vectors of 3 reals of the vertices of the
part named by APPLICATION, ENVIRONMENT, and OBJECT. 1t is
converted into an array for use by the main fixture planning routine.

82

- e

S s e

Camnegie Mellon University FEL Holding Expert Interface

LOOP

FACE

NORMAL

The value of this.attribute is a list of veciors of 3 reals of the TWIN loops of
the part named by APPLICATION, ENVIRONMENT, and OBJECT. It is
converted- into an arrays HOLES and, FACES for use -by the main fixture
plaltning routine.

The value of this attribute is a list of 'vectors of 3 reals of the TWIN faces of
the part.named by APPLICATION, ‘ENVIRONMENT, and OBJECT. It is
used to guide which-LOOPS are converted into HOLES and into FACES for
use by the main fixture planning routine.

The value of this attribute is a list of vectors of 3 reals of the TWIN face
normals of the part named by APPLICATION ENVIRONMENT, and
OBJECT. It is included in the array of SACES for use by the main fixture
planning routine.)

9. Attributes for BUILD_SETUP in PLANNED

The BUILD_SETUP featurelist in PLANNED is the primary output of the holding expert. It
returns the part rotations and translations and the list of fixtures to use and the name of an NC
code file that has commands for placing the fixtures. Due to some limitations in plan manager
software, it also returns all the attributes sent down in the PLAN SETUP message. Only
X_ROTATION. Y_ROTATION, Z _ROTATION, TRANSLATION, NC_FILENAME,
FIXTURES, and MCDE contain useful, new information. All other attributes of this sentence
are copied from the original PLAN sentence.

NAME

X_ROTATION

Y_ROTATION

Z_ROTATION

TRANSLATION

NC_FILENAME

The value of this-atiribute is a symbol which-is the name of the setup that
was planned. Its value is the value of the attribute NAME for SETUP in
PLAN.

The value of this attribute is an real in units of degrees that is the X axis
rotation to be appiied to the part for fixturing this setup. In the current
version of HX, this value is not used (always 0.0.)

The value of this aitribute is an real in units of degrees that is the Y axis
rotation to be applied to the part for fixturing this setup. In the current
version of HX, this value is not used (always 0.0.)

The value of this attribute is an real in units of degrees that is the Z axis
rotation to be applied to the part for fixturing this setup. In the current
version of HX, this value is the only rotation actually used, (X and Y are
not.)

The value of this attribute is a vector of 3 reals that are translations -to be
applied to the part for fixturing this setup. In the current version of HX, this
value is not used (always (0.0 0.0 0.).)

The value of this attribute is a string that is the name cof a file that has the NC
code to place fixtures for the current setup. This file is generatcd for each
setup planned and thus must have a unique name. The name is of the form
hx_macro Numbcr, where Number is the-value of the SETUP_NO attribute
from SETUP in PLAN. The file is generated in the current workmg
directory of the HX process, so an absolute path (filename start with a /) is
provided.

83

Camegie Mellon University FEL Holding Expert Interface
FIXTURES The value of this attribute is a list of symbols that.the main-fixture planning

routine choose to fixture the-part for the current setup, These each of these
symbois have the form Name_Number where Name is one of LOCATOR,
TOE_CLAMP, FIXED_VISE_JAW, MOVEABLE_VISE_JAW,
PARALLEL_BAR, RISER, BOLT, SUBPLATE. Each type of fixture is
uniquely identified-by appending a number to its name. If the fixture library
has three locators, they would be referenced by LOCATOR_I,
LOCATOR: 2, and LOCATOR_3.

MODE The value of this attribute is a symbol that the says whether the fixturing
operations are done automaticaily or manually Tts value is one of
MANUAL or AUTOMATIC Due to limitations in plan manager software
this is returned in BUILD_SETUP always as MANUAL. When the
limitations are removed, the per fixture mode generated in the NC file will
be used instead.

SETUP_NO The value of this attribute is an integer that is unlque for each setup. It is
Used to generate unique NC_FILENAMES. It is the value of the
corresponding attribute from SETUP in PLAN.,

APPLICATION The value of this attribute is a string that names the application in' the
modeler-that has the part description. It is the value of the corresponding
attribute from SETUP in PLAN.

ENVIRONMENT The value of this attributé is a string that names the environment in the
modeler that has the part: description.” It is the value of the corresponding
attribute from SETUP in' PLAN.

PART The value of this attribute is a string that names the object in the modeler that
has -the part description. It is the value of the corresponding attribute from
SETUP in PLAN.

FINISHED_PART The value of this attribute is a string. It is currently not used. It is the value
of the corresponding attribute from SETUP in PLAN.

ANGLE The value of this attribute is an real in units degrees that is the angle of the
sine table that the part is on. Se¢ SETUP in PLAN for more information
about-its-use. It is the value of the corresponding attribute from SETUP in
PLAN.

SUBPLATE_DEPTH
The value of this attribute is an real that is the height (along the Z axis) of the

subplate used in fixturing. It is the value of the corresponding attribute from
SETUP in PLAN.

POSITION The value of this attribute is a symbol that is the name of the axis of rotation
of the ANGLE attribute. Must be one of X, or Y. It is the value of the
correspending-attribute from SETUP in PLAN.

METHOD The value of this attribute is.a symbol that is the nam¢ of the suggested
fixturing method fiom the OPSS planner. Must be one of SUBPLATE,
VISE, SINE_TABLE, or ANGLE PLATE. It is ‘the value of the
corresponding attribute from SETUP in PLAN. If‘no method is sent in the
PLAN message, the symbol NONE will be returned.

Camnegie Mellon University FEL Holding Expert Interfzce

10. Attributes for BUILD _SETUP in NOTPLANNED

The NOTPLANNED BUILD_SETUP essage is returned when: thére is an error planning a
setup. The attributes of this message describe the érror.that occurred.

NAME The value of this attribute is a symbol which is the name of the setup that
was not successfully planned. Its value is the value of the attribute NAME
for SETUP in PLAN.

ERRORS The value of this attribute is a string describing the error that occurred in
attempting to create a plan. See the section on Errors and Warnings for a list
of strings.)

11. Attributes for OBJECT in COPY

The COPY OBJECT message updates the current setup in the modeler with the fixtures that will
hold the part. The attributes of this message name the fixtures from a standard fixturing library
and the current setup environment. Each type OBJECT featurelist in a COPY sentence contains:

NAME The value of this attribute is a symbol which is the name of a fixture that is
to be copied from the fixture library to the current part environment. These
names have the form Name_Number where Name is one of LOCATOR,
TOE_CLAMP, FIXED_VISE_JAW, MOVEABLE_VISE_JAW,
PARALLEL_BAR, RISER, BOLT, SUBPLATE. Each type of fixture is
uniquely identified by appending a number to its name. If the fixture library
has three locators, they would be referenced by LOCATOR_],
LOCATOR_2, and LOCATOR_3.

APPLICATION The value of this attribute is 2 symbol which is the name of the application in
the modeler which has the fixture library. In the current version of HX this
is always LLIBRARY.

ENVIRONMENT The value of this attribute is a symbol which is the name of the environment
in the modeler which has the fixture library. In the current version of HX
this is always FIXELS.

TGO_APPLICATION
The value of this attribute is a symbol which is the name of current part

application in the modeler. The value used is the value of the
APPLICATION attribute from the PLAN verb.

TO_ENVIRONMENT
The value of this attribute is a symbol which is the name of current part

environment in the modeler. The value used is the value of the
ENVIRONMENT attribute from the PLAN verb.

12. Attributes for OBJECT in TRANSFORM

The TRANSFORM OBJECT message apdates the position of the fixtures (created by the COPY
OBJECT message) in the current setup in the modeler. The COPY OBJECT message cannot
position the fixtures, so the TRANSFORM message is used to correct the positions. The
attributes of this message name the fixtures and their locations. Each type OBJECT featurelist in

85

T e i e

n e e o e e e e e - - it e o W h SN et

Carnegie Mellon University FEL Holding Expert Interface

a TRANSFORM sentence contains:

NAME The value.of this attribute is a symbol which is the name-of a fixture that is
to be translated to its final position. -See the NAME attribute for OBJECT in
COPY for a description of its values.

APPLICATION The value of this attribute is a symbol which is the name of current part
application in the modeler. The value used is the value of the
APPLICATION attribute from the PLAN verb. Obviously this is the same
as the value of the TO_APPLICATION in the cormresponding COPY
sentence. -

ENVIRONMENT The value of this attribute is a symbol which is the name of current part
environment in the modeler. The value used is the value of the
ENVIRONMENT attribute from the PLAN verb. QObviously this is the same
as the value of the TO_ENVIRONMENT in the corresponding COPY
sentence.

Z ROTATION The value of this attribute is an real in units of degrees that is the Z axis
rotation to be applied to the fixture object to correctly orient it in the current
part model.

TRANSLATION The vaiue of this attribute is a vector of 3 reals that is the translations to be
applied to the fixture object to correctly position it-in the current part model.

13. Sample Sentences

Listed below are four sample files tool.dc.1, tool.dc.2, tool.de.3, and tool.dc.4 approximating the
four setups for an IMW test part.

File tool.dc.1
On the first setup just simple face milling on the top surface is done.

{plan ((type satup) (name fool)
(part objl) (application appl) (environment envl)
(£finishad _part none)
(method none)
(setup no 1)
(angle 0)
(subplate depth 0)
(translation (0 0 1.25))
(x_rotation -90)
(y_xotation ()
(z_xotation 0)
(majcr normal {0 1 0))
(majoxr_pos 0)
(minor zozmal (0 1 0)) ; variable
(minoxr pos 0}
)
((type tool path) (nama tooll)
(rapid (~.5 .25 1.135))
)
((type tool path) (name tooll) ; facemill
(sfm 300)
(horsepowexr 3)
(diamater 0.6)

86

s b

Carnegie Mellon University

{linear (3 .25 1.135))))
File tool.dc.2

FEL Holding Expert Interface

On the second setup the part is flipped over and the other face is milled and exposed edges are

edge milled. A channel or slot in the center of the part is milled.

(plan ((type setup) (name fool)

(part obj2) (application app2) (environment env2)

(finished part none)
(method none)
(setup_no 2)

(angle 0) -
(subplate_daepth 0)
(txranslation (0 0 0))
(x_rotation 0)
(y_zotation 0)
(z_xotation 0)
(major_normal (0 1 0))
(major pos 0)

(minor_normal (0 -1 0)) ; variable

(minor_ pos 0)

)]

{(type tool_path) (name tooll)
(rapid (-.2 -.5 -.5))

)

({type tool_path) (name tooll)
(sfm 300)
(hoxrsepower 3)
(diametex 0.6) .
(linear (-.2 1.5 -.5)))
{(type tool_path) (name tool2)
(rapid (-.5 .6 .42))

)

((type tool path) (name tool2)
{sfm 300)
(horsepower 3)
(diameter 1.5)
(linear (3 .6 .42)))

({type tool path) (name tool3)
(rapid (1.25 -.5 .25))

)

((type tool path) (name tool3)
{sfm 300)

(hoxrsepower 3)

(diameter 1.5)

{lineaxr (1.25 1.5 .25)))

)

Fiie tool.dc.3

; endmill

; facemill

; millslot

On the third setup the remaining end and face milling is done and two holes are drilled.

(prlan ((type setup) (name fool)

(part obj3) (application app3) (environment env3)

(finished part none)
(mathod none)
(satup no 3)

{(angle 0)

87

e v

Camegie Mellon Univérsity

)

{subplate_depth '0)
(translation (0 0 0))
(x_xotation 0)
(y_rotation 0)
(z_rotation 0)
(major normal (0 1 0))
(majox_pos 0)
(minoxr_normal (0 -1 0)) ; variable
{minox_pos 0)
)
((type tool_path) (name tooll)
« (rapid (~.2 ~.5 -.5))
)
((type tocol_path) (name tooll) ; endmill
(sfm 300)
{horsepower 3)
(diameter 0.6)
(linear (-.2 1.5 -.5)))
((type tool_path) {(name tool2)
{rapid (0.25 .57 .34))
)
{(type tocl path) (name tooll) ; facemill
(sfm 300)
{horsepower 3)
(diamgter .3)
{lineaxr (3 .6 .34)))
((type tool_path) (name tool3)
(rapid (.25 .6 .34))
) .
((type tool path) (name tool3) ; drill 1
(sfm 300)
{horsepowar 3)
{(diameter 1.5)
{lineaxr (.25 .6 -.5)))
((type tool path) (name tool4)
(xapid (2.25 .6 .34))
)
((type tool path) (name toold) ; drill 2
{sfm 300)
(horsepower 3)
(diameter .3)
(linear (2.25 .6 ~.5)))

File tool.dc.4

On the fourth (and final) setup the part is mounted on a sine table at 30 degrees. The edge
overhanging the table is both end milled and face milled to produce a beveled edge.

(plan ((type setup) (name foo4)

(part obj4) (application app4) (environment env4)
(finished part none)

(method none)

(setup no 4)

(angle 30)

(position x)

(subplate_depth 0)

(translation (0 0 .5))

83

FEL Holding Expeit Interface

Carnegie Mellon University FEL Holding Expert Interface

(x_rotation -30)
(y_rotation 0).
(z_xctation 0)
(major noxmal (0 1 0))
(major_pos 0) i
- (minor_normal (0 0.8660 -.5)) ; variable
(minoxr pos 0)
) .
((type tool path) (name tooll)
(rapid. (-.5 .2 .8))
)
((type tool_path) (name tooll) ; facemill
(sfm 300))
(horsepower 3)
(diameter 0.6)
(linear (2.8 .2 .8)))
((type tool_path) (name tool2)
(rapid (-.5 ~0.1 .2))
)
((type tool path) (name tool2) ; endmill
(sfm 300).
(horsepower 3)
(diameter 0.6)
(linear (2.8 -0.1 .2))
)
)

After loading in the fixture library and loading in the part into APP/ENV/OBJ 1 through 4 in the
modeling expert MX, the above files can be read into the holding expert HX to produce the
following output: (The user input is underlined. Some long lists of part coordinates have been
omitted from the output.)

$ hx

> Starting HX version 0.6

> (read ({type file)(name "tool.dc.1")))

{Holding) Exrror in Setup::AttrMethod: bad method NONE raceived
(Output: :send) ’ (GET ((NAME GO) (TYPE MESSAGE) (TO mx) (FROM hx)) ((T
YPE BREP) (APPLICATION APPl) (ENVIRONMENT ENV1) (OBJECT OBJl) (NAME OB
Jgl)))’ (131)

Fixture plan with toeclamps or a vise may exist
xcmin xomax zemin zemax 0.000 2.750 0.000 1.085
’ xvimin xvmax -10.000 10.0C0

k% Fixture with a vise ***
xdist from left end of solid jaw = -0.375
distance between jaws = 0,700

*** No parallel bar is needed w**

Name Size X Y z
fixed vise jaw 5.868 3.293 0.000
part 4.493 4.493 0.000

89

Carnegie Mellon University FEL Holding Expert Interface

moveable vise jaw 5.868 5.193 0.000

{output::send) ’ (COPY ((NAME Gl) (TYPE MESSAGE) (TO mx) (FROM hx)) ((
TYPE OBJECT) (NAME !'IXED VISE_ JAW 1) (APPLICATION LIBRARY) (ENVIRONMEN
T FIXELS) (TO_. APPLICATION APPl) (TO ENVIRONMENT ENV1)) ((TYPE OBJECT)
(NAME MOVEABLE VISE JAW 1) (APPLICATION LIBRARY) (ENVIRONMENT FIXELS)
{TO_J APPLICATION APPl) (TO ENVIRONMENT ENV1)))' (312)
(Output :send) '/ (TRANS!'ORM ((NAME G2) (TYPE MESSAGE) (TO mx) (!‘ROM hx)
) ((T!PE OBJECT) (NAME !'IXED VISE . JAW_ 1/ (APPLICATION: APP].) (ENVIRONM
ENT ENV1) (Z_ROTATION 0. 000000) (TRANSLATION (5.867600 3.292600 0. 0000
00))) ((TYPE OBJECT) (NAME MOVEABLE ' VISE JAW 1) (APPLICATION APPJ.) (
ENVIRONMENT ENV1) (Z_ROTATION 0. 000000) (TRANSLA"‘ION (5.867600 5. 19260
0 0.000000))))’ (351)
{Output: :send) ‘' (PLANNED ((NAME NONE) (TYPE MESSAGE) (TO none) (FROM n
one)) ((NAME FOOl) (TYPE :BUILD. SETU‘P) (x ROTATION 0.000000) (Y ROTATI
ON 0.000000) (Z_ROTATION 180. 000000) (TRANSLATION (0.000000 O©. 000000 0
.0006000)) {SETUP_NO 1) (APPLICATION APP1) (ENVIRONMENT ENV1) (PART OB
J1l) (FINISHED PART NONE) (ANGLE 0.000000) (SUBPLATE] DEPTH 0.000000) (P
OSITION X) (MODE MANUAL) (METHOD NONE) (NC_FILENAME " /ssdh/usx2/baird/
imw/hx/doc/example/hx macro_1") (FIXTURES (FIXED VISE_JAW 1 MOVEABLE V
ISE_ JAW 1))))’ (430)
no such name 'none’ for Send

> (read ((type file)(name "tool.dc.2")))

(Holding) Error in Setup: :AttrMethod: bad method NONE received
(Output: :send) ' (GET ((NAME G3) (TYPE MESSAGE) (TO mx) (FROM hx)) ((T
YPE BREP) (APPLICATION APP2) (ENVIRONMENT ENV2) (OBJECT OBJ2) (NAME OB
Jgz)))’ (131)

Fixture plan with toeclamps or a vise may exist
xcmin xcmax zcmin zemax 0.300 2,700 0.C00 0.200
xvmin xvmax 0.300 10.000

*%% Fixture with a vise **%
xdist from left end of solid jaw = -0.300
distance batween jaws = 1.335

% A parallel bar is needed *
maximum length= 2.300
maximum width= 1.035
minimum height= 0.738

Name) Size X Y Z
fixed vise jaw 5.793 3.293 0.000
parallcl bar 4.493 4.493 0.000
part 4.493 4.493 0.000
movesble vise jaw 5.783 5.828 0.000

(Holding) Warning in SendPlan: .no tranformation matrix
(Output: :send) ’ (COPY ((NAME G4) (TYPE MESSAGE) (TO mx) (FROM hx)) ((

Carnegie Mellon University FEL Holding Expert Interface

TYPE OBJECT) (NAME FIXED VISE . JAW 1) - (APPLICA'I‘ION LIBRARY) (ENVIRONMEN
T FIXELS) (TO._ APPLICATION APPZ) (TO; ENVIRONMENT ENV2)) ((TYPE osazcm)
(NAME PARALLE;..)BAR 1) (APPLICA‘I‘ION LIBRARY) (ENVIRONMENT FIXEI.S) (TO_
APPLICATION APP2) ('IO ENVIRONMEN’J.‘ ENV2)) ((TYPE OBJECT) (NAME MOVEABL
E , VISE JAW 1) (APPLICATION LIBRARY) (ENVIRONMENT FIXELS) (TO APPLIC.ATI
ON APPZ) (TO EN'VIRONMENT ENVZ)))’ (438)
(Output: send) "(TRANSE'ORM {(NAME G5) (TYPE MESSAGE) (TO mx) (FROM hx)
) {((TYPE OBJEC'I‘) (NA}E FIXED VISE JAW 1) (APPLICATION APP2) (ENVIRONM
ENT ENV2) (Z] ROTATION 0. 000000) (TRANSLATION (5.792600 3.2%2600 0.0000
00))) (('J.'YPE OBJ'ECT) (NAME PARALLEL BAR 1) {(APPLICATION APP2) (ENVIR
ONMENT ENV2) (2 ! ROTATION 0.000000). (TRANSIATION (4.492600 4.492600 0.0
00000 })) ((TYPE OBJECT) (NAME MOVEABLE ; VISE JAW 1) (APPLICATION APP2
) (mvmommm ENV2) {Z_ROTATION 0. 000000) ('I‘RANSI.ATION (5.792600 5.82
7600 0.000000)))y) (494)
{Output: :send) - (PLAN‘NED ((NAME NONE) {TYPE. MESSAGE) (TO none) (FROM n
one)) ((NAME !'001) (TYPE BUILD S!TUP) (x RDTA'!ION 0.000000)- (1 'ROTATI
ON 0.000000) (Z_ ROTATION 0. 000000) (TRANSLATION (O 000000 0. 000060 0.0
00000)) (SETUP NO 2) (APPLICATION APPZ) (ENVIRONMENT ENVZ) (PART OBJ2
) (FINISHED PART NONE)- (ANGLE 0. 000000) (SUBPLATE DEPTH 0.000000) (pos
ITION X) (MODE MANUAL) (METHOD NONE) (NC FILENAME "/ssdh/uer/ba:er/;un
w/hx/doc/example/hx macro_2") (FIXTURES (FIXED_VISE JAW.1 PARALLEL BAR
_1 MOVEABLE . VISE JAW_1))))’ (503)
no such name ’none’ for Send

> (read ({type ﬁle)(name "tool.dc.3"))).

(Holding) Errxor in Setup::AttrMathod: bad method NONE raeceived.
(Output :send) .’ (GET ((NAME G6) (TYPE MESSAGE) (TO mx) (FROM hx)) ((T

YPE BREP) (APPLICATION APP3) (ENVIRONMEN'.I‘ EMV3) (OBJECT OBJ3) (NAHE OB °

Jg3)))’ 31)

Fixture plan with toeclamps or a vise may exist
xcmin xcmax zomin zecwmax 0.300 2.600 0.000 0.290
xvmin xvmax 0.300 10.000

*%x Fixture with a vise **%
xdist from left end of solid jaw = -0.300
distance between jaws = 1.335

*** A parallel bar is needed **%*
maximum length= 2.200
maximum width= 1.035
minimum height= 0.647

Name Slize X b4 z
fixed vise _ Jaw 5.793 3.293 0.000
parallcl__ba:: 4.493 4.493 0.000
part 4.493 4.493 0.000
moveable vise jaw 5.793 5.828 0.000

{Holding) Warning in SendPlan: no tranformation matrix
(Output::send) ‘ (COPY ((NAME G7) (TYFE MESSAGE) (70 mx) {FROM hx)) ((
TYPE OBJECT) (NAME FIXED VISE JAW 1) (APPLICATION LIBRARY) (ENVIRONMEN

91

o s v
PR

Carnegie Mellon University FEL Holding Expert Interface

T FIXELS) (TO_i APPLICATION ARP3) ('1‘0 ENVIRONMENT ENV3)) ({TYPE OBJECT)
{NAME PARALLEL] BAR 1) (APPI»ICATION LIBRARY). (ENVIRONMEN'J.‘ FIXELS) (TO
APPLICATION APP3) ('.ro ENVIRONMENT ENV3)) ((TYPE OBJECT) (NAME MOVEABL
E_VISE JAW 1) (APPLICATION LIBRARY) (ENVIRONMENT FIXELS) ('ro APPLICATI

ON APP3) ('!O ENVIRONMENT ENV3)))’ (438)
{Output: :send) ' (TRANSFORM {((NAME G8) (TYPE MESSAGE) (TO mx) .(FROM hx)
} {{(TYPE OBJECT) (NAME FIXED VISE JAW 1) (APPLICATION APP3) (ENVIRONM
ENT ENV3) (Z_] ROTATION 0. 000000) ('!RANSI.M.‘ION (5.792600 3.292600 0.0000
00))) (('J.'!PE OBJECT) (NAME PARALLEL BAR 1) (APPLICATION APP3) (ENVIR
ONMENT ENV3) (Z_ROTATION 0. 000000) (TRANSLATION (4.492600 4.492600 0.0
00000))) (('.!‘!'PE -OBJECT) (NAME: MOVEABLE VISE_JAW 1) (APPLIC.M!ION APP3
) (ENVIRONMENT ENV3) (Z_ROTATION 0. 000000) (TRANSLATION (5.792600 5.82
7600- 0.000000)))) (494))
(Output: :send) ’ (PLANNED ((NAME NONE) (TYPE MESSAGE) (TO none) (FROM n
one)) ((NAME FOO1) (TYPE BUILD SETUP) (X ROTATION 0.000000) (Y ROTATI
ON 0.000000) (Z ROTATION 0.000000) (TRANSLATION (0. 000000 0.000000 0.0
00000 })) (sxwop NO 3) (APPLICATION APP3) (ENVIRONMENT ENV3) (PART OBJ3
) (FINISHED_PART NONE) (ANGLE 0.000000) (SUBPLATE 'DEPTH 0.000000) (POS
ITION X) (MODE MANUAL) (METHOD: NONE) (NC_FILENAME v /ssdh/usr2/baird/im
w/hx/doc/example/hx macro_3") (FIXTURES (FIXED_VISE_JAW 1 PARALLEL BAR
_1 MOVEABLE VISE JAW 1))))’ (503)
no such nama ’none’ for Send

> (read {{type file}{name "tool.dc.4")))

(Holding) Errox in Setup::AttxrMethod: bad mathod NONE received
(Output::send) ’ (GET ((NAME G9) (TYPE MESSAGE) (TO mx) (FROM hx)) ((T
YPE BREP) (APPLICATION APP() (!NVIROMN‘! ENV4) (OBJECT OBJ4) (NAME OB
J4)'))+ (131)

Fixture plan with toeclamps or a vise may exist

% Pin Location in part cooxd. *

PIN X Y Mazn. Height
1 0.457 -0.250 0.240
2 1.871 -0.250 0.240
3 -0.250 0.457 0.240

Total no. of Clamp Ranges = 3

*%%x CLAMP RANGES *¥%
x1 y1 zl x2 y2 z2 length
1 0.500 0.000 0.170 2.000 0.000 0.170 1.500
2 0.000 O0.000 0,340 ©0.590 0.000 0.340 0.500
3 2.000 0.000 0.340 2.500 0.000 0.340 0.500

% Pixture with tosclamps on a sine _ylatc (angle = 30,000) *

Nane Size b 3 2
pin 13.935 27.370 0.000
pin 15.349 27.370 0.000
pin 13.228 28.077 0.000
part 13.478 27.620 0.000

92

TSET L it sttt et i P . e

Al e < . vt e e

Carnegie Mellon University FEL Holding Expert Interface
clamp 14.278 27.620 0.170
clamp 15.178 . 27.620° 0.170

(Output. acnd) r (CoPY ((NAME Gl0) (TYPE MESSAGE) (TO mx) (FROM hx)) «(
(TYPE OBJECT) (NAME I-OCATOR 1) (APPLICATION LIBRARY) (ENVIROMNT FIXE
LS) (TO APPLICATION APP4) (TO ENVIRONMENT ENV4)) ((T!PE OBJECT)- (NAME
LOCATOR 2) (APPLICATION LIBRARY) (ENVIR.ON)ENT FIXEI.S) (TO APPLICATION
APP&) (TO ENVIRONMENT ENV4)) ((TYPE OBJECT) (NAME LOCATOR 3) (APPLIC
ATION LIBRARY) (ENVIRONMENT !‘IXELS) (TO_APPLICATION APP4) (TO ENVIRONM
ENT ENV4)) ((T!PE OBJEC") (NAME TOE CLAMP 1) (APPI.ICATION LIBRARY) (B
NVIRONMENT E‘IXELS) (TO APPLICATION APP4) (TO ENVIROMNT ENV4)) ((TYP
E OBJECT) (NAME TOE CLAMP 2) (APPLICATION LIBRARY) (ENVIRONI.{ENT FIXELS
) (TO_APPLICATION APP4) (TO_] ENVIRON!ENT ENV4))y) (663)
(Output”send) ’ (TRANSFORK ((NAMI G11) (TYPE MESSAGE) (TO mx) (FROM hx
)) ({TYPE-: OBJECT) {NAME LOCATOR 1.) (APPLICATION APP4) (ENVIRONMENT EN
v4d) (2] ROTATION 0.000000) (TRANSLATION (13.934900 27.369801 0. 000000)
)) ((TYPE OBJECT) {NAME LOCATOR 2) (APPLICATION APP4) (ENVIRONMENT EN
V4) (Z_ROTATION 0.000000) (TRANSLATION (15.349100 27.369801 0.000000)
)) ((TYPE OBJECT) (NAME LOCATOR 3} (APPLICATION APP4) (ENVIRONMENT EN
V4) (Z_ROTATION 0.000000) (TRANSLATION (13.227800 28.076300 0.000000)
3) ((TYPE OBJ'ECT) (NAME TOE_CLAMP 1) (APPLICATION APP4)} (ENVIRONMENT
ENV4) (2] ROTATION 0.000000) (TRANSLATION (14.277800 27.619801 0.170000
¥y) ((TYPE OBJECT) (NAME TOE_CLAMP 2) (APPLICATION APP4) (ENVIRONMEN
T ENV4) (Z_ROTATION 0.000000) (TRANSLATION (15.177800 27.619801 0.1700
00))))" (763)
(Output::send) ’ (PLANNED ((NAME NONE} (TYPE MESSAGE) (TO none) (FROM n
one)) ((NAME r004) (TYPE.BUILD SETUP) (x ROTATION 0. 000000) (Y ROTATI
ON 0.000000) (2 _ROTATION 180. 000000) (TRANSLATION (0.000000 0.000000 0
.000000)) (SETU'P NO. 4) (APPLICATION APP4) (ENVIRONMENT ENV4) (PART OB
J4) (I‘INISHED PART NONE) (ANGLE 30.000000) (SUBPLATE DEPTH 0. 000000) (
POSITION X) (HODI: MANUAL) (METHOD NONE) (NC FILENAME "/asdh/usr2/ba:.rd
/imw/hx/doc/example/hx macro_4") (FIXTURES (LOCATOR 1 LOCATOR 2 LOCATO
R3TOECI-AMP1TOECLAMP2))))Y (508)
no such name ’'none’ for Send

14. Errors and Warnings

If the holding expert cannot plan fixtures for the setup, it will return a NOTPLANNED message
to the originator of the PLAN request. See the NOTPLANNED verb description for a list
attributes. The ERRORS attribute will have one of the following strings (underlined):

"No fixture element”

This means that the main fixture planning routine could not create a plan. One frequent cause of
this is that the part is too small or too big for the current fixture geometry compiled into holding
expert.

"No macro file name"
This means that although a plan was created, the nc file name containing the code to load the

fixtures was not generated. This case only happens when there is an internal error in the main
fixture planning routine.

"No part brep from mode]er"

93

b e o———t s < i e e 5 s R

R

Carnegie Mellon University FEL Holding Expert Interface

This means that the GET message to the modeling expert returned NOTGOTTEN. This
typically happens when the PART, APPLICATION, or ENVIRONMENT passed in from the
PLAN verb are not the names that are in the modeler.

"Unable to copy fixtures to model"

This means that after creating a setup plan containing a list of fixtures, the COPY message (from
the holding expert-to the modeler) failed to copy fixtures from the fixture library to the current
part environment. Typically this is caused by not loading the fixture library into the modeler, or
the fixture library names do not agree with the holding expert names, or that the number of
fixtures in the library is less than what the holding expert requested.

"Unable to transform fixtures in model"

This means that after creating a setap plan containing a list of fixtures and copying them from
the library to the current part environment, the TRANSFORM message (from the holding expert
ic ize modeler) failed to transform fixtures in the current part environment. This has the same
failures as the previous "Unable to copy fixtures to model" message but is less likely to appear
because the copy message generates the error first. This message will be seen if the modeler
copy command silently fails, but the transform reports NOTTRANSFORMED.

Other errors and warning are just printed on the terminal. Since the other expert systems will not
utilize warnings, they are printed instead of being included in a return message. The most
common causes of warnings are using an obsolete attribute or omitting an attribute (but a
reasonable default value can be supplied.) Other errors printed out instead of returning
NOTPLANNED are fatal. These are typically from leavmg out an attribute that no reasonable
default can be supphed for (e.g., MINOR_NORMAL.) Any message with "new TYPENAME
failed" is a fatal error in memory allocation procedure (e.g., malloc out of memory.) The only
option at this point is to "{quit)" and restart the program.

Both printed errors and warnings have the following format:
(Holding) ETYPE in PROC: ERRSTR

where ETYPE is "Error" or "Warning", PROC is a procedure name or a class::method name and
ERRSTR is some descriptive string. Note! All errors are printed on stdout, not stderr!

Center for
Integrated Manufacturing Decision Systems

Generic Environment for
Unix-based Experts

Duane T. Williams

March, 1990

Abstract:

This document describes a library of C++ classes that supports the common elements
of the Cutting, Holding, Sensing, and Modeling subsystems of the IMW (Intelligent
Machining Workstation). Enough information is provided to enable a programmer to
develop or maintain one of these programs.

A brief descripticn of the general form of th» Unix-based subsystems is given,
including an introduction to the C++ Task System. The bulk of the document describes

the class interfaces to various components of the internal representation of FEL
sentences.

Copyright © 1990 Carnegie Mellon University

Contact:

David Bourne

CIMDS

Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-8810

1. Introduction ‘ — /l

This document describes a library of C++ classes that'supports the common elements of
the Cutting, Holding, Sensing, and Modeling subsystems of ‘the Intelligent Machining
Workstation: (IMW), and how to construct such- a subsystem based on :this library.!
Since the various subsystems that have been developed with this library.are termed “ex-
perts”, e.g., Cutting Expert, we call the library itself the Generic Expert.

This document is necessarily somewhat technical, since it is intended for someone
writing a computer program such as the Cutting Expert in the C++ language. It presup-
poses an understanding of C++.2

2. Purpose

The purpose of the Generic Expert library is to reduce the effort required to produce a
subsystem for the IMW that interfaces properly with the rest of the system. Since com-
munication capabilities are required by all subsystems, they are provided in the Generic
Expert. All subsystems are also expected to communicate in a common language, Fea-
ture Exchange Language (FEL), so an FEL parser and FEL sentence generation proce-
dures are part of the Generic Expert. A simple terminal interface is also provided.

In the following sections, we describe the various user-accessible C++ classes in the Ge-
neric Expert library that enable the user to take advantage of these common capabilities.
We also recommend a programming style that will enable the user to best take advan-
tage of possible future enhancements.

3. C++ Task Syste.m

The implementation of the Generic Expert is based on the C++ Task System, which is
supplied as a standard library with the AT&T C++ translator. We describe only the
basic features in this section.? Note: we use the version of the Task System which sup-
ports waiting on UNIX SIGNALS, as described in [Shopiro 1987]. The Generic Expert will
not work with the old version.

3.1. Tasks

The Task System defines a type of “lightweight process” in the guise of the class task.
Constructors of classes (directly) derived from class task can share the CPU under the
control of a task scheduler. Each such task can be suspended and later resumed with-
out disturbing its internal state, but suspension is always voluntary, occurring only
when a task chooses to wait for an event to occur.

Tasks are created by defining a class that derives directly from the base class task and
by implementing a constructor for the new class that does the work that the new task is
supposed to do. The only serious requirement that the constructor must satisfy is that it
must terminate properly by invoking the function resultis(0). The example near the

1. The library file is named libshella. The system also requires the new AT&T C++ Task System that
supports software interrupts (i.e., signals).

2. See [Strousirup 1936].

3. See [Stroustrup 1987] and [Shopiro 1987) for detailed descriptions of the Task System.

97

Carnegie Mellon University Generic Expert (Unix-Based)
end of this document does this by using the macro TERMINATE (defined in macros.h).

3.2. Queues

The Task System defines a type of first-in-first-out queue based on two classes: qtail
and ghead. Tasks can communicate through such a queue. One task “puts” an object
to an instance of class qgtail, while another task waits for the arrival of an object-on the
corresponding ghead. The action of waiting causes the task to be swapped out by the
task scheduler; the arrival of a object on the ghead causes tasks that are waiting on that
ghead to be put on the run chain.

3.2.1. Message Queues

Queues are used extensively within the Generic Expert for intra-expert communication
between the multiple tasks that make up a program built from the Generic Expert
library. These queues are instances of two classes, MessageQHead and MessageQTail,
that are derive from ghead and qtail. These classes are specialized to handle only ob-
jects of type Message.

Class MessageQTail defines only two functions:

int put (Message*)
MessageQHead* head ()

The put function puts a message on a queue; this action can cause a task to block if the
queue is full. The head function returns a pointer to the head of the queue.

Class MessageQHead defines three functions:

Message* get ()
int putback (Message¥)
MessageQTail* tail ()

The get function retrieves the next message from the head of a queue; if there is no mes-
sage, the task will block until a message arrives. The putback function returns a message
to the head of a queue. The tail function returns a pointer to the tail of the queue.

3.2.2. Creating Queues between Tasks

The following example shows how to connect two tasks via a queue. This code is taken
from the “central control” task in the Generic Expert; this is how the Generic Expert sets
up queues to communicate with the user’s Expert task.

/* create the queue I will read from */
Me;sageQHead* myQHead = new MessageQHead;
MessageQTail* myQTail = myQHead -> tail ();

/* create the queue he will read from */
MessageQHead* aQHead = new MessageQHead;
MessageQTail* toExpert = aQHead -> tail ()

/* create the task */

98

T e - o

S

Carnegie Mellon University Generic Expert (Unix-Based)
(void): new Expert (argv0, aQHead, myQTail);

Note that only one end of a queue (here a MessageQHead) is actually created using new.
You get a pointer to the other end by invoking the appropriate #ail or head function (in
our case, tail). The task Expert, defined in expert.h, has a MessageQHead* parameter,
from which it receives its messages, and a MessageQTail* parameter, to which it puts
messages that it wants fo-send to the “central control” task. The “central control” task
sends messages to Expert by putting them on the foExpert MessageQTail.

The user’s Expert task could create sub-tasks of its own, together with appropriate
queues-to.communicate with them. -

4. Class Expert

The primary effort in developing a program based on the Generic Expert is the
implementation of the constructor for class Expert, as declared in the file expert.h.
What this means, basically, is that one has to write a C++ subroutine with the following
procedure declaration:

Expert: :Expert (char* myName,
MessageQHead* readFrom,
MessageQTail* writeTo)

This subroutine automatically becomes a task? within the final program. It communi-
cates with other tasks and subsystems via two message queues, which are capable of
transmitting Sentences, described below. Incoming messages are retrieved from the
head of the “readFrom” queue; outgoing messages are placed on the tail of the “write-
To"” queue.

To wait for the arrival of a message, use the member function get:

/* Messages are described in the next section */
Message* request;
request = readFrom -> get():

This puts your task to sleep until a message is available from the “readFrom” queue. To
send a message, use the member function put:

/* assume that aSentence is an instance of class Sentence,

described below. */
Message* reply = new Message (OUTPUT, aSentence):
writeTo ~> put (reply):

This creates a new message with a Sentence that is destined for a subsystem on the
network and then puts it into a queue where it can be picked up by another rask, which
will handle the details of the transmission. Sending a message does not suspend a task.

A prototype implementation of Expert::Expert is provided in the file expert.c. The
developer should replace the program block under case INPUT with his own code. See
the Example sectior: later in the document. One of the main features of this prototype is
that it gets all input in one place. For this to work effectively, the code you add should

4. See [Stsoustrup 1987).

99

Carnegie Mellon University Generic Expert (Unix-Based)
be designed to do only a small amount of work each time this task becomes active.?
5. Class Message

Instances of this class represent messages that are passed between tasks within a single
subsystem; so users do not have to know much about them, except for how to retrieve
the contents—presumably a Sentence—from an incoming message and how to package
a Sentence intp a message for transmission to another subsystem.

Class Message contains a public data field called mContents which contains a pointer to
the contents of the message. No information about the size cf the data is maintained by
the Message class. Here is how a sentence can be extracted from a message.

/* get a message and access its contents as a Sentence */
Message* request;

request = readFrom -> get();

Sentence* theSentence = (Sentence*) (request -> mContents):;

Packaging a sentence as a message for transmission to the Output task for delivery to
another subsystem is simple using the constructor for class Message:

Message* reply = new Message (OUTPUT, aSentence):
writeTo ~> put (reply):

Messages can also be used to put an error message on the standard output stream as fol-
lows: '

Message* error = new Message (ERROR, “Naughty, naughty!”):
writeTo => put (error):;

6. Class Sentence

Instances of class Sentence represent FEL messages. Member functions provide access
to significant components of a message and allow the construction of new messages.
Currently supported functions include:

Sentence ()

Sentence (VERB_ENUM aVerb)
The constructor takes an optional VERB_ENUM as an argument.® If none is
supplied, the verb will default to VERB_NONE.

Sentence* append (FeatureList* fList)
The function append appends a FeatureList to a Sentence. The argument is a
pointer to the FeatureList to be appended. A pointer to the new Sentence is
returned.

ADDR_ENUM destination)

5. We do not describe in this document how to accomplish this. Future documentation on the to-be-de-
veloped inter-subsystem dialogue mechanism will include a technique based on the rescheduling of a
task.

6. Refer to the file verb.h for the definition of VERB_ENUM.

100

Carnegie Mellon University Generic Expert (Unix-Based)

The function destination returns as an ADDR_ENUM the address of the receiver
of the message.” This is the value of the TO attribute within the feature list of
type MESSAGE.

FeatureList* featureListOf (TYPE_ENUM aType)
The function featureListOf searches the feature lists that compose a Sentence and
returns a pointer tc the first feature list whose TYPE atiribute has the value
aType.

Sentence* insert (FeatureList* fList)
The function insert inserts a FeatureList before other FeatureLists in a Sentence.
The argument is a pointer to the FeatureList to be inserted. A pointer to the new
Sentence is returned.

Sentence* reply (VERB_ENUM aVerb)
The function reply creates and returns a pointer to a new Sentence that can be
used as a reply to a message. It will contain a FeatureList with the same NAME
and TYPE attributes as the original Sentence, but with values of the TO and
FROM attributes reversed. The argument aVerb specifies the value of the verb
for the new message.

Sentence* setVerb (VERB_ENUM aVerb)
The function setVerb makes the argument aVerb the new value of the verb of the
Sentence. A pointer to the Sentence is returned.

ADDR_ENUM source ()
The function source returns as an ADDR_ENUM the address of the sender of the
message. This is the value of the FROM aftribute within the feature list of type
MESSAGE.

VERB_ENUM vrb ()
The function verb returns the verb of the Sentence as a VERB_ENUM.

The intended use of this class is illustrated by the following example of how to create a
reply to a message.

{
/* assume that aSentence is a pointer to a Sentence */
/* and that aVerb is appropriate for the reply to aSentence */
Sentence* response = aSentence -> reply (aVerb);

/* add one FeatureList */

Featurelist* fList = new FeatureList;

fList -> include (ATTR _NAME, VT_SYMBOL, aName);
fList -> include (ATTR_TYPE, VT_TYPE, TYPE_EIXTURE);

response -> append (fList);

/* send the response */
/* assume that writeTo is an appropriate MessageQTail
pointexr */

7. Refer to the file addr.h for the definition of ADDR_ENUM.

101

S—— ——— e © A
i
v

]
Carnegie Mellon University Generic Expert (Unix-Based)

i Message* m = new Message (OUTPUT, response);
writeTo -> put (m);

}

7. Class Sentence Iterator

Instances of class Sentencelterator allow one to step through the feature lists of a
Sentence. Each call to the member function next(returns a pointer to a FeatureList. A
zero is returned after all the feature lists have been returned. Currently supported
functions include:

Sentencelterator (Sentence& aSentence)
The constructor takes a reference to a Sentence as its sole argument.

FeatureList* first)
The function first resets the iterator and returns a pointer to the first FeatureList

in the Sentence.

FeatureList* next ()
The function next returns a pointer to the FeatureList following the last one

returned by this function, or to the first FeatureList in the Sentence if none has
been returned from the Sentencelterator since it was created. A zero is returned
when a pointer to every FeatureList has been returned.

This class is provided so that one can sequentially process all the feature lists in a
message without having to know the internal representation of messages. The intended
use is illustrated in the following example:

{

/* assume that aSentence is a pointer to a Sentence */

Sentencelterator slter (*aSentence):
FeaturelList* flList;

while (flList = sIter.next()) {
/* process the Featurelist pointed to by fList */

8. Class Feature List

Instances of class FeatureList represent the list of attribute/value pairs that are the
principal components of FEL messages. Member functions provide access to the values
of the pairs and allow the construction of new lists of pairs. Currently supported
functions include:

FeatureList ()
FeaturelList (char* aName)

102

v

Carnegie Mellon University Generic Expert (Unix-Based)

The constructor takes an optional char* as an argument. If none is supplied, the
value will default to zero. When the vptional name is supplied, it is construed as
the name of an existing FeatureList and no attribute/value pairs should be
adaed to this new FeatureList.

FeatureList* append (AttributeValuePair* avPair)
The function append appends an AttributeValuePair to a FeatureList. The
argument is a pointer to the AttributeValuePair to be appended. A pointer to the
FeatureList is returned.

void include (ATTR_ENUM, VT_ENUM, int, int)

void include (ATTR_ENUM, VT_ENUM, long, int)

void include (ATTR_ENUM, VT_ENUM, float, int)

void include (ATTR_ENUM, VT_ENUM, double, int)

void include (ATTR_ENUM, VT_ENUM, char*)

void include (ATTR_ENUM, VT_ENUM, List*)

void include (ATTR_ENUM, VT_ENUM, char**)

void include (ATTR_ENUM, VT_ENUM, VECTOR)
The include functions add attribute/value pairs to the beginning of a FeatureList.
The attribute is given in the first argument. The type of value is given in
argument two and the actual value in argument three. An optional fourth
argument specifies the units (as a UNIT_ENUM) of the value.

FeatureList* insert (AttributeValuePair* avPair)
The function insert inserts an AttributeValuePair before other
AttributeValuePairs in a FeatureList. The argument is a pointer to the
AttributeValuePair to be inserted. A pointer to the FeatureList is returned.

TYPE_ENUM typeOf O
The function typeOf returns the value of the pair whose attribute is ATTR_TYPE.

ValueType* valueOfAttribute (ATTR_ENUM)

ValueType* valueOfAttribute (char*)
The valueOfAttribute functions return a pointer to the value (an instance of class
ValueType) of the attribute specified by their arguments. The argument is either
an ATTR_ENUM (the usual case) or the name of an attribute.

The intended use of this class is illustrated in the following two examples. The first
shows how to create a new list of attribute/value pairs. The second shows how to
retrieve values frozn such a list.

{

/* Allocate a new FeatureList. */
FeaturelList* fList = new FeatureList:;

/% Include the pair whosgse attribute is ATTR_NAME
and whose value is the symbol aName. */
fList -> include (ATTR_NAME, VT_SYMBOL, aName);

/* Include the pair whose attribute is ATTR_TYPE
and whose value is the type TYPE_FIXTURE. */

103

ey

Carnegie Mellon University Generic Expert (Unix-Based)

fList -> include (ATTR_TYPE, VT_TYPE, TYPE FIXTURE):

/* Assume that flList is the FeatureList created
in the above example. One can retrieve its
values as follows. */

ValueType* vType:;
char* aSymbol;
TYPE_ENUM aType:;

vType = valueOfAttribute (ATTR NAME);
aSymbol = (char*) vType:;

vIype = valueOfAttribute (ATTR_TYPE);
aType = (int) vType:;

9. Class reature List Iterator

Instances of class FeatureLisilterator allow one to step through the list of pairs of a
FeatureList. [Each call to the member function next() returns a pointer to an
AttributeValuePair. A zero is returned after all the pairs have been returned. Currently
supported functions include:

FeatureListlterator (FeatureList&)
The constructor takes a reference to a FeatureList as its sole argument.

AttributeValuePair* first
The function first resets the iterator and returns a pointer to the first
AttributeValuePair in the FeatureList.

AttributeValuePair* next)
The function next returns a pointer to the AttributeValuePair following the last
one returned by this function, or to the first AttributeValuePair in the FeatureList
if none has been returned from the FeatureListlterator since it was created. A
zero is returned when a pointer to every AttributeValuePair has been returned.

This class is provided so that one can sequentially process all the pairs in a FeatureList
without having to know the internal representation of feature lists. The intended use is
illustrated in the following example:

{
/* assume that aFeaturelList points to a Featurelist */

FeaturelistIterator fIter (*aFeatureList);
AttributeValuePair* avPair;

while {avPair = fIter.next()) {
/* process the pair pointed to by avPaixr */

104

Carnegie Mellon University Generic Expert (Unix-Based)

10. Class Value Type

The class ValueType is the base class for a set of derived classes that represent the
various primitive types of values that may appear in the attribute/value pairs of
messages. These include addresses, dimensioned numbers, integers, material
identifiers, real numbers, strings, symbols, type identifiers, and lists of other types of
values.

The two most important things that can be done with these classes is to create instances
of them and to extract their underlying values. The constructors and coercion operators
for these classes are documented below.

10.1. Class Address

This class represents addresses of IMW subsystems, such as PL (planner), CX (cutting ex-
pert), HX (holding expert), MX (modeler), etc. If you are generating a reply to a sentence,
you do not care where it came from, and just want the reply to go back to the sender,
the reply function in class Sentence takes care of creating the return address.

Address (ADDR_ENUM)

" int operator int (

Instances of this class may be coerced to an int, which will, in fact, be an
ADDR_ENUM.# Some programs will not care where messages come from, so
long as they are meaningful messages in ~ntext.

10.2. Class Dimension
This class represents dimensioned numbers.

Dimension (int, UNIT_ENUM)
Dimension (long, UNIT_ENUM)
Dimension (float, UNIT_ENUM)
Dimension (double, UNIT_ENUM)
int operator int

long operator long ()

double operator double ()

The constructors take a numeric first argument of one of four types: int, long,
float, or double. The second argument specifies the units. Instances of this class
may be coerced to an int, whose value will be the dimension part of the
dimensioned number (of type UNIT_ENUM).? They may also be coerced to
either a long or a double, whose value will be the numeric part of the
dimensioned number.

8. Refer to the file addr.h for the definition of ADDR_ENUM.
9. Refer to the file unit.h for the definition of UNIT_ENUM.

105

Carnegie Mellon University Generic Expert (Unix-Based)
10.3. Class Integer

This class represents integers.

Integer (int)

Integer (long)

long operator long ()

The constructor takes either an int or a long as arguinent; internally the value is
represented as a long. Instances of the class may be coerced to a long.

10.4. Class Material
This class represents types of materials, e.g., aluminum, steel, etc.

Material MAT_ENUM)
int operator int ()

The constructor takes as argument a value of the enumerated type MAT_ENUM.
Instances of this class may be coerced to an int, which will, in fact, be a value of
type MAT_ENUM.

10.5. Class Real

This class represents real numbers.
Real (float)

Real (double)

double cperator double ()

The constructor takes either a float or a double as argument; internally the value
is stored as a double. Instances of this class may be coerced to a double.

10.6. Class String
This class represents character strings.

String (/* dynamically allocated */ char*)
char* operator char* ()

The constructor takes a null terminated dynamically allocated C string as
argument. Instances of this class may be coerced to a C string.

10.7. Class Symbol
This class represents names of various things.

Symbol (/* dynamically allocated */ char®)
char* operator char* ()

10. Refer to the file mat.h for the definition of MAT_ENUM.

106

Carnegie Mellon University Generic Expert (Unix-Based)

The constructor takes a null terminated C string as argument. Instances of this
class may be coerced to a C string.

10.8. Class Type
This class represents types of feature lists.

Type (TYPE_ENUM)
int operator int O

Instances of this class may be coerced to an int, whose value will be a feature list
type (of type TYPE_ENUM).1!

10.9. Class List
This class represents a list of values.

List)
The constructor simply creates a new empty list.

List* append (ValueType* vType)
List* insert (ValueType* vType)

The member functions append and insert, respectively, add items to the tail and
head of the list.

int length 0

The member function length returns the number of items in the list. The user
could determine this information using a Listlterator, but length is much more
efficient and convenient.

VECTOR operator VECTOR()
List* VectorToList (VECTOR)

Lists of three real numbers are commonly used to represent vectors. The geomet-
ric modeler used by the IMW represents vectors as a struct with three fields rep-
resenting real numbers (x, y, and z). The coercion operator VECTOR() converts a
List of three numbers into this structure representation. The function
VectorToList creates a List with three real numbers from its VECTOR parameter.

10.10. Class ListIterator
This class allows one to step sequentially through the values of a List.
ListIterator (List& aList)

ValueType* first ()
ValueType* next

11. Refer to the file type.h for the definition of TYPE_ENUM.

107

e e e o e £ = e e e,

Carnegie Mellon University Generic Expert (Unix-Based)

The constructor takes a reference to a List as its sole argument. The function first
resets the iterator and returns a pointer to the first ValueType in the List. The
function next returns a pointer to the ValueType following the last one returned
by this function, or to the first ValueType in the List if none has been returned
from the Listlterator since it was created. A zero is returned when a pointer to
every VaiueType has been returned.

11. Example

The following code is a template from which an IMW subsystem can be developed. The
implementor is primarily responsible for replacing the comment

/* USER CODE GOES HERE */
under “case INPUT” With whatever code segment is required to implement the sub-
system. This will probably be little more than a procedure invocation. If there is one-
time initialization to be done, it should be placed before the BEGIN_TASK macro.

The macros BEGIN_TASK, END_TASK, EXIT_TASK, and TERMINATE are defined in mac-
ros.h. BEGIN_TASK and END_TASK create an indefinitely long loop that gets and process-
es the next message sent to this task. EXIT_TASK causes the loop to terminate, and
TERMINATE terminates the task. Aside from knowing the general structure imposed by
these macros, the user need not worry about them.

#include <macros.h>
#include <parser.h>
#include "expert.h"

Expert::Expert { char* myName,
MessageQHead* read¥from,
MessageQTail* writeTo)
: /* task */(myName, DZDICATED, SIZE)
{
Message* request;

/* USER INITIALIZATION GOES HERE */
BEGIN_TASK:
request = readFrom => get();

switch (request -> mOperation) {
case INPUT:
{
/* USER CODE GOES HERE */
}
break:
case QUIT:
EXIT_TASK;
default:
{

Message* error = new Message (ERROR,
" (Expert) Illegal operation®);
writeTo -> put (erroxr):;

108

Carnegie Mellon University Generic Expert (Unix-Based)

break:;
}

delete request;

END_TASK;
TERMINATE;
}

If the subsystem being implemented can perform its function without intermediate
communication with other subsystems, then it can be implemented as a function that
takes a Sentence as input and returns a Sentence as output.

Sentence* job = (Sentence*) (request -> mContents);
Sentence* reply = SimpleServerSubsystem (job):;
writeTo -> put (reply):

In most cases this is not feasible and the user’s code must be designed to deal with mul-
tiple messages per job.

12. Makefile

The following is a simple makefile for creating a program based on expert.c and the Ge-
neric Expert library.

INC = <the directory containing macros.h and parser.h>
LIB = <the directory containing libtask.a and libshell.a>

CC = CC
CFLAGS = ~DPRIMITIVE -c -g -I. -I$(INC)

LIBTASK = $(LIB)/libtask.a

LIBSHELL = $(LIB)/libshell.a
MATHLIB = -1lm

LIBS = $(LIBSHELL) $(LIBTASK) $(MATHLIB)
OBJECTS = expert.o

.C.0:
$(CC) $(CFLAGS) $*.c

ex: $(OBJECTS)
$(CC) ~£68881 $(OBJECTS) $(LIBS) -0 ex

expert.o: expert.h $(INC)/macros.h $(INC)/parser.h

13. Release Notes
The following files are needed to use the generic application shell:

libtask.a C++ Task library (you must have the version that supports
software interrupts, i.e., signals)

109

Carnegie Mellon University Generic Expert (Unix-Based)

libshella Generic application library file.

expert.c A template for the implementation of the constructor for
class Expert.

expert.h Header file with the declaration of class Expert.

14. Limitations

There is a limit on the total size of local variables associated with the constructor of a
task such as Expert. The task system default limit is defined in task.h as 750.
Applications which use lots of stack space can raise this limit at task creation time. This
is the function of the SIZE parameter that appears in the line

: /* task */ (myName, DEDICATED, SIZE)

at the beginning of the constructor for class Expert (see the Example section). SIZE is
defined in expert.h.

15. Bibliography

Shopiro 1987 Shopiro, Jonathan. “Extending the C++ Task System for Real-Time Con-
trol.” Proceedings, USENIX C++ Workshop, 1987, pp. 77-94.

Stroustrup 1986 Stroustrup, Bjarne, The C++ Programming Language. Addison-Wesley,

1986.

Stroustrup 1987 Stroustrup, Bjarne, and Jonathan E. Shopiro. “A Set of C++ Classes for
Co-routine Style Programming.” Proceedings, USENIX C++ Workshop, 1987,
pp. 417-439.

110

Center for
Integrated Manufacturing Decision Systems

Generic Environment for
Lisp-based Experts

Paul Erion

March, 1990

Abstract:

This document describes the generic expert shell that supports the common elements
of the Planner, Plan Manager, and Human Interface subsystems of the IMW
(Intelligent Machining Workstation).

The interfaces to the internal representation of FEL sentences is described, the dialogue
mechanism is explained, and issues of integrating subsystem specific code with the
generic expert are discussed. Enough information is provided to enable a programmer
to develop or maintair: such a program.

Copyright © 1990 Carnegie Mellon University

Contact:

David Bourne

CIMDS

Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-8810

Generic Environmenit for Lisp-Based Experts

Not all of the IMW subsystems run under the Sun UNIX Operating System. The
Planner, Plan Manager, and Humar Interface are Lisp-based and run on the TI
Explorer. As a consequence, a Lisp-based generic expert shell is provided for these
subsystems. '

This document is aimed at the developer! of a Lisp-based IMW Cubsystem. Since,
communication between experts takes the form of FEL sentences, explanations and
descriptions are provided for functions that ease the creation and modification of FEL
sentences. Lisp forms are also described that deal with dialogues, a higher level
grouping of sentences.

At the end of this section, the reader will find a glossary of functions available to
the writer of a Lisp-based expert. This glossary contains some functions that were not
mentioned in prior sections of the text.

1. Dialogues on the Lisp-based Version of the Generic Expert

Typically, an expert exists to perform some service requested by another expert
and, for every request received, a response must be generated and returned. Since the
lingua franca of the IMW is FEL, both the request and the response are in the form of
FEL sentences. A dialogue is simply the exchange of FEL sentences that occurs due to
one expert making a request of another. For our purposes, dialogues will be viewed as
coming in two versions: simple and complex.

1.1. Simple Dialogues

A simple dialogue is defined as one in which no other experts must be contacted in
order to complete the dialogue. That is, if expert A makes a request of expert B, B does
not need to initiate a dialogue with any other expert in order to generate a response for
A (see Figure 1).

1. In this section, the writer of a Lisp-based expert is referred to as a subsystem integrator, or simply,
an integrator.

113

Carnegie Mellon University Generic Expert (Lisp-Based)

PLAN

PLANNED

Figure 1. Example of a Simple Dialogue

1.2. Complex Dialogues

However, the system architecture of the Intelligent Machining Workstation dictates
that an expert also be able to conduct complex dialogues. In other words, due to the
specialization of the experts it is virtually a requirement that an expert be able to
interact with other experts while performing a service triggered by an FEL sentence. A
complex dialogue will be defined as one that involves separate, independent dialogues
with other experts in order to generate an answer for the expert that initiated the
original dialogue. '

For example, the Human Interface may request that the Planner formulate a plan
for a part. During the process of planning, the Planner determines that some
information is required from the Holding Expert. The Planner needs to be able to
acquire the information from the Holding Expert and then continue the planning
process. Finally, when the planning process is complete, the result, in the form of an
FEL sentence, will be returned to the Human Interface. What has transpired is two
separate dialogues. A dialogue between the Human Interface and the Planner, and a
dialogue between the Planner and the Holding Expert. The first dialogue, which was
complex, was initiated by the Human Interface and involved the Planner. The second
dialogue was originated by the Planner and involved the Holding Expert. This
dialogue was a simple dialogue (see Figure 2).

114

- ~—ra

SO UIN - - - e I -

Carnegie Mellon University Generic Expert (Lisp-Based)

f Human
\ [nterface

PLAN
OFFER

PLANNED - m

| Holding
Expert

Ree

OFFERING

Figure 2 Example of a Complex Dialogue

1.2.1. Functions to Facilitate Complex Dialogues

The latest version of the Lisp-based generic expert provides three functions that
facilitate complex dialogues:
(a) spawn-request,
(b) conditional-suspend, and
(c) create-Qtest.

1.2.1.1. Spawn-Request

While an expert is servicing one request, it is not at all unusual to need some
additional information or a service performed by an cther expert. Spawn-request is the
mechanism provided to initiate a new dialogue. It requires four arguments. The first
argument is the sentence that will initiate the new dialogue. It will be sent to the
specified expert. This sentence requires a unique name, since, it is through the sentence
name that the generic expert shell is able to direct incoming sentences to their
appropriate destinations.

If the expert specific code uses the function bound to the spawn slot of an object of
e sentence, then the integrator need not worry about creating a new sentence name.
For example, if FEL-sentence is such an object, then evaluation by the Planner of the

form:
(funcall (sentence-spawn FEL-sentence) :offer)

returns two values (a) an object of type sentence, and (b) the name of the sentence. The
FEL form of the returned sentence is:

115

e e e it e e e e

-

Carnegie Mellon University Generic Expert (Lisp-Based)

(offer ((name unigue-symbol) (type message) (from pl)))
Remember the name of this new sentence is a unique symbol.

The second argument to spawn-request is the function used to queue sentences for
output. This function is available to the subsystem integrator as the first argument
passed to the expert's initial function.

Typically, a spawned dialogue will generate a result. The third argument to spawn-
request is the disposition of this result. Currently, the third argument may be one of two
symbols, either :return-result or :independent.

A disposition of :return-result signifies that the originating dialogue expects to have
access to the final result, which should be an FEL sentence. In order to gain access to
this FEL sentence, the spawned dialogue should ensure that, upon termination, this
sentence is the value returned.

The symbol, :independent, denotes that the spawned dialogue may proceed
independently of the spawner. In other words, the spawned dialogue does not in any
way need to concern itself with returning a value to its parent, the originating dialogue.

The fourth and final argument to spawn-request is the function that will handle the
spawned dialogue. The first argument will initiate a dialogue with another expert, say
the Holding Expert. When the Hol:iing Expert responds there must be a function
provided to deal with the respons =. It may simply accept the response, or engage in a
protracted negotiation with the Holding Expert. The point is that whatever occurs is
determined by the provided function. This function should be written to accept the
same arguments as the initial function. For example, a function that would just accept
the response returned by the Holding Expert could be written as follows:

(defun handle-hx (enQ-outgoing
Qstatus-incoming
deQ-incoming
conditional-suspend)
"Handle the dialogue with the Holding Expert."
(declare
(ignore enQ-outgoing)
(ignore Qstatus-incoming)
(ignore conditional-suspend))

(let ((s (funcall deQ-incoming)))
(declare

(type sentence s))
(values s)))

1.2.1.2. Conditional-Suspend

116

Carnegie Mellon University Generic Expert (Lisp-Based)

Once a dialogue has been zpawned the originator may continue processing. Of
course, if the disposition g.. ..n to spawn-request was :return-result, there will come a time
when the response from the spawned dialogue is required for further processing.
However, the originator has no way of knowing the state of the spawned dialogue.
Theréfore, the originating dialogue needs a way of suspending operation and waiting
for the result from the spawned dialogue. This functionality is provided by conditional-
suspend, which is available to the subsystem integrator as the fourth argument passed to
the expert’s initial function. conditional-suspend-takes two arguments. The firstis a test.
When it evaluates to non-nil, the second argument, a function, is executed.

The test function may be supplied by create-Qtest, which is described in section
1.2.1.3.

conditional-suspend's second argument should dequeue the returned result from the
expert's incoming queue and continae processing. It should be noted that this function
is not passed any arguments when it is finally called. Consequently, the integrator
should make sure that the function has access to whatever local variables or functions it
may need. For example, if continue is the function to be called, and it expects all of the
arguments that are passed into the initial function, then:

#' (lambda () (continue enQ-outgoing
Qstatus-incoming
deQ-incoming
conditional-suspend))

would be the second argument passed to conditional-suspend.

There is a source of possible confusion that needs to be clarified. conditional-suspend
does NOT suspend processing of the function that calls it. That is, if other Lisp forms
follow this call, they are executed immediately following evaluation of the conditional-
suspend form. What is being suspended is execution of the form that is passed as a
second argument:to conditional-suspend.

1.2.1.3. Create-Qtest

As mentioned above, conditional-suspend requires a form that provides a test to
determine when to execute its second argument. If a dialogue is waiting for a spawned
dialogue to complete, then a test is needed to make such a determination. create-Qtest
will return just such a test. That is, create-Qtest creates and returns a function that will
query a queue and return a boolean value depending on the outcome.

create-Qfest’s primary purpose is to be used in conjunction with conditional-suspend.
As a consequence, the following description is based upon that usage. create-Qtest
expects two arguments. The first argument is a function that queries a queue. Of the
arguments passed to the initial function, this is the second argument. create-Qfest’s
second argument is a list of dialogue names (possibly just one). The names should be
the ones for which the originating dialogue wants to wait.

117

Carnegie-Mellon University Generic Expert (Lisp-Based)

1.2.2. Example

Following is an example that outlines the use of the above functions. Scenario: this
is a piece of code from PL, the initial function of the Planner. An incoming sentence is
dequeued. Some processing is performed. It is determined that a dialogue must be
initiated with the Holding Expert. The request sentence is created. Once the request
sentence is properly initialized, a new dialogue is spawned. At this point the Planner
may continue processing. When the time comes o retrieve the response from the
Holding Expert, a call to conditional-suspend is made.

(defun pl (enQ-outgoing
Qstatus-incoming
deQ-incoming
conditional-suspend)

(let ((FEL-sentence (funcall deQ-incoming)))

(declare
(type sentence FEL-sentence))

some processing

(multiple-value-bind (request-sentence dialog-name)
(funcall (sentence-spawn FEL-sentence) :offer)
(declare :
(type sentence request-sentence)
(type keyword dialog—name))

(setf (sentence-to request-sentence) :hx)

some processing [this would include setting up the
sentence that will initiate the new dialogue
(that is,the request sentence)]

(spawn-request
request-sentence
enQ-outgoing
sreturn-result
#'some-function-to-handle-request)

may do more processing (1f needed)

(funcall conditional-suspend
(create-Qtest
Qstatus-incoming
(list dialog-name))
#' (lambda ()
(continue enQ-outgoing
Qstatus-incoming
deQ-incoming

118

Carnegie Mellon University Generic Expert (Lisp-Based)

conditional~suspend))))))

2. Integrating the Generic Expert and a Subsystem

The responsibility of the subsystem integrator is to provide the functionality that
makes a generic expert an instantiation of an IMW subsystem. In order to accomplish
this task the user needs tobe able to (a) access the information contained in a request,
and (b) to generate a response. Since FEL is the language of communication between
IMW subsystems, both requests and responses will take the form of FEL sentences.

2.1. Accessing the Request Sentence

The generic expert shell supplies functions that extract, from the incoming FEL
sentence, the information needed by a subsystem to satisfy the request. For example,
similar to the C++ version of the generic expert shell, the Lisp version provides both a
sentence iterator and a feature list iterator.

The access functions may be divided into two categories, those that access the top
level elements of a sentence, and those that access the elements of a feature list.

2.1.1. Accessing the Top Level Elements of the Request Sentence

Following are the functions that allow access of the top level elements of a sentence.
For the sake of explanation, assume that FEL-sentence is an object of type sentence.

(A) sentence-Iterator returns two functions that may be used to iterate through the
feature lists of a sentence. The first function always returns the first feature list. Each
call to the second function returns the next feature list. When the list is exhausted, :end
is returned.

For example, the s-expression:

(multiple-value-bind (sIter-first sIter-next)
(sentence-Iterator FEL-sentence))

locally binds a function to each of the two variables: slter-first and slter-next. The first
feature list of FEL-sentence is always returned by slter-first, and slter-next returns the
subsequent feature lists.

(B) The form (sentence-name FEL-sentence) will return the dialogue name of
FEL-sentence.

(©) The form (sentence-verb FEL-sentence) returns the verb of FEL-sentence.

119

Carnegie Mellon University Generic Expert (Lisp-Based)

(D) The form (sentence-from FEL-sentence) returns the name of the expert that
originated FEL-sentence.

2.1.2. Accessing the Elements of a Feature List

Following are the functions that provide access to the elements of a feature list (i.e,
the attribute/value pairs). For the sake of exposition, assume that fList is an object of
type featureList.

(A) featureList-Iterator returns two functions that may be used to iterate through the
feature list’s attribute/ value pairs. The first function always returns the first

attribute/value pair of the feature list. Each call to the second function returns the next
available attribute/value pair. When the list is exhausted, :end is returned.

For example, the s-expression:

(multiple-value-bind (fL_Iter-first fL Iter-next)
(featureList-Iterator fList))

binds a function to each of the two local variables. fL_Iter-first returns the first
attribute/value pair of fList and fL_Iter-next returns the next available attribute/value

pair of fList.

(B) The form (valueOfAttribute fList attribute-name) will retrieve, from
fList, the attribute/value pair whose attribute is equal to attribute-name.

‘C) The form (typeOf fList) returns the feature list type of fList. In other words,
typeOf returns the value of the attribute/value pair whose attribute is the symbol TYPE.

2.2, Creating the Response

For each request received, it is expected that the subsystem will generate a
response. In order to facilitate the process, a set of functions are provided that construct
and modify sentences and feature lists.

2.2.1. Creating and Modifying FEL Sentences

The most straight forward way to create a sentence that will be used as a response
to a request is to evaluate the form:

(funcall (sentence~replyTo FEL-sentence) symbol)

where,

(i) FEL-sentence is an object of type senfence, and

120

Carnegie Mellon University Generic Expert (Lisp-Based)

(ii) symbol is an object of type keyword.

FEL-sentence is the sentence that initiated the request for which the response is being
prepared. symbol is either a verb, or the tense of a verb. If symbol is one of the
recognized verbs, then the verb of the newly created sentence will be set to symbol. If
symbol is a legitimate verb tense?, then the predicate of the response sentence will be the
verb that is the specified inflected form of FEL-sentence’s verb.

For example, if the value of the symbol, FEL-sentence, is:

(:offer)
((:name :pl 1) (:type :message) (:to :hx) (:from :pl)))

then,

{(:offered
((:name :pl 1) (:type :message) (:to :pl) (:from :hx)))

would be the sentence created by evaluation of either of the following s-expressions:
(funcall (sentence-replyTo FEL-sentence) :offered)
(funcall (sentence-replyTo FEL-sentence) :past).
From the preceding example it should be noted that the form:
(funcall (sentence-replyTo FEL-sentence) symbol)

does not just initialize the sentence’s verb. A feature list of type message is also added to
the response. This feature list contains (a) the name of the dialogue?, (b) the destination
of the sentence?, and (c) the source of the sentence®.

If, once again, the value of the symbol, FEL-sentence, is the request sentence, then
the destination of the response sentence is equal to the result of evaluating the form,
(sentence-from FEL-sentence). The source of the response is set to the expert
that received FEL-sentence. And the name of the newly created sentence and FEL-
sentence are identical. That is, both sentences belong to the same dialogue.

A subsystem integrator is provided with the means to easily access the name, verb,
source and destination of a sentence. The following functions provide that access.
They all take an object of type sentence as an argument. Let FFL-sentence be such an
object. The dialogue name is obtained via evaluation of the form:

(sentence-name FEL-sentence).

Typically, FEL provides four tenses for each verb: present, active, past, and not.

The name of a dialogue is the value of the attribute name , in a feature list of type message.
The destination of a sentence is the value of the attribute fo, in a feature list of type message.
The source of a sentence is the value of the attribute from, in a feature list of type message.

bl ol o

121

e e R

Carnegie Mellon University Generic Expert (Lisp-Based)

The verb of the sentence is obtained via evaluation of the form:
(sentence-verb FEL-sentence).

The source of the sentence is obtained via evaluation of the form:
(sentence-from FEL-sentence).

And the destination of the sentence is provided by evaluation of:
(sentence-to FEL-sentence).

On rare occasions the subsystem integrator may be constructing a sentence whose
verb, name, destination, and/or source are not appropriate. When this situation arises,
setf may be used on any of the preceding four forms to alter their values. For example,
to set the verb of FEL-sentence to :notoffered, the form:

(setf (sentence-verb FEL-sentence) :notoffered)

needs to be evaluated. If the name, source, or destination of a sentence is changed, then
this new information is reflected in the sentence’s message feature list.

2.2.2. Creating and Modifying Feature Lists
Once a request sentence has been created, it typically needs tc filled with feature

lists that comprise the response. The Lisp based generic expert provides functions to
assist in the initial creation, and subsequent modification, of feature lists.

The function create-featureList returns an object of type featureList. create-featureList
requires ne arguments.

In order to add an attribute/value pair to the front of a feature list the expert
specific code must include an s-expression of the form:

(funcall (featurelList-include fL) attribute value)
where
(i) fL is an object of type featureList,
(ii) attribute is the name of an attribute, and
(iii) value is the value that is to be associated with attribute.

If it is desired order to add an attribute/value pair to the back of a feature list the
expert specific code must evaluate an s-expression of the form:

(funcall (featurelList-append fL) attribute value)

122

i
i
i
|
H

Carnegie Mellon University Generic Expert (Lisp-Based)

where
(i) fL is an object of type featureList,
(ii) attribute is the name of an attribute, and
(iii) value is the value that is to be associated with attribute.

A note of warning: a feature list created by expert specific code needs to contain
both an attribute/value pair of type NAME and an attribute/value pair of type TYPE.

2.2.3. Adding Feature Lists to Sentences

Once the feature list is complete (that is, all of the atiribute/value pairs have been
added), it may be added to the response sentence. The subsystem integrator has the
option of adding the feature list at the beginning of the sentence or at the end.

Adding a feature list at the beginning of an FEL sentence is accomplished by
evaluation of an s-expression of the form:

(funcall (sentence-include reply) fL)

where
(i) reply is an object of type sentence, and
(ii) fL is an object of type featureList.

To add a feature list at the erld of an FEL sentence, the following form must be
evaluated:

(funcall (sentence-append reply) fL)

3. Symbols in an FEL Sentence

Up to this point, it has not been explicitly stated as to the package in which the
symbols of an FEL sentence should reside. If all of the components of an expert weze to
be interned in the same package, and the current package never deviated from that
package, then problems would never arise. However, this is an unreasonable
assumption. For example, the application specific code for the Human Interface is read
into the CRL-USER package while the generic expert component is read into the
GENERIC-EXPERT package.

To alleviate any potential problems, all of the symbols in an FEL sentence must be
interned in the KEYWORD package. This will ensure that the symbols of an FEL
sentence that have the same print name will be EQ.

The implications for the subsystem integrator are two. First, all symbols used in the
construction of an FEL sentence must reside in the KEYWORD package. For example,
when adding the attribute/value pair (nante foo) to the feature list, fL, the integrator
should use the form:

123

Carnegie Mellon University Generic Expert (Lisp-Based)

(funcall (featurelist-include fL) :name :foo0).

Secondly, when comparing a symbol against a symbol from an FEL sentence the
integrator should be cognizant of the fact that the symbol from the sentence will be
interned in the KEYWORD package. For example, to obtain the value of the attribute
name from the feature list, L, use the form:

(valueOfAttribute fL :name)

Why use the KEYWORD package? The symbols of an FEL sentence are only to be
used as symbolic constants. That is, the value, definition, or properties bound to the
symbols are irrelevant. Common Lisp provides the KEYWORD package for exactly this

purpose.

4. Interface Between Generic Expert and Subsystem Specific Code

To ease the process of integration, an outline of a function is provided for the user.
This function, ex, provides an interface between the subsystem specific code and the
generic expert shell. The subsystem integrator need not worry about any of the
implementation details below this function.

Brief comments are interspersed throughout the function definition that follows.
Some of the comments are hints as to the piacement of subsystem specific code.

(in-package (find-package 'expert-package))

(use-package (find-package 'generic-expert))

(defun ex (enQ-outgoing
Qstatus-incoming
deQ-incoming
conditional-suspend)
(declare
(function ex (symbol symbol symbol symbol) t))

(let ((FEL-sentence (funcall deQ-incoming))) ; Dequeue the request.
{declare
(type sentence FEL-sentence))

(case (sentence-verb FEL-sentence)

;; The subsystem integrator should insert clauses for the

;; verbs that the expert is expected to handle.

;; For example, let :plan be such a verb.

(:plan
:; Create iteratoxrs for the request sentence.
(multiple~value-bind (sIter-first sIter-next)

(sentence-Iterator FEL-sentence)

124

Carnegie Méllon University

Generic Expert (Lisp-Based)

;; Cycle through the feature lists.

(do ((fList (funcall sIter-first) (funcall sIter-next)))
{{eg fList :end))
{let ((fList-type (typeOf fList)) ; Get feature list type

(reply {funcall
(sentence-replyTo FEL-sentence)
:planned)})

(case fList-~type

;: key-symbol is application dependent. Normally,
;; there will be a clause for each feature list type
;; that the IMW subsystem is required to handle.

(key-symbol

;; A subsystem integrator may either use the

;; function valueOfAttribute to obtain the value
;; of an attribute, or use the iterator functions,
;; fL_Tter-first and fI ITter-next, to step through
;; the feature list.

(maltiple-value-bind (fL_Iter-first f£L Iter-next)
(featureList-Iterator fList)

(let ((fL (create-featureList)))
(declare
(type featurelList £L))

;; Expert dependent code should compute
;; the appropriate attribute/value pairs
;: and add them to fL.

(funcall (featurelist-include fL)
attribute value)

;; Once the feature list is complete, add
;2 it to the sentence to be sent as a reply.

{funcall (sentence-include reply) £fL))))
(otherwise
;; Application specific error handling.

NN

The following subsections provide information about miscellaneous topics that
affect the writing of an subsystem'’s initial function (such as the example, ex).

4.1. Explicit Use of Packages

The Lisp-based version of the generic expert makes explicit use of packages.
Normally, the symbols of a Lisp-based expert will be interned in a package specific to
the expert. In the statement:

125

Carnegie Mellon University Generic Expert (Lisp-Based)

(in-package (find-package 'expert-package))
expert-package should be the package utilized by the expert.

The generic expert shell resides in the GENERIC-EXPERT package and exports the
symbols that have meaning for the subsystem integrator. Hence, the use.of the
statement: ‘

(use-package (find-package 'generic-expert)).

Evaluation of this form imports the symbols from the generic expert into the package
used by the expert.

4.2. Naming the Initial Function of an Expert

When an FEL sentence is delivered to an expert, the generic expert shell determines
if it is for an existing dialogue, or if the sentence initiates a new dialogue. If the
sentence is to initiate a new dialogue, the generic expert calls the function provided by
the subsystem integrator. ex was just such a function.

A convention exists for the naming of the initial function. The name of the function
is the abbreviation of the expert. For example, the name of the Planner's initial function
would be PL.

4.3. Arguments Passed to the Expert's Initial Function

Four arguments are passed by the generic expert shell to the initial function. They
are as follows:
(a) enQQ-outgoing,
(b) Qstatus-incoming,
() deQ-incoming, and
(d) conditional-suspend.

Associated with each expert are two queues. One is a queue for incoming sentences
and the other is a queue for outgoing sentences (see Figure 3).

126

Carnegie Mellon University Generic Expert (Lisp-Based)

Ethemet

Outgoing ? ‘ Incoming

Expert
Application

Figure 3. Incoming and Outgoing Queues

The argument enQ-outgoing is a variable whose value is a function that may be
called to send out an FEL sentence. For example, if reply is an object of type sentence
and a valid FEL sentence, then the form: . .

(funcall enQ-outgoing reply)
will place reply on the output queue.

Incoming sentences for an expert are placed on the appropriate queue by the
generic expert shell. Qstatus-incoming gives access to a function that allows the
integrator to programmatically check if there are any FEL sentences on the incoming
queue. Qstatus-incoming returns :empty if the queue is empty, and :non-empty if it is not.

Of course, just knowing that there is a sentence on the queue is not much help.
There needs to be a way of obtaining the sentence from the queue. deQ-incoming serves
that function. For example, the code segment

(let ((FEL-sentence (funcall deQ-incoming)))
<)

will pop the next entry off of the queue and bind FEL-sentence to it. If the queue
contains no entries, then deQ-incoming returns :empty.

conditional-suspend is used when an expert needs to suspend execution until a

particular event occurs. The details of conditional-suspend are described in section
1.2.1.2.

127

Carnegie Mellon University Generic Expert (Lisp-Based)

4.4, Branch on Verb of FEL Sentence

Typically, an expert must be able to handle more than one verb. For example, the
initial function of ithe Plan Manager is currently able to process the verbs :execute and
:receive. The example initial function, ex, employs a case statement to branch on the verb
of the incoming FEL sentence. For example, following is the outline of the case
statement used by the Plan Manager to branch on the verb of the incoming sentence,
FEL-sentence.

(case (sentence-~verb FEL-sentence)
(:execute

¢ s @)
(:receive
* o 0)
(otherwise
(format *terminal-io* "~&Unexpected Verb~%")))

5. Creating an Instantiation of a Lisp-Based Expert

Once the user has provided the functionality required by a particular subsystem, an
instantiation of that expert is accomplished by evaluation of the function expert. The
only required argument is the name of the expert which the instantiation will represent.
For example, for an instantiation of the Planner the name would be PL.

The generic interface provides two interfaces to an expert: (a) a network interface,
and (b) a terminal interface. The user, at the time of instantiation, specifies which
interfaces will be made available to the expert. Thisi accomplished through the use of
keyword options. That is, for each of the interfaces there is a keyword option which
determines if the interface will be operable during the current instantiation. The
keyword option for the network interface is, :network-medium, and for the terminal
interface, :terminal-medium. Either, or both, of these interfaces may be provided to the
user.

6. Network Interface

The network interface is the default interface. If the network interface is not
desired, then the keyword. option :network-medium should be given the value of nil.

Before creating a Lisp-based IMW subsystem there is a matter concerning network
communication that needs to be discussed. The network communication software
currently requires a file, Bascom.db , that lists the experts in the IMW system and
specifies over which ports they communicate. If the netwerk communication software
is to be used then this file must be properly configured (see documentation on
BASCOM). As provided, the file lists two experts: PL and DUMMY. Thismay be
changed by editing Bascom.db. With the current file organization, this file is located in
the Generic-ExpertCommunication.Low-Level; directory.

128

— - -
N i L - N
‘ - Geen o e e - e e
I

Carnegie Mellon University Generic Expert (Lisp-Based)

7. Terminal Interface

The default action of the generic expert is also to provide a terminal interface. If the
terminal interface is not desired, the keyword option :terminal-medium should be given a
value of nil.

Why pro-7ide a terminal interface? An IMW subsystem may be viewed as a filter;
an FEL sentence is input, some processing is performed, and then an FEL sentence is
output. During development and testing, it is occasionally desirable to have total
control over the input to the subsystem. Then, after the processing is complete it would
be nice to easily view the output. As mentioned in the preceding section, the experts
communicate with each other via the ethernet. This process of network commurnication
implies the existence of at least two functioning IMW subsystems. On occasion, this
complicates the process of development. Consequently, a terminal interface is provided
that will allow an instantiation of an expert to function stand-alone. That is, the input is
provided to the expert via the terminal interface and the output from the expert is

. displayed on the terminal window.

In order to obtain a stand-alone configuration, enter the command:

(generic—-expert expert-name
:network-medium nil)

During evaluation of the above function call, the user will be required to provide the
upper-left and bottom-right hand corners of the interface window. The corners are
chosen via the mouse.

Initially, the interface window is not visible. When it is needed the window needs
to be selected. This may be accomplished by bringing up the Explorer System Menu.
In the WINDOWS column click on the entry named Select. This will bring up a menu
that will list the currently available windows. One of those will have the name of the
expert (e.g., PL), click on that name. This will bring up the interface window. At this
point, FEL sentences may be input to the expert for processing. That is, the sentence
may be typed into the window. After processing, the resulting FEL sentence will be
displayed in the window.

Don't be misled by the above discussion of a stand-alone subsystem. It is also
possible to have both a terminal interface and a network interface for an expert. In that
way you can provide input to one expert and have the output sent along to another

expert.

As an example, let's assume that we have two experts: a holding expert (HX) and &
sensing expert (5X). If the command:

129

Carnegie Mellon University Generic Expert (Lisp-Based)

(OFFER .
((NAME SX OFFER 1)
(TYPE MESSAGE)

(TO HX)

(FROM SX)

(MEDIUM (:NETWORK)))
((NAME SX_SELECT 1)

(TYPE SELECT)

(FIXTURES MAX)))

is entered into the terminal interface for the HX subsystem, it will receive the FEL
sentence as if the source were the SX subsystem. Therefore, the reply generated by HX
will be sent over the network to SX.

In the above example, there is one detail worth noting; that is, the attribute/value
pair (MEDIUM (:NETWORK)) in the feature list of type MESSAGE. In the current
implementation of the generic expert, the medium over which a reply will be sent
defaults to the medium over which the request was received. In other words, if the
request comes in over the network the reply goes out over the network and similarly for
the terminal interface. The attribute MEDIUM provides a method for overriding the
default. Hence, if a sentence is input from the terminal interface, but it is desired that
the response go out over the network then that can be accomplished. It is also possible
to have a response go out over both mediums. A value of (NETWORK :TERMINAL)
for the attribute MEDIUM will send the reply out over both.

8. Setting up the Generic Expert on the Explorer

The files that define the Lisp based generic expert may be obtained by tape or by
copying the files from the directory Generic-Expert on the machine kafka.imw.ri.cmu.edu.

i) Copy the files into a directory named Generic-Expert on your machine. Allis not lost
if some reason exists that prevents the use of a directory by that name. The files may be
loaded into a directory of your choice. However, by not using the default, some
additional work is required. After the files are copied into a directory, the file Generic-
Expert.Translations must be edited to reflect the actual location of the files. It should be
noted that the Generic-Expert.Translations file is not required if a Generic-Expert entry,
with the appropriate translations, is added to the network namespace.

ii) Move the files Generic-Expert.System and Generic-Expert.Translations into the Site
directory.

ili) From a Lisp Listener, evaluate the command:
{(make-system 'generic-expert :compile :noconfirm).

This will load the Lisp based generic expert skeleton into the environment.

130

Carnegie Mellon University Generic Expert (Lisp-Based)

9. Glossary of Functions for Lisp-based Generic Expert
(make-system 'generic-expert :compile :noconfirm)

Install the Lisp-based generic expert on a TI Explorer. This assumes that
the source code exists on the machine in question.

(ge:expert 'XX)

Instantiate an expert. XX is the initial function for the expert. This
function name should also be the two letter abbreviation of the expert.
For example, the initial function for the Planner would be PL. The default
for the function ge:expert is to provide a terminal and network interface.

The symbol expert is exported by the GENERIC-EXPERT package, so if the
user executes the form:

(use-package (find-package 'generic-expert))

then access may be gained to ge:expert without the annoying package
prefix (that is, ge:).

Following is the basic outline of the initial function for an expert. In this
example, the expert is named XX.

(defun XX (enQ-outgoing
Qstatus—-incoming
deQ-incoming
conditional-suspend)
(declare
(function XX (symbol symbol symbol symbol) t))

(let ((FEL-sentence (funcall deQ-incoming)))
(declare
(type sentence FEL-sentence))
(case (sentence-verb FEL-sentence)

;* Clauses for the verbs that expert XX is
;* expected to handle

(otherwise .
;* Application specific error handling

)))

(funcall enQ-outgoing FEL-sentence)

131

Carnegie Mellon University Generic Expert (Lisp-Based)

enQJ-outgoing takes one argument, an object of type sentence. FEL-sentence
is placed on the queue which is read for output. enQ-outgoing is nota
global function. It is one of the arguments passed to the expert's initial
function.

(funcall Qstatus-incoming)

Returns :non-empty when the incoming queue has at least one unread
object of type sentence on it. :empty is returned when the queue is empty.
Qstatus-incoming is not a global function. It is one of the arguments passed
to the expert's initial function.

(funcall deQ-incoming)

Returns an object of type sentence. FEL sentences placed on this queue are
to be read as input. deQ-incoming is not a global function. It is one of the
arguments passed to the expert's initial function.

(funcall conditional-suspend test fcn)

conditional-suspend takes two arguments. The first is a test. When it
evaluates to non-nil, the second arguument, a function, is executed.
conditional-suspend is not a global function. It is one of the arguments
passed to the expert's initial function.

(create-Qtast Qstatus dialogNames)

Returns a function that queries the queue whose status is obtained via the
function Qstatus. The query is determined by the value of dialogNames,
which should be a list of dialogue names. That is, the returned function
will return non-nil if sentences exist on the queue that are associated Yith

the names in dialogNames; otherwise nil is returned. Typically, create-Qtest
is used in conjunction with conditional-suspend.

(spawn-request FEL-sentence enQ-outgoing disposition fcn)
This function initiates a new dialogue. It requires four arguments.
FEL-sentence is the sentence that wili initiate the dialogue with the

designated expert. The spawn slot of a sentence object is normally used to
create this new sentence.

132

* Camnegie Mellon University Generic Expert (Lisp-Based)

enQQ-outgoing is the function used to queue the sentence for output. This
function is an argument passed to the initial function of the expert.

disposition is the disposition of the result of the spawned dialogue.
Currently, this may be one of two values, either :return-result or
sindependent. A disposition of :return-result signifies that the originating
dialogue expects to have access to the final result, which should be an FEL
sentence. In order to gain access to this FEL sentence, the spawned
dialogue should ensure that, upon termination, this sentence is the value
returned. :independent signifies that the spawned dialogue may proceed
independently of the spawner.

fen is the function that will handle the spawned dialogue.

(create-featureList)

Returns an object of type featureList.

The next three functions take an object of type featureList as an argument. Let fList
be such an object.

(featurelist~iterator flist)

Returns two functions that may be used to iterate through the
attribute/value pairs of a feature list. The first function always returns the
first attribute/value pair of the feature list. Each call to the second
function returns the next attribute/value pair. When the list is exhausted

:end is returned.

(funcall (featurelist~append fList) attribute value)
Associate value with attribute and add this attribute/value pair at the end

of the feature list's attribute/value pairs.

(funcall (featurelList-include flList) attribute value)

Associate value with attribute and add this attribute/value pair at the
beginning of the feature list's attribute/value pairs.

(funcall (featurelList-update flist) attribute value)

Find the attribute/value pair in fList with an attribute equal to attribute.
Change the value of this pair to value.

133

-

N o

Carnegie Mellon University Generic Expert (Lisp-Based)

The following functions take an object of type sentence as an argument. Let FEL-
sentence be such an object.

(sentence-iterator FEL-sentence)

Returns two functions that may be used to iterate through the feature lists
of the sentence. The first function always returns the first feature list.
Each call to the second function returns the next feature list. When the
list is exhausted :end is returned.

It should be noted that the feature list containing the attribute/value pair
(type message) is not returned by either of the iterators. The
information that is contained in that feature list is to be obtained more
directly. For example, sentence-to returns the destination.

(sentence-name FEL-sentence)

Returns the dialogue name of FEL-sentence. setf may be used on this form
to change the value.

(sentence~-verb FEL-sentence)

Returns the verb of FEL-sentence. setf may be used on this form to change
the value.

(sentence-from FEL-sentence)

Returns the source of FEL-sentence. setf may be used on this form to
change the value.

(sentence~to FEL-sentence)

Returns the destination: of FEL-sentence. setf may be used on this form to
change the value.

(gsentence-medium FEL-sentence)

Returns a list whose elements are the medium of FEL-sentence. setf may be
used on this form to change the value.

134

Carnegie Mellon University Generic Expert (Lisp-Based)

If FEL-sentence is a sentence to be output, then the value of the above form
gives the media over which this sentence will be sent. For example, if
evaluation of the form:

(sentence-medium FEL-sentence)
produced the result:
(:network :terminal);

then, when output, the FEL-sentence would be sent to both the network
handler and the terminal handler. If FEL-sentence is a sentence that was
sent to the expert, then the form, (sentence-medium FEL-sentence),
gives the medium over which the sentence arrived. Normally, the
subsystem integrator need not worry about the input and/or output
media.

(funcall (sentence-include FEL-sentence) feature-list)

Include feature-list in the sentence FEL-sentence, where feature-list is an
object of type featureList.

(funcall (sentence-replyTo FEL-sentence) verb-or-tense)

Returns an object of type sentence. The verb of the newly created sentence
is determined by the value of the symbol verb-or-tense. If the value of verb-
or-tense is one of the recognized verbs, then the verb of the sentence is
simply the value of verb-or-tense. If verb-or-tense is a legitimate verb tense,
then the predicate of the response sentence will be the verb that is the
specified inflected form of FEL-sentence’s verb. The destination of the
sentence is equal to (sentence~from FEL-sentence). The source of
the sentence is set to the expert that received FEL-sentence. The name of
the created sentence and FEL-sentence are identical.

(funcall (sentence-spawn FEL-sentence) verb)

Returns an object of type sentence. The verb of the newly created sentence
has been set to verb. The source of the sentence is set to the expert that
received FEL-sentence. The destination of the sentence is not set. A unique
symbol is created for the name of the sentence.

The next two functions take an attribute/value pair as an argument. An
attribute/value pair is a list of two elements. The first element is a symbol. The second
element may be one of four types: a symbol, a number, a string, or a list. In the

135

Carnegie Mellon University Generic Expert (Lisp-Based)

examples, let pair be an attribute/value pair.

(attributeOf pair)

Returns the attribute of pair.

(valueOf pair)
Returns the value of pair.

These last functions take an object of type featureList as an argument. Let fList be
such an object.

(nameOf fList)
Return the value of the attribute/value pair whose attribute is the symbol
NAME.

(typeOf fList)
Return the value of the attribute/value pair whose attribute is the symbol
TYPE.

{(valueOfAttribute flList attribute)

Return the value of the attribute denoted by attribute.

136

