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U ABSTRACT

I Laminar-turbulent transition of high-deficit flat plate wakes is investigated

3 by direct numerical simulations using the complete Naver-Stokes equations. The

simulations are based on a spatial model so that both the base flow and the

disturbance flow can develop in the downstream direction. The Navier-Stokes

equations are used in a vorticity-velocity form and are solved using a combination

3 of finite-difference and spectral approximations. Fourier series are used in the

spanwise direction. Second-order finite-differences are used to approximate the

spatial derivatives in the streamwise and transverse directions. For the tempo-

3 ral discretization, a combination of ADI, Crank-Nicolson, and Adams-Bashforth

methods is employed. The discretized velocity equations are solved using fast

I Helmholtz solvers. Code validation is accomplished by comparison of the numeri-

cal results to both linear stability theory and to experiments.

I Calculations of two- and/or three-dimensional sinuous mode disturbances in

the wake of a flat plate are undertaken. For calculations of two-dimensional dis-

turbances, the wake is forced at an amplitude level so that nonlinear disturbance

I development may be observed. In addition, the forcing amplitude is varied in

order to determine its effect on the disturbance behavior. To investigate the

Ionset of three-dimensionality, the wake is forced with a small-amplitude three-

dimensional disturbance and a larger amplitude two-dimensional disturbance. The

two-dimensional forcing amplitude is varied in order to determine its influence on

the three-dimensional flow field.

Two-dimensional disturbances are observed to grow exponentially at small

3 amplitude levels. At higher amplitude levels, nonlinear effects become important

and the disturbances saturate. The saturation of the fundamental disturbance

I
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appears to be related to the stability characteristics of the mean flow. Larger I
forcing amplitudes result in the earlier onset of nonlinear effects and saturation. 3
At large amplitude levels, a Kiirmiin vortex street pattern develops.

When the wake is forced with both two- and three-dimensional disturbances, 3
strong interactions between these disturbances is observed. The saturation of the

two-dimensional disturbance causes the three-dimensional disturbance to saturate. I
However, this is followed by a resumption of strong three-dimensional growth g
that may be due to a secondary instability mechanism. Larger two-dimensional

forcing amplitudes accelerate the saturation of the two-dimensional and three- 3
dimensional disturbances as well as accelerate the resumption of strong three-

dimensional growth. These interactions also result in complicated distributions of 3
vorticity and in a significant increase in the wake width.

I
I
I
I
I
I
I
I
I
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I INTRODUCTION

I
According to Sato and Kuriki (1961), in the laminar-turbulent transition of a

flat plate wake three distinct regions can be identified: a linear region, a nonlinear

region, and a three-dimensional region. In the linear region, small disturbances

I in the background flow trigger two-dimensional wave-like fluctuations. Sato and

g Kuriki's measurements indicate that the frequency of the dominant fluctuation in

the wake corresponds to the frequency of the most amplified disturbance predicted

5 by linear stability theory. Once present in the wake, these fluctuations grow ex-

ponentially in the downstream direction and are well described by linear stability

U theory.

Due to the large amplification rates associated with wakes, the amplitudes of

the disturbances rapidly become quite large and nonlinear interactions between the

disturbances become important. The behavior of the disturbances deviate from

linear stability theory predictions but the wake remains two-dimensional (Sato

I and Kuriki, 1961). In this region, the disturbances grow at rates significantly less

g than those predicted by linear stability theory and harmonics of the fundamental

disturbances are generated. Also due to nonlinear effects, the mean flow is altered.

3 As verified by several researchers (Zabusky and Deem, 1971; Aref and Siggia, 1981;

and Meiburg and Lasheras, 1988), this sequence of events leads to the well known

3 Krmjn vortex streets that are observed in flat plate wakes.

Finally, three dimensionality becomes important. The work of Robinson and

Saffman (1982) indicates that the two-dimensional KiLrma.n vortex street is un-

3 stable with respect to three-dimensional disturbances. As a consequence of this

3
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instability, three-dimensional lambda vortex patterns are formed in the region be- 3
tween consecutive Kirmin vortices of opposite sign (Meiburg and Lasheras, 1988).

1.1 The Linear Region of Transition 3
Linear stability theory describes the behavior of small amplitude disturbances

in par llel shear flows. In nonparallel shear flows, linear stability theory is not I
strictly applicable but can still be a useful model of small amplitude disturbance 3
development. The streamfunction tk of a disturbance described by linear stability

theory has the form I

0(0, Y, z,t) = Real(O(y)ei(a + Yz- ' t)) (1.1) 3
where the variables x = (z, y, z) and t are the spatial position vector and time I
respectively. The amplitude 0(y) is an eigenfunction of the Orr-Sommerfeld equa-

tion I

(U-c)(4"-(a2 +- )o)- v"o+ -(""-2( a2 +,y 2)0+(a2 +7 2 )2 0) = 0 (1.2) 3
where primes denotes differentiation with respect to y. In equation (1.2), U = 3
U(y) is the streamwise velocity distribution of the undisturbed flow, a is the

streamwise wave number of the disturbance, -y is the spanwise wave number of

the disturbance, and 1 is the temporal frequency of the disturbance. The phase 3
velocity of the disturbance is c = #/a and Re is the Reynolds number of the

undisturbed flow. In general, a and 8 are complex and -f is real. However, 3
interest is usually confined to two cases, namely, to the case of spatially growing

disturbances for which a = (a,, a1 ) is complex and 8 is real, and to the case of I
temporally growing disturbances for which # = (1,.,1) is complex and a is real. 3
A complete derivation of equation (1.2) is given by White (1974). '3

I
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I Wakes are inviscidly unstable due to the inflection points in their velocity

I profile. As is characteristic of flows with inflectional profiles, the disturbances ob-

served in wakes have high amplification rates. Also, because the streamwise veloc-

Sity distribution of wakes has two inflection points, two different instability modes

exist. The sinuous mode (mode-i) is highly amplified with an anti-symmetric

I streamwise velocity distribution. The varicose mode (mode-2) is less amplified (at

most frequencies) than the sinuous mode and has a symmetric streamwise velocity

distribution. Because of the higher amplification rates associated with the sinuous

3 mode, it is this mode that is usually observed in experiments (Sato and Kuriki,

1961; Sato, 1970; Miksad et al., 1982).

5 The validity of linear stability theory in describing the initial stages of transi-

tion in near wakes has been verified experimentally. Sato and Kuriki (1961) studied

1 the transition of a flat plate wake subject to acoustical excitation. The results of

these experiments were compared to linear stability calculations of temporally-

amplifying, sinuous mode disturbances. The temporal amplification rates fi, ob-

5tained from linear stability theory, were converted into spatial amplification rates

-£- using a phase velocity transformation. The theoretical eigenfunctions com-

3 pared very well with those obtained experimentally. However, the experimental

amplification rates did not compare as well with those predicted by linear stabil-

ity theory because the phase velocity transformation is not accurate enough for

I dispersive waves.

Mattingly and Criminale (1972) experimentally investigated the behavior of

3 small amplitude disturbances in the near wake of a thin airfoil (NACA 0003) and

compared their results to both spatial and temporal linear stability theory. For

I comparison of temporal amplification rates to experimentally obtained amplifi-

cation rates, the Gaster transformation (Gaster, 1962) was employed. The ex-
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perimentally obtained amplitude distributions and amplification rates compared U
well to spatial linear stability theory predictions. The assumption of temporally- U
amplifying disturbances, and using the Gaster transformation, did not produce as

good an agreement with the experimental results. The lack of agreement can be j
explained by the fact that the Gaster transformation is based on the assumption

of small amplification rates jai << 1, which is not satisfied for high-deficit wakes. I
From their results, Mattingly and Criminale concluded that spatial stability the- g
ory is more accurate than temporal stability theory in predicting the behavior of

small amplitude disturbances in the near wake of a thin airfoil. 3
Mattingly and Criminale also found that the stability characteristics of a

spatially varying wake could be computed by the use of a quasi-uniform (quasi- 5
parallel) assumption, i.e. the wake is assumed to be locally parallel. The stability

characteristics of the local mean velocity profile are then computed using the Orr- I
Sommerfeld equation. Then, the streamwise wave number a is obtained as a 3
function of streamwise distance.

Miksad et al. (1982) have shown that linear stability theory is also valid when 3
there is more than one dominant disturbance in the wake. They experimentally

studied the early development of two small amplitude sinuous mode disturbances, I
of different frequencies, in the wake of a thin airfoil. Their results indicated that,

at small amplitudes, both disturbances grew exponentially at rates predicted by

linear stability theory. 3
1.2 The Nonlinear Region of Transition

Due to the large amplification rates associated with high-deficit wakes, the 3
linear region of transition in these flows is usually quite small. With the appearance

of large amplitude disturbances, nonlinear effects become important and linear I
stability theory is no longer applicable. In contrast to the linear region where 3

I
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I the disturbances grew quite rapidly, the disturbances evolve more gradually in

the nonlinear region. This is also in contrast with the development in boundary

layer flows where rapid transition to turbulence occurs once nonlinear effects and

3 three-dimensionality become important.

Sato and Kuriki (1961) found that the early (upstream) part of the nonlinear

I region is similar in some respects to the linear region of transition. Although the

amplification rates of the disturbances are significantly lower than those observed

in the linear region, their experimental results indicate that the amplitude dis-

tribution of the fundamental disturbance does not change significantly until the

nonlinearity has persisted for some distance downstream. However, harmonics

I of the fundamental disturbance are generated and the second harmonic becomes

the dominant disturbance component near the wake centerline (Sato and Kuriki,

1 1961). Nonlinear effects also change the mean flow, leading to rapid increases in

the mean centerline velocity and the mean wake half-width (Sato, 1970). The

resulting mean streamwise velocity distribution is much fuller than that of the

3 undisturbed flow, indicating a greater degree of fluid mixing.

As the disturbances travel farther downstream in the nonlinear region, the

3 amplitude distribution of the fundamental disturbance deviates from the shape

predicted by linear theory. The measurements of Sato (1970) indicate that the

S peaks in the streamwise velocity amplitude distribution of the fundamental dis-

I turbance shift towards the outer edge of the wake and also decrease in magnitude

with increasing downstream distance. The peak value in the streamwise velocity

amplitude distribution of the second harmonic component, which initially grew

rapidly, also begins to decrease. Sato speculates that the energy lost by the fluctu-

3 ations might be transferred to the mean flow. Sato's measurements also show that

the mean half-width and the mean centerline velocity, which initially increased in

U
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the nonlinear region, begin to decrease when the fundamental streamwise velocity U
fluctuation begins to decrease. Sato showed that the production of fluctuation 3
energy

I (1.3)

where u' and v' are the time fluctuating components of the streamwise and trans-

verse velocities, V is the Reynolds stress associated with the disturbances, and U

is the mean streamwise velocity, has the same sign as the mean centerline velocity 5
gradient. Therefore, when the mean centerline velocity increases the fluctuation

energy should increase, and when the mean centerline velocity decreases the fluctu- m

ation energy should decrease. Also in this region, Sato and Kuriki (1961) observed

velocity "over-shoots" near the outer edge of the wake so that the mean streamwise

velocity attained values greater than its freestream value. I
Motivated by the appearance of vortices in wakes, Sato and Kuriki proposed

a "double row vortex model" as a way of explaining the nonlinear behavior of 3
wake disturbances. In this model, the vortices alternate in sign and are arranged

in a staggered fashion on each side of the wake centerline. The velocity induced

by this vortex pattern does indeed capture some of the features observed in wakes 3
such as the second harmonic near the wake centerline, the velocity over-shoots

near the outer edge of the wake, and the decrease of the mean centerline velocity 3
far downstream.

Several different numerical investigations support the double row vortex model. I
Zabusky and Deem (1971) performed Navier-Stokes simulations of the temporal 3
evolution of an unstable disturbance in a parallel wake. Their results indicate

that the saturation of the fundamental disturbance in plane wakes leads to the 3
development of a vortex street pattern. Phenomena similar to those observed by

I
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Sato and Kuriki, such as the velocity over-shoots, were observed in the numerical

results. Aref and Siggia (1981) and Meiburg and Lasheras (1988) studied the tem-

poral development of vortex rows using inviscid vortex dynamics. They modeled

a plane wake as two vortex sheets of opposite sign. When the vortex sheets were

g perturbed, they evolved into a two-dimensional vortex street.

Several researchers including Sato and Onda (1970), Sato (1970), Motohashi

1(1979) and Miksad et al. (1982) have experimentally investigated the behavior of

g wakes that were disturbed at two different frequencies. By perturbing the wake

with disturbances at two different frequencies, these researchers hoped to gain

3 insight into the complex nonlinear interactions that take place in natural transi-

tion. Sato and Saito (1975) performed experiments to study the interaction of a

3discrete frequency disturbance with the broad band background fluctuations that

were naturally present in the flow. In their experiments, Sato (1970) and Sato and

Onda (1970) found that the nonlinear interactions between the two disturbances

3generated the expected higher harmonics as well as a difference frequency. This

difference frequency is similar to the low frequency fluctuations observed in natu-

I ral transition. In natural transition, the low frequency component is not a single

g frequency but a narrow band of frequencies. The conjecture is that these low fre-

quencies are generated by interactions between the higher frequency fluctuations

I that result from the linear instability.

Miksad et al. (1982) found that interactions between the difference frequency

I and the two fundamental frequencies produced sidebands in the spectrum. These

I sidebands modulate the amplitude of the fundamental fluctuations. Amplitude

modulation in combination with the dispersion relation of the fluctuations pro-

I duces phase modulation of the fluctuation,. Miksad et al. indicate that this mod-

1
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ulation has an important role in spectral broadening, that is in the redistribution 3
of energy from a small number of frequencies to a larger number of frequencies.

1.3 The Three-Dimensional Reion of Transition

Investigations of laminar-turbulent transition in plane wakes have dealt mainly

with two-dimensional instability mechanisms. Notable exceptions are the numeri-

cal work of Meiburg and Lasheras (1987 and 1988), the experimental investigations 5
of Breidenthal (1980), and the theoretical work of Robinson and Saffman (1982).

Robinson and Saffman (1982) theoretically investigated the stability of vortex 3
arrays to small amplitude two- and three-dimensional disturbances. They found

that the staggered pattern of the Krmain vortex street is most unstable with I
respect to three-dimensional, spanwise-periodic disturbances. This implies that 3
the breakdown of the vortex streets observed in flat plate wakes should be of a

three-dimensional nature. 5
Breidenthal (1980) experimentally investigated the three-dimensional behav-

ior of a turbulent flat plate wake. The plate trailing edge varied periodically in 5
the spanwise direction in order to induce three-dimensional disturbances in the

wake. Under the influence of this three-dimensional perturbation, the wake was

observed to form a spanwise periodic array of interconnecting vortex loops. I
Meiburg and Lasheras (1987 and 1988) numerically investigated the interac-

tion of a large amplitude, three-dimensional disturbance with a smaller amplitude, 5
two-dimensional disturbance. They found that the two-dimensional disturbance

led to the formation of a vortex street. The three-dimensional disturbance, through I
an interaction with the two-dimensional vortex street, formed lambda vortices sim-

ilar to those found in boundary layers. Further interaction between the lambda

vortices and the two-dimensional structures led to the development of closed vortex 3
loops similar to those observed by Breidenthal. I

I
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I JBAPTER 2

3 PROBLEM STATEMENT

VIn this work, laminar-turbulent transition of an incompressible high-deficit

I flat plate wake is investigated by direct numerical simulations using the com-

plete Navier-Stokes equations. Research efforts are initially focused on the early

I stages of transition where Two-dimensional disturbances are dominant. Of pri-

mary interest is the role of nonlinear effects in the development of disturbances.

3 Subsequently, the focus is on the early stages of three-dimensional breakdown

where both two- and three-dimensional disturbances play an important role. The

onset of this three-dimensionality is investigated by simulating the interactiun of

3two-dimensional and three-dimensional disturbances. Investigations of these in-

teractions might explain how three-dimensional disturbances, which according to

3 linear stability theory are more stable than two-dimensional disturbances, eventu-

ally dominate the wake development.

The numerical simulations are designed to model the physical experiments of

3 Sato and Kuriki (1961) and Sato (1970). The results of these simulations may then

be compared to the results of the physical experiments. The wake that is studied

3is shown in Figure 2.1. The wake is generated by a thin flat plate aligned parallel

to a uniform stream. The boundary layers on the plate are assumed to be laminar

and steady over the entire length of the plate, and hence form a laminar wake

3 when they merge at the plate trailing edge. The wake evolves rapidly downstream

of the plate.

3 The spatial domain in which the numerical simulations take place lies down-

stream of the flat plate trailing edge. The domain is placed near the plate so that

U
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it will contain the high-deficit region of the wake. However, the domain does not 3
include the trailing edge of the plate. The plate trailing edge is of primary interest

in studies of receptivity and in studies of absolute instabilities. Although, these

are both important aspects of wake transition, they are not the main focus of this

research.

The calculations are undertaken using a numerical method that is designed

to solve both the two-dimensional and three-dimensional Navier-Stokes equations.

Because of the spanwise periodicity of disturbances that was observed in exper-

iments, the spanwise variation of the wake is represented by finite Fourier se-

ries. Second-order finite-differences are used to approximate the spatial deriva- I
tives in the streamwise and transverse directions. Time integration of the Navier- 3
Stokes equations is accomplished using a hybrid scheme that is second-order time-

accurate. 3
The results of many experimental investigations (Sato and Kuriki, 1961; Sato,

1970; Mattingly and Criminale, 1972) indicate that transition in wakes is the result I
of a spatial instability rather than a temporal instability. Furthermore, Mattingly

and Criminale (1972) showed that the use of the Gaster transformation (1962)

to convert temporal stability results into spatial stability results is invalid for

high-deficit wakes. Therefore, in this work spatial amplification and temporal

periodicity of wake disturbances is assumed. To correctly model disturbances of 5
this type, the boundary conditions employed in these simulations must be of the

inflow-outflow type. Spatially growing disturbances are induced in the wake by

time-periodic excitation at the inflow boundary of the spatial domain. 3
The remaining chapters describe in more detail other important aspects of

this work. In Chapter 3, the governing equations of these simulations are dis- -
cussed. The length, time, and velocity scales that are used to nondimensionalize I

I
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5the governing equations are also discussed. The boundary and initial conditions

that are required to complete the mathematical formulation of the physical prob-

1 lem are outlined in Chapter 4. The method used to obtain numerical solutions of

the governing equations is discussed in Chapter 5. Chapter 6 contains a discus-

sion of the results of the numerical simulations. Finally, in Chapter 7 significant

conclusions are presented.

I
I
I
I
i
I

I
I
I

I
I
I
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3 ClHAPTER 3

3 GOVERNING EQUATIONS

I The Navier-Stokes equations govern momentum transfer in a viscous fluid.

These equations are derived by applying Newton's second law of motion to a fluid

I particle. The assumptions required to obtain these equations are that the fluid is

a continuum and that its stress-strain relationship is Newtonian.

1 3.1 The Navier-Stokes Equations

3 The numerical method is based on the Navier-Stokes equations for incom-

pressible flow. In vector form they can be written as
6ru- 1-- 2

t 5V-U = -Vv U (3.1)

3The continuity equation for incompressible flow is

V.11=0 . (3.2)

I The independent variables in equations (3.1) and (3.2) are time 7 and the

spatial position vector K = (2,V,T). The dependent variables are the Eulerian

3 velocity vector field u = (U,U,W) and the fluid pressure 5. These variables depend

on 9 and i. The three coordinate directions 7, Y, and 7 and the corresponding

I fluid velocity components U, V, and W are shown in Figure 2.1. The fluid density

;5 and the kinematic viscosity of the fluid F are assumed to be constant. Variables

with over-bars denote dimensional quantities, while bold-face variables represent

I vector quantities.

The operator V is a vector which in Cartesian coordinates is of the form

I . (3.3)I

3
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The Laplacian operator V2 is

-2 82 8 2 83
a + + Z (3.4a) 

and the operator U . V is

x z (3.4b) I

Equations (3.1) together with (3.2) lead to four scalar equations which in 3
principle can be numerically solved for the four dependent variables (U, F, W) and T

as functions of (7, V, i) and ?. However, one difficulty with solving these equations 3
is formulating boundary conditions for the pressure. This difficulty is avoided

by solving an alternate formulation of the Navier-Stokes equations in which the m
pressure does not appear. This formulation of the Navier-Stokes equations is 3
obtained by taking the curl of equation (3.1) and simplifying the result with the

appropriate vector identities. The resulting vector equation (Batchelor, 1967) is 3
=_ (3.5)

The Eulerian vorticity vector field U = ( is defined by the relation m

w=-Vxu (3.6)

and the operator U. V is

=,8= 8 8 (3.7)

It is noted that the vorticity vector as defined by equation (3.6) is the negative of

the usual definition of vorticity, U = V x U. However, throughout this work the

term vorticity will be used to denote the flow Variable defined by equation (3.6). g
I
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I Furthermore, because of the negative sign in equation (3.6), the direction of fluid

rotation associated with the vorticity vector U = -V x U is given by a left-hand

rule instead of the usual right-hand rule.

Equation (3.5) is the Navier-Stokes equation in vorticity-velocity formulation,

or alternatively the vorticity transport equation. Coupled to equation (3.5) is the

I Poisson equation3 i=Vx~ (3.8)

which is derived from the definition of vorticity (W = -V x U) using the continuity

I equation (3.2). The vorticity & is also a function of the independent variables Y

and 7.

Equations (3.5) and (3.8) are a system of six scalar equations which can be

3 solved subject to appropriate boundary and initial conditions. As desired, equa-

tions (3.5) and (3.8) also do not contain the fluid pressure 5 as an unknown vari-

able. However, in contrast to equations (3.1) and (3.2), now six scalar equations

must be solved instead of four.

3.2 Nondimensionalization

Equations (3.5) through (3.8) are nondimensionalized using appropriate length,

time, and velocity scales. The independent variables are nondimensionalized using

3 the following formulas:

= = y = Z 7 , and t (3.9)

3 where the variables without overbars are dimensionless. The streamwise length

scale ? is the length of the flat plate. In the transverse direction the length scale

is 3t, which is the momentum thickness of the wake at the trailing edge of the flat

plate. The length scale that is used in the spanwise direction is 1/7 where 7 is the

I
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spanwise wavenumber of the three-dimensional disturbance that results from the

excitation at the inflow boundary. The time scale is the ratio of the streanwise I
length scale 7 to the freestream velocity Uo...

The dependent variables U - (=,VW) and , = are nondimen-

sionalized as follows:

U= , == 1 w= (3.10a)
U. 0  V Urs '

and
u'9 6 'e _ C8t.jZ =-(3.10b)

The parameter r 2 is the ratio of the transverse length scale 9te to the streamwise

length scale e: r 2 = 0 te/. Similarly, the parameter r3 is the ratio of the spanwise

length scale 1/7 to the streamwise length scale 7: r3 = 1/(7).I

With this nondimensionalization, equations (3.5) and (3.8) become

O5w IVW f(3.11 a)I
Ot Re

and

V 2 u = g (3.11b)

which are solved for the six unknown variables u = (u, v, w) and w = (w".w,.wI) I
as functions of the dimensionless spatial position vector x = (XI y, z) and dimen- 3
sionless time t. The right hand side of equation (3.11a), the vector f = (f., fy, f ),

is the dimensionless version of w • Vu - u. Vw which appears on the right hand

side of equation (3.5). The three components of f are
au OU LOu 0 Ow. aw. ow

= W T + W T - B 2- - -- -&- 8w2z , (3.12a)

By Bi, Ow Ow Ow, I
-W-- (3.12b)

axw ~ w,+ z X Oz
B9wi Ow Ow w2  Ow. Z OW.2)

and h=w.++(zT - -ay + (3.12c)

I

I
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I The right hand side equation (3.11b), the vector g - (gz,gy,g,), is the dimension-

less version of V x 9 which appears in equation (3.8). The three components of g

are

r3 1(3.13a)
g'=r O r OW '

I1 o&Lff rs & z
gy -2O

= 7 Oz r2 (3.13b)

and 1 W 1 .w, (3.13c)g r3 O r3r22

The dimensionless Laplacian has the form

02 1 028:2±22±2,. 8z2+,. (3.14)

and the parameter Re is the Reynolds number Re = V.

Equations (3.11) serve as the basic equations for the simulations described in

this work. Use of such a vorticity-velocity formulation for transition simulations

was suggested by Fasel (1976) and used successfully for both two-dimensional

I (1976) and three-dimensional simulations of transition in boundary layers. The

same formulation was also successfully employed by Pruett (1986) for two- and

three-dimensional transition studies in free shear layers.

I
I
I
I
I
I
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3 CHAPTER 4

BOUNDARY AND INITIAL CONDITIONS

I The governing equations (3.11) represent a set of partial differential equa-

tions. This equation system is parabolic with respect to the time variable t and

is elliptic with respect to the spatial variables z, y, and z. Solution of equations

(3.11) requires specification of suitable spatial and temporal domains. Further-

more, the unknown variables w and u must be specified at some initial time.

3 Finally, boundary conditions must be specified along the entire boundary of the

spatial domain.

3 4.1 Spatial Domain

The governing equations are solved in a three-dimensional rectangular region

U in space that is downstream of the flat plate. The domain extends downstream

from near the trailing edge of the plate and is assumed to extend in the streamwise

direction for several disturbance wavelengths. The transverse thickness of the

domain is assumed to be much wider than the vorticity disturbances that are

present in the wake. The domain extends into the irrotational region of the flow

I field above and below the wake. The spanwise extent of the domain is equal to

one nondimensional spanwise disturbance wavelength X, = 27r.

The spatial domain and coordinate system are shown in Figure 2.1. The z di-

3 rection corresponds to the streamwise direction which is parallel to the freestream

velocity U . The transverse direction is denoted by the independent variable

I y. The third coordinate direction z corresponds to the spanwise direction and is

parallel to the trailing edge of 'the flat plate. For convenience, the origin of the

coordinate system is placed at the trailing edge of the flat plate . The spatial

I
I
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domain extends in the streamwise direction from zo to ZN, in the transverse di-

rection from yo to YM, and in the spanwise direction from z = 0 to z = 27r. The

spatial domain is then given by

ZO :_ Z :_ ZN , (4.1a)

YO :5Y :YM , (4.b)I

and 0<z_<2v" (4.1c)

4.2 Temporal Domain I
The time integration of the governing equations is divided into two separate

procedures or steps. In the first step, the governing equations are solved to obtain

the steady laminar wake that appears behind the flat plate. This is done by

integrating the governing equations (3.11) with respect to time, subject to time-

independent boundary conditions (no forcing), until a steady state solution is

obtained. This calculation begins at an initial time t = tL1 < 0for which initial 3
values of the dependent variables U(X,y,z,tL,) and W(Xy,z,tL,) are specified.

The calculation ends at time t = 0, at which time the steady solution is obtained. I
This steady wake is referred to as the base flow.

In the second step of the calculation, the response of the wake to time-

dependent excitations that are introduced at the inflow boundary is investigated. 3
The governing equations are integrated in time from t = 0 to t = t L, . The initial

values of the dependent variables at time t = 0 are given by the base flow. I
4.3 Boundary and Initial Conditions for the Undisturbed Flow 3

The undisturbed wake is assumed to be two-dimensional, so that

w(z,y,z,) = 2 z(z,y,z,t) = WY(zy,z,t) = 0 (4.2)

I
I
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I The remaining flow variables u(z,y,z,t), v(z,y,z,t), and w,(z,yj,z,t) are solu-

tions of the governing equations (3.11). Restricted to two-dimensional flows, the

governing equations become3 &O &z &&, O 1 (f 2W5  1 82W ,.)

& + +,--- +Vi = - 2 8y (4.3a)
&: C9 y Re 8 2  r 2  ,

i92u 1 2u r30w (4.3b')

+7- 2 = 72, '

and 2v 1 2v - _ (4.3c)a "  r282 r2 8Z

3 Because the base flow is two-dimensional, the spatial domain reduces from a three-

dimensional region to a two-dimensional plane that is perpendicular to the z axis.

I Boundary conditions for the unknown variables u, v, and w. need to be specified

along the boundaries of this plane. These boundary conditions are independent of

time and are chosen such that the solution of equations (4.3) represents a laminar,

3 high-deficit, flat plate wake.

Inflow Boundary (z - zo)

I The inflow boundary of the spatial domain is located downstream of the flat

plate trailing edge. Therefore, the velocity and vorticity distributions at this

boundary should correspond to those of a spatially-developing, high-deficit wake.

3 For most of the calculations in this work, a Gaussian distribution is used to rep-

resent the streamwise velocity at the inflow boundary. The Gaussian distribution

I compares reasonably well to experimentally obtained streamwise velocity profiles

3 (Sato and Kuriki, 1961). In a few other calculations, a hyperbolic secant function

is used to represent the inflow streamwise velocity. The hyperbolic secant dis-

3 tribution also compares reasonable well with experimentally obtained streamwise

velocity profiles (Mattingly and Criminale, 1972)U
I
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With the use of either a Gaussian distribution or a hyperbolic secant dis- 3
tribution, the streamwise velocity is then known as a function of y at the inflow

boundary. However, since the z dependence of the streamwise velocity is unknown,I

being given by the solution of the Navier-Stokes equations, the transverse velocity

cannot be related to the streamwise velocity using the continuity equation (3.2).

Instead, v must be given an arbitrary value. In this work, the Reynolds number of 3
the wake Re = 2 is large. Therefore, except for very near the flat plate trailing

edge, the transverse velocity is much smaller than the streamwise velocity and can H

be set to zero at the inflow boundary with reasonable accuracy.

For the base flow calculation, the inflow boundary condition is

u(zo,y,z,) = u'(y) , (4.4a)

v(zo,y,z,t)=O , (4.4b) 3
and w'(zo,y,z,t) = wI(y) (4.4c)

where the superscript ( )' refers to the fact that the functions u'(y) and wI(y) are

the streaxnwise velocity and spanwise vorticity distributions at the inflow bound-

ary. If the streamwise velocity is specified to have a Gaussian distribution, then 3
u'(y) is given by

u'(y) -1- (1 - Uc)e- "'  (4.5a) I
where

ln(2) (4.5b)

Alternatively, u'(y) can be given by

2
='y)- 1 - (1 - Uc)sech2 (o7y) (4.6a) ,
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3 where
arccosh(V,2)U = b2(4.6b)

The spanwise vorticity is given by

= (Y) (4.7)

In equations (4.5) and (4.6), U, is the centerline velocity of the wake at the inflow

3 boundary and b is the wake half-width at the inflow boundary. The parameters

U, and b are chosen so that the resulting base flow closely models the high-deficit

U wakes observed in experiments.

Outflow Boundary (X = zN)

For spatially-developing wakes, a proper outflow boundary condition is not

3 easily found since the flow condition at this location would be obtained by the

solution of the governing equations and is therefore not known a priori. However, it

is possible to determine an outflow boundary condition without requiring advance

3 knowledge of the solution. Suppose the two-dimensional version of equations (3.5)

and (3.8) are nondimensionalized using the boundary layer scaling

Y --X = =~Rei , V = -Rel , and w.= (4.8)
1 1 UM0  U00  tT0 0Ret

The parameters 1, U.., and Re are defined in section 3.2. The resulting dimen-

3 sionless equations, for steady flow, are

+ R-,e 82 8 2  
(4.9a)1 O u W2u 8w83 Re82+ L92 ' o (4.9b)

1 8 2 iV O _

and + - . (4.9c)
Re8: 2 + 2

U n ~~a i '-
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For high Reynolds number flows Re > 1, as in these investigations, the stream-

wise diffusion term is the smallest term in each of the three equations (4.9a)

through (4.9c). Therefore, the streamwise diffusion terms are set equal to zero, U
resulting in the outflow boundary conditions

02u
z2=(Nyzt) -- 0 , (4.10a)

&2v
X2(ZN, y,z,t) = 0 , (4.lOb)

and -Z2 (zN, y,z,t) _0 (4.10c)

These boundary conditions were first proposed by Fasel (1976). 3
Freestream Boundaries (y = yo) and (y = yM) 3

As stated previously, the base flow is assumed to be a high Reynolds number

flow. Therefore, the rotational part of the wake is confined to a region very near 3
to its centerline and the streamwise velocity rapidly approachs its freestream value

as y - ±-o. The boundary conditions that satisfy these assumptions are, for the U
lower freestream boundary, 3

u(z,yo,z,t) = 1 , (4.11a) 3
O;(zIyo9zt)=0 , (4.11b)

and WZ(z,yo,z,t)=O . (4.11c)

Similarly, for the upper freestream boundary: U
u(z, YM, z,I= , (4.12a) 3

- (Z,/MZ,t)= I0 ,(4.12b) 3
and W.(Z,yM,Z,t) = 0. (4.12c) U

U
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IEquations (4.11b) and (4.12b) follow directly from the conditions (4.11a) and

(4.12a) using the continuity equation.

Auxiliary Condition (y = 0)

3 The boundary conditions described up to this point are sufficient to ensure

the uniqueness of the solution of the vorticity equation (4.3a) and the Poisson

I equation for the streamwise velocity, equation (4.3b). However, these boundary

conditions are not sufficient to ensure the uniqueness of solutions of the transverse

velocity equation (4.3c). This was shown by Pruett (1986) who notes that if a

3function V(z, y) is a solution of equation (4.3c), subject to the boundary conditions

described previously in this section, then the functionI
V(z,y) + c(z - z0 ) (4.13)

where c is a constant, is also a solution of equation (4.3c). Therefore, an infinite

number of solutions satisfy equation (4.3c) and the boundary conditions described

* in this section.

Therefore, an additional condition has to be specified that will ensure that

3 the solution of equation (4.3c) is unique. Experimental evidence indicates that

the steady streamwise velocity is symmetric with respect to the wake centerline

(y = 0). Therefore, the transverse velocity v is antisymmetric with respect to the

wake centerline (y = 0) and is equal to zero at the centerline. The transverse

velocity v is therefore required to satisfy the conditionU
v(z,0, z,t) = 0 (4.14)

3
at the wake centerline.I

I
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Initial Conditions (t = tL) 3
This calculation starts at time t = tL, for which initial valueJ of the unknown

variables u, v, and w, are specified. In this work, the initial conditions are chosen 3
such that the flow profile is independent of z and is identical to that of the inflow

boundary. These conditions are

(z,y,Z,,,) = ul(y) (4.15a) I
V(ZX,YZ, tL,) = 0 , (4.15b) 3

and W,(X,Y,Z,tL,) = W(Y) (4.15c)

4.4 Boundary and Initial Conditions for the Disturbed Flow N
For calculations of the disturbed flow, which may be three-dimensional, bound- 3

ary conditions have to be specified for all boundaries of the three-dimensional

domain. I
Inflow Boundary (z = z0 )

In a physical experiment, disturbances in wakes may originate from a variety

of sources. Wake disturbances may arise from freestream turbulence, roughness 3
on the flat plate, sound, etc. Disturbances can also be artificially introduced into

wakes through loudspeakers, flaps at the plate trailing edge, or through heater 3
strips on the plate. In this work, the disturbances are introduced at the inflow

boundary. For this purpose, solutions of the Orr-Sommerfeld equation are used. I
Thus, the velocity and vorticity components at the inflow boundary are a 3

combination of those of the steady base flow discussed in the previous section and

of time varying components that then excite the disturbances in the wake. The 3
inflow boundary conditions are of the form

3u,(z0,y, z,t) = uss~z0,y) + P (z0, y, t) + Pd(z0,y,t0cos(z) , (4.16a)

U
U
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IV(20) YJz It) 0 + ,1(ZO, Y,t) + p.31(ZO, y, t)COS(Z),

3W(z, 17YzIt) =0 +Pd(zo,y,t)cos(Z) , (4.16c)

w (ZoIY1 Z~I) t 0 + P.3 (Zo,Y, t)COS(Z) I (4.16d)

IW 1 (zo , ZIt) =0 + pw3d(Xo,Y,it)COS(Z) I (4.16c)

3 ~(.o and 1 .(Z 0 , t) = XS ws(ZO, Y) + p(,2 ,,t +Pd(ZO, Y,COS(Z)

3 The functions uss(xo,y) and wAzss(xo,y) are the streamnwise velocity and

spanwise vorticity components of the base flow at the inflow bounr y. The func-

3tions pu~d(Xo,Y, t), p.2d(Xo, yt), and P,2f(zo, y, t) are two-dimensional disturbances

obtained from the Orr-Sommerfeld equation. These functions are

p2d(X0 , Y, t) =r(t)A2 U~(Y)CoS(a~dzO - /3t + 02d(y)) , (4.17a)

I p~d(~ 0 ~j) =r(t)A2VAdycs~~z r /3 + V() (4.17b)

3 and P -To,Y,it) =r(t)A2 &(yc(dz A ~3 + Wq_ (4.17c

3The functions pld(ZO, Y,t), p~ld(Z 0 , Y,t), p3d(. 0 , ,Jt), p,3 To,Y, t), p.3d( o,y,i)

and P,,d(x0 , y, t) are three- di mensional disturbances obtained from the three-dimen-

I sional Orr-Sommerfeld equation. These functions are

3 ~ ~pd(Z0 , Y, t) U3?(t)s~Y)CoS(a~dzo _ f8t + 03,d(y)), (48)

5 p~d~z0 ~j, t) r(t)Asvdyco3 ~ z A r 3 + (4.18a)

p3d(ZO Yt) =r(i)As 3d (Y)cos(a 3dzO _ pt + 03,d(y)) , (4.18b)

Upw~( Zo, Y, 0) =r(i)Aw 3d(Y)COS(a~dzo _ O3t + 03d(y)) (41c

3. ~ZO, Y,i0 =r(t)A3 W.3d(Y)COS(a4dZo _-#t + 031d(y)) ,(4.18d)

and Pdz0 ,Y,t) =r(t)A3 w(cocdz A3 '() (4.18f)
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For the three-dimensional disturbances, a superposition of two oblique waves of

equal and opposite spanwise wavenumbers is used.

In the preceding paragraph, the parameter ar was the real part of the eigen- 3
value of the two-dimensional Orr-Sommerfeld equation corresponding to the fre-

quency 3. The parameter a3d was the real part of the eigenvalue of the three- 3
dimensional Orr-Sommerfeld equation corresponding to the frequency /3 and the

nondimensional spanwise wavenumber -' = 1. The functions (uAd(y), 0'(y)), 3
(v2Ad(y), 4 Ud(y)), and (w 2 Ad(y), 4d(y)) are the amplitudes and phases of the eigen- 3
function of the two-dimensional Orr-Sommerfeld equation corresponding to the

frequency /3. The functions (uAd(y), Sd(y)), (v d(y), 3 d(y)), (WA d(y),¢ d(y)),
(w 3d(y),,3d(y)), (WY 3d(y), 3d (y)), and (w.2d(y), 02d(y)) are the amplitudes and

phases of the eigenfunction of the three-dimensional Orr-Sommerfeld equation 3
corresponding to the frequency /3 and the nondimensional spanwise wavenumber

-y = 1. Both the two-dimensional and the three-dimensional eigensolutions cor-

respond to the streamwise location zo at which the steady streamwise velocity 3
distribution is uss(zo, y). The amplitude of the disturbances at the inflow bound-

ary is controlled by the parameters A2 and A3 . The solution procedure used to 3
obtain eigensolutions of the Orr-Sommerfeld equation is discussed in Appendix A.

The function r(i) that appears in equations (4.17) and (4.18) is chosen to min-

imize any transient disturbance that might arise when the excitation is initiated.

The function r(t) has the values

r(t) = { 2, if0 <t < w/ ; (4.19) 3
Outflow Boundary (z = ZN) 3

For numerical simulations of spatially-amplifying disturbances in shear flows,

the specification of appropriate outflow boundary conditions represents a major I
I
U
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3 difficulty. Numerical simulations of spatially-periodic, temporally amplifying dis-

turbances avoid this problem because then periodic inflow-outflow boundary con-

3 ditions can be employed.

For the numerical simulation of two-dimensional, spatially-amplifying, small-

amplitude disturbances in a flat plate boundary layer, Fasel (1976) employed the

condition

X 2 = (4.20)

at the outflow boundary. In equation (4.20), u' = u - uss is the streamwise per-

3 turbation velocity and a,. is the real part of the disturbance wavenumber. Similar

conditions were used for the other flow variables. In Fasel's numerical simulations,

3 the boundary condition (4.20) allowed small-amplitude disturbances to pass unre-

flected through the outflow boundary. However, equation (4.20) is formally exact

only for small amplitude neutrally stable disturbances. Therefore, while equa-

3 tion (4.20) is a suitable approximation for the slowly amplifying disturbances that

are observed in flat plate boundary layers, it is definitely not appropriate when

3 disturbances are highly amplified, as in high-deficit wakes.

Pruett (1986) attempted to use outflow boundary conditions that were sim-

ilar to equation (4.20) for the simulation of spatially-amplifying disturbances in

3 free shear layers. However, as Pruett notes, amplification rates are quite large in

free shear layers, and therefore the previous condition is not valid. Pruett found

3 that boundary conditions similar to equation (4.20) allowed the fundamental dis-

turbance component to pass through the boundary unreflected, but reflected any

nonlinearly generated harmonics of the fundamental fluctuation.

3 As an alternative to boundary conditions such as equation (4.20), Pruett

employed a moving outflow boundary for his calculations. The moving outflow3
3



U

45 3
boundary is implemented in the following manner. First, the base flow is com- -
puted in the entire spatial domain for which z0 < z < N. Then, the disturbed

flow is calculated in a smaller subset of the spatial domain bounded by z = zo and I
Z = ZMB(t) < zN where z = ZMB(t) is the instantaneous location of the moving

boundary. The moving boundary is initially located at a specified distance down-

stream of the inflow boundary. As the calculation progresses and the disturbances 3
propagate downstream, the moving boundary propagates downstream ahead of

the disturbances so that the flow remains undisturbed at this boundary. As a 3
consequence, Dirichlet boundary conditions that enforce an undisturbed flow can

be employed at the location of the moving boundary. When the moving boundary I
reaches the fixed outflow boundary at z = ZN, the calculation is stopped.

For the present simulations, boundary conditions similar to those used by

Pruett are employed. However, instead of using a moving outflow boundary, the 3
undisturbed flow condition is enforced at the outflow boundary located at x = ZN.

The disturbed flow is then calculated in the entire spatial domain. Furthermore, 3
the domain is specified to be large enough so that the disturbances do not reach

the outflow boundary before the calculation is stopped. The resulting boundary I
conditions are

U(ZN,y,Z,t) = uSS(ZN,y) , (4.21a)

V(ZN,y,Z,t) = VSS(XN,y) , (4.21b) I
W(ZN,y,z,t)=O , (4.21c) 3

=(ZNYZit)= 0 , (4.21d)

w,(ZN,y,z,t)=O , (4.21e) 3
and W(ZN,y,Z,t) =WzSS(ZN,Y) (4.21f) 3

As before, the subscript ( )ss denotes the steady state wake or base flow. I
I
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I Freestream Boundaries (y = Yo) and (y = yM)

The freestrearn boundary conditions are based on the assumption that distur-

I bances at these locations decay exponentially at rates predicted by linear stability

theory. These boundary conditions are now derived.

An equation for the streamwise perturbation velocity u' = u - uss can be

3 obtained by subtracting the base flow streamwise velocity equation (4.3b) from

the streamwise component of equation (3.11b). The resulting equation is

a 0 U'  1 2U , 1 2 u' r3 Wz' 1 aw(
Tx _ + r2 2 + _ r3 6z 2 r 22y 7 Oz 42

1 where the spanwise perturbation vorticity wz - wZss is denoted by w,'. Assum-

3 ing that the velocity and vorticity fluctuations at the freestream boundaries are

described by linear stability theory, then

u'(x,y,z,t) = Real(fi(y)ei(Qz+z - t)) (4.23)

U and analogous formulas are valid for the other velocity and vorticity components.

3 Then, from Squire's equation

I - (a 2 + 1 + iaRe (U - c)) "i, = -iReU'i (4.24)

it can be shown that for Re >> 1, 4j3  
- 0 for Jyj >> 1. Furthermore, from

the continuity equation and the definition of u;, and 4, it can also be shown

3 that for velocity fluctuations that decay exponentially when IyI >> 1, then a.

0 and u4 = 0 for IyI >> 1. Combining equation (4.22) with equation (4.23),

3 and assuming that the vorticity fluctuations are negligible for large IyI, then the

equation

y2 (y) = r (c4 + - .)fi(y) (4.25)

!2 3
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is valid if the disturbance is assumed to neutrally stable (ai = 0). In reality 3
however, wake disturbances are usually highly amplified and therefore equation

(4.25) is not strictly applicable. However, for the calculations presented in this 3
work, the assumption of neutrally stable disturbances at the freestream boundaries

did not prove detrimental. Equation (4.25) has the solution U
l(y) = Ae Be(4.26)

Assuming that fl(y) is finite for all y, then for y -4 -oo, B = 0 and fi(y) satisfies 3
the differential equation

di-(y) =r2 1 (4.27)

dy -+ 73 (.7

Combining equation (4.27) with equation (4.23) results in the following boundary

condition for the streamwise perturbation velocity u'(z, y, z, t) at y = yo: 3

09' + 73 U '(0,yolzit) (4.28) 3
Similarly, the boundary condition at y = YM is 3

8u' 1 C

")-r2 + - u '(z,yM,z,t) (4.29)

In a similar manner, the following boundary conditions for the spanwise ve- 3
locity w are obtained:

z z,t) - F2 a2 + "jw(ZYo,Z) (4.30a)

and
SC1(Z,yM,Z,i) = -2 a + 0-w(zyMZi) (4.30b)

ey3
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I Boundary conditions for the transverse velocity v are obtained from the con-

3 tinuity equation. These boundary conditions are

e(z,' yz,t) = - 0 (XYo, z, t) (4.31a)

and
ZYM, Z, 0 (1,Y%,,,, - 8W(,' z, 0 (4.31b)

a( ' z

3 The vorticity at both freestream boundaries is assumed to be zero. At the

lower boundary (y = yo)I
w(z,y0,z,t)=0 (4.32a)

I (z ,Yo,z,t) = 0 (4.32b)

I I(z, Yo,ZI) = 0 (4.32c)

I and at the upper boundary (y = yM)

I W(Z,YM,Z,It)=0 (4.33a)

3 ~W(z,yM,Z,t) = 0, (4.33b)

WZ(z,YM,z,t)=0 (4.33c)

One further consideration is the form of the coefficient r2 a + 9 in equa-

tions (4.28), (4.29), and (4.30). These boundary conditions were derived based

on the assumption of three-dimensional disturbances for which a, = a 3d and for
which the coeffcient V/a becomes r2 /a' d2 + J. For two-dimensional

3 disturbances, the coefficient r2 / '4+ _r becomes simply a2dr2. When both two-

dimensional and three-dimensional disturbances are present in the wake it is not

I
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difficulty is resolved by decomposing the boundary conditions (4.28), (4.29), and

(4.30) into two-dimensional and three-dimensional components. Then, for the two- i
dimensional component of equations (4.28), (4.29), and (4.30), r2 ca + 2  is seti

ual 2 For the three-dimensional component of equations (4.28), (4.29), I
isseqeulao 2c to+ 4 Tisdcopoito wllband (4.30), rb set + io

discussed further in the next chapter.

Lateral Boundaries (z = 0) and (z - 27r) I
As discussed in section 4.1, the spanwise width of the spatial domain is equal

to one spanwise wavelength Az = 2ir. Therefore, periodic lateral boundary condi- I
tions are employed. These boundary conditions for the ( component are n

u(z,y,O,i)=--u(z,y,27r, t) , (4.34)
with analogous conditions for all other variables. I

Initial Conditions (t = 0) 3
This calculation starts at time t = 0. At this time an undisturbed flow

is assumed and therefore the flow variables are set equal to the values of the 3
previously computed base flow. Thus

I
u(z,y,z,O) =uss(z,y) , (4.35a) 3
v(z,y,z,O) = vss(z,y) , (4.35b)

tv(:,y,z,O) =0 , (4.35c)I

w=(z,y,z,O) =0 , (4.35d) 3
w(z,y,z,O) =B0 , (4.35e)

and w(z,y,z,O) =w 3,ss(z,y) (4.354)1

I
I
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I CHAPTER 5

I NUMERICAL METHOD

I The governing equations (3.11) together with the boundary and initial condi-

tions described in the previous chapter are solved using a combination of spectral

and finite-difference methods. Fourier series are used to represent the spanwise

3 variation of the dependent variables. Spatial derivatives in the streamwise and

transverse direction are approximated using second-order finite-differences. The

3 vorticity equation (3.11a) is numerically integrated in time using a combination of

an Alternating-Direction-Implicit (ADI) method, the Crank-Nicolson method, and

3 the second-order Adams-Bashforth method. The nonlinear terms are computed

spectrally at each time step. The discretized Helmholtz equations are solved using

fast Helmholtz Solvers. The numerical method discussed here is based on the work

3 of Pruett (1986).

5.1 Spanwise Spectral Approximation

3 As discussed in Chapter 4, the disturbance flow is assumed to be periodic

in the spanwise direction with wavelength A. = 27r. Because of this spanwise

I periodicity, the streamwise velocity can be represented by a truncated Fourier

series of the form

u(zy,z,t) L U(zy,t)e (5.1)
k=-fI

with analogous Fourier representations for the other flow variables. The Fourier

3 coefficients Uk ', Vk, W" , fl , flh, and flk are functions of the two spatial variables

z and y and the time variable t. The Fourier coefficients can be rewritten as the

vectors

g UA = (Uh, V ' W k) (5.2a)

3
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and k (5.2a)

which are the Fourier representations of the velocity vector u = (u, v, w) and the 3
vorticity vector w = (w=,w 1,we). Furthermore, because the physical variables

u = (u, v, w) and w = (w., wyIw) are real numbers, the Fourier coefficients satisfy 3
the relations

Uk('cY,t) = O-k(, t) (5.3a)

and flk(zy,t)=A_ k (z, y, t) (5.3b)

where - denotes the conjugate of a complex number. Equations (5.3) are valid for

all values of k.

In the governing equations (3.11), the physical variables are replaced by their 3
Fourier representations given by equation (5.1). Orthogonality of the exponential

functions e k' in the spanwise interval 0 < z < 27r decouples the three-dimensional 3
governing equations into K + 1 sets of two-dimensional equations of the form

012 1 ~ 1''a 10 2n ,, \ ,
19X 2e _2 + 2) = F:, (5.4a)1

tRe ( 2  (4

an~ 1(a2nk +1 a2n k~ ~~ F
V Re +  - - I) =F ,(5.4b)- -- 2 2 - ) cy 20 Y

1(82 1 8 2nU (I k k) k =F.I

2 +2 2XJ~~
+ 2  r 3,

0-2VU 1 82V k _ 2 = k (5.4d

82Vk I 82V _vk G, (5.4e)

82 1 82 Wk 2 W" = aW . (5.4f)

Equations (5.4) are solved for 0 < k < K to obtain the complete set of Fourier 3
coefficients. The Fourier coefficients for which k < 0 are obtained from equations I

I
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1 (5.3). Once the Fourier coefficients are obtained from equations (5.4), the physical

variables u and w can be reconstructed using equations (5.1).

The functions F , Fk, and Fk are Fourier representations of the nonlinear

l terms f., fv, and f-. These functions are related by the expressions

4
f.(Z'Y'z't)= F'(z' yt)e ikz ) (5.5a)

3 f,(zyzt)= Fl(z,y,t)eii'z , (5.5b)

k1=-4f
K

and f(x,y,z,t) = F.'(z,'y,t)ei'kz (5.5c)
k=- K

The functions f , fy, and fz are defined by equations (3.12).

The functions G;, G ,and G, are Fourier representations of g., g., and g..

U These functions are related by the expressions

'1=fg(-',Y9,, ? t) G'(z, Y, e''  , (56,a)

9,(XY~z~t) = G, 'C,y,tOe'" (5.6b)

and g,(z,y,zt) z G*(xy,t)e'1z (5.6c)

The functions g, g., and g are defined by equations (3.13). The functions G.,

5 G , and Gk have the simple form

k = L ik (5.7a)

II = ilk n k r3 (5.7b)

i an; 1 ank
and G! . (5.7c)3r 8z r &y

I
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Equations (5.4) are solved for the Fourier coefficients, subject to the Fourier 3

repr-zentations of the boundary and initial conditions from Chapter 4. For the

undisturbed flow calculation, Fourier representations of the boundary and initial U
conditions from Section 4.3 are employed. For the disturbed flow calculation,

Fourier representations of the boundary and initial conditions from Section 4.4

are employed. 3
5.1.1 Fourier Representation of the Boundary and Initial Conditions for the

Undisturbed Flow 3
The Fourier representation of the boundary and initial conditions for the

undisturbed flow are discussed in this section. The undisturbed flow is two- 3
dimensional, so that 3

Uk = Wk a = 1 k = 0 for .k (5.8)

Furthermore, for k = 0

1(Z, t) = DY(z ,y,t) = W°(X,y,t) = o . (5.9)

The remaining Fourier coefficients U°(z,y,t), V°(z,y,t), and S°z,y,t) satisfy 3
th e e q u a tio n s 1 1 2 0

[0 2l 1 82 fl,0.8o - , 1 (zq + 2n - ) = rF , (5.10a)

,' U°  1 a2 U°  r3 flo I+ - - (5.10b)

f 2 V °  1 a 2Vf (5.10c) I
and -  Oy; = - (1

r2 ;2

which are the Fourier analogs of equations (4.3) in Chapter 4. The nonlinear term 3
F.(z,y,t) in equation (5.1Oa) is

F.(Z,8t) (U O : VIln: +(5.11)
ex \ i+

I
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I Solution of equations (5.10) requires the Fourier representation of the boundary

and initial conditions from Section 4.3.

Inflow Boundary (z = zo)

3 The Fourier representation of the inflow boundary conditions (4.4) are

U°(zo,y,t) = u'(y) , (5.12a)

V°(zO,y,t)=0 , (5.12b)

and fl0(zo, y,t) = w4(y) (5.12c)

3 Outflow Boundary (M = XN)

The Fourier representation of the outflow boundary conditions (4.10) are

9 - (zN,y,t) = O , (5.13a)

82

82VO
- -2 (zN y )--O , (5.13b)

and -- (XN,y,t) = 0 (5.13c)

Freestream Boundaries (y = Yo) and (y = YM)

3 The Fourier representation of the lower freestream boundary conditions are

3 U0 (z,yo,t) = 1 , (5.14a)

OIV
o

-=-(Xyott) = 0 , (5.14b)

Sand fl0(z, yo,t) = 0 . (5.14c)

5 Similarly, the Fourier representation of the upper freestream boundary conditions

are

S U°(z,YM,t) = 1 , (5.15a)
-- (Zymt) = 0 , (5.15b)

and IO(XYMI)=0 (5.15c)
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Auxiliary Condition (y = 0) 3
The auxiliary condition is

V°(x,0,t) = 0 (5.16) 3
Initial Conditions (t = tL,) I

The initial conditions for the base flow calculation are

U(,y,tiL)=uI(y) , (5.17a)

V 0 (X, Y,tL,) = 0 , (5.17b)

and nfl(Z,y,t,)=W(y) (5.17c)

5.1.2 Fourier Representation of the Boundary and Initial Conditions for the

Disturbed Flow 3
The Fourier representation of the boundary and initial conditions that are

used for the calculation of the disturbed wake are discussed in this section. In gen- 3
eral, the disturbed wake is three-dimensional. This requires solving the governing

equations for the three velocity components and the three vorticity components. 3
Boundary and initial coiditions are required for all of these components.

Inflow Boundary (z = z 0 )

The Fourier representation of the inflow boundary conditions are shown below. 3
For k = 0, the boundary conditions are

U°(zo,y,i) = uss(zo,y) + Pd(zo,y,) (5.18a)

V°(ZO,y,i) = 0 + pV2d(Z 0 ,y,,) I (5.18b)

w°(o,y,) = o , (5.18c)

fC0,v,,Tt) = 0 , (5.1sd)

no"(o,1yt) = 0 , (5.18e)

) p1d (Z ) (5.18t)
and fl°(zo,y,t) = WS 5ss(zo,y) + P(zo,y,5.18 I

I
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I For k = 1, the inflow boundary conditions are

VU(zo,,t) = -Pd( 0,o,,t) (5.19)

3 with similar conditions for the other flow variables. For k > 1, the Fourier com-

ponents of the velocity and vorticity at the inflow boundary are

Uk(zo,y,t) = 0 etc. (5.20)

Outflow Boundary (z = ZN)

3 At the outflow boundary, the wake is assumed to be undisturbed. For k = 0,

the boundary conditions (4.21) become

UO(ZN,y,t) = USS(ZN,y) , (5.21a)

V°(ZN,Y,t) = VSS(XN,Y) ,(5.21b)

W°(N,,t)=O , (5.21c)

1.(XN,y,t) = O , (5.21d)

I n1(ZN,y,t) = 0(5.21e)

flZ(ZN,y,t) = W. SS(ZN,Y) (5.21f)

I and for k > 0, become

Uk(ZN,y,t) = 0 etc. (5.22)

I Freestream Boundaries (y = yo) and (y = yM)

IIn Chapter 4, it was shown that a disturbance described by linear stability

theory behaves like

-Oy (z tY)- -=±r2 r4 + -7'u(z,y,z,i) (5.23)

I o

I
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as y -+ ±oo. For two-dimensional disturbances, equation (5.23) simplifies to I

y'z't= ±r2a,.u'(z,y,z,t) (5.24)

However, as noted in Chapter 4, equations (5.23) and (5.24) are not easily em-

ployed in their present form. The freestream boundary conditions are dealt with 3
more easily in terms of the Fourier transformed variables.

If equation (4.28) is Fourier decomposed with respect to the spanwise direction 3
z, then U' satisfies boundary conditions similar to equation (5.23) and U ° satisfies

boundary conditions similar to equation (5.24). One other question concerns the

value of a,. in these equations. For k = 0, a,. is set equal to a 2 d which is associated

with the two-dimensional excitation at the inflow boundary (see equations 4.17).

For k = 1, a,. is set equal to a3d which is associated with the three-dimensional I
excitation at the inflow boundary (see equations 4.18). For k > 1, the wake is 3
assumed to be undisturbed at the freestream boundaries.

The Fourier representation of the lower freestream boundary conditions (4.28), 3
(4.30a), (4.31a), and (4.32) are shown below. For k = 0, the boundary conditions

are I

"-(zYOt) = r 2 dU"°'y t) , (5.25a) 3
-9-(X)y0,t)= -8- (ZYot) , (5.25b)

W =0 , (5.25c)

f°( ZYO,t) = 0, (5.25d)

110(Z'y0, 0 = 0 , (5.25e) 3
and flC(z,Y0,t) = 0 (5.25f) 3

I
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As mentioned previously, primes denote the perturbation component of a variable.

3 For k = 1, the boundary conditions are

. =,yout) = a2 "d2 + - (5.26a)

8v1  7 O0= 2 r2Ul(110
I) "Y(xyolt) = - a---(Zyo,t)-iwl(Yo,t) I (5.26b)

Zl 0= r2  + 1wl(zyo,?t) 
(5.26c)

f_1(.,yOt) = 0 , (5.26d)

3 ,--(x,yo,t) --= 0 , (5.26e)

and £l2(x,yo,t) = 0 (5.26f)

For k > 1, the boundary conditions are

I Uk(z,yo,t) = 0 etc. (5.27)

I The upper freestream boundary conditions are similar to those at the lower

freestream boundary. For k = 0, these conditions are

-(",YMt) = 2  (,yM,) (5.28a)

ay (='YM't) = 2d a.(z0~t

-- (z, I/,t)= =y,), (5.28b)

w 0 =0 , (5.28c)

fl° (Z, yM, 0) = 0 , (5.28d)

I fl°(ZyM, t)=0 , (5.28e)

3 and fl°.(z, yM, )-0 . (5.28f)

g For k 1, the boundary conditions are

aUl
---== ad 2 + UI(zyM,t) , (5.29a)

3
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-- (ZlyMt) = -- .(ZIYMI -iW1 (ZYM,it) , (5.29b)

fl. (z YM, 0) = 0 (5.29d) 3
1Zy(Z,yM,t) = 0 , (5.29e)

and fl°(z,yM,t)=0 . (5.29f) I

For k > 1, the upper freestream boundary conditions are I

Uk(X,YM,t) = 0 etc. (5.30) 3
Equations (5.25a) and (5.28a) enforce transverse exponential decay of the two- I

dimensional velocity disturbances. Equations (5.26a), (5.26c), (5.29a), and (5.29c)

enforce transverse exponential decay of the three-dimensional velocity disturbances I
that correspond to the first spanwise mode k = 1. £
Initial Conditions (t = 0)

As initial conditions for the calculation of the disturbed wake, the velocity 3
and vorticity distributions of the two-dimensional base flow are prescribed in the

entire integration domain. Thus, for k = 0 the initial conditions are £
U°(z,yO)=uss(zY) , (5.31a)

V°(z,y,0) =vss(z,y) , (5.31b) 3
W°(zIyO) =0 I (5.31c)

fI°(z'y,0) =0 , (5.31d) I
fl°(z,y, 0) =0 , (5.31e) 3
fl°z,y, O) = wss(z,y) (5.31!)

I11' (' Y 0 =W. S Z'Y) 5.1I
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and for k > 0, the initial conditions are

3 Uk(z,Y,O) = 0 etc. (5.32)

3 5.2 Computational Domain

As a result of the Fourier decomposition of the dependent variables, the spatial

1 domain reduces to a two-dimensional plane in space (z, y) that is perpendicular

I to the z-axis. This domain is discretized into a finite number of uniformly spaced

grid points. These grid points have coordinates (x,,y,) given by the relations

Z,=xo+nAx for n=0,...,N (5.33a)

I and y,=yo+mAy for m=0,...,M (5.33b)

I The number of grid increments in the streamwise and transverse directions are

denoted by N and M respectively. The constants Ax and Ay are the grid sizes

I in the streamwise and transverse directions respectively. The discretized spatial

g domain is shown in Figure 5.1.

The temporal domain is divided into discrete uniformly spaced time levels ti,

I such that

i1 =IAt for I=L 1 ,...,0,...,L 2  (5.34)

where At is the time step between each time level. The base flow calculation is

3 performed in the time interval

5 tL, < t _< 0 (5.35)

3 which corresponds to

L, _ 1I5 0 (5.36)
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The disturbed flow is calculated in the time interval I

0 < ti _< tL, (5.37) 3

which corresponds to 3
O<l<L2  • (5.38)

Approximate numerical solutions of the governing equations (5.4) are obtained

at the spatial and temporal locations (Zn,ym,ti). The approximate solutions and 1
their correspondence to the spatial and temporal grid points are denoted by

U.,,., = Uk (z,ym,,tI) etc. (5.39)

5.3 Discretization of Spatial Derivatives

All spatial derivatives in equations (5.4) are approximated using the second- I
order finite-difference formulas shown below. Consider a complex function O(C, 77)

with known values at the equally spaced points, (0,17), ( i,10),.. • , (CI -l,17),

(CI, 77j). Then the first parial derivative ±±". can be approximated by 3
i _ 4j) ' i+l,j - oi-ij + O(A 2) (5.40) 1

2A

and the second partial derivative o4I) can be approximated by 3
2 0( 1j) = -+ O(A )  (5.41)

a2 A 2 +I

where A is the grid increment in the direction. 3
5.4 Discretized Vorticity Equations

A combination of different methods are used to solve the vorticity equations 3
(5.4a) through (5.4c). The methods have been chosen because of their numerical

I
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I sstability, their accuracy, and their computational efficiency. The Alternating-

Direction-Implicit (ADI) method is used to discretize the streamwise and trans-

3 verse diffusion terms. This method was selected because it is second-order time-

accurate and is unconditionally stable when used for solving linear diffusion equa-

tions. Use of the Crank-Nicolson method for the spanwise diffusion term re-

j tains both second-order time-accuracy and good stability characteristics. Fi-

nally, the second-order Adams-Bashforth method is used for the nonlinear terms.

I This method possesses favorable stability characteristics and is second-order time-

accurate. The spatial derivatives are discretized using equations (5.40) and (5.41).

I The resulting discretized vorticity equations can be solved using noniterative meth-

odThis choice of numerical techniques results in a two-step method for inte-

I grating the vorticity equations. In the first integration step, the streamwise dif-

fusion term is explicit and the transverse diffusion term is implicit. In this step,

3 the vorticity, which is known at t = lAt, is obtained at the intermediate time

tj+ I= (1 + !)At. For the first integration step, the discretized streamwise vortic-

ity equation is

I ADI-Explicit
k'k k. +

______________ 1 / l m fi n,M,i

I At/2 Re AX2

ADI-Implicit Crank-Nicolson

+1l - 2+k + 0 k 2 fl k + , )J+ z,n,.+1,1+1 z. , 1,,+j .,.,m -1,1+j k " ( , , ,+i + n,, ,)

3 Adams-Bashforth% Fh
3Fk - F "

2 , (5.42a)

I
3
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the discretized transverse vorticity equation is3
ADI-Explicit

n- i (k -21

,n,l,+i y,n',m.I1 (y,n iSM11 -' 2flk
At/2ReA

ADI-Iraplicit Crank -Ni colson

+ 2AY2 2
Adams-Eashforth

3Fk -F= y,n,m,l 2 y~rt~mL,-), (5.42b)3

and the discretized spanwise vorticity equation is
ADI -Explicit

l ,n~n,+i- ~nrnl ~ nI,~i- 2 Z,n,m,i + -IM~

ADI-Implicit Crank-Nicolson

+ nk
2  

____ +____

+ z,n~m+111+1 z ,n,k zz-11. ,,1,+1 ~~,

Adams -Bashforth

3F k - Fk
= ( in~ 2 .~~~- (5.42c)

In the second integration step, the streamwise diffusion term is implicit andI

the transverse diffusion term is explicit. In this step, the vorticity is obtained at

t = (I + l)At. For this step, the discretized streamwise vorticity equation is
ADI -Implicit

________________ ( z+1m,1+1 n,m, 1~ ,,+i + f1:n-l,m,l+1

At/2 Re Az A 2

ADI -Explicit Crank -Nikolson

2nk, + n~~k, k2 n k nm ,L+l + ":nm~~
x,n,m+1,1+f z n,m,l+i zn,m-1L*__ ~

+ r&y 2  2
Adams-Bashforth

3F k - Fuknmi 53
= x,fl,m7,1+i z~~)(54a

2I
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g the discretized transverse vorticity equation is

ADI-Implicit

V n,m,L+l -~~~~ ~~~~~ nmil+"ynIi,+

At/2 Re Ax 2

ADI-Explicit Crank-Nicolson

+ y,n,m+1,1+4 V 'n,in,L- y,n,mn-1,1+.I __________+__________

I Ad&rn:-Baahforth2

3,m,i+. - F,n,m 1(36

= ( 2

5and the discretized spanwise vorticity equation is

ADI-Implicit

____________________ z,n+l,m,4- 2fl&~,m,l+1 z n&-1,M,Il

At/2 AeK A 2

IADI-Explicit Crank-Nicolson

+ ,n,m+1,1 ~~~~ ~~-,+I k zc nZmfl.?l + " fzm+ 4

Adams-Bashforth

3k-Fz,n,m,1+2 xn (5.43c)

I Equations (5.42) and (5.43) are valid in the interior of the spatial domain at

the points (OnYm) where

g1 < n< N -1 (5.44a)

and 1 <m <M -1 .(5.44b)

Equations (5.42) and (5.43) are also valid for times t1 where

Lj,. ,. L2(5.45)
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At the domain boundary, the boundary conditions from Sections 5.1.1 and 5.1.2 1
are used to obtain the vorticity components.

5.4.1 Discretized Boundary and Initial Conditions for the Undisturbed Vorticity 3
For the base flow calculation, the vorticity boundary and initial conditions

from Section 5.1.1 are discretized. These boundary conditions are discussed here. 5
At the inflow boundary, the spanwise vorticity is

k, ,J = WRYm) (5.46)

At the outflow boundary, equation (5.13c) combined with equation (5.42c)

results in I
N~ml~ ZIM I n z,N,vn,1+i ,~~~ zN,m-1,1+~

z ,N,,i+ -- z,N,m,1 1 zf/,N,.m+1,L+j- 2fl0 ,N.,+ +fl~,~-l,0

At/2 Re r2Ay2

= 3F0 N~, - F0 , ,
= Fzml 2 z)N~m-i 

(5.47) £
Equation (5.13c) combined with equation (5.43c) results in 3

- o 1 n o  - 21nm +
z,N,m,l+l Z,N,m,l+I _ __ _ _,N,+I,+ ,N,_,_+_ +_ ,N,_-_,_+_

At/2 Re r)
3FO F,

= Z,N,m,L+l z,N,MS 548l
2 )(5.48)

At the freesteam boundaries, the spanwise vorticity is 3
Oz°,n,o,l 0 (5.49a)

and ' = 0 (5.49b)
z,n,M,1 54b

The initial condition for the base flow vorticity is

zn,M,L1, = Wz,(Y) (5.50)

I

I
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3 5.4.2 Discretized Boundary and Initial Conditions for the Disturbed Vorticity

The boundary and initial conditions from Section 5.1.2 are used for the cal-

culation of the disturbed vorticity. The discretized versions of these boundary

5 conditions are discussed here.

At the inflow boundary, the vorticity boundary conditions for which k = 0

3 are

-o , (5.51a)

and = 0 , (5.51b)

n Z,,-,l =Wzss(Xoym) PZ,(zo,y,,) (5.51c)

For k 1 1, the boundary conditions are

Pw.(0 ,I YM, ti) I (5.52a)
Y Ot,0MJ---= pw ,t0,ymt,) I(5.52b)

and 2 p.o,y,,t) (5.52c)

For k > 1, the vorticity components at the inflow boundary are

n, o,,,, = 0 etc. (5.53)

are At the outflow boundary, the vorticity boundary conditions for which k = 0

Ia,N,m = 0 , (5.54a)

NyNml = 0 , (5.54b)

nzN,m,l = WzSS(ZN,yn) (5.54c)

U
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and for k > 0, are I

nlk,N,ml = 0 etc. (5.55) 1
At the freestrearn boundaries, the wake is assumed to be irrotational. For 3

k > 0, the lower freestream boundary conditions are I
n, = 0 etc. (5.56)

For k > 0, the upper freestream boundary conditions are

=0 etc. (5.57)

Finally, the discretized initial conditions for the disturbed vorticity calculation £
are presented. For k = 0, the initial conditions are I

n°,n,..o = 0 , (5.5 8 a)
no, = 0 , (5.58b)

n°,n,m,o = WZSS(ntYm) (5.58c) 3
and for k > 0, are 5

fI~k,,,,o = 0 etc. (5.59) 5
5.4.3 Equation Systems for the Calculation of the Vorticit, 3

The discretized vorticity equations, (5.42) and (5.43), combined with the dis-

cretized vorticity boundary conditions form systems of linear algebraic equations 3
that are solved for the unknown vorticity. To obtain the vorticity at the interme-

I



U

68

i diate time tj+ , the tridiagonal system

bi a, kn,1,1+'

-(5.60)

al bi a,
a, b1  •

z,n,M-1,1+1 k' ( k 'JI+ fk k'I

Cl nft,l,l + d(z,+l,,l - - ,1,1,1)( - N,n) + Hn,1, l

I•

I, Ik SIk nk, k,

ln ,MMl + dn(Z,n+l,M-1,1 + z f,._1,M-1,1)(1 - SN,n) + n M_1,

is solved. For the base flow calculation, equation (5.60) is solved for

3 k=0 1<n<N , and L 1<l<0 (5.61)

For the disturbed flow calculation, equation (5.60) is solved for

0<k< K 1<n<N-1 , and 0<l<L2  (5.62)

3The constants in equation (5.60) are
At

a, = At (5.63a)
2Re(r2 Ay) 2

At At (k 2  (5.63b)g = 1 + Re(r 2Ay) 2 +Re r ;.6b
_ t A, _L 2 ATN

1 4W'( s 2W WRSz, if # N; (5.63c)
1 At , ifn N;

I 4Re ~r3 J'fn N

and d,, -eAzy? if n # N; (3.63d)
I0 ifn=N.
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The function H, ,MI is

k At (5.64F)

n,,1= . (3F;,,,,- , ,,,,,_) (5.64) 3
and 6 N,n, the Kronecker delta, is 3

6N,=O n N. (5.65)

To obtain the unknown vorticity at time tje 1 , the tridiagonal system

b2  a 2  
z, ,r,L+1

a 2  b2 a 2

(5.66)

a2 b2  a 2  3
+a(2+ b2' f

z + (N 'm , + 1

C~~fl~~N~~lml+* + + flN'll+I +,'-_1,-,+)+Hji .3

C2 mL,,+ "d2( l)+m+lL+ -z,1,m1,+ HknL+ a2 ornl+1

CN , r +k 1 < m,-, + a n d d 2 < +,- , + ()+5 .6 7

Sk WQkk , r nk,:Ca2 ,,N,,,.,,,+.,+ d2 z, , ,,,,,,+1,,,+-+ a ,.,-,,, . + ) + .H N ,,,., -  a ,,,,,,,+,

is solved. For the base flow calculation, equation (5.66) is solved for 3
N' = N , k =0 , 1 < m < M - 1 , and L1:5<0 (5.67)t

For the disturbed flow calculation, equation (5.66) is solved for

N'= N-1 , 0<k<- - 1<m<M-1 , and O<1<L2 . (5.68)

2I
-- - 2 ' - ---- *
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The function H,m is t0

H- F, .,) (5.69)

I The constants in equation (5.66) are

I = At (5.70a)a2=2ReAZ2,

b2 = + At + A k (5.70b)

At (k\ 2  At

4Re r 3  Re(r2 Ay)2  (5.70c)

and d 2 = At (5.70d)
2Re(r2Ay)2

The constant a2 is

[0, for the base flow calculation; (5.71)
a2=a 2 , otherwise.

I 
The constant 

b' is

I 1+{~
for the base flow calculation; (5.72)b2 = b2, _4e 3 1 otherwise. (.2

Equations (5.60) and (5.66) are solved for the spanwise vorticity. Equation

systems for the streamwise and transverse vorticity components are identical to

I equations (5.60) and (5.66) and are not shown.

3 For the base flow calculation, equations (5.60) and (5.66) are solved beginning

with the initial data at time t = tL,. For the disturbed flow calculation, equations

3 (5.60) and (5.66) are solved beginning with the initial data at time t = 0. For the

initial integration step of both the base flow and the disturbed flow calculations,

Ithe nonlinear terms are evaluated using the first-order Euler method instead of

I the second-order Adams-Bashforth method.

U
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5.5 Discretized Velocity Equations

The Helmholtz equations, (5.4d) through (5.4f), are discretized using the

second-order finite-difference formulas derived in Section 5.3. The discretized

Helmholtz equations are, for the streamwise velocity component 3
U+Im,, - 2Umi, + Uk_1,m, I,

U , 2 U k

U,,k+~ 2Uk ,, + Uk,_~
+ nrmA,1 I~, ~-,

Gknm " (5.73a)

for the transverse velocity component r

Vn+l,m,l - 2Vn,,i + Vi1mj

Ax 
2

Vk _ 2Vk, +Vk

+ n,m+l,l n,m-1,L

ray 2

SV' , nMi (5.73b) a
and for the spanwise velocity component 3

w+ ,+ , - 2W:,m,, + Wni ',mI

W,m+,,, - 2Wn,, + n.M-l

+ r2 2 U
= 

.nk (5.73c)

The right hand sides of equations (5.73) are

k 3 11 z,n,m+l, - oz,n,m-l,l ik

Z' 7, 2Ay - -Vn,m, , (5.74a)

r-k ik , 3 z n,+l,m,l - 1Z.,n-I,M,I 57 b

Ly,n,m,l r nknM~ _2 ( fk+i,!2k m,2z (5.74b)ar.,r, r2l -

I
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---- G 1 y,n--,M , -

nG,,,= r3 2Ax

The Helmholtz equations are solved for each integration step, subject to the ap-

5propriate boundary conditions from Sections 5.1.1 and 5.1.2.

Equations (5.73) are valid in the interior of the spatial domain. At the domain

3 boundary, equations (5.73) combined with the discretized boundary conditions are

used to obtain the velocity components.

5.5.1 Discretized Boundary and Initial Conditions for the Undisturbed Velocity

For the base flow calculation, the velocity boundary and initial conditions

from Section 5.1.1 are discretized as discussed below.

At the inflow boundary, the streamwise and transverse velocity components

are

U0  
- (Y.) (5.75a)an ,O,m,1 Yn

an , = 0 (5.75b)

I The discretized version of the outflow boundary conditions, (5.13a) and

(5.13b), combined with equations (5.73a) and (5.73b) result in

N - m1, t + U N ,m ,=, O (5.76)

(r 2 Ay) 2  GN,M'I

for the streamwise velocity and

VNO,m+1,l - 2VNOm,. + VN o (577)

(r 2 Ay) 2  = ,N,.,,

for the transverse velocity.

3
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At the freestream boundaries, the streamwise velocity is S
Uk = 1 (5.78a)

and U,M, 1 -- 1 (5.78b)

Equations (5.14b) and (5.15b) combined with equation (5.73b) result in
V.01,01 -2V.,0, + .LIO'I2Vno,, - 2Vn,o,lV+,o0 1 - 2Vo 0 + ,, + 2 = 0 (5.79)

Az2  r2 Ay 2

at the lower freestream boundary and I
Vn+iM, - + V 0  2V,_I - 2VOM,j1/0 M~ -- 2VM,-+ -1M, " - 0 (5.80)

+2  r2Ay2  0)

at the upper freestream boundary.

The auxiliary condition

V, =0 (5.81) g
imposes antisymmetry on the transverse velocity field. Because of this antisym-

metry, the transverse velocity V °omi is solved only in the lower half of the spatial

domain for which

1< n < N (5.82a)

and 0<m<--M 1 (5.82b)

The transverse velocity in the upper half of the spatial domain is found from the

relation

VO = for 1<m<- and 1<n<N (5.83)2 2 
2 

1

Finally, the initial conditions for the streamwise and transverse velocities are

Uno,m,Lt U1 (Ymn) (5.84a)

and V.°  = 0 (5.84b) 3
U
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1 5.5.2 Discretized Boundary and Initial Conditions for the Disturbed Velocity

Boundary and initial conditions from Section 5.1.2 are used for the calculation

of the disturbed velocity. The discretized versions of these boundary and initial

conditions are discussed in this section.

At the inflow boundary, the velocity components for k = 0 areI
o = USS(ZoYm) + P, d(Zo,ym'tI) (5.85a)

I E02dXjmtI
o,,Ui = 0 + P, (Zo,ym,ii) , (5.85b)

and W = (5.85c)

For k = 1, the velocity components are

Sn , -iP:d(T(Imt,y,,) I (5.86a)

o0,,,',- 1p, (.Tojy,,jtI) I(5.86b)

an o,,,,, p .dP ( Z o, Y,,,, ) (5.6c)

For k > 1, the velocity components are

Ukom,, = 0 etc. (5.87)

At the outflow boundary, the velocity components for k = 0 are

N,,MI = USS(XN,Ym) , (5.88a)

VN,mt - Vss(ZN,Ym) , (5.88b)

UN,,n, = 0 (5.88c)

I and for k > 0, are

UV,,n, = 0 etc. (5.89)

U
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At the lower freestream boundary, equation (5.25a) combined with equationU

(5.73a) results in the following equation for the k = 0 streamnwise velocity:

U0101- 2UIO,0,1 + U%..1,0,1' + 2U.0,1,1 - (2 + 2C.2d)U.,,

- (r ty) 2 (2uss(z., yi) - (2 + 2Cdusz,)) (.0

where C.2d a ~dr2 Ay. Equation (5.25b) combined with equation (5.73b) results

inI

V0 1,1 - 2VI0,0,1 + V 0L'' 2V.',, - 2V 0,

Az 2  vAy2

for the k =0 transverse velocity. For k = 0, the spanwise velocity is

WOO = 0 (5.92)

at the lower boundary.

For k = 1, equation (5.26a) combined with (5.73a) results in the following

equation for the streamwise velocity:

-nOl- 2U.,0,1 + U~.1 ,0 1

Ax 2

+2U,,,, - (2 + 2C.3d)U,O0 1  2

+r 2Ay 2  U,O01 = 0 (5.93)

where Cd-Ayr 2 Var +r()3 Simiflarly, equation (5.26c) combined with3

(5.73c) results in3

n+1,,l - 2Wn',0 ,I + W1 -'I

Ax 2

+ 2W,, 11 - (2 + 2C~d)Wn',0 ,1  _1- Wn 2 = 0 (5.94)I
t2 AY2  kr3)

r2I
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I for the k = 1 spanwiie velocity. Equation (5.26b) combined with equation (5.73b)

i results in +

I1 __V1

.+,o,- v.,o, .,,,, 2v, ,, - 2V1', _ ( ,O,l

Ay)2  (U.+1,0,- U. 1,0, 1) + iAYW,o,) (5.95)

which is valid for the k = 1 transverse velocity. For k > 1, the velocity components

at the lower freestrearm boundary are

Uo = 0 etc. (5.96)

At the upper freestream boundary, the following equations are valid. For

k 0 0, the velocity boundary conditions are
3--+, 2 Ul n _, + 2U,M-1, - (2 + 2C2d)Un,M,l

A: 2  rAy2

(r2 Ay) 2 (2uSs(Xn,yM.-1) - (2 + 2C.2d)uSS(:n,.yM)) , (5.97a)

rt+1,M1 2Vn,, n+ -1,Mj 2v',M-I, - 2Vn0,M,l
A:2  + r2Ay 2

1 o - ,-I,M,j) , (5.97b)I. andA:Ayr4 (U.+l,M,1 U ~r

and 

A~r

Wn,M'L = 0 (5.97c)

For = 1, the velocity boundary conditions are

- 2U,,,MJ + UI.,M,j

A: 2IU 1  (ld\

2U',M-I,l - (2 + 2C,3d)U -M,M,I 2,+ r 2AY 2  r3 U ,M,I 0 , (5.98a,)
2
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2W 1  WI l

Wn+,M, i W ,Ml + n-1,Ml
Ax

2

+ 2W',M_1,1 - (2 + 2C0a )W,M, l  )2
r Ay2  - Wn,M = 0 , (.98b)

and 3
Vn-+,M,l 2Vn,o,1 +"-1,M 2Vn,M-1,L - n M

&Z2 4- ,&y2 r3 V1, M, 1
A:2

1r2Ay)2 (E (U 1+,M,1 + UnI,M,I) + iAYWM,I) (5.98c)

For k > 1, the velocity components at the upper freestream boundary are

UkMj = 0 etc. (5.99)

Finally, initial conditions must be specified for the velocity components. For

k = 0, the initial conditions are I
U.mo = USS(Xn, ,n) (5.1ooa I

V n,mn,O = VSS(Zn Ym (5.100b)

Wn,m,O = 0 (5.100c)

and for k > 0, the initial conditions are

UOnMo =o0 etc. (5.101)

5.5.3 Eguation Systems for the Calculation of the Velocity

The discretized velocity equations (5.73) combined with the discretized veloc- I
ity boundary conditions form systems of linear algebraic equations that are solved

to obtain the velocity components. 3
I
I
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i Base flow Streamwise Velocity

Equation (5.73a) combined with boundary conditions (5.75a), (5.76), and

(5.78) form a system of linear algebraic equations that is solved for the base flow

3 streamwise velocity. To derive this system of equations, let

I ,

U , ,, : G.,n,l,l

I On= gn = .,(5.102a)

GM1, (M-1)xlx

U0 ,M-z,,,M-1, (M-)xl
-2 1
1 -2 1

3A,(5.102b)

1 -2 1
1 -2 (M-1)x(M-I)

U0

I and hn (5.102c)I

0

Un,M,1 (M-1)xl

I
I
I
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Then, the resulting system of equations 3
(A' I 3

I A' I
I •I

I A' I
0 AA NxN #N Nxl 1

(Az 2g, - hjA- O0 )
Az2 - h2A

(5.103)

AZ 2 gN- hNA J NxI

is solved for the base flow streamwise velocity. The constant A is I
A- AX 2(5.104)

the matrix A' is 3
A'=AA-21 , (5.105)

and I is the identity matrix.

Base flow Transverse Velocity

Equation (5.73b) combined with boundary conditions (5.75b), (5.77), (5.79), 3
and (5.80) form a system of linear algebraic equations that is solved for the base I

3
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i flow transverse velocity. To derive this system of equations, let
V0  Go

-2 1

and A= , (5.106b)

I -- 2 1

I Then, the system of equations

(A' I I1 Az 2gi

I A' I

." .. .. (5.107)

I A; I
1 0 AA NxN #N Nxl Nxl

is solved for the base flow transverse velocity in the lower half of the spatial domain,

I for which

1 _<n<N , (5.108a)

M
and 0 m< -- 1 (5.108b)3 -2

I
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The base flow transverse velocity in the upper half of the spatial domain is obtained 3
from the relation

V=- V.. 1 , for 1<m<- and I<n<N . (5.109)
?,-M ~ " - n,L'

As previously,

A r2Ay (5.10a)

and

A'=AA-21 (5.110b) U
Disturbed Velocity Components for k. 3

Equation (5.73a) combined with the boundary conditions (5.85a), (5.88a),

(5.90), and (5.97a) form a system of equations that is solved for the zeroth spanwise i

mode of the disturbed streamwise velocity UO. To derive this system of equations,

let I
1,m,i G(' m~

1I

GoU'O-lI'M'l (N-1)xl G2,N- i,m, (N- 1) xl

-2 1
1 -2 1 3

.",(5.111b)3

1 -2 1
1 -2 (N-2)x(N-l)

I



U

0

andhm= (5.111 c)I
0

N,,m,l (N-1)

Then, the system of equations

A'-B' 2AI #03 AI A' AI

At A' AI

2AI A'+ B" M+1)x(M+i #M

Az 2go - ho + 2AyAf'

Az 2 g - hi

AZxgM-1 - hm-1
AZ 2 gM - hM - 2AyAf" (M+l)xl

3 is solved for the zeroth spanwise mode (k = 0) of the disturbed streamwise velocity.

In equation (5.112), A' is

3 A'= (5.113a)

and A is

A = A 2 (5.113b)

I
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The matrix A' is

A =A-(2A+A')I , (5.114)

the matrix B' is 3

and the matrix B" is B1=2~ C 515

B" = 2AAyc"I (5.116) 3
The vectors f' = [f' and f" = [f,] and the scalars c' and c" result from

the freestream boundary conditions. For the zeroth spanwise mode (k = 0) of the I
streamwise velocity U', 3

, 2d us ~ ss(Xn,Yi) - uss(xn,yo)
-a. r2uss(-n,Yo) + , (5.117a)

2d ( USS(3n,YM) - USS(Xn,YM- 1)

adf 'l r. r2USS(XniYM) + A (5.117b)Ay

and N

c a2d (5.117c) U
Sac -dr 2  (5.117d) 3

Equation systems for the velocity components V0, U', V 1, and W 1 are almost

identical to equation (5.112). The only difference between equatic,, (5.112) and I
systems of equations for the other velocity components V °, U 1, V 1, and W 1 are 3
the vectors f' = [f,',] and f" = [fn] and the constants c' and c". Therefore, for

these other velocity components, only f,,, f,, c' and c" will be shown. 5
For the zeroth spanwise mode (k = 0) of the transverse velocity V °,

= .+1,0,1- Un -1,0,, (5.118a)
2Az

U 0  -U 0

f" = U (5.118b)

I
I
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3 and

c =0 , c =0 (5.118c)

For the first spanwise mode (k = 1) of both the streamwise and spanwise

velocities, U' and W 1,

A" =0 (5.119a)
| " = 0 (5.119b)

U and

I2
c~ r2 Cr3d 2 +,(5.119C)

*1/ 2

c = r2 a3d2 + (5.119d)

Finally, for the first spanwise mode (k = 1) of the transverse velocity V1,

I 2A-x+ 0- ,01- iW, ,0, , (5.120a)

fU= - 1n+l,M, - U -I 1

2A- W ,M,I (5.120b)I
and

I c' =0 ,c (5.120c)

I Disturbed Velocity Components for k > 1

3 Equation (5.73a) combined with the boundary conditions (5.87), (5.89), (5.96),

and (5.99) form a system of equations that is solved for the disturbed streamwiseU
I
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velocity Uk for k > 1. To derive this system of equations, let 3

O =, g,1 , (5.121a)

•• I 3
N-,m, (N-1)xlN (N-I)xl

-2 1

and A= (5.121b)

1 -2 1 3
1 -2 (N-1) x(N-1) I

U
I
U
3
I
3
I
U
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Then, the system of equations 
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A' AI #1

Al A' Al

Al A' AI

A1 A' (M-I)x(M-1) OM-1 (M-I)xl

I . (5.122)

A 2gM- 1 (M-1)xl

is solved for the streamwise velocity component Uk. As before,

A 2 (5.123a)

and A= X 2 (5.123b)

I The matrix A' is

A' = A- (2A + A')I (5.124)

Equation systems for W' and for Vk and Wk with k > 1, are identical to equation

3 (5.122) and will not be shown.

Equations (5.103), (5.107), (5.112), and (5.122) are systems of linear alge-

braic equations that are solved for the velocity components. For each system,

3 the coefficient matrix is large and sparse. However, because of the structure of

I
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these matrices, fast Helmholtz solvers can be used to solve these equation systems. 3
Details of these techniques are given by Swarztrauber (1977).

5.6 Evaluation of the Nonlinear Terms !

Up to this point in the development of the numerical method, the evaluation 3
of the nonlinear terms Fk Fk and Fm at each time step has been

ignored. However, in order to calculate f 1 , fmit and lzk,, MI from equa-

tions (5.42) and (5.43), the nonlinear terms must be computed at times ti-1 , ti,

and t L+j . Generally, computing the nonlinear terms is the most time consuming

aspect of using spectral methods to solve the Navier-Stokes equations. The diffi- -
culties arise from the fact that the nonlinear terms do not have a simple Fourier

representation. I
The nonlinear terms can be computed either pseudo-spectrally or spectrally.

The pseudo-spectral method works in the following manner. The physical repre-

sentation of the velocity and vorticity are obtained from the Fourier coefficients 3
using equations (5.1). Then, the nonlinear terms f , f,, , and fk,,, are

computed from the formulae 
I

tk k k k

= k Un+1,m,1 - Un-l,m,l k Un, +l, 1 - Un,+m-l I
,,= W,L,, 2Az + Wy'rm'4 2Ay

+ WIz,n,m,1 k k z,n+l,m,l Az ,n-Iml

8z ,m, - n,m,

n'M'I My ntMFIe57z-IP W!n,~~ , (5.125a)
k- k I

f n-m~- -n-I~ + k n,. h ,m (sl~ s
v"nM~ Z~~'"' 2A2y - yn,~ A

k 8V W k' -

k, _ - VV-- l ,,n,m,l yn-1,ml+ W:,nIMW iftl m4 2 ,A 2A

k kh 
I,n n,mll y ,n mI k --1,3-Vn,m,i 2A!/1'I In~, (.2b

My 8Z
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and W-+l,m,l - W--,mL k n,m ILnlm - Wn,m--,

-- k'nz = +,nml rn, zm,l'k k
+ Whnl aw I", n" azln+l,m,l - Wz,n-l,m,l

,z Un 2Az

zn,m+l,l z,n,m- l, k z k (5.125c)-n,M, 2Ay nMl 8 InM'l

5 which are the finite-difference versions of equations (3.12).

The z derivatives in equations (5.125) are computed using the formula

- (z)= L ikHkeik (5.126)

where
K

h(z) k 5 He%' c . (5.127)

The nonlinear terms fae,, j and transformed back to

Fourier space using equations (5.5). This results in the nonlinear terms F,,,,

,,,,, ,andFz,,, for all n, m, 1, and k. The pseudo-spectral method, together

I with the use of fast Fourier transforms, has an asymptotic operation count of

I O(NMKLog2K) . (5.128)

U An alternative to the pseudo-spectral method is the spectral method. For the

3 representative nonlinear term W(
w= tt (5.129)

I the spectral method proceeds as follows: The Fourier series representation of

3 the dependent variables U(z,, Ym, Zk, ti) and wz(zn, yY, z&, ti) are substituted into

I
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equation (5.129) to get 3

to obtain the Fourier series representation of equation (5.129). This procedureI
The multiplication of the two series in equation (5.130) is performed in order3

is repeated for the other terms that make up the nonlinear part of the govern-

ing equations. In this way, the Fourier representation of the nonlinear terms is 3
obtained. The asymptotic operation count for the spectral method is I

O(NMK 2 ) (5.131) I
For large values of K, the pseudo-spectral method requires fewer operations

than does the spectral method. However, for small values of K the spectral method 3
is faster. In this work, which is limited to small values of K, the spectral method

is used. I
5.7 Consistency, Stability, and Convergence of the Numerical Method 3

Finally, consistency, numerical stability, and convergence of the numerical

method are discussed. A consistent numerical method is one whose truncation 3
error approachs zero as the spatial and temporal grid increments approach zero.

A numerical method is stable if the round-off error contained in the numerical I
solution does not grow with time. A convergent numerical method is one in which 3
the numerical solution of the discretized partial differential equation approachs

the exact solution of the partial differential equation as the grid sizes approach 3
zero.

I
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The relationship between consistency, stability, and convergence of a dis-

5 cretization scheme is given by the Lax Equivalence Theorem (Smith, 1985):
Given a properly posed linear initial-value problem and a linear
finite-difference approximation to it that satisfies the consis-
tency condition, stability is the necessary and sufficient condi-
tion for convergence.

5 In this work, the governing equations are not linear. However, it is still useful to

examine the consistency and stability of the numerical method.

3 The truncation error of the numerical method described in this chapter

is now discussed. Let

L,,, A~)= 0 (5.132)

I represent the difference equations (5.42) and (5.43) and let ! be the solution ofu those difference equations. Furthermore, let fl be the exact solution of the partial

differential equations (5.4). Then, the truncation error ET A,,a,At associated

with the discrete operator LA2 ,AvA± is

3 ET Az, ,Aat(O) (5.133)

3 It can be shown that the hybrid ADI, Crank-Nicolson, Adams-Bashforth dis-

cretization scheme, coupled with second-order finite-difference approximations of

3 the spatial derivatives, has the local truncation error

3 ET,,,,,At = O(Az 2 , Ay 2 , At 2 ) (5.134)

3 This truncation error approachs zero as Az, Ay, and At approach zero and there-

fore the scheme is consistent. Similarly, the discretization scheme used to solve

the Helmholtz equations is consistent and exhibits second-order spatial accuracy.

3 The ntmerical method has spectral accuracy in the spanwise direction.

U
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Evaluating the numerical stability of the discretization scheme used in

this work is very difficult due to the nonlinearity of the governing equations. How- 3
ever, Pruett (1986), who used the same discretization scheme as discussed here,

found that for simulations of instability waves in free shear layers, the condition 3
At At AtIlma+. : I-CLZ. + IWl,,z- -< 1 (5.135)

was sufficient to ensure the numerical stability of the hybrid ADI, Crank-Nicolson, I
Adams-Bashforth discretization scheme.

For the simulation of instability waves in high-deficit wakes, it is noted I
that, because of numerical stability considerations, simulations of three-dimensional

disturbances required a smaller time step At than did simulations of two-dimen-

sional disturbances. Furthermore, although a stability criterion has not been de- 3
rived, for these simulations the numerical method was stable for the spatial and

temporal resolution that was employed. I
I
I
I
I
I
I
I
I
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I CHAPTER 6

I RESULTS

I As discussed in Chapter 3, the laminar-turbulent transition of wakes is influ-

enced by many nondimensional parameters. A thorough study of wake transition

would require investigating the role of many of these parameters. However, due

1 to the large amount of computer time and memory that is required to solve the

Navier-Stokes equations, a detailed study of the effect of each parameter on wake

I transition is not possible.

In this work, investigations are limited to two areas. First, the influence of

different levels of excitation on the behavior of two-dimensional disturbances is

3 investigated. The results of these investigations are discussed in Section 6.1. Sec-

ondly, the interaction of two- and three-dimensional disturbances is investigated.

* This latter topic will be discussed in Section 6.2.

Before proceeding, the techniques used to analyze the data that result from

I the numerical simulations are discussed. The harmonic content of the flow vari-

ables is obtained by Fourier time series analysis. With t (z, y, t) representing any

one of the flow quantities, the Fourier analyzed variables are obtained from

I +1 _.Lt e i p ' t

3L2 -+
with F- 0 1 2 __.. ___1- ' (6.1)

The parameters L, and L2 are the first and last time steps respectively of the

3 time interval in which the data is Fourier analyzed. The parameter Ip,,. denotes

the number of oscillation periods that are analyzed. If one period of oscillation is

I
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analyzed then Ipe, = 1, and if two periods of oscillation are analyzed then Ipe, = 2. 3
The parameter c assumes different values depending on the flow variable that is

analyzed. If 4A represents Uk or Olk then c = 1. If ikk represents Vk or a' then

c = r2. Finally, if Ok represents Wk or f]k then c = r3. The parameter i is the 3
imaginary number V/'71.

The transformed variable k(z,y, F) is the Fth time harmonic component of 3
the flow variable lkk(z, y, t). The Fth harmonic oscillates in time with the frequency

F/3, where f3 is the frequency of the wake excitation.

The amplitude of the Fth harmonic 1 k(z, y, F), for k = 0, is 3
= y I,  if F = 0; (6.2a)A 21 k(Zy,F)j, if F > 0

and fork >0 is 3
,y' if F = 0; (6.2b) I

4(x, y, F) = {4 1¢(z,y,F)1, if F > 0.

The phase of the Fth harmonic k(z, y, F) is

Oh(xy,F) = arctan (IM((Z' y, F))) (6.3a)

if Ok represents Uk, Vk ', or fSl. The phase of the Fth harmonic Ck(z, y, F) is 3
= arctan (Re( ik(z Y'F)) (6.3b)

if ?k represents Wk, fk, or fil. Im( ) and Re( ) denote the real and imaginary 3
parts of 4k(z, F) respectively.

Additional quantities that are calculated are the wavenumber a., the amplifi- 3
cation rate a, and the phase velocity c; of the various harmonic components. For I

I
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I linear stability theory, in which the base flow is assumed to be parallel, these quan-

3tities are uniquely defined for a given disturbance frequency, spanwise wavenumber,

and flow Reynolds number. Furthermore, for a disturbance that is governed by

3 linear stability theory, ak, , and ck can be computed from
k 9 

(6.4al rLST ( I Y) (64a
8

i LST - A

and ck P3 (6.4c)
PLST - LST3 The values of arLST, aiLST, and CPLST are independent of z and y and are

independent of which flow variable is represented by Ok. However, if expressions

Ianalogous to equations (6.4) are used to obtain similar quantities for a nonparallel

flow, then the coordinates z and y as well as the flow variable that is represented

by Ok have considerable influence on the values of a k a , and c. Gaster (1974)

discusses some of the various ways to calculate a, and C for nonparallel flows.fk a an d kae-acltdi h
For this work, the disturbance quantities a, a1, a c are calculated in the

3 following manner. The streamwise wavenumber ak of the Fth harmonic k(z, y, F)

is calculated from

cfx, F) z y,F) (6.5a)

where the transverse coordinate y is taken to be constant in equation (6.5a). The

Iamplification rate ct of the Fth harmonic k(Z, y, F) is calculated from

a(z,F) = -O' (ln(ikA(zy.".(z),F)) (6.5b)

In formula (6.5b), ym,.(z) is the transverse coordinate, as a function of z, at

which the amplitude 0 kA(z, y, F) attains its maximum value. The phase velocity

3 of the Fth harmonic k(z, y, F) is computed from

, F (6.5c)I

I
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Finally, the disturbance kinetic energy is calculated from 3

'(zF)= ' (U (z, V, F)2 + v'(z,, F)2 + w' (z, y, F) 2 )dy (6.6) 3
The kinetic energy Ek(z, F) is a measure of the disturbance amplitude. Also, 3
because the kinetic energy is an integral quantity, it does not depend on the

transverse coordinate y. Amplification rates of the harmonic components can be 3
caculated from the kinetic energy using

a F )  (6.7)at~z') = 2 8 \ I
Use of equation (6.7) to calculate a is advantageous because, unlike equation

(6.5b), it does not depend on the transverse coordinate y. 3
6.1 Investigations of Two-Dimensional Disturbance Development

In this section, investigations of two-dimensional disturbance development in 3
a high-deficit fiat plate wake are discussed. Several different calculations are under- -
taken. With the first two calculations, termed Case-1 and Case-2, the suitability of

the numerical method for the calculation of wake disturbances is tested. In Case-i, I
the method is tested by comparing the results for small amplitude disturbances to

linear stability theory. In Case-2, the results of the calculation are compared to 1
the experimental measurements of Sato (1970). In Case-2, the numerical method 3
is tested for larger amplitude disturbances than in Case-1. In Case-3 and Case-4,

the large amplitude behavior of wake disturbances is investigated. Case-4 is iden- -
tical to Case-3 except that the amplitude level of the excitation, denoted by A2, is

larger than in Case-3. By calculating disturbances for different excitation levels, 1
the influence of the initial amplitude on the disturbance development is observed. 3
Finally, in Case-5 the effect of the outflow boundary conditions on the results is

3
3
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i investigated. This is done by repeating Case-3 in a longer spatial domain. In all

i of these calculations, the wake is excited with a two-dimensional sinuous mode

disturbance of frequency 3. Finally, because the calculated disturbances are two-

3 dimensional, only U', V ° , and f o. are calculated.

Case-1

U In this case, the behavicr of a small amplitude disturbance in a nonparallel flat

gplate wake is investigated. Because the base flow is nonparallel, there is no proper

way to compare these results to linear stability theory. In fact, Gaster (1974)

3 states that the agreement between linear stability theory, for which the flow is

assumed to be parallel, and experiments (numerical or physical), for which the

flow is nonparallel, can never be better than O(Re- ). Therefore, comparisons

of the numerical results to linear stability theory are qualitative in nature and

can not be used to test the accuracy of the numerical method. However, this

3 calculation can be used to obtain some measure of the suitability of the numerical

method for calculations of small amplitude disturbances.

3 This calculation was performed in a spatial domain bounded by

Ixo= .3 , TN = .7  , Yo = - 10  , and YM = 1 0  (6.8)

3 The transverse extent of the spatial domain was specified so that the vorticity

disturbances would be approximately zero at the freestream boundaries. For the

streamwise extent of the domain, it was required that the domain be long enough

3 to contain several wavelengths of the fundamental disturbance. The domain is

4hown in Figures 2.1 and 5.1.

3 The base flow was calculated subject to the inflow streamwise velocity distri-

bution u'(y) given by equation (4.6a). At the inflow boundary, the wake centerline

I



I

97 1
velocity U, and the wake half-width b were I

UC=.5 and b=1.3 (6.9) 3
The streamwise velocity component of the computed base flow is shown in Figure 3
6.1.

As discussed in Section 4.4, the wake is excited using the time-dependent 3
boundary conditions (4.16). For this calculation, the disturbance amplitude was

A2 = .001. In terms of the streamwise velocity disturbance u'(z 0 , y) at the inflow

boundary, A2 is given by the relation A2 = max(Iu'(zo,y)) where the function 3
max(lu'(xo,y)l) denotes the maximum value of Iu'(o,y)1 with respect to the y

direction. The disturbance frequency was 6 = .317. For this frequency, the I
amplification rate is less than the maximum amplification rate that is predicted

by linear stability theory. Furthermore, the disturbance that corresponds to this

frequency experiences amplification throughout the spatial domain. The Orr- I

Sommerfeld eigenfunctions that correspond to this frequency are shown in Figures

6.2. 1
The influence of Az and Ay on the numerical results was investigated to 3

determine the spatial discretization that results in solutions that are reasonable

independent of the grid sizes. A detailed discussion of these investigations is given 3
in Appendix B. For this calculation, the grid

N=128 and M=64 (6.10)

was sufficient for this purpose. For the time step At, numerical stability rather

than temporal accuracy was the most severe constraint. Therefore, the influence of

3
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5 the time step on the numerical results was not investigated. To maintain numerical

stability, the time step was specified to be

At = T with Lnm = 64 (6.11)

The parameter Lm. denotes the number of time steps per fundamental distur-

1 bance period. The response of the wake to the excitation at the inflow boundary

was calculated for five periods TF of the fundamental disturbance (L 2 = 320)

where TF = 2,

3 For this calculation, the spatial domain contained approximately eight wave-

lengths of the fundamental disturbance. Each disturbance wavelength was dis-

3 cretized by approximately sixteen grid points. In the transverse direction, the

spatial domain contained approximately twenty momentum thicknesses (based on

the inflow velocity distribution) with approximately 3.2 grid points per momen-

3 tum thickness. As mentioned previously, investigations of the influence of the grid

sizes on the results of the numerical calculation (see Appendix B) have established

3 the suitability of the spatial discretization.

I
I
I
I
U
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The relevant parameters in this calculation are summarized below:

Case-l:

the streamwise location of the inflow boundary, C - .3;

the streamwise location of the outflow boundary, ZN = .7; 3
the transverse location of the lower freestream boundary, yo - -10; 1
the transverse location of the upper freestream boundary, YM = 10;

the Reynolds number Re - umA, Re - 200000;

the amplitude level of the wake excitation, A2  - .001;

the frequency of the wake excitation, )3 .317; 1
the number of streamwise grid increments, N - 128; 3
the number of transverse grid increments, M 64;

the number of time steps calculated, L2 320; 3
and the time steps per fundamental disturbance period, L,, - 64.

Results of this calculation are shown in Figures 6.3, 6.4, 6.5, and 6.6. Am-

plification curves based on the disturbance kinetic energy &(z, F) are shown in 3
Figure 6.3. These amplification curves are compared with analogous curves from

linear stability theory that are based on the amplification rate ac. However, the

amplification of the kinetic energy that results from the Navier-Stokes calculation

arises from two different sources. First, the kinetic energy amplifies due to the 3
linear instability. Secondly, the kinetic energy changes due to the slow divergence

of the base flow. However, despite the differences between linear stability theory

and the calculation, the kinetic energy of the fundamental disturbance (F = 1) 3
still compares closely to the linear stability theory prediction of the fundamen-

tal disturbance kinetic energy. The mean disturbance component (F = 0) and 3
the second harmonic (F = 2) are also present, but are much smaller than the

fundamental disturbance. I
I
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I For the streamwise location z = .35, the amplitude and phase distributions of

the fundamental disturbance component (F = 1) are compared to the amplitude

and phase distributions of the Orr-Sommerfeld eigenfunctions. These compar-

3 isons are shown in Figures 6.4 and 6.5. The amplitudes of the Orr-Sommerfeld

eigenfunctions are multiplied by the constant3m0 L °(z = .3 5 , ymax,1)
C T ALST(Y ) (6.12)

so that at y = y,,., they will be exactly equal to the amplitude distribution

I Ak of the calculated fundamental disturbance. The phase distributions of the

Orr-Sommerfeld eigenfunctions are shifted by the constantI
dLST = =0( .3 5 ,Ym =_5Y ) - 016LST(Yma) (6.13)I

so that at y = y,,a:, they will be equal to the phase distributions of the calculated

fundamental disturbance. The constant y,,L was defined previously. The function

'OALST(Y) is the amplitude of the Orr-Sommerfeld eigenfunction and OOLST(Y) is

I the phase of the Orr-Sommerfeld eigenfunction. As before, 1,k can represent any

3 one of the flow variables.

As can be observed in Figures 6.4, the amplitude distributions of the fun-

3 damental disturbance are very similar tc. d amplitude distributions of the Orr-

Sommerfeld eigenfunctions. In Figure 6.4c, -. vorticity disturbances are observed

U to be quite small (0(10-8)) at the freestream boundaries. This confirms that the

3 transverse domain was wide enough for this calculation.

The comparison of the phase distributions of the fundamental disturbance

I to those of the Orr-Sommerfeld eigenfunctions is shown in Figures 6.5. In these

figures, reasonably good agreement between the numerical and theoretical phase

I
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distributions is observed. The differences between the numerical and theoretical 3
phase distributions that are observed at the transverse locations V = ±10 are due

to the freestream boundary conditions. For the streamwise and transverse velocity i
components, the observed differences are due to the exponential decay boundary

conditions, (5.25a) and (5.28a). For the spanwise vorticity, the differences arise 3
because the theoretical spanwise vorticity satisfies exponential decay freestream I
boundary conditions while the calculated spanwise vorticity is set to zero at the

freestream boundaries. 3
Finally, in Figures 6.6 the streamwise wavenumber ac, the amplification rate

, and the phase velocity co of the fundamental disturbance are compared to the 3
analogous quantities from linear stability theory. As mentioned previously, the

agreement between linear stability theory and the numerical experiments can not I
0 0be better than O(R A) Gaster (1974). Furthermore, the values of a?, cit, and cp

depend on the flow variable and transverse location that are used for calculation

of these quantities. The streamwise wavenumber ac and the phase velocity co 3
are computed from the flow variables U0 , V0 , and fl0 for the transverse location

y = 5. The amplification rate a9 is computed from all three flow variables as well I
as from the kinetic energy E(z, 1). Equations (6.5) and (6.7) are used to calculate

these values. In Figures 6.6, the observed differences between the theoretical and

calculated values are approximately of the order O(Re-i). Therefore, based on the

results of Figures 6.6, the agreement between the calculation and linear stability

theory is reasonable. Additionally, comparable results were obtained when other 3
transverse locations were used to calculate a,. and cp.

The agreement between the calculated results and linear stability theory is

within the limitations imposed by comparisons of parallel linear stability the-

ory to nonparallel numerical simulations. The disturbance amplification rate and

I
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I wavenumber, ai and a., as well as the disturbance amplitude and phase distribu-

3 tions, all exhibit reasonable agreement with linear stability theory. It is concluded

that the numerical method, with the spatial and temporal discretization that was

I employed, is suitable for the calculation of small amplitude disturbances in flat

plate wakes.

I Case-2

As a further test of the numerical method, the results of this calculation are

compared to the experiments of Sato (1970). In contrast to Case-i, in this calcula-

3 tion the disturbances attain large amplitude levels. To facilitate the comparison of

the numerical results to the experimental data, the parameters for this calculation

are selected so that the calculated wake models the wake from the experiments of

Sato.

ItThis calculation was performed in a spatial domain with boundaries at

3 zo=. 0 3  , ZN=. 75  , yo=-16 , and yM= 1 6  (6.14)

3As in Case-i, the transverse extent of the domain was designed so that the vorticity

disturbances would be approximately zero at the freestream boundaries. In the

3 discussion of Case-5, it will be shown that the streamwise extent of the domain is

sufficiently long for the present case.

The base flow was computed subject to the Gaussian inflow streamwise veloc-

3 ity distribution given by equation (4.5a). This distribution was employed because,

as shown in Figure 6.7, it compares well to experimentally obtained streamwise

3 velocity distributions of high-deficit flat plate wakes (Sato and Kuriki, 1961). At

the inflow boundary, the wake centerline velocity U, and the wake half-width b

I were

3 =.234826 and b = 1.15 . (6.15)

I
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The values of U, b, and zo were chosen so that the computed base flow would 3
closely model the wake in the experiments of Sato (1970).

The streamwise velocity U° of the computed base flow is shown in Figure

6.8. As observed in Figure 6.9, the streamwise variation of the centerline (y = 0)

velocity of the calculated base flow compares closely to the similarity solution of

Goldstein (1929). The similarity solution was calculated using the series represen-

tation for the inner wake given by Goldstein (1929). The large variation of the

centerline velocity indicates that nonparallel effects may play an irnportant role in i
the initial development of disturbances in high-deficit wakes.

In his experimental work, Sato (1970) found that the frequency of the pre- U
dominant small amplitude disturbance in flat plate wakes corresponded almost I
exactly to the frequency of maximum amplification as predicted by linear stabil-

ity theory. Therefore, in this calculation the undisturbed wake was excited at its 3
most unstable frequency. This frequency was determined from a linear stability

analysis of the inflow streamwise velocity distribution. The eigenvalues (stream- 3
wise wavenumber and amplification rate) of the Orr-Sommerfeld equation were

obtained for a range of frequencies in order to determine the frequency of greatest

instability. The streamwise wavenumber a,, amplification rate aj, and phase ve- -
locity % obtained from this analysis are shown in Figures 6.10. As seen in Figure

6.10b, the amplification rate -at of the sinuous mode (mode-i) achieves its max- 3
imum value at the frequency /3 = .51. The eigenfunctions of the Orr-Sommerfeld

equation, corresponding to the frequency /3 = .51, are shown in Figures 6.11. 1
When this calculation was undertaken, it was thought that Sato (1970) had I

not indicated the initial disturbance levels in his experiments. Therefore, it was

necessary to estimate the amplitude level for the disturbance excitation in the 3
calculation. The amplitude of the wake excitation was chosen to be A 2 = .000667 I

I
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I as this was thought to be a good estimate of the disturbance level in Sato's (1970)

5 experiments. However, after these calculations were completed, it was learned

that the forcing level in Sato's experiments corresponded to A 2 -1 .001.

5 As in Case-i, the influence of the grid sizes Az and Ay on the numerical results

was investigated in order to determine the spatial discretization that resulted in

I solutions that were reasonable independent of the grid sizes. A discussion of these

g investigations is given in Appendix B. For this calculation, the grid

N = 1024 and M = 256 (6.16)

was sufficient for this purpose. Again, the time step was determined by stability

considerations rather than considerations of temporal accuracy. Therefore, the

3 influence of the time step on the numerical results was not investigated. For this

calculation, the time step

At with La, = 128 (6.17)

was sufficiently small to ensure numerical stability. The response of the wake

3 to the excitation at the inflow boundary was calculated for seventeen oscillation

periods TF of the fundamental disturbance (L 2 = 2176).

3 For this calculation, greater spatial resolution than in Case-1 was required

because of the presence of large amplitude harmonics of the fundamental distur-

bance. The spatial domain contained approximately thirty wavelengths of the

3 fundamental disturbance (based on the wavelength at the inflow boundary), with

approximately 34 grid points per wavelength. In the transverse direction, the

I spatial domain contained approximately 32 momentum thicknesses (based on the

inflow boundary velocity distribution) with approximately eight grid points per

I



105

momentum thickness. As mentioned, investigations of the influence of the grid I
sizes on the results of the numerical calculation (see Appendix B) have established I
the suitability of the spatial discretization.

The relevant parameters in this calculation are summarized below: 5
Case-2:

the streamwise location of the inflow boundary, z = .03; 3
the streamwise location of the outflow boundary, ZN - .75;

the transverse location of the lower freestream boundary, yo - -16; 5
the transverse location of the upper freestream boundary, yM = 16;

the Reynolds number Re = _ Re = 200000;

the amplitude level of the wake excitation, A2  = .000667; 3
the frequency of the wake excitation, 0 = .51;

the number of streamwise grid increments, N = 1024; 1
the number of transverse grid increments, M = 256;

the number of time steps calculated, L 2  = 2176;

and the time steps per fundamental disturbance period, L,,z - 128. 5
Amplitude distributions of the fundamental disturbance component of the

streamwise velocity were obtained by Fourier time series analysis in the time in- U
terval 15TF < t < 17TF. Comparisons of these amplitude distributions to those I
from the experiments of Sato (1970) are shown in Figures 6.12. The experimen-

tal results are plotted on an arbitrary scale, but the relative amplitude level at 3
each streamwise location is accurately represented in the figure. The streamwise

locations z for which the amplitudes in Figure 6.12a are plotted relate to the U
streamwise locations X in Figure 6.12b according to

X (6.18)

I
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I The flat plate length was defined in Chapter 3 and was equal to 300mm in

gSato's experiments. There is good qualitative agreement between the numeri-

cal and experimental amplitude distributions at the streamwise locations z =

3 .067 (X = 20mm), Z = .1 (X = 30mm), and z = .133 (X = 40rmm). At

x = .200 (X = 60mm), the shapes of the amplitude distributions for both the nu-

I merical simulation and the experiment are similar, but the amplitude level relative

to the level at the previous location (z = .133) is smaller for the numerical calcu-

lation than for the experiment. This is due to differences between the excitation

3amplitude in the calculation and in the experiment. Additionally, it is noted that in

Figure 6.12b, the experimentally obtained amplitude distribution for X = 20mm

I is larger than the amplitude distribution for X = 30mm. As this is somewhat

inconsistent with expected behavior, it is possible that the curves are mislabeled

so that the curve labeled X = 30mm actually corresponds to X = 20mm and

3 vice-versa. The comparison of the numerical results to the experimental results

that was discussed in this paragraph was based on the assumption that the curves

* were mislabeled.

g The streamwise variation of the mean centerline velocity and the mean wake

half-width for both the calculation and the experiments of Sato (1970) are shown

3 in Figures 6.13. The horizontal scale 0 <z < 2.67 in Figure 6.13a corresponds to

the horizontal scale 0 < X < 800mm in Figure 6.13b. The mean flow is the zero

Ifrequency (F = 0) component of the disturbed wake and it therefore contains any

nonlinearly generated 0 th harmonic of the fundamental disturbance.

In Figures 6.13, the calculated mean centerline velocity compares reasonably

3well to the experimentally obtained mean centerline velocity (open circles in Figure

6.13b). Both the numerical and experimental centerline velocities increase rapidly.

I
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This rapid rise is due to nonlinear interactions. As observed in Figures 6.13, the I
wake half-width for the calculation is similar to the half-width for the experiment. 3

The results of this calculation exhibit good qualitative comparison witb the

experimental results of Sato (1970). Good agreement between the numerical and

experimental results was obtained for large amplitude levels where nonlinear inter-

actions were important. Therefore, it is concluded that the numerical method is I
suitable for the calculation of large amplitude disturbances in high-deficit wakes.

Case-3

The purpose of this calculation was to investigate the effect of larger ampli- 3
tudes on the disturbance development. Therefore, for this calculation all parame-

ters except for the excitation amplitude were kept the same as in Case-2. For this

calculation (Case-3), the excitation amplitude was A 2 = .001. The base flow that

was used as the initial condition was identical to the base flow from Case-2 (see 3
Figures 6.8 and 6.9). 3

Figures 6.14 display the flow variables U', V', and 11o at the final time

of the calculation, t = 2176At. Due to the rapid growth of the disturbances,

the wake changes significantly from its undisturbed state. Very near the inflow

boundary, the wake appears undisturbed because the disturbances are still quite 1
small in this region of the spatial domain. Beyond z/Az ; 128 (z .12), the

disturbances become large enough so that they are the dominant feature in the

wake. Observing the spar.wise vorticity l o in Figure 6.14c, a pattern develops 3
that resembles that )f a K.i-man vortex street. This pattern develops as the

disturbances rewa'! large amplitude levels. As mentioned in Chapter 3, the vorticity 1
is defined as w = -V x u.

As seen in Figures 6.14, at this time the disturbances are still quite far up- !

stream of the outflow boundary. Based on the wavelength of the vortex street 3
U
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I observed in Figure 6.14c, the leading edge of the disturbance wave is approxi-

mateiy seven wavelengths upstream of the outflow boundary. Therefore, at this

time the assumption that the wake is undisturbed near the outflow boundary is

clearly satisfied. Furthermore, the vorticity disturbances are confined to a region

near the wake centerline and appear to be quite small at the freestream boundaries.

I In order to see more details of the vorticity field, vorticity plots that corre-

spond to smaller regions of the spatial domain are shown in Figures 6.15 and 6.16.

Figure 6.15a shows the spanwise vorticity 11' in the upstream half of the spatial

domain (.03 < z < .39, 0 < z/Az < 512) and Figure 6.15b shows the spanwise

vorticity 10 for the streamwise interval .03 < z < .27 (0 < z/Az < 340). In

both of these figures, rapid disturbance development is observed. In Figures 6.16,

the spanwise vorticity 110 is shown for the streamwise intervals .03 < z < .12

1 (0 < z/Az < 128), .12 < z < .21 (128 < z/Az < 256), .21 < z < .30

(256 < z/Ax < 384), and .30 < z < .39 (384 < z/Az < 512). These figures

show in great detail the disturbances development that results from the wake

excitation. In Figure 6.16d, a very distinct vortex street pattern is visible.

Amplification curves based on the kinetic energy E°(z, F) are shown in Fig-

I ure 6.17. The kinetic energy is calculated using equation (6.6). The harmonic

content of the flow variables was obtained by Fourier time series analysis of the

velocity components in the time interval 13TF < t < 15Tp. For z < .11, the

streamwise variation of the kinetic energy of the fundamental disturbance (F = 1)

agrees closely with that obtained from linear stability theory calculations. In

the linear stability theory calculations, the streamwise variation of the base flow

was accounted for by the use of a quasi-uniform assumption. The mean distur-

I bance component (F = 0), the second harmonic (F = 2), and the third harmonic

(F = 3) also grow rapidly in the region z < .11. In particular, the second and

I
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third harmonics grow more rapidly than the fundamental disturbance. Sato and

Kuriki (1961) and Sato (1970) have also observed large mean and second harmonic

components in flat plate wakes.

The saturation of the fundamental disturbance occurs at z ; .11. There, the 3
amplitude of the streamwise velocity component of the fundamental disturbance

is approximately twenty percent of the freestream streamwise velocity. Beyond 3
X - .11, the fundamental disturbance varies little in the streamwise direction.

The mean disturbance component and the second harmonic also saturate and i
reach a state in which they vary little in the streamwise direction. 3

The saturation of the fundamental disturbance, which does not occur for the

small amplitude, linear development of disturbances, may nevertheless be indi-

rectly explained by the changing stability characteristics of the mean flow. As a

simple way of determining the stability of the mean flow, the spatial amplification I
rate -ac(z) of the fundamental disturbance is computed from a linear stability

theory analysis of the mean flow. Then, the streamwise variation of the kinetic

energy of the fundamental disturbance is computed from 3
to(z,1) = to (zo,1)e- f. ° 2criaz (6.19) I

using the amplification rates of linear stability theory. The streamwise variation of 3
the kinetic energy of the fundamental disturbance, as predicted by a linear stabil-

ity analysis of the mean flow, is denoted in Figure 6.17 by the label 'LST MEAN I
FLOW'. This simplified model also exhibits saturation of the fundamental distur- -
bance. However, the amplitude of the fundamental disturbance after saturation

is over-predicted. These results indicate that the saturation of the fundamental 3
disturbance is at least partly due to the changing stability characteristics of the 3
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I nonlinearly generated mean flow. Alternatively, the variation of the mean flow

can be thought of as being due to the growth and eventual saturation of the

fundamental disturbance.

3 The presence of the harmonic components F = 0.5, F = 1.5, and F = 2.5

in Figure 6.17 is due to the fact that the wake has not yet achieved a truly time

Speriodic state in the timw' interval 13TF < t -< 15TF. Evidence of the nonperiodic

nature of the wake is given in Figure 6.18 which shows the temporal variation of

the transverse velocity V0 in the time interval 13TF < t < 15TF. It is apparent

3 from Figure 6.18 that, in the time interval shown, the transverse velocity V0 is

not temporally periodic at : = .27. Instead, the amplitude of V° that corresponds

to the streamwise location : = .27 appears to be increasing with time. Fourier

analysis of this data results in the F = 0.5, F = 1.5, and F = 2.5 harmonics

I that appear in Figure 6.17. Later, in the discussion of Case-5 in which a larger

streamwise domain was employed, it will be shown that for the same streamwise

locations the flow variables eventually become temporally periodic after more time

has elapsed. When periodicity is reached, the harmonic components F = 0.5,

F = 1.5, and F = 2.5 decrease to negligible levels. However, as will also be shown

in Case-5, the F = 0.5, F = 1.5, and F = 2.5 harmonics do not influence the other

harmonic components.

The streamwise variation of the mean centerline velocity and the mean wake

half-width are shown in Figures 6.19 and 6.20 respectively. From these figures, it

is apparent that the mean flow is quite different from the base flow and may have

* very different stability characteristics.

The streamwise wavenumber a, and the phase velocity cp of the fundamental

I disturbance are shown in Figures 6.21. They are compared with the corresponding

quantities that are obtained from a linear stability analysis of the calculated mean

I
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flow. The wavenumber and phase velocity that are obtained from this analysis

compare well to the wavenumber and phase velocity of the calculated fundamental

disturbance.

Case-4

The results of Case-3 have shown that a larger excitation amplitude has signif-

icant effects on the disturbance development. For this calculation, the amplitude

was increased by a factor of ten over that in Case-3, resulting in A2 = .01. The

base flow was identical to that of Case-2 and Case-3 (see Figures 6.8 and 6.9). The I
response of the wake to the excitation at the inflow boundary, was calculated for

fifteen fundamental disturbance periods (L 2 = 1920). All other parameters were

identical to Case-3.

Amplification curves based on the disturbance kinetic energy of the mean

component F = 0, the fundamental disturbance F = 1, and the second harmonic I
F = 2 are shown in Figures 6.22. For comparison, the analogous curves of Case-3

for which A2 = .001 are also displayed in these figures. The amplification curves

for the larger excitation level, A2 = .01, saturate further upstream and at higher

amplitude levels than those for Case-3. However, qualitatively the amplification

curves are quite similar for the two excitation levels. I
The streamwise variation of the mean centerline velocity and the mean wake

half-width are shown in Figures 6.23 and 6.24 and are compared with the corre-

sponding curves from Case-3. For both excitation levels, the centerline velocity

increases rapidly due to nonlinear interactions. However, for the higher excitation

amplitude, the rapid increase in the centerline velocity begins further upstream. i
The wake half-width, shown in Figure 6.24, behaves in a manner similar to the

centerline velocity. The increase in the wake half-width, which is also due to

MI
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nonlinear interactions, begins further upstream when the excitation amplitude is

larger.

I The qualitative behavior of the disturbed wake, as observed in Figures 6.22,

6.23, and 6.24, is similar regardless of the excitation amplitude. The main influence

of the larger excitation amplitude is to accelerate the onset of nonlinear interactions

and the saturation of the various disturbance components.

Case-5

With this calculation, the influence of the outflow boundary conditions on the

numerical results is investigated. For this, the calculation of Case-3 is repeated

with a streamwise domain that is 1.5 times longer than the one in Case-3. All

3 other parameters for this calculation were identical to those of Case-3. Thus, the

influence of the outflow boundary conditions can be assessed.

3 This calculation was performed in a spatial domain bounded by

zo = .0 3  , zN = 1.11 , yo = -16 , and yM = 16  . (6.20)

3 The spatial domain was discretized into N streamwise grid increments and M

transverse grid increments withI
N=1536 and M=256 . (6.21)

The spatial resolution that resulted from this discretization was identical to that

3 of Case-3. The response of the wake to the excitation at the inflow boundary was

calculated for 25 periods TF of the fundamental disturbance (L 2 = 3200) using

I the same time step as in Case-3. The base flow was computed subject to the same

inflow boundary conditions as discussed in Case-2.

I
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The relevant parameters in this calculation are summarized below: 3

Case-5:

the streamwise location of the inflow boundary, Z = .03; I
the streamwise location of the outflow boundary, N = 1.11; i

the transverse location of the lower freestream boundary, y0 = -16;

the transverse location of the upper freestream boundary, YM = 16;

the Reynolds number Re - 2-I, Re = 200000;

the amplitude level of the wake excitation, A 2  = .001; U
the frequency of the wake excitation, /0 = .51;

the number of streamwise grid increments, N = 1536;

the number of transverse grid increments, M = 256;

the number of time steps calculated, L2 3200;

and the time steps per fundamental disturbance period, LMZ = 128. 3
The streamwise variation of the base flow centerline velocity for this calcula-

tion (N = 1536) is shown in Figure 6.25 together with the corresponding curve of

Case-3 (N = 1024). It is obvious that the centerline velocity is practically identi- I
cal for both cases. This is an indication that the outflow boundary had negligible i
effect on the base flow for Case-3.

Contours of instantaneous spanwise vorticity for t = 2176At and t = 3200Ai 3
are shown in Figures 6.26. For t = 2176At, the spanwise vorticity contours are sim-

ilar to those in Figure 6.14c (Case-3). The disturbances experience rapid stream- I
wise amplification downstream of the inflow boundary, attain relatively large am-

plitude levels, and eventually dominate the flow field. The wake develops a Kirmin

vortex street pattern similar to what was observed in Figure 6.14c. Figure 6.26b 3
shows the spanwise vorticity at t = 3200At. A vortex street pattern is also visible I

I
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I for this time. However, the vortex street has propagated much farther downstream

3 than in Figure 6.26a.

In Figures 6.27, amplification curves f3r the disturbance kinetic energy

3 P°(z,F) of the mean component F = 0, the fundamental disturbance F = 1,

and the second harmonic F = 2 are compared to the corresponding curves from

U Case-3. The disturbance kinetic energy for Case-3 (N = 1024) is computed using

3 equation (6.6) and the Fourier analyzed velocity components from the time interval

13TF < t < 15TF. Similarly, the disturbance kinetic energy for Case-5 (N = 1536)

is computed using the Fourier analyzed velocity components from the time inter-

val 23TF < t < 25TF. From Figures 6.27, it is obvious that the amplification

I curves for the various harmonic components corresponding to Case-5 (N = 1536)

3 are almost identical to the corresponding curves from Case-3 (N = 1024). The

only differences are observed in the region z > .20. These differences are due

to the different time intervals used to Fourier analyze the velocity components

for each case. The otherwise good agreement between the results of Case-3 and

I Case-5 indicates that the influence of the outflow boundary conditions on Case-3

3 is minimal.

Figure 6.28 shows the amplification curves for the kinetic energy E(z, F)

3 that results from the Fourier time series analysis of the velocity components in

the time interval 2 3 tF < t < 25TF. It is observed that the harmonic components

F = 0.5, F = 1.5, and F = 2.5 are smaller by several decades when compared to

3 the results of Case-3 as displayed in Figure 6.17. This reduction is due to the fact

that the wake disturbances are periodic in the time interval 23Tp < t < 25Ty.

3 This periodic behavior is apparent from Figure 6.29 which shows the temporal

behavior of the transverse velocity V0 in the time interval 23TF < t : 25TF.

I
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Clearly, V 0 is approximately periodic for all the streamwise locations that are

shown in Figure 6.29.

6.2 Investigations of Three-Dimensional Disturbance Development I
In this section, investigations of three-dimensional disturbance development

in a high-deficit flat plate are discussed. Several different calculations are under-

taken. With the first calculation (Case-6), the ability of the numerical method

to accurately simulate three-dimensional disturbances is demonstrated. This cal-

culation is the three-dimensional analog of Case-1. In Case-7, the response of I
a wake when subject to a three-dimensional excitation is investigated. In con-

trast to Case-6, in this calculation the base flow exhibits considerable streamwise

variation. In Case-8 and Case-9, the response of the wake to a combination of 3
two-dimensional and three-dimensional excitations is investigated.

Case-6 I
For this case, the development of a small amplitude, three-dimensional dis- 3

turbance in a flat plate wake is calculated. The results of this calculation are

compared to linear stability theory in order to verify the ability of the numerical

method to accurately simulate three-dimensional disturbances. For this calcula-

tion, the spatial and temporal domains, and the base flow were identical to Case-1. I
The wake was excited with a three-dimensional sinuous mode disturbance of

amplitude A3 = .001, spanwise wave number 7 = .5, and frequency 3 = .28. The

two-dimensional component of the excitation was set to zero, so that A 2 = 0. I
In terms of the three-dimensional streamwise velocity disturbance u1,d(Zo, y) at

the inflow boundary, A 3 is given by the relation A 3 = max(ud(zo,y)l). The

amplitude and phase of the Orr-Sommerfeld eigenfunctions that correspond to the

frequency 8 = .28 and spanwise wavenumber y = .5 are shown in Figures 6.30. U
I
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I The spatial discretization was identical to that used in Case-l. Three spanwise

modes (K = 6) were calculated. Restrictions on the allowable time step, due

to numerical stability considerations, are more severe for calculations of three-

dimensional disturbances than for the calculation of two-dimensional disturbances.

For this calculation, the time step

At with Ln =- 256 (6.22)

was sufficiently small to ensure numerical stability. Five periods TF of the funda-

3 mental disturbance component were calculated (L 2 = 1280).

The relevant parameters in this calculation are summarized below:

ICase-6:

3 the streamwise location of the inflow boundary, Z = .3;

the streamwise location of the outflow boundary, ZN = .7;

3 the transverse location of the lower freestream boundary, Yo - -10;

the transverse location of the upper freestream boundaryyM - 10;

the Reynolds number Re - UA Re 200000;

the amplitude level of the two-dimensional excitation, A 2  0;

the amplitude level of the three-dimensional excitation, A3  - 001;

the frequency of the wake excitation, - .28;

the spanwise wave number of the wake excitation, t - .5;

the number of streamwise grid increments, N - 128;

3 the number of transverse grid increments, M - 64;

the number of spanwise modes computed, K/2 = 3;

3 the number of time steps calculated, L 2  = 1280;

and the time steps per fundamental disturbance period, LG.=- 256.I
I
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The amplification curves for the disturbance kinetic energy El(z, F) of the

first spanwise mode (k = 1) are shown in Figure 6.31 and are compared to the

corresponding curves from linear stability theory. The amplification curve for the I
fundamental disturbance (F = 1) compares well to the linear stability theory

prediction of the kinetic energy. In the Navier-Stokes calculation, the second

harmonic (F -- 2) is present but is much smaller than the fundamental disturbance. 3
For the streamwise location z = .35, the amplitude and phase distributions

of the fundamental disturbance component (k = 1, F = 1) are compared to the 3
amplitude and phase distributions obtained from a spatial linear stability theory

analysis of the base flow. This comparison is shown in Figures 6.32 and 6.33. The U
Orr-Sommerfeld amplitude and phase distributions are normalized in the same

manner as discussed in connection with Case-1. The amplitude distributions of the

fundamental disturbance are virtually identical to the Orr-Sommerfeld amplitude 3
distributions. The phase distributions of the fundamental disturbance also exhibit

good agreement with the Orr-Sommerfeld phase distributions. I
The results of this calculation, as represented by the disturbance kinetic en-

ergy as well as the disturbance amplitude and phase distributions, compared rea-

sonably well to linear stability theory. It is concluded that the numerical method 3
is suitable for calculations of three-dimensional disturbances.

Case-7 3
With this calculation, the development of a three-dimensional disturbance in

a high-deficit flat plate wake is investigated. In contrast to Case-6, the base flow I
changes significantly in the streamwise direction and was approximately the same 3
as the base flow that was used for Case-2, Case-3, and Case-4. For this case, the

frequency of the excitation was chosen to be identical to the forcing frequency for 3
Case-2 through Case-5 so that the results of this calculation can be compared to U

U
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I those earlier cases. The results of this calculation win serve as a reference for other

calculations for which both two-dimensional and three-dimensional disturbances

were introduced.

This calculation was performed in a spatial domain that is bounded by

3 = .03 , ZN =.36 , Yo=- 1 6  , and YM--1 6  (6.23)

As in Case-2, the undisturbed wake was computed subject to a Gaussian

Iinflow streamwise velocity distribution. The resulting base flow modeled the wake

3from the experiments of Sato (1970).

The wake was excited with a three-dimensional sinuous mode disturbance of

3 amplitude A3 = .001, spanwise wavenumber 7 = .5, and frequency = .51. The

amplitude of the two-dimensional component of the excitation was A2 = 0. The

I amplitude and phase of the Orr-Sommerfeld eigenfunctions that correspond to the

frequency j and spanwise wavenumber - are shown in Figures 6.34.

The spatial domain was discretized into N streamwise grid intervals and M

5transverse grid intervals where

3-N=256 and M=128 (6.24)

Three spanwise modes (K = 6) were computed. For this calculation, the time step.

At= 2 with Lma = 512 (6.25)

was sufficient to ensure numerical stability. The time-dependent response of the

3wake was calculated for eight fundamental disturbance periods TF which is equiv-

alent to t = 4096At.

I For this calculation, the spatial domain contained approxlmately eight stream-

wise wavelengths of the fundamental disturbance (based on the wavelength at the

I
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inflow boundary) with approximately sixteen grid points per streamwise wave- 3
length. In the transverse direction, the domain contained approximately 32 mo-

mentum thicknesses (based on the inflow boundary velocity distribution) with I
approximately four grid points per momentum thickness. Based on the results of 3
the two-dimensional calculations, it is felt that the spatial discretization discussed

here results in solutions that are sufficiently independent of the grid sizes. 3
The relevant parameters in this calculation are summarized below:

Case-7: I
the streamwise location of the inflow boundary, ZO .03;

the streamwise location of the outflow boundary, ZN .36;

the transverse location of the lower freestream boundary, yo -16; 3
the transverse location of the upper freestream boundary,yM 16;

the Reynolds number Re = L-' ,  Re 200000;

the amplitude level of the two-dimensional excitation, A2  0;

the amplitude level of the three-dimensional excitation, A3  .001;

the frequency of the wake excitation, - .51; 1

the spanwise wave number of the wake excitation, It .5;

the number of streamwise grid increments, N - 256; 3
the number of transverse grid increments, M - 128;

the number of spanwise modes computed, K/2 3; 3
the number of time steps calculated, L2 4096; 1
and the time steps per fundamental disturbance period, Lma 512.

Amplification curves of the kinetic energy P1 (z,F) are shown in Figure 6.35a.

The disturbance kinetic energy is calculated using the Fourier analyzed velocity 3
components that correspond to the time interval 6TF < t < STF. The variation of U
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I the kinetic energy of the fundamental disturbance (F = 1) agrees closely with that

obtained from linear stability theory calculations. As was the case for calculations

of two-dimensional disturbances, the large amplitude level of the F = 0.5 and

F = 1.5 harmonics is due to the fact that the wake has not achieved a time

periodic state in the time interval 6TF < t < 8TF. At z ; .12, the fundmental

I disturbance appears to saturate. However, this saturation may be due to the

3 nonperiodic component of the wake disturbances.

For comparison purposes, amplification curves of the disturbance kinetic en-

3 ergy that correspond to the time interval 8TF < t < 1OTF are shown in Figure

6.35b. In this figure, the fundamental disturbance does not saturate. In addition,

I the other harmonic components, particularly the F = 0.5 and F = 1.5 harmonics,

3 have decreased relative to their values in Figure 6.35a. This indicates that the

disturbances are not periodic in the time interval 6TF < t < 8TF. The saturation

3 of the fundamental disturbance that was observed in Figure 6.35a is apparently

due to this nonperiodicity.

Figures 6.36 show contours of streamwise vorticity w,, in the yz-plane for

3 t = 4096At. The horizontal scale of the plots in Figures 6.36, 0 < z/Az < 32,

is equivalent to two spanwise wavelengths of the fundamental disturbance. The

3 vorticity shown in Figure 6.36a corresponds to the inflow boundary z = .03 and

is due solely to the three-dimensional excitation at this boundary. Figure 6.36b

shows the streamwise vorticity corresponding to x = .146. For this location, the

3 vorticity concentrations have rotated relative to the vorticity concentrations at the

inflow boundary. The numerical results of Meiburg and Lasheras (1988), which are

3 shown in Figure 6.37, display a similar behavior. Meiburg and Lasheras attributed

the rotation of the vorticity concentrations to the velocity field induced by these
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concentrations. In Figures 6.36, the solid contours denote positive streamnwise I
vorticity. Because the vorticity is defined as 3

W=-Vxu , (6.26) I
positive vorticity induces a counterclockwise azimuthal velocity component and

a counterclockwise rotation of the positive streamwise vorticity concentrations.

For similar reasons, the negative streamwise vorticity concentrations rotate in the

clockwise direction. The vorticity in Figures 6.36 is also distributed in a more corn- I
plicated pattern than the vorticity observed in Figure 6.37 (Meiburg and Lasheras,

1988). It is believed that the simpler vorticity distribution in Figure 6.37, as com-

pared to Figure 6.36b, is due to the simpler initial perturbation that was employed I
by Meiburg and Lasheras (they used inviscid vortex dynamics and disturbed the

wake by perturbing the vortex filaments sinusoidally in the streamwise and span- 3
wise directions).

Case-8 and Case-9 I
With these calculations, an attempt is made to investigate certain aspects of

the secondary instability of wakes. These studies are undertaken by calculating the

interaction of a large amplitude two-dimensional disturbance with a smaller ampli- 3
tude three-dimensional disturbance. The results of these calculations are compared

to the results of Case-7 and Case-4 in order to observe how the two-dimensional 3
disturbance influences the development of the three-dimensional disturbance and

vice-versa. I
The base flow and most relevant parameters were identical to those in Case-7.

For both Case-S and Case-9, the amplitude, frequency, and spanwise wavenumber

of the three-dimensional excitation had the same values as in Case-7, so that 3
A 3 =.001 , f3=.51 , and "=.5 . (6.27)
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I For Case-8, the amplitude of the two-dimensi:nal excitation had the same value

as in Case-4, so that

A2 = .01 (6.28)

I For Case-9, the amplitude and frequency of the two-dimensional excitation was

I A 2 = .05 . (6.29)

U Amplification curves of the kinetic energy Pk(z, F =- 1) for Case-8 are shown

in Figure 6.38. The curve corresponding to k = 0 represents the kinetic energy

of the two-dimensional disturbance. The curve corresponding to k = 1 is for

3 the kinetic energy of the three-dimensional disturbance. The curve labeled 'LST

MEAN FLOW' is for the kinetic energy E1 (zF - 1) of the three-dimensional

3 disturbance component, as predicted by a linear stability theory analysis of the

mean flow. This last curve is computed in the same manner as discussed previously

I(Case-3). The two-dimensional disturbance (k = 0) grows very rapidly at first and

3 then saturates at an amplitude of (z, F = 1) .20. This behavior is very similar

to that observed for the two-dimensional disturbance development in Case-4 where

3 three-dimensional disturbances were not present.

The three-dimensional disturbance (k = 1) initially grows in a manner similar

I to the three-dimensional disturbance from Case-7. However, the saturation of the

3 two-dimensional disturbance causes a temporary reduction in the amplification

rate of the three-dimensional disturbance. After a brief period of lower ampli-

3 fication, the three-dimensional disturbance resumes stronger growth. However,

the amplification rate is smaller than the amplification rate that was observed

I before the saturation of the two-dimensional disturbance. The reduction in the

three-dimensional growth rate, that is probably caused by the saturation of the
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two-dimensional disturbance, may be due to the changing stability characteristics I
of the mean flow. This proposition is supported by the close comparison in Fig- -
ure 6.38 of the three-dimensional disturbance and the curve labeled 'LST MEAN

FLOW'. The resumption of rapid three-dimensional disturbance growth, follow- 3
ing the saturation of the two-dimensional disturbance, could be explained by a

secondary instability mechanism. U
Amplification curves of the kinetic energy tk(z, F = 1) for Case-9 are shown 3

in Figure 6.39. Due to the now larger two-dimensional excitation amplitude, the

two-dimensional disturbance saturates further upstream than in Case-8. As in 3
the previous case, the saturation of the two-A;nensional disturbance causes a

strong reduction in the three-dimers~onai amplification rate. After a short period

of reduced three-dimensional growth, the three-dimensional disturbance continues

its amplification. Qualitatively, this behavior is the same as in Case-8. However, as I
a result of the larger two-dimensional excitation amplitude, the reduction in the 3
three-dimensional amplification rate and the subsequent resumption of stronger

growth occur further upstream than in Case-8. 3
In Figure 6.39, the resumption of strong three-dimensional growth is short-

lived: the three-dimensional disturbance tends to saturate for a second time. How- I
ever, this second saturation is in contrast to the observed behavior in Figure 6.38

(Case-8). To further check the validity of the results of Case-9, this calculation

is repeated in a spatial domain that is twice as long (ZN = .69, N = 512) as 3
the spatial domain of the original calculation but which in all other respects is

identical to the original calculation. The amplification curves of the disturbance 3
kinetic energy E'(z, F) for both the original calculation (ZN = .36, N = 256) and

the long domain calculation (ZN = .69, N = 512) are shown in Figures 6.40. For I
the long domain calculation (Figure 6.40b), the three-dimensional fundamental 5
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disturbance (F = 1) initially grows more slowly after its initial saturation than

3 was the case for the original calculation (Figure 6.40a). However, the fundamental

disturbance does not saturate for a second time as it did in the original calcula-

I tion. Therefore, it appears that the second saturation of the three-dimensional

fundamental disturbance that is observed in Figures 6.39 and 6.40a is due to the

influence of the outflow boundary.

The three-dimensional disturbance behavior observed in Figures 6.38 and 6.39

is similar to that observed by Metcalfe et al. (1987) in their investigations of sec-

I ondary instability in free shear layers (see Figure 6.41). They numerically calcu-

lated the temporal development of a large amplitude two-dimensional disturbance

as it interacted with a smaller amplitude three-dimensional disturbance. They

3 found that the saturation of the two-dimensional disturbance temporarily inhib-

ited the amplification of the three-dimensional disturbance. After a brief period of

I reduced growth, the three-dimensional disturbance continued growing and even-

tually surpassed the two-dimensional disturbance.

For Case-8 and Case-9, the presence of the two-dimensional disturbance ap-

3pears to alter the distribution of vorticity as compared to Case-7. The streamwise

vorticity in the yz-plane for t = 4096At is shown in Figures 6.42. Figure 6.42a

3 shows the streamwise vorticity for Case-8 which corresponds to the streamwise

location z = .146. Figure 6.42b shows the streamwise vorticity for Case-9 for the

same streamwise location. Due to the presence of the two-dimensional disturbance,

3 the streamwise vorticity is distributed quite differently than in Figure 6.36b (Case-

7). In Figure 6.36b, the streamwise vorticity is distributed in a pattern of discrete

I streamwise vortices. For Case-8 and Case-9, in which both two-dimensional and

three-dimensional disturbances are present, the streamwise vorticity is distributed
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in a large number of small vortices. Furthermore, in contrast to Case-7, these 3
vortices do not appear to rotate.

Additional displays of the interactions of the two- and three-dimensional dis- 3
turbances are shown in Figures 6.43 through 6.45. In Figures 6.43, the spanwise

vorticity w, in the yz-plane for t = 4096W is shown for Case-7, Case-8, and I
Case-9. The interaction of the two- and three-dimensional disturbances (Case-8 3
and Case-9) significantly alters the vorticity distribution as compared to Case-7

for which only a three-dimensional disturbance was introduced. 3
In Figures 6.44, the streamwise vorticity w. in the zy-plane for t = 4096At

is shown for Case-7, Case-8, and Case-9. The two-dimensional disturbance, which 3
is present in Case-8 and Case-9, causes a much broader transverse distribution of

vorticity as compared to Case-7 for which the two-dimensional disturbance was I
absent. In Figures 6.45, similar plots of the spanwise vorticity w. are shown. For 3
Case-7 (Figure 6.45a) the spanwise vorticity disturbance is much smaller thar for

Case-8 and Case-9 (Figure 6.45b and 6.45c). For Case-8 and Case-9, the vorticity 3
develops in a manner similar to Case-3 (see Figure 6.14c).

Figures 6.46, 6,47, 6.48, 6.49, and 6.50 (Case-8) give detailed views of the I
vorticity fields in the braid regions between the large concentrations of spanwise

vorticity. It is in these regions that Meiburg and Lasheras (1988) observed the for-

mation of lambda vortices. However, from the results of these calculations, no con- 3
clusive evidence of these vortices was observed. This might be due to the fact that

the forcing amplitudes that were used for Case-8 were different from those used for 3
the simulations of Meiburg and Lasheras (1988). For Case-8, the wake was forced

with a large two-dimensional disturbance and a small three-dimensional distur- I
bance while Meiburg and Lasheras employed a large three-dimensional disturbance 3
and a smaller two-dimensional disturbance. Furthermore, there is a considerable

3
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difference between the Reynolds number for this work, Ree = U = 594 and

the Reynolds number for Meiburg and Lasheras's calculations, Re9 = 74. Finally,

it was not possible to duplicate the amplitude levels used by Meiburg and Lasheras

3 because a larger three-dimensional forcing amplitude would have required the use

of more Fourier modes in these calculations. This was not feasible due to the

I limitations of the available computer resources.

In Figures 6.51 through 6.53, the amplitude distributions of the spanwise

vorticity for (k = 0, F = 1) and (k = 1, F = 1) and the amplitude distributions of

I the streamwise vorticity for (k = 1, F = 1) are shown. Case-7, Case-8, and Case-

9 are represented in these figures. Due to the influence of the two-dimensional

disturbance in Case-8 and Case-9, the amplitude distributions of the streamwise

and spanwise vorticity are significantly different from those for Case-7 (Figures

* 6.51).

Additional consequences of the interaction of the two-dimensional and three-

dimensional disturbances axe obvious from observing the behavior of the wake

3 half-width b. In Figure 6.54, the wake half-width b corresponding to three different

calculations: Case-4 (A2 = .01,A 3 = 0), Case-7 (A 2 = O,A3 = .001), and Case-

3 8 (A 2 = .01, A 3 = .001) is displayed. For reference the wake half-width of the

base flow is also shown. When only two-dimensional disturbances are present

(A 2 = .01, A3 = 0), the wake as characterized by its half-width b becomes much

broader. However, when forced with only a three-dimensional disturbance (A 2 =

0,A 3 = .001), the wake width does not differ significantly from the width of

3 the base flow. The strongest effect of broadening is observed when the wake is

excited with both two-dimensional and three-dimensional disturbances (Case-8).

3 For Case-8 (A 2 = .01,A 3 = .001), the wake half-width development is initially

very similar to that of Case-4 (A 2 = .01, A3 = 0). However, while for Case-4 the
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half-width stops increasing when the two-dimensional fundamental disturbance U
saturates, for Case-8 the half-width continues increasing beyond this point. This

additional increase in the wake half-width is due to the presence of the three-

dimensional disturbance. 3
In Figure 6.55, the wake half-width for both Case-8 and Case-9 is shown.

For Case-9, in which the two-dimensional disturbance is larger than in Case-8, the U
initial increase of the half-width begins further upstream. However, the variation of

the wake half-width is similar for both cases once the two-dimensional disturbance

has saturated. 3
U
U
U
I
I
I
I
I
I
I.
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* CHAPTER 7

I CONCLUSIONS

I A numerical method has been developed for studying the evolution of two- and

three-dimensional disturbances in high-deficit wakes. Comparison of the results

of this method were made to both linear stability theory and experiments. The

5numerical method was found to be capable of simulating both small and large

amplitude disturbances.

I Simulations of two-dimensional sinuous mode disturbances in a high-deficit

flat plate wake were undertaken. At small amplitude levels, the disturbances grew

exponentially at rates predicted by linear stability theory. At higher amplitude

3 levels, nonlinear effects became important and the disturbances saturated. The

saturation of the fundamental disturbance was found to be related to the stabil-

3 ity characteristics of the mean flow. The main influence of a larger excitation

amplitude on the resulting disturbances was to accelerate saturation. For large

disturbance amplitudes, the wake developed a Kirmin vortex street pattern. Fur-

3 thermore, the influence of the outflow boundary conditions on the results of the

numerical simulations was found to be negligible. The subharmonic component

3 that appeared in the wake was found to be due to a nonperiodic wake disturbance.

For a fixed spatial location, the subharmonic component decreased with time.

Investigations of three-dimensional disturbances were also undertaken. Asso-

3 ciated with three-dimensional disturbances were pairs of counter-rotating stream-

wise vortices that appeared to rotate as a result of the velocity field induced by

3 these vortices. When both two- and three-dimensional disturbances were present,

the saturation of the two-dimensional disturbance caused the three-dimensionalI
I
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disturbance to saturate. Shortly after saturation, the three-dimensional distur-

bance resumed stronger growth, possible because of a secondary instability mech-

anism. Larger two-dimensional forcing amplitudes accelerated the saturation of 3
the two-dimensional and three-dimensional disturbances and also accelerated the

resumption of strong three-dimensional growth. I
The interaction of two-dimensional and three-dimensional disturbances re-

salted in complicated distributions of vorticity. Instead of a small number of dis-

crete streamwise vortices, as when the wake was excited with only three-dimensional 3
disturbances, a larger number of vortices spread over a much wider transverse re-

gion were present. Furthermore, these interactions resulted in a much broader 3
wake distribution than that observed when only two-dimensional or three-dimen-

sional disturbances were excited. I

Future simulations of three-dimensional disturbances in wakes will undoubt- 3
edly require larger computational grids in order to better resolve the flow field.

For these simulations to be practical, the numerical method should be modified. It i
is felt that greater efficiency could be obtained by solving the Navier-Stokes equa-

tions in velocity-pressure formulation. This would result in both reduced memory I
requirements because a smaller number of variables would have to be stored, and

in reduced computation times because of the smaller number of nonlinear terms.

Furthermore, for simulations of three-dimensional disturbances, the stability 3
of the current numerical method was found to be quite restraining. This had

an adverse effect on the computational efficiency. In the future, this inefficiency 3
should be avoided by employing numerical methods with more favorable stability

characteristics. 3
In this work, interactions of two-dimensional and three-dimensional distur- 3

bances appeared to be an important factor in the three-dimensional breakdown

!U
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I of the wake. In these simulations, only the initial stage of these interactions was

observed. In the future, more complete simulations of these interactions should

be attempted as these interactions most likely play an important role in the de-

3 velopment of the three-dimensionality in transitional wakes. Of particular interest

is how these interactions lead to the formation of the dominant three-dimensional

3structures that are observed in experiments.

!
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I APPENDIX A

5 SOLUTION OF THE THREE-DIMENSIONAL

UORR-SOMMERFELD EQUATION

I In this appendix, the finite-difference method used to obtain the eigenvalues

and eigenfunctions of the three-dimensional Orr-Sommerfeld equation for the spa-

3 tial stability problem is discussed. Both the Orr-Sommerfeld equation and the

related Squire's equation are solved using fourth-order finite-differences.

3 For a small amplitude disturbance with velocity and vorticity components

3u(,yzt) = Real(fL(y)ei(az+iYZ- Pt)) (A.la)

v(x,y,z,t) = Real((y)e i ( z+-z - j t)) (A.lb)

w(z, y, z, t) = Real(7b(y)ei(0 + Yz - 6t)) (A.1c)

3 w2 (zz,t) = Real(az(y)e i(*2+'yZ/t )) I (A.ld)

I wS(x,y,z,t) = Real( , (y)ei(0z + iz - ji)) (A.le)

and wz(z,y,z,t)= Real( ,(y)e
i(az+'yz-- t))  (A.1f)

the amplitude -b(y) of the transverse velocity is an eigenfunction of the Orr-

3 Sommerfeld equation

bv+...De " -2(a 2 +'y2)f +(a 2 +_ 2 )2 D) = 0 . (A.2)I ctRe

3In equation (A.2), U = U(y) is the streamwise velocity of the undisturbed flow

and is assumed to be independent of z and z. Furthermore, a is the streamwise

3 wavenumber of the disturbance, -y is the spanwise wavenumber of the disturbance,

c = 0/a is the phase velocity of the disturbance where , is the temporal frequency,

I
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Re is the Reynolds number, and i = VW7 is the imaginary number. The notation 3
( )' denotes differentiation with respect to y.

Solutions of equation (A.2) are sought in the transverse interval Yr,i, y 3
Yma. For wakes, equation (A.2) is subject to boundary conditions at y = Ymin 3
and Y = Ymax of the form

=(y,,,,) = a (yni,) , (A.3a) I
=(yni) aOf(ymin) , (A.3b)

and V'(Yaz) = -a(y,,,,) (A.3d) I
Equation (A.2), coupled with the boundary conditions (A.3), is an eigenvalue I

problem of the form

Lli - cL 2 f (A.4a) 3
where 3

LI=U(d 2 _ .2 _ )|1L1 =U ( y 2 - 72) -"

- (d 4 -2 (a 2 + ' )dy-+(a 2 + -2)2) (A.4b)

a n d 
+ R ( 

/ 4 2

L2 = -a t72 (A.4c)

For specified parameters a, 7, Re, and the base flow velocity U, equation (A.4a)

can be solved for the eigenvalue c and the eigenfunction v. I
For spatially amplifying disturbances, a is obtained as a function of 3, Re, 3

and -y by iteratively solving equation (A.4a) for the eigenvalue c, subject to the

constraint, F(a)I= 0 (A.5)

a
= - = 0(A.I
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I "Subsequent values of a are obtained by applying the secant method to equation

5 (A.5) to get

a3+l = aj - F(a') (Fa J+1 a ) (A.6)(F~aj) - F(ai-1))CA6

3where j denotes the iteration level. The iteration scheme is repeated until

a(j3,Rew) is obtained for the desired accuracy. For each iteration level j, the

I Orr-Sommerfeld equation (A.4a) is solved using a finite-difference method.

3 The eigenfunction 0(y) of equation (A.4a) is sought at the discrete points

y,, = yo + may for m = 0,..., M (A.7)

I where yo = Ymin, YM = Ym.., Ay is the spacing between grid points, and M + 1

I is the total number of points in the domain. The function (y) and its derivatives

can be approximated to fourth-order accuracy (Kurtz and Crandall, 1962) usingI
1 7 41 7 135g- + 5 -+g-i+ + .9m -+ +-6-, , (A.8Z)

f) l(in-1 + jim+) (A.8b)

1

Vt, 1 1 -g.-2 + 2 g.- 3 2gm +1+m2 (.M T 1 2 3 m+3 2
and ' T" (gn-2 - 4gm.- 1 + 6gn - 4g,_ + g_, 2) (A.8d)

where 1, =(y,).

1 Using equations (A.8) to approximate the derivatives in the Orr-Sommer-

feld equation (A.4a) and the boundary conditions (A.3), the following matrix

3
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eigenvalue problem I
d, d2  d3  d4 dL -2
ds d6 d7  d6 d I
A1  B1  C, D1  E1  go

A M*°°* 3I° Io

A 1m B cm Dm Em g

d d. d7  d6 ds gM+l
dLi d2  d3  d4  dLi gM+2

o 0 0 0 0 g2 3
o 0 0 0 0 9-1

90 I
C A.9) I

AM MCM DM EM 1
0 0 0 0 0 gM+10 0 0 0 0 9M+2 I

is obtained. The coefficients of the matrices in equation (A.9) are 1

A, = U(y.) + aU"(ym) + a2 + bl (A.10a)

Bm = U(y,,) + asU"(ym) + a4 + b2  (A.10b)

Cm = U(ym) + asU"(Ym) + a6 + b3  (A.10c)

Dm B m , (A.10d) 3
Em = Am , (A.lOe) 3

and

AM= a7  , (A.11a) I
1
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3 Em = as , (A.11b)

1 C,, = ag , (A.11c)

Dm,, = as , (A.11d)

I Em = aT , (A.lle)

3 and

d I = VY/-a 360- + - 2 (A.12a)

I 4=Ay

d3 = 60 /a +7f (A.12c)

1d = 1 (A.12d)45 2

d5 1-A (a2 + f2 ) (A.12e)
d6 = 2 - (a2 +,2) ,(A.12.f)

2 7 5y

d7 = 3 4lAy
2 60

3 The constants in equations (A.10) and (A.11) are

a = 1 16 (a 2 + t2)  (A.13a)

1

a 2 = - 1 (A.13b)I 360

a3 =2 -T 2 72) (A.13c)

a 4 = - 4 (A.13d)
45 '3 41 2 2

as =- 2Ay 2 60 (a2 + 7) (A.13e)

a 4 = -1 4 (A.13f)3 a 6 01 2

a7 = - - +,72) + -I (A.13g)
360 12Ay

I

I
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7 2 (A.13h)
413(A.13i) 3

aZ = -6-1 (a 2 + - 2) - 32 (A.13i)

an = ,-e (-," 6Ay 2 (a 2 + 7'2) + 1 (a 2 + 2)2) , (A.14a)

7;)+e ( 2
2 +()a It (A.14b)

b3 = i 6 4 32 (a 2 + -t) + L(a 2+ -t2)2) (A.14c)

The eigenvalues and eigenfunctions of equat:an (A.9) are obtained using the I
IMSL routine EIGZC. As equation (A.9) is a M + 5 dimensional matrix eigenvalue

problem, M + 5 eigenvalues and eigenfunctions are obtained. However, only two 1
eigenvalues and two eigenfunctions have physical meaning. 3

Of the M + 5 values of the complex eigenvalue c, only those for which the real

part of c, C ,. = R eal( = 3 () a (A.15)

c,.=Reala = + a ?_

satisfies

ct < 1 forfl < 1 (A.16) 3
are considered to be physically meaningful. In this work, 3 is always less than

one. Of the eigenvalues that satisfy (A.16), one corresponds to a sinuous mode I
disturbance and one corresponds to a varicose mode disturbance. The sinuous

mode eigenvalue is the one for which

ci = Imag( = --"- (A.17)Ia .a + a?9

attains its maximum value and for which the corresponding centerline transverse 3
velocity is nonzero. Alternatively, the varicose mode eigenvalue is the one for ,I

!1
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which ci attains its maximum value and for which the corresponding centerline

5transverse velocity is zero.

Once a is obtained for the given parameters 3, f, and Re, it remains to

5 construct the velocity and vorticity components from the eigenfunction g,,,. For

each transverse location y,, the transverse velocity 6, is obtained from

I 7 41 7 1I, =3i60gm -2 + Tjgm-i + Fogm + Tgm1+ T6.m- (A. 18)

Procedures to obtain the remaining velocity and vorticity components depend on

the whether the disturbance is two-dimensional or three-dimensional.

5For two-dimensional disturbances (-1= 0), the streamnwise velocity is obtained

from the continuity equation

= -,,,m (A.19)

where b' is given by equation (A.8b). The spanwise vorticity component u, is

obtained from

Wzm 7n M - M) (A.20)
a

where 6" is given by equation (A.8c). The remaining velocity and vorticity com-

ponents are

Wm, m = , M = U; " = 0 (A.21)

For three-dimensional disturbances (/ 5 0), the velocity and vorticity compo-

nents are obtained in the following manner. The transverse vorticity cj, is obtained

from Squire's equation

"- (a 2 + 72 + iaRe (U - c)) a. = -iReU'Tyi (A.22)
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Squire's equation is solved in the transverse interval yi, y 5 Y,.. subject to 3
the Dirichlet boundary conditions g

0I yi.) , (A.23a)

and u.J(ym,.) = 0 (A.23b)

Fourth-order finite-differences are used to discretize the derivatives in equation

(A.22). The resulting system of equations, 5
G0  16 -1 wyo

16 G, 16 -1 wy1 I
-1 16 G 2  16 -1 w 2

-1 16 GM- 2  16 -1 W'M-2

-1 16 GM-1 16 WYM-1
-1 16 GM awIM

f2

fM-2
fm-

is solved for the transverse vorticity 4j,. The coefficients of the matrix in equation

(A.24) are 3
G,, = -12Ay 2 (a 2 + _72 + iaRe (U(y,.) - c)) - 30 (A.25)

I
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3 and the right hand side of equation (A.24) is composed of the elements

5 f, - -iU'(y,)y,,,'12Ay 2  (A.26)

The remaining velocity and vorticity components can be obtained from the

I transverse velocity 0 and the transverse vorticity Jv. The spanwise vorticity C3, is

3 obtained from the equation

"zm =-s ((a2"" + i m ) (A.27)

Equation (A.27) is derived from the v Poisson equation and the relationship

I +O + i-101 = 0 (A.28)

In equation (A.27), the derivative V' is obtained from equation (A.8c) and C0Jm

is obtained using the fourth-order finite-difference formula

Ym = 2h (Y-2 - 80/- Oml ;m2(.9

i The streamwise vorticity is obtained from equation (A.28), rewritten as

'5 lzM_+ WY"M (A.30)

where O 'is obtained from equation (A.29). The streamwise velocity is obtained

from the relation

fI )a ( Wp + ar(A.31)
which is derived from the definition of the transverse vorticity. Finally, the span-

S wise velocity is obtained from the continuity equation

3 = ia?,,+O- , (A.32)
i7

3 In both equations (A.31) and (A.32), the velocity derivative 6' is obtained from

equation (A.8b).I
I
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3 APPENDIX B

i INFLUENCE OF THE GRID INCREMENT

ON THE NUMERICAL SOLUTIONI
For the calculations that are discussed in Chapter 6, it is desired to determine

the influence of the grid increment on the numerical solutions. This is done by

If repeating the calculations of Case-I and Case-2 for several different computational

grids. For Case-i, small amplitude disturbances are calculated and therefore, this

3case is used to test the influence of the grid increment when nonlinear effects are

unimportant. For Case-2, larger amplitude disturbances, as compared to Case-i,

are calculated. This case is used to test the influence of the grid increment when

nonlinear effects are significant.

For both Case-1 and Case-2, the streamwise and transverse grid increments

5are varied independently so that the variation of the calculated flow field with the

grid increment may be observed. With the domain size held constant, the grid

increments are varied by changing the number of grid points. For the temporal

discretization, numerical stability considerations require that a much smaller time

step be used than is required based solely on temporal accuracy. Therefore, the

3 time step is not varied for either Case-1 or Case-2.

Case-1 is recalculated using the grids

M=64, N=64, (B.la)

SM= 64, N = 256, (B.lb)

N = 128, M = 32, (B.lc)

and N - 128, M = 128. (B.id)I,
3
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In addition, the results of Case-1 that are described in Chapter 6, for which 3

N = 128 and M = 64, (B.2) £
are compared with the calculations described here. All other parameters for these

calculations are identical to those discussed in Chapter 6 with regard to Case-1.

Figures B.1 show amplification curves of the fundamental disturbance for 3
various grid increments. In Figure B.la, the amplification curves corresponding to

N = 128 and N = 256 are relatively close together and exhibit exponential growth. 5
However, for N = 64 the amplification curve is significantly different from those

corresponding to N = 128 and N = 256 and does not exhibit exponential growth I
as would be expected for a small amplitude disturbance. In Figure B.lb, the

amplification curves corresponding to M = 64 and M = 128 are almost identical

while the amplification curve corresponding to M = 32 exhibits small differences 3
with the other two curves. For all values of M, the fundamental disturbance grows

exponentially. 5
Figures B.2 display the amplitude distribution of the fundamental disturbance

component of the streamwise velocity for various grid increments. In Figure B.2a, I
the amplitude distributions for N = 128 and N = 256 are quite dose and compare 3
well to linear stability theory. For N 64, the shape of the amplitude distribution

is similar to those for N = 128 and N = 256, but its amplitude level is significantly 3
higher than for the other curves. In Figure B.2b, the amplitude distributions for

M = 64 and M = 128 are quite close. For M = 32, the amplitude distribution is 5
similar in shape to those for M = 64 and M = 128 but clearly requires a smaller

transverse grid increment.

Figures B.3 display the phase distribution of the fundamental disturbance

component of the streamwise velocity for various grid increments. In Figure B.3a, S
I
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Sthe phase distributions for N = 256 and N = 128 are similar in shape and rea-

isonably close together. For N = 64, a significant phase differcme.-" between this

curve and those for N = 128 and N = 256 is present. In Figure B.3b, the phase

I distributions for all values of M are in reasonable agreement.

From these results it is apparent that the size of the grid increment has

significant influence on the calculated flow field. However, it appears that for the

grid used for Case-1 in Chapter 6, for which

M=64 and N=128 , (B.3)

the calculated flow field is reasonable well resolved and is not significantly altered

5 when the finer grids (N = 256, M = 64 and N = 128, M = L28) are employed.

Case-2 is recalculated using the grids

M = 256, N =512, (B.4a)

I M = 256, N =768, (B.4b)

SN= 1024, M = 128 (B.4c)

and N=1024, M=192. (B.4d)

In addition, the results of Case-2 that are discussed in Chapter 6, for which

M = 256 and N = 1024, (B.5)

are compared with the calculations discussed here. All other parameters for these

3 calculations are identical to those discussed in Chapter 6 with regard to Case-2.

Since nonlinear effects are important for this flow field, the fundamental dis-

5turbance as well as the mean and second harmonics components are displayed for

various grid increments. Figures B.4 and B.5 display the amplification curves for

I
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the mean component F = 0, the fundamental disturban ,e F = 1, and the second 5
harmonic F = 2- In Figure B.4a (F = 0) and B.4b (F = 1), the amplification

curves corresponding to N = 768 and N = 1024 are virtually identical. Beyond '
the point of saturation, the amplification curves for N = 512 deviate from those

corresponding to N = 768 and N = 1024. In Figure B.4c, the second harmonic I
(F = 2) appears to be more sensitive to the streamwise grid increment than the 3
other harmonic components and appears to require greater streamwise resolution

than was used in these calculations. In Figures B.5, the amplification curves for 3
all three harmonic components, F = 0, F = 1, and F = 2, are virtually identical

regardless of the transverse grid increment. I
Figures B.6 through B.9 display the amplitude and phase distributions of the

streamwise velocity for F = 0, F = 1, and F = 2. As was observed for the

amplification curves, the amplitude and phase distributions vary more with the 5
streamwise grid increment than with the transverse grid increment. In particular,

the second harmonic component displays the most sensitivity with respect to the 3
streamwise grid increment.

From the results presented in Figures B.4 through B.9, it would appear that

for M = 256, the transverse grid increment is sufficiently small so that the mean 5
component, the fundamental component, and the second harmonic component are

adequately represented. However, for the streamwise grid increment corresponding 5
to N = 1024, the results are not quite as conclusive. It appears that the mean £
component and the fundamental component are adequately represented with this

grid increment. However, it is not quite as clear whether the second harmonic is 3
adequately resolved as it displays a significant variation with the streamwise grid

increment. £
I
£
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