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Laminar-turbulent transition of high-deficit flat plate wakes is investigated by
direct numerical simulations using the complete Navierﬁgtokes equations. The simulations
are based on a spatial model so that both the base flow and the disturbance flow can
develop in the downstream direction. The Navier<Stokes equations are used in a vorticity-
velocity form and are solved using a combination of finiteddifference and spectral
approximations., Fourier series are used in the spanwise direction. Second-order finite-
differences are used to approximate the spatial derivatives in the streamwise and trans-
verse directions. For the temporal discretion, a combination of ADI, Crank-Nicolson,

and Adams—~Bashforth methods is employed. The discretized velocity equations are solved
using fast Helmholtz solvers. Code validation is accomplished by comparison of the
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~Calculations of two- and/or three-dimensional sinuous mode disturbances in the
wake of a flat plate are undertaken. For calculations of two~dimensional disturbances,
the wake is forced at an amplitude level so that nonlinear disturbance developmen? may
be observed. In addition, the forcing amplitude is varied in order to determine its
effect on the disturbance behavior. To investigate the onset of three-dimensionality,
the wake is forced with a small-amplitude three-dimensional disturbance and a larger
amplitude two-dimensional disturbance. The two-dimensional forcing amplitude is varied
in order to determine its influence on the three-dimensional flow fleld.. ,/

Two-dimensional disturbances are observed to grow exponentially at Small amplitude
levels., At higher amplitude levels, nonlinear effects become important and the distur-
bances saturate. The saturation of the fundamental disturbance appears to be related
to the stability characteristics of the mean flow. Large forcing amplitudes result in
the earlier onset of nonlinear effects and saturation., At large amplitude levels, a
Karman vortex street pattern develops.

When the wake is forced with both two- and three-dimensional disturbances strong
interaction between these disturbances is observed. The saturation of the two-dimen-
sional disturbance causes the three-dimensional disturbance to saturate. However, this
is followed by a resumption of strong three-dimensional growth that may be due to a
secondary instability mechanism. Larger two-dimensional forcing amplitudes accelerate
the saturation of the two-dimensional and three-dimensional disturbances as well as
accelerate the resumption of strong three-dimensional growth, These interactions
also result in complicated distributions of vorticity and in a significant increase
in the wake width.
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ABSTRACT

Laminar-turbulent transition of high-deficit flat plate wakes is investigated
by direct numerical simulations using the complete Naver-Stokes equations. The
simulations are based on a spatial model so that both the base flow and the
disturbance flow can develop in the downstream direction. The Navier-Stokes
equations are used in a vorticity-velocity form and are solved using a combination
of finite-difference and spectral approximations. Fourier series are used in the
spanwise direction. Second-order finite-differences are used to approximate the
spatial derivatives in the streamwise and transverse directions. For the tempo-
ral discretization, a combination of ADI, Crank-Nicolson, and Adams-Bashforth
methods is employed. The discretized velocity equations are solved using fast
Helmholtz solvers. Code validation is accomplished by comparison of the m;meri-
cal results to both linear stability theory and to experiments.

Calculations of two- and/or three-dimensional sinuous mode disturbances in
the wake of a flat plate are undertaken. For calculations of two-dimensional dis-
turbances, the wake is forced at an amplitude level so that nonlinear disturbance
development may be observed. In addition, the forcing amplitude is varied in
order to determine its effect on the disturbance behavior. To investigate the
onset of three-dimensionality, the wake is forced with a small-amplitude three-
dimensional disturbance and a larger amplitude two-dimensional disturbance. The
two-dimensional forcing amplitude is varied in order to determine its influence on
the three-dimensional flow field.

Two-dimensional disturbances are observed to grow exponentially at small
amplitude levels. At higher amplitude levels, nonlinear effects become important

and the disturbances saturate. The saturation of the fundamental disturbance
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appears to be related to the stability characteristics of the mean flow. Larger
forcing amplitudes result in the earlier onset of nonlinear effects and saturation.
At large amplitude levels, a Kirman vortex street pattern develops.

When the wake is forced with both two- and three-dimensional disturbances,
strong interactions between these disturbances is observed. The saturation of the
two-dimensional disturbance causes the three-dimensional disturbance to saturate.
However, this is followed by a resumption of strong three-dimensional growth
that may be due to a secondary instability mechanism. Larger two-dimensional
forcing amplitudes accelerate the saturation of the two-dimensional and three-
dimensional disturbances as well as accelerate the resumption of strong three-
dimensional growth. These interactions also result in complicated distributions of

vorticity and in a significant increase in the wake width.
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CHAPTER 1

INTRODUCTION

According to Sato and Kuriki (1961), in the laminar-turbulent transition of a
flat plate wake three distinct regions can be identified: a linear region, a nonlinear
region, and a three-dimensional region. In the linear region, small disturbances
in the background flow trigger two-dimensional wave-like fluctuations. Sato and
Kuriki’s measurements indicate that the frequency of the dominant fluctuation in
the wake corresponds to the frequency of the most amplified disturbance predicted
by linear stability theory. Once present in the wake, these fluctuations grow ex-
ponentially in the downstream direction and are well described by linear stability
theory.

Due to the large amplification rates associated with wakes, the amplitudes of
the disturbances rapidly become quite large and nonlinear interactions between the
disturbances become important. The behavior of the disturbances deviate from
linear stability theory predictions but the wake remains two-dimensional (Sato
and Kuriki, 1961). In this region, the disturbances grow at rates significantly less
than those predicted by linear stability theory and harmonics of the fundamental
disturbances are generated. Also due to nonlinear effects, the mean flow is altered.
As verified by several researchers (Zabusky and Deem, 1971; Aref and Siggia, 1981;
and Meiburg and Lasheras, 1988), this sequence of events leads to the well known
Kérmdn vortex streets that are observed in flat plate wakes.

Finally, three dimensionality becomes important. The work of Robinson and
Saffman (1982) indicates that the two-dimensional Karman vortex street is un-

stable with respect to three-dimensional disturbances. As a consequence of this
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instability, three-dimensional lambda vortex patterns are formed in the region be-
tween consecutive Karman vortices of opposite sign (Meiburg and Lasheras, 1988).

1.1 The Linear Region of Transition

Linear stability theory describes the behavior of small amplitude disturbances
in parallel shear flows. .In nonparallel shear flows, linear stability theory is not
strictly applicable but can still be a useful model of small amplitude disturbance
development. The streamfunction ¥ of a disturbance described by linear stability

theory has the form
¥(2,9,2,t) = Real(¢(y)e (*=+7~A1) (1.1)

where the variables x = (z,y,z) and ¢ are the spatial position vector and time
respectively. The amplitude ¢(y) is an eigenfunction of the Orr-Sommerfeld equa-

tion
(U—c)(d)"—(az+72)¢)—U"¢+a—;—2—e(¢""—2(az+72)¢"+(a2+72)2¢) =0 (1.2)

where primes denotes differentiation with respect to y. In equation (1.2), U =
U(y) is the streamwise velocity distribution of the undisturbed flow, « is the
streamwise wave number of the disturbance, v is the spanwise wave number of
the disturbance, and 8 is the temporal frequency of the disturbance. The phase
velocity of the disturbance is ¢ = 8/a and Re is the Reynolds number of the
undisturbed flow. In general, a and 8 are complex and v is real. However,
interest is usually confined to two cases, namely, to the case of spatially growing
disturbances for which a = (a,, ;) is complex and S is real, and to the case of
temporally growing disturbances for which 8 = (3., 8;) is complex and a is real.
A complete derivation of equation (1.2) is given by Wh.ite (1974).
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Wakes are inviscidly unstable due to the inflection points in their velocity
profile. As is characteristic of flows with inflectional profiles, the disturbances ob-
served in wakes have high amplification rates. Also, because the streamwise veloc-
ity distribution of wakes has two inflection points, two different instability modes
exist. The sinuous mode (mode-1) is highly amplified with an anti-symmetric
streamwise velocity distribution. The varicose mode (mode-2) is less amplified (at
most frequencies) than the sinuous mode and has a symmetric streamwise velocity
distribution. Because of the higher amplification rates associated with the sinuous
mode, it is this mode that is usually observed in experiments (Sato and Kuriki,
1961; Sato, 1970; Miksad et al., 1982).

The validity of linear stability theory in describing the initial stages of transi-
tion in near wakes has been verified experimentally. Sato and Kuriki (1961) studied
the transition of a flat plate wake subject to acoustical excitation. The results of
these experiments were cpmpa.red to linear stability calculations of temporally-
amplifying, sinuous mode disturbances. The temporal amplification rates g;, ob-
tained from linear stability theory, were converted into spatial amplification rates
%—fi using a phase velocity transformation. The theoretical eigenfunctions com-
pared very well with those obtained experimentally. However, the experimental
amplification rates did not compare as well with those predicted by linear stabil-
ity theory because the phase velocity transformation is not accurate enough for
dispersive waves.

Mattingly and Criminale (1972) experimentally investigated the behavior of
small amplitude disturbances in the near wake of a thin airfoil (NACA 0003) and
compared their results to both spatial and temporal linear stability theory. For
comparison of temporal amplification rates to experimentally obtained amplifi-

cation rates, the Gaster transformation (Gaster, 1962) was employed. The ex-
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perimentally obtained amplitude distributions and amplification rates compared
well to spatial linear stability theory predictions. The assumption of temporally-
amplifying disturbances, and using the Gaster transformation, did not produce as
good an agreement with the experimental results. The lack of agreement can be
explained by the fact that the Gaster transformation is based on the assumption
of small amplification rates |a;| << 1, which is not satisfied for high-deficit wakes.
From their results, Mattingly and Criminale concluded that spatial stability the-
ory is more accurate than temporal stability theory in predicting the behavior of
small amplitude disturbances in the near wake of a thin airfoil.

Mattingly and Criminale also found that the stability characteristics of a
spatially varying wake could be computed by the use of a quasi-uniform (quasi-
parallel) assumption, i.e. the wake is assumed to be locally parallel. The stability
characteristics of the local mean velocity profile are then computed using the Orr-
Sommerfeld equation. Then, the streamwise wave number a is obtained as a
function of streamwise distance. |

Miksad et al. (1982) have shown that linear stability theory is also valid when
there is more than one dominant disturbance in the wake. They experimentally
studied the early development of two small amplitude sinuous mode disturbances,
of different frequencies, in the wake of a thin airfoil. Their results indicated that,
at small amplitudes, both disturbances grew exponentially at rates predicted by
linear stability theory.

1.2 The Nonlinear Region of Transition
Due to the large amplification rates associated with high-deficit wakes, the

linear region of transition in these flows is usually quite small. With the appearance
of large ampl.ituﬂe disturbances, nonlinear effects become important and linear

stability theory is no longer applicable. In contrast to the linear region where
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the disturbances grew quite rapidly, the disturbances evolve more gradually in
the nonlinear region. This is also in contrast with the development in boundary
layer flows where rapid transition to turbulence occurs once nonlinear effects and
three-dimensionality become important.

Sato and Kuriki (1961) found that the early (upstream) part of the nonlinear
region is similar in some respects to the linear region of transition. Although the
amplification rates of the disturbances are significantly lower than those observed
in the linear region, their experimental results indicate that the amplitude dis-
tribution of the fundamental disturbance does not change significantly until the
nonlinearity has persisted for some distance downstream. However, harmonics
of the fundamental disturbance are generated and the second harmonic becomes
the dominant disturbance component near the wake centerline (Sato and Kuriki,
1961). Nonlinear effects also change the mean flow, leading to rapid increases in
the mean centerline velocity and the mean wake half-width (Sato, 1970). The
resulting mean streamwise velocity distribution is much fuller than that of the
undisturbed flow, indicating a greater degree of fluid mixing.

As the disturbances travel farther downstream in the nonlinear region, the
amplitude distribution of the fundamental disturbance deviates from the shape
predicted by linear theory. The measurements of Sato (1970) indicate that the
peaks in the streamwise velocity amplitude distribution of the fundamental dis-
turbance shift towards the outer edge of the wake and also decrease in magnitude
with increasing downstream distance. The peak value in the streamwise velocity

amplitude distribution of the second harmonic component, which initially grew

. rapidly, also begins to decrease. Sato speculates that the energy lost by the fluctu-

ations might be transferred to the mean flow. Sato’s measurements also show that

the mean half-width and the mean centerline velocity, which initially increased in
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the nonlinear region, begin to decrease when the fundamental streamwise velocity
fluctuation begins to decrease. Sato showed that the production of fluctuation

energy

-l

ay ?

where u' and v' are the time fluctuating components of the streamwise and trans-

(1.3)

verse velocities, u'v’ is the Reynolds stress associated with the disturbances, and @
is the mean streamwise velocity, has the same sign as the mean centerline velocity
gradient. Therefore, when the mean centerline velocity increases the fluctuation
energy should increase, and when the mean centerline velocity decreases the fluctu-
ation energy should decrease. Also in this region, Sato and Kuriki (1961) observed
velocity “over-shoots” near the outer edge of the wake so that the mean streamwise
velocity attained values greater than its freestream value.

Motivated by the appearance of vortices in wakes, Sato and Kuriki proposed
a “double row vortex model” as a way of explaining the nonlinear behavior of
wake disturbances. In this model, the vortices alternate in sign and are arranged
in a staggered fashion on each side of the wake centerline. The velocity induced
by this vortex pattern does indeed capture some of the features observed in wakes
such as the second harmonic near the wake centerline, the velocity over-shoots
near the outer edge of the wake, and the decrease of the mean centerline velocity

far downstream.

Several different numerical investigations support the double row vortex model.

Zabusky and Deem (1971) performed Navier-Stokes simulations of the temporal
evolution of an unstable disturbance in a parallel wake. Their results indicate
that the saturation of the fundamental disturbance in plane wakes leads to the

developfnent of a vortex streat pattern. Phenomena similar to those observed by
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Sato and Kuriki, such as the velocity over-sh;)ots, were observed in the numerical
results. Aref and Siggia (1981) and Meiburg and Lasheras (1988) studied the tem-
poral development of vortex rows using inviscid vortex dynamics. They modeled
a plane wake as two vortex sheets of opposite sign. When the vortex sheets were
perturbed, they evolved into a two-dimensional vortex street.

Several researchers including Sato and Onda (1970), Sato (1970), Motohashi
(1979) and Miksad et al. (1982) have experimentally investigated the behavior of
wakes that were disturbed at two different frequencies. By perturbing the wake
with disturbances at two different frequencies, these researchers hoped to gain
insight into the complex nonlinear interactions that take place in natural transi-
tion. Sato and Saito (1975) performed experiments to study the interaction of a
discrete frequency disturbance with the broad band background fluctuations that
were naturally present in the flow. In their experiments, Sato (1970) and Sato and
Onda (1970) found that t}.xe nonlinear interactions between the two disturbances
generated the expected higher harmonics as well as a difference frequency. This
difference frequency is similar to the low frequency fluctuations observed in natu-
ral transition. In natural transition, the low frequency component is not a single
frequency but a narrow band of frequencies. The conjecture is that these low fre-
quencies are generated by interactions between the higher frequency fluctuations
that result from the linear instability.

Miksad et al. (1982) found that interactions between the difference frequency
and the two fundamental frequencies produced sidebands in the spectrum. These
sidebands modulate the amplitude of the fundamental fluctuations. Amplitude
modulation in combination with the dispersion relation of the fluctuations pro-

duces phase modulation of the fluctuations. Miksad et al. indicate that this mod-
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ulation has an important role in spectral broadening, that is in the redistribution
of energy from a small number of frequencies to a larger number of frequencies.
1.3 The Three-Dimensional Region of Transition

Investigations of laminar-turbulent transition in plane wakes have dealt mainly
with two-dimensional instability mechanisms. Notable exceptions are the numeri-
cal work of Meiburg and Lasheras (1987 and 1988), the experimental investigations
of Breidenthal (1980), and the theoretical work of Robinson and Saffman (1982).

Robinson and Saffman (1982) theoretically investigated the stability of vortex
arrays ‘o small amplitude two- and three-dimensional disturbances. They found
that the staggered pattern of the Kirmdn vortex street is most unstable with
respect to three-dimensional, spanwise-periodic disturbances. This implies that
the breakdown of the vortex streets observed in flat plate wakes should be of a
three-dimensional nature.

Breidenthal (1980) experimentally investigated the three-dimensional behav-
ior of a turbulent flat plate wake. The plate trailing edge varied periodically in
the spanwise direction in order to induce three-dimensional disturbances in the
wake. Under the influence of this three-dimensional perturbation, the wake was
observed to form a spanwise periodic array of interconnecting vortex loops.

Meiburg and Lasheras (1987 and 1988) numerically investigated the interac-
tion of a large amplitude, three-dimensional disturbance with a smaller amplitude,
two-dimensional disturbance. They found that the two-dimensional disturbance
led to the formation of a vortex street. The three-dimensional disturbance, through
an interaction with the two-dimensional vortex street, formed lambda vortices sim-
ilar to those found in boundary layers. Further interaction between the lambda
vortices and the two-dimensional structures led to the development of closed vortex

loops similar to those observed by Breidenthal.
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CBAPTER 2

PROBLEM STATEMENT

In this work, laminar-turbulent transition of an incompressible high-deficit
flat plate wake is investigated by direct numerical simulations using the com-
plete Navier-Stokes equations. Research efforts are initially focused on the early
stages of transition where iwo-dimensional disturbances are dominant. Of pn-
mary interest is the role of nonlinear effects in the development of disturbances.
Subsequently, the focus is on the early stages of three-dimensional breakdown
where both two- and three-dimensional disturbances play an important role. The
onset of this three-dimensionality is investigated by simulating the interaction of
two-dimensional and three-dimensional disturbances. Investigations of these in-
teractions might explain how three-dimensional disturbances, which according to
linear stability theory are more stable than two-dimensional disturbances, eventu-
ally dominate the wake development.

The numerical simulations are designed to model the physical experiments of
Sato and Kuriki (1961) and Sato (1970). The results of these simulations may then
be compared to the results of the physical experiments. The wake that is studied
is shown in Figure 2.1. The wake is generated by a thin flat plate aligned parallel
to a uniform stream. The boundary layers on the plate are assumed to be laminar
and steady over the entire length of the plate, and hence form a laminar wake
when they merge at the plate trailing edge. The wake evolves rapidly downstream
of the plate.

The spatial domain in which the numerical simulations take place lies down-

stream of the flat plate trailing edge. The domain is placed near the plate so that
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it will contain the high-deficit region of the wake. However, the domain does not
include the trailing edge of the plate. The plate trailing edge is of primary interest
in studies of receptivity and in studies of absolute instabilities. Although, these
are both important aspects of wake transition, they are not the main focus of this
research.

The calculations are undertaken using a numerical method that is designed
to solve both the two-dimensional and three-dimensional Navier-Stokes equations.
Because of the spanwise periodicity of disturbances that was observed in exper-
iments, the spanwise variation of the wake is represented by finite Fourier se-
ries. Second-order finite-differences are used to approximate the spatial deriva-
tives in the streamwise and transverse directions. Time integration of the Navier-
Stokes equations is accomplished using a hybrid scheme that is second-order time-
accurate.

The results of many experimental investigations (Sato and Kuriki, 1961; Sato,
1970; Mattingly and Criminale, 1972) indicate that transition in wakes is the result
of a spatial instability rather than a temporal instability. Furthermore, Mattingly
and Criminale (1972) showed that the use of the Gaster transformation (1962)
to convert temporal stability results into spatial stability results is invalid for
high-deficit wakes. Therefore, in this work spatial amplification and temporal
periodicity of wake disturbances is assumed. To correctly model disturbances of
this type, the boundary conditions employed in these simulations must be of the
inflow-outflow type. Spatially growing disturbances are induced in the wake by
time-periodic excitation at the inflow boundary of the spatial domain.

The remaining chapters describe in more detail other important aspects of
this work. In Chapter 3, the governing equations of these simulations are dis-

cussed. The length, time, and velocity scales that are used to nondimensionalize
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the governing equations are also discussed. The boundary and initial conditions
that are required to complete the mathematical formulation of the physical prob-
lem are outlined in Chapter 4. The method used to obtain numerical solutions of
the governing equations is discussed in Chapter 5. Chapter 6 contains a discus-
sion of the results of the numerical simulations. Finally, in Chapter 7 significant

conclusions are presented.
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CHAPTER 3

GOVERNING EQUATIONS

The Navier-Stokes equations govern momentum transfer in a viscous fluid.
These equations are derived by applying Newton’s second law of motion to a fluid
particle. The assumptions required to obtain these equations are that the fluid is
a continuum and that its stress-strain relationship is Newtonian.

3.1 The Navier-Stokes Equations

The numerical method is based on the Navier-Stokes equations for incom-

pressible flow. In vector form they can be written as

aua = 1= =2
—+u-Vi=-—= vVua . .
6t+u a 5 p+7V U (3.1)

The continuity equation for incompressible flow is

q

T=0 . (3.2)

The independent variables in equations (3.1) and (3.2) are time ? and the
spatial position vector X = (Z,%,%Z). The dependent variables are the Eulerian
velocity vector field @ = (%,7, W) and the fluid pressure 5. These variables depend
on X and f. The three coordinate directions Z, 7, and Z and the corresponding
fluid velocity components %@, 7, and W are shown in Figure 2.1. The fluid density
P and the kinematic viscosity of the fluid T are assumed to be constant. Variables
with over-bars denote dimensional quantities, while bold-face variables represent
vector quantities.

The operator V is a vector which in Cartesian coordinates is of the form

= 8 0 9
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The Laplacian operatc;r Vs
=2 0 & @&
= 3.4
V=& y* &= (3.4a)
and the operator T - V is
= 8 7] 7/
- V=%—+7—+0v— . .4b
-V 1‘ca7?-+-'va?7+w‘95 (3.4d)

Equations (3.1) together with (3.2) lead to four scalar equations which in
principle can be numerically solved for the four dependent variables (%,7, %) and 3
as functions of (Z,7,%) and t. However, one difficulty with solving these equations
is formulating boundary conditions for the pressure. This difficulty is avoided
by solving an alternate formulation of the Navier-Stokes equations in which the
pressure does not appear. This formulation of the Navier-Stokes equations is
obtained by taking the curl of equation (3.1) and simplifying the result with the

appropriate vector identities. The resulting vector equation (Batchelor, 1967) is

‘;t—‘?—ﬁza=w.%-'ﬁ-'v'a . (3.5)

The Eulerian vorticity vector field @ = (@,,@,,@,) is defined by the relation

o=-Vx1u (3.6)
and the operator @ - V is
- = 0 _ 8 _ 0
w-V-w,-é-__;+w,5§+w,-—z . (3.7)

It is noted that the vorticity vector as defined by equation (3.6) is the negative of
the usual definition of vorticity, @ = V x T. However, throughout this work the

term vorticity will be used to denote the flow variable defined by equation (3.6).
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Furthermore, because of the negative sign in equation (3.6), the direction of fluid
rotation associated with the vorticity vector @ = -V x T is given by a left-hand
rule instead of the usual right-hand rule.

Equation (3.5) is the Navier-Stokes equation in vorticity-velocity formulation,
or alternatively the vorticity transport equation. Coupled to equation'(3.5) is the
Poisson equation

Vi=Vxo (3.8)

which is derived from the definition of vorticity (@ = —V x ) using the continuity
equation (3.2). The vorticity @ is also a function of the independent variables X
and {%.

Equations (3.5) and (3.8) are a system of six scalar equations which can be
solved subject to appropriate boundary and initial conditions. As desired, equa-
tions (3.5) and (3.8) also do not contain the fluid pressure $ as an unknown vari-
able. However, in contrast to equations (3.1) and (3.2), now six scalar equations
must be solved instead of four.

3.2 Nondimensionalization

Equations (3.5) through (3.8) are nondimensionalized using appropriate length,
time, and velocity scales. The independent variables are nondimensionalized using

the following formulas:

z 7] - U
—3—i 3 P ’ — 3 d t —_— —— 3-9
z 7 y 7. z2=Z% an 7 (3.9)

where the variables without overbars are dimensionless. The streamwise length
scale £ is the length of the flat plate. In the transverse direction the length scale
is 8, which is the momentum thickness of the wake at the trailing edge of the flat

plate. The length scale that is used in the spanwise direction is 1/5 where ¥ is the
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spanwise wavenumber of the three-dimensional disturbance that results from the
excitation at the inflow boundary. The time scale is the ratio of the streamwise
length scale  to the freestream velocity U o.

The dependent variables @ = (%,7,%) and @ = (&,,@y,",) are nondimen-

sionalized as follows:

[Ty
U = =— V= = W= = 3.10a
7o T T e ( )
and
5.7 7,0 5.7
we = o = Gybe = Db (3.10b)
U Ut Usts

The parameter r, is the ratio of the transverse length scale 9, to the streamwise
length scale £: r, = §,./Z. Similarly, the parameter r4 is the ratio of the spanwise
length scale 1/7 to the streamwise length scale : rs = 1/(F¢).

With this nondimensionalization, equations (3.5) and (3.8) become

Gw 1 o2
and
Viu=g (3.113)

which are solved for the six unknown variables u = (u,v,w) and w = (v, wy,w:)
as functions of the dimensionless spatial position vector x = (z,y,2) and dimen-
sionless time ¢t. The right hand side of equation (3.11a), the vector f = (fz, f;, f:z),
is the dimensionless version of w - Vu — u. Vw which appears on the right hand

side of equation (3.5). The three components of f are

fa=w ﬂ+c..r 8—u-+wa—u- uawIE vau,_ Buws (3.12a)
2 =Y Ty T 5 T VB 8y Yoz W

e 8. By Bw, Bu, B,
fy—wz-é-z—-{-wyay-‘-wzg—uaz - ay -w ) ’ (312b)

ég-i-w éz-i- w uaw,_vaw, waw‘ (3.12¢)
Y3y " “* Bz oz 8y g:
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The right hand side equation (3.11b), the vector g = (gz, gy, J:), is the dimension-

less version of V x @ which appears in equation (3.8). The three components of g

are
= — -——T 3.13
9= 8y rydz ' (3.130)
1 8w, 730w,
-1 Gw: 70w, 3.13b
9 rar3 8z 13 8z ' ( )
1 8w 1 8w
d g.=——2 - = 3.13
ane 9:= 16 rsr3 By (3.13¢)
The dimensionless Laplacian has the form
2 2
: O 18 139 (3.14)

o2 "oy T o

and the parameter Re is the Reynolds number Re = '_Q%,_i

Equations (3.11) serve as the basic equations for the simulations described in
this work. Use of such a vorticity-velocity formulation for transition simulations
was suggested by Fasel (1976) and used successfully for both~two-dimensional
(1976) and three-dimensional simulations of transition in boundary layers. The
same formulation was also successfully employed by Pruett (1986) for two- and

three-dimensional transition studies in free shear layers.
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CHAPTER 4

BOUNDARY AND INITIAL CONDITIONS

The governing equations (3.11) represent a set of partial differential equa-
tions. This equation system is parabolic with respect to the time variable ¢ and
is elliptic with respect to the spatial variables z, y, and z. Solution of equations
(3.11) requires specification of suitable spatial and temporal domains. Further-
more, the unknown variables w and u must be specified at some initial time.
Finally, boundary conditions must be specified along the entire boundary of the
spatial domain.

4.1 Spatial Domain

The governing equations are solved in a three-dimensional rectangular region
in space that is downstream of the flat plate. The domain extends downstream
from near the trailing edge of the plate and is assumed to extend in the streamwise
direction for several disturbance wavelengths. The transverse thickness of the
domain is assumed to be much wider than the vorticity disturbances that are
present in the wake. The domain extends into the irrotational region of the flow
field above and below the wake. The spanwise extent of the domain is equal to
one nondimensional spanwise disturbance wavelength A, = 2.

The spatial domain and coordinate system are shown in Figure 2.1. The z di-
rection corresponds to the streamwise direction which is parallel to the freestream
velocity Ueo. The transverse direction is denoted by the independent variable
y. The third coordinate direction 2 corresponds to the spanwise direction and is
parallel to the trailing edge of the flat plate. For convenience, the origin of the

coordinate system is placed at the trailing edge of the flat plate . The spatial
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domain extends in the streamwise direction from z¢ to zn, in the transverse di-
rection from yo to yar, and in the spanwise direction from z = 0 to z = 2w. The

spatial domain is then given by

zg <z<zn , (4.1a)
Yo<y<ym , (4.1%)
and 0<z<2r . (4.1¢)

4.2 Temporal Domain

The time integration of the governing equations is divided into two separate
procedures or steps. In the first step, the governing equations are solved to obtain
the steady laminar wake that appears behind the flat plate. This is done by
integrating the governing equations (3.11) with respect to time, subject to time-
independent boundary conditions (no forcing), until a steady state solution is
obtained. This calculation begins at an initial time ¢ = ¢z, < 0 for which initial
values of the dependent variables u(z,y,2,%1,) and w(z,y,2,tL,) are specified.
The calculation ends at time ¢t = 0, at which time the steady solution is obtained.
This steady wake is referred to as the base flow.

In the second step of the calculation, the response of the wake to time-
dependent excitations that are introduced at the inflow boundary is investigated.
The governing equations are integrated in time from ¢ =0 to ¢t = ¢{f,. The initial
values of the dependent variables at time ¢ = 0 are given by the base flow.

4.3 Boundary and Initial Conditions for the Undisturbed Flow

The undisturbed wake is assumed to be two-dimensional, so that

w(z,y,2,t) = w,(z,y,z,it) = wy(z,y,2,t)=0 . (4.2)
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The remaining flow variables u(z,y, z,t), v(z,y, z,t), and w,(z,y, 2,t) are solu-
tions of the governing equations (3.11). Restricted to two-dimensional flows, the

governing equations become

Ow, +u8w, dw, 1 8%w, _1_3 w,) (4.3a)
ot oz 8y = Re \ 8z2 ' r2 8y? ’ )
u  18%u r;0w, .
51 187 Tl oy (4.3
v 1 6% ry Ow,
— 3
and 0z2  r2 9y? r3 8z (4.3¢)

Because the base flow is two-dimensional, the spatial domain reduces from a three-
dimensional region to a two-dimensional plane that is perpendicular to the z axis.
Boundary conditions for the unknown variables u, v, and w, need to be specified
along the boundaries of this plane. These boundary conditions are independent of
time and are chosen such that the solution of equations (4.3) represents a laminar,
high-deficit, flat plate wake.

Inflow Boundary (z = zo)

The inflow boundary of the spatial domain is located downstream of the flat
plate trailing edge. Therefore, the velocity and vorticity distributions at this
boundary should correspond to those of a spatially-developing, high-deficit wake.
For most of the calculations in this work, a Gaussian distribution is used to rep-
resent the streamwise velocity at the inflow boundary. The Gaussian distribution
compares reasonably well to experimentally obtained streamwise velocity profiles
(Sato and Kuriki, 1961). In a few other calculations, a hyperbolic secant function
is used to represent the inflow streamwise velocity. The hyperbolic secant dis-
tribution also compares reasonable well with experimentally obtained streamwise

velocity profiles (Mattingly and Criminale, 1972)

]
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With the use of either a Gaussian distribution or a hyperbolic secant dis-
tribution, the streamwise velocity is then known as a function of y at the inflow
boundary. However, since the z dependence of the streamwise velocity is unknown,
being given by the solution of the Navier-Stokes equations, the transverse velocity
cannot be related to the streamwise velocity using the continuity equation (3.2).
Instead, v must be given an arbitrary value. In this work, the Reynolds number of
the wake Re = Q%J is large. Therefore, except for very near the flat plate trailing
edge, the transverse velocity is much smaller than the streamwise velocity and can

be set to zero at the inflow boundary with reasonable accuracy.

For the base flow calculation, the inflow boundary condition is

U(zq, v, zst) = ul(y) ) (4'40')
v(zo,y, Z,t) =0 ) (4.4b)
and  w,(z0,¥,2,t) = w}(y) (4.4c)

where the superscript ( ) refers to the fact that the functions »/(y) and w!(y) are
the streamwise velocity and spanwise vorticity distributions at the inflow bound-
ary. If the streamwise velocity is specified to have a Gaussian distribution, then

u!(y) is given by

wy)=1-(1-U,)e " (4.50)
where
In(2)
o= 3 (4.55)

Alternatively, u/(y) can be given by

uw!(y) =1 - (1 ~ U.)sech?(ay) (4.6a)
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where
arccosh(v/2)
=— (4.6b)
The spanwise vorticity is given by
du’(y)
I(,) = . 4.7
w:(y) 3 (4.7)

In equations (4.5) and (4.6), U, is the centerline velocity of the wake at the inflow
boundary and b is the wake half-width at the inflow boundary. The parameters
U. and b are chosen so that the resulting base flow closely models the high-deficit
wakes observed in‘experiments.

Qutflow Boundary (z = zn)

For spatially-developing wakes, a proper outflow boundary condition is not
easily found since the flow condition at this location would be obtained by the
solution of the governing equations and is therefore not known a priori. However, it
is possible to determine an outflow boundary condition without requiring advance
knowledge of the solution. Suppose the two-dimensional version of equations (3.5)

and (3.8) are nondimensionalized using the boundary layer scaling

z 7.1 T T o3 @, L
==, = =R 7 ’ = = = ._—R d -— 4-8
z 7 Yy 7 e u T ' ¥ - ¢?, and w, ch* (4.8)

The parameters £, U, and Re are defined in section 3.2. The resulting dimen-

sionless equations, for steady flow, are

Ow, Ow, i&zw, 8w,

Y5 +v By = e 922 +-5§2— ) (4.9a)

1 8%y By bw,

Re 522 + 557~ oy ' (4.9%)
and L v 8% dw, (4.9¢)

Red? "o - Bz
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For high Reynolds number flows Re >> 1, as in these investigations, the stream-
wise diffusion term is the smallest term in each of the three equations (4.9a)
through (4.9c). Therefore, the streamwise diffusion terms are set equal to zero,

resulting in the outflow boundary conditions

&u
-5?(21\{,![, Z,t) =0 ’ (4.100.)
83

s (Enunt) =0 (4.108)

8w,
and Ez—(z~,y,z,t)=0 . (4.10¢)

These boundary conditions were first proposed by Fasel (1976).

Freestream Boundaries (y = yo) and (y = ym)

As stated previously, the base flow is assumed to be a high Reynolds number
flow. Therefore, the rotational part of the wake is confined to a region very near
to its centerline and the streamwise velocity rapidly approachs its freestream value
as y — too. The boundary conditions that satisfy these assumptions are, for the

lower freestream boundary,

u(z,y0,2,t) =1 , (4.11a)

v
-&—y(z,yo,z,t) =0 , (4.116)
and w;(z,¥,2,t)=0 . (4.11¢)

Similarly, for the upper freestream boundary:

u(z,ym,2,t) =1 , (4.12a)

v
5;(3’va z9t) =0 , (4.12b)
and w,(z,ym,2,t)=0 . (4.12¢)
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Equations (4.11b) and (4.12b) follow directly from the conditions (4.11a) and
(4.12a) using the continuity equation.
Auxiliary Condition (y = 0)

The boundary conditions described up to this point are sufficient to ensure
the uniqueness of the solution of the vorticity equation (4.3a) and the Poisson
equation for the streamwise velocity, equation (4.3b). However, these boundary
conditions are not sufficient to ensure the uniqueness of solutions of the transverse
velocity equation (4.3c). This was shown by Pruett (1986) who notes that if a
function V(z,y) is a solution of equation (4.3c), subject to the boundary conditions

described previously in this section, then the function
V(z,9) + c(z - 20) (4.13)

where ¢ is a constant, is also a solution of equation (4.3¢c). Therefore, an infinite
number of solutions satisfy equation (4.3¢) and the boundary conditions described
in this section.

Therefore, an additional condition has to be specified that will ensure that
the solution of equation (4.3c) is unique. Experimental evidence indicates that
the steady streamwise velocity is symmetric with respect to the wake centerline
(y = 0). Therefore, the transverse velocity v is antisymmetric with respect to the
wake centerline (y = 0) and is equal to zero at the centerline. The transverse

velocity v is therefore required to satisfy the condition
v(z,0,z,t) =0 (4.14)

at the wake centerline.
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Initial Conditions (¢ = tL,)

This calculation starts at time ¢t = ¢, for which initial value. of the unknown
variables u, v, and w, are specified. In this work, the initial conditions are chosen
such that the flow profile is independent of z and is identical to that of the inflow

boundary. These conditions are

u(z’y')z’t[n) = uI(y) ’ (4'150')
v(z,y,2,t,)=0 , (4.15%)
and w,(z,y,z,t1,) =w!l(y) . (4.15¢)

4.4 Boundary and Initial Conditions for the Disturbed Flow

For calculations of the disturbed flow, which may be three-dimensional, bound-
ary conditions have to be specified for all boundaries of the three-dimensional
domain.

Inflow Boundary (z = zo)

In a physical experiment, disturbances in wakes may originate from a variety
of sources. Wake disturbances may arise from freestream turbulence, roughness
on the flat plate, sound, etc. Disturbances can also be artificially introduced into
wakes through loudspeakers, flaps at the plate trailing edge, or through heater
strips on the plate. In this work, the disturbances are introduced at the inflow
boundary. For this purpose, solutions of the Orr-Sommerfeld equation are used.

Thus, the velocity and vorticity components at the inflow boundary are a
combination of those of the steady base flow discussed in the previous section and
of time varying components that then excite the disturbances in the wake. The

inflow boundary conditions are of the form

u(zg,y,2,t) = uss(zo,y) + Pfd(zo,y, t)+ de(zo,y, t)cos(z), (4.16a)
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v(z0,¥,2,t) =0 + Pf‘(zo,y,t) + P:‘(zo,y,t)cos(z) , (4.160)
w(zo,y,2,t) =0 + P3%(zo,y,t)cos(z) , (4.16¢)
we(z0,¥,2,t) =0+ P3%(zo,y,t)cos(z) , (4.16d)
wy(20,9,2,8) =0+ P3¥(zo,y,t)cos(z) , (4.16e)

and wz(zo,yy Z, t) = “"ZSS(zO!y) + Pzd(z(hy) ) + P:f(zo,y,i)cos(z) '(4'16f)

The functions uss(zo,y) and w,gs(zq,y) are the streamwise velocity and
spanwise vorticity components of the base flow at the inflow bouriary. The func-
tions P2%(zo,y,t), P?¥(z0,y,t), and P2%(z,,y,) are two-dimensional disturbances

obtained from the Orr-Sommerfeld equation. These functions are

P¥(z0,4,1) =r(t) Azu3i(y)cos(albzo — Bt + 424() , (417a)
P24(zg,y,t) =r(t)A2v%¥(y)cos(a®lzo — Bt + 2%(y)) ,  (4.17b)

and P2%(z,y,t) =r(t)4,w?S 4 (y)cos(a?z, — Bt + ¢2¢ L(v) - (417¢)

The functions Pfd(zo, ¥ t), Psd(zo’yvt)’ P::d(zm y’t)a Pad(zoay’ )s ng(zo, Y, t),
and ij( zg,y,t) are three-dimensional disturbances obtained from the three-dimen-

sional Orr-Sommerfeld equation. These functions are

P3%(zq,y,t) =r(t)Asu3d(y)cos(adiz, — Bt + ¢3%(y)) , (4.18a)
P}%(z0,y,t) =r(t)Asv}(y)cos(ar?zo — Bt + 63%(y)) ,  (4.18B)

P34(zq,y,t) =r(t)Aswi(y)cos(adlzo — Bt + 633(y)) , (4.18¢)

P2%(zq,y,t) =r(t)Aswdd (y)cos(atlzo — Bt + ¢33 (v)) , (4.18d)
P‘ﬁf(zo,y, t) =r(t)Asw; 4 (y)cos(addzy — At + ¢2: (v)) , (4.18e¢)
and  P¥(20,,t) =r(t)Aswig(v)cos(apze - Bt + 4ot (y)) . (4.18f)
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For the three-dimensional disturbances, a superposition of two oblique waves of
equal and opposite spanwise wavenumbers is used.

In the preceding paragraph, the parameter a2? was the real part of the eigen-
value of the two-dimensional Orr-Sommerfeld equation corresponding to the fre-
quency 3. The parameter a? was the real part of the eigenvalue of the three-
dimensional Orr-Sommerfeld equation corresponding to the frequency 3 and the
nondimensional spanwise wavenumber 4 = 1. The functions (u%}(y), $2%(y)),
(v¥(y), $24(y)), and (w,%(y), ¢2¢ (y)) are the amplitudes and phases of the eigen-
function of the two-dimensional Orr-Sommerfeld equation corresponding to the
frequency 8. The functions (ui(v),43%(y)), (v3(¥)83°(¥))s (wH(¥), 627 (¥)),
(w3 (1), 822 (1)), (wy 3 (v), 921 (¥)), and (w3 (y), 2% (y)) are the amplitudes and
phases of the eigenfunction of the three-dimensional Orr-Sommerfeld equation
corresponding to the frequency § and the nondimensional spanwise wavenumber
v = 1. Both the two-dimensional and the three-dimensional eigensolutions cor-
respond to the streamwise location z4 at which the steady streamwise velocity
distribution is uss(zo,y). The amplitude of the disturbances at the inflow bound-
ary is controlled by the parameters 4, and A;. The solution procedure used to
obtain eigensolutions of the Orr-Sommerfeld equation is discussed in Appendix A.

The function'r(t) that appears in equations (4.17) and (4.18) is chosen to min-
imize any transient disturbance that might arise when the excitation is initiated.

The function 7(2) has the values

0 2( Bt . .

Outflow Boundary (z = zn)

For numerical simulations of spatially-amplifying disturbances in shear flows,

the specification of appropriate outflow boundary conditions represents a major
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difficulty. Numerical simulations of spatially-periodic, temporally amplifying dis-
turbances avoid this problem because then periodic inflow-outflow boundary con-
ditions can be employed.

For the numerical simulation of two-dimensional, spatially-amplifying, small-
amplitude disturbances in a flat plate boundary layer, Fasel (1976) employed the
condition

8%’ 2,1

Baz = ~art (4.20)

at the outflow boundary. In equation (4.20), u' = u — ugs is the streamwise per-
turbation velocity and a, is the real part of the disturbance wavenumber. Similar
conditions were used for the other flow variables. In Fasel’s numerical simulations,
the boundary condition (4.20) allowed small-amplitude disturbances to pass unre-
flected through the outflow boundary. However, equation (4.20) is formally exact
only for small amplitude neutrally stable disturbances. Therefore, while equa-
tion (4.20) is a suitable approximation for the slowly amplifying disturbances that
are observed in flat plate boundary layers, it is definitely not appropriate when
disturbances are highly amplified, as in high-deficit wakes.

Pruett (1986) attempted to use outflow boundary conditions that were sim-
ilar to equation (4.20) for the simulation of spatially-amplifying disturbances in
free shear layers. However, as Pruett notes, amplification rates are quite large in
free shear layers, and therefore the previous condition is not valid. Pruett found
that boundary conditions similar to equation (4.20) allowed the fundamental dis-
turbance component to pass through the boundary unreflected, but reflected any
nonlinearly generated harmonics of the fundamental fluctuation.

As an alternative to boundary conditions such as equation (4.20), Pruett

employed a moving outflow boundary for his calculations. The moving outflow

]
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boundary is implemented in the following manner. First, the base flow is com-
puted in the entire spatial domain for which zg < z < z)y. Then, the disturbed
flow is calculated in a smaller subset of the spatial domain bounded by z = z, and
z = zmB(t) < =y where z = zprp(2) is the instantaneous location of the moving
boundary. The moving boundary is initially located at a specified distance down-
stream of the inflow boundary. As the calculation progresses and the disturbances
propagate downstream, the moving boundary propagates downstream ahead of
the disturbances so that the flow remains undisturbed at this boundary. As a
consequence, Dirichlet boundary conditions that enforce an undisturbed flow can
be employed at the location of the moving boundary. When the moving boundary
reaches the fixed outflow boundary at z = zp, the calculation is stopped.

For the présent simulations, boundary conditions similar to those used by
Pruett are employed. However, instead of using a moving outflow boundary, the
undisturbed flow condition is enforced at the outflow boundary located at z = z .
The disturbed flow is then calculated in the entire spatial domain. Furthermore,
the domain is .speciﬁed to be large enough so that the disturbances do not reach
the outflow boundary before the calculation is stopped. The resulting boundary

conditions are

uw(zN, Y 2, t) = uss(zn,y) (4.21a)
v(zN, Yy 2, t) = vss(zn,y) (4.21b)
w(zN, ¥, 2,t) =0 , (4.21¢)
wz(zN,Y,2,) =0 (4.21d)
wy(zn,y,2,8) =0 (4.21¢)

and w;(zN,¥,2,t) =w:ss(zN,y) - (4.21f)

As before, the subscript ( )ss denotes the steady state wake or base flow.
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Freestream Boundaries (y = yo) and (y = ym)

The freestream boundary conditions are based on the assumption that distur-

bances at these locations decay exponentially at rates predicted by linear stability

- theory. These boundary conditions are now derived.

An equation for the streamwise perturbation velocity u' = u — ugs can be

_obtained by subtracting the base flow streamwise velocity equation (4.3b) from

the streamwise component of equation (3.11b). The resulting equation is

62 ] 1 82 ] 2.1 [}
u 1 1:+_158u =r;8w, __1_8_«),i (4.22)
ri 8y rys 022 r3 8y r3 Oz

where the spanwise perturbation vorticity w, — w,ss is denoted by w,'. Assum-
ing that the velocity and vorticity fluctuations at the freestream boundaries are

described by linear stability theory, then
W!(2,4, 2,1) = Real(i(y)eias+=-9) (4.23)

and analogous formulas are valid for the other velocity and vorticity components.

Then, from Squire’s equation
éy," = (a® +1+iaRe (U - ¢)j &, = —iReU'd (4.24)

it can be shown that for Re >> 1, &, ~ 0 for |y] >> 1. Furthermore, from
the continuity equation and the definition of W, and «,, it can also be shown
that for velocity fluctuations that decay exponentially when |y| >> 1, then 4, ~
0 and &, =~ 0 for |y| >> 1. Combining equation (4.22) with equation (4.23),
and assuming that the vorticity fluctuations are negligible for large |y|, then the

equation

ay(zy)(y)— ri(al + 2)u(y) (4.25)
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is valid if the disturbance is assumed to neutrally stable (a; = 0). In reality
however, wake disturbances are usually highly amplified and therefore equation
(4.25) is not strictly applicable. However, for the calculations presented in this
work, the assumption of neutrally stable disturbances at the freestream boundaries

did not prove detrimental. Equation (4.25) has the solution
: yra, fal+y ~yra, fal+y
u(y) = Ae > + Be 3. (4.26)

Assuming that 4(y) is finite for all y, then for y — —oo, B = 0 and i(y) satisfies

di(y) [, 1.
7y =1y a,.+r§u(y) . (4.27)

Combining equation (4.27) with equation (4.23) results in the following boundary

the differential equation

condition for the streamwise perturbation velocity u'(z,y, z,t) at y = yo:

o' 2, 1
—5;(z,yo,z,t) =7y, /a2 + i (z,¥0,2,t) . - (4.28)
3

Similarly, the boundary condition at y = yar is

ou' 1
—a-;(:c,yM,z,t) = -1y, /a2 + -;-iu'(z,yM,z,t) . (4.29)
V 3

In a similar manner, the following boundary conditions for the spanwise ve-

locity w are obtained:

ow 1
E—(z,yo,z,t) =24 [a2 + —w(z,Y0,2,1) (4.30a)
Y T3

and

ow 1
-5-(::,yM,z,t) = =T (!3 + TW(Z,yM,Z,t) . (4.306) '
Y T3
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Boundary conditions for the transverse velocity v are obtained from the con-

tinuity equation. These boundary conditions are

8 Su dw
B-y'i(z,yo,z,t) = -5 (® 30, 2,1) - 3-(2,30,5,1) (4.31a)
and
& Bu E
—v(z’yMazat) = ———(Z,yM, 2,t) — l(z’yM, z,t) . (4.31b)
8y Oz Oz

The vorticity at both freestream boundaries is assumed to be zero. At the

lower boundary (y = yo)

wz(Z,Y0,2,t) =0 , (4.32a)
wy(zv Yo, 2, t) =0 , (4'326)
wz(Z,y0,2,t) =0 (4.32¢)

and at the upper boundary (y = yas)

wz(z,ym,2,t) =0 , (4.33a)
“wy(z,ym,2,t) =0 (4.33b)
w(z,ym,2,8) =0 . (4.33¢)

One further consideration is the form of the coefficient r;, /a2 + ;1; in equa-

3
tions (4.28), (4.29), and (4.30). These boundary conditions were derived based
on the assumption of three-dimensional disturbances for which a, = a3¢ and for

which the coefficient ry, /a2 + J becomes r;,/ add? 4 4. For two-dimensional
3 3

disturbances, the coefficient r3, /a? + -}; becomes simply a??r;. When both two-
3

dimensional and three-dimensional disturbances are present in the wake it is not
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obvious whether r,, /a2 + ;13 should be set equal to a2?r; or 72, [a3d? 4+ ;1; This

difficulty is resolved by decomposing the boundary conditions (4.28), (4.29), and
(4.30) into two-dimensional and three-dimensional components. Then, for the two-
dimensional component of equations (4.28), (4.29), and (4.30), r2,/a2 + ;13' is set
equal to a2?r,. For the three-dimensional component of equations (4.28), (4.29),
and (4.30), rz\/;}’._--{-—;lg is set equal to 72 \/m. This decomposition will be
discussed further in the next chapter.

Lateral Boundaries (z = 0) and (z = 27)

As discussed in section 4.1, the spanwise width of the spatial domain is equal
to one spanwise wavelength A\, = 2w. Therefore, periodic lateral boundary condi-

tions are employed. These boundary conditions for the u component are
u(z,y,0,t) = u(z,y,2m,t) , (4.34)

with analogous conditions for all other variables.

Initial Conditions (¢ = 0)

This calculation starts at time ¢ = 0. At this time an undisturbed flow
is assumed and therefore the flow variables are set equal to the values of the

previously computed base flow. Thus

u(z,y,2,0) = uss(z,y) , (4.35a)
v(2,¥,2,0) = vss(z,y) , (4.35b)
w(z,y,2,0) =0 , (4.35¢)
we(z,9,2,0) =0 (4.35d)
wy(2,9,2,0)=0 , (4.35¢)

and w,(z,y,2,0) = w,5s(z,y) . (4.35f)
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CHAPTER 5

NUMERICAL METHOD

The governing equations (3.11) together with the boundary and initial condi-
tions described in the previous chapter are solved using a combination of spectral
and finite-difference methods. Fourier series are used to represent the spanwise
variation of the dependent variables. Spatial derivatives in the streamwise and
transverse direction are approximated using second-order finite-differences. The
vorticity equation (3.11a) is numerically integrated in time using a combination of
an Alternating-Direction-Implicit (ADI) method, the Crank-Nicolson method, and
the second-order Adams-Bashforth method. The nonlinear terms are computed
spectrally at each time step. The discretized Helmholtz equations are solved using
fast Helmholtz Solvers. The numerical method discussed here is based on the work
of Pruett (1986).

5.1 Spanwise Spectral Approximation

As discussed in Chapter 4, the disturbance flow is assumed to be periodic
in the spanwise direction with wavelength A, = 2x. Because of this spanwise
periodicity, the streamwise velocity can be represented by a truncated Fourier

series of the form

¥
u(z,yyzt) > Y Uk(z,y,t)e’* (5.1)
=k

with analogous Fourier representations for the other flow variables. The Fourier
coefficients U*, V¥ Wk qk Q:, and Q* are functions of the two spatial variables

z and y and the time variable t. The Fourier coefficients can be rewritten as the

vectors

Ut = (U, Vv, wh) (5.2a)

]
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k
and 0* = (Q%,0k 0F) (5.2a)

which are the Fourier representations of the velocity vector u = (u,v,w) and the
vorticity vector w = (w,,w,,w,). Furthermore, because the physical variables
u = (u,v,w) and w = (w,,w,,w,) are real numbers, the Fourier coefficients satisfy

the relations

Uk(z,y,t) = ﬁ—k(z’ Y, t) (5.3a)

and 0%(z,9,8) =0 (2,31 (5.3b)

where ~ denotes the conjugate of a complex number. Equations (5.3) are valid for
all values of k.

In the governing equations (3.11), the physical variables are replaced by their
Fourier representations given by equation (5.1). Orthogonality of the exponential
functions e*** in the spanwise interval 0 < z < 27 decouples the three-dimensional

governing equations into -Ii(- + 1 sets of two-dimensional equations of the form

8k 1 [e2qF 108%QF [k\?_, g
8t  Re ( 5t Tl oy (;) Q| =F; (5.4a)
2 L(0%, 12% () a) g (5.4b)
at Re \ 8z2 ~ ri 8y? s v v .
o; 1 (@ar 18q; E\? , k
8t  Re ( 9zt Tl oy (;;) Q) =F, (5.4c)
FUr 18U (k)2
ozt T 12 Oy (;;) vt =G; (5.4d)
vk 1 8vk  (k)?
8z2 ' 12 oy? (;) vt=a; (5.4¢)
awr 12wk A, .
R ("J) W= (5.41)

Equations (5.4) are solved for 0 < k < %{- to obtain the complete set of Fourier

coefficients. The Fourier coefficients for which k < 0 are obtained from equations
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(5.3). Once the Fourier coefficients are obtained from equations (5.4), the physical
variables u and w can be reconstructed using equations (5.1).
The functions F¥, F¥, and Ff are Fourier representations of the nonlinear

terms f, f,, and f,. These functions are related by the expressions

¥
fz(zdhzft): Z sz(zvy’t)eikz ) (5'5‘1)
h=-§
% .
Az mzt) > Y Fi(z,yt)e* (5.50)
k=—-§
% v .
and f,(z,y,2,t) = Z sz(z’yvt)etkz . (5.5¢)
k=—q’f-

The functions f,, f,, and f, are defined by equations (3.12).
The functions G, G:,a.nd G* are Fourier representations of g., gy, and g,.

These functions are related by the expressions

5
9z(2,y,2,t) = Z G:(zﬂ/»t)eikz ’ (5.6a)
k=-§-
% .
9(z,y,5t)x Y Gi(zyt)e™ (5.60)
k=—-§
% .
and g,(z,y,2,t) ~ Z Gr(z,y,t)et** . (5.6¢)
k=--§

The functions g,, g,, and g, are defined by equations (3.13). The functions G¥,

G:, and G* have the simple form

k _ Mkt T _ k
G=‘rg L (5.7a)
e_ ik o0 13007
Gt = mgn, o (5.75)
a0k k
and gt=LZh 100 (5.7¢)
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Equations (5.4) are solved for the Fourier coefficients, subject to the Fourier
repr=sentations of the boundary and initial conditions from Chapter 4. For the
undisturbed flow calculation, Fourier representations of the boundary and initial
conditions from Section 4.3 are employed. For the disturbed flow calculation,
Fourier representations of the boundary and initial conditions from Section 4.4
are employed.

5.1.1 Fourier Representation of the Boundary and Initial Conditions for the
Undisturbed Flow

The Fourier representation of the boundary and initial conditions for the
undisturbed flow are discussed in this section. The undisturbed flow is two-

dimensional, so that
Uk=Vk=Wrt=0t=0F=0Q=0 for k>0 . (5.8)
Furthermore, for k = 0
02(z,y,t) = Qg(z,y,t) =W'%z,y,t) =0 . A (5.9)

The remaining Fourier coefficients U°(z,y,t), V°(z,y,t), and Q%(z,y,t) satisfy

the equations

an! 1 /8?0 16209
W“E(azz 7 ayZ)

BU° 18U 1,000
6:2 Tl Oy 1oy
82V | 18V0  ry 800
557 't oyp | i bz

=F} (5.10a)

(5.105)

and (5.10¢)

which are the Fourier analogs of equations (4.3) in Chapter 4. The nonlinear term
F2(z,y,t) in equation (5.10a) is

0! o’
0 - 0 z 0 z
F;(z,y,t) = (U o +V —By) . (5.11)
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Solution of equations (5.10) requires the Fourier representation of the boundary

and initial conditions from Section 4.3.

Inflow Boundary (z = z,)

The Fourier representation of the inflow boundary conditions (4.4) are

UO(ZO; y’t) = ul(y) ) (5.12(1)
V¥zg,y,t) =0 , (5.125)
and Qg(zo, y,t) = wf(y) . (5.12¢)

Outflow Boundary (z = zn)

The Fourier representation of the outflow boundary conditions (4.10) are

o*U° ‘

w—(zlv,y,t) =0 ’ (5.130)
82V

ET(:BN,y,t) =0 N (5.13b)
82q0
dz?

and (zNyy,t) =0 . (5.13¢)

Freestream Boundaries (y = yo) and (y = yu)

The Fourier representation of the lower freestream boundary conditions are

U(z,y0,t) =1 , (5.14a)

VO
%(z,yovt)=0 ) (5.14%)
and 0Q%(z,y0,t) =0 . (5.14¢)

Similarly, the Fourier representation of the upper freestream boundary conditions

are
U(z,ym,t) =1 (5.15a)
avo
?y_(zayM)i)zo ’ (5.155)
and Q(z,ym,t)=0 . (5.15¢)
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Auxiliary Condition (y = 0)
The auxiliary condition is
V%z,0,t)=0 . (5.16)
Initial Conditions (t = tf,)
The initial conditions for the base flow calculation are
U'(z,y,tr,) = w’(y) (5.17a)
Vo(z,y,t,) =0 (5.17b)
and Q(z,y,t1,) =wl(y) . (5.17¢)

5.1.2 Fourier Representation of the Boundary and Initial Conditions for the

Disturbed Flow

The Fourier representation of the boundary and initial conditions that are
used for the calculation of the disturbed wake are discussed in this section. In gen-
eral, the disturbed wake is three-dimensional. This requires solving the governing
equations for the three velocity components and the three vorticity components.
Boundary and initial conditions are required for all of these components.

Inflow Boundary (z = zp)

The Fourier representation of the inflow boundary conditions are shown below.

For k = 0, the boundary conditions are

U°(zo,y,t) = uss(zo,y) + P24(z0,y,t) (5.18a)
V(zo,y,t) = 0 + P34(zo,y,1) , (5.18b)
W(zo,y,t) =0 _ (5.18c¢)
Q2(z0,y,2) =0 , (5.18d)
Qg(zo,y,t) =0 , (5.18¢)
and 0Q%zo,y,t) = w.s5(20,y) + Pf,f(zo,y,t) . (5.181)
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For k = 1, the inflow boundary conditions are
Ul (z0,9,) = 5 Pi4(20,3,1) (5.19)

with similar conditions for the other flow variables. For k¥ > 1, the Fourier com-

ponents of the velocity and vorticity at the inflow boundary are
U*(zo,y,8) =0 etc. (5.20)

Outflow Boundary (z = zn)

At the outflow boundary, the wake is assumed to be undisturbed. For k£ = 0,

the boundary conditions (4.21) become

Uo(zN)yv t) = uSS(zNy y) ’ (5.21&)
VO(IN’yat) = vSS(szy) y (5.216)
Wo(zN’yat) =0 , (5.216)
QG (zn,y,t) =0 (5.21d)
Q(zn,y,t) =0 (5.21¢)
(2N, y,t) = wess(zn, ) (5.21f)
and for k > 0, become
Uk(zn,y,) =0 etc. (5.22)

Freestream Boundaries (v = yo) and (y = yum)
In Chapter 4, it was shown that a disturbance described by linear stability

theory behaves like

o' ., 1,
-55(3,3/,2, t) = rzq/al + —u'(2,y,2,1) (5.23)
3
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as y — to0o. For two-dimensional disturbances, equation (5.23) simplifies to

[}
%uy—(z,y,z,t) = tram' (2,9, 2,) . (5.24)

However, as noted in Chapter 4, equations (5.23) and (5.24) are not easily em-
ployed in their present form. The freestream boundary conditions are dealt with
more easily in terms of the Fourier transformed variables.

If equation (4.28) is Fourier decomposed with respect to the spanwise direction
z, then U? satisfies boundary conditions similar to equation (5.23) and U? satisfies
boundary conditions similar to equation (5.24). One other question concerns the
value of a, in these equations. For k = 0, a, is set equal to a2? which is associated
with the two-dimensional excitation at the inflow boundary (see equations 4.17).
For k = 1, «, is set equal to a3? which is associated with the three-dimensional
excitation at the inflow boundary (see equations 4.18). For k > 1, the wake is
assumed to be undisturbed at the freestream boundaries.

The Fourier representation of the lower freestream boundary conditions (4.28),

(4.30a), (4.312), and (4.32) are shown below. For k = 0, the boundary conditions

are
10 .

agy (37 yo,t) = r2a3-dU'o(za y(ht) ’ (5.256)

av?e au°
-a—y'(z,yo,t) = -2 (3:90:1) (5.25b)
wi=o0 , (5.25¢)
Qg(-“’,yo»t) =0 , (5.25d)
Q(z,y0,8) =0 , (5.25€)
and 0Q%z,y0,¢) =0 . (5.25f)
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As mentioned previously, primes denote the perturbation component of a variable.

For k = 1, the boundary conditions are

1 |
(30,1 = ragJaté® + LU 2 3008) (5.260)
Y Ts

P (ennt) =~y t) = W) o (5260)
BZVyl (z,90,) = r24 /aidz + rl—gwl(z,yo,t) , (5.26¢)
Ql(z,v,t)=0 (5.26d)
Q(z,%,t) =0 , (5.26€)

and Ql(z,ye,t) =0 . ‘ (5.26f)

For k > 1, the boundary conditions are
U(z,y0,t) =0 etc. (5.27)

The upper freestream boundary conditions are similar to those at the lower

freestream boundary. For k = 0, these conditions are

OU'O

5 (z,y0m,t) = =r2a2U" (2,30, 1) (5.28a)
aa—‘/:(z,yu,t)=—%%:(=,yu,t) ) (5.28b)
we=0 , (5.28¢)

QO (z,ym,t) =0 (5.28d)
Qg(:c,yM,t) =0 , (5.28e)

and Q(z,ym,t)=0 . (5.281)

For k = 1, the boundary conditions are

BUI 342 1 1
E—(z’yMat) = =ry/ax® + 1'—§U (z,yM$t) ’ (5'29a)
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av? au! ]
Ty—(za yMat) = —_B:(z’yM,t) - th(z,yM,t) ’ (5'296)

ow? , 1
By _(:l:, yM,t) = -2 aidz + ;in(z’ yM,t) (5.29¢)
3

Q(z,ym,t) =0 (5.29d)
Q‘;(z,yM,t) =0 , (5.29¢)
and Q%(z,ym,t)=0 . (5.291)

For k > 1, the upper freestream boundary conditions are
U*(z,yn,t) =0 etc. (5.30)

Equations (5.25a) and (5.28a) enforce transverse exponential decay of the two-
dimensional velocity disturbances. Equations (5.26a), (5.26¢), (5.29a), and (5.29¢)
enforce transverse exponential decay of the three-dimensional velocity disturbances
that correspond to the first spanwise mode k = 1.

Initial Conditions (¢ = 0)

As initial conditions for the calculation of the disturbed wake, the velocity

and vorticity distributions of the two-dimensional base flow are prescribed in the

entire integration domain. Thus, for k = 0 the initial conditions are

U%(z,%,0) = uss(z,y) , (5.31a)
VO(z,,0) = vss(z,3) (5.318)
W(z,y,0)=0 |, (5.31c)
23(z,4,0)=0 (5.31d)
Q) (z,4,0)=0 (5.31e)
Q%(2,%,0) = wiss(z,y) (5.31)

i
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and for k > 0, the initial conditions are

Uk(z,y,0) =0 etc. (5.32)

5.2 Computational Domain

As a result of the Fourier decomposition of the dependent variables, the spatial
domain reduces to a two-dimensional plane in space (z,y) that is perpendicular
to the z-axis. This domain is discretized into a finite number of uniformly spaced

grid points. These grid points have coordinates (z,,ym) given by the relations

T, =29 +nlAz for n=0,...,N (5.33a)

and yYm =y +mAy for m=0,....M . (5.33b)

The number of grid increments in the streamwise and transverse directions are
denoted by N and M respectively. The constants Az and Ay are the grid sizes
in the streamwise and transverse directions respectively. The discretized spatial
domain is shown in Figure 5.1.

The temporal domain is divided into discrete uniformly spaced time levels ¢;,
such that

ty=IlAt for l=L,,...,0,...,L, (5.34)

where At is the time step between each time level. The base flow calculation is

performed in the time interval
tr, <t <0 (5.35)

which corresponds to

Ly<i<o . (5.36)
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The disturbed flow is calculated in the time interval
0<t <t (5.37)
which corresponds to
0<I<L, . (5.38)

Approximate numerical solutions of the governing equations (5.4) are obtained
at the spatial and temporal locations (zn,ym,?). The approximate solutions and

their correspondence to the spatial and temporal grid points are denoted by
UX s = U (@nsym,tt) et (5.39)

5.3 Discretization of Spatial Derivatives

All spatial derivatives in equations (5.4) are approximated using the second-
order finite-difference formulas shown below. Consider a complex function ¢(£,n)
with known values at the equally spaced points, (£,70),(£1,70),- .-,(fl-;,nj),
(é1,m7). Then the first partial derivative M%%’"-ann be approximated by

(i ni) _ Pit1,j — Pi-1

W 2
e = SAF . + O(AE?) (5.40)

and the second partial derivative ﬂg"?ﬂﬁ can be approximated by

32¢gi€, ) _ $irrs = 2:;; + i1y +0(Ag?) (5.41)

where Af is the grid increment in the £ direction.
5.4 Discretized Vorticity Equations
A combination of different methods are used to solve the vorticity equations

(5.4a) through (5.4c). The methods have been chosen because of their numerical
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stability, their accuracy, and their computational efficiency. The Alternating-
Direction-Implicit (ADI) method is used to discretize the streamwise and trans-
verse diffusion terms. This method was selected because it is secoﬁd—order time-
accurate and is unconditionally stable when used for solving linear diffusion equa-
tions. Use of the Crank-Nicolson method for the spanwise diffusion term re-
tains both second-order time-accuracy and good stability characteristics. Fi-
nally, the second-order Adams-Bashforth method is used for the nonlinear terms.
This method possesses favorable stability characteristics and is second-order time-
accurate. The spatial derivatives are discretized using equations (5.40) and (5.41).
The resulting discretized vorticity equations can be solved using noniterative meth-
ods.

This choice of numerical techniques results in a two-step method for inte-
grating the vorticity equations. In the first integration step, the streamwise dif-
fusion term is explicit and the transverse diffusion term is implicit. In this step,
the vorticity, which is known at ¢; = [At, is obtained at the intermediate time
tyy = (I + 3)At. For the first integration step, the discretized streamwise vortic-

ity equation is

ADI-Explicit

’”

0k — Nk k k k A
z,n.m.H'} Q’vﬂ'm’l _ _1_ nz.n+1,m,l - znz.n,m.l + nz,n—-l,m,l

At/2 Re Az?
ADI-Implicit Crank~Nicolson

Ok k k - Ok k h
+ Qz,n.m+l.l+'} - 2Q::.'n.m.l+§ + ﬂe,n.m—l,H-«} k_z nz.n,m.l+§ + Qz.ﬂ.m.l) )
r2Ay? r3 2
Adams~Bashforth
‘2 ok k
3Fz|ﬂom’l - Fg,n,m,l—é )

2

) (5.42a)
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the discretized transverse vorticity equation is
ADI-Explicit

”

k -k ’ k k k K
Qy,n,m,l+-} Qy.n.m.l 1 (ny,n+1,m,l - 2Qy.n.m.l + Qy.n—l,m.l

At/2 Re Az?
ADI-Implicit Crank-~Nicolson
‘Ok k k B ‘Ok k A
Qy‘n,m+1.l+§ - 2Qy.n.m,l+-} + ﬂy,n,m—l,l+* k2 ﬂy.n,m,l-{-* + n!lm-.m,l
+ 2A42 =3 2 )
T24AY 3
Adams—Bashforth
3Fk  _ Fk X
y’"'vmsl ) ,m,l—
- vami-dy (5.42b)
2
and the discretized spanwise vorticity equation is
ADI-Explicit
k —QF Ok k k h
nzoﬂ.myH'-} Q‘J"mvl 1 Qz,n+l.m.l - 2Qz,n,m,l + ﬂz,n—l.m,l
At/2 Re Az?
ADI-Implicit Crank~Nicolson
‘Ok k k - ‘Ok k
+ Qz.n.m+1,l+1} - znz.n.m,l-h} + Qz,n,m—l,l-{--} k2 nz,n,m,l+-} + Qz.n.m,l)
r2Ay? r2 2
28Y 3
Adams—Bashforth
3Fk - F X
z,nm,l nml-
= 2 o .} ) . (542C)

In the second integration step, the streamwise diffusion term is implicit and
the transverse diffusion term is explicit. In this step, the vorticity is obtained at

t = (I + 1)At. For this step, the discretized streamwise vorticity equation is

ADI-Implicit
k -0k k k k D
Qz.n.m,H-l Qz,n,m,l-{-% - _1__ Qz,n+1.m.l+l - 2nz,n,m,1+1 + Qz.n-l,m,H-l
At)2 Re Az?
ADI-Explicit Crank—Nicolson
‘ak _ o0k k D ‘ak k h
+ Qz,n.m+1,l+‘} 2Qz,n.m,1+} + Qz,n,m-—l,H} k? n=,n,m.l+1 + Qz.n,m.H-} )
2A 42 T2 9
raAY 3
Adams—Bashforth
3F* — Fk
z,n,m,l+~} z,n,m,l
= ( 5 ) (5.43q)
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the discretized transverse vorticity equation is
ADI-Implicit
k -0k ‘0k k k R
nv’ﬂ,m»H'l ny,n,m.H} 1 Qy,n+1.m,l+1 - 2ny.n,m,l+1 + Qy,n—l.m.l+1
At/2 Re Az?
ADI-Explicit Crank-Nicolson
Ok k k h ‘Ok k K
+ Qy,n.,'rrt-ihl,l‘{-é - zny,n,m,H-% + Qy.n,m-l.l-&-% k2 QV-”.M,H-I + Qy,n,m,H-% ))
r%Ayz fg 2
Adams—-Bashforth
3F* , — F*
vnm,i+ yn,m,l
= (—rmmitd ), (5.430)
and the discretized spanwise vorticity equation is
ADI-Implicit
k -0k ‘Ok k k B
Q‘:"'"‘J‘H Qz.ﬂ.m.l+'} 1 Qz,n-f-l,m.,l+1 - 2Qz,n,m,l+1 + Qz.n—l.m,l-{»l
At/2 Re Az?
ADI-Explicit Crank—Nicolson
Ok k k - ‘0k k K
+ Qz,n,rn-f-l,l+% 2Qz,n,m,1+% + Qz.n.m—l,l-{-% k2 (Qz.n,m.l+1 + Qz,n,m,H—-} ))
r3ay’ 3 2
Adams~Bashforth
‘a pk k
= (3F""'m'l+% - F"n’m'l) (5.43¢)
2 | )

Equations (5.42) and (5.43) are valid in the interior of the spatial domain at

the points (z,,ym) where

1<n<N-1 (5.44a)

and 1<m<M-1 . (5.44b)

Equations (5.42) and (5.43) are also valid for times ¢; where

!=1L,,...,0,....,L, . (5.45)
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At the domain boundary, the boundary conditions from Sections 5.1.1 and 5.1.2

are used to obtain the vorticity components.

5.4.1 Discretized Boundary and Initial Conditions for the Undisturbed Vorticity

For the base flow calculation, the vorticity boundary and initial conditions
from Section 5.1.1 are discretized. These boundary conditions are discussed here.

At the inflow boundary, the spanwise vorticity is

Qo mi = wi(Ym) - (5.46)

At the outflow boundary, equation (5.13¢c) combined with equation (5.42c)

results in

0 0 0 [1]
Qz,N.m,l+-§ - Qg'Nva _ _1_ Qz,l‘f,rn.-%l,l-i-% - 2Qz,N,m.l+% + Qz,N.m-l,l+-}
Atf2 Re r%Ayz

0
3Fz‘N,m,l - FZO.N,M'I—%
3 ) -

(5.47)

Equation (5.13c) combined with equation (5.43c) results in

0 0 0 0 0
QZ‘N.m.Hl - Qz,N,m,l+-} _ _1_ (Qz,N,m+1,l+-} - 29:,N,m.l+-} + Qz,N.m-l,l+-})

At/2 Re r2 Ay’
3F° - F?
z,Nym,l+} z,N,m,l

= 5.48
( 5 ) (5.48)

At the freesteam boundaries, the spanwise vorticity is
2 noa =0 (5.49a)
a.nd ng,ﬂ,M,l =0 . (5.49b)

The initial condition for the base flow vorticity is

Qg,n,m.lq = wf(ym) . (5'50)
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5.4.2 Discretized Boundary and Initial Conditions for the Disturbed Vorticity

The boundary and initial conditions from Section 5.1.2 are used for the cal-
culation of the disturbed vorticity. The discretized versions of these boundary
conditions are discussed here.

At the inflow boundary, the vorticity boundary conditions for which k£ = 0

are

D omi=0 (5.51a)
Qomi=0 , (5.515)
and Qtz,,o,m.l = w:s5(z0,ym) + P:f(zo’ym’tl) . (5.51¢)

For k = 1, the boundary conditions are

1
Qiyosmnl = Eng(zo’ym,tl) ] (5.52&)
1
Q50,m, = §P3i' (Zosym,t) | (5.52b)

and Qg m;= 2P

SPol(z0,ymtt) - (5.52¢)

For k > 1, the vorticity components at the inflow boundary are

QFo =0 etc. (5.53)

z,0,m,

At the outflow boundary, the vorticity boundary conditions for which k = 0

are

Qo Nmi=0 , (5.54a)
U Nma=0 (5.54b)
02 Nymt = Wiss(ZN,Ym) (5.54c)
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and for k > 0, are

Qf Nmy =0 etc. (5.55)

At the freestream boundaries, the wake is assumed to be irrotational. For

k > 0, the lower freestream boundary conditions are

Qz,n,o,z =0 etc. (5.56)
For k > 0, the upper freestream boundary conditions are

Qf M1 =0 etc (5.57)

Finally, the discretized initial conditions for the disturbed vorticity calculation

are presented. For k = 0, the initial conditions are

ng.n,m,o =0 ’ (5.580,)
Qg,‘n,m,ﬂ =0 3 (5.58b)
Qg,n.m,o = szS(zvuym) (5.58c)
and for k > 0, are
Qf im0 =0 etc. (5.59)

5.4.3 Equation Systems for the Calculation of the Vorticity

The discretized vorticity equations, (5.42) and (5.43), combined with the dis-
cretized vorticity boundary conditions form systems of linear algebraic equations

that are solved for the unknown vorticity. To obtain the vorticity at the interme-
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diate time ¢, 4, the tridiagonal system
Qk
bl a’l \ ( z,n,l.l+,} \
(al b1 ai :
= (5.60)
ay b1 a; ) E
\ a b, 0k )
z.n,M—l,H—%
( le’:,n,l,l + dn(Q:.n+1,1,l + nl:.n~1.1,l)(l - 6N,n) + H:.x,z \
k"IQI;,n,M--x.z + dn(ﬂf,nﬂ.M-u + n,;,n—l,M—l.l)(l —8nn) + H:,M—l,l
is solved. For the base flow calculation, equation (5.60) is solved for
k=0 , 1<n<N , and L, <I<0 . (5.61)
For the disturbed flow calculation, equation (5.60) is solved for
OSkS-Izi , 1<n<N-1, and 0ZI<L, . (5.62)
The constants in equation (5.60) are
At
= —— 5.63
@ 2Re(r,Ay)? '’ (5.630)
At At (k)2
= -_ ; 5.63b
h=1+ Re(r,Ay)? * 1Re (rs) ’ ( )
2 .
o = { 1 iRe(R) mka iHn# N (5.63¢)
1- AL(2)7, ifn=N;
At :
d dn={ iReass Hn#N; 5.63d
* { 0 ifn=N. (5.634)
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The function HY | is
At
Hr’:,m,l = T(3F:,n,m.l - sz,n.m,l—‘}) (5'64)
and én n, the Kronecker delta, is
1, n=N;
6N'n = {0’ n # N. (5-65)
To obtain the unknown vorticity at time t;,;, the tridiagonal system
k
bz as \ ( Qz.,l,m.,l+1 \
a bz asz
= (5.66)

az bz as

a, b/

k
\QZ,N',M,I"-I
ke ) k k k k
( Czﬂz,l,m,l+% + Jz(nz,l.m+l,l+% + Qz,l,m—l,l-{--}) + Hl,m,l+§- - a2Qz.0.m.l+l

k k k k
cznz.Z,m,l+-} + dz(nz.2,m+1,1+-} + Qz,2,m-1,1+.}) + Hz,m,l+§

k k k k
CZQ:.N’—I.m.I+* + dz(nz.N'—l,m+1,l+% + nz,N'—l.m—l,H-*) +H '—-1,m,l+}

k k k k 1Ok
cznz,N’.m,l+%+ d2(ﬂz.N’,m+1J+-}+ Qz,N',m-—l,H-%) + HN’,m,H-%— a2ﬂz.N.m.1+l )

is solved. For the base flow calculation, equation (5.66) is solved for
N'=N , k=0, 1<m<M-1, and L; <l<0 . (5.67)
For the disturbed flow calculation, equation (5.66) is solved for

N =N-1, 0<k<

K
2

y, 1<m<M-1 , and 0<I<L, . (568)

-y Gy G S O W IR N SN 5 S Gy - o &R = S S .

|




70
The function HY | is
B i= SEBF iy = Flham) - (5.69)
The constants in equation (5.66) are
%= -2ReAl;z2 (5.70)
b, =1+ ReAAtzz + ‘3;6 (%)2 , (5.70b)
2
o=t (%) - Fmaw (510
and d; = 2Re(?2tAy)2 (5.70d)
The constant a} is
a, = { g;, f::'l}.l;}-l:,i::se flow calculation; (5.71)
The constant b} is
b = { 1+ -3{;(%)2, for the.basc flow calculation; (5.72)
2, otherwise.

Equations (5.60) and (5.66) are solved for the spanwise vorticity. Equation
systems for the streamwise and transverse vorticity components are identical to
equations (5.60) and (5.66) and are not shown.

For the base flow calculation, equations (5.60) and (5.66) are solved beginning
with the initial data at time ¢ = t;,. For the disturbed flow calculation, equations
(5.60) and (5.66) are solved beginning with the initial data at time ¢ = 0. For the
initial integration step of both the base flow and the disturbed flow calculations,
the nonlinear terms are evaluated using the first-order Euler method instead of

the second-order Adams-Bushforth method.
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5.5 Discretized Velocity Equations

The Helmbholtz equations, (5.4d) through (5.4f), are discretized using the
second-order finite-difference formulas derived in Section 5.3. The discretized

Helmholtz equations are, for the streamwise velocity component

U:+1,m,l - 2U:.m.l + Uk

~1,m,l
Az? .
Url:.m+1,l - 2U1,:.m.l + U:.m—l.l
r2 Ay’
k\? .
- (;-3—) Un'm', = Gz'n'm', ; (5.73a)
for the transverse velocity component
Virtmi = 2Vhm i + Vi i
Az?
+ V:,m+1,l - ZV:,m,l + Vnk,m—l,l

r.;‘:Ay2

k 2
~(£) Vhni=Ghami o (573)

T3
and for the spanwise velocity component

k k k
Wn+1.m,l - 2Wn,rn,l + W, ~1,m,l

Az?
Wem14 = 2We 1+ Wy

nm-1,]
2 2
r;Qy

+

k 2
- <_) er:.m,l = G’z‘,n,m,l . (5'73C)

T3

The right hand sides of equations (5.73) are

k ke .
k _ T Qz,:u,m+1,l - Qz,n,m-—l,l ik Qh
znm,l = ;g- sz - ;; ynmil (5.74(1)

; k k
k Ik k 1.3 Q ) +1‘ vl - Q 3 -lu ‘l
GPm.m.l = _fnz,n,m,l - 1'—- ( LT 2Az Aol ’ (5.74b)
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a‘nd Gk = i Q:.'H'l-m.l - n:ﬂ"‘l'mvl -
2mml = 2 2Az
1 Q:,n,m+1,l - Q:.n,m-l.l ‘ (5 746)
1‘31‘3 2Ay ’ '

The Helmholtz equations are solved for each integration step, subject to the ap-
propriate boundary conditions from Sections 5.1.1 and 5.1.2.

Equations (5.73) are valid in the interior of the spatial domain. At the domain
boundary, equations (5.73) combined with the discretized boundary conditions are
used to obtain the velocity components.

5.5.1 Discretized Boundary and Initia] Conditions for the Undisturbed Velocity

For the base flow calculation, the velocity boundary and initial conditions
from Section 5.1.1 are discretized as discussed below.
At the inflow boundary, the streamwise and transverse velocity components

are

Ugm =2 (ym) (5.75a)

and V¢, =0 . (5.75b)
The discretized version of the outflow boundary conditions, (5.13a) and
(5.13b), combined with equations (5.73a) and (5.73b) result in

Ug/,m+l,l - 2Ugl.m,l + Ugl.m—l,l - Go
(rsz)z z,N,;m,l

(5.76)

for the streamwise velocity and

Vl%.m+1,l - 2V13.m,l + V)(\)I.m—l.l
(r28y)?

=Gy Nm.i (5.77)

for the transverse velocity.
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At the freestream boundaries, the streamwise velocity is
Ukou=1 (5.78a)
and U¥p=1 . (5.78b)
Equations (5.14b) and (5.15b) combined with equation (5.73b) result in
Vatr,00 = 2V 21 + Vo1 0. + Va1 - 22V:,o,z —0 (5.79)
Az r2Ay
at the lower freestream boundary and
Ve =-2V0  + V2 2V -2v?
n+1,M,l 1\24: “LML M—1,1 nMl (5.80)
Az r2 Ay’
at the upper freestream boundary.
The auxiliary condition
Vi =0 (5.81)

imposes antisymmetry on the transverse velocity field. Because of this antisym-
metry, the transverse velocity V,?'m', is solved only in the lower half of the spatial

domain for which

|/\

(5.82a)

and 0<m <

<N
% -1 . (5.82b)

The transverse velocity in the upper half of the spatial domain is found from the

"r‘u’ +77'l'1 n,M-—m l 3 1 <— m <_ a'nd 1 < n < N - 5,83
2 :Z - - ( )

Finally, the initial conditions for the streamwise and transverse velocities are

Un ity =t (Ym) (5.84a)

and V7 .. =0 . (5.84b)
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5.5.2 Discretized Boundary and Initial Conditions for the Disturbed Velocity

Boundary and initial conditions from Section 5.1.2 are used for the calculation
of the disturbed velocity. The discretized versions of these boundary and initial
conditions are discussed in this section.

At the inflow boundary, the velocity components for k = 0 are

Ugyma = 455(20,¥m) + P20, ym,t1) (5.854)
Voo.m,l =0+ Puu(zm Ymit1) (5.85b)
and Wy, ;=0 . (5.85¢)

For k = 1, the velocity components are

1
Uolva = -Z-P:d(zoiym’tl) 1 (5.86a)
1
Vollmll = EPgd(z(hym’tl) ’ (586b)
1
and Wy, = §P.i‘(zo,ym,t:) . (5.86¢)

For k > 1, the velocity components are
Ugmi=0 etc. (5.87)

At the outflow boundary, the velocity components for k = 0 are

UNmi =tss(zNy¥m) (5.88a)
VNm = vss(TN Um) (5.88b)
Wiima =0 (5.88¢)
and for k > 0, are
UNmy=0 et (5.89)
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At the lower freestream boundary, equation (5.25a) combined with equation

(5.73a) results in the following equation for the k = 0 streamwise velocity:

Unt1,00=2Un 00+ Un_104 + 2Un 10— (2+2C3) U0,
Az? r2Ay?
= —-—I-—(Zuss(zn,yl) - (2+2C%uss(zn,y0))  (5.90)
(r2Ay)? ®

where C2¢ = a2?r;Ay. Equation (5.25b) combined with equation (5.73b) results

in

Vr?+1,0.l - 2V,f'0', + V:—l,o,l + 2V:.1 N S 2V:,o.z
Az? 1'§Ay2

1
T T AzAyr? (Unsr00 = Unor04) (5.91)

for the k = 0 transverse velocity. For k = 0, the spanwise velocity is
Wil =0 (5.92)

at the lower boundary.
For k = 1, equation (5.26a) combined with (5.73a) results in the following
equation for the streamwise velocity:
Unt1,00=2Un 04+ Un_y.

Az?

2UL - (24203902 ,, 1)\?
sl S Tl Ul =0 5.93
o (2) Vo (599

T3

where C3¢ = Ayryy/ad?? +(&)?. Similarly, equation (5.26c) combined with

(5.73c) results in

1 1 1
Wirioa=2Wo o+ Wa_ 104
Az?

2wl - (2420w 1\?
+ n,i, rgAyz a n,0, — (:3.) WI{,O,‘ = 0 (5.94)




|
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for the k = 1 spanwise velocity. Equation (5.26b) combined with equation (5.73b)

results in

V,f+1.o.l - 2an.o,z + Vl—l,o.l + ZVJ.I.I — ZV:.O.I _ (l)z 1

0=
Az? riAy? rs) "

1 A .
- (r24y)? (Z%(lez+1,0.l - U:-1,o,z) + szW}"o,,) (5.95)

which is valid for the k = 1 transverse velocity. For k > 1, the velocity components

at the lower freestream boundary are

Uk

n

o1 =0 ete. (5.96)

At the upper freestream boundary, the following equations are valid. For
k = 0, the velocity boundary conditions are
Uniini = 2Un a0+ Uny aas + 2Up Moy = (2+2C34)U7 p
Az? r2 Ay’

1
= b7 (2uss(zn,ym-1) — (2 + 2C3%Yuss(zn,ym)) , (5.970)

V:+1,M.l - 2V:.M,l + Vo—l,M.l + 2Vr?,M—1,l - 2V:.M,1

Azl ,.gAyz
1
= azag? nami = Vnoaped) (5.97b)
and
Wami=0 . (5.97¢)

For k = 1, the velocity boundary conditions are

1 1 1
Untrmi = 2Unma+ Unoy oy
Az?

20} a1y — (24 2C3)U2 1\?
- = Uy, =0 5.98
r%Ayz ( ) n M, ) ( a)

+
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WM —2Wha + Wa_imu
Az?
2WE a1 — (24 2C3)WE 6 1\?
hchmit e (=) Wi, =0 5.98b
+ f%Ayz (rs) n,M,l ) ( )

and

V:+1‘M,l - ZVJ.O.I + V:—I,M.l + ZV:,M-U - ZVJ,MJ _ (_1_)2 Vl
1 Ay 1 (/] . 1
= r2by)? (-A_:;(Un+1.M,l +Un_im) HidyWo ar) (5.98¢)

For k > 1, the velocity components at the upper freestream boundary are

Ufpmy=0 etc. (5.99)

n

Finally, initial conditions must be specified for the velocity components. For

k = 0, the initial conditions are

U:‘m,o = uSS(zn, ym) H - (5.1000.)
VYo =V55(Zny¥m) (5.1000)
Wamo =10 (5.100¢)

and for k£ > 0, the initial conditions are
Unmo =0 etc. (5.101)

5.5.3 Equation Systems for the Calculation of the Velocity

The discretized velocity equations (5.73) combined with the discretized veloc-
ity boundary conditions form systems of linear algebraic equations that are solved

to obtain the velocity components.
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Base flow Streamwise Velocity

Equation (5.73a) combined with boundary conditions (5.75a), (5.76), and
(5.78) form a system of linear algebraic equations that is solved for the base flow

streamwise velocity. To derive this system of equations, let

LV SV
¢n = y Bn = ’ (5'1020’)
\US,M-I.I} (M-1)x1 \Gg.n.M-l.l) (M-1)x1
-2 1
(T 2 )
A= R ,(5.102b)
1 -2 1
\ 1 “2/(M-1)x(M—l)
(Ug.o,z
0
and h, = . (5.102¢)
0

\ U&.M.l/ (M-1)x1
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Then, the resulting system of equations
AT \ ( # \
( I A I :
\ I A I :
0 AA/ NxN \¢N} Nx1
[ Astg; A~ 4o\
Azzgz - th
(5.103)
\ A.‘Bng -~ hyA ) Nx1
is solved for the base flow streamwise velocity. The constant A is
Az \?
A= (rsz> , (5.104)
the matrix A’ is
A'=AA-2I (5.105)

and I is the identity matrix.

Base flow Transverse Velocity
Equation (5.73b) combined with boundary conditions (5.75b), (5.77), (5.79),

and (5.80) form a system of linear algebraic equations that is solved for the base

|
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flow transverse velocity. To derive this system of equations, let
[ Vadg-1a) (G:,n,z;_l.z\
$n = y Bn= , (5.106a)
\ Vaou ) ¥ x1 \ Gynod } M xa
-2 1
1 -2 1 \
and A= o . (5.106b)
1 -2 1
\ 2 —2} ¥y
Then, the system of equations
A I \ ($) [4z%a)
I A I : :
= (5.107)
\ I. A; I /
0 A4/ N \‘N} Nx1\A328N) Nx1

is solved for the base flow transverse velocity in the lower half of the spatial domain,

for which

1

IA

n<N , (5.108a)

and OSmS-Azi—l . (5.108b)
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The base flow transverse velocity in the upper half of the spatial domain is obtained

from the relation

Vostimy=Vosg_pmy for 1sm< ﬁ‘z_ and 1<n<N . (5.109)
As previously ,
A= ( Az )2 (5.110a)
r2ly
and
A'=AA-2I . (5.1100)

Disturbed Velocity Components for k<1

Equation (5.73a) combined with the boundary conditions (5.85a), (5.88a),
(5.90), and (5.97a) form a system of equations that is solved for the zeroth spanwise
mode of the disturbed streamwise velocity U?. To derive this system of equations,

let

( U?,m,l \ ( Gg.l,m,l \

[ Bm = : , (5.111a)

\Ugf—l,m.l) (N-1)x1 \Gg,N—l,m,l) (N-1)x1

(7 __‘2 . )

A= R ,(5.1118)

1 -2 1
\ 1 -2/ (N=1)x(N=1)




£2
(U:,m,l\
0
and h,=| ° : (5.111c)
0
\ U?V.m,l } (N-1)
Then, the system of equations
(A~ B' 2AI \ (%)
Al A" Al :
Al A Al :
\ 2AI A'+ B" 1M+1)x(M+1 \¢M (}Al+l)x1
( Az?gy — hy + 2AyAf’ \
Az’g, - hy
(5.112)

Az’gy-1 —hyoy )

\Atng - hM et 2AyAf" (M+1)X1

is solved for the zeroth spanwise mode (k = 0) of the disturbed streamwise velocity.

In equation (5.112), A' is

2
A= (’”A’) (5.113a)
T3
and A is
Az \?
= . 113b
A (rsz) ‘ (5 11 )
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The matrix 4’ is
A'=A-(2A+A) (5.114)
the matrix B' is
B' =2AAyd'T (5.115)
and the matrix B” is
B" = 2AAyc'T . (5.116)

The vectors f' = (f;] and " = [f}]] and the scalars ¢' and ¢" result from
the freestream boundary conditions. For the zeroth spanwise mode (k = 0) of the

streamwise velocity U°,

uss(Zn, Y1) — uss(Zn, Yo)

fr=—ariuss(zn,y0) + e . (5.117q)
fn = a¥ryuss(Ta, ym) + uss(Zn, ym) _AZSS(z"’yM_l) (5.117b)
and
¢ =ar, |, (5.117c¢)
"= —a¥r, . (5.117d)

Equation systems for the velocity components V°, U, V!, and W! are almost
identical to equation (5.112). The only difference between equatic .. (5.112) and
systems of equations for the other velocity components V°, U!, V! and W?! are
the vectors f' = [f}] and f" = [f!/] and the constants ¢ and ¢". Therefore, for
these other velocity components, only f,, f., ¢’ and ¢" will be shown.

For the zeroth spanwise mode (k = 0) of the transverse velocity V?,

U? -U?
f,', - - n+1,0,12Az n-1,0,! ’ (5118(1)
U? ~ U
,': - — n+1'M,12A ﬂ-‘l,M'l (5'118b)
z ‘
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and

=0, '"=0 . (5.118¢)

For the first spanwise mode (k = 1) of both the streamwise and spanwise

velocities, /! and W?,

ff=0 , (5.119a)

fa=0 (5.119b)

and

2
1
¢ = rz\/aidz + (_) , (5.119¢)
T3
1)\ 2
<" =ryq4fadd® 4 (—) . (5.1194d)
T3

Finally, for the first spanwise mode (k = 1) of the transverse velocity V!,

Ul o0u—= Ul
fl=- "“""‘mx ROl W, (5.120a)
Ul - U}
fl = "“'M'; — nLMY W e (5.120)
and
=0, "=0 . (5.120¢)

Disturbed Velocity Components for & > 1
Equation (5.73a) combined with the boundary conditions (5.87), (5.89), (5.96),

and (5.99) form a system of equations that is solved for the disturbed streamwise
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velocity U* for k > 1. To derive this system of equations, let
( Ulk,m.,l \ ( G:,l.m.l \
¢m = y Bm = 3 (5.121(1)
\Ukr-l,m,x/ (N-1)x1 \G:,N-—l,m,() (N-1)x1
-2 1
/ 1 -2 1 \
and A= R . (5.1218)
\ 1 -2 1 )
1 -2 (N=1)x(N=1)
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Then, the system of equations
A" AI \ [ # )
AI A" AI :
\ AI A AI} :
AI A )
A -nyxa-1) \ gps_, / M-1yx1
Azzgl \
(5.122)
\A‘Eng—I} (M-1)x1
is solved for the streamwise velocity component U*. As before,
2
A= (3’1> (5.123a)
T3
Az \?
d A= . .123b
= (Tsz> (5 )
The matrix A' is
A'=A-(2A+ A . (5.124)

Equation systems for W° and for V* and W* with k > 1, are identical to equation
(5.122) and will not be shown.

Equations (5.103), (5.107), (5.112), and (5.122) are systems of linear alge-
braic equations that are solved for the velocity components. For each system,

the coefficient matrix is large and sparse. However, because of the structure of
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these matrices, fast Helmholtz solvers can be used to solve these equation systems.
Details of these techniques are given by Swarztrauber (1977).

5.6 Evaluation of the Nonlinear Terms

Up to this point in the development of the numerical method, the evaluation

of the nonlinear terms F* F*

znmir Fyonm, a0d Fk o at each time step has been

z,n,m

ignored. However, in order to calculate 0¥ Nk

k
za,m, i Sy nm,D and Qz,n,m,l from equa-

tions (5.42) and (5.43), the nonlinear terms must be computed at times ¢;_y, ,
and £;;4. Generally, computing the nonlinear terms is the most time consuming
aspect of using spectral methods to solve the Navier-Stokes equations. The diffi-
culties arise from the fact that the nonlinear terms do not have a simple Fourier
representation.

The nonlinear terms can be computed either pseudo-spectrally or spectrally.
The pseudo-spectral method works in the following manner. The physical repre-
sentation of the velocity and vorticity are obtained from the Fourier coefficients
using equations (5.1). Then, the nonlinear terms f5 ..\, f, ., and f¥_ _  are

computed from the formulae

k k k k
fk _ wk un+1,m,l - un-—l,m.l + wk un,m+1.l - un,m-—l,l
z,n,m,l z,n,m,l 2Az y,n,m,l 2Ay
k k
+ w .@lk _ ‘U:k wz,n+1,m,l - wzon-lvmyl
z,n,m,l 9z n,m,l n,m,l 2Az
k k
w -—w Ow
k z,n,m<+1,l znm-1,] k 2k
- vn,m,l 2Ay - wn,m,l 8z |n,m.,l ’ (5.125&)
k k k k
fk _ w" vn+1,m,l - vn—-l.m.l + wk Unm41,d " vn.m—l.l
yn,m,l z,n,m,l 2Az y.n,m,l 2Ay
k k
+wk 2’{ k —uk “Wynt1mt T Yyn_1,mii
z,nml 9z n,m,l n,m,l 2Az
k k
- vk wv.n.ﬂﬂ-l.l wv:"vm-l't - wk la“’v Ih (5 1256)
n,m,l 2Ay nml g, nm,l
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k k k k
w - w w -—w
k k n+1,m,l n-1,m,l k n,m<+1,l nm-1,0
and fz,n,m,l = wz.n,m,l 2Az + “"y,n,m,l 2Ay
k k
+ wk @_Ik _ uk Wi n+imil — wz,n—l.m,l
z,n,m,l 9z nm,l n,m,l 2Az
k k
w -w Ow
k n.m<+1,l nm=1,l k zZ .k
~Unm,l - sz - — Wp,m,l 9z In,m,l ’ (5'125C)
which are the finite-difference versions of equations (3.12).
The z derivatives in equations (5.125) are computed using the formula
¥
8h . k_ikz
E(Z) = Z ikH e (5.126)
k=—-§
where
K
T .
h(z) = z Hkeekz | (5.127)
k=—%‘-
The nonlinear terms f¥, ., ¥ nm,p» and zk,'n,m.,l are transformed back to

Fourier space using equations (5.5). This results in the nonlinear terms F:‘n'm',,

Fk and F* g foralln, m, [, and k. The pseudo-spectral method, together

yunvmv“ zZ,n,m

with the use of fast Fourier transforms, has an asymptotic operation count of
O(NMKLog,K) . (5.128)

An alternative to the pseudo-spectral method is the spectral method. For the
representative nonlinear term
u

wig= (5.129)

the spectral method proceeds as follows: The Fourier series representation of

the dependent variables u(zn, ym, zx, 1) and wz(Zn, Ym, 2, 1) are substituted into

]
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equation (5.129) to get
du
wzgl:,m,l =
L . ¥ o .
Z Q5 (2, ym, t1)e'** Z E(zn,ym,tz)e' z . (5.130)

k=—-¥ k=—§-
The multiplication of the two series in equation (5.130) is performed in order
to obtain the Fourler series representation of equation (5.129). This procedure
is repeated for the other terms that make up the nonlinear part of the govern-
ing equations. In this way, the Fourier representation of the nonlinear terms is

obtained. The asymptotic operation count for the spectral method is
O(NMK?) . (5.131)

For large values of K, the pseudo-spectral method requires fewer operations
than does the spectral method. However, for small values of K the spectral method
is faster. In this work, which is limited to small values of K, the spectral method

is used.

5.7 Consistency, Stability, and Convergence of the Numerical Method

Finally, consistency, numerical stability, and convergence of the numerical
method are discussed. A consistent numerical method is one whose truncation
error approachs zero as the spatial and temporal grid increments approach zero.
A numerical method is stable if the round-off error contained in the numerical
solution does not grow with time. A convergent numerical method is one in which
the numerical solution of the discretized partial differential equation approachs
the exact solution of the partial differential equation as the grid sizes approach

zero.
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The relationship between consistency, stability, and convergence of a dis-

cretization scheme is given by the Lax Equivalence Theorem (Smith, 1985):

Given a properly posed linear initial-value problem and a linear
finite-difference approximation to it that satisfies the consis-
tency condition, stability is the necessary and sufficient condi-
tion for convergence.

In this work, the governing equations are not linear. However, it is still useful to .
examine the consistency and stability of the numerical method.

The truncation error of the numerical method described in this chapter
is now discussed. Let

Lazaga(f)=0 (5.132)

represent the difference equations (5.42) and (5.43) and let Q be the solution of
those difference equations. Furthermore, let 2 be the exact solution of the partial
differential equations (5.4). Then, the truncation error Er o, ay,a¢ associated

with the discrete operator Laz ay,at is

ET az,ay,at = Lazay,a¢(9) - (5.133)

It can be shown that the hybrid ADI, Crank-Nicolson, Adams-Bashforth dis-
cretization scheme, coupled with second-order finite-difference approximations of

the spatial derivatives, has the local truncation error
Er.az,ay,ac = O(AZ%, Ay%, AL?) . (5.134)

This truncation error approachs zero as Az, Ay, and At approach zero and there-
fore the scheme is consistent. Similarly, the discretization scheme used to solve
the Helmholtz equations is consistent and exhibits second-order spatial accuracy.

The nvmerical method has spectral accuracy in the spanwise direction.
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Evaluating the numerical stability of the discretization scheme used in
this work is very difficult due to the nonlinearity of the governing equations. How-
ever, Pruett (1986), who used the same discretization scheme as discussed here,

found that for simulations of instability waves in free shear layers, the condition

At At At .
—_— —_—+ |w — < 13
iulmaz Az lvlma.z :y I lmaz Az = 1 (5 1 5)

was sufficient to ensure the numerical stability of the hybrid ADI, Crank-Nicolson,
Adams-Bashforth discretization scheme.

For the simulation of instability waves in high-deficit wakes, it is noted
that, because of numerical stability considerations, simulations of three-dimensional
disturbances required a smaller time step At than did simulations of two-dimen-
sional disturbances. Furthermore, although a stability criterion has not been de-
rived, for these simulations the numerical method was stable for the spatial and

temporal resolution that was employed.
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CHAPTER 6

RESULTS

As discussed in Chapter 3, the laminar-turbulent transition of wakes is influ-
enced by many nondimensional parameters. A thorough study of wake transition
would require investigating the role of many of these parameters. However, due
to the large amount of computer time and memory that is required to solve the
Navier-Stokes equations, a detailed study of the effect of each parameter on wake
transition is not possible.

In this work, investigations are limited to two areas. First, the influence of
different levels of excitation on the behavior of two-dimensional disturbances is
investigated. The results of these investigations are discussed in Section 6.1. Sec-
ondly, the interaction of two- and three-dimensional disturbances is investigated.
This latter topic will be discussed in Section 6.2.

Before proceeding, the techniques used to analyze the data that result from
the numerical simulations are discussed. The harmonic content of the flow vari-
ables is obtained by Fourier time series analysis. With %*(z,y, t) representing any

one of the flow quantities, the Fourier analyzed variables are obtained from

LI
- 1 3 )
¢k(z,y, F) = -L—;—:_LI__H Z wk(z,y,tl)e-'I’Q'Ftl
2T e
t_r
with F=07 ! ’ 2 ,"'1L2 Ll (6.1)
per Iper ng,-

The parameters L] and L) are the first and last time steps respectively of the
time interval in which the data is Fourier analyzed. The parameter I,,, denotes

the number of oscillation periods that are analyzed. If one period of oscillation is
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analyzed then I,.» = 1, and if two periods of oscillation are analyzed then I, = 2.
The parameter ¢ assumes different values depending on the flow variable that is
analyzed. If y* represents U* or QF then ¢ = 1. H ¢* represents V* or 9,: then
¢ = r;. Finally, if ¥* represents W* or Q* then ¢ = rs. The parameter i is the
imaginary number /—1.

The transformed variable ¥*(z,y, F) is the F*® time harmonic component of
the flow variable ¢*(z,y,t). The F*® harmonic oscillates in time with the frequency
F(, where f is the frequency of the wake excitation.

The amplitude of the F** harmonic $*(z,y, F), for k =0, is

0 _ [ 19¥(z,y,F)|, ifF=0
vale.u F) = {2|¢"(z,y, F)l, £ F>0 (6.2a)

and for k£ > 0 is

2/$*(z,y, F)|, i F=0;

k =
v nF) = {4|«/3"(z,y,F)l, if F > 0. (6:20)
;I‘he phase of the F*® harmonic $*(z,y, F) is
—Im(¥*(z,y, F
¢fb(z, y, F) = arctan ( R:(lf;‘(izny);)> (6.3a)

if * represents U*, V*, or Q. The phase of the F** harmonic $*(z,y, F) is

k = arctan Re("/‘;k(z’y’F))
$4(z,y, F) = arct (Im(fi*(z,y,i‘))) (6.3b)

if ¥* represents W*, O, or Qf. Im( ) and Re( ) denote the real and imaginary
parts of ¥*(z,y, F) respectively.
Additional quantities that are calculated are the wavenumber a¥, the amplifi-

cation rate a”, and the phase velocity c: of the various harmonic components. For
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linear stability theory, in which the base flow is assumed to be parallel, these quz'm-
tities are uniquely defined for a given disturbance frequency, spanwise wavenumber,
and flow Reynolds number. Furthermore, for a disturbance that is governed by

linear stability theory, a*, a¥, and c’; can be computed from

. "
Q:LST = —a'f(z,y) ’ (6.4a)
17]
afpsr = ™ (n(¥4(z,v) (6.4b)
k B
a.nd CPLST = ES—T- . (6.46)

The values of a,.s1, @irsT, and ¢py g7 are independent of z and y and are
independent of which flow variable is represented by %*. However, if expressions
analogous to equations (6.4) are used to obtain similar quantities for a nonparallel
flow, then the coordinates z and y as well as the flow variable that is represented
by %* have considerable influence on the values of af, af, and cf. Gaster (1974)

discusses some of the various ways to calculate a¥, a¥, and c* for nonparallel flows.

P

For this work, the disturbance quantities a¥, a¥, and c: are calculated in the

following manner. The streamwise wavenumber a* of the F** harmonic 1[:"(:, y, F)
is calculated from
o4t

ak(z,F) = 2 (2,3, F) (6.50)

where the transverse coordinate y is taken to be constant in equation (6.5a). The

amplification rate a* of the F** harmonic $*(z,y, F) is calculated from

a¥(z,F) = —-a% (In(¥% (2, Yma=(2), F)) . (6.5b)

In formula (6.5b), Yymaez(z) is the transverse coordinate, as a function of z, at
which the amplitude ¥%(z,y, F) attains its maximum value. The phase velocity

of the F*® harmonic Jk(z,y, F) is computed from |

c';(z,F) = :E(é‘gﬁ . (6.5¢)
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Finally, the disturbance kinetic energy is calculated from

. 177
Bre,P)=3 [ (h(ey FY +oh(zu, PP +ub(enPdy - (66)

Yo

The kinetic energy E*(z,F) is a measure of the disturbance amplitude. Also,
because the kinetic energy is an integral quantity, it does not depend on the
transverse coordinate y. Amplification rates of the harmonic components can be

cauculated from the kinetic energy using

a¥(z, F) = -%% (in(2%(= ) . (6.7)

Use of equation (6.7) to calculate aF is advantageous because, unlike equation
(6.5b), it does not depend on the transverse coordinate y.
6.1 Investigations of Two-Dimensional Disturbance Development

In this section, investigations of two-dimensional disturbance development in
a high-deficit flat plate wake are discussed. Several different calculations are under-
taken. With the first two calculations, termed Case-1 and Case-2, the suitability of
the numerical method for the calculation of wake disturbances is tested. In Case-1,
the method is tested by comparing the results for small amplitude disturbances to
linear stability theory. In Case-2, the results of the calculation are compared to
the experimental measurements of Sato (1970). In Case-2, the numerical method
is tested for larger amplitude disturbances than in Case-1. In Case-3 and Case-4,
the large amplitude behavior of wake disturbances is investigated. Case-4 is iden-
tical to Case-3 except that the amplitude level of the excitation, denoted by A,, is
larger than in Case-3. By calculating disturbances for different excitation levels,
the influence of the initial amplitude on the disturbance development is observed.

Finally, in Case-5 the effect of the outflow boundary conditions on the results is
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investigated. This is done by repeating Case-3 in a longer spatial domain. In all
of these calculations, the wake is excited with a two-dimensional sinuous mode
disturbance of frequency S. Finally, because the calculated disturbances are two-
dimensional, only U?, V°, and Q? aze calculated.
Case-1

In this case, the behavicr of a small amplitude disturbance in a nonparallel flat
plate wake is investigated. Because the base flow is nonparallel, there is no proper
way to compare these results to linear stability theory. In fact, Gaster (1974)
states that the agreement between linear stability theory, for which the flow is
assumed to be parallel, and experiments (numerical or physical), fof which the
flow is nonparallel, can never be better than O(Re~7). Therefore, comparisons
of the numerical results to linear stability theory are qualitative in nature and
can not be used to test the accuracy of the numerical method. However, this
calculation can be used to obtain some measure of the suitability of the numerical
method for calculations of small amplitude disturbances.

This calculation was performed in a spatial domain bounded by
zg=.3 , zn=.T , yo=-10 , and yp =10 . (6.8)

The transverse extent of the spatial domain was specified so that the vorticity
disturbances would be approximately zerc at the freestream boundaries. For the
streamwise extent of the domain, it was required that the domain be long enough
to contain several wavelengths of the fundamental disturbance. The domain is
suown in Figures 2.1 and 5.1.

The base flow was calculated subject to the inflow streamwise velocity distri-

bution u/(y) given by equation (4.6a). At the inflow boundary, the wake centerline
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velocity U, and the wake half-width b were
U.=.5 and b=13 . (6.9)

The streamwise velocity component of the computed base flow is shown in Figure
6.1.

As discussed in Section 4.4, the wake is excited using the time-dependent
boundary conditions (4.16). For this calculation, the disturbance amplitude was
A, = .001. In terms of the streamwise velocity disturbance u'(zg,y) at the inflow
boundary, A, is given by the relation A; = max(|u'(zo,y)|) where the function
max(|u'(zq,y)|) denotes the maximum value of |u'(z¢,y)| with respect to the y
direction. The disturbance frequency was 8 = .317. For this frequency, the
amplification rate is less than the maximum amplification rate that is predicted
by linear stability theory. Furthermore, the disturbance that corresponds to this
frequency experiences amplification throughout the spatial domain. The Orr-
Sommerfeld eigenfunctions that correspond to this frequency are shown in Figures
6.2.

The influence of Az and Ay on the numerical results was investigated to
determine the spatial discretization that results in solutions that are reasonable
independent of the grid sizes. A detailed discussion of these investigations is given

in Appendix B. For this calculation, the grid
N =128 and M =64 (6.10)

was sufficient for this purpose. For the time step At, numerical stability rather

than temporal accuracy was the most severe constraint. Therefore, the influence of
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the time step on the numerical results was not investigated. To maintain numerical

stability, the time step was specified to be

Tp

maz

At =

with Lymes =64 . (6.11)

The parameter L, denotes the number of time steps per fundamental distur-
bance period. The response of the wake to the excitation at the inflow boundary
was calculated for five periods Tr of the fundamental disturbance (L, = 320)
where Tp = 27;5

For this calculation, the spatial domain contained approximately eight wave-
lengths of the fundamental disturbance. Each disturbance wavelength was dis-
cretized by approximately sixteen grid points. In the transverse direction, the
spatial domain contained approximately twenty momentum thicknesses (based on
the inflow velocity distribution) with approximately 3.2 grid points per momen-
tum thickness. As mentioned previously, investigations of the influence of the grid

sizes on the results of the numerical calculation (see Appendix B) have established

the suitability of the spatial discretization.
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The relevant parameters in this calculation are summarized below:
Case-1:
the streamwise location of the inflow boundary, Zo = .3;
the streamwise location of the outflow boundary, N = T
the transverse location of the lower freestream boundary, yo = =10
the transverse location of the upper freestream boundary, yas = 10;
the Reynolds number Re = Eg’-z, Re = 200000;
the amplitude level of the wake excitation, A, = .001;
the frequency of the wake excitation, B8 = 317
the number of streamwise grid increments, N = 128;
the number of transverse grid increments, M = 64;
the number of time steps calculated, L, = 320;
and the time steps per fundamental disturbance period, Lms. = 64.

Results of this calculation are shown in Figures 6.3, 6.4, 6.5, and 6.6. Am-
plification curves based on the disturbance kinetic energy E°(z, F) are shown in
Figure 6.3. These amplification curves are compared with analogous curves from
linear stability theory that are based on the amplification rate a;. However, the
amplification of the kinetic energy that results from the Navier-Stokes calculation
arises from two different sources. First, the kinetic energy amplifies due to the
linear instability. Secondly, the kinetic energy changes due to the slow divergence
of the base flow. However, despite the differences between linear stability theory
and the calculation, the kinetic energy of the fundamental disturbance (F = 1)
still compares closely to the linear stability theory prediction of the fundamen-
tal disturbance kinetic energy. The mean disturbance component (F = 0) and
the second harmonic (F = 2) are also present, but are much smaller than the

fundamental disturbance.
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For the streamwise location z = .35, the amplitude and phase distributions of
the fundamental disturbance component (F' = 1) are compared to the amplitude
and phase distributions of the Orr-Sommerfeld eigenfunctions. These compar-
isons are shown in Figures 6.4 and 6.5. The amplitudes of the Orr-Sommerfeld
eigenfunctions are multiplied by the constant

'/’,04(2 = .35, yﬂuz,l) 6.12
YarsT(Ymaz) (6.12)

CLST =

so that at ¥ = ymaz, they will be exactly equal to the amplitude distribution
¥% of the calculated fundamental disturbance. The phase distributions of the

Orr-Sommerfeld eigenfunctions are shifted by the constant

dist = ¢3,(z = .35, Ymaz) 1) - ¢¢L37(ymaz) (6-13)

so that at ¥ = Ymaz, they will be equal to the phase distributions of the calculated
fundamental disturbance. The constant ymqz Was defined previously. The function
Yarst(y) is the amplitude of the Orr-Sommerfeld eigenfunction and ¢y, sr(¥) is
the phase of the Orr-Sommerfeld eigenfunction. As before, ¥* can represent any
one of the flow variables.

As can be observed in Figures 6.4, the amplitude distributions of the fun-
damental disturbance are very similar t¢ .b. amplitude distributions of the Orr-
Sommerfeld eigenfunctions. In Figure 6.4c, ... vorticity disturbances are observed
to be quite small (O(10~%)) at the freestream boundaries. This confirms that the
transverse domain was wide enough for this calculation.

The comparison of the phase distributions of the fundamental disturbance
to those of the Orr-Sommerfeld eigenfunctions is shown in Figures 6.5. In these

figures, reasonably good agreement between the numerical and theoretical phase
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distributions is observed. The differences between the numerical and theoretical
phase distributions that are observed at the transverse locations y = +£10 are due
to the freestream boundary conditions. For the streamwise and transverse velocity
components, the observed differences are due to the exponential decay boundary
conditions, (5.25a) and (5.28a). For the spanwise vorticity, the differences arise
because the theoretical spanwise vorticity satisfies exponential decay freestream
boundary conditions while the calculated spanwise vorticity is set to zero at the
freestream boundaries.

Finally, in Figures 6.6 the streamwise wavenumber al, the amplification rate
@, and the phase velocity c) of the fundamental disturbance are compared to the
analogous quantities from linear stability theory. As mentioned previously, the
agreement between linear stability theory and the numerical experiments can not
be better than O(Re~%) Gaster (1974). Furthermore, the values of a®, a?, and cs
depend on the flow variable and transverse location that are used for calculation
of these quantities. The streamwise wavenumber o and the phase velocity cg
are computed from the flow variables U°, V9, and 00 for the tr#nsverse location
y = 5. The amplification rate a} is computed from all three flow variables as well
as from the kinetic energy £°(z,1). Equations (6.5) and (6.7) are used to calculate
these values. In Figures 6.6, the observed differences between the theoretical and
calculated values are approximately of the order O(Re~1). Therefore, based on the
results of Figures 6.6, the agreement between the calculation and linear stability
theory is reasonable. Additionally, comparable results were obtained when other
transverse locations were used to calculate a, and c,.

The agreement between the calculated results and linear stability theory is
within the limitations imposed by comparisons of parallel linear stability the-

ory to nonparallel numerical simulations. The disturbance amplification rate and
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wavenumber, a; and a., as well as the disturbance amplitude and phase distribu-
tions, all exhibit reasonable agreement with linear stability theory. It is concluded
that the numerical method, with the spatial and temporal discretization that was
employed, is suitable for the calculation of small amplitude disturbances in flat
plate wakes.
Case-2

As a further test of the numerical method, the results of this calculation are
compared to the experiments of Sato (1970). In contrast to Case-1, in this calcula-
tion the disturbances attain large amplitude levels. To facilitate the comparison of
the numerical results to the experimental data, the parameters for this calculation
are selected so that the calculated wake models the wake from the experiments of
Sato.

This calculation was performed in a spatial domain with boundaries at
Z0=.03 , zy=.T5 , yo=-16 , and yy =16 . (6.14)

Asin Case-1, the transverse extent of the domain was designed so that the vorticity
disturbances would be approximately zero at the freestream boundaries. In the
discussion of Case-5, it will be shown that the streamwise extent of the domain is
sufficiently long for the present case.

The base flow was computed subject to the Gaussian inflow streamwise veloc-
ity distribution given by equation (4.5a). This distribution was employed because,
as shown in Figure 6.7, it compares well to experimentally obtained streamwise
velocity distributions of high-deficit flat plate wakes (Sato and Kuriki, 1961). At
the inflow boundary, the wake centerline velocity U, and the wake half-width &
were

U.=.234826 and b=1.15 . (6.15)
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The values of U,, b, and zo, were chosen so that the computed base flow would
closely model the wake in the experiments of Sato (1970).

The streamwise velocity U? of the computed base flow is shown in Figure
6.8. As observed in Figure 6.9, the streamwise variation of the centerline (y = 0)
velocity of the calculated base flow compares closely to the similarity solution of
Goldstein (1929). The similarity solution was calculated using the series represen-
tation for the inner wake given by Goldstein (1929). The large variation of the
centerline velocity indicates that nonparallel effects may play an important role in
the initial development of disturbances in high-deficit wakes.

In his experimental work, Sato (1970) found that the frequency of the pre-
dominant small amplitude disturbance in flat plate wakes corresponded almost
exactly to the frequency of maximum amplification as predicted by linear stabil-
ity theory. Therefore, in this calculation the undisturbed wake was excited at its
most unstable frequency. This frequency was determined from a linear stability
analysis of the inflow streamwise velocity distribution. The eigenvalues (stream-
wise wavenumber and amplification rate) of the Orr-Sommerfeld equation were
obtained for a range of frequencies in order to determine the frequency of greatest
instability. The streamwise wavenumber a,, amplification rate a;, and phase ve-
locity ¢, obtained from this analysis are shown in Figures 6.10. As seen in Figure
6.10b, the amplification rate —a; of the sinuous mode (mode-1) achieves its max-
imum value at the frequency = .51. The eigenfunctions of the Orr-Sommerfeld
equation, corresponding to the frequency 8 = .51, are shown in Figures 6.11.

When this calculation was undertaken, it was thought that Sato (1970) had
not indicated the initial disturbance levels in his experiments. Therefore, it was
necessary to estimate the amplitude level for the disturbance excitation in the

calculation. The amplitude of the wake excitation was chosen to be 4; = .000667
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as this was thought to be a good estimate of the disturbance level in Sato’s (1970)
experiments. However, after these calculations were completed, it was learned
that the forcing level in Sato’s experiments corresponded to A; ~ .001.

Asin Case-1, the influence of the grid sizes Az and Ay on the numerical results
was investigated in order to determine the spatial discretization that resulted in
solutions that were reasonable independent of the grid sizes. A discussion of these

investigations is given in Appendix B. For this calculation, the grid
N =1024 and M =256 (6.16)

was sufficient for this purpose. Again, the time step was determined by stability
considerations rather than considerations of temporal accuracy. Therefore, the
influence of the time step on the numerical results was not investigated. For this
calculation, the time step

At = TP | with Lues = 128 (6.17)

Lmaz

was sufficiently small to ensure numerical stability. The response of the wake
to the excitation at the inflow boundary was calculated for seventeen oscillation
periods Tr of the fundamental disturbance (L, = 2176).

For this calculation, greater spatial resolution than in Case-1 was required
because of the presence of large amplitude harmonics of the fundamental distur-
bance. The spatial domain contained approximately thirty wavelengths of the
fundamental disturbance (based on the wavelength at the inflow boundary), with
approximately 34 grid points per wavelength. In the transverse direction, the
spatial domain contained approximately 32 momentum thicknesses (based on the

inflow boundary velocity distribution) with approximately eight grid points per




105

momentum thickness. As mentioned, investigations of the influence of the grid
sizes on the results of the numerical calculation (see Appendix B) have established
the suitability of the spatial discretization.

The relevant parameters in this calculation are summarized below:

Case-2:
the streamwise location of the inflow boundary, zy = .03;
the streamwise location of the outflow boundary, TN = .75;
the transverse location of the lower freestream boundary, y, = ~-16;
the transverse location. of the upper freestream boundary, yam = 16;
the Reynolds number Re = Q%.z ) Re = 200000;
the amplitude level of the wake excitation, A2 = .000667;
the frequency of the wake excitation, B = 51,
the number of streamwise grid increments, N = 1024
the number of transverse grid increments, M = 256;
the number of time steps calculated, L, = 2176;
and the time steps per fundamental disturbance period, Lmy,. =  128.

Amplitude distributions of the fundamental disturbance component of the
streamwise velocity were obtained by Fourier time series analysis in the time in-
terval 15Tr < t < 17Tr. Comparisons of these amplitude distributions to those
from the experiments of Sato (1970) are shown in Figures 6.12. The experimen-
tal results are plotted on an arbitrary scale, but the relative amplitude level at
each streamwise location is accurately represented in the figure. The streamwise
locations z for which the amplitudes in Figure 6.12a are plotted relate to the

streamwise locations X in Figure 6.12b according to

X
l

T =

(6.18)
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The flat plate length ¢ was defined in Chapter 3 and was equal to 300mm in
Sato’s experiments. There is good qualitative agreement between the numeri-
cal and experimental amplitude distributions at the streamwise locations z =
067 (X = 20mm), z = .1 (X = 30mm), and z = .133 (X = 40mm). At
z = .200 (X = 60mm), the shapes of the amplitude distributions for both the nu-
merical simulation and the experiment are similar, but the amplitude level relative
to the level at the previous location (z = .133) is smaller for the numerical calcu-
lation than for the experiment. This is due to differences between the excitation
amplitude in the calculation and in the experiment. Additionally, it is noted that in
Figure 6.12b, the experimentally obtained amplitude distribution for X = 20mm
is larger than the amplitude distribution for X = 30mm. As this is somewhat
inconsistent with expected behavior, it is possible that the curves are mislabzled
so that the curve labeled X = 30mm actually corresponds to X = 20mm and
vice-versa. The comparison of the numerical results to the experimental results
that was discussed in this paragraph was based on the assumption that the curves
were mislabeled.

The streamwise variation of the mean centerline velocity and the mean wake
half-width for both the calculation and the experiments of Sato (1970) are shown
in Figures 6.13. The horizontal scale 0 < z < 2.67 in Figure 6.13a corresponds to
the horizontal scale 0 < X < 800mm in Figure 6.13b. The mean flow is the zero
frequency (F = 0) component of the disturbed wake and it therefore contains any
nonlinearly generated 0'* harmonic of the fundamental disturbance.

In Figures 6.13, the calculated mean centerline velocity compares reasonably
well to the experimentally obtained mean centerline velocity (open circles in Figure

6.13b). Both the numerical and experimental centerline velocities increase rapidly.
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This rapid rise is due to nonlinear interactions. As observed in Figures 6.13, the
wake half-width for the calculation is similar to the half-width for the experiment.

The results of this calculation exhibit good qualitative comparison with the
experimental results of Sato (1970). Good agreement between the numerical and
experimental results was obtained for large amplitude levels where nonlinear inter-
actions were important. Therefore, it is concluded that the numerical method is
suitable for tke calculation of large amplitude disturbances in high-deficit wakes.
Case-3

The purpose of this calculation was to investigate the effect of larger ampli-
tudes on the disturbance development. Therefore, for this calculation all parame-
ters except for the excitation amplitude were kept the same as in Case-2. For this
calculation (Case-3), the excitation amplitude was A; = .001. The base flow that
was used as the initial condition was identical to the base flow from Case-2 (see
Figures 6.8 and 6.9).

Figures 6.14 display the flow variables U?, V°, and Q) at the final time
of the calculation, ¢t = 2176A¢. Due to the rapid growth of the disturbances,
the wake changes significantly from its undisturbed state. Very near the inflow
boundary, the wake appears undisturbed because the disturbances are still quite
small in this region of the spatial domain. Beyond z/Az x~ 128 (z = .12), the
disturbances become large enough so that they are the dominant feature in the
wake. Observing the spanwise vorticity Q2 in Figure 6.14c, a pattern develops
that resembles that of a Karmdn vortex street. This pattern develops as the
disturbances reach large amplitude levels. As mentioned in Chapter 3, the vorticity
is defined as w = -V x u.

As seen in Figures 6.14, at this time the disturbances are still quite far up-

stream of the outflow boundary. Based on the wavelength of the vortex street
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observed in Figure 6.14c, the leading edge of the disturbance wave is approxi-
mately seven wavelengths upstream of the outflow boundary. Therefore, at this
time the assumption that the wake is undisturbed near the outflow boundary is
clearly satisfied. Furthermore, the vorticity disturbances are confined to a region
near the wake centerline and appear to be quite small at the fre?strea.m boundaries.
In order to see more details of the vorticity field, vorticity plots that corre-
spond to smaller regions of the spatial domain are shown in Figures 6.15 and 6.16.
Figure 6.15a shows the spanwise vorticity Q0 in the upstream half of the spatial
domain (.03 < z < .39, 0 < z/Az < 512) and Figure 6.15b shows the spanwise
vorticity 2 for the streamwise interval .03 < z < .27 (0 < z/Az < 340). In
both of these figures, rapid disturbance development is observed. In Figures 6.16,
the spanwise vorticity Q2 is shown for the streamwise intervals .03 < z < .12
(0 < z/Az < 128), 12 < z < .21 (128 < z/Az < 256), .21 < z < .30
(256 < z/Az < 384), and .30 < z < .39 (384 < z/Az < 512). These figures
show in great detail the disturbances development that results from the wake
excitation. In Figure 6.16d, a very distinct vortex street pattern is visible.
Amplification curves based on the kinetic energy E°(z, F) are shown in Fig-
ure 6.17. The kinetic energy is calculated using equation (6.6). The harmonic
content of the flow variables was obtained by Fourier time series analysis of the
velocity components in the time interval 13Tr < t < 15Tfr. For z < .11, the
streamwise variation of the kinetic energy of the fundamental disturbance (F = 1)
agrees closely with that obtained from linear stability theory calculations. In
the linear stability theory calculations, the streamwise variation of the base flow
was accounted for by the use of a quasi-uniform assumption. The mean distur-
bance component (F = 0), the second harmonic (F = 2), and the third harmonic

(F = 3) also grow rapidly in the region z < .11. In particular, the second and
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third harmonics grow more rapidly than the fundamental disturbance. Sato and
Kuriki (1961) and Sato (1970) have also observed large mean and second harmonic
components in flat plate wakes.

| The saturation of the fundamental disturbance occurs at z &~ .11. There, the
amplitude of the streamwise velocity component. of the fundamental disturbance
is approximately twenty percent of the freestream streamwise velocity. Beyond
z = .11, the fundamental disturbance varies little in the streamwise direction.
The mean disturbance component and the second harmonic also saturate and
reach a state in which they vary little in the streamwise direction.

The saturation of the fundamental disturbance, which does not occur for the
small amplitude, linear development of disturbances, may nevertheless be indi-
rectly explained by the changing stability characteristics of the mean flow. As a
simple way of determining the stability of the mean flow, the spatial amplification
rate —a;(z) of the fundamental disturbance is computed from a linear stability
theory analysis of the mean flow. Then, the streamwise variation of the kinetic

energy of the fundamental disturbance is computed from

E’(z,1) = E°(z,, 1)e-f:o 2oudz (6.19)
using the amplification rates of linear stability theory. The streamwise variation of
the kinetic energy of the fundamental disturbance, as predicted by a linear stabil-
ity analysis of the mean flow, is denoted in Figure 6.17 by the label ‘LST MEAN
FLOW?". This simplified model also exhibits saturation of the fundamental distur-
bance. However, the amplitude of the fundamental disturbance after saturation
is over-predicted. These results indicate that the saturation of the fundamental

disturbance is at least partly due to the changing stability characteristics of the
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nonlinearly generated mean flow. Alternatively, the variation of the mean flow
can be thought of as being due to the growth and eventual saturation of the
fundamental disturbance.

The presence of the harmonic components F = 0.5, F = 1.5, and F = 2.5
in Figure 6.17 is due to the fact that the wake has not yet achieved a truly time
periodic state in the tim~ interval 13T < t < 15TF. Evidence of the nonperiodic
nature of the wake is given in Figure 6.18 which shows the temporal variation of
the transverse velocity V0 in the time interval 13T < t < 15TF. It is apparent
from Figure 6.18 that, in the time interval shown, the transverse velocity V? is
not temporally periodic at z = .27. Instead, the amplitude of V® that corresponds
to the streamwise location z = .27 appears to be increasing with time. Fourier
analysis of this data results in the F = 0.5, F = 1.5, and F = 2.5 harmonics
that appear in Figure 6.17. Later, in the discussion of Case-5 in which a larger
streamwise domain was employed, it will be shown that for the same streamwise
locations the flow variables eventually become temporally periodic after more time
has elapsed. When periodicity is reached, the harmonic components F = 0.5,
F = 1.5, and F = 2.5 decrease to negligible levels. However, as will also be shown
in Case-5, the F = 0.5, F = 1.5, and F = 2.5 harmonics do not influence the other
harmonic components.

The streamwise variation of the mean centerline velocity and the mean wake
half-width are shown in Figures 6.19 and 6.20 respectively. From these figures, it
is apparent that the mean flow is quite different from the base flow and may have
very different stability characteristics.

The streamwise wavenumber a, and the phase velocity ¢, of the fundamental -
disturbance are shown in Figures 6.21. They are compared with the corresponding

quantities that are obtained from a linear stability analysis of the calculated mean
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flow. The wavenumber and phase velocity that are obtained from this analysis
compare well to the wavenumber and phase velocity of the calculated fundamental
disturbance.

Case-4

The results of Case-3 have shown that a larger excitation amplitude has signif-
icant effects on the disturbance development. For this calculation, the amplitude
was increased by a factor of ten over that in Case-3, resulting in 4, = .01. The
base flow was identical to that of Case-2 and Case-3 (see Figures 6.8 and 6.9). The
response of the wake to the excitation at the inflow boundary, was calculated for
fifteen fundamental disturbance periods (L; = 1920). All other parameters were
identical to Case-3.

Amplification curves based on the disturbance kinetic energy of the mean
component F' = 0, the fundamental disturbance F' = 1, and the second harmonic
F = 2 are shown in Figures 6.22. For comparison, the analogous curves of Case-3
for which A, = .001 are also displayed in these figures. The a.mﬁ].iﬁcation curves
for the larger excitation level, 4; = .01, saturate further upstream and at higher
amplitude levels than those for Case-3. However, qualitatively the amplification
curves are quite similar for the twc; excitation levels.

The streamwise variation of the mean centerline velocity and the mean wake
half-width are shown in Figures 6.23 and 6.24 and are compared with the corre-
sponding curves from Case-3. For both excitation levels, the centerline velocity
increases rapidly due to nonlinear interactions. However, for the higher excitation
amplitude, the rapid increase in the centerline velocity begins further upstream.
The wake half-width, shown in Figure 6.24, behaves in a manner similar to the

centerline velocity. The increase in the wake half-width, which is also due to
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nonlinear interactions, begins further upstream when the excitation amplitude is
larger.

The qualitative behavior of the disturbed wake, as observed in Figures 6.22,
6.23, and 6.24, is similar regardless of the excitation amplitude. The main influence
of the larger excitation amplitude is to accelerate the onset of nonlinear interactions
and the saturation of the various disturbance components.

Case-5

With this calculation, the influence of the outflow boundary conditions on the
numerical results is investigated. For this, the calculation of Case-3 is repeated
with a streamwise domain that is 1.5 times longer than the one in Case-3. All
other parameters for this calculation were identical to those of Case-3. Thus, the
influence of the outflow boundary conditions can be assessed.

This calculation was performed in a spatial domain bounded by

2o=.03 , zy=111 , y=-16 , and yam =16 . (6.20)

The spatial domain was discretized into N streamwise grid increments and M

transverse grid increments with

N =1536 and M =256 . (6.21)

The spatial resolution that resulted from this discretization was identical to that
of Case-3. The response of the wake to the excitation at the inflow boundary was
calculated for 25 periods Tr of the fundamental disturbance (L2 = 3200) using
the same time step as in Case-3. The base flow was computed subject to the same

inflow boundary conditions as discussed in Case-2.
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The relevant parameters in this calculation are summarized below:
Case-5:
the streamwise location of the inflow boundary, To = .03;
the streamwise location of the outflow boundary, zy = 1.11;
the transverse location of the lower freestream boundary, yo = —-16;
the transverse location of the upper freestream boundary, ypr = 16;
the Reynolds number Re = gf-z, Re = 200000;
the amplitude level of the wake excitation, A, = .001;
the frequency of the wake excitation, B = .51;
the number of streamwise grid increments, N = 1536
the number of transverse grid increments, M = 256;
the number of time steps calculated, L, = 3200
and the time steps per fundamental disturbance period, Lmgz = 128.

The streamwise variation of the base flow centerline velocity for this calcula-
tion (N = 1536) is shown in Figure 6.25 together with the corresponding curve of
Case-3 (N = 1024). It is obvious that the centerline velocity is practically identi-
cal for both cases. This is an indication that the outflow boundary had negligible
effect on the base flow for Case-3.

Contours of instantaneous spanwise vorticity for ¢ = 2176 At and ¢t = 3200At
are shown in Figures 6.26. For t = 2176At, the spanwise vorticity contours are sim-
ilar to those in Figure 6.14c (Case-3). The disturbances experience rapid stream-
wise amplification downstream of the inflow boundary, attain relatively large am-
plitude levels, and eventually dominate the flow field. The wake develops a Karmién
vortex street pattern similar to what was observed in Figure 6.14c. Figure 6.26b

shows the spanwise vorticity at ¢ = 3200A¢. A vortex street pattern is also visible
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" for this time. However, the vortex street has propagated much farther downstream

than in Figure 6.26a.

In Figures 6.27, amplification curves for the disturbance kinetic energy
E°(z,F) of the mean component F = 0, the fundamental disturbance F = 1,
and the second harmonic F = 2 are compared to the corresponding curves from
Case-3. The disturbance kinetic energy for Case-3 (N = 1024) is computed using
equation (6.6) and the Fourier analyzed velocity components from the time interval
13Tr < t < 15TF. Similarly, the disturbance kinetic energy for Case-5 (N = 1536)
is computed using the Fourier analyzed velocity components from the time inter-
val 23TF < t < 25Tp. From Figures 6.27, it is obvious that the amplification
curves for the various harmonic components corresponding to Case-5 (N = 1536)
are almost identical to the corresponding curves from Case-3 (N = 1024). The
only differences are observed in the region z > .20. These differences are due
to the different time intervals used to Fourier analyze the velocity components
for each case. The otherwise good agreement between the results of Case-3 and
Case-5 indicates that the influence of the outflow boundary conditions on Case-3
is minimal. | |

Figure 6.28 shows the amplification curves for the kinetic energy E°(z,F)
that results from the Fourier time series analysis of the velocity components in
the time interval 23tp < t < 25Tp. It is observed that the harmonic components
F =05, F = 1.5, and F = 2.5 are smaller by several decades when compared to
the results of Case-3 as displayed in Figure 6.17. This reduction is due to the fact

that the wake disturbances are periodic in the time interval 23Tp < t < 25TF.

.This periodic behavior is apparent from Figure 6.29 which shows the temporal

behavior of the transverse velocity VO in the time interval 23TF < ¢t < 25Tp.
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Clearly, V° is approximately periodic for all the streamwise locations that are
shown in Figure 6.29.
6.2 Investigations of Three-Dimensional Disturbance Development

In this section, investigations of three-dimensional disturbance development
in a high-deficit flat plate are discussed. Several different calculations are under-
taken. With the first calculation (Case-6), the ability of the numerical method
to accurately simulate three-dimensional disturbances is dcmonst.rated. This cal-
culation is the three-dimensional analog of Case-1. In Case-7, the response of
a wake when subject to a three-dimensional excitation.is investigated. In con-
trast to Case-6, in this calculation the base flow exhibits considerable streamwise
variation. In Case-8 and Case-9, the response of the wake to a combination of
two-dimensional and three-dimensional excitations is investigated.
Case-6

For this case, the development of a small amplitude, three-dimensional dis-
turbance in a flat plate wake is calculated. The results of thié calculation are
compared to linear stability theory in order to verify the ability of the numerical
method to accurately simulate three-dimensional disturbances. For this calcula-
tion, the spatial and temporal domains, and the base flow were identical to Case-1.

The wake was excited with a three-dimensional sinuous mode disturbance of
amplitude A; = .001, spanwise wave number v = .5, and frequency 8 = .28. The
two-dimensional component of the excitation was set to zero, so that 4, = 0.
In terms of the three-dimensional streamwise velocity disturbance uy (z¢,y) at
the inflow boundary, A is given by the relation Ay = max(|uy,(zo,y)]). The
amplitude and phase of the Orr-Sommerfeld eigenfunctions that correspond to the

frequency § = .28 and spanwise wavenumber v = .5 are shown in Figures 6.30.
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The spatial discretization was identical to that used in Case-1. Three spanwise
modes (K = 6) were calculated. Restrictions on the allowable time step, due
to numerical stability considerations, are more severe for calculations of three-
dimensional disturbances than for the calculation of two-dimensional disturbances.
For this calculation, the time step

Tp

ma2z

At =

With Lyngs = 256 (6.22)

was sufficiently small to ensure numerical stability. Five periods Tr of the funda-
mental disturbance component were calculated (L, = 1280).

The relevant parameters in this calculation are summarized below:

Case-6:
the streamwise location of the inflow boundary, zg = 3;
the streamwise location of the outflow boundary, TN = 1
the transverse location of the lower freestream boundary,y, = -10;
the transverse location of the upper freestream boundary,yar = 10;
the Reynolds number Re = Q%,_?’ Re = 200000;
the amplitude level of the two-dimensional excitation, A4, = 0;
the amplitude level of the three-dimensional excitation, As =  .001;
the frequency of the wake excitation, B = .28;
the spanwise wave number of the wake excitation, ¥ = 55
the number of streamwise grid increments, N = 128
the number of transverse grid increments, M = 64;
the number of spanwise modes computed, K/2 = 3;
the number of time steps calculated, L, = 1280;
and the time steps per fundamental disturbance period, Lp.: = 256.
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The amplification curves for the disturbance kinetic energy E'(z, F) of the
first spanwise mode (k = 1) are shown in Figure 6.31 and are compared to the
corresponding curves from linear stability theory. The amplification curve for the
fundamental disturbance (F = 1) compares well to the linear stability theory
prediction of the kinetic energy. In the Navier-Stokes calculation, the second
harmonic (F = 2) is present but is much smaller than the fundamental disturbance.

For the streamwise location z = .35, the amplitude and phase distributions
of the fundamental disturbance component (k = 1, F = 1) are compared to the
amplitude and phase distributions obtained from a spatial linear stability theory
analysis of the base flow. This comparison is shown in Figures 6.32 and 6.33. The
Orr-Sommerfeld amplitude and phase distributions are normalized in the same
manner as discussed in connection with Case-1. The amplitude distributions of the
fundamental disturbance are virtually identical to the Orr-Sommerfeld amplitude
distributions. The phase distributions of the fundamental disturbance also exhibit
good agreement with the Orr-Sommerfeld pha.sé distributions.

The results of this calculation, as represented by the disturbance kinetic en-
ergy as well as the disturbance amplitude and phase distributions, compared rea-
sonably well to linear stability theory. It is concluded that the numerical method
is suitable for calculations of three-dimensional disturbances.

Case-7

With this calculation, the development of a three-dimensional disturbance in
a high-deficit flat plate wake is investigated. In contrast to Case-6, the base flow
changes significantly in the streamwise direction and was approximately the same
as the base flow that was used for Case-2, Case-3, and Case-4. For this case, the
frequency of the excitation was chosen to be identical to the forcing frequency for

Case-2 through Case-5 so that the results of this calculation can be compared to
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those earlier cases. The results of this calculation will serve as a reference for other
calculations for which both two-dimensional and three-dimensional disturbances
were introduced.

This calculation was performed in a spatial domain that is bounded by
g=.03 , zN=.36 , yYyp=-16 , and yp =16 . (6.23)

As in Case-2, the undisturbed wake was computed subject to a Gaussian
inflow streamwise velocity distribution. The resulting base flow modeled the wake
from the experiments of Sato (1970). |

The wake was excited with a three-dimensional sinuous mode disturbance of
amplitude A; = .001, spanwise wavenumber ¥ = .5, and frequency 8 = .51. The
amplitude of the two-dimensional component of the excitation was A, = 0. The
amplitude and phase of the Orr-Sommerfeld eigenfunctions that correspond to the
frequency 8 and spanwise wavenumber 7 are shown in Figures 6.34.

The spatial domain was discretized into N streamwise grid intervals and M

transverse grid intervals where
N =256 and M =128 . (6.24)

Three spanwise modes (K = 6) were computed. For this calculation, the time step

Tr

maz

At =

with Lpmae = 512 (6.25)

was sufficient to ensure numerical stability. The time-dependent response of the
wake was calculated for eight fundamental disturbance periods Tr which is equiv-
alent to ¢t = 4096At.

For this calculation, the spatial domain contained approx:mately eight stream-

wise wavelengths of the fundamental disturbance (based on the wavelength at the
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inflow boundary) with approximately sixteen grid points per streamwise wave-
length. In the transverse direction, the domain contained approximately 32 mo-
mentum thicknesses (based on the inflow boundary velocity distribution) with
approximately four grid points per momentum thickness. Based on the results of
the two-dimensional calculations, it is felt that the spatial discretization discussed
here results in solutions that are sufficiently independent of the grid sizes.

The relevant parameters in this calculation are summarized below:

Case-T:
the streamwise location of the inflow boundary, Zo = .03;
the streamwise location of the outflow boundary, N = .36;
the transverse location of the lower freestream boundary,yo =  -16;
the transverse location of the upper freestream boundary,yps = 16;
the Reynolds number Re = Q%ﬂz, Re = 200000;
the amplitude level of the two-dimensional excitation, A, = 0;
the amplitude level of the three-dimensional excitation, A3 = .001;
the frequency of the wake excitation, B = .51;
the spanwise wave number of the wake excitation, 04 = .5;
the number of streamwise grid increments, N = 256
the number of transverse grid increments, M = 128
the number of spanwise modes computed, K/2 = 3;
the number of time steps calculated, L, = 4096;
and the time steps per fundamental disturbance pericd, Lz =  512.

Amplification curves of the kinetic energy £!(z, F) are shown in Figure 6.35a.
The disturbance kinetic energy is calculated using the Fourier analyzed velocity

components that correspond to the time interval 6Tr < ¢t < 8Tp. The variation of
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the kinetic energy of the fundamental disturbance (F = 1) agrees closely with that
obtained from linear stability theory calculations. As was the case for calculations
of two-dimensional disturbances, the large amplitude level of the F = 0.5 and
F = 1.5 harmonics is due to the fact that the wake has not achieved a time
periodic state in the time interval 6TFr < t < 8Tfr. At z = .12, the fundmental
disturbance appears to saturate. However, this saturation may be due to the
nonperiodic component of the wake disturbances.

For comparison purposes, amplification curves of the disturbance kinetic en-
ergy that correspond to the time interval 8Tr < t < 10TF are shown in Figure
6.35b. In this figure, the fundamental disturbance does not saturate. In addition,
the other harmonic components, particularly the F = 0.5 and F = 1.5 harmonics,
have decreased relative to their values in Figure 6.35a. This indicates that the
disturbances are not periodic in the time interval 6Tr < t < 8Tp. The saturation
of the fundamental disturbance that was observed in Figure 6.35a is apparently
due to this nonperiodicity.

Figures 6.36 show contours of streamwise vorticity w, in the yz—plane for
t = 4096At. The horizontal scale of the plots in Figures 6.36, 0 < z/Az < 32,
is equivalent to two spanwise wavelengths of the fundamental disturbance. The
vorticity shown in Figure 6.36a corresponds to the inflow boundary z = .03 and
is due solely to the three-dimensional excitation at this boundary. Figure 6.36b
shows the streamwise vorticity corresponding to z = .146. For this location, the
vorticity concentrations have rotated relative to the vorticity concentrations at the
inflow boundary. The numerical results of Meiburg and Lasheras (1988), which are
shown in Figure 6.37, display a similar behavior. Meiburg and Lasheras attributed

the rotation of the vorticity concentrations to the velocity field induced by these
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concentrations. In Figures 6.36, the solid contours denote positive streamwise

vorticity. Because the vorticity is defined as
w=-Vxu , (6.26)

positive vorticity induces a counterclockwise azimuthal velocity component and
a counterclockwise rotation of the positive streamwise vorticity concentrations.
For similar reasons, the negative streamwise vorticity concentrations rotate in the
clockwise direction. The vorticity in Figures 6.36 is also distributed in a more com-
plicated pattern than the vorticity observed in Figure 6.37 (Meiburg and Lasheras,
1988). It is believed that the simpler vorticity distribution in Figure 6.37, as com-
pared to Figure 6.36b, is due to the simpler initial perturbation that was employed
by Meiburg and Lasheras (they used inviscid vortex dynamics and disturbed the
wake by perturbing the vortex filaments sinusoidally in the streamwise and span-
wise directions).
Case-8 and Case-9

With these calculations, an attempt is made to investigate certain aspects of
the secondary instability of wakes. These studies are undertaken by calculating the
interaction of a large amplitude two-dimensional disturbance with a smaller ampli-
tude three-dimensional disturbance. The results of these calculations are compared
to the results of Case-7 and Case-4 in order to observe how the two-dimensional
disturbance influences the development of the three-dimensional disturbance and
vice-versa.

The base flow and most relevant parameters were identical to those in Case-7.
For both Case-8 and Case-9, the amplitude, frequency, and spanwise wavenumber

of the three-dimensional excitation had the same values as in Case-7, so that

Ay=.001 , =51 , and y=.5 . (6.27)
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For Case-8, the amplitude of the two-dimensional excitation had the same value

as in Case-4, so that

A, = .01 . (6.28)

For Case-9, the amplitude and frequency of the two-dimensional excitation was
Ay =.05 . (6.29)

Amplification curves of the kinetic energy E"(z, F = 1) for Case-8 are shown
in Figure 6.38. The curve corresponding to k = 0 represents the kinetic energy
of the two-dimensicnal disturbance. The curve corresponding to k = 1 is for
the kinetic energy of the three-dimensional disturbance. The curve labeled ‘LST
MEAN FLOW’ is for the kinetic energy E'(z,F = 1) of the three-dimensional
disturbance component, as predicted by a linear stability theory analysis of the
mean flow. This last curveis computed in the same manner as discussed previously
(Case-3). The two-dimensional disturbance (k = 0) grows very rapidly at first and
then saturates at an amplitude of £°(z, F = 1) ~ .20. This behavior is very similar
to that observed for the two-dimensional disturbance development in Case-4 where
three-dimensional disturbances were not present.

The three-dimensional disturbance (k = 1) initially grows in a manner similar
to the three-dimensional disturbance from Case-7. However, the saturation of the
two-dimensional disturbance causes a temporary reduction in the amplification
rate of the three-dimensional disturbance. After a brief period of lower ampli-
fication, the three-dimensional disturbance resumes stronger growth. However,
the amplification rate is smaller than the amplification rate that was observed
before the saturation of the two-dimensional disturbance. The reduction in the

three-dimensional growth rate, that is probably caused by the saturation of the

|
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two-dimensional disturbance, may be due to the changing stability characteristics
of the mean flow. This proposition is supported by the close comparison in Fig-

ure 6.38 of the three-dimensional dis_turba.nce and the curve labeled ‘LST MEAN

FLOW?’. The resumption of rapid three-dimensional disturbance growth, follow-

ing the saturation of the two-dimensional disturbance, could be explained by a
secondary instability mechanism.

Amplification curves of the kinetic energy E*(z, F = 1) for Case-9 are shown
in Figure 6.39. Due to the now larger two-dimensional excitation amplitude, the
two-dimensional disturbance saturates further upstream than in Case-8. As in
the previous case, the saturation of the two-dimensional disturbance causes a
strong reduction in the three-dimersicnal amplification rate. After a short period
of reduced three-dimensional growth, the three-dimensional disturbance continues
its amplification. Qualitatively, this behavior1s the same as in Case-8. However, as
a result of the larger two-dimensional excitation amplitude, the reduction in the
three-dimensional amplification rate and the subsequent resumption of stronger
growth occur further upstream than in Case-8.

In Figure 6.39, the resumption of strong three-dimensional growth is short-
lived: the three-dimensional disturbance tends to saturate for a second time. How-
ever, this second saturation is in contrast to the observed behavior in Figure 6.38
(Case-8). To further check the validity of the resulis of Case-9, this calculation
is repeated in a spatial domain that is twice as long (zny = .69, N = 512) as
the spatial domain of the original calculation but which in all other respects is
identical to the original calculation. The amplification curves of the disturbance
kinetic energy E!(z, F) for both the original calculation (zn = .36, N = 256) and
the long domain calculation (zy = .69, N = 512) are shown in Figures 6.40. For

the long domain calculation (Figure 6.40b), the three-dimensional fundamental
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distu1:bance (F = 1) initially grows more slowly after its initial saturation than
was the case for the original calculation (Figure 6.40a). However, the fundamental
disturbance does not saturate for a second time as it did in the original calcula-
tion. Therefore, it appears that the second saturation of the three-dimensional
fundamental disturbance that is observed in Figures 6.39 and 6.40a is due to the
influence of the outflow boundary..

The three-dimensional disturbance behavior observed in Figures 6.38 and 6.39
is similar to that observed by Metcalfe et al. (1987) in their investigations of sec-
ondary instability in free shear layers (see Figure 6.41). They numerically calcu-
lated the temporal development of a large amplitude two-dimensional disturbance
as it interacted with a smaller amplitude three-dimensional disturbance. They
found that the saturation of the two-dimensional disturbance temporarily inhib-
ited the amplification of the three-dimensional disturbance. After a brief period of
reduced growth, the three-dimensional disturbance continued growing and even-
tually surpassed the two-dimensional disturbance.

For Case-8 and Case-9, the presence of the two-dimensional disturbance ap-
pears to alter the distribution of vorticity as compared to Case-7. The streamwise
vorticity in the yz—plane for t = 4096At is shown in Figures 6.42. Figure 6.42a
shows the streamwise vorticity for Case-8 which corresponds to the streamwise
location z = .146. Figure 6.42b shows the streamwise vorticity for Case-9 for the
same streamwise location. Due to the presence of the two-dimensional disturbance,
the streamwise vorticity is distributed quite differently than in Figure 6.36b (Case-
7). In Figure 6.36b, the streamwise vorticity is distributed in a pattern of discrete
streamwise vortices. For Case-8 and Case-9, in which both two-dimensional and

three-dimensional disturbances are present, the streamwise vorticity is distributed
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in a large number of small vortices. Furthermore, in contrast to Case-7, these
vortices do not appear to rotate.

Additional displays of the interactions of the two- and three-dimensional dis-
turbances are shown in Figures 6.43 through 6.45. In Figures 6.43, the spanwise
vorticity w, in the yz—plane for ¢t = 4096At is shown for Case-7, Case-8, and
Case-9. The interaction of the two- and three-dimensional disturbances (Case-8
and Case-9) significantly alters the vorticity distribution as compared to Case-7
for which only a three-dimensional disturbance was introduced.

In Figures 6.44, the streamwise vorticity w, in the zy—plane for ¢t = 4096A¢
is shown for Case-7, Case-8, and Case-9. The two-dimensional disturbance, which
is present in Case-8 and Case-9, causes a much broader transverse distribution of
vorticity as compared to Case-7 for which the two-dimensional disturbance was
absent. In Figures 6.45, similar plots of the spanwise vorticity w, are shown. For
Case-7 (Figure 6.45a) the spanwise vorticity disturbance is much smaller thar for
Case-8 and Case-9 (Figure 6.45b and 6.45¢). For Case-8 and Case-9, the vorticity
develops in a manner similar to Case-3 (see Figure 6.14c).

Figures 6.46, 6,47, 6.48, 6.49, and 6.50 (Case-8) give detailed views of the
vorticity fields in the braid regions between the large concentrations of spanwise
vorticity. It is in these regions that Meiburg and Lasheras (1988) observed the for-
mation of lambda vortices. However, from the results of these calculations, no con-
clusive evidence of these vortices was observed. This might be due to the fact that
the forcing amplitudes that were used for Case-8 were different from those used for
the simulations of Meiburg and Lasheras (1988). For Case-8, the wake was forced
with a large two-dimensional disturbance and a small three-dimensional distur-
bance while Meiburg and Lasheras employed a large three-dimensional disturbance

and a smaller two-dimensional disturbance. Furthermore, there is a considerable
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difference between the Reynolds number for this work, Rey = _U—.ﬂ%zu = 594 and
the Reynolds number for Meiburg and Lasheras’s calculations, Reg = 74. Finally,
it was not possible to duplicate the amplitude levels used by Meiburg and Lasheras
because a larger three-dimensional forcing amplitude would have required the use
of more Fourier modes in these ca.lculaiions. This was not feasible due to the
limitations of the available computer resources.

In Figures 6.51 through 6.53, the amplitude distributions of the spanwise
vorticity for (k = 0,F =1) and (k =1, F = 1) and the amplitude distributions of
the streamwise vorticity for (k = 1, F = 1) are shown. Case-7, Case-8, and Case-
9 are represented in these figures. Due to the influence of the two-dimensional
disturbance in Case-8 and Case-9, the amplitude distributions of the streamwise
and spanwise vorticity are significantly different from those for Case-7 (Figures
6.51).

Additional consequences of the interaction of the two-dimensional and three-
dimensional disturbances are obvious from observing the behavior of the wake
half-width b. In Figure 6.54, the wake half-width b corresponding to three different
calculations: Case-4 (4, = .01, A; = 0), Case-7 (A2 = 0,A; = .001), and Case-
8 (A2 = .01, A3 = .001) is displayed. For reference the wake half-width of the
base flow is also shown. When only two-dimensional disturbances are present
(A2 = .01, A; = 0), the wake as characterized by its half-width b becomes much
broader. However, when forced with only a three-dimensional disturbance (4, =
0,A; = .001), the wake width does not differ significantly from the width of
the base flow. The strongest effect of broadening is observed when the wake is
excited with both two-dimensional and three-dimensional disturbances (Case-8).
For Case-8 (A; = .01,43 = .001), the wake half-width development is initially
very similar to that of Case-4 (4; = .01, Ay = 0). However, while for Case-4 the

|
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half-width stops increasing when the two-dimensional fundamental disturbance
saturates, for Case-8 the half-width continues increasing beyond this point. This
additional increase in the wake half-width is due to the presence of the three-
dimensional disturbance. _

In Figure 6.55, the wake half-width for both Case-8 and Case-9 is shown.
For Case-9, in which the two-dimensional disturbance is larger than in Case-8, the
initial increase of the half-width begins further upstream. However, the variation of
the wake half-width is similar for both cases once the two-dimensional disturbance

has saturated.
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CHAPTER 7

CONCLUSIONS

A numerical method has been developed for studying the evolution of two- and
three-dimensional disturbances in high-deficit wakes. Comparison of the results
of this method were made to both linear stability theory and experiments. The
numerical method was found to be capable of simulating both small and large
amplitude disturbances.

Simulations of two-dimensional sinuous mode disturbances in a high-deficit
flat plate wake were undertaken. At small amplitude levels, the disturbances grew
exponentially at rates predicted by linear stability theory. At higher amplitude
levels, nonlinear effects became important and the disturbances saturated. The
saturation of the fundamental disturbance was found to be related to the stabil-
ity characteristics of the mean flow. The main influence of a larger excitation
amplitude on the resulting disturbances was to accelerate saturation. For large
disturbance amplitudes, the wake developed a Kérmdn vortex street pattern. Fur-
thermore, the influence of the outflow boundary conditions on the results of the
numerical simulations was found to be negligible. The subharmonic component
that appeared in the wake was found to be due to a nonperiodic wake disturbance.
For a fixed spatial location, the subharmonic component decreased with time.

Investigations of three-dimensional disturbances were also undertaken. Asso-
ciated with three-dimensional disturbances were pairs of counter-rotating stream-
wise vortices that appeared to rotate as a result of the velocity field induced by
these vortices. When both two- and three-dimensional disturbances were present,

the saturation of the two-dimensional disturbance caused the three-dimensional
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disturbance to saturate. Shortly after saturation, the three-dimensional distur-
bance resumed stronger growth, possible because of a secondary instability mech-
anism. Larger two-dimensional forcing amplitudes accelerated the saturation of
the two-dimensional and three-dimensional disturbances and also accelerated the
resumption of strong three-dimensional growth.

The interaction of two-dimensional and three-dimensional disturbances re-
sulted in complicated distributions of vorticity. Instead of a small number of dis-
crete streamwise vortices, as when the wake was excited with only three-dimensional
disturbances, a larger number of vortices spread over a much wider transverse re-
gion were present. Furthermore, these interactions resulted in a much broader
wake distribution than that observed when only two-dimensional or three-dimen-
sional disturbances were excited.

Future simulations of three-dimensional disturbances in wakes will undoubt-
edly require larger computational grids in order to better resolve the flow field.
For these simulations to be practical, the numerical method should be modified. It
is felt that greater efficiency could be obtained by solving the Navier-Stokes equa-
tions in velocity-pressure formulation. This would result in both reduced memory
requirements because a smaller number of variables would have to be stored, and
in reduced computation times because of the smaller number of nonlinear terms.

Furthermore, for simulations of three-dimensional disturbances, the stability
of the current numerical method was found to be quite restraining. This had
an adverse effect on the computational efficiency. In the future, this inefficiency
should be avoided by employing numerical methods with more favorable stability
characteristics.

In this work, interactions of two-dimensional and three-dimensional distur-

bances appeared to be an important factor in the three-dimensional breakdown
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of the wake. In these simulations, only the initial stage of these interactions was
observed. In the future, more complete simulations of these interactions should
be attempted as these interactions most likely play an important role in the de-
velopment of the three-dimensionality in transitional wakes. Of particular interest
is how these interactions lead to the formation of the dominant three-dimensional

structures that are observed in experiments.
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Figure 6.38 Amplification curves of the kinetic energy £*(z,1). Case-8: 4A; =
.01, A, = .001, 8 = .51, and v = .5.
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Figure 6.44 Contours of streamwise vorticity w, in the zy-plane for t = 4096At.
z = w/2. Twenty contour intervals between the minimum and
maximum values. Solid lines denote positive vorticity and dashed
lines denote negative vorticity. a) Case-7, A; = 0.00 and 4s =
0.001; b) Case-8, A; = 0.01 and As = 0.001; c) Case-9, A; = 0.05
and A; = 0.001.
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Figure 6.45 Contours of spanwise vorticity w; in the zy-plane for ¢ = 4096A¢.

z = 0. Twenty contour intervals between the minimum and maxi-
mum values. Solid lines denote positive vorticity and dashed lines
denote negative vorticity. a) Case-7, 42 = 0.00 and As = 0.001;
b) Case-8, A; = 0.01 and 43 = 0.001; c) Case-9, A, = 0.05 and

A;s = 0.001.
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Figure 6.46 Contours of spanwise vorticity w; in the zy-plane for ¢ = 4096At
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Figure 6.49 Contours of spanwise vorticity w, in the yz-plane for ¢ = 4096A¢.
Case-8: 4; = .01, 4y = .001, 8 = .51, and v = .5. Thirty con-
tour intervals between the minimum and maximum values. Solid
lines denote positive vorticity and dashed lines denote negative
vorticity. a) z = .172 (z/Az = 110),b) z = .160 (z/Az = 101).
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Figure 6.51 Vorticity amplitude distributions for F = 1. Case-7: 4; = 0,
A; = .001, 8 = .51, and v = .5. a) spanwise vorticity, 2J; b)
spanwise vorticity, 23; c) streamwise vorticity, 0;.
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Figure B.8 Influence of the streamwise grid increment on the phase distribu-
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APPENDIX A

SOLUTION OF THE THREE-DIMENSIONAL
ORR-SOMMERFELD EQUATION

In this appendix, the finite-difference method used to obtain the eigenvalues
and eigenfunctions of the three-dimensional .Orr-Sommerfeld equation for the spa-
tial stability problem is discussed. Both the Orr-Sommerfeld equation and the
related Squire’s equation are solved using fourth-order finite-differences.

For a small amplitude disturbance with velocity and vorticity components

u(z,y,z,t) = Real(a(y)ei@=t712-A)) (A.la)
v(z,y, z,t) = Real(d(y)el@=t71=-F0) | (A.15)
w(z,y, z,t) = Real((y)e(@=+72-AY) | (A.lc)
w2(2, 9, 2,) = Real(w,(y)e =72 7PY) (A.1d)
wy(Z,Y, 2, t) = Real(u, (y)ei(@2+72-A1) | (A.le)

and w,(2,9,2,t) = Real(w,(y)e"**+7>=F) (A1)

the amplitude o(y) of the transverse velocity is an eigenfunction of the Orr-

Sommerfeld equation

.
1 e
~

aRe (5

(U=c)(% —(a®+42)d)=U" o+ —2(a®+7%)d +(a?+72)28) =0 . (A.2)

In equation (A.2), U = U(y) is the streamwise velocity of the undisturbed flow
and is assumed to be independent of £ and z. Furthermore, a is the streamwise
wavenumber of the disturbance, v is the spanwise wavenumber of the disturbance,

¢ = f3/a is the phase velocity of the disturbance where 3 is the temporal frequency,
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Re is the Reynolds number, and ¢t = /—1 is the imaginary number. The notation
( ) denotes differentiation with respect to y.
Solutions of equation (A.2) are sought in the transverse interval ym;, <y <

Ymaz. For wakes, equation (A2) is subject to boundary conditions at ¥y = ymin

and y = yYmaz of the form

8" (Ymin) = €*8(Ymin) | (4.30)
¥ (Ymin) = @B(Ymin) (4.30)
#"(Ymaz) = *5(Ymaz) (4.3¢)
and ¥ (Ymaz) = ~@d(Ymaz) - (4.3d)

Equation (A.2), coupled with the boundary conditions (A.3), is an eigenvalue

problem of the form

Ll'f’ = CLz’f) (A4a)
where
2
Ll =U (_d__z _ a2 _ 72) U"
dy
i d* d? 2
LA LA YO 2y & 2 2 ) 4b
+aRe(dy4 (a +'r)dy2+(a ++°) (A.4b)
and
d? 2 2
L2=:i;§—(! - . (A4C)

For specified parameters «, v, Re, and the base flow velocity U, equation (A.4a)
can be solved for the eigenvalue ¢ and the eigenfunction 4.

For spatially amplifying disturbances, a is obtained as a function of 8, Re,
and v by iteratively solving equation (A.4a) for the eigenvalue ¢, subject to the
constraint,

F(a):-i——c:ﬂ . (A.5)




266

Subsequent values of a are obtained by applying the secant method to equation

(A.5) to get

' i+l _ oJ
a1 = of — F(a’) ( a i )

F(a) = F(a) (46)

where j denotes the iteration level. The iteration scheme is repeated until
a(f, Re,v) is obtained for the desired accuracy. For each iteration level j, the
Orr-Sommerfeld equation (A.4a) is solved using a finite-difference method.

The eigenfunction 9(y) of equation (A.4a) is sought at the discrete points
Ym =y + mAyform=0,...,. M (A.7)

where Yo = Ymin, YM = Ymaz, AY is the spacing between grid points, and M + 1
is the total number of points in the domain. The function #(y) and its derivatives

can be approximated to fourth-order accuracy (Kurtz and Crandall, 1962) using

B + + A v +— (A.80)
™= 3p0Im 2 T gpIm-1 T gpIm T g Il T oggpIm? 0 (A0
o

O = 7;‘ (‘“‘9m—1 +3 9m+1) ) (A.8b)

. 2 3 2 1
‘U:‘ = h ( 2gm-2 + 3gm.. Egm + 3gm-1 + zgm—Z) ,(ASC)

Al

and 7, = X (9m-2 — 49gm-1 + 6gm — 4gm-1 + gm-2) (A-Sd)

where 9, = 9(ym ).
Using equations (A.8) to approximate the derivatives in the Orr-Sommer-

feld equation (A.4a) and the boundary conditions (A.3), the following matrix




eigenvalue problem

/ d, d, dy d, dy
ds ds dr ds ds
A1 B 1 Cl D 1 E 1

o o

o
-
-
>

o o
RS

* ro o
* Do o
e o

\

is obtained. The coefficients of the matrices in equation (A.9) are

Amn =U(ym)+ 10" (ym) + a2+ b1 ,

AmM Bum Cm Dum
ds dg dqr dg
d; d, ds dy

AM ‘M AM DIW
o o 0 o0
o 0o 0 o

Eum

0

B =U(ym) + asU"(ym) + as + b2

Cm= U(ym) + aSU"(ym) + ag + b

Dm=Bm )

Em=Am ’

and

)

m =ar

/ §-2 \
9-1
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go

M
aM+1 /
gM+2

g-2

g9-1 \

go

(4.9)

9mMm
aM41 )
IM+2

(A.10a)
(A.10b)
(4.10c)
(A.10d)

(A.10e)

(A.11a)




and

Bn=4as ,

om = a9,

Dm=as ,

E,=ar ,
dl=§A6—y6 a? + 7
d2=ZZA32 2+‘72+-;' )
N
d4=7—4é5£\/a2-—+72_—';' y
5-—%_%@24—72) )
b=r-@+y)
d7__§_416§y 2 4 4%)

The constants in equations (A.10) and (A.11) are

1 1, .,
“ = Ayt 3w (@ T
1
2= 7360 °
2 T, .,
%= A Tm @ )
7
a4=_"{g ’
3 41, , g
as —2Ay2—60( +7/
41
a6="6_6’
1 , ., 1

?
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(A.11b)
(A.1lc)
(A.11d)

(A.1le)

(A.12a)
(A.12b)
(A.12¢)
(A.12d)
(A.12¢)
(A.12f)

(A.12g)

(A.13a)

(A.13b)
(A.13¢c)
(A.13d)

(A.13e)

(4.13f)

(A.13g)
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=-z , A.l3h
o =g (4 3557 (413h)
41 2 3 3 .
= —— —— .13
ay 60 (a +7 ) 2Ay2 ’ (A 1 z)
and
i [ 1 )
= .14
b, — (Ay4 6A2(a +7)+360(a +7)) , (A.l4a)
1 4 2
by = - - 24+ —=(a®+4 ) A.14b
2 aRe ( Ay4 3Ay2 (a +7 ) + 45 (a +7 ) ’ ( )
i (6 3, 41
_ _ i : A4
bs aRe (Ay‘ Ay® (a +7)+60(a +7)) ( )

The eigenvalues and eigenfunctions of equation (A.9) are obtained using the
IMSL routine EIGZC. As equation (A.9) is a M +5 dimensional matrix eigenvalue
problem, M + 5 eigenvalues and eigenfunctions are obtained. However, only two
eigenvalues and two eigenfunctions have physical meaning.

Of the M + 5 values of the complex eigenvalue c, only those for which the real

B ,
¢r = Real (E) =8 (az‘: a?> , (A.15)

er<lforf<1 (A.16)

part of ¢,

satisfies

are considered to be physically meaningful. In this work, 8 is always less than
one. Of the eigenvalues that satisfy (A.16), one corresponds to a sinuous mode
disturbance and one corresponds to a varicose mode disturbance. The sinuous

mode eigenvalue is the one for which

= Imag (ﬁ) L (A.17)

attains its maximum value and for which the corresponding centerline transverse

velocity is nonzero. Alternatively, the varicose mode eigenvalue is the one for
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which ¢; attains its maximum value and for which the corresponding centerline
transverse velocity is zero.

Once a is obtained for the given parameters 3, v, and Re, it remains to
construct the velocity and vorticity components from the eigenfunction g,,. For

each transverse location y,,, the transverse velocity 9,, is obtained from

B = — 4+ P 4= (A.18)
m = 3g0Im2 T ggIm-1 T gpIm T g Im-1 T 3092 :

Procedures to obtain the remaining velocity and vorticity components depend on
the whether the disturbance is two-dimensional or three-dimensional.
For two-dimensional disturbances (v = 0), the streamwise velocity is obtained

from the continuity equation

-

Um =

o (A.19)

R|e-

where ), is given by equation (A.8b). The spanwise vorticity component i, is
obiained from

~ 1t

Gym = é (8", — abp) (4.20)

where ), is given by equation (A.8¢c). The remaining velocity and vorticity com-
ponents are

Wy = Wem =Wy, =0 . (A.21)

For three-dimensional disturbances (4 # 0), the velocity and vorticity compo-
nents are obtained in the following manner. The transverse vorticity «j, is obtained

from Squire’s equation

¥y" - (a® +4* +iaRe(U ~ ¢)) b, = —iReU'yd . (4.22)




271

Squire’s equation is solved in the transverse interval Yymin < ¥ < Ymaz Subject to

the Dirichlet boundary conditions

6, (Ymin) =0 (A.23q)

and W, (Ymaz) =0 . (A.23b)

Fourth-order finite-differences are used to discretize the derivatives in equation

(A.22). The resulting system of equations,

(Go 16 -1 \ [ “ro )

16 G, 16 -1 Wy,
-1 16 G, 16 -1 Gy,
-1 16 Gm-2 16 -1 ||y,
\ ~1 16 Gm-r 16 || byp
1 16 6/ \ )
fo
#i )
fa
, (4.24)
fm=2
M
\ M /

is solved for the transverse vorticity w,. The coeflicients of the matrix in equation

(A.24) are

Gm = =124y (a® + 9 + iaRe(U(ym) - ¢)) — 30 (A.25)

G GB G TS a0 S Gy G ) s Ny an N O OB oS e &
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and the right hand side of equation (A.24) is composed of the elements
fm = =0 (ym ) 79m1248%° . (A.26)

The remaining velocity and vorticity components can be obtained from the
transverse velocity ¥ and the transverse vorticity «,. The spanwise vorticity «; is
obtained from the equation

((a® +92) om + Blp, ~ @}, )
a? + 42

a .

Wem = —tQ

(4.27)
Equation (A.27) is derived from the v Poisson equation and the relationship
adi, + G); +iyw, =0 . (A.28)

In equation (A.27), the derivative 9}, is obtained from equation (A.8c) and &,
is obtained using the fourth-order finite-difference formula

.t 1 /. . R X
Yym = 12n (“’ym-z = 8y g ~ 8y ¥ “’vm+2) : (4.29)

The streamwise vorticity is obtained from equation (A.28), rewritten as
1Yz + ‘;";,m
ia

, (A4.30)

Wem =

where | is obtained from equation (A.29). The streamwise velocity is obtained

. a . a.
Um = (m) (wym + ;-vﬁ,,) (A.31)

which is derived from the definition of the transverse vorticity. Finally, the span-

from the relation

wise velocity is obtained from the continuity equation

S At
W = _Ef‘_'ﬁ_.i}.’m_ (A.32)
¥y

In both equations (A.31) and (A.32), the velocity derivative ¥/, is obtained from

equation (A.8b).
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APPENDIX B

INFLUENCE OF THE GRID INCREMENT
ON THE NUMERICAL SOLUTION

For the calculations that are discussed in Chapter 6, it is desired to determine
the influence of the grid increment on the numerical solutions. This is done by
repeating the calculations of Case-1 and Case-2 for several different computational
grids. For Case-1, small amplitude disturbances are calculated and therefore, this
case is used to test the influence of the grid increment when nonlinear effects are
unimportant. For Case-2, larger amplitude disturbances, as compared to Case-1,
are calculated. This case is used to test the influence of the grid increment when
nonlinear effects are significant.

For both Case-1 and Case-2, the streamwise and transverse grid increments
are varied independently so that the variation of the calculated flow field with the
gnd increment may be observed. With the domain size held cdnstant, the grid
increments are varied by changing the number of grid points. For the temporal
discretization, numerical stability considerations require that a much smaller time
step be used than is required based solely on temporal accuracy. Therefore, the
time step is not varied for either Case-1 or Case-2.

Case-1 is recalculated using the grids

M=64, N=64, (B.1a)
M =64, N =25, (B.1b)
N =128, M =32, (B.1c)
and N=128, M =128. (B.1d)

-
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In addition, the results of Case-1 that are described in Chapter 6, for which
N=128and M =64, (B.2)

are compared with the calculations described here. All other parameters for these
calculations are identical to those discussed in Chapter 6 with regard to Case-1.

Figures B.1 show amplification curves of the fundamental disturbance for

various grid increments. In Figure B.1a, the amplification curves corresponding to
N =128 and N = 256 are relatively close together and exhibit exponential growth.
However, for N = 64 the amplification curve is significantly different from those
corresponding to N = 128 and N = 256 and does not exhibit exponential growth
as would be expected for a small amplitude disturbance. In Figure B.1b, the
amplification curves corresponding to M = 64 and M = 128 are almost identical
while the amplification curve corresponding to M = 32 exhibits small differences
with the other two curves. For all values of M, the fundamental disturbance grows
exponentially.

Figures B.2 display the amplitude distribution of the fundamental disturbance
component of the streamwise velocity for various grid increments. In Figure B.2a,
the amplitude distributions for N = 128 and N = 256 are quite close and compare
well to linear stability theory. For N = 64, the shape of the amplitude distribution
is similar to those for N = 128 and N = 256, but its amplitude level is significantly
higher than for the other curves. In Figure B.2b, the amplitude distributions for
M = 64 and M = 128 are quite close. For M = 32, the amplitude distribution is
similar in shape to those for M = 64 and M = 128 but clearly requires a smaller
transverse grid increment.

Figures B.3 display the phase distribution of the fundamental disturbance

component of the streamwise velocity for various grid increments. In Figure B.33,
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the phase distributions for N = 256 and N = 128 are similar in shape and rea-
sonably close together. For N = 64, a significant phase differcrice between this
curve and those for N = 128 and N = 256 is present. In Figure B.3b, the phase
distributions for all values of M are in reasonable agreement.

From these results it is apparent that the size of the grid increment has
significant influence on the calculated flow field. However, it appears that for the

grid used for Case-1 in Chapter 6, for which
M=64 and N =128 , (B.3)

the calculated flow field is reasonable well resolved and is not significantly altered
when the finer grids (N = 256, M = 64 and N = 128, M = :28) are employed.

Case-2 is recalculated using the grids

M =256, N =512, (B.4a)
M =256, N =768, (B.4b)
N =1024, M =128, (B.4c)
and N =1024, M =192. (B.4d)

In addition, the results of Case-2 that are discussed in Chapter 6, for which
M =256 and N =1024 , (B.5)

are compared with the calculations discussed here. All other parameters for these

calculations are identical to those discussed in Chapter 6 with regard to Case-2.
Since nonlinear effects are important for this flow field, the fundamental dis-

turbance as well as the mean and second harmonics components are displayed for

various grid increments. Figures B.4 and B.5 display the amplification curves for
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the mean component F = 0, the fundamental disturbance F' = 1, and the second
harmonic F = 2. In Figure B.4a (F = 0) and B.4b (F = 1), the amplification
curves corresponding to N = 768 and N = 1024 are virtually identical. Beyond
the point of saturation, the amplification curves for N = 512 deviate from those
corresponding to N = 768 and N = 1024. In Figure B.4c, the second harmonic
(F = 2) appears to be more sensitive to the streamwise grid increment than the
other harmonic components and appears to require greater streamwise resolution
than was used in these calculations. In Figures B.5, the amplification curves for
all three harmonic components, F = 0, F = 1, and F = 2, are virtually identical
regardless of the transverse grid increment.

Figures B.6 through B.9 display the amplitude and phase distributions of the
streamwise velocity for F = 0, F = 1, and F = 2. As was observed for the
amplification curves, the amplitude and phase distributions vary more with the
streamwise grid increment than with the transverse grid increment. In particular,
the second harmonic component displays the most sensitivity with respect to the
streamwise grid increment.

From the results presented in Figures B.4 through B.9, it would appear that
for M = 256, the transverse grid increment is sufficiently small so that the mean
component, the fundamental component, and the second harmonic component are
adequately represented. However, for the streamwise grid increment corresponding
to N = 1024, the results are not quite as conclusive. It appears that the mean
component and the fundamental component are adequately represented with this
grid increment. However, it is not quite as clear whether the second harmonic is
adequately resolved as it displays a significant variation with the streamwise grid

increment.
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