Naval Oceanographic and Atmospheric Research Laboratory

Apnl 1990

DTIC FILE COPY

Design of a Distributed Microprocessor
Sensor System

NOARL Report |

‘& AR N

BTIC

N

LH

<

I\ -
< Lo
Q

<

B. S. Bourgeois
M. M. Harris
P. B. Wischow

J. H. Ross
Mapping, Charting, and Geodesy Division

Ocean Science Directorate

Approved for public release; distribution is unlimited. Naval Oceanographic and Atmospheric
Research Laboratory, Stennis Space Center, Mississippi 39529-5004.

Foreword

The Geophysical Airbome Survey System (GASS) is a distributed micro-
processor system that integrates magnetic, hydrographic, altitude, position, and
attitude sensors. GASS is used on the Project Magnet P-3 Orion aircraft operated
by the Naval Oceanographic Office to collect magnetic and hydrographic data.
The magnetic data will be used to construct isomagnetic charts; the gravity
data will be used to improve the accuracy of inertial navigation charts. Magnetic
and water depth data will be used to upgrade navigational charts.

This report summarizes the research done in the area of distributed micro-
processor systems. This study provides a foundation for the design of GASS and
other systems of this type. Details of the final GASS design are provided.

VB 77/'@/«%

W. B. Moseley . B. Tupaz,\Captain, USN
Technical Director Commanding Officer

Executive Summary

The Geophysical Airborne Survey System (GASS), developed by the Naval
Ocean Research and Development Activity*, is a real-time, distributed micro-
processor sensor system. The Naval Oceanographic Office intends to use this
system on the Project Magnet P-3 Orion aircraft to coilect worldwide magnetic
and hydrographic data.

This report briefly discusses the mission and the history of GASS and reviews
the technology advances of the last decade in the area of real-time distributed
microprocessor systems. Specific topics include the goals of distributed sysiem
design, the qualitative value of distributed system design, and reliable design
techniques for the hardware and software in distributed systems. This technology
review provides a foundation for the GASS design.

The systematic design decisions made for GASS are detailed, and the system's
architecture is described. Detailed drawings and descriptions of the hardware and
software for the final GASS design are also included. Recommendations are
made for possible system enhancements and for areas that require further
investigation.

Accesion For

- /
[mis CRARI v
a

0

oT)C

CoPY
INGPECTED

s

OTIC TaB
U .annauniced
Justitication

By

Distribution g
———

Avaitbilty Codes

CAVar wndfor
i Lsidecial

* Now the Naval Oceanographic and Atmospheric Research Laboratory (NOARL).

i

Acknowledgments

The authors acknowledge the Naval Oceanographic Office for funding this
project under program element number 980101, managed by Mr. Roger Young.
Special thanks are given to the software development team at Sverdrup
Technology, Inc., under the supervision of Mr. Alan Guess, for their work on the
real-time software. The authors also give special thanks to Mr. Jeffrey Spear of
Planning Systems, Inc., for his work on the Operator Interface/System Control
software. We thank Dr. Herbert C. Eppert, Jr., and Dr. Daniel G. Hickman of
NOARL for their interest and suppon of the GASS project.

if

— el m - -

Contents

I. Introduction

A. The System and Its Mission
B. System History

C. Synopsis of Related Work

II. System Design

A. System Functions

B. Design Requirements
C. System Architecture

D. System Building Blocks

I11. System Details
A. Hardware

B. GASS Software
C. GASS Data Flow

IV. Summary

V. Recommendations
A. Further Study

B. Future System Enhancements

VI. References

iii

16

17
17
18

Design of a Distributed Microprocessor Sensor System

I. Introduction

This report discusses the design of the Geophysical
Airbomne Survey System (GASS). To this end, relevant
rescarch in the arca of real-time distributed processing
systems is reviewed, the major design considerations of
GASS arcdiscussed, and the final design is presented in
detail.

A. The System and Its Mission

The GASS is a sensor system built around a distrib-
uted microprocessor network. This design was chosen
10 provide a high degree of system modulanty. Modu-
larity will enhance the system's capability tobe flexible,
available, repairable, and updated throughout its life
span. GASS will be used around the world for surveying
the carth's magnctic ficld and coastal water depths. The
magnetic data will be used to construct isomagnetic
charts, and the gravity data will be used to improve the
accuracy of incrtial navigation systems. Both the mag-
netic data and the water depth data will be used for
navigational charts. Inaddition to the magnetic, gravity,
and wuater depth sensors, GASS also includes position,
altitude, atutude, and time devices needed to correlate
the collected data.

B. System History

The GASS s designed for installation on the Project
Mignet P 3 Orion aircraft, which is owned and operated
by the Naval Occanographic Ofiice (NAVOCEANO).
Project Magnet was initially used to conduct surveys of
the carth's magnetic field'. This project was initiated on
a trial basis by the Chief of Naval Opcerations in 1951,
and made into a permanent program in 1957, The sensor
system was upgraded in 1970 by the Applied Physics
Laboratory of Johns Hopkins Universily, and was
designated the Geomagnetic Airborne Survey System.
The latest version of the system, the Geophysical
Airborne Survey System, will be used to collect mag-
nctic and hydrographic data. Hydrographic instruments
are included in the system because of the 200-ycar
backlogin coastal surveys (coastal surveys are presently
conducted using boats). Gravity data will also be

collected with this system when airborme gravimetric
sensors become available. The new GASS, funded by
NAVOCEANO, was developed by the former Naval
Occan Research and Development Activity (NORDA).
(NOTE: NORDA has been designated as the Naval
Oceanographic and Atmospheric Research Laboratory).
The current system upgrade project began in
December 1986, and the system design was based on
the state of the technology as of Deccmber 1987. It is
estimated that 60% of the development costs will be
used for software development and testing, and only
409% will be used for the purchase of hardware. The
system is designed for a life expectancy of 10 years.

C. Synopsis of Related Work

Distributed processing systems for real-time
applications are becoming a reality with the advent
of low-cost, high-powered microprocessors. The pro-
fessed gains of a distributed system are many: lower
hardware cost, higher reliability, increased flexibility,
and case of modemization and expansion duc 0 the
inherent modularity. Many distributed real-time sys-
tems provide proof-of-concept for this design
methodology. Langley? provides the results of the work
performed under Navy contracts to create a distributed
missile guidance and control system. The traditional
use of analog circuitry and single-processor designs
resulted in systems that were difficult and expensive
1o upgrade. Langley's goal was to develop a modular
architecture that would increase system flexibility and
rcduce the cost of software development. Wilcock?
summarizes the concepts for the development of dig-
ital control systcms for combat aircraft. This joint
effort between the Royal Aircraft Establishment and
the British Acrospace Corporation was to develop a
distributed processing system that would reduce system
weight, reduce pilot workload, improve maintain-
ability, and improve survivability. Shin* discusses the
Distributed Microprocessor Airborne Computing
System (DMACS) that was developed at the Renssclaer
Polytcchnic Institute. The DMACS is designed to be a
combined computer system for high-performance

military aircraft, responsible for the functions of
weapons, navigation and control. Feo® outlines the
evaluation requirements for Intelligent Redundant
Actuation System (IRAS) designs. IRAS research is
NASA-sponsored and should achieve reduced flight-
control computer loading by shifting the tasks of failure
isolation and configuration management 10 micro-
processors at the actuator level. Shin® discusses the
preliminary rescarch of the Integrated Multi-Robot
Systemn (IMRS). IMRS is a distributed processing system
designed for manufacturing systems. IMRS is expected
to outperform contemporary centralized controllers on
the basis of physical space, computer capabilitics,
throughput, flexibility, and fault-tolerance. Gluch” and
Kicckhafer® discuss the Multicomputer Architecture
for Fault-Tolerance (MAFT) developed by the Bendix
Acrospace Technology Center. MAFT was designed
for maximum reliability in real-time control systems. It
consists of several nodes connected by a broadcast bus
neiwork. Each node uses two processors, one forexecu-
tive tunctions and one for applications programs. Fury®
discoosses the Integrated Fauli-Tolcrant Avionics
Systems Computer (IFTAS) developed by Boeing for
the neat generation of space transport vehicles. IFTAS
i a distributed network of processing nodes intercon-
nected by v high-speed serial bus. Each node will have
from one 10 toar nrocessors depending upon the level of
relinbility reguired by its functions. One of the most
recent and ¢ gnificant proponents for distributed
mrocessing 1s the Space Station Columbus' Data
Munizement System (DMS)* 12 The DMS will be
responsible foi data communications, data processing,
Jate adnmunistration, data storage, duata retrieval,
aitd Jdata presentation tiroughout the space staton. The
conitract for the DMS has been awarded o McDonnell-
Donclas, Therr proposed design will use a 100-million
hit por secoid (Mbps), token ring, fiber optic network
hai wiil connect all of the processing nodes in a ring
tepoiopy.

While much significant work has been done in the
aroeob real-time distributed processing systems, there
iv sl no clear-cut methodology for designing these
systems. Mejzak' points out that the distributed system
wechnology has not yel achieved a "rigid definition.”
Only a few attempts have been made o quantize the
vatue of distributed design approaches.

Pedar'® presents a study that attempts to find an
optimal tradeoff among fault tolerance, compuling
capucity, and cost in a distributed processor system.
Vielcanet™ provides an empirical study of current ground
and airbome microprocessor-based distributed systems
that could be applied 1o space systems. Mangoubi'®

presents a method for evaluating the performance of
real-time distributed systems. This paper was a joint
effort between MIT and the Draper Laboratory, and it
specifically addresses the utilization of resources and
the response time delays for processing tasks. Lala”
presents the network testbed developed by Draper
Laboratory. This testbed will be used to experiment
with various network concepts to develop more
advanced network communication systems for future
spacecraft. A recent, broad rescarch effort for the cost
effectivencss of various distributed design approaches
has been undertaken by the U.S. Air Force with its
Modular Avionics System Architecture (MASA)
program'®. Part of this study involves dciermining
what level of modularity can best benefit the Air
Force. Brock'® points out that mandated use of common
modules in aircraft systems could actually resuit in
increased weight, size, and cost over an optimum
point design.

Intrinsic to any discussion of distributed real-time
processing systems are methods of achicving fault
tolerance. The most common method for achicving
fault tolerance in these systems is through redun-
dancy of scnsors, actuators, and processors. This
redundancy often occurs naturally in distributed
processing systems. Gelderloos'® describes the redun-
dancy management of the Shuttle Craft flight control
system. This system uses quadruple redundant proces-
sors and data buses, with dual and triple redundant
scnsors and actuators. It is designed to centinuce safe
operation after two redundant system failures. Watson®
summarizes the work performed by General Dynamics
in the development of a reliable avionics control
system. Reliabuity was achieved here through the use
of redundant sensors, redundant actuators, redundant
computers, and advanced sclf-testing features within
the computers. Sicvers?! discusses the development of
a fault-tolerant computer for the U.S. Navy. He claims
that the use of fault-tolerant architectures can achieve
lifctime costs from 1/5 10 1/60 of the baselinc costs. The
architecture proposed involved the use of multiple
single-board computers, which would run identical
tasks and periodically check cach other's results.
McGlonc?? summarizes the results of the Air Force's
Full Authority Fault Tolerant Elcctronics Engine
Control (FAFTEEC) program. This program’s goal was
to develop the most cost-cffective architecture for
rcliable digital control of a gas-turbine engine. The
architecture chosen uscd dual sensors, actuators, and
computers. Each computer would have dual central
processing units (CPU) to determing the existence of a
failure. Hartman#® proposcs architecture for advanced

et —

fly-by-wire commercial aircraft systems. This work
was performed by Honeywell under a contract from the
Ames Rescarch Center. The recommended architecture
involved redundant sensors, actuators, data buses, and
processors. The processors are to be distributed
throughout the system, and fault tolerance would be
implemented using cither task reassignment or parallel
running tasks with voting. Dzwonczy? presents a flight
control system for the Entry Research Vehicle (ERV).
The architecture for this system, developed by Draper
Laboratory and Langley Research Center, involves the
use of a central fault-tolerant processor that is con-
nected to redundant sensors and effectors.

Fault tolerance through redundancy in distributed
processing systems is typically implemented through
the usc of multiple identical software tasks running on
scparate processors with some form of voting. An
example of this implementation is the Software Imple-
mented Fault-Tolerance (SIFT) Computer®, This form
of redundancy places more of a software burden on
the sysiem, and may require an inordinaie amountof the
computer system’s throughput. In the case of SIFT,
the executive functions of the computer utilize 80%
of the system throughput®. Because of the disadvan-
tages of software-intensive fault tolerance, the trend
has been toward hardware-intensive, fault-tolerant
schemes?s. The goal of hardware-intensive fault
tolerance is to provide redundancy that is "invisible" to
the software designer. Montgomery?® discusses a fault-
tolerant microprocessor that uses three processing
modules. Each module is made from two microproces-
sors, and upon a detected module failure the spare is
switched in and the system is restarted using a
previously stored system state vector. Evans? discusses
the design of a fault-tolerant microcomputer used by
the Metro Firc Board in Mclboumne, Australia. This
system uses three microprocessuds, cach with identical
peripheral cards. Under fault-free operations two
processors perform the samic fault-critical tasks and the
third is used for noncritical tasks. If a discrepancy
between the fault-critical processors occurs, then the
compuler switches 1o a voting scheme using all three
processors. Yaacob? describes a fault-tolerant micro-
computer that mects the requirements of civil avionics
reliability. This design uses three microprocessors
wircd in a triply modular redundant structure, and a
fourth processor as a powered standby spare. Smith?
describes the design theory of the WG-DCS machine
developed at the Draper Laboratory. This machine uses
three identical processors that run the same software,
The output is obtained through a hardware voling
scheme. Ichikawa™ describes a fault-tolerant computer

for use in satellite applications. This computer will use
four CPUs, redundant read-only memory (ROM),
random-access memory (RAM), clocks, ports, and data
buses. Lala'” describes a quadruple-redundant proces-
sor developed at the Draper Laboratory. This processor
has been designed to maintain fault-free operation in
the event oi any single point failure. As discussed by
Lala'’, there have been instances of failures in triply
redundant flight control systems. Quadruple redundance
is required to maintair. fault-free operation in the
presence of a single Byzantine (malicious) failure®'.
An abundance of research has been conducted on the
development of software methods that will improve
the reliability of real-time distributed systems. Two of
these methods, multiversion software and recovery
blocks, are intended to prevent system failures due to
undetected residual programming errors. The multi-
version software method involves writing several
different versions of the same software task. If one
version fails, then the other versions will maintain
system operation. The recovery block method involves
periodically saving the system's state vector and, in the
event of a failure, restarting the system at its last
saved state. A third method, specifically designed for
disiributed systems, is relocatable software. This
software method enables a distributed processor
system 10 tolerate hardware faults by relocating the
tasks of the failed processors to operational proces-
sors. Multiversion software for real-time systems
is discussed by Shepherd®?, Hitt**, Avizienis*, and
Kieckhafer®. Recovery Block techniques for real-time
systems are discussed by Anderson?, Schneider?®, and
Hitt*. Clarke?, Schmid®, Loques® and Best* discuss
the use of relocatable software for real-time systems.
Despite the research that has been done on multi-
version software and on recovery blocks, risks posed by
these methods are still generally considered too high for
usc in distributed systems. Eckhardt*' indicatec that
there are no data available to dctermine the cost
effectiveness of multiversion software, cvea though
this method is used in the space shuttle and in Canadian
Nuclear Reactor systems. Voigt*? states that exhaus-
tive testing is the only effective method to date for
generating reliable software. Avizierus* notes that
multiversion software has been used in flight control
systems for the Boeing 737/300, the Airbus, and the ATR
aircraft. The authors of this paper reviewed the results
of a University of Califomia at Los Angeles (UCLA)
and UC-Irvine study on multiversion software. The
UCLA results were promising, but the UC-Irvine
study cast serious doubt about the effectiveness of this
method. At present, the only well-accepted method for

e e -

preventing system failures due to residual software
crrors is through extensive testing. A study for the
Netherlands Department of Civil Aviation*? indicates
that since software reliability cannot be accurately
determined. reliable software development requires
rigorous development procedures and extensive test-
ing. It is generally accepted that a large percentage of
the residual errors can be climinated before testing
through strict adherence 1o a software quality assurance
program during software development. An intensive
study performed by Lear Sicgler Inc. during the devel-
opment of the Boeing 737/300 Flight Management
Computer System (FMCS) indicated that 40% o 50%
of the errors detected during the debugging process
could have been detected during functional testing of
soltware modules*. The Department of Defense
standard DoD-STD-2168, discussed by Cooper® and
Smith*, outlines a method for ensuring software quality
through an active quality assurance program. A similar
methodology s alsoused in ITEEE Standard 983, "Guide
lor Software Quality Assurance Planning” and in a
report by the European Space Rescarchand Technology
Centre onsoftware quality*. Ttis evident that the usc of
Computer Aided Software Engincering (CASE)
packages throughout the specification, design,
Jdevelopment, testing, and maintenance of software can
have o great inpact on its reliability and lifetime cost.
CASE packages can be used o enforee & quality assur-
ance by providing a manageable program throughout
the software life cycle.

Insummiary ., there is ample evidence that distributed
processing can produce @ system that is lower in cost,
has bugher rehability. and greater flexibility than a
ceniralizoed processing system. However, there is little
more i empirrcal data available to the systems engi-
reor tor e optimal design of 4 distnbuted system,
parthy because design of an embedded, real-time,
aetributed sy stemis highly application-specific. While
4 disirbuted design can be used 1o achieve a more
coscetlective solution, it is often unclear how 1o
optimize the design solution for the greatest benefit,
The destpnas typically balanced between the system
cost and the acceptable level of reliability/fexibility.
The only proven method of achieving reliability in a
distributed system s through hardwaice redundancy.
Several software methods of improving system reliabil-
1ty have heen proposced, but their value is questionable.
A current trend s toward the development of highly
reliable processors that achicve fault tolerance through
hardware methods. These processors would provide
very high levels of fault tolerance while placing little or
no extra burden on the software designers. Software

development continues to be the greatest hurdle for
distributed systems design, with exhaustive testing the
only accepted method for producing reliabie software,
Since exhaustive testing of a complex sofiware system
often requires an inordinatc amount of time, the onty
feasible approach to reliable software development is
through a highly structured development process.

Scction II discusses the design of GASS, dctailing
the functions required of the system, the system's design
constraints, and the development of an architectu:e that
will satisfy both the requircments and constraints.
Section I provides in-depth details of the final GASS
design, including a description of the hardwarc and
software paths traversed by a sensor datum. Section IV
summarizes the major points of this report. Section V
provides recommendations for arcas in GASS that
require further investigation and reccommends future
system cnhancements.

II. System Design

A. System Functions

Figure 1 illustrates the basic and cssential functions
that arc required of GASS. The primary function of
GASSistocollect, format, and time stamp data from the
sensors and to rceord these data onto magnetic tape.
The magnetic tape contains all data measured by the
sensors, and these data are loaded later onto a home-
basc computer for analysis. The sccondary function of
GASS is to provide centralized control and monitoring
of its sensors and ancilary cquipment. Including con-
trol in the functions of GASS tremendousty cscalates its
complexity. However, over 30 devices will be included
in GASS, many of which arc extremely complicated to
operate. Centralizing control and monitoring of all the
devices in the system will reduce the manning and
training levels required to operate the system. The
tertiary function of GASS will be navigation. Since

RECORDER OPERATOR

SYSTEM STATUS
SENSOR DATA SURVEY NAVIGATION

SENSOR DATA

SENSOR CONTROL

CONTROL DATA AND STATUS

SENSORS

Figure 1. General system functions.

—

GASS istobe used forsurveying, suivey tiacks must be
generated and followed. Furthermore, deviations of the
aircraft from the planned track can invalidate the data
collected; the system operator must be alerted if the
aircraft strays too far from the designated track. GASS
navigation functions must include generating and edit-
ing survey plans, ascertaining the aircraft's position
froni its sensors, displaying aircraft position relative to
the survey plan to the system operator and the pilot, and
keeping anavigationlog. The navigationlogisabackup,
onmagnetic media, of the aircraft's track. This informa-
tion can be used to resume a survey in the event of a
system malfunction. A supplementary function of
GASS will be data analysis. GASS will have the ability
to perform analysis of data previously recorded on
magnetc tape, or to analyze data in near real time as it
is collected from the sensors.

B. Design Requirements

Typical avionic system requircments involve size,
wceight, power consumption, and electromagnetic
interference considerations. To meet these require-
ments an avionic system is usually custom-built for a
particular application. The original GASS, built by the
Applied Physics Laboratory of Johns Hopkins
University, consisted of many custom-made devices
and interfaces. This design methodology tends to make
a system very difficult to maintain and modemize. The
need for the current redesign of the system is a direct
conscquence of the previous system design. The
components in the original system can no longer be
maintained due to lack of technical support, and the
system was not designed to allow for modernization.
The primary design constraint put forth by
NAVOCEANO forthe new GASS is that the system be
constructed with a highly modular architecture, using
off-the-shelf components if possible. NAVOCEANO
desired a system that would be casily reconfigured
for different survey missions, but most of all, they
desired a system that would allow easy integration of
statc-of-the-art sensors as they become available.

The mission of GASS will often take it to remote
arcas of the world, distant from technical support
activitics. As a conscquence, NAVOCEANO desired
that the system be designed for maximum reliability.
However, since a failure in GASS cannot result in
personnel injury or equipment damage, it was not
dcemed necessary to include extensive fault tolerance
in the system. System fault tolerance requires equip-
ment redundancy, which significantly affects the
cost and weight of the system. The design sought,
then, should improve system reliability through fault

detection/isolation and through system availability. The
fault detection and isolation capabilitics of GASS arc
discussed in depth by Bourgeois®®. With advanced fault
detection and isolation features, a system will quickly
alert the operator of any irregularities. High availability
implies that while system operation may be interrupted
by failures, the system may be easily and quickly
placed back into operation. A high degree of system
availability can be achieved through an architecture
that allows easy reconfiguration of the system into a
degraded operating mode. Thus, reliable system design
for GASS will entail a system that will rapidly detect
and announce failures, and allow for rapid reconfigura-
tion to a degraded operating mode so that the survey
may be continued with minimum impact.

C. System Architecture
1. Number of Processors

One of the first items that must be established about
the design of a system of this type is the number of
processing elements that will be required. As shown in
Figure 2, two extremes are possible: a single processor
interfaced to all of the equipment in the sysiem, or a
design where each piece of equipment has a processor
and all processors are connected to a network. If only
the data acquisition tasks are considered, then a single
microprocessor should be able to handle the computa-
tional load. With approximately 20 sensors and related
instruments in GASS, and a maximum sampling rate
per sensor of 16 Hz, there are approximately 320 data
acquisition tasks must be performed cach second. If a
16.7-MHz microprocessor (Motorola MC68020) were
to be used for this application, then nearly 50,000 proc-
essor cycles would be available for each acquisition
task. A crude estimate is five cycles on the average per
instruction for the MC68020, so nearly 10,000 instruc-
tions per acquisition task are allowed. If only the
acquisition tasks were required, then a single MC68020

PERAT
RECORDER w. I(Q\ITEE%/;A%?

SENSOR =~——— PROCESSOR - SENSOR
SENSOR «— M T~ SENSOR

A) FULLY CENTRALIZED

- ooy OPERATOR
SENSOR =—{PROCH—{INTERCONNECTION}{PROC-—» SENSOR
~— NETWORK / -—

SENSUR =—{PROC {PROC —= SENSOR

B) FULLY DISTRIBUTED

Figure2. Architectural extremes.

processor would probably suffice. However, in addition
to the basic acquisition tasks are the tasks for the tape
recorder, navigation processing, operator interfaces,
and other system control functions. The addition of
these tasks would make it difficult to operate the system
with a single processor. Also, the usc of a single proc-
essor creates a monumental single point failure
vulnerability in the system.

The other extreme would be to usc a processor for
cach compenent in the system, with each processor
interfaced 10 a central bus system. The low cost of
microprocessors would make this approach feasible
and, if a proper design is uscd, then multiple micro-
processors can reduce the effect on the system of
a single failed processor. However, the constraint on
GASS for the use of off-the-shelf components restricts
this approach. A processor per instrument is most
attractive if a custom “black box" (typically a single
circuit card) can be built that will interface the
component directly to the central data bus. Use of off-
the-shelf components, however, would require a
separate microprocessor card, an interface card, and
a card caye for cach device. The result is that more
circuit cards would be required, and the overall system
powcerrequirement would be greater. As aconsequence,
the decision was madetouse "several” microprocessors,
somewhere between the twoextremes. The exact number
of processors needed depends mainly upon how and
where they are to be used in the system, as discussed in

- . oty
Lt Hic Xt sCclicn.

2. Centralized vs. Distributed Hardware

With the choice to use multiple processors made, a
decision must be made about how these processors will
be arranged in the system. Two general methods are
available: centralized or distributed. A centralized
system offers the advantage that a single card cage can
be used. This system allows for higher communication
ruics between processors on a backplane bus system,
the climination of the hardware and software required
tonetwork distnbuted processors, and a reductionin the
number of power supplies required for thie sysiem.
The disadvantagesofacentralized system include single
point fuilure vulnerability and & more sevoe wiring
problem. With a centralized system the irterface cables
must be run from cach scnsor to the computer system.
This configuration results in much more weight and
bulk over that which would be required for a nctwork-
connccted, distiributed system. This problem has
alrcady caused many high-performance fighter aircraft
manufacturing firms to scriously consider using
distributed systems. The sinzle point failure
disadvantage is, without question, the single greatest

problem with centralized systems. Not only can the
entire system be halted by a failure of the ceniral
computer's power supply, but failures in remote parts
of the system can disrupt opcrations. An extreme
example of this problem has been displayed ty the
Main Engine Control System for the FFG7 Class (Fast
Frigate with guided missiles) of naval ships, designed
by the General Electric Ground Systems Division. The
system is used to control the operation of the two main
propulsion gas turbine engincs and their ancillary
equipment. A centralized system is uscd, with all sensor
and actuator signals routed to the central computer.
Component failures remote to the computer can cause
unwanted voltages to appear on the component's retum
signal lead, which is common to the entire system. At
best, the result would be an inoperative sysiem.
Unfortunately the result would typically be crratic and
undesirable system opceration.

Distributed systems can nearly climinate the prob-
lem of single point failures. In a distributed system the
tasks performed by the system arce distributed among
several processors, called "nodes,” interconnected by a
network. Network interfaces are available that allow
a system 10 completely disregard faulty nodes. If the
system is designed to reduce inter-node dependencices,
then the failure of a single processor can have little or no
cffect on the rest of the system. A distributed system
reduces the wiring bulk by placing the processing
elements nearer 1o the remote system components, and
the processing clements can be connected with cither a
single twisted pair of wires, a coax cable, or a fiber-optic
cable. This wiring configuration also reduces a system'’s
vulnerability (o electromagnetic interference.

A distributed system increases availability in that a
single faulty node will not affect the rest of the system.
Furthermore, if the system is so designed, then the tasks
of a faulty node can be redistributed 1o the functional
nodes. Disadvantages of a distributed system, inlight of
tiic requirement for off-the-shelf componcnts, are that a
separate card cage, cach with its own power supply and
network interface card, must be used for cach remote
processing node. The decision was made to use a
distributed design for GASS, because of its reliability
aspects. To reduce the cost incurred by the support
cquipment required at cach node, only cight nodes will
be used. Six of these nodes will interface to sensors, the
scventh node will be used for the operator and tape
recorder interfaces, and the cighth node will handle the
data analysis Tunctions, The six sensor nodes will be
designedto provic: the computational power needed by
the current sensor complement, and to allow addition of
more scensors. With six sensor nodes, there will be an
approximate loading ot only three devices per node.

-

~ -~

This number leaves ample processing power for the task
of bus communications, some minor data processing,
and the addition of more sensors.

3. Local A .a Network

Since the system will be constructed using a distrib-
uted architecture, a communications media must be
chosen to interconnect the processors. The IEEE-488
standard, or general-purpose interface bus (GPIB),
would scem the natural choice for this application.
However, the GPIB poscs scvere limitations that make
the usc of a network-type communications system much
more attractive. The GPIB has alimitation of 15 devices
per bus, and the maximum length of cables used for a
bus must not exceed 20 m*®, Also, the GPIB cable is
much heavier and bulkicr than a single twisted pair or
a coax cable. The GPIB cannot be easily upgraded to a
faster communication media; a coax network could
casily be upgraded 0 a faster fiber-optic network.
Because of the GPIB limitations, the decision was made
to use a network based on a scrial data bus to intcrcon-
nect the processor nodes.

Three fundamcntal local area nctwork (LAN)
configurations arc practical for use in an embedded
real-time avionics system: the ring, the star, and the bus
(Fig. 3). In the ring bus, which is commonly unidirec-
tional, messages are circulated around the ring until
they reach the target node(s). This protocol greatly
simplifics message routing; and, since more than one
message can be in transit, very high data rates can be
achicved™. The ring bus is well adapted for systems

RING

e = PROCESSOR NODE

STAR BUS

Figure 3. Standard network topologies.

consisting of highly autonomous nodes. Since all
the sensor nodces in GASS must communicate with the
single node that has the tape recorder and the operator
interface, the nodes of GASS cannot be considered
aytonomous. Thercfore, the ring bus is not it
cfficient choice for this application. The star bus, with
the operator/recorder node of GASS placed at the
center, would scem the most natural choice for this
system. The advantage of a star configuration is that it
can achicve the highest data rates of all wie possible
architectures. The disadvantage of the star configura-
tion is that the center node would require an interface
card for each remote node. The bus configuration offers
a system with less hardware but slower data rates, since
several nodes must share the samc communication
media. The bus is the typical choice for avionics
systems because of the savings in hardware!?. A single
bus architecture was selccted as the cconomical choice
for the GASS network, since cach node will have the
ability to buffer collected scnsor data between hus
transmission periods.

When a neitwork is used for communications, a
Mcdia Access Protocol (MAP) must be established.
There are two fundamcental MAP's, contention and
noncontention®. With a contention MAP, also known
as random-access MAP, all nodcs have cqual access
rights to the network. The most commonly known
network of this type is Xerox's Ethemet. A node gains
access to the network by listening; if the network is
silent, then it will proceed to transmit. Since there are
propagation delays across the wiring in a network, {two
nodes may begin transmissions stmultancously.
resulting in & “collision.” Collision is the greatest
disadvantage of a contention MAP, and its occurrence
makes this protocol unsuitable for real-time applications.
Current rescarch, however, indicates that the problems
of collision in random-acccss networks may soon he
remedicd®!- %2,

With a noncontention MAP, some method 1s used to
cnsure that only onc nodc is transmitting on the network
at any given time. The two common methods for
implementing a noncontention MAP are bus controller
and token passing. With a bus controller MAP, a single
node is given the responsibility to controt all network
communications. Other nodcs arc instructed to transmit
data packets by the controller node. The greaicst
advantage of this scheme is its inherent simpticity of
implementation. The disadvantages arc that it does not
make maximum usc of thc bandwidth of the
communication media, and it presents a single point
failure vulnerability. The time-slot implementation is
the typically used controller scheme, where cach remote
node is allotted a period of time for transmission by the

controller. Inefficiency exists with this implementation
since a node may be granted its time-slot even if it has
nodatatotransmit. The token-passing MAPhas received
much attention in recent ycars’*¢, and it provides for
more efticient use of the network medium. With atoken
passing MAP a token is circulated from node to node
throughout the network. The node that possesses the
token is allowed 1o transmit on the bus and, when it no
longer needs network access, it is responsible for
passing the token to the next node. The noncontention
controller MAP was chosen for GASS because of its
simplicity of implementation and because the system
architecture is such that all sensor nodes will communi-
catc with the operator/recorder node but not with each
other. The problem of single point failure vulnerability
presented by this MAP canonly be resolved by using an
additional node with a tape recorder as an online
backup for the controller node. The cost in tcrms of
cxpense, weight, and size make this solution unaccept-
ablc for GASS. As discussed in the next section, the
analysis node will be used as an off-line backup for
the controller node.

4. Physical and Functional Partitioning
of Software

The hardware design concept consists of eight proc-
essing nodes interconnected by a bus network that uses
a controller MAP. Six of the nodes will be used for
scnsors. The seventh node will be used for the operator
interface anc the magnetic tape recorder. The cighth
node will contain the data analysis functions. Since all
sensor nodes need to communicate with the operator/
recordes node, but not with cach other, the nctwork
controller function will be located in the operator/
recorder node. All that remains to be defined for the
system’s architecture is the placement of the various
softwire tasks required to operate the system.

The software tasks required for this system include
hus interface tasks at cach node, operator interface tasks
(keyboard, displays, ete.), und a tape recorder task at the
op:rator/recorder node, sensor control and acquisition
tasks, navigation tasks, and data analysis tasks. To
maximize real-time performance, the software tasks
should be physically and functionally partitioned. In
other words, the software should be designed to be
modutar in form. To meet this goal all scnsor tasks are
completely isolated to the sensor nodes. They will be
designed such that all sensors appear to be identical
from the perspective of the operator/recorder node
and from the bus interface task in cach node. More
speciitcally, the individual sensor task in a sensor node
will be the only software that is aware of the actual
details of operation of its particular sensor. To the rest
of the system. the sensor will have only the basic

functions of sampling or not sampling, sampling rate,
and initialization. By placing all of the "intclligence” to
operate a sensor only at the sensor's node, nctwork
communications are decreased and the speed of the
sensor task is increased, since it is not deperdent upon
the network. Furthermore, data from all sensors will be
packaged identically, eliminating special handling
requirements insofar as the bus interface and tape
recorder tasks arc concemned. This software approach
also offers the advantage that all bus interface tasks will
be identical. This method will reduce the cost of soft-
ware development and, since the same module will be
used by scveral developers in different nodes, it
provides more thorough debugging of the software
module. Another advantage i» that the highly modular
sensor tasks may be casily rclocated to dilferent nodes
within the system.

To reduce the possibility of a botticneck in the
network, the decision was made (o use two microproc-
essors in the operator/recorder node. One processor
would be used strictly for the bus interface and the
recorder interface to minimize the ime required to pass
data from the network to the tape recorder. The real-
time processor would handie all communications on the
network, and would pass the required control and data
information between the nctwork and the operator
interface. The sccond processor would be used for the
opcratorinterface, whichis aless time-critical function:
This processor is the logical location for the navigation
task, which is predominantly an off-line task, r.quiring
only occasional position data from the sensors. Since
data analysis tasks are typically computationally inten-
sive, a separate processor, isolated from the real-time
elements of the system, should be used. The need 1o
isolute potentially slow software tasks from the rest of
the system was the primary rcason for using a separate
node {or the data analysis tasks. Since data analysis will
be performed on a separale node, this node must also
include the hardware and the software tasks to reccive
rcal-time data from the network or 1o read data tapes
recorded by the operator/recorder node. The data
analysis node will thus require much of the samc
hardware and softwarc as the operator/recordernode, so
these two nodes were made using identical hardware.
Data analysis is a nonvital task in GASS and, in the
event of a failure of the operator/recorder node, this
design scheme would allow the data analysis node 1o be
used for control of the system.

The resulting architecture, itlustrated in Figure 4, has
the software tasks physically and functionally parti-
tioned. The highest speed tasks, those of sensor control
and data acquisition. are located only in the six sensor
nodes. The next highest speed requirement is that of
moving the data from the sensors to the tape recorder.

—

‘ OPERATOR
PROCESSOR INTERFACE

MEMORY
REESEBER) PROCESSOR

— ANALYSIS NODE

SENSORS —{ PROCESSOR |——{ PROCESSOR |— SENSORS
SENSORS —| PROCESSOR }—-H PROCESSOR | — SENSORS

REAL TIME DATA BUS
NETWORK

SENSORS —{ PROCESSOR |——{ PROCESSOR |— SENSORS

Figure 4. GASS architecture.

This requirement is handled by bus interface tasks in
each sensornode, and the bus and 1ape recordertasks are
handled on the real-time processor in the operator/
recorder node. The slowest tasks, operatorinterface and
navigation, arc handled in the second operator/recorder
node processor, which is physically separated from the
rcal-time processor by a global memory area. All
communications between the two processors in this
node will be handled through the global memory,
rcducing the oad on the real-time processor. The data
analysis node will function independently fror: the rest
of the system, and will "listen” to the system's network
to receive real-time data from the sensors.

D. System Building Blocks
1. Microprocessor/Backplane

The choice for the backplane bus system was largely
driven by the requirement to use off-the-shelf
components, and the desire 10 use a 32-bit data and
address bus. The oldest 32-bit microprocessor standard
bus is the Motorola VME bus system introduced in 1981
(also known as IEEE Siandard P1014)%. The VME bus
had the greatest market support at the time of the GASS
design and was chosen as the microprocessor backplane
bus system. As a conscquence, despite the diverse array
of sensors uscd, only 3 of the 17 interface cards in the
system had to be custom-made. Since the VME
backplane was selected, a natural choice for a micro-
processor was the Motorola MC68020. The MC68020
is a state-of-the-art microprocessor that supports multi-
tasking, and the 68000 family of processors have been
uscd in aerospace applications by Plesscy Avionics®?
and Draper Laboratory'™ 2% It was the second most
preferred microprocessor (afier the MIL-STD-750A)
of Ada development tool manufacturers®,

2. Local Area Network Medium

The LAN medium selected by NAVOCEANO war
the Military Standard 1553B serial bus, the data bus of
choice for military avionic systems (and, thus, a large
industrial backing). It supports 1-Mbps operation,
transformer isolation of nodes, and offers the feature of
dual-redundant comr 1ication channels. A possible
alternate bus woulu be the Avionics Standard
Communication Bus (ASCB)%3. ASCB was developed
by Sperry Corporation and is supportcd by the General
Aviation Manufecturers Association (GAMA). It is
also a dual-redundant bus sy *em for avionics
applications. and supports 0.67 Mbps opcration at a
reduced cost. The chicf advantages of the 1553B bus
over the ASCB is that 1553B has broader industrial
support, and fiber-optic upgrades for 1553B systems
are already available®.

3. Operating Systems

Unix (Motorola V.3) was chosen as the operating
system for the operator interface processor. Unix is a
well-established, multitasking operating system with
which the system's designers were well acquainted. A
full-capability operating systcm is nceded for the
operator interface processor, since it is responsible for
standard microcomputer tasks, including hard/floppy
disk drive control, display control, and printer control,
as well as its GASS specific tasks. For the rcal-time
processor and the processors in the sensor nodes, it was
desired 10 have a streamlined operating system that
was smaller and faster. For this application the pSOS
opcrating system was sclected. Manufactured by
Software Components Group, pSOS is a real-time
multitasking opecrating system that is tailored for the
Motorola 68000 family of microprocessors.

4. Programming Language

Although some assecmbly-language programming
was required for this type of system, the design goal was
to use a high-level programming language whenever
possible. High-level languages permit casier system
development and provide much easier system modifi-
cation and modcmization. The language chosen for
this system was Kemighan and Ritchic's "C." C is
an excellent language for developing a system that
involves a significant amount of input/output
processing and special-purpose cquipment interfacing.
A possihle contender for the GASS programming
language choice was Ada, thc Department of
Decfense's (DoD) standard programming language
for real-time cmbedded systems. Even though Ada
has been used by many DoD contractors and is sclected
as the programming language for the Space Station,

.’\
SURVEY SURVEY
CONTROL ANALYSIS
SUBSYSTEM SUBSYSTEM
BUS NETWORK [L
[| |
[RSS 1] [RSS 2] [RSS 3 |
| RSSJJ ’ RSS 5] [RSSG—‘
REMOTE SENSOR
SUBSYSTEMS 1-6

Figure5. GASS subsystems.

Columbus®’, Ada has only recently been considered a
mature programming languages? ¢899 Reported
probicms with Ada include difficulty in obtaining
compilers for microprocessors and differences in inter-
preting the language between validated compilers; also
the code produced is too large and slow for embedded
systems. Ada was considered to be inappropriate foruse
in GASS duc to the lack of familiarity by the design
tcam and to the difficulies rcported by many large
government COntraclors.

II1. System Details
A. Hardware

GASS 1is comprised of three major subsystems as
iilustrated in Figure 5. These subsystems are the Survey
Control Subsystem (SCS); the Survey Analysis

Subsystem (SAS); and the Remote Sensor Sub-
system (RSS), which is comprised of six remote scnsor
systems (RSS1 through RSS6).

The SCS is the central control point of GASS. This
subsystem collects data from the RSS, stores the col-
lected data on magnetic tape, and displays the necessary
survey status information for the GASS operator and
the Project MAGNET aircraft pilot. The SCS is
designed to collect and store all system data at rates of
1,2, 4,8, or 16 times a second.

The SAS provides the capability to perform in-flight
analysis on the data being collected and to display the
results graphically. Each of the six remote sensor sys-
tems are compriscd of a remote sensorcontrotler (RSC),
sensors, and sensor supporting instruments. The RSCs
in the remote sensor systems are identical, with the
exception of the special interface cards required for
the various sensors. The primary communications bus
for GASS is a dual-redundant MIL-STD-1553B scrial
data bus that connects to the SCS, the SAS, and cach
RSC. Other data buses are used within the SCS, the
SAS, and each remote sensor system as requircd by
their associated equipment.

1. SCS/SAS and the 1553 Data Bus

The SCS and SAS subsystems are illustrated in
Figure 6. The SCS consists of the survey control com-
puter, a 9-track tape recorder, an operator console, a
graphics display, the project display, the navigation
display, the pilot display, and a printer. The survey

.
GASS 1553 BUS

U

KCDHSFN 4 l

. € PTTI
4% TRACK
RECORDER
SW1
O_—O SURVEY H*0\’ L4 SURVEY O_—O
CONTROL ANALYSIS
COMPUTER | SW2 COMPUTER
SCS
OPERATOR

SAS
4 OPERATOR
CONSOLE

T PROJ DISP/
' GRAPH DISP/ REM MON
S5 MON

NAV DISP/

REM MON

GRAPH DISP/
SYS MON

[|| PiLOT DISP/
REM MON

\

18

PRINT SPOOLER

PRINTER

Figure 6. Survey control and analysis subsystems.

control computer is a Plessey CS-10 computer
system, with a Plessey 68-22M CPU card and a Plessey
68-25M CPU card. The 68-22M CPU card is used for
the operatorinterface and system control functions. The
68-25M CPU card provides an interfacc between
the RSS, the tape drive, and the operator. The 68-25M
card interface to the operator is via a global memory
card that is accessible by the 68-22M CPU card. Both
CPU cards arc based on a Motorola 68020 micro-
processor with a Motorola 68881 co-processor. The
operator, graphics, project, and navigation displays are
Tcktronics SF4208 graphics terminals. The pilotdisplay
is an RGB (red-green-bluc) display mounted in the
cockpit of the aircraft. This display provides the pilot
with the survey route and other related information. The
primary function of the SCS is to collect data from
the RSS over the 1553 data bus and to store this data on
tape. The SCS also provides survey navigation informa-
tion, GASS equipment status, backup system timing,
and operalor system control functions.

The SAS consists of the survey analysis computer, an
opcrator console, a graphics display, and a 9-track tape
recorder. The primary purpose of the SAS is to provide
the operatoraccess to the GASS survey data base sothat
in-flight data analysis may be performed. As shown in
Figure 6, switches SW1 and SW2 allow either the SCS
or the SAS 10 opcrate the project, navigation, and pilot
displays. The SAS hardware is identical to the SCS,
cnabling the SAS 1o operatc GASS in the cvent of a
catastrophic failurc of the SCS.

The MIL-STD-1553B data bus is a serial data bus
with a 1-MHz maximum bit rate. The dual-redundant
configuration of this databusis uscdin GASS. This con-
figuration provides a dual path for all communications
between the SCS/SAS and the RSCs. in the event that
one of the redundant buses fails, GASS will automati-
cally switch to the seccondary bus without loss of data.
The 1553B data bus also provides the featurc that a
failure of an individual processor connected to the bus
will not disable the bus.

2. System Timing

An accurate time reference for GASS is absolutely
crucial to cnable post-processing of the geophysical
data collected. Accurate time references are contained
inall processing units: the SCS, the SAS, andcachRSC.
Since cach of these cight units contains its own timing
device, some method of assuring synchronization
between all devices is required. The Precise Time and
Time Interval (PTTI) intcrface provides time synchro-
nization between all processing systems in GASS.
PTTI provides timc synchronization once every
minute to .he SCS, the SAS, and cach RSC. This is
accomplished through three lines: the binary coded

11

decimal (BCD) line, the pulse per minute (PPM) line,
and the timing fault line. The BCD linc provides the
current time stamp encoded in binary coded decimal.
The PPM line provides the timing mark for the time
issued by the BCD line. The timing fault linc indicates
the source of the PTTI signals. During normal opera-
tions the PTTI signals arc derived from the global
positioning system (GPS) through the PTTI interface
custom-built by NORDA. In the cevent that the GPS
receiver fails to produce the PTTI signals, the timing
fault line is asserted by the SCS, and the SCS takes
control of the time synchronization function. In this
mode the SCS sends the time stamp tothe SAS and each
RSC over the 1553 serial data bus, and then issucs the
timing mark over the PPM line.

3. Remote Sensor Subsystem

The RSS consists of all six RSCs and their associated
sensors. The RSCs are custom-built VME chassis
manufactured by NORDA. They provide the power
supply and framework 1o mount the processor and
interface cards required to operate an individual RSS.
Each RSC contains a Plessey 68-25M CPU card, an SCI
Corporation 1553B serial interface card, and any inter-
face cards required by the sensors of a particular RSS.
Sensor interface cards include custom parallel, custom
serial, 1553B serial, ARINC-419, synchro, GPIB, and
RS422 interfaces. The following paragraphs describe
the components of each RSS.

RSS1 (Fig. 7) contains RSC1, aRosemount 1501AT
precision barometric altimeter, a Rockwell GPS-3A
recciver, and the NORDA PTTI interface. The altim-
eter provides altitude in fect to the RSC through a
parallel interface. The Rosemount altimeter is the most
accurate barometric source for altitude on the aircraft.
The GPS receiver provides latitude, longitude, altitude,

RSC1

ICNE X3 N
LN —

CPU

GASS 1553 BUS <—I

GPS CONTROL/

M >0
[aalasl enamlh - o 1~ o)

—_—

DISPLAY UNIT
ROSEMOUNT
PRECISION
BAROMETRIC

GLOBAL POSITIONING ALTIMETER
SYSTEM RCVR-3A g
il L T0 ALL
(GPS ANTENNA) [[PTTLINTERFACE | SUBSYSTEMS

Figure7. RSS1 interface diagram.

and heading to the RSC through an independent 1553
serial bus. The GPS receiver also provides the signals
rcquired by the PTTI interface to provide system syn-
chronization. The GPS receiver provides the most
accurate aircraft position information in the system. It
calculates aircraft position through communications
with four satellites (normal operation) or through
communications with threc or less satellites and a
barometric altitude input. Barometric altitude is sup-
plied by the SCS over the 1553 data bus to RSC1.

RSS2 (Fig. 8) contains RSC2, an AAU-21 baro-
metric altimeter, and two Litton-72 inertial navigation
systems (INS). The AAU-21 altimeter provides altitude
in fect to RSC2 through a parallel interface. Each
Litton INS provides heading, pitch, roll, latitude, lon-
gitude, north velocity, east velocity, ground speed, and
drift angle to RSC2 through an ARINC-419 serial
interface and a Synchro interface. These devices are
part of the aircraft navigation system and are not
controlled by GASS. The barometric altitude data
required by the Litton INSs is provided by the aircraft's
systems, independent of GASS.

RSS3 (Fig. 9) contains RSC3, a Texas Instruments
ASQ-81 scalar magnetometer, two Hewlett-Packard
HP3570B frequency counters, a Gould RS3200 strip-
chart recorder, and an RMS Instruments automatic
acromagnetic digital compensator. The ASQ-81 magne-
lomecter detects local magnetic field intensity using a
sensor head in the tail of the aircraft. It produces two
signals: the Larmor frequency and the bandpass output.
The Larmor frequency is a frequency between 0.6 and
2.2 MHz thatis proportional to magnetic field intensity.
The Larmor frequency is measured by the HP5370B
frequency counters and input to RSC3 over an HPIB
data bus. Two {requency counters were required to
provide the 16-Hz maximum sampling rate required of
the system. Anindividual HP5370B frequency counter

—PTT
P Ple p p pip
rsc2 | 1A [alS OfalS Olal3%]ala
PE Y o Y | °E
R R R R B[R
AERAN,GANG ER
c : 190alet lala
Ci chr)fch Cl
L tlcoqltlo L Lt
I A HY T HYT I A
cPU L L L L Lt
ELRVER AlE[R Ale|Al|ele
L 0 L 0 L L
L L L L Ll
GASS LT LT
1553 ——J
BUS
ARINC-419
LITTON INERTIAL
NAVIGATION SYS #1 GRAY CODE
AAU-21
BAROMETRIC
LITTON INERTIAL ALTIMETER
NAVIGATION SYS #2 s

Figure 8. RSS2 irserface diagram.

12

is capable of a maximum sampling rate of only 10 Hz in
this configuration. The bandpass output is a signal that
is proportional to the rate of change of the local mag-
netic fieldintensity. This signalis input toRSC3 through
an analog to digital converter card. The strip-chart
recorder provides the GASS operator with 4 quick-look
display of both outputs of the scalar magnctometcr. The
digital compensator provides magnetically compen-
sated total field and gradient signals to RSC3 through
a parallel interface. It derives these signals from the
ASQ-81 scalar magnetometer's Lamor frequency
signal and the X, Y, and Z axis magnctic intcnsities
from the vector magnetomcter in RSS4.

RSS4 (Fig. 10) contains RSC4, a Honeywell H-423
ring laser gyro (RLG), a Honeywell clectronically
suspended gyro (ESG), a NAROD vector magne-
tometer, and three HP3457A multimeters. The RLG
provides latitude, longitude, pitch, roll, and true
heading to RSC4 through an independent 1553B serial

B I — — Y PTTI
GP}P
RSC3 AJATALTA|D|A]A]A q
1 TIR{R G
ST T|TIT T {E]Aala|S]p
slofolojolo|s|L|t § |
cPy |3 yiL|L 3 B
DID{D|DJA|NJETE
ClL]L
GASS ~agd
1553 BUS
BANDPASS——>——[————:] f'
CONTROL SIGNAL 1 ICH1 ‘“
ASQ81 UNIT 1 IcH2
MAGNETOMETER
AMPLIFIER LARMOR l_—1 HP53708 }_
POWER SUPPLY FREQUE™(
N - :‘_—J—HPSJTOB
MAGNETIC DETECTOR

Figure9. RSS3 interface diagram.

— PTTI
pl Tp
RSC4 [? SISElal |a
"G.N[ER RI1IRIH
SIilcl|ci|A|s AP
M HAR YRR
CPUI3 1A R|AL A HE
Lol i; i
GASS 1553 BUS ~ttmmd J
L RLG|[RING LASER
COU|| GYRO
L[T DIGITAL
ELECTRONICALLY 10 R$S3 VOLTMETER #1
SUSPENDED GYRO DIGITAL T DAL
] COMPENSATOR VOLTMETER #2
< TIL V[DIGITAL
fiMU’ JWVOLTMETER #3
©VECTOR
MAGMETOMETER,

Figure 10. RSS4 interface diagram.

data bus. The ESG provides latitude, longitude, pitch,
rol, and true heading to RSC4 through a special serial
interface. RSC4 provides both the RLG and the ESG
with barometric altitude supplied by the SCS. The
vector magnetometer produces three voltages
corresponding to the orthogonal magnetic field vector
intensities. These voltages are measured with the digital
multimeters and sent to RSC4 over an HPIB data bus.
These voltages are also supplied to the d*gital compen-
sator in RSS3.

RSSS5 (Fig. 11) contains RSCS, an OPTECH 501-A
laser altimeter, and a Honeywell APN-222 radar
altimeter. The laser altimeter provides altitude inmeters
to RSCS through a parallel interface. The radar altime-
ter provides altitude in feet to RSCS, also through a
parallel interface. The laser altimeter is the most accu-
rate source of altitude in GASS forlow altitudes, and the
radar altimeter is the most accurate for high altitudes.

RSS6 (Fig. 12) contains RSC6, the Hydrographic
Airbomme Laser System (HALS), and the Airbomne
Multspectral Pushbroom System (AMPS). HALS is
under development by NORDA and the Naval Air
Development Center (NADC) and is a laser-based

— PTT
P P P
A SD A A
RSCs | R 1R R | R
5 | a {1 | a | a
5 L NV L L
. 3 L AE L L
CPu E JLrR| £ | ¢
L]
L]
6555 1563 B <t
LASER RADAR
ALTIMETER ALTIMETER
— L
f opia.) RECE!VE TRANSMIﬂ
JSOR HEAD | ANTENNA J _ ANTENNA

Figure 11 RSSS inderface diagram.

[— P
p I P | P
ASC6 RS | A |RS| A A
1 |SE| R |SE| R R
5 ar]| A& [4R] A A
5 |21 L2 | L L
CPY 3 2 A L 2 A L L
L i E L E 3
L L L
GASS 1553 BUS <—’
AIRBORNE MULTISPECTRAL HYDROGRAPHIC
PUSHBROOM SYSTEM AIRBORNE
LASER SCANNER

system for determining shallow-water depth’. AMPS
is under development by Lockhced through NASA
and is a system that determines shallow-water depths
using multispectral images of the ocean surface. These
systems will collect and store their data independently
from GASS, and they will have their own opcrator on
the aircrafi. GASS provides HALS and AMPS with a
time stamp through a parallel interface, and with lati-
tude, longitude, height, true heading, pitch, and roll
through a serial interface.

B. GASS Software

Figure 13 illustrates the GASS software distribution.
GASS software is functionally and physically distrib-
uted among the processors in the SCS, the SAS, and the
RSCs. All real-time or near-real-time functions are
handled by the 68-25M CPU cards in the SCS, the SAS,
and the RSCs under a Software Components Group Inc.
operating system called pSOS. All nonreal-time func-
tions are handled by the 68-22M CPU cards in the SCS
and the SAS under a Motorola Unix V.3 operating
system. The software is functionally distributed into
the following areas: Survey Control System, SCS Real
Time Front End (RTFE), Survey Analysis System,
SAS RTFE, and the RSCs.

The SCS software is responsible for the operator
interface, system control, navigation, displays, and
printer functions. The SCS RTFE software is respon-
sible for the 1553 communication, data handling,
message processing, tape drive control, and time-
keeping functions. The SAS software is similar to that
of the SCS, but it does not incorporate the systcm
control and navigation functions. The SAS softwarc
includes graphics and data base functions not in the
SCS software. The SAS RTFE software is almost

SURVEY CONTROL GLOBAL REAL TIME
SURSYSTEM MEMORY| FRONT END
OPERATOR INTERFACE 1553 COMMUNICATION
SYSTEM CONTROL DATS% H(;\ENEEB\J((:S SSING
NAVIGATION MESSA ESSIN
DISPLAYS T <% TAPE DRIVE CONTROL
PRINTER TIME KEEPING
SURVEY 15538
ANALYSIS ~-———— | SERIAL
SUBSYSTEM BUS
SENSORS T, 2
REMOTE SENSOR
I ORQGRAPHIC CONTROLLERS
POSITION <— | 1553 COMMUNICATION
ALTITUDE SENSOR CONTROL
ATTITUDE DATA PROCESSING
TIME TIME KEEPING

Figure 12. R5S6 interface diagram.

13

Figure 13. GASS software distribution.

identical to the SCS software. The RSC software is
responsible for time keeping and 1553B data bus
communications for all RSCs. It also performs the
functions of sensor control and sensor data pre-
processing for the sensors in a particular RSS.

The software in the six RSCs is physically separated
from the RTFEs in the SCS and SAS by the 1553B serial
bus. The software in the SCS and SAS is physically
scparated from the respective RTFEs by the SCS and
the SAS Global Memory Cards, with the exception of a
"mailbox" interrupt line. The SCS and SAS software is
stored on hard disk and is loaded into RAM for opera-
tion. Both of the Plessey CS-10 computer systems
contain the software for the SCS and the SAS, and each
may be booted to perform cither function. The software
for the SCS KTFE, the SAS RTFE, and the RSCs is
contained in ROM in the respective 68-25M CPU cards,
and is loaded into RAM for opcration. The ROM used
for the SCS and SAS RTFE contains the software for
both, allowing either CS-10 computer system to operate
as either the SCS or the SAS. The ROMs for the RSCs
contain the software for all six RSCs. A jumper on a
parallel port of the RSC is used to inform the RSC boot
software as to which RSC it is in upon power-up. The
boot software will load the software for that RSC
into RAM.

1. Survey Control Subsystem Software

The SCS software (Fig. 14) consists of the navigation
history, navigation control, display control, data
print, mailbox control, and man-machine interface tasks.
The navigation history task keeps a record of the

survey's navigation information on the computer's
floppy drive. Thisinformationis used toquickly resume
a survey should an SCS failure occur. The navigation
control task is responsible for computing the deviation
from the actual aircraft's track to the desired survey
track. The resulting information is displayed on the
navigation and pilot displays. The display control task
is responsible for driving the non-interactive naviga-
tion, project, and graphics displays (the pilot display is
aslave under the control of the navigation display). The
data for these displays are obtained from the SCS global
memory. The data print task creates printouts of data
and system parameters, as directed by the operator. The
SCS mailbox control task provides for the interface
between the SCS software and the SCS RTFE sofiware.
The man-machine interface task controls all interactions
with the operator via the operator console. Its functions
include on-line help, configuration and control of sys-
tems sensors, generation and editing of survey tracks,
display configuration, special events log, and print
control. Withthe excepticn of the mailbox interrupt line,
all communications between the SCS software and the
SCS RTFE software are via the SCS global memory.

2. SCS Real-Time Front-End Software

The SCS RTFE, software (Fig. 15) consists of the
1553 bus manager, message processor, lape manager,
and time tasks. The 1553 bus manager task in the SCS
RTFE controls all communications on the 1553B dual-
redundant senial data bus. It operates the SCS's SCI
1553B interface card in the bus controller mode, polling
each RSC for status and data. The message processor

FLOPPY DRIVE
C——————1

il

1

OPERATOR \| g o
CONSOLE

SENSOR/SYSTEM CONFIGURATION
AND CONTROL

BT DISP) (NAY DISP:
; L] RAM DRIVE NAVIGATION SCS
REM MON REM MON TE EE HISTORY GLORAL
— MEMORY
PRO. DISP T NAV DATA
“ = NAV CONFIG
N | SURVEY
. <_] > WAYPOINTS
GRAPH DISP: - DISPLAY v_J‘—— NAVIGATION MAIL BOX
SYS MON_ CONTROL 4—1 CONTROL |~ . CURRENT
T DATA | % SENSOR VALUES
PRINT |- DISPLAY CONFIG |

H SCS MAIL BOX CONTROL |-

PROGRAM ID'S

-
MAN-
MACHINE
INTERFACE .-
TIME

SENSOR STATUS
AND CONTROL

ALARMS

TAPE CONTROL

SURVEY TRACK GENERATION
SURVEY TRACK MODIFICATION
DISPLAY CONFIGURATION

Figure 14. Survey control subsystem software (UNIX operating system).

B S

SCSs
GLOBAL
MEMORY

NAV DATA
NAV CONFIG

SURVEY
WAYPOINTS

MAIL BOX

BUS A)

1553 BUS
MANAGER

BUS B

A

Lo =

w C w

CURRENT

SENSOR VALUES
DISPLAY CONFIG
PROGRAM 1D'S

SENSOR STATUS | o
AND CONTROL h

- —————————
- L.
-

TAPE MANAGER STAMP

RTFE
MESSAGE
PROCESSOR

TIME

RS

ALARMS -
TAPE CONTROL -
TIME e

Figure 15. Real time front end software (pSOS operating system).

task handles all communications to and from the
1553 bus manager task. It handles the formatting and
routing of all messages and data. It sends sensor control
commands to the bus manager, receiving scnsor status
messages and sensor data from the bus manager, and for
routing sensor data to the tape manager task and the
SCS global memory. The tape manager task formats all
data reccived from the message processor and for
operation of the magnetic tape drive. The time task in
the SCS updates the RTFE's processor clock using the
PTTI signal. This task also provides the current system
time to the operator via the SCS global memory. The
SCS RTFE time task serves as the backup for the PTTI
signal in GASS. If this task rccognizes a loss of the
PTTI signal, then it will take over the system timing
tuncuon by asserting dic PTTI fault line, generating
timing sync pulses over the PTTI interface and scnd-
ing the current time stamp to the bnus manager for
transmission to all RSCs.

3. Remote Sensor Controller Software

The remote sensor controller software (Fig. 16)
consists of the 1553 bus manager, message processor,
time manager, and sensor conirol tasks. The bus man-
ager task in the RSCs buffers and transmits the data and
messages received from the message processor. fi also
receives sensor control information from the 1553 bus
and passcs this to the message processor. The RSC
bus manager’ :-k operates the SCI 1553B interface card
in the remote terminal mode. The message processor
task processes all messages between the sensor control
tasks, the bus manager task, and the time manager task.
The time manager task updates the RSC processor's
clock using the PTTI signals. If the PTTI fails, then the

15

<«———> [SENSOR 1 |

SENSOR | o s [SENSOR 2

contRoL | T SRl
SENSOR COMMAND £ic
PROCESSOR
SENSOR ALARM
PROCESSOR
DATA ACQUISITION ‘
RSt R]| 5
MESSAGE | —s , BLS B 5
{7 LPROCESSOR MANAGER | it | 3
e BUS N :
- BUS OUT 0
HANAGER DATA BUFFER S
LOCAL MANAGERIENT

CLOCK
PTTI

Figure 16. Remote sensor controller software (pSOS operating
system).

time manager task will issue an alarm to the message
processor for transmission to the SCS. The RSC soft-
ware contains a scparatc sensor control task for
every sensor or instrument in the particular RSC.
Each sensor control task is responsible for sensor
operation and control (via commands from the SCS),
sensor alarm processing, data acquisition, and data
checking/formatting.

4. Survey Analysis System and
SAS RTFE Software

The SAS RTFE software (Fig. 17) is similar to the
SCS RTFE software, except that the tape manager task
is included in the message processor task, and the bus
manager operates the SCI 1553B interface card in the
bus analyzer mode. The bus analyzer mode allows only
the SAS to monitor the 1553B data bus. A separate tape

———— ————

e ——

DATA DISPLAY
(UNIX OPERATING SYSTEM)

MAN-MACHINE
INTERFACE

—

A

4
v

DATA ACQUISITION
(pSOS OPERATING SYSTEM)
> 1553 BUS
1 > MANAGER SAS
GLOBAL
g MEMORY
3 o 1553
8 BUS
U SAS «—»] CONTROL
S MESSAGE
PROCESSOR = waiL sox
A
DATA
4 STORAGE
CONTROL
PITI —»| TIMER > TIME

OPERATOR
CONSOLE

]

— CONTROL DATA ACQUISITION
— SELECT PLOTTING OPTIONS
~— SELECT DATA COMPUTATION

MNSLA%OX GF;APH/DISg
(sv MONIT R)
CONTROL PRINTER
P !
QUEUE | o JoFFLing] | QuEUE »{ REAL-TIME]
DUMP PLOT DUMP PLOT
e
FiLEs DATA CACHE
- DATA
™1 HANDLER

Figure 17. Survey analysis subsystem software.

manager task is not needed, since the SAS will only
retricve data from the tape recorder and will not send
data to the recorder. The SAS software consists of the
man-machine interface, SAS mailbox control, data
handler, que dump, and plot tasks. As with the SCS, the
man-machine interface provides all interface between
the operator and the SAS. This task allows the operator
to control data acquisition from the 1553B bus and tape
drive, 10 sclect plotting options, and to select data
computations. The SAS mailbox control task provides
the interface between the SAS sofiware and the SAS
RTFE software. The plot tasks can gencratc real-time
plots from the data base or from off-line plots from data
stored in files. The nlots created can be displayed on the
graphics display or on the printer. The data handler task
routcs data from the SAS RTFE to either the data base
or to disk files. The que dump task routes the operator-
specified data from either the disk files or the data base
1o the plot tasks.

C. GASS Data Flow

Figure 18 illustrates the typical flow path of data
through GASS. Data originate at an individual
sensor and are sent to an RSC via the sensor's interface
card. The sensor interface card converts the data from
the sensor into a format that can be used by the RSC's
68-25M CPU card. The sensor manager task receives
the data from the sensorinterface card and sendsiit to the
message processor task. The message processor task
properly formats the data and sends it to the bus man-
ager task. The bus manager collects the data from all

16

sensors into a buffer. When the RSC is polled by the
SCS, the bus manager sends all of the data currently in
its buffer to the 1553B interface card for transmission
on the 1553B data bus. The SCS RTFE bus manager
task receives the data transmitted on the bus by the RSC
from the SCS's 1553B interface card. The bus manager
task passes the data to the SCS RTFE message proces-
sor task. The message processor routes all the sensor
data to the tape manager task and to the sensor data arca
in the SCS global memory card. The tape manager task
formats the data and sends them to the Pertec interface
card, which in tum sends the data to the tape drive for
recording. The display control task, located in the SCS
CPU card, retrieves the data placed in the SCS global
memory card by the SCS RTFE CPU card, formats it,
and sends it to the displays via a serial interface.

IV. Summary

This study evaluates and applies the state of the art of
distributed real-time system design. The knowledge
base for distributed design is largcly empirical, and few
metrics are available for evaluating the economics of a
particular design. The significant gains of a distributed
design over a centralized design are an increase in
reliability, flexibility, and expandability. Software
development is the most difficult and the most expen-
sive part of distributed systems development. While
distributed systems can realize a savings in hardware,
the cost of the software could casily offset this savings
if the system design is too complex. It is important to

RSC CPU
CARD
e RSC SENSOR
SENSOR INTERFACE [MANAGER
HARDWARE CARD Qg%zo 6
RS422 RSC MESSAGE
SOFTWARE IEEE 488 PROCESSOR
15538
PERTEC ESERéIZ\ILE,éE RSC BUS
IAL SERIAL U
9 TRS\SR/ ETAPE let— INTERFACE SYNCHRO MANAGER
CARD —
SCS RTFE
CPU CARD v
RTFE TAPE RSC 15538
MANAGER CARD
SCS RTFE MESSAGE 15538 SERIAL
GLOBAL & PROCESSOR DATA BUS
OPERATOR | g 1f DISPLAY MEMORY *
DISPLAYS CONTROL CARD
RTFE BUS g RTFE 15538
MANAGER | ™% CARD

Figure 18. GASS data flowpath.

realize that the only widely accepted method for ensur-
ing reliability of software is through exhaustive testing.
However, some of the costs of software debugging can
be reduced by following a rigorous software quality
assurance plan.

A systematic approach to the design of GASS
involved first the identification of the system's require-
ments and major design restrictions. Then, amethodical
analysis of available architecture options was made to
produce a design that meets both the requirements and
restrictions. The major elements of the system’s archi-
tecture are the number of processors, the way these
processors are distributed and interconnected in the
system, and the distribution of the software tasks. This
study revealed that the design of embedded real-time
distnibuted systems is largely application specific; the
design of GASS given in this paper offers one possible
solution to the given design parameters.

V. Recommendations

A. Further Study

Once GASS is completed and has undergone suc-
cessful functional testing, performance testing should
be done to evaluate the system's design and its potential
for expansion. One key performance criterion is the
loading. or the "busy time" of the system's processors.
This mecasure will reveal critically loaded processors, if
they exist, and will also provide an ideca of how much

17

extra load the system can handle. If there are critically
loaded processors in the system, then the problem can
probably be remedied by a different distribution of
sensors in the RSCs. Another significant measure is the
latency time of the network bus. Excessive bus latency
can adversely affect the navigation function of the
system, since GASS will be used on an aircraft. At
typical survey speeds of 200 knots, 15 scconds is
equivalent to 0.95 miles of travel. Probably the most
significant measure of system performance at this point
is that of measurement time skew. Even though the
system is time synchronized and sensor acquisition
tasks are initiated within a few microseconds of each
other, a time skew still exists between the actual meas-
urements. Part of this skew can be accounted for by the
fact that the acquisition tasks for different sensors
require varying lengths of time to actually trigger their
sensors. The major contributor to the time skew, and
also the hardest to measure, is the time required for each
instrument to perform a measurement once triggered.
Some instruments, the barometric altimeters, for
example, provide data almost instantly after triggering
of the acquisition task. Other instruments, such as the
frequency counters used for the ASQ-81 magne-
tometer, may take almost the entire sample interval
(when at an 8- or 16-Hz sampling rate) to make the
measurement. These time skews nced to be accurately
determined sothat they canbe accounted for during post
processing of the GASS data.

aadiiin.

e —————— e~ - ————— e = p— —— =

—_— yr————

B. Future System Enhancements

The GASS architecture will aliow very easy modifi-
cation and modcmization of the system. If processors
become overloaded, then the system can be easily
reconfigured to distribute the load properly. If load
distribution is not an adequate solution, then more
processors could be added to the existing nodes, orextra
nodes can be added to the system. If bus latency
becomes a problem, then bus performance can be
improved by using a token passing MAP instead of the
currently used controller scheme. In the event of
severe bus loading problems, the system could be
segmented into several buses by adding more bus
interface cards to the SCS, or the entire bus system
could be upgraded to a faster fiber-optic media. The
system's fault detection capabilities can be improved
casily by incorporating cross-instrument data testing,
as discussed by Bourgeois*. System availability can be
improved by altering the current RSC software structure.
The current design allows any of the RSC processor
cards to be used in any RSC. This design could be
improved further by configuring the RSC software to
allow execution ot any combination of the system's
scnsor tasks. With this change, many of the sensors of
a failed RSC could be relocated to an operational RSC.

V1. References

1. Harris, M., B. Bourgcois, P. Wischow, and
J. Ross (1989). Geophysical Airborne Survey System —
Svstem Overview. In prep. Naval Oceanographic and
Atmospheric Research Laboratory, Stennis Space
Center, MS.

2. Langley, F.,D. Sicgel, W, Savage,andR. Wehman
(1979). Federated microcomputer systems for on-board
missile guidance and control. AGARD Advances in
Guidance and Control Systems using Digital Tech-
niques, May.

3. Wilcock, G., P. Lancaster, and C. Moxey (1982).
Integrated control of mechanical sysiems for future
combat aircraft. AGARD, Tacucal Airborne Distrib-
uted Computing and Networks.

4. Shin, K. and C. Krishna (1982). Performance
study of a distributed microprocessor architecture for
usc aboard a military aircraft. AGARD, Tactical Air-
borne Distributed Computing and Networks.

5. De Feo, P., L. Geiger, and J. Harris (1985).
{ntelligent Redundant Actuation System Requirements
and Preliminary System Design. Contractor Report,
NASA Contract No. NAS2-12081.

6. Shin, K., R. Throne, and Y. Muthuswamy (1987).
Communication and Control in an Integrated
Manufacturing System. Proceedings of the st Annual

18

Workshop on Space Operations Automation and
Robotics, pp. 405-411.

7. Gluch, D. and M. Paul (1986). Fault-Tolerance in
Distributed Fly-by-Wire Flight Control Systems.
Proceedings of the AIAA/IEEE 7th Digital Avionics
Systems Conference, pp. 507-514, October.

8. Kieckhafer,R.,C. Walter, A. Finn, P. Thambidurai
(1988). The MAFT architecture for distributed fault
tolerance. [EEE Transactions on Computers,
37(4):398-405.

9. Fura, D, T. Hill, and M. Raftery Design and Vali-
dationof the IFTAS Fault-Tolerant Clock. Proceedings
of the 8th AIAA/IEEE Digital Avionics Systems
Conference, pp. 235-242, October.

10. Svenningsson, M. (1987). Central processing
unit for fault tolerant computing in Columbus. Acta
Astronautica, 15:661-665.

11. Madden, W. and P. Wilhelm (1988) Space Station
Data Management System Architecture. Proceedings
of the AIAA/IEEE 8th Digital Avionics Systems Confer-
ence, pp. 792-798, October.

12. Whitelaw, V. (1988). The Space Station Data
Management System: Avionics That Integrate.
Proceedings of the AIAA/IEEE 8th Digital Avionics
Systems Conference, pp. 767-774, October.

13. Mejzak, R. (1987). New technology impacts on
future avionics architectures. AGARD, Advanced Com-
puter Aids inthe Planning and Executionof AirWarfare
and Ground Strike Operations.

14. Pedar, A. and V. Sarma (1983). Architecture
optimization of acrospace computing systems. /[EEE
Transactions on Computers, C-32:(10)911-922.

15. Vielcanet, P., H. Horgen, T. Demoy, and
P. Howlwett (1984). Comparative Study on Data Sys-
tem Architectures. Contract Report, ESTEC Contract
No. 5524/83/NL/PP.

16. Mangoubi, R., E. Gai, and B. Walker (1986). On
the Performance Analysis of Real-Time Distributed
Computer System. Proceedings of the 7th AIAA/IEEE
Digital Avionics Systems Conference, pp. 529-535,
October.

17. Lala, J., L. Alger, S. Adams, L. Burkhardt,
G. Nagle, and N. Murray (1988). Development of a
Space-Systems Network Testbed. Proceedings of ihe
8th AIAA/IEEE Digital Avionics Systems Conference,
pp. 571-579, October.

18. Brock, L., and J. Deyst (1988). Modular Avi-
onics Systems Studies. Proceedings of the AIAA/IIEEE
8th Digital Avionics Systems Conference, pp. 1-7,
Octaober.

19. Gelderloos H., and D. Wilson (1976). Redun-
dancy Management of Shuttle Flight Control Sensors,
Proceedings of the 15th IEEE Conference on Decision
and Control, pp. 462-475, December.

20. Watson, J., W. Yousey, and J. Railey (1979).
Redundancy management considerations for a control-
configured fighter aircraft triplex digital fly-by-wire
flight control system. AGARD Advances in Guidance
and Control Systems Using Digital Techniques.

21. Sievers, M., G. Kravetz, B. Dussia, and J. Jackson
(1982). Military Standard Fault-Tolerant Microcom-
puter. Contractor Report, Office of Naval Research
Contract No. N00014-82-C-0126.

22. McGlone, M., R. Miller, W. Davies, and
P. Adams (1983). Full authority fault tolerant
electronic engine control systems for advanced high
performance engines. Society of Automotive Engineers,
Aerospace Congress and Exposition, October.

23. Hartman, G., J. Wall, E. Rang, H. Lee, R. Schulte,
and W. Ng (1983). Advanced Flight Control System
Study. Contract Report, Ames Research Center,
Contract NAS4-2876.

24. Dzwonczy, M. and H. Stone (1988). A Fault-
Tolerant Suite for an Entry Research Vehicle.
Proceedings of the 8th AIAA/IEEE Digital Avionics
Systems Conference, pp. 593-598, October.

25. Goldberg, 1., et al. (1984). Development and
Analysis of the Software Implemented Fault-Tolerance
{SIFT) Computer. Contract Report, NASA Contract
NASA-CR-172146.

26. Montgomery, V. (1981). Development of a
Fault-TolerantMicroprocessor Based Computer System
for Space Flight. Southern University, Baton Rouge,
LA, Contract NSG-8053.

27. Evans, R, and S. Price (1981). Fault Tolerant
Microprocessor System Design. Proceedings of the
11th Annual International IEEE Symposium on Fault-
Tolerant Computing, pg 214-220, June.

28. Yaacob, M., M. Hartley, and P. Depledge (1983).
Operational Fault-Tolerant Microcomputer for Very
High Reliability. IEE Proceedings, 130.E(3):90-94.

29. Smith, T. (1984). Fault Tolerant Processor
Concepts and Opceration. Proceedings of the 14th IEEE
Fault Tolerant Computing Symposium, pp. 158-163,
June.

30. Ichikawa, S., Y. Kawada, M. Mine, Y. Ishige,
and A. ltsukaichi (1988). Fault-Tolerant Computing
System and Software for Enginecring Test Satellite-VI
(ETS-VI) Attitude and Control Subsystem. Proceed-
ings of the AIAA/IEEE 8th Digital Avionics Systems
Conference, pp. 170-176, October.

31. Lamport,L.,R. Shostak and M. Peasc (1982). The
byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382-401.

32. Shepherd, J. (1982). A Method of Designing
Fault Tolerant Software. Proceedings of the Royal
Aeronautical Society's Symposium on Certification of
Avionic Systems, April,

19

33. Hitt,E. (1986). Rea!- Timc¢ Fault Tolerant Software
in Distributed Avionics Systems Architectures Using
Digital Data Buses. Proceedings of the 7th AIAA/IEEE
Digital Avionics Systems Conference, pp. 523-528,
October.

34. Avizienis, A. and M. Lyu (1988). On the
Effectiveness of Multiversion Sofiware in Digital
Avionics. Proceedings of the AIAA/IEEE 8th
Digital Avionics Systems Conference, pp. 422-427,
October.

35. Anderson, R. (1980). Automated Recovery in a
Real-Time, Distributed, Multiple Microprocessor
Computer System. Masters Thesis, Naval Postgraduate
School, December.

36. Schneider, F. andR. Schlichting (1981). Towards
Fault Tolerant Process Control Software. Proceedings
of the 11th Annual International IEEE Symposium on
Fault-Tolerant Computing, pg 48-55, June.

37. Clarke, E. and C. Nikolaou (1981). Reconfig-
uration Strategies for Reliable Shared Memory
Multiprocessor Systems. Proceedings of the 11th An-
nual International IEEE Symposium on Fault-Tolerant
Computing, pg 152-158, June.

38. Schmid, H., S. Larimer, and T. Madak (1986).
Channelized or Nonchannelized Fault-Tolerant
Computers: A Hardware Complexity Comparison of
Fault-Tolerant Computers for Flight Control Systems.
Proceedings of the 7th AIAA/IEEE Digital Avionics
Systems Conference, pp. 655-663, October.

39. Loques, O. and J. Kramer (1986). Flexible Fault
Tolerance for Distributed Computer Systems. /EE
Proceedings,133.E(6):319-322.

40. Best, D., K. McGahee, and R. Shultz (1988). A
Fault Tolerant Avionics Multiprocessing System Archi-
tecture Supporting Concurrent Execution of Ada Tasks.
Proceedings of the AIAA/IEEE 8th Digital Avionics
Systems Conference, pp. 256-262, October.

41. Eckhardt, D. (1985). Fault-Tolerant Softwarc
Experiment Objectives and Status. NASA Computer
Science/Data Systems Technical Symposium, April.

42. Voigt, R. (1986). The Design of a Real Time
Operating System for a Fault Tolerant Microcomputer.
Masters Thesis, Navy Postgraduate School, December.

43. Dekker, G. (1985). Reliability Aspects of Soft-
ware for Digital Avionics. Contractor Report for the
Netherlands Dept. of Civil Aviation.

44. Cramer, M. (1986). A Quantitative Analysis of
the History of Developing a Large Embedded Software
System. Proceedings of the 7th AIAA/IEEE Digital
Avionics Systems Conference, pp. 355-362, October.

45. Cooper, L., J. Radatz, and R. Butler (1986). DoD
Develops Single Set of Software Quality Standards.
Proceedings of the 7th AIAA/IEEE Digital Avionics
Systems Conference, pp. 777-783, October.

e v m ———— ® = =~ —

46. Smith, J. (1986). Software Quality Issues.
Proceedings of the 7th AIAA/IEEE Digital Avionics
Systems Conference, pp. 765-768, October.

47. Anonymous (1983). Software Quality Assurance
for ESA Spacecraft and Associated Equipment.
European Space Research and Technology Centre
Report, February, ASA Document #84N26037.

48. Bourgeois, B., M. Harris, T. Nicolaides,
P. Wischow, A. Martinez, P. Duvoisin, and R. Drake
(1989). Fault Detection and Reliability of the GASS
Mulii-processor Survey System. Proceedings of IEEE
Southeast Conference, pp. 319-325, April.

49. IEEE Standard Digital Interface for Program-
mable Instrumentation (1987). ANSI/IEEE Standard
488.1.

50. Fritz, 1., C. Kaldenbach, and L. Progar (1985).
Local Area Networks Selection Guidelines. Informa-
tion Systems & Networks Corporation, Prentice Hall,
Englewood Cliffs, New Jerscy.

51. Shaw, J., H. Herzog, and K. Okubo (1986).
Digital Autonomous Terminal Access Communication
(DATAC). Proceedings of the 7th AIAA/IEEE Digital
Avionics Systems Conference, pp. 221-226, October.

52. Holmes, D. (1986). Global System Data Bus
Using the Digital Autonomous Terminal Access
Communication Protocol. Proceedings of the 7th
AIAAVIEEE Digital Avionics Systems Conference,
pp. 227-233, October.

53. McGough, J. (1986). Evaluation of Data Busses
for Flight Critical Control Applications. Proceedings
of the 7th AIAA/IEEE Digital Avionics Systems Con-
ference, pp. 718-727, Ociober.

S4. Anderson, S. (1986). The High Specd Intercon-
nect System Architecture and Operation. Proceedings
of the Aerospace Avionics Equipment and Integration
Conference, pp. 173-183, April.

55. Spicth, J. and W. Seward (1986). Simulation
Modecl of a High-Speed Token-Passing Bus for Avion-
ics Applications. Proceedings of the 7th AIAA/IEEE
Digital Avionics Systems Conference, pp. 242-249,
Oclober.

56. Mcyer, J. (1986). SAE AE-9B Draft Standard
High Speed Token Passing Data Bus for Avionics
Applications. Proceedings of the 7thAIAA/IEEE Digital
Avionics Systems Conference, pp. 234-241, October.

57. Nelson, J.,L. Shafer, D. Hamlin, and H. Herrmann
(1987). A Candidate for Lincar Token-Passing, High-
Spced Data Bus Systems. Proceedings of the 2nd
Aerospace Avionics Equipment and Integration
Conference, pp. 105-120, November.

20

58. Ludvigson, M., M. Modrow, and P. Goldman
(1988). The High Speed Bus Technology Development
Program. Proceedings of the AIAAIIEEE 8th Digital
Avionics Systems Conference, October.

59. Kroeger, B. and H. Shih (1988). An SAE High
Speed Ring Bus Overview. Proceedings of the AIAA/
IEEE 8th Digital Avionics Systems Conference,
pp. 719-723, October.

60. Wemer, B. (1989). Token-Ring Local-Arca
Networks and their Performance. Proceedings of the
IEEE, 77(2):238-256.

61. Cooling, J. (1986). Real-Time Interfacing:
Engineering Aspects of Microprocessor Peripheral
Systems. Van Nostrand Reinhold Co. Ltd., Berkshire,
England.

62. Keen, W. (1988). Ada in Avionics — Beyond
Validation. Proceedings of the AIAA/IEEE 8th Digital
Avionics Systems Conference, pp. 251-255, October.

63. Lala,J.,L. Alger,R. Gauthier,and M. Dzwonczyk
(1986). A Fault Tolerant Processor to Meet Rig-
orous Failure Requirements. Proceedings of the 7th
AIAA/IEEE Digital Avionics Systems Conference,
pp. 555-562, October.

64. Voelcker, J. (1987). Ada: from promise to prac-
tice? IEEE Spectrum, pp. 44-49, April.

65. Jennings, R. (1986). Avionics Standard
Communication Bus, It's Implementation and Usage.
Proceedings of the 7th AIAA/IEEE Digital Avionics
Systems Conference, pp. 242-249, October.

66. Blaha, M., C. DeGennaro, and S. Utley (1988). A
Dual Speed, Mil-Std-1553B Compatible Fiber Optic
Data Bus. Proceedings of the AIAA/IEEE 8th Digital
Avionics Systems Conference, pp. 395-398, October.

67. Humphrey, T. (1988). Reducing the Risks of
Using Ada Onboard the Space Station. Proceedings
of the AIAA/IEEE 8th Digital Avionics Systems Confer-
ence, pp. 599-602, October.

68. Lahn, T., S. Mincar, and J. Murray 1986). Some
Views on the Use of Ada for Digital Flight Control
Systems. Proceedings of the 7th AIAA/IEEE Digital
Avionics Systems Conference, pp. 455-460, October.

69. Garlington, K. and A. Tyrrell (1988). A Case
Study: F-16 ADA Digital Flight Control System.
Proceedings of the AIAA/IEEE 8th Digital Avionics
Systems Conference, pp. 267-272, October.

70. Harris, M., H. Mecsick, H. Bymes, T. Curran, and
V. Contarino (1987). A Laser Sounder for U.S. Navy
Hydrographers. Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium.

Asst Secretary of the Navy
(Research, Engineering & Systems)
Navy Department

Washington DC 20350-1000

Chief of Naval Operations
Navy Department
Washington DC 20350-1000
Attn: OP-02

OP-71

OP-0962X

OP-987

Oceanographer of the Navy
Chief of Naval Operations
U.S. Navai Observatory
34th & Mass Ave., NW
Washington DC 20390-180C
Attn; OP-96

Commander
Naval Air Development Center
wWarminster PA 18974-5000

Commanding Officer
Naval Coastal Systems Center
Panama City FL 32407-5000

Commander
Space & Naval Warfare Sys Com
Wastrington DC 20363-5100

Commander

Naval Facilities Eng Command
Naval Facilities Eng Command HQ
200 Stovall St.

Alexandna VA 22332-2300

Commanding Officer
NOARL
Stennis Space Center MS 39529-5004
Attn: Code 100
Code 105
Code 115
Code 117, J. Hammack
Code 125EX
Code 125L (1)
Code 125P
Code 200
Code 300
Code 350. D. Hickman
Code 351. J. Byrnes
Code 351, J. Braud
Code 351, M. Lohrenz
Code 351. B. Bourgeois
Code 351. M. Harris
Code 351. P. Wischow
Code 351, J Ross
Code 400

Brogke Farquhar

NOARL Liaison Office
Crystai Plaza #5, Room 802
2211 Jefferson Davis Hwy.
Arlington VA 22202-5000

Distribution List

Commanding Officer
Naval Research Laboratory
Washington DC 20375

Commander
Naval Oceanography Command
Stennis Space Center MS 39529-5000

Commanding Officer
Fleet Numerical Oceanography Center
Monterey CA 93943.5005

Commanding Oftficer
Naval Oceanographic Office
Stennis Space Center MS 39522-5001
Attn: Code GGAP, B. Muilen
Code A, J. Depner

Commander
Naval Ocean Systems Center
San Diego CA 92152-5000

Commanding Officer

ONR Branch Office

Box 39

FPO New York NY 09510-0700

Commander
David W. Taylor Navat Research Center
Bethesda MD 20084-5000

Commander
Naval Surface Weapons Center
Dahigren VA 22448-5000

Commanding Officer
Naval Underwater Systems Center
Newport Rl 02841-5047

Superintendent
Naval Postgraduate School
Monterey CA 93943

Director of Navy Laboratories
Rm 1062, Crystal Plaza Bidg 5
Department of the Navy
Washington DC 20360

Officer in Charge

New Londun Laboratory

Naval Underwater Sys Cen Det
New London CT 06320

Director

National Ocean Data Center
WSC1 Room 103

6001 Executive Blvd.
Rockville MD 20852

Attn: G. W. Withee

Director

Woods Hole Oceanographic Inst
P.0O. Box 32

Woods Hole MA 02543

University of California

Scripps Institute of Oceanography
P.O. Box 6049

San Diego CA 92106

Officer in Charge

Naval Surtace Weapons Center Det
White Oak Laboratory

10901 New Hampshire Ave.

Silver Spring MD 20903-5000

Attn: Library

Commanding Officer

Fieet Anti-Sub Warfare Training Center,

Atlantic
Naval Station
Norfolk VA 23511-6495

Defense Mapping Agency Sys Cen
12100 Sunset Hill Rd. #200
Reston VA 22090-3207
Attn: SGWN

M. Wagner

E. Danford

Office of Naval Technology

800 N. Quincy St.

Arlingtnn VA 22217-5000

Attn: Code 20, Dr. P. Selwyn
Code 228, Dr. M. Briscoe
Code 234, Dr. C. V. Votaw

Office of Naval Research

800 N. Quincy St.

Arlington VA 22217-5000

Attn: Code 10
Code 10D/10P, Dr. E. Silva
Code 12
Code 112, Dr. E. Hartwig

Commander

Naval Sea Systems Command
Naval Sea Systems Command HQ
Washington DC 20362-5101

Commanding Officer
Naval Civil Engineering Laboratory
Port Hueneme CA 93043

Commander

Naval Air Systerns Command
Naval Air Systems Command HQ
Washington DC 20361-0001

Pennsylvania State University
Applied Research Laboratory
P.O. Box 30

State Coltege PA 16801

University of Texas at Austin
Applied Research Laboratories
P.O. Box 8029

Austin TX 78713-8029

Johns Hopkins University
Applied Physics Laboratory
Johns Hopkins Rd.

Laurel MD 20707

University of Washington
Applied Physics Laboratory
1013 Northeast 40th St.
Seattle WA 98105

REPORT DOCUMENTATION PAGE OMB N o

Publi i
g:th::ri r::o::jng g;:‘miz: ::l: g::;aclion :,f i:'f’%n::’t‘:&ncla no:tai;‘n:(’:va‘t& T;;r:g: 1 h_?m par r:'spense. lqcludlnq the time for mlwlrl\g lns:mcllons. searching existing data sources,
a A 2 ! needed, on. Send regarding this burd
gr;':c::?c'(‘fn ots m_formalt b 2On"otkIn.clutung suggestions for reducing this burrien, to Washington Headguarters Services, Diractorate for Inlo?mlllson %p:rnal.i;rt\zn aar:g gre;g!(: '1'5’12315’&?;.3:
ghway, Suite , Arlington, VA 22202-4302, and to the Otfice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. Agency Use Only (Leave blank). 2. Report Date. 3. Report Type and Dates Covered.
April 1990 Final
4. Title and Subtitle. 5. Funding Numbers
Design of a Distributed Microprocessor Sensor System Program Element No. 980101
Project No.
6. Author(s).
Task No.
Brian S. Bourgeois, Mike M. Harris, Perry B. Wischow, and Jerry H. Ross
Accession No. 93518G
7. Performing Organization Name(s) and Address(es). 8. Performing Organization

Report Number.
QOcean Science Directorate
Naval Oceanographic and Atmospheric Research Laboratory NOARL Report 1
Stennis Space Center, Mississippi 39529-5004

9. Sponsoring/Monitoring Agency Name(s) and Address{es). 10. Sponsoring/Monitoring Agency
Report Number.

11. Supplementary Notes.

.

12a. Distribution/Availability Statement. 12b. Distribution Code.

Apprcved for public release; distribution is unlimited. Naval Oceanographic and
Atmosgpheric Research Laboratory, Stennis Space Center, Mississippi 39529-5004.

13. Abstract (Maximum 200 words).

The Gecphysical Airborne Survey System (GASS), developed by the Naval Ocean Research and Development Activity®, is a real-time,
cistributed microprocessor sensor system. The Naval Oceanographic Office intends to use this system on the Project Magnet P-3 Orion
aircraft to collect worldwide magnetic and hydrographic data.

This report briefly discusses the mission and the history of GASS and reviews the technology advances of the last decade in the
area of real-time distributed microprocessor systems. Specific topics include the goals of distributed system design, the qualitative
value of distributed system design, and reliable design techniques for the hardware and software in distributed systems. This technology
review provides a foundation for the GASS design.

The system design decisions made for GASS are detailed, and the systens architecture is described. Detailed drawings and descriptions
of the hardware and software for the final GASS design are also included. Recommendations are made for possible system enhancements
and for areas that reqguire further investigation.

*Now the Naval Oceanographic and Atmospheric Research Laboratory (NOARL).

14. Subject Terms. 15. Number of Pages.
24
distributed microprocessor systems, GASS, systematic design, system architecture 16. Price Code.
17. Security Classification 18. Security Classification 19. Security Classification 20. Limitation of Abstract.
of Report. of This Page. of Abstract.
Unclassified " Unclassified Unclassified None
NSN 7540-01-280-5500 Standard Form 98 (R w 2-89)

Proscrided by ANS! 83d) $-W8
98-102

