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Abstract

The background of the theory underlying the tight-binding and HUckel

models of molecular structure is briefly discussed. A description is then

provided for how these methods have been used in cluster research,

concentrating first on applications of the tight-binding model to silicon

clusters, and then on applications of the Hickel model to metallic clusters.

Comments are provided on the relative merits of the two methods.
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2.2.1. Introduction

We now consider a simplified method for calculating electronic states of

clusters. In the next chapter, local density calculations originally

developed for the bulk metal are adapted for cluster calculations. This

results in a "solid" in which surface effects are important. Similarly,

Hartree-Fock methods are frequently used to calculate the structure of small

molecules and clusters. In the current chapter, we shall not be concerned

with solving the Schr6dinger equation from first principles, but shall instead

adopt a semiempirical approach. Apart from computational simplicity, the

benefits of this approach are several-fold. First, surface effects are

automatically taken care of. Secondly, the geometry of the cluster can be

given explicitly, and there is no need to assume a spherical or model

geometry. Finally, the electronic structure can be probed more accurately,

since the electronic states are calculated explicitly.

The limitations of the present method must also be explored. In

particular, the semiempirical parameters are usually calculated from the band

structure in the bulk. There is no guarantee that this parametrization will

continue to be valid for very different cluster systems. In any event, some

modification of the method must be undertaken before these methods can be

applied to clusters. Secondly, while some information about the electronic

structure is inherent in any method which tcfter.s on the bulk band gap, how

accurate that information is for systems different from the bulk and/or for

states not near the band gap remains to be determined. Finally, one is

limited to materials for which suitable parameters are known, and for which a

variety of approximations are appropriate. Nevertheless, there are many

systems for which quantum chemical techniques can yield valuable information,
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and the purpose of this chapter is to indicate that many of the above problems

are soluble.

We should distinguish the present techniques from classical force field

methods. These methods attempt to model the potential around an atom using a

classical field, and from this to calculate stable structures and heats of

formation from molecular dynamics calculations. This is very widely used in

cluster research and yields much valuable information, but it is beyond the

scope of this chapter. Since it is not a quantum mechanical method, little

information about electronic structure can be obtained.

The most straightforward quantum technique is, of course, the ab initio

Hartree-Fock calculation. In this case the Schrodinger equation is solved

explicitly, and solutions of arbitrary accuracy can be obtained, depending on

the size of the computer and the patience of the researcher. Most ab initio

calculations are done for small molecules, and the amount of computation

involved makes this method inappropriate for larger systems.

Short of ab initio techniques, there exists a large number of

semiempirical methods. These begin with the principles of quantum mechanics,

but then greatly simplify the calculation by introducing empirical parameters,

which are chosen to produce as accurate a result as possible. In mary cases

the results are very accurate indeed, and it is not always fair to say that

semiempirical methods are less exact than ab initio techniques. Semiempirical

methods are widely used in studies of organic systems. Pharmaceutical firms

make much use of these methods in searching for new drugs.

The methods we are about to describe are semiempirical of the simplest

sort, involving only one or a few parameters. Their great advantage is

computational and conceptual simplicity, and they are readily adaptable to
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calculations of large clusters. Specifically, in what follows we shall

consider the tight-binding model and the HUckel model. Both of these are so-

called nearest-neighbor models, in which the interaction between nearest-

neighboring atomic sites is accounted for, and all other interactions are

ignored.

We start with a short background of the theory underlying the two methods.

We then continue with a description of how the methods have been used in

cluster research, concentrating first on application of the tight-binding

model to silicon clusters, and then on applications of the Hackel model to

metallic clusters. Finally, we close with some comments on the relative

merits of the methods, and on possible directions for future research.

2.2.2. Quantum Chemistry Background

In order to define notation, and also to ensure completeness, we review

here some elementary quantum chemistry as will be used in what follows. The

Hamiltonian for a molecule can be written as

HOi - Ei4 i  , (i)

where i refers to a molecular electronic state with energy Ei, which are the

quantities we want to determine. In principle, of course, H depends on all

electron-nuclear and electron-electron interactions. But the tight-binding

(TB) model assumes that the total Hamiltonian can be simplified into a series

of one-electron Hamiltonians, i.e., that each electron feels an average field

made up of the nuclei and all other electrons. This is the same approximation

as made by the Hartree-Fock approach, but the TB method is not a self-

consistent approach.
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The second characteristic of the TB model is that local, atomic orbitals

are used as a basis set. It is from this that the method takes its name,

i.e., it is assumed that each electron is well localized around a given

nucleus. The opposite standpoint would be to assume plane-wave Bloch

functions for the basis set, which is the approach used for many metals.

Bullett has shown that by including d-orbitals, the TB basis set looks more

and more like the plane-wave approach, and thus can be used for metals as

well. Our discussion here, however, restricts attention to s and 0 orbitals,

and hence the TB method described here is not applicable to systems such as

metals where electrons are nearly free.

We can write the one-electron states as

H a0 -e f , (2)

where a refers to the one-electron, atomic Hamiltonian, energy and orbital.

For an isolated atom, this is an exact expression. The a constitute our

basis set, and so we can express the molecular orbitals in terms of them as

) c (3)

a

Operating on this with the molecular electronic Hamiltonian, H, we get

HOi - H(S c. ) - E i i  (4)

a

We can rewrite Eq. 4 using Dirac notation as



6

Hji> - ci Hfo> - E'ii> (5)

From this, the energy E. can be written as

Ei cici. <fIHIa> - ci c iV (6)

where Greek letters refer to atomic states, and where V is the numerical

value of the integral expressed by the brackets.

Equation 5 is a system of n equations with n unknowns, where n is the size

of the basis set, in principle infinite. We can rewrite Eq. 5 in

determinantal form

detjH - EiSI - 0 (7)

where S refers to the overlap matrix, and H refers to the Hamiltonian matrix

given by Eq. 5. For an orthogonal basis set, S is simply a unit matrix. For

a non-orthogonal basis set, S must be calculated explicitly. However, in our

derivation we will assume that 0a and 0 are orthogonal, i.e., that <aj,6> - 0

for a o P, and thus S - 6 a. This is obviously true if the orbitals are on

the same atom, since hydrogen-like orbitals are orthogonal. It is not true if

the orbitals are on different atoms, since it is precisely the overlap which

creates the bond. But since the overlap is generally small, it can be

included in the parametrization, and therefore ignored. Simplicity demands

such a procedure, and it is the course we follow here. A more detailed

account is found in Bullett's review article.
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The second approximation is to assume that the molecular electronic

Hamiltonian acts on the atomic orbital as

Hila> - H aa> - f 1a> (8)

This is the same as saying that the molecular electronic Hamiltonian for an

isolated atom is the same as the atomic Hamiltonian from which the basis set

is derived. A more mathematically sophisticated way of saying this is to use

projection operators, as discussed by Bullett.

The final approximation is to note that

<OIHI> - V 0 for a,f8 on same atom, or on distant atoms
(9)

0 0 for a,,8 on nearest-neighbor atoms.

This is how the interaction between atoms in the molecule is taken into

account. In general, of course, V has to depend on the interatomic

distance, and the TB model does that. In the present case, V is calculated

2
for a fixed interatomic distance, and then is allowed to vary as 1/r

The parameters for silicon are well known: Vssa - -1.938 eV, V spa -

1.745 eV, V - 3.050 eV and V - -1.075 eV. These have been calculatedppa pp1

to fit the band structure of the bulk material, and have no other immediate

physical significance other than that they work. At large distances, the

2
decay is much faster than i/r , and therefore a cutoff distance is chosen

after which the matrix elements are set to zero, and no bond is said to exist.

In addition, we include the diagonal terms of the matrix in Eq. 7, which are
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adjusted so that an isolated atom in the ground state is at zero energy.

These are E - -5.25 eV and E - 1.20 eV.
s p

Equation 7 can then be solved. Each bond is projected along the x, y and

z coordinates, and then weighted according to the interatomic distance. The

matrix is then diagonalized. The eigenvalues correspond to the energy levels,

and the eigenvectors are the coefficients, c. . The value c. c . corresponds
La laa

to the contribution of atomic orbital i to molecular orbital a, or, the

probability of an electron in molecular orbital a being in atomic orbital i.

In the model which we have presented, the matrix to be diagonalized is real

and symmetric, and therefore all eigenvalues and eigenvectors are real.

Similarly, the sum Z c. c .n is the total charge density in atomic

orbital i, where na is the occupation number of molecular orbital a. In the

case of s and p orbitals, there are four orbitals per atomic site, and thus

the total charge on a given atom (labelled k) as a result of an electron in

molecular orbital a is

qk- n c. c (10)

i on k a

The evaluation of Eq. 10 is known as a Mulliken population analysis, and from

it one can gather information not only about the energy of a cluster, but also

about the charge distribution. Such data must be handled with care, however,

as will be illustrated in the next section.

3
The HRickel model differs from the general TB model in two respects.

First, instead of including s and p orbitals in the basis set, it only

includes s orbitals. Hence the assumption is that there is only one valence
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electron per atom. This means that there are only two parameters, the

diagonal terms, known as the Coulomb integral, usually abbreviated as a, and

the off-diagonal terms, corresponding to the V interaction between nearestss

neighbors, which is denoted by f and termed the resonance integral. Since the

s orbital is spherically symmetric, there is no angle dependence in the model.

Further, in the simplest case, there is no length dependence on 0, and so the

result depends only on topology. However, it is a relatively simple matter to

include a distance-dependent term, in which case the HUckel model is extended

and more accurate.

2.2.3. Application to Clusters

The parameters given above are fitted to solid silicon in a diamond

2
lattice structure. They are chosen to match the band structure for that

system. The self-energy terms, E and E , are chosen so that the zero-point

energy is the Fermi level of the solid. It is not entirely clear that the

above model holds for clusters, and in any event, some additional features

must be considered.

In the first case, the bulk parameters are chosen for the equilibrium

geometry, i.e., a fixed system. This is easy since all bonds and atoms in the

lattice are identical. But for clusters, it is necessary to accommodate

varying bond lengths. For this, some reasonable potential must be included.

TomAnek and SchlUter4 have done this by using an analytic expression for the

silicon dimer, matched to ab initio results. This is used to develop a

repulsive potential curve. The attractive part of the potential is fitted by

2
multiplying the TB parameters by 1/r , while continuing to insist that the

band structure of the bulk comes out properly. Thus the repulsive part of the
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potential is assumed to be a pair-wise classical potential, whereas the

attractive part comes from the band structure calculation.

The second problem in using the model for clusters comes from the varying

coordination numbers. In the bulk, all atoms are tetrahedrally coordinated,

and hence it is not necessary to account for energy differences arising from

this source. But for a cluster, this can yield important variations. Thus it

is necessary to include a parametrization which depends on the ratio between

bonds and atoms. TomAnek and Schl(ter have done this by fitting a quadratic

equation to the dimer and two bulk structures, diamond and fcc. This equation

is

2
ECN - nx1(nb/n) + x 2 (nb/n) + X 3 1 (11)

where n refers to the total number of atoms, ard nb to the total number of

bonds. The Xi's are empirically fitted.

The final problem in applying the TB model to clusters concerns charge

separation. For the solid lattice this difficulty does not arise (at least

for a homonuclear species like silicon), but for clusters, it is necessary to

account for the fact that there may be a dipole moment. Thus Coulomb forces

must be accounted for explicitly. TomAnek and Schldter have done this by

2 2
including U(qk q.) in the Hamiltonian, where qk is calculated from Eq. 10,

and qo is the number of valence electrons on a neutral silicon atom. The

constant U is to be empirically determined, but in the absence of data with

which to fit it, it is chosen as unit).

Thus the complete Hamiltonian to be applied to clusters 
is4
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Ec - nE- niEi + Erepulsive k E(CNj+kE ~- qt),q(12

a a k j k

where the first term on the rhs is the band energy. The second term sets the

zero energy to an isolated atom in the ground state, so that the resulting

energy is the cohesion energy of the cluster, Eco h . ECN is the bond-number-

dependent term from Eq. 11, and the last term is the Coulomb term. The above

Hamiltonian is fitted to match the bulk and the dimer exactly, and it is hoped

that it will apply to situations in between. Whether or not it does is the

subject of the next section.

2.2.4. TB Model Applied to Silicon Clusters

The test of the TB model when applied to silicon clusters ultimately rests

on comparison with experiment. Experimental data is more difficult to come

by, and so some of our results remain speculative. Nevertheless, there is a

sufficiently good match to indicate that the TB model is valid over a range of

4
structures. Tom~nek and Schldter, having developed the model described

above, were the first to apply it to small silicon clusters, where they

compared their results with a local-density approximation calculation. While

we refer the reader to the original article for the details, it may safely be

said that the results largely agree, at least in terms of the cohesion energy.

This constitutes the first evidence that the TB model may be useful. TomAnek

and Schluter performed a calculation on two structures of Si1 0 , a tetracapped

octahedron (TO, shown in Fig. 1) and an adamantane-like structure, which is a

bulk fragment. The TO isomer was found to have a cohesion energy of -3.6

eV/atom, whereas the adamantane form was found to be unstable.
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5

We have performed an extensive study of Si isomers, comparing not only

energies, but also whatever other experimental parameters can be culled from

the literature. The various structures we found are shown in Fig. 1. We

review these results with an eye toward establishing the benefits of the TB

model. The most stable structure is a distorted form of a bicapped tetragonal

antiprism (DBTA-I). The distortion results from Jahn-Teller effects since the

ground state of undistorted BTA is degenerate. As shown in Table I, the

cohesion energy of DBTA-I is -3.98 eV/atom. Equally important, the HOMO-LUMO

gap is 1.4 eV. This matches very closely to the experimental value of about

1.2 eV.
6

This result for DBTA dramatically illustrates the advantages of the TB

model. In order to derive a distorted structure, global optimization is

necessary. Indeed, we find another metastable structure (DBTA-II) which is

also a Jahn-Teller distortion of BTA. In this instance, the HOMO-LUMO gap is

0.6 eV. An ab initio calculation can do a global optimization only with great

difficulty, and classical force field approaches cannot deal with Jahn-Teller

effects. Thus semiempirical techniques are best from this point of view.

Ideally, however, the result can be confirmed by an ab initio calculation.

Closer consideration of DBTA-I yields more information about both the TB

model and the nature of silicon clusters. Figure 2 contains information about

bond lengths for various isomers. A difficulty with the TB model is that it

depends on the number of bonds through Eqs. 9 and 11. This problem is usually

solved by choosing a cutoff value, i.e., two atoms are considered bonded when

separated by less than the cutoff value, and unbonded when further apart.

This is another parameter put into the calculation, and is chosen to best

match experimental evidence. Tom~nek and SchlUter have chosen the cutoff
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value to be 0.255 nm, which is the average of nearest-neighbor and next-

nearest-neighbor distances in the bulk. This value is fine as long as

coordination numbers and structures are similar to those in the bulk, but it

fails for clusters with coordination numbers larger than 4 or 5.

The importance of the cutoff value is shown in Fig. 2. This value is

illustrated by the dashed line, and as can be seen, for most clusters a choice

between 0.3 nm to 0.35 nm makes no difference and is therefore arbitrary. For

DBTA-I, however, there are two atoms which are approximately 0.33 nm apart,

and this provides a test for the appropriate cutoff distance. We have

performed the calculation for DBTA-I under two situations, with the 24-bond

version of the isomer and also with the 25-bond version. The results are

given in Table I, and it can be seen that the 25-bond version more closely

matches the experimental parameters. In fact, a partial bond is probably a

better way of dealing with the situation, and in principle one could use some

smooth curve to delineate bonded from unbonded atoms, rather than a cutoff

value. Nevertheless, we now have direct evidence for appropriate bond lengths

in clusters, and we are thus also able to extend the applicability of the

model to larger coordination numbers.

The results in Table I are consistent with those calculated elsewhere. A

classical force field model yields BTA as the most stable isomer. A

calculation by Parinello and co-workers suggests a tie between the TO and TTP

7 8-10
isomers, and ab initio results vary between TTP and TO. None of these

calculations include Jahn-Teller effects, and none of them reproduce the

experimentally observed band gap. BTA has a degenerate ground state, and TTP

and TO have band gaps more than twice that observed. Further, if one assumes

that the activation barrier separating the BTA related forms is very small,
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then two isomers exist in equilibrium, these being DBTA and TTP, with DBTA as

the most abundant species. Experimental evidence indicates that at least two

11
isomers of Si exist with 85% and 15% population distributions. This data

is entirely consistent with our result.

We thus conclude that the TB model is a fairly accurate way of dealing

with silicon clusters. The original parameters were chosen by TomAnek and

Schlater, and we have further investigated the problem of the cutoff distance.

We find that a good physical argument can be made for choosing 0.33 nm. Our

relative energies are consistent with those of other workers, and our data

match the PES spectra and the thermal distribution data. We thus conclude

that the TB model is probably useful for investigating larger clusters.

The first larger system we have investigated is silicon cluster cations

12
ranging from 30 to 45 atoms. This was inspired by experimental evidence

indicating a dramatic difference in chemical reactivity for different sized

13
clusters. Ammonia and methanol are found to react quickly with clusters

containing 30, 36, 43-44 and 46 atoms, and are found to react only slowly with

clusters containing 33, 39 and 45 atoms. There are two orders of magnitude

separating the reactivity of Si+6 from Si Conversely, there is no

significant variation found in reactivity with oxygen or nitrogen oxide.

Several salient points can now be mentioned. First, the periodicity in

reactivity is roughly six atoms. This seems to indicate a six-membered ring

as a basic unit. Secondly, the reactivity with strong free radicals (such as

02 and NO) is non-periodic. This seems to indicate that the number of

dangling bonds is not the determining factor, since free radicals would be

expected to react with dangling bonds. Thus there must be some other feature

of the structure which determines the reaction rate. We have used the TB
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model to investigate this more closely. Since this work was done prior to the

work on Sil0, the cutoff distance used for this study was 0.255 nm, taken from

Tom.nek and SchlUter.

Six-membered rings of silicon atoms are stacked as shown in Fig. 3. When

the number of atoms is not divisible by six, the remaining atoms are arranged

as a cap at one end of the cylinder. In the first instance, we are interested

in determining the stability and geometry of the structures. We find that all

such structures, from n - 30 to 45 are metastable. To our surprise, we also

find that the rings are quite flat. We also find that while bending increases

the stability of the ring, it substantially weakens the bonds between the

rings, thereby raising the energy of the cluster. The precise geometry of the

clusters is given in the original reference.

The problem is to account for the difference in reactivity. Figure 4

depicts the charge distribution as a function of cluster size. Given the

large variation in reactivity, we require a large qualitative difference in

some property. It is observed that a three-atom cap has a negative total

charge, whereas caps of other sizes tend to be positive. Exceptions are for n

- 28, 29, 40 and 41, which correspond to four or five atom caps. These are

also slightly negative, but are not especially reactive. The Si + cluster is
39

the least reactive, and it is the only species to be negatively charged at

both ends.

Thus the charge distribution appears to vary qualitatively as a function

of cluster size. If ammonia and methanol are thought of as nucleophiles, then

their reactivity with a positively-charged cap is straightforward. Similarly,

the reactivity with a negatively charged cap is expected to be greatly

diminished. A three-atom cap tends to draw electrons toward it, and thus
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tends to be negatively charged. This can be considered a resonance effect.

Similarly, since the variation in dangling bonds is not qualitatively

different as a function of n, it follows that free radicals react

indiscriminately.

It is interesting to note that these experiments were done for the cation,

which implies that a local negative charge is less likely. The prediction,

therefore, is that the reactivity pattern for the neutral or anionic species

will be much less pronounced since four and five atom caps would draw

significant electron density.

The second project is to investigate the structure of Si + Again, the
60'

impetus is a remarkably simple experimental result, notably the

photofragmentation data. 14 It is found for Si as well as for a wide range
60

of other sizes of silicon and germanium clusters, that the photofragmentation

pattern yields predominantly Si+0 . The experimenters point out that the

charge on the original cluster is most likely to migrate to the largest

fragment, and therefore the complete absence of fragments larger than 11 or 12

atoms indicates that the Si 0 ion explodes rather than just breaking into two

or several pieces.

There are two approaches which can be used here. One is to suggest that

Si4+ is more stable than other small clusters, and hence ten atoms is the
10

preferred size. The difficulty is that this does not appear to be the case,

for it appears that cohesion energy rises as a function of size (for small

clusters), and further, that Si13 is considerably more stable than the Sil0

fragment. The second possibility is that silicon clusters fragment into ten-

atom pieces by virtue of the construction of the parent species. If this is
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true, then it imposes a significant condition on the structure of clusters

larger than twenty atoms.

We choose to investigate the second possibility by studying the properties

of an Si60 cluster arranged as shown in Fig. 5, and which we describe as

stacked, Si-naphthalene rings. This is the next logical step beyond stacked

six-membered rings. The purpose of this exercise is to see if this

constitutes a stable structure, to determine a logical fragmentation pattern,

and to estimate the degree of conjugation around the rings. If fragmentation

occurs between the planes, then a ten-atom fragment is a likely product.

A larger model can now be considered. For small clusters, n < 20, the

structure is molecular in form, i.e., close-packed with large coordination

numbers. Very large clusters assume a bulk structure. The difficulty arises

for intermediate forms. The molecular framework does not work, since then a

close-packed solid would result. Similarly, a large surface area precludes a

straightforward application of the bulk model. Thus the arrangement in Figs.

3 and 5 seems reasonable. Most atoms are tetra-coordinated, the surface area

is minimized, and reactivity and fragmentation patterns can be accommodated.

Other models have also been proposed which solve many of the same

15,16
difficulties. The experimental art does not yet permit resolution

between these conflicting theories.

The cohesion energy of the Si60 cluster in Fig. 5 is -3.6 eV. This

compares to a bulk value of -4.4 eV, and the value for Si10 of -4.0 eV. This

trend is consistent with the above hypothesis, since both a tightly-packed

small cluster or a stable solid would be more stable than the intermediate

system. The charge distribution is given in Fig. 6, which indicates that

negative charge is concentrated in the center of the molecule.
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Of primary interest are the bond strengths of the cluster, shown in Fig.

7. This is calculated using values for overlap integrals given by Mulliken.

It can be seen that the weakest bonds are between the planes second from the

ends. Thus if the cluster were to fragment, it would most likely fragment

along these lines, leaving three, twenty-atom fragments. The Si20 fragment

has a cohesion energy of -3.2 eV and is probably unstable with respect to

dissociation to Sil0 Hence the appearance of ten-atom daughter fragments

follows.

To conclude this section, we review what we have tried to do. We have

used the tight-binding model to determine properties of silicon clusters. The

advantages of this are that it is simple enough to allow complete geometric

optimization, while still providing data about electronic states. Strong

evidence for the suitability of the model is provided by the results for Si10 ,

and also by the work of TomAnek and Schlfter on smaller clusters. This model

has subsequently been applied to larger clusters with an eye toward explaining

the reactivity and photofragmentation data.

2.2.5 Applications of the Hickel Model

We very briefly review some work using the HUckel model. 3 A Hdckel

calculation is valid primarily for atoms with a spherical valence shell, and

thus has been used mainly for alkali metals. It was originally developed,

however, to describe conjugated carbon systems, in which w electrons are

considered to be valence electrons, and a electrons are considered to be

inner-shell. This approach is very primitive and is valid provided the

angular dependence of the Hamiltonian can he neglected. In the simplest case,

not even the radial dependence is included, though Salem indicates simply how

that car, oe accomplished.
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Our laboratory has used the Hdckel model to calculate stable structures of

sodium clusters. 1 7 ,18 This simple model was used so as to permit a very rapid

calculation of a large number of different isomers, necessary because there

are as many as 11-million ways of constructing Na1 0.
1 7 Graph theory was used

in analyzing this problem. This is possible because the Hckel model depends

only on the adjacency matrix, and hence a molecule can be represented

topologically. A scheme was developed to eliminate most isomorphic graphs.

However, since graph theory does not accommodate bond lengths, a geometric

constraint reduces the number of possible isomers dramatically. Thus the

energies of all topologically and geometrically allowed structures were

calculated using the Huckel method, both for the neutral and cationic species.

This yields stable structures, a representative sample of which are shown in

Fig. 8.

Some interesting data about the transition from molecule to solid now

18
emerge. The energy spectrum can be calculated using the Hiackel model. It

is found that this falls into certain bands which can be described by the

usual s, p, and d notation, depending upon the orbital angular momenta. The

band energies can be modelled by a least squares fit to the function

EI(n) - AI + BI(n1 /3 +1) -2 (13)

where n is the number of atoms in the cluster, and AI and BI are determined

from the curve fit. The subscript I distinguishes between orbitals with s, p

or d symmetry. This curve matches the energy spectrum very well. However,

there are two breaks where the energy of the bands is significantly different.

These occur at n - 7 and n - 12. At n - 7 it is observed that the cluster
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structures change from two-dimensional to three-dimensional. At n - 12 it is

observed that there are body atoms inside the cluster that appear to be bulk-

like. Thus the breaks in the band structure can be directly correlated to the

size of the cluster, and it appears that clusters with 12 or more atoms will

behave more like the bulk metal.

2.2.6 Conclusions

The last paragraph is a good example of both the advantages and

disadvantages of the tight-binding and HQckel model approaches. On the plus

side is computational simplicity. This allows the rapid determination of a

large number of structures, and also the calculation of general trends in

electronic properties. This is also true with silicon clusters, where full

geometric optimization is found to be important. State-of-the-art ab initio

calculations are as yet unable to accomplish this.

Interest in clusters has been renewed because of their optical properties.

Here data about excited states is crucial, and the tight-binding method may be

able to provide this. By definition, the TB model is fitted to the band gap

in the bulk, and therefore should be expected to yield accurate excited state

data near the band gap. Far from the band gap is a different story, and there

the accuracy of the method remains to be tested. Nevertheless, the TB method

provides an excellent method of estimating optical parameters with relatively

little work, and incorporating full geometric optimization.

A second virtue of the TB method is that it is readily applicable to solid

state chemistry. In a sense, a cluster can be viewed as a defect in a solid.

There has recently been some interesting work on lattice defects using

variations on the TB model. This becomes especially interesting since it is

supposed that embedded clusters will have special optical properties. The
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nature of these embedding effects is something that can conceivably be

investigated.
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Table 1

Cohesion energies, HOMO-LUMO transition energies and LUMO energies of various

Sil0 structures, shown in Fig. 1. The LUMO one-electron energy, which is a

rough indication of the electron affinity, is given relative to the "HOMO"

level of the bulk.

Species Cohesion Energy HOMO-LUMO Gap LUMO Level

(eV/atom) (eV) (eV)

DBTA-I -3.98 (-3.92) 1.4 (0.9) +0.18 (+0.13)

DBTA-II -3.92 0.6 -0.50

BTA -3.90 0.0 -0.92

TTP -3.91 2.6 +1.21

TO -3.61 2.9 +2.00

* The values for the 24-bond structure are given in parentheses.

** Since the ground state is degenerate, this is also the HOMO level.
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Figure Captions

Fig. 1 Structures of various Sil0 isomers: (a) tetracapped octahedron

(TO); (b) tetracapped trigonal prism (TTP); (c) bicapped tetragonal

antiprism (BTA); (d) distorted BTA-I (DBTA-I), with the possible 25th

bond indicated by the dashed line. The unit on each axis is A.

Fig. 2 Range of bond lengths for different isomers. The cutoff parameter

chosen (0.33 nm) is shown by the dashed line. The thick bars below

illustrate the range of bond lengths in the cluster. The thin bars

above indicate the range of non-bonded distances, with the upper

limit corresponding to the maximum diameter of the cluster. For

DBTA-I two possibilities are indicated. On the left, the 25-bond

form is shown, whereas on the right, the 24-bond form is shown. The

unit on each ax's is A.

Fig. 3 Geometry of two silicon clusters, Si and Si+9, with a silicon atom37 39

at each vertex.

Fig. 4 Total electronic charge per layer for different silicon clusters.

The diagrams on the left of each figure represent a schema of the

cluster geometry, with the solid bars denoting a six-membered ring,

and the individual atoms of the cap are shown explicitly. The bar

graphs on the right show the total charge per layer, i.e., the sum of

the charges of each atom constituting a single layer.

Fig. 5 The proposed structure for the Si60 cluster, consisting of six,

stacked, ten-atom naphthalene-like rings.
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Fig. 6 The charge density distribution in Si6 0. Each line represents one

naphthalene plane, and the number is total charge on that plane, in

units of electronic charge.

Fig. 7 The average bond strength of the bonds between each of the planes in

the proposed Si60 cluster. Each number is an average over ten bonds.

Numbers are unitless.

Fig. 8 Most stable structures for neutral metal clusters up to nine atoms.
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