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1. Introduction

One long-standing aspiration of cognitive science is that education would benefit from the building

of learning theories that are expressed, at least partially, as Artificial Intelligence (Al) programs. I have

built several such programs (VanLehn, 1987; VanLehn & Ball, 19??), and others have built many more

(Anderson, 1983; Newell, 19??; Holland, Holyoak, Nisbett & Thagard, 1986; Anzai, 1987; Ohlsson,

1987). Although such work has profoundly changed our image of competence and intelligence, and that

change has begun to seep into the educational system, it is fairly clear now that the resulting

programs/theories have not had as much direct effect on education and training as could be desired.

This paper examines the reasons why and suggests a new research direction based on that analysis.

The basic problem is that there seems to be an unavoidable tradeoff between the generality of

learning theories and their utility to educators. Let us examine this tradeoff by starting with some recent

general theories of learning and seeing what utility they have for education.

SOAR (Newell, 19??; Laird, Newell, & Rosenbloom, 1987) and ACr (Anderson, 1983; Anderson,

1987) aim to be universal theories of cognition. Their goal is to describe only the aspects of skill

acquisition that are common to the acquisition of all skills. These theories are well suited for some

purposes. Some examples are:

" explanations of speed and error patterns in transcription typing (John, 1988),

" explanations of the power-law increase in speed and accuracy that invariably accompany

extensive practice (Rosenbloom & Newell, 1987; Anderson, 1983),

" explanations of transfer, as measured by savings in learning time caused by prior training

on a similar skill (Singley & Anderson, 1985; Singley & Anderson, 19??; Kessler, 1988).

However, the mechanisms of ACr and SOAR do not in themselves tell us much about the students' initial

acquisition of the skill. For instance, they do not tell us how students will read an instructi

the effects 6f examples, nor the impact of sp' I' pre-existing conceptual knowledge, nor the

importance of having mental models in task domains a :dmit them, and so forth.

This is not an oversight on the part of the authors of Acr and SOAR, but arises from the fact that

initial acquisition of a skill seems to be a form of problem solving. Students, while engaged in various

pedagogical activities such as studying a text or working some exercises, occasionally discover that

their knowledge is incomplete or mistaken. This is a problem. They know many methods for solving the

problem of ignorance, and different students may know different methods.1
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As always in problem solving, the behavior of the subjects is determined mostly by the nature of

the problem and the particulars of their knowledge. Neither of these is specified by ACT' or SOAR, as

they aim to describe only the universal aspects of cognition. However, ACT and SOAR should be

consistent with the observed behavior in that one should be able to specify (as ACT' or SOAR programs)

a model of the individual subjects' knowledge and the task environment that will cause the architectures

to accurately simulate his or her behavior. Presumably, the particulars of ACT' and SOAR put some

constraints on the specification of the knowledge, but the constraints imposed by the nature of the task

are much stronger.

To put it differently, suppose an educator who is interested in teaching thermodynamics is not

sure which of several ways of learning is typically used by thermodynamics students or could potentially

be used by them. Trying these various options out on ACT* and SOAR will not reduce the educators

uncertainty one bit, because the architectures will probably be consistent with all learning methods the

educator is likely to consider. In short, because these architectures aim at universality, they turn out to

pretty useless as constraints on task-specific theories of initial skill acquisition.

To put the same point a third way, one view of pedagogy (Anderson et al., 1984) is that a

sufficient teaching method (but not, of course a necessary one) is to:

1. formalize as production rules (or some other type of rule) exactly what the students need

to know in order to perform competently, and

2. design a curriculum whose lessons introduces these rules in small batches (cf. VanLehn,

1983), and

3. design lessons that explain the rules clearly and provide sufficient practice on applying

them. (Immediate feedback is seen as particularly important for catching

.,isUlerstandigs and rectifying t*em, but it is not essential to this method.).

The critical step in this teaching method is the task analysis that takes place in the first step. Task

analysis is driven almost exclusively by the subject matter of the task domain. General cognitive

theories, such as Acr, provide a notation for the rules, but otherwise offer little guidance to the person

conducting the analysis.
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2. The essential problem, and three possible solutions

These deficiencies are not a fault of ACr and SOAR per se. Rather, it seems that very little of our

cognitive behavior (as opposed to more peripheral behaviors) is determined by the fixed, unchangeable

parts of our mind. Cognitive behaviors seem to be determined by our knowledge and the environment

itself. Moreover, knowledge acquisition is a cognitive behavior, which is itself determined mostly by

knowledge and the environment. To put it in more traditional terms, because we humans are a highly

adaptive species (i.e., we mold our behavior to fit the environment), our higher level behavior is

determined mostly by our history of interaction with the environment (our knowledge) and by the

environment at hand.

Unpacking the recursion here, it seems that the ultimate determinant of cognitive behaviors is the

person's environment. (This is, of course, a gross simplification -- I am not proposing a tabla rasa here.)

Presumably, one could explain cognitive behavior by omitting descriptions of the various cycles of

knowledge acquisition, etc. and just examine the relationship between the environment and cognitive

behavior.2 Although this is one logically possible way to predict human behavior, I suspect that such an

explanation would be cumbersome and inaccurate, so I would not recommend pursuing it.

Logically, the only other option is to incorporate the environment into the theory. Thus, for

example, a theory of physics learning would include task-specific terms like "forces" and "equations."

Such theories blend psychology and the particulars of a task domain. In order to illustrate the notion of

task-specific theories, let us examine some simple ones. The task of arithmetic calculation is fairly well

understood. It divides cleanly into recall of arithmetic facts, such as 17-9=8, and execution of arithmetic

algorithms, such as the algorithm for subtracting two multidigit numbers. We will consider a task-

specific theory for recall and a task-specific theory for execution.

Siegler (Siegler & Shrager, 1984; Siegler, 19??a; Siegler, 19??b) has developed specific models

of how stud-nts "recalr arithmetic facts. Each model has parameters that can be fit to a individual

subject's behavior, thus providing both a test of the models and a way to forecast the subject's behavior.

Each model is specific to one type of arithmetic operation, but they are all consistent with his general

theory of strategy selection, which features a specific procedure for trading off retrieval and

reconstruction of the item to be recalled. Reconstruction, in this context, might consist of using counting

to generate an addition fact. Moreover, the general theory specifies how memory traces are

strengthened by practice, thus leading to the dominance of memory retrieval over reconstruction that
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characterizes the competent student's performance. Siegler's theory of recall seems quite general, for it

has been successfully applied to analyze acquisition of spelling rules (Siegler, personal communication)

as well as the major arithmetic operations. Of course, it is not as general as AC" or SOAR, but it serves

nicely as a simple illustration of the difference between a general theory, a task-specific theory/model

(e.g., the model for addition, which has explicit reconstruction strategies for arithmetic facts), and a

subject-specific model (the addition model, with its parameters fit to a given subject's data). Siegler's

task-specific models are specific enough that one can envision designing a curriculum around them, and

Siegler has recently begun to do just that (Siegler, personal communication).

My colleagues and I have developed models of the algorithms for multidigit arithmetic,

concentrating especially on subtraction (Brown & VanLehn, 1980; VanLehn, 1983b; VanLehn, 19??;

VanLehn, Ball & Kowalski, 1988). There is a general theory, which distinguishes between normal

execution of a procedure and "error handling." According to the theory, when people reach an impasse,

perhaps because their knowledge of the procedure is incomplete and they can not decide what to do

next, they treat the impasse itself as a problem and attempt to resolve It. One impasse-resolving

strategy is to ask for help or to consult a textbook. Another is to search through one's earlier work

looking for an inadvertent error. These strategies dcpend strongly on the particulars of situation that the

students are in and on their knowledge of the task domain. Another hypothesis of the general theory is

that learning occurs whenever the resolution of an impasse is summarized and stored in memory as a

new rule (VanLehn, 1988a). The general theory has been tested by developing a task-specific

theory/model of subtraction (VanLehn, 1983b; VanLehn, 19??). The model has been fit to individual

subjects' error data. The task-specific model makes predictions about pedagogies for subtraction, some

of which have been tested (VanLehn, 1988b). This work again illustrates the difference between a

general theory, which offers little specific guidance to educators, and task-specific theories/models,

which provide crisp suggestions.

Neither of the "general" theories just mentioned are as general as ACr or SOAR, so a better view

of the world is to see theories as arranged in some kind of generalization hierarchy. sOAR, for instance,

is a straightforward generalization of both Siegler's theory and mine, because it generalizes the notion

of an "impasse" to cover both failures due to memory retrieval and failures due to flawed knowledge.

On the other hand, SOAR offers even less guidance to educators than either Siegler's theory or mine,

just because it has more generality. So the same generality-power tradeoff is evident, even though the
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binary distinction between general theories and task-specific ones has dissolved into a generalization

hierarchy. Although I will continue to speak of "general" versus "task-specific" theories, one should

keep in mind that this is a simplification.

It seems that task-specific theories offer a viable option for guiding pedagogy. But unfortunately,

task-specific theories offer little help to people who are interested in other tasks (or at least, that is how

the theories are treated: theories of arithmetic are pretty much ignored by everyone except those

interested in arithmetic). Thus, while task-specific theories are much more h 'pful to some educators

than general theories, they are not helpful to very many educators.

This leads to a third option (the first two were environmental theories and task-specific theories),

which is to formulate a method for generating task-specific theories. Traditionally, a method is a

prescription of the kinds of experiments to run, the kinds of analyses to make and the kinds of

conclusions to draw. The later two items are actually a weak task-general theory. It is weak because it

does not foreordain the conclusions, but merely provides some ideas or even some notations for stating

the task-specific theory. To put it differently, a method provides (1) a general theory and (2) a means of

instantiating the theory to fit a task domain, thus formulating a task-specific theory.

There are methods in education, but I believe it is fair to say that all of them are oriented towards

prescribing instruction rather than constructing learning theories. The social sciences contain many

descriptive methods, such as factor analysis and its associated theory of intelligence, or structural

linguistics and its associated theory of syntax. However, as far as I know, there is no method for

formulating task-specific theories of learning.

This does not bode well for a project aimed at formulating such a method. All the arguments

presented above depend only on ancient concepts, such as the distinction between knowledge and its

applicatipnThese arguments lead more or less inevitably to the project of formulating a method. Surely

someone in the long history of education and psychology must have tried to formulate such a method.

Maybe they tried and failed. Maybe such a method is just not feasible.

Some recent results in Al indicate that a method for formulating task-specific theories may indeed

be feasible. Most of the work is aimed at replicating the reasoning processes behind human scientific

discovery (Langley, Simon, Bradshaw & Zytkow, 1987; Kulkarni & Simon, 1988; Shavlik, 1986).
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Although there is no denying that these programs produce the same hypotheses and experimental

demonstrations that the human scientists did, there are still grave doubts about whether the

simplifications assumed by these models are too strong. Pessimists would say that the machine

discovery programs are not particularly intelligent, but the people who chose the simplifications for them

were very intelligent. Since the pessimists could turn out to be right, it is prudent for those who wish to

apply this new machine discovery technology to assume that a practical machine discovery system has

a scientist/user who selects the simplifications and oversees the machine's reasoning. To put it crudely

again, although the machine discovery work may or may not be able to build a mechanical scientist, it

probably can build a mechanical research assistant. Such a tool could play a key role in a method for

formulating task-specific theories of learning. i

In short, it seems that the most promising option for finding theories of learning that are really

useful to educators is to formulate a method that combines the talents of people and machine discovery

programs in order generate task-specific theories of learning. This is a research option that I think

should be pursued.

3. Workbenches: existing and proposed

Calling the research product a "method" makes it sound like a step-by-step prescription of how to

construct a theory. I do riot think that kind of method is feasible. What I have in mind is a set of

integrated computer-based tools for analyzing data and building models. Such a "scientist's workbench"

would be based on some task-general theory, such as ACT* or SOAR, or perhaps some moderately

general theory, like Siegler's or mine. This section discusses some examples.

CIRRUS (VanLehn & Garlick, 1987; Kowalski & VanLehn, 1988) is a workbench based on my

theory about how people execute cognitive. In addition to the hypotheses mentioned above, the theory

includes the hypotheses that people are free to pick any goal that they can recall as the next goal to

attend to, and their knowledge includes some policies concerning what types of goals to attend to in

what situations (VanLehn, Ball & Kowalski, 1988). 3 CIRRUS is designed for analyzing protocol data within

the framework of the theory by building a runable simulation and comparing its behavior to the given

protocol.4 Students' policies about goal selection are formalized as a set of goal selection preferences of

the form "ff condition C holds, then prefer goals of type A over goals of type B." The simulator uses such

preferences to sort a list of pending goals and choose the goal that is preferred above all others. To use
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CIRRUS, the theorist must input a procedure, written in the knowledge representation language of the

theory, that lacks goal selection preferences. CIRRUS must also be given primitives from which goal

selection preferences can be built. Given a protocol, CIRRUS builds goal selection preferences that allow

a maximally accurate simulation of the data. To put it in more traditional terms, CIRRUS takes a model

with one parameter, and fits it to the given data. However, both the model and the parameter are

non-numeric.

When my collaborators and I use CIRRUS, we find it necessary to refine the model given to it many

times before we are finally happy with the analysis it yields. Typically, we analyze one subject's data in

some detail, then start our analysis of the next subject using the model developed for the first subject.

After several subjects have been analyzed, commonalties in the subject-specific models emerge. At

that point, we build a subject-general model and install parameters (typically, a system of switches that

turn rules off and on) in order to capture the between-subjects variation. We stop the analysis when all

the subjects have been analyzed and one subject-general model has been found One of the model's

parameters, the set of goal-selection procedures, is fit automatically by CIRRUS; the other parameters,

which were created during the model refinement process, are fit by hand. This refinement process can

be viewed as finding a theory that is specific to the task under analysis but genieral across subjects. In

this fashion, CIRRUS helps the scientist/user discover a task-specific theory/model.

ACM (Ohlsson & Langley, 1985; Ohlsson & Langley, 1988) is similar to CIRRUS. It is based on the

theory that problem solving is search through a problem space. It takes as its model a specific problem

space, and builds a set of operator selection heuristics that will cause search through this problem

space to simulate answer data given to the program.

SAPA (Bhaskar & Simon, 1977) is somewhat like ACM, in that it is based on the theory of problem

solving as search through a problem space. However, it does not to actually build a set of search

heuristics ttilt fit some- data given to it. It already has some search heuristics in it, along with a

particular problem space.5 These search heuristics are intended, I suppose, to represent those of a

prototypical subject's. At each cycle of the search, SAPA asks the user if the inference it has just made

corresponds to the protocol. If it does, then the built-in, fully parameterized model is upheld. If not, then

SAPA checks to see if the parameterization is wrong -- i.e., it has the right problem space but the wrong

heuristics for that subject. It performs this check by suggesting alternatives until the user indicates that

it has found one that corresponds to the protocol. If none of SAPA'S suggestions work, then the problem
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space is deemed faulty, because no parameterization of the model will fit the data. Bhashkar and

Simon used SAPA to test their task-specific theory of thermodynamics problem solving, and to test their

model of a prototypical student's search heuristics.

All these workbenches, as well as several others (e.g., DEBUGGY (Burton, 1982), TETRAD

(Glymour, Scheines, Spirtes & Kelly, 1987) and METADENDRAL (Lindsay, Buchanan, Feigenbaum &

Lederberg, 1980)) have three components: (1) a general theory that is so deeply embedded in the

workbench that it can not be changed, (2) a underdetermined model given to the workbench by the

user, such as a problem space for thermodynamics problem solving, and (3) a process that fits the

model to the data, making it more deterministic. The theorist tinkers with the underdetermined model in

order to get a fitted model that analyzes the data satisfactorily. The result is a model that is both a

generalization over several (hopefully, many) subjects' data and a specialization of the general theory.

The model can be considered a task-specific theory.

Of course, such a model is interesting only to the extent that that task is interesting. Educators are

interested in learning, but CIRRUS, ACM and SAPA all assume that learning does not occur during the

protocols they are analyzing. Thus, they could be used in a longitudinal study to model snapshots of the

learner's development, but they can not model the learning process itself. This leads to a proposal to

build a workbench that can model the learning process.

I am currently involved in building a scaled-up version of CIRRUS, called CASCADE. CASCADE is

being built in order to analyze a very large data set, donated by Micki Chi (Chi, Bassok, Lewis, Reimann

& Glaser, 19??). The data consist of 8 protocols, each about 200 pages long. They were collected from

students studying the first four chapters of a college physics textbook. The protocols record the learning

that a typical college student would undergo in the first few weeks of a college physics course.

4. Expoted benefits of the proposed research .

The most important application of the proposed technology is providing a "front end" to projects

that create training systems. According to Anderson, the first step in developing a training system is to

analyze the task domain to see what good students should know when they have completed their

training (Anderson et al., 1984). Workbenches such as CASCADE are intended to help a designer

perform such a task analysis. Although this section suggests a few other benefits that might accrue,

one should keep in mind that the main benefit is technological assistance in task analysis.
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The task-specific, subject-general model that is created on the workbench could be the starting

point of the development of a student modeler for an intelligent tutoring systems. Also, the data analysis

tools developed as parts of the workbench could be used as parts of the diagnostic module of an

intelligent tutoring system.

The mere process of analyzing students' learning in the face of the given instructional material will

usually reveal defects in the material that can be easily remedied. Anderson, for instance, has a written

a textbook on Lisp based on his task analysis. Since the analysis had only gotten as far as recursion

when the book was written, the last five chapters in the text were not based on a task analysis.

Anderson comments: "Since the writing of the book we have slowly began to create tutor material

corresponding to those chapters. As we have done so we have started to realize the inadequacy of the

information in the last five chapters." (Anderson, in press, chapter 4). It is significant that task analysis

of the initial segment of the curriculum, even by someone like Anderson, was not sufficient preparation

for writing an adequate material for the second segment. It seems that there is no substitute for formal

task analysis, even if the intended training vehicle is "just" as textbook.

Once a task-specific model of the student has been constructed, it often suggests new

pedagogical strategies. Given the model, some will seem clearly beneficial. However, pedagogies

whose benefits are less certain can be simulated; if the model is psychologically accurate, and the

proposed benefit helps the model learn, then human students should learn better as well. For instance,

on the basis of Siegler's model of addition, it seems that under certain circumstances, supervised drill

can take advantage of the commutativity of addition and only tWach half the addition facts.

Unsupervised drill on the other half should suffice for learning them. This pedagogical regime should be

tested on his model before being tried in the classroom.

So far, the importance of this work to education has been stressed. But there are other potential

beneficiarieS 9s well. Machine learning has recently turned towards scientific discovery as a source of

new problems. Because a workbench is a program that participates in scientific discovery, it should be

of some interest to research on discovery. One can even imagine taking protocols of scientists while

they use it in order to understand the discovery-making process better.

In protocols of students involved in learning new material, such as the ones being analyzed by the

CASCADE project, there are many instances of students making discoveries. These discoveries might

suggest discovery methods that could be developed into full-fledged machine learning techniques.
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Looking further ahead, machine learning has not yet produced interactive learners that can hold

up their end of a training dialog with their trainer. Formal work in the Valiant framework ("PAC learning")

indicates that such interactivity is necessary for tractable learning (Valiant, 1984), so eventually machine

leamin will have to build such interactive learners if it is to live up to its promises of delivering systems

that acquire knowledge for expert systems. The current protocol studies show how interaction proceeds

with human students. That should suggest styles of interaction to machine learning researchers.

Turning now to the benefits for psychology, we start with the traditional observation that

applications usually push theories towards completion because application efforts do not have the

luxury of ignoring parts of human behavior that are difficult to explain. This application of cognitive

theory will certainly push it towards completion. For instance, the physics task domain is richer in

conceptual material than other task domains, such as Lisp and geometry, that have been studied.

Thus, the development of a task-specific theory in physics should illuminate the interaction between

conceptual and procedural learning.

I have concentrated on workbenches for analyzing protocol data because such data will push

cognitive theory along by explicating the mapping between theoretical events, such as impasses, and

visible types of human behavior. There are few published comparisons of protocols and models as

detailed as the analyses in Human Problem Solving (Newell & Simon, 1972), and none that compare

models and students who are learning. The CASCADE project, and others like it, should yield the first

fine-grained analysis of human learning. From such analyses, we ought to uncover some unexpected

theoretical problems, as well as strengthen known weak spots in the theory.
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Notes
1Some types of problems occur so often that their solution has become routine, and the subjects

hardly notice that they have found and rectified a point of ignorance. For instance, students might not

initially understand the referent of a mathematical symbol while reading a text or example, but after a

few second's reflection, they retrieve (or construct) its meaning, and continue their reading.

Presumably, they learn something from such an experience. The experience can be analyzed as a brief

episode of problem solving, even though the subjects may not have thought of it as such.

2This proposal is similar to Anderson's Rational Analysis (Anderson, in press), except that the

time scales and phenomena are different. Anderson seeks to explain the fixed, unchanging part of a

person's mind -- the cognitive architecture -- by assuming that it is the product of genetic adaptation to

the demands of the environment. The proposal here is to explain an individual's knowledge as the

product of adaptation to the environment that has been experienced since birth.
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3This theory is slightly more general than ACT" and SOAR. Those theories claim that peopleinvariably select one of the unsatisfied goals that was created most recently (i.e., both ACT, and SOAR
have a last-in-first-o goal stacks).

4CIRRUS does not understand natural language; the protocol must be encoded by humans
before giving it to CIRRUS.

SAfthough SAPA was build to handle only thermodynamics, it could be redesigned to have more
task generality by allowing the user to input a problem space.


